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LIAR'S PARADOX AND TRUTH-QUALIFICATION PRINCIPLE

by

L.A. Zadeh

1. Introduction. Stated in its "naked" and most elementary form, Liar's

paradox arises as a result of a self-referential definition of a proposition

p by the assertion

(1) p = p is false

where the symbol £ stands for "is defined to be."

There is a voluminous literature dealing with various issues relating

to self-referential definitions of the form (1). The analyses of Liar's

paradox which are particularly relevant to that presented in this note are

those of Bochvar [1], van Fraassen [13], Skyrms [11], Kearns [7], Herzberger

[5], Martin [8], Chihara [2], Pollock [9], Swiggart [12] and Haack [4].

Our approach to Liar's paradox is in the spirit of approaches employ

ing three-valued logic, but is more general in that (1) is treated as a

special case of a self-referential definition in fuzzy logic, FL, [14], [15],

[16], [3] having the form

(2) p ^ p is t

where t is a truth-value whose denotation is a fuzzy subset of the set of

truth-values of Lukasiewicz's I-a-i n 1°91C> anc* P 1S a proposition whose

meaning is characterized by a possibility distribution -- which is induced

by p -- over a universe of discourse U. The manner in which the concept

of a possibility distribution may be employed to characterize the meaning of

p is described in 2.
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The principle of truth-qualification in fuzzy logic serves to provide

a mechanism for the computation of the possibility distribution induced by

the proposition "p is t" from the knowledge of the possibility distributions

induced by p and t. By employing this principle, the self-referential

definition (2) may be translated into a fixed-point equation which upon solu

tion yields the possibility distribution of p for a given t. As shown in

2, this solution is not, in general, an admissible proposition in two-valued

logic. Furthermore, for certain t, the solution does not exist, leading

in the special case of (1) to Liar's paradox.

The transformation of a self-referential definition of the form (2)

into a fixed-point equation whose solution is the possibility distribution

of p has the effect of clarifying the basic issues arising in Liar's

paradox and, perhaps, supplies its resolution. The basic ideas of the method

by which (2) is transformed into a fixed-point equation are described in the

following section.

2. Possibility distributions, truth-qualification principle and Liar's paradox

Our analysis of Liar's paradox is based in an essential way on the concept

2
of a possibility distribution. Informally, if X is a variable taking

values in a universe of discourse U, then by a possibility distribution,

n„, which is associated with X, is meant a fuzzy subset of U which

plays the role of an elastic constraint on the values that may be assumed

by X. Thus, if u is a point in U and yx(u) is the grade of membership

of u in n„, then the possibility that X may take the value u is

a number in the interval [0,1], denoted by ir„(u), which is numerically

equal to yx(u). The function iTwi U —* [0,1] is termed the possibility



distribution function, and a variable which is associated with a possibility

distribution is called a fuzzy variable. Thus, if X is a fuzzy variable,

we have, by definition,

(3) Poss{X =u} =ttx(u)

where irx is the possibility distribution function which characterizes n„.

The elastic constraint on the values of X may be physical or epistemic

in nature. For example, if X represents the number of tennis balls that

may be squeezed into a metal box, then IL, is determined by physical

constraints. On the other hand, if X is characterized by the proposition

"X is small," where, SMALL, the denotation of small, is a fuzzy subset of

the interval [0,~), then nx is an epistemic possibility distribution

such that ttx(u) — the degree of possibility or, simply, the possibility

that X=u — is equal to ^SMALL^* tne grade of membership of u in

SMALL. More generally, if p is a proposition of the form

p= Xis F

where X takes values in U and F is a fuzzy subset of U, then we write

(4) X is F-* JIX =F

where the arrow stands for "translates into" and the right-hand member of

(4) constitutes a possibility assignment equation. Equation (4) implies

that nx is induced by the proposition "X is F" and that

(5) ttx(u) £ Poss{X=u} = yp(u)

where yp: U —• [0,1] is the membership function which characterizes F.
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In our analysis of Liar's paradox, we shall be concerned with proposi

tions of the general form p = N is F, where F is a fuzzy subset of the

cartesian product U^.-xu of a collection of universes of discourse

U-|9...,Un, and N is the name of an object, a variable or a proposition.

In this case, the translation of p assumes the more general form

{6) N1sF^n(x1 xnrF

where X= (X.|,...,Xn) is an n-ary variable which is implicit or explicit

in N, with X.. taking values in U\, i = l,...,n. To illustrate:

(7) Naomi is young -> nAge(Naomi) =YOUNG

where the variable Age(Naomi) is implicit in the left-hand member of (7)

and YOUNG is a fuzzy subset of the interval [0,100]. Similarly,

(8) John is big —• n/u . ..,, . x ,, . ..,, . xx =BIG
* (Height(John),Weight(John))

where the variables Height(John) and Weight(John) are implicit, and BIG

is a fuzzy subset of the product space [0,200] x[0,100] (with the height

and weight assumed to be expressed in centimeters and kilograms, respectively).

