

Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RETROSPECTION ON A DATA BASE SYSTEM

by

M. Stonebraker

Memorandum No. UCB/ERL M79/4

18 January 1979

RETROSPECTION OE A DATA BASE SYSTEM

by

Michael Stonebraker

Memorandum No. UCB/ERL M79/4

18 January 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

REQUIEM FOR A DATA BASE SYSTEM

by

Michael Stonebraker

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

This paper describes the implementation history of the
INGRES data base system. It focuses on mistakes that were

made in progress rather than on eventual corrections. Some

attention is also given to the role of structured design in

a data base system implementation and to the problem of sup

porting non trivial users. Lastly, miscellaneous impres

sions of UNIX, the PDP-11 and data models are given.

I INTRODUCTION

This paper was written in response to several requests to

know what really hapoened in the INGRES data base management

system project [STON76a] and why. To the extent that it

contains practical wisdom for other implementation projects,

it serves its purpose. To the extent that it is self-

righteous defense of the existing design, the author apolo-

- 1 -

gizes in advance.

It may be premature to write such a document, since INGRES

has only been fully operational for three years and user

experience is still somewhat limited. Hence, the ultimate

jury, real users, has not yet made a full report. The rea

son for reporting now is that we have reached a turning

point. Until now, the goal was to make INGRES "really

work", i.e. efficiently, reliably and without surprises

(bugs) for users. There are now only marginal returns to

pursuing that goal. Consequently, the project is taking new

directions, which are discussed below.

This paper is organized as follows. In Section II we trace

the history of the project through its various phases and

highlight the more significant events that took place.

Then, in Section III, we discuss several lessons that we had

to learn the hard way. Section IV takes a critical look at

the current design of INGRES and discusses some of the mis

takes. Next, Section V consists of an assortment of random

comments. Lastly, Section VI outlines the future plans of

the project.

II HISTORY

The project can be roughly decomposed into three periods:

1) the early times — 3/73-6/74

2) the first implementation — 6/74-9/75

- 2 -

3) make it really work - 9/75-present

We discuss each period in turn.

2.1 The Early Times

The project began in 1973 when Eugene Wong and Iagreed to
read and discuss literature relating to relational data
bases. From the beginning we were both enthusiastic about nn
implementation. It did not phase either one of us that we
possessed no experience whatsoever in leading anon trivial
implementation effort. In fact, neither of us had ever
written a sizeable computer program.

Our first task was to find a suitable machine environment
for an implementation. It became clear quickly that no

machine which we had access to was appropriate for an

interactive data base system. Through various subterfuges

(mainly engineered by Eugene Wong and Pravin Varaiya) we
obtained about $90,000. for hardware. The liability that
we obtained was a commitment to write a geo-data system for

the Urban Economics Group led by Pravin Varaiya and Roland

Artie.

Our major concerns in selcting hardware were in obtaining

large (50 or 100 megabytes at the time) disks and a decent
software environment. After studying the UNIX CACM paper

[RITC75], I was convinced that we should use UNIX and buy

whatever hardware we could afford to make it run. We placed

- 3 -

a hardware order in February of 1974 and had a system in

September of the same year.

We decided to offer a seminar running from September 1973 to

June 1974 in which a design would be pursued. Somewhat sym-

biotically the seminar solit into two grouos: One, led by

Gene, would plan the language; the other, led by me, would
plan the support system. The language group converged
quickly on the basic tenets of QUEL for retrieve operations.

As soon as UNIX was chosen, my group laid out the system

catalogs (data dictionary) and the access method interface.

It never occurred to us that anyone would seriously consider

making the data dictionary separate from the data base sys

tem (as is a common practice today). An idea from the very

start had been to have several implementations of the access

method interface. Each would have the same calling conven

tions for simplicity and would function interchangeably. We

were committed to the relational principle that users see

nothing of the underlying storage structure. Hence, no pro

visions were made to allow a user to access a lower level of

the system (as is done in some other implementations).

During the winter of 1974 the notion of tuple substitution
was developed as a method for -solving" queries. This
notion of decomposition strongly influenced the resulting
design. For example, having a level in the system that
corresponded to the "one-variable query processor" occured
because decomposition required it.

- 4 -

In summary, the salient features of INGRES at the time were:

1) QUEL retrieval was defined

2) an integrated data dictionary was proposed

3) multiple implementations of the access methods were sug

gested

4) a "pure" relational system was agreed on

5) decomposition was developed

This first period ended with the delivery of a PDP-11 in

June 1974 which could be used on an interim basis for code

development. Hence, we could begin implementing before our

own machine arrived. The project was organized as a chief

programmer team of four persons under the direction of Gerry

Held. This same organizational structure remains today.

