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ABSTRACT

Explicit and recursive formulas for obtaining nth order transfer functions

of composite nonlinear systems are presented. A recursive method for obtaining

the nth order output of a nonlinear circuit by solving a linear circuit n times

is derived. Each time different input sources are used. Recursive formulas

for obtaining the nth order transfer functions of nonlinear circuits are then

generated. These results are used to obtain formulas for nth order transfer

functions of cascade systems, as well as inverse systems. Methods for

synthesizing nonlinear circuits and inverse systems via feedback configurations

are given. Finally, the general structures of transfer functions for a large

class of nonlinear systems are also derived.
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1. Introduction

This is a sequel to a recent paper [1] on frequency domain nonlinear

system analysis via the Volterra series. In particular the results developed

in section 4 of [1] will be used extensively in this paper. In section 2 we

derive the nth order transfer function of a nonlinear circuit by solving a

linear circuit repeatedly — each time with different sources. This problem

has previously been investigated in [3] using node analysis. However, not all

nonlinear elements can be expressed in voltage-controlled "admittance" form

and hence a more general method of analysis is desirable. Moreover, the use

of exponential inputs assume apriori that all transfer functions generated by

the solution process are symmetric. In this section, we derive rigorously

recursive formulas for obtaining the nonlinear transfer functions. In section 3,

we apply these recursive formulas to derive explicit formulas and recursive

formulas for obtaining the transfer functions of cascade systems and inverse

systems, respectively. Synthesis of nonlinear circuits and inverse systems

via feedback configurations are also presented. Finally, the general structures

of transfer functions for a large class of nonlinear systems are derived.

All systems considered in this paper are assumed to have a single input.

We adopt the same notations and definitions introduced in [1], except that

the zeroth order term for each Volterra series is assumed to be identically

zero. Thus, for an analytic system F, the output w(t) is an analytic functional

[2] F[x(t)] of its input x(t) and can be expressed as a Volterra functional

series; namely,

00 00

w(t) =F[x(t)] =£ Vx(t)] =^ Wm(t) (la)
m=l m=l

where

wm(t) 4Vx(t)] =L ••• jl fm(VT2 V ±lx "(t-r^dTj (lb)
The mth order term can be found from the input-output relation as follows [2]:

w(t) =F[x(t)] =-W^--F[ex(t)]mm m! ^m

For the purpose of this paper, it suffices to use the relationship

w(t) = F [x(t)] = coefficient of em in F[ex(t)] (3)
m

1 /dm-F[ex(t)]} (2)
,dt* / e=0
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All results from [1], especially those contained in the section on symmetrization,

will be applied in this paper without detailed explanation.

2. Formulation of Transfer Functions for Nonlinear Networks

In this section, we will generalize the method in [3,11] for finding the

overall nonlinear transfer functions of single-input nonlinear networks. The

method is a recursive one which involves only solving a modified linear circuit

repeatedly. Let each nonlinear element of the network be expressed as a

Volterra series of the form:

w(t) = £ wm(t) <4a>

where

i mm=l

oo oo m

wm(t) "f " J WV-'V " «<t"'i>4Ti (4b)
JF—CO J-00 1=1

For1 a two-terminal element, (x(t),w(t)) can either be (v(t),i(t)) or (i(t),v(t)),

where v(t) and i(t) are the voltage across and the current through the nonlinear

element, respectively. If (x(t),w(t)) is (v(t),i(t)), then we represent the

mth order transfer function by Ym(s1»s2»*'*»sm^ and cal1 it: the mth order
admittance of the voltage-controlled "admittance" element. If (x(t),w(t)) is

(i(t),v(t)), then we represent the mth order transfer function by zm(si»s2»*•*,sm^
and call it the mth order impedance of the current-controlled "impedance"

element. Equation (4) can.also be used to represent the four types of two-port

nonlinear controlled sources. In these cases x(t) can be either v(t) or i(t),

and w(t) can also be either v(t) or i(t). Since (4) is a general representation

of the preceding six types of nonlinear elements, we will henceforth call x(t)
the controlling variable, and w(t) the controlled variable of the nonlinear

element. We will also make the following four assumptions which define the

class of nonlinear networks being investigated in this section:

1. The nonlinear elements in the circuit consist of the six types described

above.

Before stating assumption 2, let us decompose each nonlinear element into

a linear component and a strictly nonlinear component as shown in Fig. 1.

Modify the circuit by embedding the linear component of each nonlinear element

into the linear circuit to which the nonlinear element was originally attached.

Thus each modified nonlinar element assumes the form:
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wM(t) = w(t) - w.(t) = £ w (t), (5)
N 1 ,, m

m=2 «,

where w (t) is the new controlled variable with the controlling variable x(t)
N

remaining unchanged.

2. The output q(t) of the circuit, the controlled variable wN(t), and the
controlling variable x(t), of each nonlinear element of the modified circuit, are

analytic functionals of the input and hence can be represented by Volterra

series.

3. The modified network has a unique solution for all branch voltages and

branch currents corresponding to each input of the input ensemble..

4. The modified network still has a unique solution for all its branch

voltages and branch currents after replacing the branch of each nonlinear element

corresponding to w,(t) with an independent voltage (resp., current) source
N -^

if w (•) is a voltage (resp., current) waveform .

