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Abstract

During the past several years, the emergence of expert systems as a

field of considerable practical as well as theoretical importance within AI

has provided a strong impetus for the development of theories of approximate

reasoning and credibility assessment of inference processes in knowledge-based

systems.

The approach to approximate reasoning described in this paper is based

on a fuzzy logic, FL, in which the truth-values and quantifiers are defined

as possibility distributions which carry linguistic labels such as true,

quite true, not very true, many, not very many, several, almost all, etc.

Based on the concept of a possibility distribution, a set of translation and

inference rules is developed and their application to inference from impre

cise premises is illustrated by examples.
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*

L.A. Zadeh

1. Introduction

It has long been recognized that much, perhaps most, of human reasoning

is approximate rather than exact in nature. And yet, logicians and cognitive

scientists have devoted scant attention to the development of theories of

approximate reasoning, partly because of the deeply entrenched tradition of

respect for what is precise and disdain for what is fuzzy, and partly because

there was no compelling need for such theories before the advent of artificial

intelligence.

In recent years, however, the rapid growth of interest in natural language

processing and the emergence of expert systems as an important application

area within AI have made it increasingly clear that a better understanding of

the processes of approximate reasoning is a prerequisite to the development of

knowledge-based systems which can manipulate information that is imprecise,

incomplete or not totally reliable.

In a series of papers starting in 1973 [2]-[7], we have advanced the

view that conventional logical systems do not provide an appropriate

basis for approximate reasoning and have suggested a fuzzy logic, FL, for this

purpose. In contrast to two-valued and multi-valued logics, the truth-values

of FL are linguistic rather than numerical, as are quantifiers exemplified by
*

Computer Science Division, Department of Electrical Engineering and Computer
Sciences and the Electronics Research Laboratory, University of California,
Berkeley, CA 94720. Research supported by Naval Electronic Systems Command
Contract N00039-78-C0013 and National Science Foundation Grant MCS77-07568.
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many, most, not very many, few, several, almost all, etc. Furthermore, the

rules of inference in FL are approximate rather than exact. Thus, in spirit

as well as in substance, FL represents a sharp break with the long-standing

tradition of extreme precision in logic and a move toward an accommodation with

the pervasive imprecision of human thought, perception, language and deci

sion-making.

Another important difference between FL and classical logical systems

centers on the concept of truth. Thus, whereas in the latter systems [8]-[9]

the truth of a proposition serves as a starting point for the

definition of various basic concepts, the corresponding role in FL is played

not by truth but by the concept of a possibility distribution, by which is

meant a mapping associated with avariable X, irx: U+ [0,1], which assigns

to each point u in the domain of X, U, the possibility that X could

take u as a value. The concept of truth, then, is employed to express the

compatibility of the possibility distribution induced by a proposition p

with that of a reference proposition r. In this sense, the truth of a pro

position is a relative concept and is a measure of its compatibility or consis

tency with a collection of propositions which constitute a database.

Our main concern in the present paper is with (a) the establishment of

translation rules for various types of imprecise propositions; (b) inference

from such propositions; and (c) the development of a conceptual framework for

dealing with the issues of belief and credibility. The latter issues play a

particularly important role in expert systems [10]-[17] as well as in the

theories of evidence and decision analysis [18]-[28].



2. The Concept of a Possibility Distribution

As a preliminary to the consideration of translation rules for various

types of propositions, it will be helpful to establish some of the properties

2
of possibility distributions which will be needed in later sections.

Informally, if X is a variable taking values in U, then a possibility

distribution, n„, associated with X may be viewed as a fuzzy (or elastic)

constraint on the values that may be assigned to X. Such a distribution is

characterized by a possibility distribution function tt„: U + [0,1] which

associates with each u e U the "degree of ease" or the possibility that X

may take u as a value.

In some cases, the constraint on the values of X is physical in origin.

For example, if X is the number of students in a classroom which has, say,

50 seats, then ir„(u) = 1 for u up to 50, with tt„(u) gradually declining

to 0 at, say, u = 75. In this case, an intermediate value of tt„, say

ttx(65) = 0.3, would signify that, by some explicit or implicit criterion,

the degree of ease with which 65 students could be crowded into the classroom

is 0.3 (on the scale from 0 to 1).

