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ABSTRACT

We give necessary and sufficient conditions for a penalty function

to be exact. This is an extension to the general case of the result

given by Bertsekas for the convex case. An algorithm to minimize the

exact penalty function Is given. It is based on the same idea as the

one used by Demjanov for minimax problems.
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I. -Introduction

In this paper we are concerned with exact penalty functions

Necessary and sufficient conditions for a penalty function to be exact are

given. This is a generalization of the result of Bertsekas for the convex

programming problem.

In section II we give the result for the well known exact penalty

function used by Pietrzykowski, Conn and Han (see [l], [2], [3]). Exten

sion to a class of penalty functions is made in section III.

In section IV an algorithm to minimize the exact penalty function of

section II is presented. It is based on the principle used by Demyanov

(see [5]) for minimax problems. The direction of descent is calculated

by minimizing the directional derivative (we only need to solve a linear

programming problem). An example is given (the Rosen Suzuki problem).

11• Exact Penalty Function and Lagrange Multipliers

Let us consider the problem

min f(x)

(P) - h±(x) = 0 , i = l,...,m

>^(x) <, 0 , i « m+l,...,p

f: Rn —* R twice differentiable

h^: Rn —*• R twice differentiable

II.1. Notations and Definitions

For x G R and c e rP let us define the function

m p

p(x,c) - f(x) + I c.|h,(x)| + I c.(h.(x».
i=l x X i=m+l 1 1 +



where

' h±(x) if h±(x) >0
(hi(x))+ = {

otherwise

p(x,c) is continuous but not differentiable.

x is a local minimum of f(x) for the problem (P).

We note H^x ) the Hessian matrix of the function h.(x), evaluated
*

at x .

I(x) = {iji^m+l, h±(x)=0}

M»{ueRn|<Vhi(x*),u> =0if ie [i,...,m] UI(x*)}

II.2. Theorem 1

If x is a point which satisfies the Kuhn Tucker first order condi

tions (X1,...,X are the Lagrange multipliers) and if c. _> |X | Vi

then in any direction the directional derivative of p(x,c) at x is

positive.

Proof. Let Dp(x,u,c) be the directional derivative in the direc

tion u. We have:

m

Dp(x,u,c) = <Vf(x),u) + I c.|<Vh.(x),u)| + I c.«Vh.(x),u», .
i=l i€l(x) ± * +

Then for i = 1,...,m we have

X^Vh^x^u) < |X±||<7hi(x),u>| < ci|<Vhi(x),u>| .

For i G I(x) we have X > 0 and then

Xi<Vh±(x),u> <Xi(<Vhi(x),u»+ < ci(<Vhi(x),u»+

and for i > m+1 and i ^ I(x), X = 0 then



since

Dp(x,u,c) > <Vf(x)+ I X Vh (x),u> = 0
i=l 1

Vf(x) + I X Vh (x) = 0 (first order condition)
i=l x x

and the proof is complete.

*

x is now a local minimum of f(x) for the problem (P).

Assume

(i) at x the gradients of the constraints equal to zero are

linearly independent. (Note X ,...,X the Lagrange multi

pliers which exist.)

(ii) if all the constraints are not linear we assume that Vu G M,

3i <m or i€ i(x ) such that <u,H (x*)u> ? 0.

II.3. Theorem 2 (Sufficient condition)
*

x is local minimum for the problem (P) and (i) and (ii) hold.

Then if c± > \\±\ 9 x is a local minimum of p(x,c).

Proof. When u£m the directional derivative is strictly positive,

(In the proof of Theorem 1 an inequality (at least) must be replaced by

a strict inequality.)

When u e m we have

p(x*+Xu,c) -p(x*,c) =-y[<u,V2f(x*)u>+ Ic,|<u,H. (x*)u>|
i=l X -1

*+ I c (<u,H,(x )u»J + o(X)
±EI(X*) 1 i +

with limit o(X)/X2 =0. As before we have
X-K)



X±<u,H±(x )u> < c±| <u,Hi(x )u>| for i<m

and

X1<u,H±(x*)u> <ci(<u,Hi(x*)u>) for i<= l(x*)

because of assumption (ii) one inequality (at least) is strict. Then

[p(x*+Xu,c)-p(x*,c)]/X2

><u,V2f(x*)u> + <u,j;XiHi(x*)u>
ii 0 (second order necessary condition)

*

and then x is a local minimum.

If the constraints are linear, then if u S M, x +Xu satisfies the

constraints for X small enough and as by hypothesis x is a local

minimum for the problem (P) it is impossible to improve f in the

direction u.