2.2 The First Implementation

We expected to exploit the natural parallelism which multi

ple UNIX processes allowed. Hence, decomposition would be a

process to run in parallel with the one-variable query pro

cessor (OVQP). The utilities (e.g. to create relations,

destroy them and modify their storage structure) would be

several overlays but nobody was exactly sure where they

would go. By this time we had decided to take protection

seriously and that a data base administrator was an

appropriate concept. He or she should own all the physical

UNIX files, and the INGRES object code should execute in

protected mode. Because the terminal monitor allowed the

- 5 -

user to directly edit files, we had to protect the rest of

INGRES from it. Hence, it had to be a separate process. The

notion of query modification for protection, integrity con

trol and views was developed during this time. It would be

implemented with the parser but no thought was given to the

form of this module. During the summer of 1974 the process

structure changed several times. Moreover, no one could

coherently check any code because everyone needed the access

methods as part of their code and they did not work yet.

About this time another version of QUEL was developed which

included updates and more general aggregates. This version

survives today except for the keyword syntax, which was

changed in early 1975.

By the end of the summer we had some access method code,
some routines to access the data dictionary (to create and

destroy relations for example), and a terminal monitor,

along with pieces of DECOMP and OVQP. In September, the
department arranged to invite Ken Thompson (the creator of
UNIX in conjunction with Dennis Ritchie) to Berkeley for a

two week visit. Ken was instrumental in getting UNIX to run

on the INGRES machine and introduced us to YACC as a parser

generator.

In January of 1975 we invited Ted Codd to come to Berkeley
in early March to see a demonstration of INGR-ES. The final
two weeks before his visit everyone worked night and day so

- 6 -

that we would have something to show him. What we demon

strated was a very "buggy" system with the following charac

teristics:

1) the access methods "sort of" worked. Retrieves worked on

all five implementations of the access methods (heap, hash,

compressed hash, index and compressed index). However, only

heaps could be updated without fear of disaster.

2) decomposition was implemented by brute force

3) a primitive data base load program existed but few other

services

4) all the messy interprocess problems had been ignored.

For ekample, there was no way to reset INGRES so it would

stop executing the current command and be ready to do some

thing new. Instead of being able to flush all the

processes, we simply killed them.

5) There were many bugs. For example, boolean operators

sometimes worked incorrectly. The average function applied

to a relation with no tuples produced a weird response, etc.

At this point it became clear that the punctuation oriented

syntax for QUEL was horrible and it was scrapped in favor of

a keyword oriented approach. The designers of SEQUEL saw

this important point sooner than we did. This was the last

significant change to the language.

- 7 -

During this time the "B-tree" debate raged. The pros and

cons of dynamic and static directories were argued. We

wrote the paper 'B-trees Reexamined" [HELD78] during this

period and believed its contents. This is one of the mis

takes discussed in Section IV.

Lastly, it became clear that we needed a coupling to a host

language. Moreover, "C" was the only possible candidate,

since it alone allowed interprocess communication; a fact

essential for INGRES operation. As a result we began work on

a preprocessor EQUEL [ALLM76], to allow convenient access to

INGRES from "C".

The end of this initial implementation period occured when

we acquired a user. Through Ken Thompson, to whom a tape of

an early system had been sent, and through a group at Bell

Labs in Holmdel, Mr. Dan Gielan of New York Telephone Co.

became interested in using our system. After a trial period

using our machine, he obtained his own and set about tailor

ing INGRES to his environment and fixing its flaws (many

bugs, bad performance, no concurrency control, no recovery,

shakey physical protection, EQUEL barely usable). In a

sense, he was duplicating much of the effort at Berkeley

during the next year, and the two systems quickly and radi

cally diverged.

Issues resolved during this period included:

1) updates were defined

- 8 -

2) the final syntax and semantics of QUEL were defined

3) protection was figured out

4) EQUEL was designed

5) concurrency control and recovery loomed on the horizon as

big issues. Initial discussions on these subjects started.

2.3 Make It Really Work

The current phase of INGRES development began during the

latter part of 1975. At this time the system "more or less"

worked. There were lots of bugs and it was increasingly

difficult to get them out. The system had performance prob

lems due to convoluted and inefficient code everywhere. The

code was also in bad shape. It had been constructed hapha

zardly by several people, not all of whom were still with

the project. Each had his own coding style, way of naming

variables, and library of common routines. In short, the

system was unmaintainable.