In most cases, however, the possibility distribution which is associated

with a variable is epistemic rather than physical in origin. A basic assump

tion in fuzzy logic is that such epistemic possibility distributions are

induced by propositions expressed in a natural language. In more concrete

terms, this assumption may be stated as the

Possibility Postulate. If F is a fuzzy subset of U characterized by

its membership function ypi U -*- [0,1], then the proposition "X is F" induces

a possibility distribution n„ which is equal to F. Equivalently, "X is F"

An introductory exposition of possibility theory may be found in [29]. A
historical account of the concepts of possibility and probability is contained
in [30].



translates into the possibility assignment equation IL. = F, i.e.,

X is F-H- nx=F (1)

which signifies that the proposition "X is F" has the effect of constraining

the values that may be assumed by X, with the possibility distribution n„

identified with F.

As a simple illustration of (1), if in the proposition "X is small" small

is regarded as a label of a fuzzy subset of U = {0,1,2,...} which is
3

defined by

SMALL = 1/0 + 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (2)

then

Poss{X=0} = 1 (3)

Poss{X = l} = 1

Poss{X = 2} = 0.8

Poss{X=5} = 0.2

where Poss{X =u} =ttx(u) is the possibility that X may take u as a

value.

An important aspect of the concept of a possibility distribution is that

it is nonstatistical in nature. As a consequence, if P„ is a probability

distribution associated with X then the only connection between JI„ and

Px is that impossibility (i.e., zero possibility) implies improbability but

not vice-versa. Thus, nx cannot be inferred from Px nor can Px be-

inferred from nx.
3
The notation F=y1/x1 +•.. +un/xn signifies that F is a fuzzy subset
of the set {x^,...,xn}, with y., i= l,...,n, being the grade of mem
bership of x. in F. Uppercase symbols (e.g., F, SMALL) are employed to

denote names of sets (fuzzy or nonfuzzy).



As in the case of probabilities, one can define joint and conditional

possibilities. Thus, if X and Y are variables taking values in U and

V, respectively, then we can define the joint and conditional possibility

distributions through their respective distribution functions:

tt(x Y)(u,v) =Poss{X =u, Y=v} , ue u, ve V (4)
and

tt(X|Y)(u|v) =Poss{X =u|Y=v} (5)

where (5) represents the conditional distribution function of X given Y.

If we know the distribution function of X and the conditional distribu

tion function of Y given X, then we can construct the joint distribution

function of X and Y by forming the conjunction (~ £ min)

tt/X)Y)(u»v) =ttx(u)-^(Y|x)(vlu) • ^

However, unlike the identity that holds in the case of probabilities, we can

also obtain tt/x y\(u,v) by forming the conjunction of *^(xlY)^u'v^ and
*(Y|x)(v|u):

lr(X,Y)(u'v) "ir(X|Y)(ulv)Air(Y|X)(vlu) " (?)

In yet another deviation from parallelism with probabilities, the

marginal possibility distribution function of X may be expressed in more

than one way in terms of the joint and conditional possibility distribution

functions. More specifically, we may have

(a) ttx(u) =Vvtt(XjY)(u,v) (8)

where V denotes the supremum over v e V;



(b) ttx(u) =Vvtt(X|Y)(u|v) (9)
and

(C) 7TX(U) =TT(X|Yj(u,v(u)) (10)

where, for a given u, v(u) is the value of v at which ^fy1Y)^u*v^ = ^*
if v(u) is defined for every u e U.

Intuitively, (a) represents the possibility of assigning a value to X

as perceived by an observer ((X,Y) observer) who observes the joint possi

bility distribution II/X Yx. Similarly, (b) represents the perception of an

observer ((X|Y) observer) who observes only the conditional possibility

distribution TI/^iY\ and is unconcerned with or unaware of n/v|X)* ^n(*

(c) expresses the perception of an observer who assumes that v is assigned

that value, if it exists, which makes "ir(xlY^u,v^ eclual to unity.

In relating ttx to ^/viY) through the operator V (supremum), we

are tacitly invoking the principle of maximal restriction [4], which asserts

that, in the absence of complete information about TL, we should equate

nx to the maximal (i.e., least restrictive) possibility distribution which

is consistent with the partial information about II,,. In the case of (a),

for example, this would be the supremum of i/« y|(u,v) over ve V.

As will be seen in Section 2, the concept of a conditional possibility

distribution plays a basic role in the formulation of a generalized form of

modus ponens and in defining a measure of belief. What is as yet an unset

tled issue revolves around the question of how to derive ff(viY) anc* •^(YlX)

from tt/x Y\. Somewhat different answers to this question are presented in

[27], [31] and [32]. It may well turn out to be the case that, in contrast

to probabilities, there does not exist a unique solution to the problem and

that, in general, the answer depends on the perspective of the observer.