Note. In fact assumption (i) could be replaced by a weaker assump

tion since we simply need that first and second order necessary condi

tions hold at x*. This assumption could be: First and second order

constraints qualifications hold at x*.



II.4. Theorem 3 (Necessary condition)

such

^0
minimum of p(x,c).

*

Assume x is a local minimum of the problem (P).

^. Then if =1-^Assume (i) holds (X^ are the Lagrange multipliers). Then if 3i

that c. < |X | (and Vh (x ) £ 0), x cannot be a local
0 *<) i0

*Proof « If iQ >, m+1 then we must have h (x ) = 0 since other-
^* °

wise X * 0 and we cannot have c. < 0. Let us call v the ortho-
0 * 0

gonal projection of Vh (x ) on the subspace orthogonal to the subspace

spanned by the gradients of the constraints which are equal to zero

(except Vh. (x )). v is not zero because of assumption (i). Then
n

then

if X > 0 take u = v
X0

if X < 0 take u = -v
X0

c |<Vh (x*),u>| <X. <Vh4 (x*),u>
0 X0 ^-o H

and

(p(x +Xu,c)-p(x ,c))/X = <Vf(x ),u>+c |<Vh, (x*),u>|+o(X)/X
* ° ° *

< <Vf(x ),u>+X <Vh. (x ),u>+o(X)/X
* P ° o

« <Vf(x )+ I X.Vh,(x*),u>+o(X)/X
* * i=1

•» lim p(x +Xu,c) - p(x ,c)/X < 0
X+0

•^x* is not a local minimum of p(x,c) .

II.5. Other Results

As usual we call L(x,X) the Lagrangian of the problem (P):

L(x,X) = f(x) + I X.h.(x) .
i=l X X



Proposition 1. If x is a local minimum of the Lagrangian L(x,X)

then if c± >^ \X^\9 x is alocal minimum of p(x,c).

Proof, x local minimum implies there exists e such that for all

x G B(x,e)

p(x,c) « f(x) « f(x)+ I Xh (x) < f(x') + I X.h.(xf)
i=l x 1 i=l 1 1

m p

< f(x») + I c |h (x»)| + I c (h.(x')) = p(x',c)
i«l X i=m+l * * +

•* P(x,c) < p(x',c) for all x» e B(x,e)

•* x a local minimum of p(x,c)

Proposition 2. If (x ,X) is a saddle point of the Lagrangian of

the problem (P) and if c± > |X±|, then any global minimum of p(x,c)

is the solution of the problem (P).

Proof. Let x be a global minimum of p(x,c). We have then:

p(x*,c) =f(x*) <f(x)+ fX,h4(x)
i-1 i ±

it

because (x ,X) is a saddle point of L(x,X); and we have also

f(x) + I Xh(x) <f(x) +I c, |h. (x)|+ I n(h, (x)h
i=l i=l 1 x i=m+l * 1 +

because c± > |X±| and X± >0 for i>m+l. Moreover, since x is

a global minimum of p(x,c) we have

f(x) + Ic|h (x)| + I c.Oi.S)). <p(x*,c) =f(x*)
i=l X * 1-nri-l * ± + ~

Then we must have

(a) p(x,c) » f(x*)

<b) L(x,X) = p(x,c)



From (b) we can write

m p

I (c |h (x)|-X h (x)) + I (c.(h4(x)) -X h,(x)) =0
i»l * X * * i=m+l ± i + U

As each term in the two sums is positive we must have

<x> c± 1^(5)1 =X±h±(x) , iol,...,m

(2> c±Ch1(5))+ =X^g) , i-m+l,...,p

Since c. > X. we must have

h±(x) « 0 , i= l,...,m

(^i(x))+ « 0 , i- m+l,...,p •> h.(x)<0 , Vi > m+1

and the proof is complete.

In a practical point of view, using a vector of coefficients instead

of one coefficient only could be interesting for problems where, at the

solution, the Lagrange multipliers (if they exist) are very different in

absolute value. Then if one coefficient only is used it must be greater

than the maximum absolute value of the Lagrange multiplier (cf. Theorem 3).

Hence some constraints are too penalized and this could be a trouble for

the convergence. So, methods used to minimize exactly penalty function

(as the algorithm proposed by Conn) can be easily adapted. An heuristic

taking into account the last remark would be useful to update the penalty

coefficients.