Remark:

Assumptions 3 and 4 can be interpreted as a generalization of the well-known

"substitution theorem".
T T

For each input waveform u(-), let [yN(0 Jn(*^ and [xv(,) ~i(')]
denote the waveforms of the controlled variables and the corresponding

controlling variables, respectively, of the modified nonlinear elements as

shown in Fig. 1 . Let q(-) be the corresponding output waveform. It follows

from Assumption 2that each component of [yN(0 j^*^ and tq^ ~v^ xi^'^
can be expressed as a Volterra series with input u(»). In vector form, we

can write:

n=l

(6)

and

Iq(.) xv(-) 5i(.)]T -£ [^(O xto(.) x^Ol1 <7>
n=l

where [v„ (•) i„ («)]T a^d [q_(«) x (•) x. (•)] are the nth order terms with
~Nn ^Nn ti ~vn ~m —

respect to u(«). With the same input waveform u(«), replace the branches of

1Thus, all branches corresponding to v in Fig. 1 a,b and c are replaced with
independent voltage sources, while those corresponding to i^ in Fig. 1 d,e and
f are replaced with independent current sources.

Observe that v (•) and ^(0 pertain to different elements.

-4-



•T
the modified nonlinear elements that would have produced [yN(0 1^(01 with
the corresponding independent sources with the same waveforms
[v (•) i^(-)]T. Let us call these independent sources the nonlinear sources
and their nth order components [VNn i^]1 as shown in (6) the nth order nonlinear
sourCes. It follows from the substitution theorem that all branch voltage
waveforms and branch current waveforms remain the same as if no substitution
had been made. Observe that after these substitutions have been made, we are
left with a linear circuit with sources attached to it. The following facts
will show how the nth order output q^O can be found recursively by solving
a series of "recursive" linear circuits of this type.

Facts: T

1. Thereareno l_st order nonlinear sources, i.e., [YNl(*) ^Nl^*^ = °*
2. [q (•) x (•) x. (-)]T is due to u(-) alone and can be found by setting all
nonlinear sources to zero.

3 For n > 1, [q (•) x (•) x (-)]T is due to the nth order nonlinear sources
^n ~vn ~in

Tv (•) i (•)] alone and can be found by setting u(») to zero.
~Nn Nn t j .4. For n>1, each element of [v^CO iNn(0]T is afunctional of the .corresponding
element of [xvk(0 xik<')lT for a11 k<n*
Remark:

The above facts clearly suggest arecursive algorithm for finding q(-)^ Indeed,
it follows from Fact 2 that the 1st order term [q^O x^CO x±1(-)] can be
obtained by solving a linear circuit with input u(-). Using fact 4 with
n =. 2, we can obtain the 2nd order nonlinear sources [yN2(') ±n2(*)] in
terms of the 1st order components [x^O ^'^ »since k=1* Tt then
follows from Fact 3that [q2<0 -x^O) \2^^ can be obtained by solving
alinear circuit with sources [yN2(0 iN2(-)]T. Arepetition of the.above
algorithm will allow us to find all higher-order solutions, each solution
requiring only the analysis of a linear circuit with independent sources
whose waveforms are prescribed by the solutions of the previous analysis.

Proof of Facts 1 and 4:

Before extracting the linear component, each nonlinear element is described
by (4)3. After embedding the linear component of each nonlinear element
into the linear circuit, each modified nonlinear element assumes the form given
by (5). It follows from assumption 2 that both wN(-) and x(-) can be expressed as a

3Notice that w (t) is an mth order term with respect to x(t) only and not the
m

input u(«) of the circuit.
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Volterra series with input u(»); namely,

WN(t> "£ WN„(t) (8)
n=l

00

x(t) = £ x (t) (9)
n=l n

where w„ (t) and x (t) are nth order terms with respect to u(t). Substituting
Nn n —

(9) into (4b), we obtain

|dTiw»(t) "L-LVVV-V £(& "i^i*)'
"?, £ •»£, / •"/ fJTl't2'-»VVt"tl)\(t-t2)-\(C"T->dTl,"dt- (10>k,™l k„«"l k "l •»-• •'-" T. z n

l i. o

Equation (10) represents a sum of components, each having the form:

00 00

J ...
J—CO J—c

m

f (TTT9»--"TJ n ^ (t-TJdT (ID
m±z • m . , k. i i

Recall that (11) is due to the input u(t). Now if we replace u(t) with

eu(t), then (11) would assume the following corresponding form:

jg° s° m k.

J ••• I f.<w—V " e v<t_ti)dTi-
j—oo «/—oo i=X i

Hence, it follows from (3) that each component in the summation of (10) is of

order k,+k„+...+k with respect to the input u(t) . As k., Vi = l,...,m, can
1 z m i oo

take on integer values from 1 to », k-+k0+...+k > m. Since w..(t) = 5^ w (t),
1 z m — in *•*« m

m=z

i.e. m ^ 2, w (t) can contain no 1st order component with respect to u(t) .

This proves Fact 1. Furthermore, k_+k0+...+k > k. for all i = 1,2,...,m.
1 z m i

Thus (11) is a component of w ,where n = k^k +...+k , and involves only
the terms x^ (t) with k. < n. This proves Fact 4. n
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Example 1,

Let us recast wM(t) = £ w (t) into the form of (8) :
m=2

+ff f f2(t1,T2)[xi(t-T1)x2(t-T2)+X2(t-T1)X1(t-T2)]dT1dT2
I J—00 J—oo

+ f f f f3(Tl,T2'T3)Xl(t-Tl)Xl(t"T2)Xl(t-T3)dTldT2dT3}
J—00 J—00 J—00 -^

+ ...
(12)

Proof of Facts 2 and 3:

It follows from assumptions 3 and 4 that we can use the substitution theorem

to find [q(«) xv(0 x±(0] . Thus

ru(-)q(0 u(')

5v(-> =<£ V (•) =ge
j=2 H;l

L^coj y*>' J5 w->
where 32 is a linear operator. Now let u(«) be changed to eu(t), so that

q(0 eu(0

xv('> =92 £ «JY«(->Nj
j=2

x±(.)