3. Possibility Theory and Fuzzy Logic

As was alluded to already, the concept of a possibility distribution and

the possibility theory which is based on it, play a central role in fuzzy

logic by providing a means for the representation of the meaning of imprecise

premises and the generation of propositions which follow logically from them.

Typically, a variable in fuzzy logic is treated as a linguistic

variable [4], that is, a variable whose values are represented as words or

sentences in a natural or synthetic language, with each such value defining

a possibility distribution in the domain of the variable. In effect, what

this implies is thata linguistic variable is a microlanguage with its own

syntax and semantics. For example, in the case of FL, the linguistic values

of the variable Truth may be generated by a context-free grammar and inter

preted by an attributed grammar [33]. Thus, starting with (a) the primary

term true and its antonym false; and (b) a finite set of modifiers and con

nectives such as and, or, not, very, more or less, quite, extremely, etc.,

the linguistic values of Truth may be represented as:

true false

not true not false

very true very false

not very true not yery false

more or less true more or less false

quite true quite false

not quite true not quite false

not true and not false

not yery true and not very false
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In FL, a linguistic truth-value is regarded as a composite label of a

possibility distribution in the interval [0,1], which is the set of truth-

values in Lukasiewicz's L... . logic. What this means is that in FL we

generally deal not with numerically-valued truth-values but with their possi

bility distributions.

An important distinction between FL and U-ieDn is that in L«, h —

as in all other multi-valued logics — there are only two quantifiers all *nd

some,whereas in FL we can employ a large variety of fuzzy quantifiers exem

plified by few, several, many, most, almost all, \/ery many, not very many, etc.

This feature of FL makes it possible to translate, and infer from, imprecise

premises exemplified by

Most tall women are not very fat.

Among the many men who are heavy smokers, quite a few are

overweight and some are heavy drinkers.

Carol has several close friends who have many children.

The meaning of a quantifier in FL is based on the concept of the cardinality

of a fuzzy set. Thus, if F is a fuzzy subset of a finite set U = {iu,...9u }

characterized as

F= y1/u1 +--- +uN/uN

where y. is the grade of membership of u. in F, i = 1,...,N, then the

power of F — which is roughly a measure of its cardinality [34] — may be

defined as

|F| - IPi . (ID
i=l 1

Alternatively, and perhaps more appropriately, the cardinality of F may be

defined as a fuzzy number, as is done in [6]. Thus, if the elements of F

are sorted in descending order, so that y < y if n > m, then the
n — m —



truth-value of the proposition

p£ F has at least n elements (12)

is defined to be equal to y , while that of q,

q £ f has at most n elements , (13)

is taken to be 1-Un+-i- From this it follows that the truth-value of the

proposition r,

r£ F has exactly n elements , (14)

is given by vin ^(l-yn+1). An illustration of these alternative definitions

of cardinality is provided by Example 5 in Section 4.

The translation rules for propositions expressed in a natural language

form an important part of PRUF — a meaning representation language based on

possibility theory [7]. In what follows, we shall present in a summarized

form a subset of such rules which play a basic role in FL.

Translation Rules

1. Modifier rule

If

then

X is F-*• nx =F (15)

+

X is mF —• IIX = F

where m is a modifier such as not, very, more or less, etc., and F is a

modification of F induced by m. More specifically: If m = not, then

There are several implemented languages which have extensive facilities for
the manipulation of fuzzy propositions and execution of fuzzy instructions.
Prominent among these are FUZZY [35] and FSTDS [36], [66].
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F = F' = complement of F, i.e.,

V +(u) = 1 -iip(u) , ue U . (16)
F ^

+ 2
If m = very9 then F = F , i.e.,

v +(u) =yF2(u) , ue U. (17)

If m = more or less, then F = #, i.e.,

U+(u) = vCTuJ , uG U . (18)

As a simple illustration of (15), if SMALL is defined as in (2), then

Xis very small -* nx =F2 (19)
where

F2 = 1/0 + 1/1 + 0.64/2 + 0.36/3 + 0.16/4 + 0.04/5 . (20)

It should be noted that (16), (17) and (18) should be viewed as default rules

which may be replaced by other translation rules in cases in which some alter

native interpretations of the modifiers very and more or less are more

appropri ate.