The objective of the current phase was to make the system

efficient, reliable, and MAINTAINABLE. At the time we

didn't realize that this amounted to a total rewrite. We

began to operate with more so-called "controls". There was

no more arbitrary tampering with the "current" copy of the

code; rudimentary testing procedures were constructed, and

rigid coding conventions were enforced. We began to operate

_ Q -

more like a production software house and less like a free

wheeling, unstructured operation.

During the current phase concurrency control and recovery

were seriously addressed. We took a long time to decide

whether to take concurrency control seriously and write a

sophisticated locking subsystem (such as the one in SYSTEM-R

[GRAY76, GRAY77]) or to do a quick and dirty subsystem using

either crude physical locks or predicate locks. We also

gave considerable thought to the size of a transaction.

Should it be larger than one QUEL statement? If so, the

simple strategy of demanding all needed resources in advance

and avoiding deadlock was not possible.

The transaction size was eventually decided largely based on

simplicity. Once one QUEL statement was selected as the

atomic operation for concurrency control and recovery, our

hunch was that coarse physical locking would be best. This

was later verified by simulation experiments [RIES77,

RIES78].

Recovery code was postponed as long as possible because it

involved major changes to the utilities. All QUEL state

ments went through a "deferred update" facility which made

recovery from soft crashes (i.e. the disk remains intact)

easy if a QUEL statement was being executed. The more dif

ficult problem was to survive crashes while the utilities

were running. Each utility performed its own manipulation of

- 10 -

the system catalogs in addition to other functions. Leaving
the system catalogs in a consistent state required being
able to back up or run forward each command. The basic idea
was to create an algorithm which would pass the system cata

logs once (or at most twice), find all the inconsistencies
regardless of what commands were running, and take appropri

ate action. Creating such a program required iron clad pro

tocols on how the utilities manipulated the system catalogs.

Installing such protocols was a lot of work, most of it in

the utilities which everyone by this time regarded as boring

code in enormous volume.

The parser had finally become so top heavy from patches that

it was rewritten from scratch. Decomposition was improved

and the system became progressively faster. In addition, the

system was instrumented (no performance hooks were built in

from the start). As a result we caught several serious

botches. Elaborate tracing facilities were retrofitted to

allow a decent debugging environment. In short, the entire

system was rewritten.

During this time we also started to support a user commun

ity. There are currently some one hundred users -- all

requesting better documentation, more features and better

performance. These became a serious time drain on the pro

ject.

Some of our early users appeared to be contemplating selling

- 11 -

our software. We had taken no initial precautions to safe

guard our rights to the code. It became necessary to

prepare a licence form and to pull everyone's lawyers into

the act. This became a headache that could not easily be

deflected, but which made supporting users look easy.

Ill LESSONS

The following section discusses some of the lessons that

have been learned from the INGRES project.

3.1 Goals

Our goals have expanded several times (always when we were

in danger of achieving the previous collection). Thus we

added features which were not thought about in the initial

design (such as concurrency control and recovery) and began

worrying about distributed data bases (which was NEVER even

talked about earlier). The effect of this goal expansion

has been to force us to rewrite a lot of INGRES, in some

cases more than once.

3.2 Structured Design

The current wave of structured programming enthusiasts sug

gests the following implementation plan. Starting with the

overall problem, one successively refines it until one has a

tree structure of subproblems. Each level in such a tree

serves as a "virtual machine" and hides its internal details

from higher level machines. We have encountered several

- 12 -

problems in attempting to follow this seemingly sound
advice. We discuss four of them.

a) It presumes that one knows what he is doing from the
outset. There were many times when we were confused con

cerning how to proceed. In all cases we chose to do some

thing as opposed to doing nothing, feeling that this was the

most appropriate way to discover what we should have done.

This philosophy has caused several virtual machines to be

dead wrong. Whenever this happened, a lot of redesign was

inevitable.

b) We have had to contend with a 64K address space limita

tion. Initially we did not have a good understanding of how

large various modules would be. On more than one occasion

we have run out of space in a process which has forced us

into the unpleasant task of restructuring the code on space

considerations alone. Moreover, since interprocess communi

cation is not fast, we could not always structure code in

the "natural" way because of performance problems.

c) There was a strong temptation not to think out all of the

details in advance. Because the design leaders had many

other responsibilities, we often operated in a mode of "plan

the general strategy and rough out the attack". In the sub

sequent detailed design, flaws would often be uncovered

which we had not thought of, and corrective action would

have to be taken. Often, major redesigns were the result.