= eC£

u(-)

0

0

j=2

~0 ""

v>

V>

^Recall that w (t) is the rath order output with respect to the controlling
variable x(t), whereas w (t) is the nth order term with respect to the input
u(t). Nn
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Fact 2 and 3 then follow immediately from (3). Q

Now let us solve the problem using the frequency domain approach in order

to get rid of the convolution type of integrals. Observe that (11) represents

a typical term 6f order k_+k_+...+k with respect to u(t). In the "multiple"
1 2. m

time domain, (11) assumes the following form [1]:

00 so

t *L f»<Ti'V •••'V^/WW••••tk1-ti)xk2<tk1+rv •••>\+k2"T2)
X, (t, , .. ,--T ,...,t. , ,. -t )dx.dT0...dT
He k,+ ...+k ,+1 m ' k-+...+k m 1 2 i

m 1 m-1 1 m

Taking the multiple Laplace transform of (13), we obtain

(13)

•& - £ - 5CX-")^ 'kWvi v,)-\(v-^ v;0
Example 2.

Transforming the two terms enclosed by {•} in (12) into the frequency domain,

we obtain

Vv^ - Vv^'WW (15)

^3(81'82'83} =F2(srS2+S3)Xl(8l)VS2's3)+F2(sl+S2»s3)X2(srS2)Xl(s3)

+ F3(s1,s2,s3)X1(s1)X1(s2)X1(s3)

Since5 F2(s1+s2,s3)X2(s1,s2)X1(s3) -F^+s^s^X^s^s^X^),we can
write wnq(si»s2,s3^ as follows:

WN3(S1,S2,S3) " [F2(S1,S2+S3)+F2(S2+S3,S1)]X1(S1)X2(S2,S3)

+ F3(s1,s2,s3)X1(s1)X1(s2)X1(s3)

= 2F2(s1,s2+s3)X1(s1)X2(s2,s3)+F3(s1,s2,s3)X1(s1)X1(s2)X1(s3)

(16)
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Notice that F^s^) in (15) as well as ^(s^s^ and F3(Sl,s2,s3) in
(16) all satisfy the partial symmetric requirement on A(-) as defined in
Lemma 4 of section 4 of [1]. This self partial-symmetry property also holds

for the higher order terms \n^Vs2>'••»8n) * ThuS' f°r convenience we wil1
use the symmetric forms ^VV**''V and Fm(sl,S2' **' ,sm^ T° sim?lify
the unwieldy notation in (14) we introduce the abbreviation F^ Xfc .. .2^ .

12 m

Since F is symmetric, it follows that if (cc. ,a ,...,a ) is a permutation of
m ,. j. ^ *u •

(k^k^...,^), then

F X, X....X, =FX X ...X <17>
m^k^ ~km m a! a2 %

It follows from (17) that if p of the variables of {X, ,X^ ,...,Xfc } in
12 m

F X. X^ .. .X^ are equal to X^ , then we can group them together into a

single term (£ )P. With this notation (15) becomes wN2^si»s2) " *2*X1*
i 11-3

and (16) becomes W^VVV '" 2VV (V +W " '
Lemma

The nth order nonlinear source W (s ,s ,...,s ) of (8) is given by
Nn^l,"2"*" n'

(18)J, V2 1 I „| \8 ,„ »1,„ ™2 ... Vl

Vl" n-2" "'2 "| n m.l
i=l

n-1 n-1

where m. = n - J) im., m = £j m ,
1 i=2 X i=l

Proof: See Appendix 1.

Remarks:

1. The symbol Jn(«) in (18) denotes an integer-valued function whose value

In(r) is obtained by deleting the fractional part of r. For example,

Jn(5.3) = 5 and Irc(2.9) = 2.

2. Notice that the number of summation signs in (18) is n-2. Thus, for
- ml . _

n = 2, there is no summation sign and WN2^S1,S2^ * Fm^Xl^ witn mi ~ 2
and m = 2.

This follows from Lemma 1 in section 4 of [1].
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Example 3.

Applying (18) to find \^s1^s2's3tS^' we obtain (with n=4)

J °2

n3-0 n2-0 m1iia2io3i

2

n, o_ oiM

VVVV4> i E0 2 Q-^S^y F^) iff,) 2<X3>

! nl ra2 B31 F_(X,) X(X,) Z(XJ 3a,-0 m.tm-lm,! ml 2 3

. O- in. tn»

-^ F_(X,) X(X,) Z(X.) 3
o.lm-lm.l m 1 2 3

ml "l,. x°2,. x°3|

n3-0 -2

n« m- ni-

.r-o ni!m2!m3! n x 2 3 |™,-i

+.. ,ml._ .F_(X,)Bl(X,) 2(X,) 3|
n n i m,Inu!tn,l n 1 2 3 i _n _ _i _ _•>m3 ,B2" ,nl 12 3 Imj-O.mj-l.iBj-Z

n!

î (J^)* +JFj^)2^)1 +F^Xj)2 +2F2(X1)1(X3)1

mj-l.Oj-O.mj-l

We are now ready to present an algorithm for obtaining the nth order output

transform and the nth order transfer function of a nonlinear circuit.