In general, then, a proposition of the form p = N is F induces a possi

bility distribution of a variable X= (X1S...,X ) which is implicit or

explicit in N, with F defining the distribution in question. In this

sense, the meaning of the proposition "N is F" is defined by the possibility

assignment equation (6), which is an instance of an expression in the mean-

ing representation language PRUF.

An important aspect of fuzzy logic relates to the ways in which the meaning

of a proposition may be modified through the employment of (a) modifiers



such as not, very_, more or less, somewhat, etc.; and (b) qualifiers exempli

fied by true, false, quite true, very likely, quite possible, etc. In

particular, in the case of modifiers, the pertinent rule may be stated as

follows:

If m is a modifier and the translation of p = N is F is of the form

(9) N is F-*- nx =F

then the translation of the modified proposition p = N is mF is given by

(10) Nis mF -* nx=F+

where F is a modification of F. In particular,

(a) if m = not then

(11) F' = F' = complement of F ,

(12) i.e., ypl(u) = 1-yp(u) , uGU
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(b) if m = very then

(13) Ff =F2 ,

(14) i.e., y+(u) =(yp(u))2 , uGU

and (c) if m = more or less, then

(15) Ff = # ,

(16) i.e., y f(u) = /yp(u) , uG U



The main point at issue in the case of Liar's paradox is the manner in

which the meaning of a proposition is affected by truth-qualification. In

this connection, let t denote a linguistic truth-value, e.g., true, false,

very true, not quite true, more or less true, etc., with the understanding

that (a) the denotation of t is a possibility distribution n over the

unit interval [0,1], and (b) once IL is specified, the denotation of

t may be computed in terms of the denotation of true through the applica

tion of a semantic rule [16]. For example, if the denotation of true is

II. , then the denotation of not very true is expressed by

(17^ nnot \tery true =^true^

Similarly, the denotation of false, which is the antonym of true, is defined

by

where ^fa-|se and irt are the possibility distribution functions of

false and true, respectively.

Within the conceptual framework of fuzzy logic, the notion of truth-
i

value serves, in the main, to provide a measure of the compatibility of

possibility distributions. More specifically, if (p,r) is an ordered

pair of propositions such that p and r induce the possibility distribu

tions np and nr, respectively, then the truth-value of p relative to

the reference proposition r is defined as the compatibility of IT with

nr, which in turn is defined by the equation

(19) Comp(np/nr) = it (nr)
r



where tt is the possibility distribution function characterizing np and

the right-hand member of (19) expresses a possibility distribution whose

possibility distribution function is given by [15]

(20) ttt(v) =Supu irr(u) , uGU

subject to

v=Trp(u) , ve [0,1] .

The content of the definitions expressed by (19) and (20) may be stated

more transparently in the form of an assertion which for convenience will

be referred to as the truth-qualification principle. More specifically, let

ttt denote the possibility distribution function of a truth-value x, and

let np be the possibility distribution induced by a proposition p over

auniverse of discourse U.5 Then the truth-qualification principle asserts
that:

(a) The possibility distribution, nq, induced by the truth-qualified

proposition q,

(21) q 4 p is x ,

is given by

(22) irq(u) =irT(iTp(u)) , uGU

where it and tt are the possibility distribution functions of

JIP and nq, respectively.

(b) Proposition q is semantically equivalent6 to the reference

proposition r, that is,



(23) p is x +-*• r

where r is the proposition with respect to which the truth-value

of p is x.

As a simple illustration of (22) and (23), consider the propositions:

p = Susan is young

p = Susan is young is very true

where young and true are defined by

(24) Vung*")-0*^2)"1 ' U-°

(25) W^-l^O*2)"1 •"i^1

Then by (14)

(26) Vry tpue(v) =(»tpue(v))2

and by (22)

(27) VU) "(1+( ff# >>

which may be roughly approximated as

<28> Vu) s<Wu))2
Thus, the proposition "Susan is young" has the truth-value very true

with respect to the reference proposition r whose possibility distribution

function is expressed by (27) and which is approximately semantically equiva

lent to "Susan is very young."

To apply the truth-qualification principle to Liar's paradox, consider

a proposition p which is defined self-referential ly as



(29) p £ p is x

with the understanding that the denotation of the truth-value x is a

possibility distribution over the unit interval, and that p induces a

possibility distribution np over a universe of discourse U.

On applying (22) to (29), we find that the possibility distribution

functions associated with p and x must satisfy the identity

(30) 7Tp(u) =TTT(7rp(u)) , uGU

which implies that it is a fixed point of the mapping tt : [0,1] —• [0,1].

From (30) it follows at once that when

(31) ttt(v) =v, vg [0,1]

we have, for all p,

(32) p is x -*-»• p

The possibility distribution described by (31) defines a unitary truth-value

which is denoted as u-true. Then,

(33) p is u-true <-• p

which in two-valued logic corresponds to

(34) p is true «-* p

The antonym of u-true is u-false, which is defined by

(35) Vfalse(v> = ]"v • ve[0,l] .
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We are now ready to raise the question "What is the proposition which

is defined self-referentially by

(36) p = p is u-false ? "

On applying (30) to (36), we have

(37) Trp(u) =1-tt (u) , uGU

which implies that

(38) 7rp(u) =0.5 , uGU.

