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powor

Th. kcy Ecntute of the model is an assumption of frc-
quency-dependent  load power, rather than the usual
impedance loads which are subsequently absorbed into a
reduced network. The original network topology is
explicitly represented. This approach has the impor-
tant advantage of riporously accounting for real power
loads in the Lyapunov functions. 7This compares fa-
vorably with existing methods involving approximations
to allow for the significant transfer conductances in
reduced nectwork models. The preservation of network
topology can bec exploited in stability analysis, with
the concepts of critical and vulnerable cutsets play-
ing central roles in dynamic and transient stability
evaluation respectively., Of fundamental importance
is the feature that the Lyapunov functions give a true
representation of the spatial distribution of stored
energy in thc system.

I. INTRODUCTTON

The analysis of power system transient stabilicy
using Lyapunoy function techniques has recently a-
chieved a status as a viable tool for on-line security
asscssment, Particularly promising results arc report-
ed by Gupta and El-Abiad (1], Ribhuns-Pavalla, ct. al.
[2), and Athay, et. al. [3]. The first on-linc appli-
cation to a recal operating power syatem s discussed
by Saito et. al. [4]. This follows cfforts beginning
around 1970 to apply Lyapunov methoads to realistic
multimachine power systems [5-8] and some twenty years
of interest 4imn such an approach -- sce surveys by
Ribbens-Pavella (9] and Fouad [10). A major difficulty
which remains to be overcome rigorously is that asso-
ciated with allowing for significant transfcr conduct-
ances. This is essentially an issuec of modeling the
loads in the network. Thc present paper offers a new
model which can bypass this difficulty while maintain-
ing the features related to the success obtained in
previous work.

While many of the assumptions made to arrive at
the usual classical model for transient stability
analysis arc reasonable, that. of ignoring transfer
conductances is usually quite crude [10]. This eman-
ates from modeling the loads as impedances (with a
substantial resistive component). These are then ab-
sorbed into the bus admittance matrix for a reduced
network based on generator buses. Thus, although the
original transmission network is very reasonably mod-
eled as lossless, the rcduced network certainly cannot
be in general. Consequently, a path-independent poten-
tial function is not readily available for construct-
Lyapunov functicns. Attempts to develop general Lya-
punov functions have met very limited success, espec-
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ially when it is considerced that ultimately these
functions should replace thosu based on assuming the
conductances are zero. Pai and Murthy [l11] have a
Lyapunov ' function for the two machine case, but a
generalization has inherent difficulties [12]. Joeic
et. al. [13) report an approach based on large-scale
systems thecory, but a clear improvement in practice
is not achicved [14]. The inclusion of transfer con-
ductances is sometimes handled by some approximation,
either in the system description [6,15] or in evaluat-
ing the 'Lyapunov function' (or transient energy func-
tion) [3,7,16].

A further disadvantage of forming a reduced net-
work (by suppressing load buses) is that the original
network topology is lost. This can mask the role ' of
structural aspects in stability assessment.

In this paper, a new model is presented vhich does
not rely on a reduced network. This follows from the
recasonable assumption, for bulk power supply systems,
that each 1load on the transmission network can be
represented as a frequency-dependent power load (as-
suming constant bus voltages). Taking this relation-
ship to be lincar 1leads to a very simple dynamic mo-
del which includes the state variables of the classical
model plus cxtra variables associated with the loads.
Since the loads are not incorporated inte the trans-
mission system, it can be quite accurately wodeled as
one with zcro transfer conductances. Thus, it is a
simple matter to gencrate Lyapunov functions. Fur-
ther, theoriginal network topolopy is preserved and the
model can be reparded as having structural integrity.
In exploiting this feature, it is natural that circuit
theory ideas play an important role. Although used in
other areas of power system analysis {17}, circuit
theory has not played a significant role in t2chniques
for stability assessment. Tavora and Smith [18,19]
have used it 1in a limited way to gain insight into
power system ecquilibria, .while Jenkins and Liu [20])
have formulated a network flow model and used graph
theoretic ideas to develop stability results. The
model used here is presented in two forms: a network
form in terms of circuit matrices and an aggregate
view, which is an adaptation of a similar presentation
for classical models given by Bergen and Gross [21,22]).