Algorithm:

1. For the modified linear circuit with input source vector [u(«) VN(") S/*^
Determine H(s), the transfer function matrix of the linear circuit, such that

Q(s)

X±(s)

= H(s)

U(s)

YN(s)

2. Set n = 1 and obtain

X. (s.)
-in 1

= ?(s!>

u(Sl)

0

0

(19)

3. Extract the nth order output transform Q (s.,s_,...,s ), thus yielding
— n 1 2 n

the nth order transfer function

Q (s ,s ,...,s )
n 1 Z n

U(Sl)U(s0)...U(s•)'
1 I n

4. If n equals the required value, stop. Otherwise, set n = n+1.

5. Use (18) to obtain each element of the nth order nonlinear source vector

-Nn(sl,S2 Sn}

WSrS2'",,Sn)

-10-



•= ?^1 'S9****,Sn

r o

hn(sVSr'"iSr?
^^i »so O~Nn 12 n
L

(20)

6. Obtain

[VVS2 Sn}
X (sn,s0,...,s )
~vn 12 n

X. (s_,s0,...,s )
~in 12 n

L_ -

7. Go to 3.

Remarks:

1. Equation (19) (resp., (20)) follows from Fact 2 (resp., Fact 3) and
the multiple Laplace transform, (14) of (13) with m = 1, since the equation
in step 1 represents convolution in the time domain.

2. Instead of finding the transfer function matrix H(s) ,we can solve
the circuit by using any linear circuit analysis method in the frequency

domain [13,14]. The only difference here is that we must change s to

s +s +...+s and define the nth order nonlinear source vector by
1 2 n —

Vxt (s, ,s0,...,s )
-Nn 1 2 n

JNn(sl,82"*',Sn^
3. It can be seen from the algorithm that the existence of the nth order

transfer function depends only on the existence of a unique H(s). Observe,

however, that the algorithm itself does not imply that a solution of the
original circuit exists. In fact, the series so obtained may not even converge.

We conclude this section with an example.

Example 4.

Let us use the above algorithm to find the nonlinear input impedances of

the series-parallel nonlinear circuit shown in Fig. 2a . Assume the time domain
and frequency domain characterization of each nonlinear element is as follows:

Capacitor

00

time domain: v (t) = Y, a q*(t) ,where a denotes the capacitor charge

a

frequency domain: impedances Z (s^Sj,.. .,8^) = g g ^ g ,Vn >^ 1

6An example of a non-series-parallel nonlinear bridge circuit is given in
Appendix 2.

-11-



Inductor

00

time domain: :L (t) = 2 D^(Oi where <J> denotes the inductor flux
n=l

b^
Vn > 1frequency domain: admittance Yj-Cs^»so»•••>sn^ = s

n

'ri n

Resistor

time domain: i«(t) = £ gv (t)
n=l

frequency domain: admittance Y (s ,s2>...,s ) = gn> Vn ^ 1

In order to find the input impedances of the circuit, we choose current i(t)

as the input and the associated port voltage v(t) as the output. Let

v (•)» i» (•)> and i^ (•) denotes the waveforms of the nonlinear sources
NC L ™R ..
associated with the capacitor, inductor, and resistor, respectively. The

modified linear circuit with the input and the nonlinear sources is shown

in Fig. 2b. Following the above algorithm, we write

V(s) 1+ 8S bj+^8

Ic(s)

VL(s)
bl+glS

VR(s)
Lbi+8is

Thus

-S -s

V81S w

-S -s

bl+8ls bl+8ls
-s -s

W bl+8lS

— "^

Ks)

V}
ys)

v>

(21)

tVl(sl> Wl* VU(81} VR1(S1)] = sl bl+glsl Wl bl+glSl
(22)

The 1st order input impedance is

W _ai sl
Z1(S1) A I(8 ,"8 +VglSl

-12-
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It follows from (18) that the 2nd order nonlinear sources are given by:

Y^vV 2c2(8i',2)1a(*i)Iat"2)

1H.2<'l'82) \2(S1'S2)VL1(S1)VL1(S2)

\2(S1'S2)VR1(S1)VR1(S2>

r- a.

S1S2

b? s1 •S2

8182 VVl V*l82'
st s2

82(b^i1-)(b1+g1s2)

I(Sl)I(s2)

IHD2(81'82)
(24)

It follows from (20) that

"1
V2(Sl,s2)

IC2(S1'S2)

Vl'V

V_(8r82}

-(Sj+s^

-(s1+s2)

_____ -(81+S2) 1
b1+g1(s1+s2) b1+gl(s1+s2)

"(Sj^+Sj)
0 bl+8l(Sl+s2) b1+gl(s1+s2)

-(31+32) -(s1+s2)

_° bl+8l(8l+S2) bl+8l(sl+82)

\2(81'82)

Li

INr2(Si,s2)

(25)

Substituting (24) into (25), we obtain the following 2nd order input impedance:

V2(s1>S2) a2 /b2 \ / s1 \ / s2 \ / s1+s2 \
Z2(V2> " Ks^Ks^ ' 7^T2 -\Sls2 +g2J \b1+glSlyHb1+gls2y/ \b1+gl(s1+s2)/

(26)

Higher order transfer functions can be obtained by applying the algorithm

repeatedly.

3. Some Frequency Domain Applications

A. Cascade Systems

The derivation of nonlinear transfer functions of composite cascade

systems is usually quite involved. Here, we derive an explicit formula

for the nth order transfer function H (s.,s2,...,s ) of the cascade system

H =» F*K shown in Fig. 3. If we let Kn(s1»s2»•*•»sn^ and Fn^Sl,S2*""",Sn^

-13-



be the nth order transfer functions of systems K and F respectively, for

all n _> 1, then we have

1i **

Vv°2 •„>; E„ •£_•••£,.
m =0

where

tn «0 m *0
ft n-1

m = n - £
L i=2

Vp = 2,3,...,n-l.

Proof:

Decompose F into a linear component F and a strictly nonlinear component

F , such that F = F +F as shown in Fig. 4. It is clear that the system

F has exactly the same form given by (5). Therefore the nth order output

transform of F with respect to u(t) is given by (18). The nth order output

im..
i

m

i=l
mi'

a!

n ml,
i-1 1

in m m

F (K_) l(Kj \..(K ) n
tn 1 Z n

n

i=p+l

im.
i

and a -In
P

(27)

transform component of F_ with respect to u(t) is F_ (s,+s0+.. .+s )X (sn,s0,
l llznnlz

Adding this term to (18) gives the total nth order output transform for the

composite system with respect to u(t). Substituting

Xi(s1,s2,...,s±) = Ki(s1,s2,...,si)U(s1)U(s2)...U(si) into the above
sum for all i < n and divide the sum by U(s,)U(s )...U(s ), we obtain (27).