III. Generalization

III.l Definitions

Let us consider the class of the following continuous penalty

functions:



We define Dp*(0) as

p±(t) =0 if t < 0

pj(t) > 0 otherwise

lim (p(t)/t) (supposed < 4»)
t->0+

The new exact penalty function is now

p(x,c) =f(x) + f p[h (x)] +p,[-h.(x)] + I p,[h.(x)] .
i-1 1 X 1 * i=m+l i i

The directional derivative in the direction u at a point z which

satisfies the constraints of the original problem is now

Dp(z) =<Vf(z),u> + I Dp+(0)|<Vh.(z),u>| + I Dp1"(0)«vh4(z)>u»J. .
1-1 X i=m+l i i +

III.2 Results

We can show that theorems 1, 2, and 3 of Section II are still valid

We have only to replace ^ by Dp^O) and the proofs are made in the

same way. This is the generalization of the result given by Bertsekas

for the convex case (see [4]).

IV. The Algorithm

In this section we present an algorithm to minimize the exact

penalty function we presented in section II. At each iteration of the

algorithm we calculate the descent direction which minimizes the direc

tional derivative by solving a simple linear programming problem.
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In fact to avoid jamming at certain points (it is possible since the

directional derivative is not continuous) we consider |h. (x) |£e as

h±(x) =» 0; e is not fixed and is modified according to some rule. (The

same principle has been used by Demjanov, see [5J.) We show that any

accumulation point of a sequence generated by this algorithm has its

directional derivatives positive.

First we introduce some notation. Dp is a function of two
e,z

variables a, 3.

Dpe,z(a'B) =<Vf(a)»3> + I l<Vhi(a),3>|ci+ I ci6i<Vhi(a),3>
iSi^(z) iei2(z)

+ I c1«Vhi(a),3»++ I ci<Vh±(a),3>
iei^(z) iGlf(z)

w^e I*(z) ={i|l<i<m; |h±(z)|<e}
I2(z) ={i|l<i<m; Ih^z)! >e}
I^(z) ={i|l>m+l; |h±(z)| <e}
Ig(z) - {i|i>m+l; hi(z)>e}

+1 if h.(z) > 0

-1 if h±(z) < 0

Dp0 z^Z,u^ is the directional derivative of p(z,c) at the point z in

the direction u.

We shall call u (z) the vector such that

Note that

DPP -<z>u (z)) » min{Dp^ (z,u): subject to M < 1}.

Dpe .(a,3) > Dp, (a,3) Ve > c1 > 0 .
e,z e,z •— _
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We define

A«{zeRn|Dp0)Z(z,u0(z))«0} .

IV.1 The Algorithm

StepJ): Set i« 0, z± = zQ (eQ given).

SteP 1; Set I=aJ|hA(Zi)| <eQ}
I1 = 0.

SteP 2; e(i) « max {|h (z )|}; (if I-l' = 0, e(i) = 0). If

A" Dpe(i),z ^i^ed)^^ - ~e(i) So to step 3. Else if A= 0, stop.
Else set I' «U£i| |h£(z±)|=e(i)} and go to step 2.

Step_3: X(zi)S=ar^inp(zi+Xue(i)(zi),c). Set z±+1 =z±+X(«±)«e(1) (z±),
i « i+1. Go to step 1.

IV.2 Convergence

Proposition. Any accumulation point of a sequence generated by this

algorithm G A.

Proof. Let z be an accumulation point. Suppose the proposition

is false. Then

z$A * Dp0>z(z,u0(z)) »-y <0.

First we show that there exists a subsequence u -• u such that

Dp0,z^z,S) <0 and then we shall exhibit a contradiction. Let us call

{z±> asubsequence which converges towards z, z± + z. There are two
possibilities:

(a) 3iQ such that Vi > i e(i) > 6 > 0.

(b) There exists a subsequence z* •> z such that e(i) -»• 0 if
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Consider case (a). By continuity of h-(-) we know that there

exists e(z) such that for all z1 S B(z,e(z))

|h)l(z,)-hJl(z)| <6 V£ •

Then

|h,(z)|«0 -> |h,(z')| < 6 < e(i) , Vi > ift .

Then as soon as z^ € B(z,e(z)) (for i^> i') we have

D*e(z),z±(h'u) Z»P0Jz±>") , Vu
and

Dp0.»(«l'ue(l)<5)) -^(D.i^i^ed)^" ^-*
as

ue(i)^±) € B={uGR^Hull^l} (compact set).

There exists a subsequence {z"} such that z" + z, u ,J,^(z,.,) -»- u S
i i £(i) i

and by continuity of the function Dp. (•,•) we must have
0, z

Dpn (z,u) < -6 < 0 .
u,z —

Consider now case (b).

e, • min [|h (z)|/2]
A' h£(z)>0 *

if h*(z) =0 VJl set e± =1
£=min [e1,|y|/2] .