- 13 -

d) It was sometimes necessary to violate the information

hiding of the virtual machines for performance reasons. For

example, there is a utility which loads indexed sequential

(ISAM-like) files and builds the directory structure. It is

not reasonable to have the utility create an empty file and

then add records one at a time through the access method.

This strategy would result in a directory structure with

unacceptable performance because of bad balance. Rather,

one must sort the records then physically lay them out on

the disk and then, as a final step, build the directory.

Hence, the program which loads ISAM files must know the phy

sical structure of the ISAM access method. When this struc

ture changed (and it did several times), the loader had to

be changed.

All these problems created a virtually constant

rewrite/maintenance job of huge magnitude. In four years

there have been between two and five incarnations of all

pieces of the system. Roughly speaking, we rewrote the

majority of the system each year since the project began.

Only now is code begining to have a longer lifetime.

Earlier, there was hesitation on the part of the implemen-

tors to document code because it might have a short life

time. Hence, documentation has been almost non existent

until recently.

3.3 Coding Conventions

- 14 -

To learn the necessity of this task was a very important

lesson to us. As mentioned earlier, the equivalent of one

total rewrite resulted from our initial failure in this

area. We found that pieces of code which had a non trivial

lifetime were unmaintainable except by the original writer.

Also, every time we gave someone responsibility for a new

module he or she would rewrite it according to his or her

standards (allegedly to clean up the other person's bad

habits). This process never converges and I feel that it is

similar to the dog or wolf who stakes out his "turf" by uri

nating on each bush on its perimeter.

Only coding conventions stop this process.

3.4 User Support

There are lessons which we have learned about users in three

areas.

3.4.1 Serious Users

There are a few serious users (5-10). All have been

extremely bold and forward-looking people and have exercised

our system extensively before commiting to use it. All of

these users first chose UNIX (which says something about

their not being a random sample of users) and then obtained

INGRES.

Most have made modifications to personalize INGRES to their

needs, viewed us as a collection of goofy academicians and

- 15 -

were pretty skeptical that our code was any good. All were

very concerned about support, future enhancements and how

much longer our research grants would last.

All have developed end user facilities using EQUEL and have

given us a substantial wish list of features. The following

is typical:

1) the system is too slow (especially for trivial

interactions)

2) the system is too slow for very large data bases

(whatever this means)

3) protection, integrity constraints and concurrency con

trol are missing (true for earlier versions)

4) the EQUEL interface is not particularly friendly

5) the system should have partial string matching capa

bilities, a data type of "bit", and a macro facility.

(The wish list of such features is almost unbounded.)

Surprisingly, nobody has ever complained about the crash

recovery facilities. Also, a concurrency control scheme con

sisting of locking the whole data base would be an accept

able alternative for most of our users.

The biggest problem that these users have faced is the prob

lem of understanding some 400,000 bytes of source code, most

of it free of documentation (other than comments in the

- 16 -

code).

The merits of INGRES that most of these users claim, rest on

1) ease of use. The system is easy to use after a minor

amount of training. The "startup" cost is much lower than

for other systems.

2) The high level language allows applications to be con

structed incredibly fast, as much as 10 times faster than

originally anticipated.

This short coding cycle allowed at least one user to utilize

a novel approach to application design. The conventional

approach is to construct a specification of the application

by interacting with the end user. Then programmers go into

their corner to implement the specifications. A long time

later they emerge with a system and the users respond that

it is not really what they wanted. Then, the rounds of

retrofitting begin.

The novel approach was to do application specification and

coding in parallel. In other words, the application

designer interacted with end users to ascertain their needs

and then coded what they wanted. In a few days he returned

with a working prototype (which of course was not quite what

they had in mind). Then the design cycle iterated. The

important point is that end users were in the design loop

and their needs were met in the design proriosr;. Only tho

- 17 -

ability to write data base applications quickly and economi

cally allowed this to happen.

3.4.2 Casual Users

There are about 90 more "casual" users. We hear less from

these people. Most are universities who use the system in

teaching and research applications. These users are less

disgruntled with performance and unconcerned about support.

3.4.3 Performance Decisions

Users are not always able to make crucial performance deci

sions correctly. For example, the INGRES system catalogs

are accessed very frequently and in a predictable way.

There are clear instructions concerning how the system cata

logs should be physically structured. Even so, some users

fail to make the necessary modifications. Of course, the

system continues to run, it just gets slower and slower.