This formulation proves to be a convenient basis
for consideration of the dependence of stability pro-
perties on network topology and system loads. For
dynamic stability, the linearized dynamical equations
are studied. Adapting results in [18,19,23], a result
is given for testing stable equilibrium points ia
terms of so-called critical cutsets. For transient
stability, reference  is made to~ the - abovementioned
work on stability assessment using Lyapunov functions
(and transient energy functions). Implicit in thls is
the importance of cutscts along which the system tends
to separate. The notion of a wvulnerable cutset is
formulated and some indicdtion given of how to use it
in the preliminary stages of transient stability as-
sessment. Taking a. transient encergy type Lyapunov
function for the aggrepate system, it is readily seen
that this is the sum of kinetic energles associated
with the generator rotors aud- the. sum of potential en-
ergies associated with all the lines. Thus the Lya-
punov ~ function ‘can truly rcpresent the spatifal dis-
ribution of =stored energy in the physical powver
system. 7This lcads to the concept of a toupological



Lyapunov functjon.

The structure of the paper is as follows. Scction
11 gives a description of the new model. 1In  Sectlon
I1I, a discussion {8 given on the system cquilibrium
points and a test provided for stable equilibria. The
concept of a topulogical Lyapunov function i€ the sub-
ject of Section IV. 1In Section V, this is considered,
along with the idea of vulnerable cutscts,in transient
stability analysis. Section VI gives some conclusions
and the Appendix summarize results from circuit theory.

II. MULTIMACHINE POWER SYSTEM MODFL

In this section, a model of a multimachine power
system is developed. Its novelty lics in not taking
the usual step of assuming impedance loads, which are
abasorbed into the transmission network. Otherwise, we
make the same assumptions that go with the classical
model -- see [9,10,24) for instance.

Our starting point for the model is the network
of buses connected by transmission lines,which is the
one described by load flow equations. The system
shown in Figure la will be used in the sequel for il-
~ lustrative purposes. It has four buses, two of which
have generators attached. In general, suppose there
are m generators and ny buses in the physical system,

with n,-m buses having loads and no generation. It

is convenient to introduce fictitious buses repre-
senting the internal generation voltages. These are

(a)

(c)

Figure 1 a) A four bus power network

.b) Augmented network with generator bus lines
¢) Analogous nonlinear resistive circuit

conpected to the generator buses via reactances ac-
counting for trantient reactances and connccting lines.
Theue reactances can be regarded as 'transmlssion lines'
and henceforth are referred to as the gencrator bus
1ines. Thus in the augmented network there is a total
of nemin. buses. For convenience, we number the ficti-
tious generator buses 1,...,m, the corresponding physi-
cal buses mtl,...,2m and the remaining load buses 2mtl,
eeesn. Suppose that within tha transmission network
there arc 20 lincs, Thon &, must satisfy "0-‘-’%’“0("0'1)

and the total number of ‘linea' in tho augmented network
ig 2»mt.. We number the transmission nctwork lines

1,....20 and the generator bus lines zo+1,...,2connect-

ed to buses 1,...,m respectively. The nth bus will be
used as a reference. For the four bus example, Figure
1b shows the augmented network. At this stage, it is
useful to recognize that the network is analogous to a
nonlinear resistive network with real power correspond-
ing to current and the angle difference across a 1line
corresponding to branch vo%tage. Assuning a lossless

transmission network and Z P 4= 0, where P 1 is the injec-

{=

ted power at bus i, Kirchho%f's laws hold in the obvious
sense, For the four bus example, the analogous cir-
cuit is shown in Figure lc. The nonlinear resistance
characteristic for each branch is given by the familiar
power-angle relationship for a line. We assume that
the graph for the network is connected and planar and
the branches are oriented according to associated ref-
erence directions. We will make use of certain concepts
and results from circuit theory. The Appendix summar-
izes some essential facts and further details are a-
vailable in references [25-27].