"~ 1 n n • H .

B. Inverse Systems

Inverse systems have been investigated in [5-7, 10-12]. The cascade of

a system and its inverse gives the identity system. To derive the nonlinear

transfer functions of an inverse system in terms of the original system's

transfer functions is often a complicated process, especially for high orders.

Here, we will derive a recursive formula for calculating the nth order transfer

function of an inverse system. Let the nth order transfer function of a

system Y be Y (s-,s?,...,s ), for all n >^1. Let its inverse system Z = Y

be characterized by the transfer functions Z (s.,s.,...,s ), for all n >
n 1 2. n —

The nonlinear transfer functions of the inverse system are then given by:

W - y^t

1 *n-2

VVS2 8n>" E n S '
Vl°° mn-2°°

a2
-m!

n-1

ra m i

v0lTvj v"1"2 8n)
,i-i A

-14-

-1

(28a)

n-1

n > 2 (28b)

•^



where n^ =n- 2-r i™±> m= 2* m±» and ap ~. n\ p

Vp = 2,3,...,n-2.

Remark:

n-1

f* - L.._ lmi
and a = In

i=2 -"- i=l

For n = 2, the number of summation signs in (28b) is zero. Hence

Y2(Z1)2
h^l'3!* =Y^+s,,) *
Proof:

Let a nonlinear element be characterized by nonlinear admittances

Y(s ,s2,...,s ), for all n>1. By considering this element as asingle-
element nonlinear circuit, we can use the formulas from the preceding section

to find the associated nonlinear impedances zn(s1»s2»•••»sn^ for a11 n— 1#
The resulting expressions are precisely given by (28).

Remark:

It can be seen from (28) , or from Remark 3 of the preceding algorithm, that

the existence of all the transfer functions of the inverse of a system

characterized by the transfer functions Yn(si»s2»•••»sn^» for a11 n— 1'
depends only on the existence of the inverse _L_- of the linear component.

Nevertheless, the Volterra series so obtained may not necessarily converge.

Example 5.

Given the nth order admittances Y^^,.. .,sn) ,n=1,2,3, the Impedances
of the first three orders of the inverse system follow from (28):

Z (s ) = X (29a)W Y1(s1)

VS1,S2}
Z2(V82> =" VB1'82)Y1-(81)V.82)
z (s 8 s )\ ^2(srS2+S3)^2(s2>S3)^3(srS2>S3)Yl(s2+S3) (Mc)
3 V r 3 Y1(s1+s2+s3)Y1(s2+s3)Y1(s1)Y1(s2)Y1(s3)

Example 6.

Here, let us derive the input impedances of the circuit shown in Fig. 2a.

This has already been done in the last section using a different approach.

First, notice that the total nth order admittance Yn(s1»s2»•••»sn^ of
two voltage-controlled "admittance" elements connected in parallel is given

-15-



by VW"'8^ *Y;(8l,S2'"-'Sn) +Yn(8l'82'"-'Sn)' Where
t*(s,,s.,...,s ) and Y"(sn,s,,....s ) are the nth order admittances of
n 1 2 n ni.z n

the two admittance elements, respectively. Similarly, the total nth order

impedance Z(s ,s ,...,sn) of two current-controlled "impedance" elements connected
in series is Z^.s^... ,sn)- ^(^V***,Sn} +Zn(sl,S2» *' *,Sn}'where
Zf(s,,s0,..,s ) and Z"(sn,s_,...,s ) are the nth order impedances of the

12 n n ± z n

two impedance elements, respectively.

For the parallel inductor and resistor shown in Fig. 2a, the composite
bl bl+glSl1st order admittance is given by Y^s^ =~ + 8X =—g »while the

composite 2nd order admittance is given by Y2(s1»s2) " s+s + §2* ltL

follows from (29a) and (29b) that the 1st and 2nd order impedances of this

composite parallel element are given as follows:

„ , v 1 1
1st order impedance: Z.is^ = Y (s ) ~ ^ +g s

-Y2(Sl,s2)
2nd order impedance: Z^s^) -y(8 +s ^(s^Y^Sj)

+§2/\VVl/IvW Vbl+«1(81'*82).
Thus, the 1st and 2nd order input impedances of the circuit are given by:

/ , al sl
1st order impedance: ^j/8^ + Z]/Sr = s"~ + b +g s

b2 . V si V_!i_V_"j3L

2nd order impedance: ZC2^S1,S2^ + Z2^S1,S2^

'^2"W +*V VWl/ \vfe/ \bl+8l(8l+82)J
These results agree with those obtained earlier in the last section, as they

should.

C. Feedback Systems

Let system H denotes the composite feedback system shown in Fig. 5. It

has been shown in [6,7] that

H = F*(I+K*F)"1 = (F^+K)"1, (30)

-16-



where I denotes the identity operator. Since (30) involves only addition,

cascade, and inverse operations, the nth order transfer functions of the
composite system H can be easily obtained by using the formulas presented

earlier.