Thus, the proposition which satisfies the self-referential definition of

Liar's paradox is characterized by a uniform possibility distribution which

is expressed by (38). It should be noted that p is not a proposition in

two-valued logic.

In a similar vein, we may consider propositions which are defined self-

referentially by strengthened or weakened forms of (36), e.g.,

(39) (a) p £ p is y/ery u-false

(40) (b) q = q is more or less u-false

In this case, on making use of (14), (16) and (30), we deduce

(41) 7rp(u) =(l-7rp(u))2

and

(42) 7rq(u) =A-Trq(u)

which lead, respectively, to the solutions



and
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(43) 7rp(u) =1^5. , uGU
= 0.38

(44) 7rq(u) ==±j£ ,uGU
= 0.62

More generally, if in (29) we set

x = false

where false is interpreted as a specified possibility distribution over the

unit interval, then (29) becomes

(45) p = p is false

and the corresponding fixed-point equation reads

(46) irp(u) =wfalse(irp(u)) . USU,

where ^fa-ise is the possibility distribution function which characterizes

false.

Sufficient conditions for (45) to have a non-null solution are:

(i) fffaise(°) >0 and (ii) ^false is continuous' Furthermore, if

7rf , is monotone non-increasing — which is a property that the denota

tion of false would normally be expected to have — the solution of (45) is

unique. In general, this unique solution does not define an admissible

proposition in two-valued logic.

It is easy to construct a truth-value, x, for which the fixed-point

equation (30) does not have a solution other than the null solution



12

(47) tt (u) = 0 , u G U

For example,

(48) ttt(v) =v2 , 0<v<0.5
= (1-v)2 , 0.5 <v<1

or, more compactly,

(49) ttt(v) =Min(v2,(l-v)2) , 0<v<1

which represents the linguistic truth-value

(50) x = very u-true and very u-false

In this case, the only solution of (30) is the null solution (47). Further

more, (30) has no solution when tt is discontinuous at, say, v = 3,

0 < 3 < 1, and

tt(v) >v , 0 <_ v< 3

ttt(v) <v , 3<v< 1

In such cases, then, it is the non-existence of a solution of the fixed-

point equation (30) that leads to paradoxes of the Liar and strengthened

Liar types.

In summary, the application of truth-qualification principle to a

self-referential definition of the form

p = p is x

where x is a truth-value whose denotation is a possibility distribution

over [0,1], leads to the result that it , the possibility distribution

function which is induced by p, is a solution of the fixed-point equation

(52) 7Tp(u) =TTT(TTp(u)) , UGU
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In general, the solution of this equation is a uniform possibility

distribution characterized by a possibility distribution function of the form

td(u) =a , uG U

where a is a constant in the interval [0,1] which is determined by x.

For some x, however, (52) does not have a solution, in which case

p does not exist, leading to the Liar and related paradoxes.
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Notes

More generally, the denotation of a truth-value in fuzzy logic may

be a fuzzy subset of the set of truth-values of a multi-valued logic which

serves as a base logic for the fuzzy logic [16].

; a In contrast to the concept of possibility in modal logic and possible world

semantics [6],[10], the possibilities associated with a possibility distribution

take values in the interval [0,1] or, more generally, in a partially

ordered set. The theory of possibility which is based on the concept of a

possibility distribution parallels the theory of probability but, unlike the

latter, is not rooted in repeated experimentation or subjective perception

of likelihood. A preliminary exposition of possibility theory may be found

in [18].

PRUF is a relation-manipulating language which is based on the theory

of fuzzy sets and, more particularly, the theory of possibility [17]. An

expression in PRUF is, in general, a procedure which computes a possibility

distribution or a fuzzy relation. One of the important uses of PRUF relates

to the precisiation of meaning of utterances in a natural language. As a

language, PRUF is considerably more expressive than first-order predicate

calculus and, in particular, allows the use of fuzzy quantifiers exemplified

by many, most, few, several, etc.; fuzzy truth-values, e.g., very true, more

' or less true, quite false, etc.; fuzzy probabilities, e.g., likely, unlikely,

o very unlikely, etc.; and fuzzy possibilities, e.g., quite possible, almost

impossible, etc.

The expressions for F corresponding to m = very and m = more or

less should be regarded as default definitions, i.e. standardized defini

tions which, when necessary, may be replaced by other more elaborate or
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context-dependent characterizations of F as a function of F.

5
In the special case where x is a numerical truth-value, say x = a,

a G [0,1], the possibility distribution of x is expressed as tt (v) = 1

for v = a, tt (v) = 0 for v f a. In this case, it is not merely possible

but certain that a is the value of x.

g

Semantic equivalence of q and r, denoted as q «-»• r, implies and

is implied by the equality nq = nr.
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