2. Conjunctive, disjunctive and implicational rules

If

X is F-* nx =F and Y is G-* ny =G (21)

where F and G are fuzzy subsets of U and V, respectively, then

(a) X is F and Y is G-> n/x yx = FxG (22)

where

yFx6(u,v) a yF(u) ~yG(v) (- =min) . (23)
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(b) Xis For Y is G-• II/X Yx =FUG (24)

F a FxV , G * UxG (25)

where

and

Upjgduv) =yp(u) VyG(v) . (26)

(c) If X is Fthen Y is G-* n(Y|Xx =F' ©G (27)

where n(Y|Y) denotes the conditional possibility distribution of Y given

X, and the bounded sum © is defined by

^f'©G(u'v) =Wl-UpM+Pgtv)) . (28)

As simple illustrations of (22), (24) and (27), if

F a SMALL = 1/1 + 0.6/2 + 0.1/3 (29)

G a LARGE = 0.1/1 + 0.6/2 + 1/3 (30)

X is small and Y is large —*• II/X Y\ (31)

= 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.1/(2,1) + 0.6/(2,2)

+ 0.6/(2,3) + 0.1/(3,1) + 0.1/(3,2) + 0.1/(3,3)

then

X is small or Y is large —*• II/X Yx

= 1/(UD + 1/(1,2) + 1/(1,3) + 0.6/(2,1) + 0.6/(2,2) + 1/(2,3)

+ 0.1/(3,1) + 0.6/(3,2) + 1/(3,3)

and

(32)
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If X is small then Y is large —> n^Yly^ (33)

« 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.5/(2,1) + 1/(2,2) + 1/(2,3)

+ 1/(3,1) + 1/(3,2) + 1/(3,3) .

3. Quantification rule

If U = {u-j,.. .,uN>, Q is a quantifier such as many, few, several,

all, some, most, etc., and

X is F-* nx = F (34)

then the proposition "QX are F" (e.g., "many X's are large") translates into

nCount(F) = <» <35>

where Count(F) denotes the number (or the proportion) of elements of U

which are in F. By definition (11), if the fuzzy set F is expressed as

F= y-j/Oj +y2/u2 +... +VN/uN (36)

then

N

Count(F) = I y (37)
i=l 1

As a simple illustration of (35), if the quantifier several is defined as

SEVERAL £ 0/1 + 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.6/7 + 0.2/8 (38)

then

Several X's are large —*- n N (39)

J/LARGE^i)
= 0/1 + 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.6/7 + 0.2/8

where ^large^^ iS the grade of membersniP of the i value of X in the
fuzzy set LARGE.
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4. Truth qualification rule

Let t be a fuzzy truth-value, e.g., very true, quite true, more or

less true, etc. Such a truth-value may be regarded as a fuzzy subset of the

unit interval which is characterized by a membership function y : [0,1] + [0,1]

A truth-qualified proposition, e.g., "It is t that X is F," is expressed

as "X is F is t." As shown in [5], the translation rule for such propositions

is given by

Xis Fis t-> nx =F+ (40)
where

y+(u) =yT(uF(u)) . (41)

As an illustration, consider the truth-qualified proposition

Bob is young is very true

which by (40), (41) and (17) translates into

nAge(Bob) =%jE2^Y0UNG(u)) • ^
Now, if we assume that

yY0UNG(u) =(1+(^)2)_1 ' UG ^0,100] (43)
and

''TRUE

then (41) yields

TlAge(Bob) *" v' Tv25•

as the possibility distribution of the age of Bob.

Used in combination, the translation rules stated above provide a system

for the determination of the possibility distribution induced by a fairly

complex composite proposition. For example, the proposition

Ptdiif(v) =v2 , ve [0,1] (44)

H/WanM " (l+(^r)2)"4 (45)
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If X is not very large and Y is more or less small then

Z is very very large.

induces the conditional possibility distribution described by

ir(z|XjY)(w|u,v) =1-(1-(1-PlARGE(u))^SMALL(v)+1jLARGE(w)) •(46)

It should be noted that rules of this type have found practical applications

in the design of fuzzy logic controllers in steel plants, cement kilns and

other types of industrial process control applications in which instructions

expressed in a natural language are transformed into control signals [61]-[65]

Rules of Inference

In our approach to approximate reasoning, the translation rules for

imprecise propositions serve as a preliminary to the application of various

rules of inference to the possibility distributions which are induced by

such propositions, leading to other possibility distributions which upon

retranslation yields the conclusions which may be drawn from the premises.

More specifically, the basic rules of inference in FL are the following.