Finally, we removed this particular decision from the users

domain entirely. It makes me a believer in automatic data

base design (e.g. [HAMM76])!

IV FLAT OUT MISTAKES

This section will discuss what we believe to be the major

mistakes in the current implementation.

4.1 Interpreted Code

The current prototype interprets QUEL statements even when

- 18 -

these statements come from a host language program. An

interpreter is reasonable when executing ad-hoc interac

tions. However, the EQUEL interface processes interactions

from a host language program as if they were ad-hoc state

ments. Hence, parsing and finding an execution strategy are

done at run time, interaction by interaction.

The problem is that most interactions from host languages

are simple and are done repetitively. (For example, giving

a 10 percent raise to a collection of employee names read in

from a terminal amounts to a single parameterized update

inside a WHILE statement). The current prototype has a

fixed overhead per interaction of about 400 msec. Hence,

throughput for simple statements is limited by this fixed

overhead to about 2.5 interactions per second. Parsing at

compile time would reduce this fixed overhead somewhat.

At least as serious is the fact that the interpreter con

sumes a lot of space. The "working set" for an EQUEL pro

gram is about 150K bytes plus the program. For systems with

a limited amount of main memory this presents a terrible

burden. A compiled EQUEL would take up much less space (at

least for EQUEL programs with fewer than 10 interactions per

program). Moreover, a compiled EQUEL could run as less

processes, saving us some interprocess communication over

head. This issue is further discussed in Section 4.3.

The interpreter was built with the notion of ad-hoc interac-

- 19 -

tions in mind. Only recently did we realize the importance

of a programming language interface. Now we are slowly con

verting INGRES to be alternatively compiled and interpreted.

We were clearly naive in this respect.

4.2 Validity Checking

This mistake is related to the previous one. When an

interaction is received from a terminal or an application

program, it is parsed at run time. Moreover, (and at a very

high cost) the system catalogs are interrogated to validate

that the relation exists, that the domains exist, that the

constants to which the domains are being compared are of the

correct type or are converted correctly, etc. This costs

perhaps 100 msec, of the 400 msec, fixed overhead, and no

effort has been made to minimize its impact. This makes the

"do nothing" overhead high and, from a performance

viewpoint, is the really expensive component of interpreta

tion .

4.3 Process problems

The "do nothing" overhead is greatly enlarged by our prob

lems with a 16 bit address space. The current system runs

as 5 processes (and the experimental system at Berkeley as

6) and processing the "nothing" interaction requires that
the flow of control go through 8 processes. This necessi-

illing the UNIX scheduler 8tates formatting 8 messages, ca.

times and invoking the interprocess message system (pipes) 8

- 20 -

times. This generates about 150-175 msec, of the 400 msec,

of fixed overhead.

In addition, code cannot be shared between processes.

Hence, the access methods must appear in every process.

This causes wasted space and duplicated code. Moreover, a

UNIX file can only be opened by one process on behalf of

itself. Since each process must look at the system catalogs

they must be opened individually by each process. Again

there is considerable repetition.

Besides this performance problem, the previous section noted

that the process structure has changed several times because

of space considerations. As a result, a considerable amount

of energy has gone into designing new process structures,

writing the code which correctly "spawns" the right run time

environment and handling user interrupts correctly.

In retrospect, we had no idea how serious the performance

problems associated with being forced to run multiple

processes would be. It would have been clearly advantageous

to choose a 32 bit machine for development; however, there

was no affordable candidate to be obtained at the time we

started. Also, perhaps we should have relaxed the 64K

address limitation once we obtained a PDP-11/70 (which has a

128K limitation). This would have cut the number of

processes somewhat. However, many of our 100 users have

11/34's or 11/40's and we were reluctant to cut them off.

- 21 -

Lastly, we could have opted for less complexity in the code.

However, to be effective, the system would have to be

reduced by at least a factor of two. It is not clear that an

interesting system could be written within such a con

straint. The bottom line is that this has been an enormous

problem, but one for which we see no obvious solution, other

than to buy a PDP-11/780 and correct the situation now that

a 32 bit machine exists which can run our existing code.

4.4 Access Methods

The decision was made very early that we were not going to

write our own file system to get around UNIX performance (as

SYSTEM-R elected to do [ASTR76]). Instead, we would simply

build access methods on top of the existing file system.

The reasoning behind this decision was to avoid duplicating

operating system functions. Also, exporting our code would

have been more difficult if it contained its own file sys

tem. Lastly, we underestimated the severity of the perfor

mance degradation that the UNIX file system contributes to

INGRES when it is processing large queries. This topic is

further discussed in [HAWT791. In retrospect, we probably

should have written our own file system.