(i) By continuity of Dp (•»•) there exists e(z) such
u >z

that Vz' € B(z,e(z))

min{Dp0 z(z,u)|auIIoo<l} <| min{DpQ z(z\u) |flul^ <l} ,

In other words there exists e(z) such that Vz1 E B(z,e(z))

B
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Dp0,z(z''u0(z,)) ±-2* '

(ii) By continuity of h^, VA, we can write there exists e'(z)

such that

h^(z) =0 «> |hjl(z,)| <e

hA(z) 40 => |hJl(z,)| >£

Vz1 e B(z,e,(z)).

(iii) Call {z!} the subsequence which converges towards z and

such that e(i) •* 0 as 1 -*• ». Then

z^ -*- z => 3iQ such that i>iQ => z'± € B(z,e1(z))

e(I) •*• 0 => 3iQ such that i^ i» => e(i) £ e

(where e^z) » min(e(z),e'(z))) and then because of the definition of

e(i) at step 2 of the algorithm, we have

Dpe(i))Zi(ct'6) •^0Ja'&)
Vz^; i _> max(i ,i') and we have

D'e<i).«'(,l'ue(l)("i>)i-e<1>

(because of (i)). As u£/^\^\) G B there exists a subsequence z" •*• z

such that "g/^Cz'^) **• u € B and by continuity of Dp (•»•) we have

Dp0.»(«l'tte(l)(«i)) - DP0,z<z'G> ="Y <0.

Hence we have shown that there exists in any case a subsequence

z. + z
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such that

Dp0>2(z,u) <0.
Define, now

and

X • argmin p(z+Xu,c)
X^O

<5(z) » p(z+Xu,c)-p(z) < 0 .

Since p(z±,c) is a decreasing sequence which converges towards p(z,c),

by continuity of p(%c) we must have

Ve3i0 such that i>iQ => |p(Zi,c)-p(zi+1,c)| <e

(take e - +|6(z)|/2).

3e(z) such that fluT-uj| < e(z) and Dz'-zll < e(z)

«» p(z,+xG,c)-p(z») <|5(z) =|(p(z+XG,c)-p(x)) .

There exists iQ such that lu±-uB £ e(z) and Hz±-z| < e(z) Vi ^> V
(since u^, -»• u and z. «*• z). Then

i>max(i0,i^)

* 2"L> IP<«i+i.c)-p(vc>li IP^^^Ue^Cz^.O-pCz^c)!
>|p(zi+Xue(±)(zi),c)-p(zi,c)| >j|6(z)|

•* contradiction => z € A . Q.E.D.

Note. Of course in the implementable version, we replace step 3

of the algorithm by an Armijo stepsize rule (as in the steepest descent

algorithm). Then step 3 is now

SteP 3l Compute the first integer k such that
k. k

p(zi+6 »e(i)<«i>.c>-P<Vc> laS *D»,ea>,,1<«i»Vi>(*i>>
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Kwhere a and 3 are given, a € [o,l], 3 € [0,l]. z.xl - z. +3 *u m(Of
i+1 i £(i) i

i • i+1, go to step 1.

IV.3 An Example

To illustrate the conclusion we made in the end of section II, we

applied this algorithm for the Rosen Suzuki problem which is

min f(x) =x2+x2 +2x2+x2-5Xl-5x2-21x3+7x4

subject to

(i) 2x2 +x2+x2+2Xl+x2-x4-5 <0
2 2 2 2(ii) x1 +x2 +x3 +x4 +x1-x2 +x3-x4-8 <0

(iii) x2+ 2x2+x2 +2x2 - x± - x4 - 10 <0

The solution is

f(x) =-44 at x* = (0,1,2,-1)

with constraints (i) and (ii) active. The Lagrange multipliers are

(2,1,0).

(a) With c± =2.001, c2 = 1.001, c3 =0.001 the results after

25 iterations are (we started at (0,0,0))

Dpe>x*(x*,u£(x*)) > -0.0001

x* = (0.00001, 1.00000, 2.00000, -1.00001)

f(x*) - -44.00007

The constraints (i) and (ii) are 0.00002 and 0.00003.

(b) With c1 =3= c2 « c3 we have after 5£ iterations



16

Dpe,x*(x*,ue(x*)) I"0-0001
x* » (0.00001, 1.00001, 2.00000, -0.99998)

f(x*) = -44.00002

The constraints (i) and (ii) are 0.00002 and 0.00003.

We can see that although the Lagrange multipliers are not very different

the convergence is much slower with one coefficient only.
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Just before we sent this paper to the printer we became aware of a

paper by S. P. Han and 0. L. Mangasarian, "Exact penalty function in

nonlinear programming." The sufficient condition of Section II is also

demonstrated, but under stronger assumption. (Second order sufficiency

condition is required).
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