1. Projection rule

Consider a fuzzy proposition whose translation is expressed as

P-*n(xr...,xn) =,: <47)

and let X/ % denote a subvariable of the variable X £ (X,,...,X ), i.e.,

X,0 = (X. ,...,X. ) (48)KS) ^ ik

where the index sequence s £ (i•,,... ,v) is a subsequence of the sequence

0,...,n).
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Furthermore, let nx denote the marginal possibility distribution

of X/ w that is,

nY = Proj.. F (49)
X(s) U(s)

where U., i = l,...,n, is the universe of discourse associated with X.;

U/Cv = U. x... xU. (50)(s) i, ik

and the projection of F on U, v is defined by the possibility distribution

function

irY (u. ,...,u. ) = Sup yF(u1,...,u ) (51)
, ,.. r i ii

Jl Jm

where s' £ (j-.,...,j ) is the index subsequence which is complementary to

s, and yp is the membership function of F.

Now let q be a retranslation of the possibility assignment equation

nY = Proj.. F . (52)
X(s) U(s)

Then, the projection rule asserts that q may be inferred from p. In a

schematic form, this assertion may be expressed more transparently as

(X-j,... ,X j

I (53)
q <— H„ = Proj.. F

X(s) U(s)

The operation of projection is easy to perform when flL is expressed

as a linear form. As an illustration, assume that U, = U« = {a,b>, and

n(X X )= 0,8aa + 0,6ab + 0,4ba + °*2bb (54)
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in which a term of the form 0.6ab signifies that

Poss{X1 =a, X2=b} = 0.6 . (55)

To obtain the projection of nx on, say, U« it is sufficient to

replace the value of X1 in each term by the null string A. Thus

Projjj II/X >x x =0.8a+0.6b+0.4a+0.2b =0.8a+0.6b (56)

and hence from the proposition

(X-j,X2) is 0.8aa+0.6ab+0.4ba+0.2bb (57)

we can infer by (53) that

X] is 0.8a+0.6b . (58)

2. Conjunction rule

Consider a proposition p which is an assertion concerning the possible

values of, say, two variables X and Y which take values in U and V,

respectively. Similarly, let q be an assertion concerning the possible

values of the variables Y and Z, taking values in V and W. With these

assumptions, the translations of p and q may be expressed as

iX,Y) • (59)
q- n^Y>z) =G

Let F and G be, respectively, the cylindrical extensions of F and

G in UxVxW. Thus,

F = FxW (60)

and

G = UxG . (61)
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Using the conjunction rule, we can infer from p and q a proposition

which is defined by the following scheme (the reverse arrow «— denotes

retranslation, i.e., reverse translation):

r-*n?x>Y) =F (62)

q- n?Y>z) =G (63)

r«-n(X.Y.Z)-FnS (64)

On combining the projection and conjunction rules, we obtain the compo

sitional rule of inference (67) which includes the classical modus ponens as

a special case.

More specifically, on applying the projection rule to (64), we obtain

the following inference scheme

p— n?v ^ = F (65)
(X,Y)

[(Y,Z)q-^ nl 7x =g

r-n[XjZ) =FoG

where the composition of F and G is defined by

UFo6(u,w) =Supv(yp(u,v) -y6(v,w)) . (66)

In particular, if p is a proposition of the form "X is F" and q is a pro

position of the form "If X is G then Y is H," then (65) becomes

(67)p

q -*

nx = F

n(Y|X) = G'<»H

r
<- n(Y) = Fo(G' ®H)
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The rule expressed by (67) may be viewed as a generalized form of modus

ponens which reduces to the classical modus ponens when F = G and F, G, H

are nonfuzzy sets.

Stated in terms of possibility distributions, the generalized modus

ponens places in evidence the analogy between probabilistic and possibilistic

inference. Thus, in the case of probabilities, we can deduce the probability

distribution of Y from the knowledge of the probability distribution of X

and the conditional probability distribution of Y given X. Similarly, in

the case of possibility distributions, we can infer the possibility distribu

tion of Y from the knowledge of the possibility distribution of X and the

conditional possibility distribution of Y given X.

It is important to note that the generalized modus ponens as expressed

by (67) may be used to enlarge significantly the area of applicability of

rule-based systems of the type employed in MYCIN and other expert systems.

This is due primarily to two aspects of (67) which are not present in conven

tional rule-based systems: (a) in the propositions "X is F" and "If X is G

then Y is H," F, G and H may be fuzzy sets; and (b) F and G need not

be identical. Thus, as a result of (a) and (b), a rule-based system employ

ing (67) may be designed to have an interpolative capability [6].
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4. Probability/Possibility and Credibility Analysis

An important issue in approximate reasoning relates to the assessment

of the credibility of a conclusion which is inferred from a collection of

premises which are imprecise and/or have less than complete credibility.