Now the key assumption of dynamic loads is intro-
duced. Let PD be the real power drawn by the load at

bus 1. In general PD is a nonlinear function of volt-

age and frequency. For constant voltages and _small
frequency variations around the operating point PD , it
’ i

is reasonable to assume

o .
P =P  +D§
Di Di 171

where Di > 0. Note that as Di*-0+ we obtain a constant
load model, This load frequency dependence is usually

i=mtl,...,n (1)

-agsumed in modeling the power-frequency control system,

but has not been used in modeling for transient sta-

bility. Using (1) we are led to
R 0 0 4.0
”1‘1"”1‘1"‘-12_:1 by “““1“5)'?“1'1’1)1'?1 1=4,...,n
31 @
where
“1 >0 4i=1,...,m (generater inertia constants)
ui-o i=mtl,...,n ' ‘
Di >0 i1i=1,...,m (steam and mechanical
damping of generator)
D, > 0 i=nmHl,...,n (frequency coefficient of
load)
0
P, =0 i=1,...,m .
D, . .
0
l’M =0 i=mil,...,n
i

Equation (2) looks similar to the usual classical swing
equation model used in previous studies of transient
stability via Lyapunov methods. However, there are
important differences.

Along with the mechanical input



the Joads l‘? arc shown cexplicitly, Con-
di

vquvully. the notwork topolopy T preascrved  Just an
in the case of the load flow model,

1t will be convenlfent to make

. 0
powers P" »

the assumpt fon that

z: P? v 0, but In practice this may vot be reasonable
i=1

for the period followinpg a fault. A resolution of
this 48 achieved by adopting the ldea supgested by
willems [28]. Adding equations (2) gives

n
0 (&)

ZMN+ZD =y

g 11 = !
The required cquilibrium is given by 6 -6 » where
is a constant, for all i,j. Thus ali wi apprnach

1.1
the same constant speed w . From (3), we have

-3 /% o,

i=1 i=1
(Recall that Di> 0 for all 4i.) Then consider the
transformation
' = -
wp = u, -
0 0
' =
P1 Pi Diw
n
It 1s easy to check that 3, P} = 0 and the equilibrium
i=1

angular velocity is w' = 0., Henceforth, we assume that
this change of reference has been carried out if appro-
priate and drop the prime superscripts.

More convenient forms of the model can be derived
ag state-space descriptions and some flexibility is
achieved by using various notions from circuit theory,
The following is largely an extension of the develop-
ment in [21] to the present situation. The m genera-
tors require a state-space dimension of 2m-1 with
nonuniform damping [9,21] so, on including the loads,
equation (2) defines a state-space of dimension ni+m-1.
The state variables can be chosen as the m velocitices

4 §. and n-1 internodal angles ay = ) -Gn.
other choices of angles for the state arc useful.

However,
De-

T T T
fine § (61...6n] yw = [ml...wn] and g [nl...un_ll .
Also, define a vector of line angle differences o

= [o....0 ]T where o, = §,-8. for the kth line joining
buses 1 and j. The vectors J_g_ and g are related to § via
transformations ¢ = 1.§ and @ = Té . Matrix T is given
by

.!“. - [.:_[“_1:-9.] .
where I -1 is the (n-1) identity matrix and e the (n-1)

vector with unity entries. kow we introduce the reduc-
ed incidence matrix

A=| o L » 5
= I . :
T -
(. :
A ! L
1o
1

“where A is the reduced incidence matrix of the trans-
mission network. Then, we have

g=ATa

= AlTs ' (5)

Now part ttion T according to

A 1
"o, 1 —ts - "y "y
O L [1 : .l.jl (6)
i '
0 ! T
Hence ' .
T, T,
LoAL= 2yt
1| -1 0
’tl'll -m

As an alternative to a we may wish to use a set of n-1
trec branch angle differences 6,. With the chosen
numbering system, we further number cotree branches

first and then the tree branches. Writing g = [c.‘JT&T]'r
and defining transformation 6=K§ , we see that K can
be obtained as an appropriate submatrix of L. Note
that o= Qro where Q is the fundamental cutset matrix

and so alternatively L"Q?K. These matrix relation-
ships can be explored further for their own sake, but
we only study them further as required in the sequel.
With the resistive circuit analogy in mind, we
define the constitutive relationship for branch k by
P = pk(a ) where P is the power flow in the branch,

We have
gk(ok) = bk sin % ' ¢))

where b, =b,, and it is assumed always that branch k
connects buseés i and j. In vector form, write p=g(o).