The other problem with the access methods concerns whether

they are I/O bound. Our initial assumption was that it

would never take INGRES more than 30 msec, to process a 512

byte page. Since it takes UNIX about this long to fetch a

- 22 -

page from the disk, INGRES would always be I/O bound for

systems with a single disk controller (the usual case for

PDP-11 environments). Although INGRES is sometimes I/O

bound, there are significant cases where it is CPU bound

[HAWT79].

The following three situations are bad mistakes when INGRES

is CPU bound:

a) An entire 512 page is always searched even if one is

looking only for one tuple (e.g. a hash bucket is a UNIX

page).

b) A tuple may be moved in core one more time than is

strictly necessary.

c) A whole tuple is manipulated rather than just desired

fields.

Although we have corrected points b) and c), point a) is

fundamental to our design and is a mistake.

4.5 Static Directories

INGRES currently supports an indexing access method with a

directory structure which is built at load time and never

modified thereafter. The arguments in favor of such a

structure are presented in [HELD783. However, we would

implement a dynamic directory (as in B-trees) if the deci

sion were made again. Two considerations have influenced

- 23 -

the change in our thinking.

The data base administrator has the added burden of periodi

cally rebuilding a static directory structure. Also, he can

achieve better performance if he indicates to INGRES a good

choice for how full to load data pages initially. In the

previous section we indicated that data base administrators

often had trouble with performance decisions, and we now

believe that they should be relieved of all possible

choices. Dynamic directories do not require periodic

maintenance.

The second fundamental problem with static directories is

that buffer requirements are not predictable. In order to

achieve good performance, INGRES buffers file system pages

in user space when advantageous. However, when overflow

pages are present in a static directory structure, INGRES

should buffer all of them. Since, address space is so lim

ited, a fixed buffer size is used and performance degrades

severely when it is not large enough to hold all overflow

pages. On the other hand, dynamic directories have known

(and nearly constant) buffering requirements.

4.6 Decomposition

Although decomposition [WONG76] is an elegant way to process

queries which is easy to implement and optimize, there is

one important case which it cannot handle. For a two vari

able query involving an equi-join, it is sometimes best to

- 24 -

sort both relations on the join field and then merge the

results to identify qualifying tuples [BLAS771. It is

impossible for us to add this as a tactic and apply it when

it is appropriate without dramatically altering the INGRES

process structure. Again, the address space issue rears its

ugly head!

4.7 Protection

It appears much cleaner to protect "views" as in [GRIF76]

rather than base relations as in [STON74, STON76]. It

appears that sheer dogma on my part prevented us from

correcting this.

4.8 Lawyers

I would be strongly tempted to put INGRES into the public

domain and delete our interactions with all attorneys (ours

and everyone elses). Whatever revenue the University of

California derives from license fees may well not compensate

for the extreme hassle which licencing has caused us. Great

insecurity and our egos drove us to force others to recog

nize our legal position. This was probably a big mistake.

4.9 Useability

Insufficient attention has been paid to the INGRES user

interface. We have learned much about "human factors" dur

ing the project and have corrected many of the botches.

However, there are several which remain. Perhaps the most

- 25 -

inconvenient is that updates are "silent". In other words,

INGRES performs an update and then responds a "done". It

never gives an indication of the tuples that were modified,

added or deleted (or even how many there were). This

"feature" has been soundly criticized by almost everyone.

V COMMENTS

This section contains a collection of comments about various

things which do not fit easily into the earlier sections.

5.1 UNIX

As a program development tool, we feel that UNIX has few

equals. We especially like the notion of the command pro

cessor, the notion of pipes, the ability to treat pipes,

terminals and files interchangeably, the ability to spawn

subprocesses and the ability to fork the command interpreter

as a subprocess from within a user program. UNIX supports

these features with a pleasing syntax, very few "surprises",

and most unnecessary details (e.g. blocking factors for the

file system) remain hidden.

The use of UNIX has certainly expedited our project

immeasurably. Hence, we would certainly choose it again as

a operating system.

The problems which we have encountered with UNIX have almost

all been associated with the fact that it was envisioned as

a general purpose time-sharing system for small machines and

- 26 -

not as a support system for data base applications.

Hence, there is no concurrency control and no crash recovery

for the file system. Also, the file system does not support

large files (16 Mbytes is the current limit) and uses a

small (512 bytes) page size. Moreover, the method used to

map logical pages to physical ones is not very efficient.