This issue plays a particularly important role in the case of expert systems,

e.g., MYCIN, in which it is essential for the user to have an indication of

the degree of confidence with which a conclusion supplied by the system may

be used as a basis for a decision [12], [13].

Viewed from the perspective of fuzzy logic, the problem of credibility

assessment bears an intimate relation to inference from propositions in

which the imprecision is partly possibilistic and partly probabilistic. A

simple example of a proposition of this type is the probability-qualified

proposition

p £ X is small is likely (68)

in which likely is interpreted as a linguistic probability [4], i.e., a possi

bility distribution of a numerical probability which takes values in the

interval [0,1]. Thus, likely is characterized by a possibility distribution

function ""likely^)* °- v- ^ wnicn expresses one's subjective percep

tion of the meaning of likely.

As shown in [5], p translates into a possibility distribution of

probability distributions. More specifically, if px(u)du is the proba

bility that X lies in the interval [u,u+du], then the possibility distribu

tion function of px which is induced by p is expressed by

*{pX] =\lKELY(fl)VISMALL{u)pX(u)du) (69)
where USMALL denotes the membership function of small in (68).
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If p in (68) is viewed as a piece of evidence, then its translation

(69) shows that the evidence in question is a possibility distribution of

probability distributions. A dual case which plays an important role in

Shafer's theory of evidence and in the calculation of upper and lower proba

bilities [37], [38], [21], is one in which the evidence may be viewed as a

probability distribution of possibility distributions. More specifically, let

X be a random variable which is associated with a probability distribution

Px and let 11^1 x) be tne conditional possibility distribution of a variable

Y given X. Then, viewing Px and H/YiX) as tne available evidence about

Y, the question is: What is the degree of credibility which can be asso

ciated with the proposition q £ Y is in A, where A is a subset of the

domain of Y?

For our purposes, it will be convenient to formulate an answer to this

question in terms of the concepts of conditional certainty:

Cert{YGA|X} (70)

and conditional possibility

Poss{YeA|X} . (71)

Thus, we shall associate with Y two measures of credibility: (a) the expec

tation of conditional certainty

C(A) a Cert{YGA} = ExCert{YGA|X} (72)

and (b), the expectation of conditional possibility

n(A) = Poss{Y€A} = ExPoss{YGA|X} . (73)
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For the case where H/yiyx can take only two values, 0 or 1, which is equiva

lent to the case considered by Shafer,

Cert{YGA|X} = 1 if n(Y|X) e A (74)

= 0 otherwise

while

Poss{YGA|X} = 1 if n(Y|X) $A' (75)

= 0 otherwise

where A' is the complement of A in the domain of Y. In this case, C(A)

as defined by (72) reduces to Shafer's belief function B(A), while n(A)

reduces to Shafer's plausibility function.

A basic problem in credibility analysis is that of defining a rule or

rules for various combinations of evidence and hypotheses [12]. The so-

called Dempster rule [37] relates, in essence, to the case where the evidence

consists of E1 = {Px ,n/Y.x x} and E2 ={Px ,II/y|X x}, where X] and

X2 are independent random variables and the conditional possibility distribu

tions are non-fuzzy. In this case, we have

C^A) =Ex CertCYeAlX^ (76)

C2(A) = Ex Cert{YGA|X2} (77)

and the rule in question yields the combined measure of certainty that Y e A,

i.e.,

Clj2(A) =E(x jX )Cert{YEA|(X1,X2)} . (78)

It should be noted that, in the formstated in (78), the combination rulecan readily

be generalized to the case where ^(ylx ) and ^(YlX ) take values in tne
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interval [0,1], rather than just 0 or 1 — which is the case considered
5

by Dempster and Shafer.

The above results apply only to the special case where the evidence

consists of Px and n(Y|x)" At tnis Juncture» there does not exist amore

general and widely applicable theory of evidence which could serve as a basis

for computing the credibility indices of conclusions inferred from a collec

tion of imprecise premises. A difficulty that stands in the way of develop

ing such a theory is that the relation between a hypothesis and evidence may

involve a number of variables which are interrelated by a mixture of proba

bility and possibility distributions. The rules for combining a mixture of

such distributions tend to be cumbersome and complex, suggesting that it may

be necessary to reconcile ourselves, at least for the foreseeable future, to

the employment of techniques of credibility analysis which are ad hoc, approxi

mate and heuristic, rather than formal and exact.