D. Synthesis Problems

(i) Synthesis of Nonlinear Networks Via Feedback Systems

Here, we give a compact feedback representation of nonlinear circuits

using the results from the last section. First, let us look at a circuit
containing only one nonlinear element. Let the modified strictly nonlinear

element be denoted by F . Following step 1 of the preceding algorithm, we

obtain

Q(s)~

X(s)

ruqH4(s) H4 (s)
u w
u N

HJ
u Hw (S)-

M

D(s)

uV8b

where x(t) and w (t) are the input and output, respectively, of the modified

nonlinear element F . It follows from Fact 2 of the last section that q.(t)

and x (t) are the output of the linear systems represented by Hu(s) and
HX(s), respectively, with input u(t). It also follows from Facts 1 and 3

OO 00

that T] q (t) and 52 x (t) are the outputs of the linear systems represented
o n t!-n nn=2 . n-z

by Hq (s) and Hx (s), respectively, with input W(s). From this information,
W W IN '
WN N

we obtain the feedback representation of the nonlinear network as shown.in

Fig. 6. Consider next a circuit having one more nonlinear element denoted
by K. Let the strictly nonlinear component of K be denoted by K^. After
modifying the nonlinear circuit, let b(t) and pN(t) be the input and output of

V
For the modified linear circuit, let

Q(s)

X(s)

B(s)
L1

H^(s)

Hb(s)

Hq (s) Hq (s)
w„ P„
N

HX (s)
WN

Hb (s)
WN

HX (s)
PN

Hb (s)
PN J

U(s)

WN(s)

PN(s)

-17-



Following the same procedure as above, we obtain the feedback representation

shown in Fig. 7. Circuits containing more than 2 nonlinear elements can be

similarly represented.

Remark:

In addition to synthesis applications, this subsection shows that the stability
and analyticity of nonlinear circuits may be investigated using well-established
feedback system theory by first transforming the circuit into a feedback

system.

(ii) Synthesis of Inverse Systems

Let F-, and F be the linear and strictly nonlinear components, respectively,
IN 1

of asystem F; i.e., F=Fj^. The inverse F of Fcan be synthesized by
any one of the three feedback systems shown in Figs. 8a,b and c, where ?1
is the inverse of F . Fig. 8a is obtained by considering F to be a voltage

controlled "admittance" element characterized by nonlinear admittances;

i.e., F (Sl,s0,...,s ) =Y (Sl,s9,...,s ). Let F be a single-element network.
vl ± 2. n niz n

Choosing a current source as the input u(t) and the associated port voltage as
the output q(t), we can synthesize this network by using Fig. 6. In the
present case q(t) =x(t), H*(s) =̂ y ,and H* (s) =-̂ ^y . Thus Fig. 8a
is obtained. Fig. 8b? is obviously equivalent to Fig. 8a. Fig. 8c use F
rather than FN in the synthesis. Since F~ is a linear system,
F*1 *F =f"1 * (F-F,) =F71 *F"1 -F71 * F- =FT1 *F-I. Hence,
1 N 1 1 1 111

Fig. 8c follows from 8a. An easier way of deriving Fig. 8b is to apply the
feedback equation (30) of Fig. 5. Equation (30) shows that if we choose
F"1 to be Fx and Kto be FN> then H=(F^)"1 =F~\ and hence Fig. 8b is
obtained.

(iii) Structure of Transfer Functions

In dealing with synthesis problems or circuit-theoretic properties,

it is often desirable to know the general structure of the associated transfer

functions. The results presented in the preceding section will provide some

insights into the structure of nonlinear transfer functions.
A large class of nonlinear systems can be decomposed into a linear

subsystem and a nonlinear subsystem such that all memory components are

7Fig. 8b has been obtained in [5,6] via a different approach.
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exclusively contained in the linear part. Thus, we let all transfer func

tions of the nonlinear elements in a nonlinear circuit be constants. It then

follows from the preceding algorithm that the 1st order transfer function

of the nonlinear circuit must assume the form:

A1(s1), (31)

where A-(s) is a linear transfer function which is assumed to be a rational

function of s. Likewise, the 2nd order transfer function must assume the

form:

J/il^l+VV^il^'
where B -(s) and C.1(s) are linear transfer functions for all i = l,2,...,m.

Another structure which seems to be more general in appearance, but which is

actually derivable from the above expression, is given by:

m

£Bil(s1+S2)Cil(s1)Dil(s2)> (32)

where B..(s), C.-Cs) and D.-(s) are linear transfer functions, for all

i = l,2,...,m. For example, if we let B _(s) = -B (s) = -B -(s),

ci.i =ci,i(s) +Di,i(s)' c2,i(s) =ci,i(^ and c3,i<s) =Di,i(8)' then

2 Bil(Sl+82)Cll(sl)Cil(s2> =2Bl,l<8l+*2)Ci,l(8l)Di.l<'2) Wh±Ch haS
the structure defined in (32). Similarly, to derive the general structure

of higher-order transfer functions, we assume all linear transfer functions

involved can be expressed as a sum of other linear transfer functions.

For example, A-^s.) = £ A*i^si^» wnere A«i^si^ is alinear transfer function

for all i-:<A.1(s1) may be identically equal to zero for some i). In deriving
the general structure of order n, we will also assume that all lower-order

transfer functions exhibit the structures already obtained. For example, the

general structure of the 3rd order transfer function is given by:

£ Ell(sl+s2+s3)Fi2(sl'82)Gil(83)
1-1 (33)

+1; hii(8i+82+83)pii(si^ii^w-
1=1

-19-



where E±1(s), G±1(s) ,H^s), V±±(s), R^s) and T^s) are linear transfer
functions, and F (s ,s ) is a 2nd order transfer function having a structure

given by (32). A substitution of the structure of Fi2(s1»s2) into <33)
gives rise to the following structure:

t ?11(B1+82+83)Kll(sl+82)lIil(sl)Vll(s2)Gil(s3)
1=1 (34)

+ E Hii(81+82+s3)Pil(8l)Rll(S2)Til(83)
i=l

where K (s), U (s) and V^s) are linear transfer functions. It can be
seen from the preceding algorithm that the general structure of an nth order

transfer function consists of terms like

£ A11(e1+82+...+sn)Biki(81,s2 y^Vl'-'-'V^XV-'+W1 \+-*h •<35>

where k„+k„+...+k = n and B., (s-,...,s ), Vj = l,2,...,m, are k^h
12 m ik. i . k. J

order transfer functions. Since k± <n, the general structure of an nth
order transfer function can be obtained recursively. In particular,

synthesis of a basic term such as ^(s^s^C^s^D^s^ in the summation
of (32) is shown in Fig. 9. Similarly, syntheses of

B±1(81+82+83)F12(81,82)G11(83) and H^Cs^^P^Cs^R^Cs^T^CSg) from
each summation of (33) are shown in Figs. 10a and b, respectively.