In general, it appears that the performance of the file sys

tem for our application could be dramatically improved.

5.2 The PDP-11

Other than the address space problems with a PDP-11, I have

only two other comments regarding the hardware. First,

there is no notion of "undefined" as a value for numeric

data types supported by the hardware. Allowing such a

notion in INGRES would require taking some legal bit pattern

and by fiat making it equal undefined. Then we would have

to inspect every arithmetic ODeration to see if the chosen

pattern happened inadvertantly. This could be avoided by

simple hardware support (such as found on CDC 6000

machines).

Second there is no machine instruction which can move a

string in core. Consequently, data pages are moved in core

one word at a time inside a loop. This is a source of con

siderable inefficiency.

5.3 Data Models

- 27 -

There has been a lot of debate over the efficiency of the

various data models. In fact, a major criticism of the

relational model has been its (alleged) inefficiency.

There are (at least) two ways to compare the performance of

data base systems.

a) the overhead for small transactions. This is a rea

sonable measure for how many transactions per second can

be done in a typical commercial environment.

b) The cost of a given big query

It should be evident that a) has nothing to do with the data

model used (at least in a PDP-11 environment). It is

totally an issue of the cost of the operating system, system

calls, environment switches, data validity costs, etc. In

"fact, if INGRES were a network oriented system and ran as

five processes, it would also execute 2.5 transactions per

second.

The cost of a big query is somewhat data model dependent.

However, even here this cost is extremely sensitive to the

cost of a system call, the operating system decisions con

cerning buffering and scheduling, the cost of shuffling out

put around and formatting it for printing, and the extent to

which clever tuning has been done. In addition, the design

of a data base management system is often very sensitive to

the features (and quirks) of the operating system on which

- 28 -

it is constructed. (At least INGRES is). These are prob

ably much more important in determining performance than

what data model is used.

In summary, I would allege that a comparison of two systems

using different data models would result primarily in a test

of the underlying operating system and the implementation

skill (or man years allowed) of the designers and only

secondarily in a test of the data models.

VI INGRES PROJECT PLANS

INGRES appears to be at least potentially commercially

viable. However, a commercial version would require, at

least:

1) someone to market it

2) much better documentation

3) someone willing to guarantee maintenance. (Whether or

not we do it, the University of California will not promise

to fix bugs.)

4) a pile of boring utilities (e.g. a report generator, a

tie in to some communications facilities, and access to the

syst.^n from other languages than C) .

Even so, we would not have a good competitive position

because UNIX is not supported and because no COBOL exists

for UNIX.

- 29 -

There has b<jf»n h :lear -decision on the part of the major

participants not to create a jo-nmercial product. On the

other hand, the project cannot simply announce that it has

accomplished its goals and close shop. Hence, we have gone

through a (sometimes painful) process of self examination to

decide "what next". Here are our current plans.

1) distributed INGRES

We are well into designing a distributed data base version

of INGRES which will run on a network of PDP-11's. The idea

here is to hide the details of location of data from the

users and fool them into thinking that a large unified data

base system exists [EPST78, STON78].

2) A distributed data base machine

This is a variant on a distributed data base system in which

we attempt only to improve performance. It has points in

common with "back end machines" and amounts to moving code

from a host UNIX into multiple slave "back ends" [STON78a].

1) A new data base programming language

Obviously starting with C and an existing data base language

QUEL and attempting to glue them together into a composite

language is rather like interfacing an apple to a pancake.

It would clearly be desirable to start from scratch and

design a good language. Initial thoughts on this language

are presented in [PREN773.

- 30 -

4) A data entry facility

Now that the component of writing transactions which can be

attributed to the data base system has shrunk to near zero

(by high level language facilities), we are left with tran

sactions that have virtually no data base code and are

entirely what might be called "screen definition, formatting

and data entry". We are designing a facility to help in

this area.

5) Improved integrity control

Currently, INGRES is not very smart in this area. Other

than integrity constraints [STON751 (which do something but

not as much as might be desired), we have no systematic

means to assist users with integrity/validation problems.

We are investigating what can be done in this area.

It is pretty clear that all of the above will require sub

stantial changes in the current software. Hence, we can

remain busy for a seemingly arbitrary amount of time. This

will clearly continue until we get tired or are again in

danger of meeting our goals.