5
It should be noted that the expression for C, 2 as defined by (78) differs
from that yielded by the Dempster/Shafer rule in that C-. « is not normal

ized. As shown in [67], the normalization employed by Dempster and Shafer
is of questionable validity.
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5. Examples of Approximate Reasoning

A concomitant of the imprecision which is inherent in approximate rea

soning is that the chains of reasoning based on fuzzy logic are generally

quite short in comparison with the long chains of reasoning which are possi

ble when precise reasoning is employed. In what follows, we shall consider

several simple examples which illustrate some of the basic aspects of the

application of fuzzy logic to inference from fuzzy propositions. In some of

these examples, we shall make use of concepts which form a part of the fuzzy-

logic-based meaning representation language PRUF. A detailed exposition of

this language may be found in [7].

Example 1. Suppose that we have the following information concerning

three real numbers X, Y, Z.

X is small.

Y is approximately equal to X.

Z is much larger than both X and Y.

Question. How large is Z?

Let SMALL, APPROXIMATELY EQUAL, and MUCH LARGER THAN be the fuzzy subsets of
2

R and R (R a real line) representing the denotations of smal1, approxi

mately equal and much larger than, respectively. Then, on applying the com

positional rule of inference (65) and the conjunctive rule (21), we obtain

the following expression for the possibility distribution of Z:

nz = (MUCH LARGER THANo APPROXIMATELY EQUALo SMALL) (79)

n MUCH LARGER THAN ° SMALL
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Example 2.

Premise: p * Naomi is not very tall is true.

Question: How true is it that Naomi is tall?

Suppose that the answer to the question is expressed as a proposition q:

q £ Naomi is tall is t (80)

where t is a linguistic truth-value, e.g., very true, more or less true, etc.

To determine t, we set q semantically equal to p [7], i.e., we

assert that the possibility distributions induced by p and q are equal.

Now, by (17) and (40), we have

Naomi is not very tall is true - nHeight(Naomi) =F (81)

where

yF(u) =PTRUE(1^TALL(u)) (82)
and

Naomi is tall is t —• y (Utai i(u)) (83)

where y^,, and Pynyc are the membership functions of TALL and TRUE,

respectively. Consequently, for all u in the domain of the variable

Height(Naomi), we have

^TRUE(1 -^TALL(u)) =^>TALL(u)) (84)

from which it follows that the membership function of t is given by

yT(v) =1-v2 , ve [0,1] . (85)

Thus, if PjRUE is defined by
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and hence

On the other hand, if

then

and

Example 3.
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VTRUE(v) =v2 (86)

\(v) =1"Wv) <87>

t = not true . (88)

yTRUE(u) =v (89)

yx(u) = l-UjRUE(v) (90)

t = not very true . (91)

Premises: p £ Marvin lives near MIT.

q a Lucia lives near MIT.

Question: What is the distance between the residences

of Marvin and Lucia?

Let UM,YM) and XL,Y. ) be the coordinates of the residences of

Marvin and Lucia, respectively. Furthermore, let 11/Y Y \ and ILV v v
^ M9 M' U|_,tl;

be the possibility distributions induced by p and q, that is, derived

from the definition of the binary fuzzy relation NEAR.

Now, the distance between the residences of Marvin and Lucia is expressed

by

d= /UM-XL)* +(YM-YL)z . (92)

Using (92) and applying the extension principle [4], the possibility
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distribution function of d is found to be given by

wd(w) =Supu1,v1,u2,v2(lr(XM)YM)(urvl'^(XL,YL)(u2'v2)) <93>
subject to

w = /(u1-u2)z +(v1-v2)2 (94)

where the supremum is taken over all possible values of XM, Y», X, and Y,

subject to the constraint (94). Generally, 7rd as defined by (93) will be

a monotone decreasing function of w, with tt.(w) = 1 for sufficiently

small values of w.

Example 4.

Premise: p a Marian is much taller than her close friends.

Question: How tall is Marian?

As a first step it is convenient, but not essential, to replace p with

a proposition q which is semantically equivalent to p, namely:

q * Not(Marian is not much taller than some of her close (95)

friends) .

Next, assume that the database consists of three relations whose frames

(i.e., names of relations and their attributes) are the following. (To rule

out a trivial solution, we assume that Marian is not listed under Name in

POPULATION.)