Remarks:

1. Notice that the syntheses of these general transfer function structures

require only the syntheses of linear transfer functions, as well as such
operations as addition, multiplication and cascade among them. The only
operation that generates a nonlinearity from linear systems is multiplication,

which is memoryless.

2. Although the general structures of transfer functions are obtained by

assuming the nonlinear elements in the original circuit to be memoryless,

all nonlinear transfer functions derived in the literature for different

systems can be shown to be special cases of the general structures presented

in this paper.

3. A survey of [1] and the present paper shows that all common system operations

can be synthesized or expressed explicitly in terms of the 4 basic operations

of addition, multiplication, invertion and cascading between systems. It

-20-



follows from section 4 of [1] that for any of the above 4 basic operations,

and their compositions, subsystems can be replaced by the corresponding
equivalent subsystems without affecting the symmetric form of the nonlinear

transfer functions of the overall system.

4. Since the structures of transfer functions are invariant under the

above 4 basic system operations, our general structures of nonlinear transfer

functions include a rather large class of analytic systems.
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APPENDIX

Appendix 1. Proof of Lemma

Expression (14) represents a term in the multiple frequency domain

expression of order k1+k2+-•-+km- This term has a corresponding time domain
component in w (t) in (10) of order k1+k2+---+km with respect to u(t) .
Now, W (s„,sA,...,s ) represents the sum of all such terms in multiple

' Nn 12 n

frequency domain with k1+k2+-•-+km =n, for all n >_m> 2. However,
n = k,+krt+...+k > m > 2 and k. > 1, for all i = l,2,...,m, imply that

12 m — — l —
n-1 > k > 1 for all i = l,2,...,m. Hence, it follows from (17), all nth order

— i —

terms assume the structure

m, m_ m -

f(JL) 1(JL) 2...(X„ ,) n_1 (A-W
ml 2 n-±

If m. ^ 0, then there are m. of X. inl X, .. .\ » Thus,
1 1 x kl K2 m

n-1 n-1

m=mn+m0+...+m ,= £ m,- and n=ki+k9+"-+km = ^ i!V Zt follows1 2 n-1 fT^ i j. z m i=-^ •»•

from (10) that each set of distinct permutations of (k^k^... ,km) in (14)
corresponds to acomponent in Wm (s1»s2»•••»sn^• It: follows from (A_1)

(m1-hn2+...-hiin_1)» _ m!
that the number of such permutations is , , i m !m !.. .m ,!

u1 2**** n-1 1 2 n-1

Equation (17) shows that we can add these together to give:

m, m_ m i

; r^ pF(O ^X.) 2...(Xn .) n-1 (A-2)
m, !nu!...m '.ml I n-i
1 2 n-1

n-1 n-1

where m = V, m and n = 2 im4 • We wil1 now show that (18) is the SUm °f
i=l i i=l

all such terms given by (A-2), each term corresponding to a distinct vector

(in ,m0,...,m ,)8 such that m1+2m.+.. .+(n-l)m =n. Since m4 V m (as
12 n-1 11 n i i=l

defined in 18), it is sufficient to show that the summation signs in (18) will

8Each distinct vector (n^.m ,... .m^) corresponds to adistinct combination
of the set {k-, »k2» •••>^ •
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n-1

generate all the distinct vectors satisfying ^ imV ? n* Let US prove a
i=l

more general case; namely, for each n >_ 2, and given any nonnegative integer

K, the following expression generates all vectors (m_ ,m2»...»mn_^) sucn tnat
n-1

J] im = K:
i=l

In(—r-) a 2 a2

En" £ ... £ (Vm2,...,Vl) (A-3)
m =0 m =0 m =0
n-1 n-2 2

n-1 A-S *-A
where m, = K - 52 im- and a =-M ? » Vp = 2>-">n_2*1 i=2 x P \ P /
We prove this by induction. For n = 2, m = K is obviously the only possibility.
For n = 3, m can take on integer values from 0 to Inty to satisfy m^rn^ =K. For

each fixed m2, n^ =K-2m2. Thus, 52 (m^m^), where m± =K-2m2, generates
m2=0

all distinct vectors (m ,m ) such that m1+2m2 = K. Assume (A-3) is true for
n = r. Consider n = r+1. For any fixed m , it follows from the assumption

of the n= r case, that all vectors (m^n^,... ,mr) which satisfy
i+2m +...+rmr =K (i.e., m^m^.. .+(r-l)mr-1 =K-rm^) are given by:m.