ACKNOWLEDGEMENT

The INGRES project has been directed by Professors Eugene

Wong and Larry Rowe in addition to myself. The role of

chief programmer has been filled by Gerald Held, Peter

- 31 -

Kreps, Eric Allman and Robert Epstein. The following per

sons worked on the project at various times; Richard Berman,

Ken Birman, James Ford, Paula Hawthorn, Nancy MacDonald,

Daniel Ries, Peter Rubinstein, Michael Ubell, Nick Whyte,

Carol Williams, Karel Yousseffi and William Zook.

The INGRES project is sponsored by the U.S. Air Force Office

of Scientific Research Grant 78-3596, the U.S. Army

Research Office Grant DAAG29-76-G-0245, the Naval Electron

ics Systems Command Contract N00039-78-G-0013 and the

National Science Foundation Grant MCS75-03839-A01 .

REFERENCES

[ALLM76] Allman, E., Held, G. and Stonebraker, M. , "Embed

ding a Data Manipulation Language in a General

Purpose Programming Language," Proc. 1-976 ACM-

SIGPLAN-SIGMOD Conference on Data Abstractions,

Salt Lake City, Utah, March, 1976.

[ASTR76] Astrahan, M. M. et. al., "System R: A Relational

Approach to Database Management," TODS 2, 2, June

1976.

[BLAS77] Blasgen, M. and Eswaren, K., "Storage and Access

in Relational Data Base Systems," IBM Systems

Journal, December, 1977.

- 32 -

[EPST78] Epstein, R., Stonebraker, M., and Wong, E., "Query
Processing in a Distributed Data Base System,"
Proc. 1978 ACM-SIGMOD Conference on Management of

Data, Austin, Texas, May, 1978.

[GRAY76] Gray J. et. al., "Granularity of Locks and Degrees
of Consistency in a Shared Data Base," IBM

Research, San Jose, Ca., RJ 1819, July, 1976.

[GRAY77] Gray, J., "Notes on Data Base Operating Systems,"
unpublished course notes, July 1977.

[GRIF76] Griffiths, P. and Wade, B., "An Authorization
Mechanism for a Relational Data Base System,"

TODS, 2, 3, September 1976.

[HAMM76] Hammer. M. and Chan, I., "Index Selection in a
Self Adaptive Data Base System," Proc. 1976 ACM-

SIGMOD Annual Conference on Management of Data,

Washington, D.C., June 1976.

[HELD78] Held, G. and Stonebraker, M. , "B-Trees Reexam

ined," CACM, February, 1978.

[HAWT78] Hawthorn, P. and Stonebraker, M. , "Use of Techno
logical Advances to Enhance Data Base Management

System Performance," Electronics Research Labora

tory, University of California, Memo No. 79-5,

January, 1979.

[PREN77] Prenner, C. and Rowe, L., "Programming Languages

for Relational Data Base Systems," Proc. 1978

- 33 -

National Computer Conference, Anaheim, Ca., June,

1978.

[RIES77] Ries, D. and Stonebraker, M. , "A Study of the

Effect of Locking Granularity in a Relational Data

Base System," TODS 3, 3, September 1977.

[RIES78] Ries, D. and Stonebraker, M. , "Lock Granularity

Revisited," to appear in TODS.

[RITC75] Ritchie, D. and Thompson, K., "The UNIX Time-

Sharing System," CACM, June 1975.

[STON74] Stonebraker, M. and Wong, E., "Access Control in a

Relational Data Base System by Query Modifica

tion," Proc. 1974 ACM Annual Conference, San

Diego, Ca., November 1974.

CSTON75] Stonebraker, M., "Implementation of Integrity Con

straints and Views by Query Modification," Proc.

1975 ACM-SIGMOD Conference on Management of Data,

San Jose, Ca. , June 1975.

[STON76] Stonebraker, M. and Rubinstein, P., "The INGRES

Protection System," Proc. 1976 ACM Annual Confer

ence, Houston, Texas, November 1976.

[STON76a] Stonebraker, M. et. al., "The Design and Implemen

tation of INGRES," TODS 2, 3, September 1976.

[STON78] Stonebraker, M. , ."Concurrency Control, Crash
Recovery and Consistency of Multiple Copies of

Data in a Distributed Data Base System," Proc. 3rd

- 34 -

Berkeley Workshop on Distributed Data Bases and
Computer Networks, San Francisco, Ca., August,

1978.

[STON78a] Stonebraker, M. , "A Distributed Data Base
Machine," Electronic Research Laboratory, Univer

sity of California, Memo No. M78-55, June 1978

[WONG76] Wong, E. and Youseffi, K., "Decomposition: A Stra
tegy for Query Processing," TODS, 2, 3, September

1976.

- 35 -

	Copyright notice 1979
	ERL-79-4