POPULATION 1 Name I Height I

FRIEND 11 Name! I Name2 I y I

MUCH TALLER H Height! | Height2 | y 1
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In the second of these relations, y is the degree to which the indi

vidual whose name appears under Name2 is a friend of the individual whose

name appears in the same row under Name!. Similarly, in the third relation,

y is the degree to which an individual whose height is Heightl is much

taller than one whose height is Height2.

Now in the notation of PRUF, the fuzzy set of Marian's close friends

may be expressed as

F=uxName2FRIEND2[Namel =Marian] (96)

which signifies that F is the projection of a particularized and intensi

fied form of the relation FRIEND on the attributes y and Name2. Typically,

F is of the form

F = 0.8Jean + 0.6Vicki + 0.3Edie + •••

which means that Jean, Vicki and Edie are Marian's close friends to the

degree 0.8, 0.6 and 0.3, respectively.

Having F, we can obtain the fuzzy set of heights of Marian's close

friends by forming the expression

H= He. htP0PULATI0N[Name=F] (97)

which in conjunction with (95) implies that the possibility distribution of

Marian's height is expressed by

"HeightWarian) =(y*HeightlMUCH TALLER' [ITHeight2 =«>' <98>

where the primes denote the complements (to account for the negations in (95)),

From (98), then, it follows that the possibility distribution function of

Marian's height is given by
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"HeighttMarian)^ =]'SuPV(tiH(v> ^] "^MUCH TALLER(u»v))) • uGU (99)

where the supremum is taken over U, the domain of the variable Height.

It should be noted that the same result could be obtained by replacing

p with the semantically equivalent proposition

r a (Vx)(If x is a close friend of Marian then Marian is

much taller than x)

provided that the implicational rule is taken to be

If X is Fthen Y is G->- n(Y|X) =F' +G (100)

rather than (27).

This leads to the expression

"HeighttMarian)^ = Infv((1 "Vv)) v%JCH TALLER(u'v)) (101)

where Inf denotes the infimum over v e u.

Example 5.

Premise: There are many more female students at Berkeley

than rich students of both sexes.

Question: How many female students are there at Berkeley?

Let X be the number of female students at Berkeley. Our aim is to

infer the possibility distribution of X from the given premise. To this

end, assume that the frames of the relations in the database are of the form

STUDENT | Name |yHch |

MANY MORE 11 p I y 1 y I
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In the first relation the names of all students are listed and y . . is
rich

the degree to which an individual is a rich student. In the second relation,

y is the degree to which the proportion p fits the description "many more"

in relation to the proportion y.

If the cardinality of a fuzzy set is identified with its power (11),

then the proportion of rich students is expressed by

Count(Namexu . STUDENT>
*Vich /in9\

Count(NameSTUDENT) u°^

in which the numerator is the count of rich students and the denominator is

the total count of students (£ N) of both sexes. From the initial premise,

then, it follows that the possibility distribution of the proportion of

female students is given by

np =pxpMNY "0RE[Y=jcountt^ x̂STUDENT)] . (103)

Alternatively, if the cardinality of the fuzzy set of rich students is

assumed to be a fuzzy set, then the possibility distribution of p may be

obtained as follows.

First, the fuzzy set STUDENT is sorted in descending order according

to the values of yn-cn. The result, then, is of the form

STUDENT = y]Name1 + y2Name2 + ••• + yNNameN (104)

where y.. is the degree to which Name, is rich and y. <_ y. for j > i.

The fuzzy cardinality of this set may be expressed as the fuzzy set

FCount(STUDENT) =Ujl +y£2+ ... +yNN (105)

in which yn, n = 1,...,N, represents the degree to which the fuzzy set
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STUDENT has _> n elements.

The original premise may now be expressed compactly in the form

p£y is many more than ^FCount(STUDENT) . (106)

On applying to (106) the approach employed in Example 4, we are led to

the following explicit expression for the possibility distribution function

of p

*p(u) =Infn((l -unKvMANY M0RE(".JT)) . "eB>.1] • 0°7)

This expression represents the desired possibility distribution function of

the proportion of female students at Berkeley given the premise: There are

many more female students at Berkeley than rich students.

6. Concluding Remarks

The approach described in this paper may be viewed as an attempt at

constructing a conceptual framework for inference from propositions whose

meaning is not sharply defined. Through the use of fuzzy logic, the answer

to a query is usually expressed in the form of a possibility distribution of

one or more variables. In contrast to the conventional techniques of

inference, the standards of precision in fuzzy logic are generally not high.

More importantly, through the use of linguistic variables and linguistic

approximation, these standards can be adjusted to fit the imprecision and

unreliability of the information which is resident in the database.
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