K-rm

IM r_1r) an_2 a2 r_!
Yt £ •"• 2 (^V'^'V-l'V' Where ml =K"rar "? imi
m n=0 m =0 mo=0 i_2
r-1 r-2 2

K-rm - 2u im. \

and a =In\ ^^ LVp =2,3,...,r-2. Since m can take on integer
P \ P J r

values from 0 to In& ,all vectors satisfying £ im,- = K must be given by

k-rm

ln& m(-^> ar_2 a2
i=l

£ 52 52 ••• 52 (m, ,nu,... ,m )
m =0 m =0 m =0 m =0
r r-1 r-2 2

A2



(K-rm - 52 im4
r £p+l i

o
, v
\ k

Vp= 2,3,...,r-2. Since m can take on integer values from 0 to Jn(-) ,all vectors
r v

satisfying £ im. = K must be given by:
i=l X

K-rm

Jw(|) ini—f) ar_2 a2
52 52 2 2 Cm1,m2 m^)
m =0 m =0 m o=0 m =0
r r-1 r-2 L

i r- iK"mr ' 2 imir-1 r | r jop+i x
where m =K - rm - J) im =K - 52 im-j' and aB = In

1 r i=2 1 i=2 x v

Vp= 2,3,...,r-2. By setting a^ =In {-^j •we have ap =In\ V^
Vp= 2,3,...,r-1. Therefore (A-3) is also true for n = r+1. Thus, we have

proved (A-3) by induction. Finally, (18) corresponds simply to K = n, and

hence must also be true.

A3
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Appendix 2 Formulation of Transfer Functions for a Bridge Network

We will now use the algorithm presented in section 2 to find the

nonlinear transfer functions of the bridge network shown in Fig. 11a. The

input is a current source i(t) and the output is the voltage vR(t) across
the nonlinear resistor. Let the time domain and frequency domain

characterization of the two nonlinear elements be as follows:

Inductor:

00

time domain: (J>_ (t) = 52 a *?(*)» wnere ^t denotes the inductor flux.
L ^"T. n L 1j

n=l

frequency domain: impedance Z n(si »s2» •••>sn^ = an^si+s2+* **+Sn^ 'Vn -1
Resistor:

time domain: i^t) ="52 SnVR(t)
n=l

frequency domain: admittance vRn(si»s2»* ••»sn^ = Sn' Vn — *

Let9 a =1H, &2 =yHA, %1 =\ «~1 and g2 =JG^V. The modified linear
circuit with the input and nonlinear sources are shown in Fig. lib. Let us

vR
denote the nth order transfer function to be derived by Hin(si»s2»•••'sn^*
Following the 1st step of the algorithm we write:

'l(s)VR(s)

IL(8)

J

A(s)

2
-2s +2

2s+4

-3s2-6

3s

-3s

-2s
\(s)
\ (s>

Li J

where A(s) = 2s +3s+4.

Following step 2 of the algorithm we have:

IVB1(B1} h&l"T =ik) [-2Sl+2 2sl+^Tl<Sl>
Following step 3, the'1st order output transform is:

2
-2s>2

VR1(S1> ="TOT ^

(A-4)

(A-5)

(A-6)

9Notice that the unit of a is HAn~ ,where H stands for henery and A stands
n __£ n_,

for amp., which the unit of g is sT V " , where V stands for voltage.
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The 1st order transfer function is:

H\ , V*1(S1} -"2S1+2
Hil(8l) " Ks,) " A(sJ

'1' "x r

To derive the 2nd order transfer function we follow step 5 to find the 2nd

order nonlinear sources:

INT)2(sl,S2)
R

V (Sl,s2)
— Li ""

Following step 6:

\2(8rS2)VRl(sl)VRl(82)

ZL2(81'82)IL1(81)IU(82)

I(Sl)I(s2)
A(s1)A(s2)

(A-7)

y(-2s2+2)(-2s2+2)

•|(s1+s2)(2s1+4)(2s2+4)

(A-8)

VR2(s1,s2) I(Sl)I(s2)
-3(s1+s2)-6 -3(8^2) ^(-2s2+2)(-2s2+2)

IL2(S1'S2)
A(s1+s2)A(s1)A(s2)

3(8^) -2(8^82)

Following step 3, the 2nd order output transform is:

2_v , „ 2_. , . v2

|(s1+82)(2s1+4)(2s2+4)j

(A-9)

i[-3(Sl+s2x2
VR2(81,s2) = A(

) -6](-2s>2)(-2s>2)-(Sl+s9) (2s.+4)(2s +4)
L_ 2 i—± i- ^ I(Sl)I(s9)

A(s„+sjAs,)A(sJ 1 2
,l,w2/ 1

Therefore, the 2nd order transfer function is:

mVR2(8l'S2) m|[-3(81-t-82)2-6l(-2s^2)(-28^2)-(s1-f82)2(281+4)(282^)
Hi2(8l»82) *Ka^Ksj) ACSj+b^AU^Ms^

(A-10)

(A-ll)

We may continue to follow the algorithm to find higher order transfer functions.
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FIGURE CAPTIONS

Fig. 1 Decomposition of nonlinear elements into linear and nonlinear

components: (a) impedance element, (b) voltage controlled

voltage source, (c) current controlled voltage source, (d) ad

mittance element, (e) voltage controlled current source, and

(f) current controlled current source.

Fig. 2 (a) A nonlinear circuit whose nth order input impedances

are to be found, and (b) the modified linear circuit with the

input and the nonlinear sources

Equivalent system resulting from cascading two systems

Decomposition of F into F1 + F in the cascade system

Equivalent system resulting from a feedback system

Synthesis of a circuit with one nonlinear element

Synthesis of a circuit with two nonlinear elements
-1

Three equivalent syntheses of the inverse system F

Synthesis of a typical term from the general expression" of

a 2nd order transfer function

Synthesis of two typical terms from the general expression

of a 3rd order transfer function

(a) A nonlinear bridge network whose nth order transfer functions

H., (sn,s0,...,s ) are to be found, and (b) the modified linear
in ± Z vl

network with the input and the nonlinear sources.

Fig. 3

Big. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11
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