Now Pg L ;gi Pg, so there are n-1 independent excess
node powers. Let P = [Pl ees Pn—ll . Then via nodal
analysis (A-3), the load flow can be written
P = A g(o)
= A g(A u) £g) (8)
Note that
n-1
f (q) e kg:bik sin (a —uk)+b sinni, :|.=l,...n -1
ki 9

Alternatively, in terms of trec branch angle differenc-
es, we get from (A-5)

P=ag@o 8@ ao)’

Now define )
M= diag(Mi}
D= dias{D }

Then it is straightforward to show that (2) can be
replaced by ([21)
Mo+Du+T [£()-P")=0" (11)

‘With appropriate partitioning of M,D and using (6),
(11) <¢an be rewritten as

.}.'.1.“31 + Dyw, + 11 £ - 20] =0
Dy + T (£ - B} = (azb)

where subscripts 1 and 2 refer to the gcnerators and
loads respectively.

We now proceed to develop a third model descrip-
tion as so-called normal form or state-space form.
Firstly, we have

(12a)
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Using (12b) to ellminate w, in (13) along with (12a)
gives

- 13

+ T,u,

. T S |

=Ty =10, [£(@) - P7] (140)
s w Iy - T (£ - B (14b)
L T 4 T 5 1B =

Equations (14) define the system trajectories in a
staté-space of dimension mim-1.

Equations (2), (12) and (14) give three alterna-
tive mathematical representations of the model. Equa-
tions (12) and (14) give aggregate representations,
but substituting equation (8) provides the structural
information in terms of circuit matrices. Sometimes
it is convenient to have (12) or (14) in terms of tree
branch angles 6 or write (12) in terms of branch an-
gles g. Using the above transformations, these alter-
native representations can be developed as required.

The assumption that all D 4> 0 is certainly reason-
able, but a comment is in order on the case where some
D, are assumed to be zero. Further, the above has
implicitly assumed generator damping to be nonuniform.
Setting p_l-g or with uniform damping the obvious
extension of the classical case applies. That is, the
state-space dimension 1s reduced by one. Setting some
of the load D -*0"'. however, gives a model in terms of
differential and algebraic equations. Mathematically
this is relatively more difficult to accomodate. In
view of the presence always of some frequency depen-
dence in the load, this will not be investigated fur-
ther.

I1I. EQUILIBRIUM POINTS AND LOCAL STABILITY

: Before considering the global stability proper-
‘ties of the system described by equations (14), atten=
:tion should be given to the equilibrium points and
; their stability.

! " In the previous section, we saw that without loss
'of generality the equilibria correspond to (a,w)=(a%,0)
From (14), we have

iwhere g€ is constant.

[
| NG -2 -0 (as)
iwhere
T -1 T
I_ Ne=T +1,0, 1,
- -11‘ g L
+—e>< e
0 i')-l Dn - -
2 2
with _I_)_z = diag{D 10t 'Dn-l)

Thus N has rank n-1. Then using (15)

th i .
are given by w = 0 and the solutions of © equilibria;

£-¢° g ae)’

We call the function £(*) the flow function [18]. Due:
»to the periodic dependence of f(a) on a, the domain of
the flow function is the n-1 dimensional torus. That,

1s ve vrite £ ™Y Gpere

- . 1
1. {a mod 27 9_6]1(“-1} H
. i

To ntudy properties of the solutions of (16), we note
.that £(+) in continuously differentiable and idcntify
its Jacoblan matrix denoted by F(x). The (1,3)th term
of F(a) is given by '

t
'

n-1
1&(5) i by, co8 o, + z;lbik cos(a,~a,), 1= ";
day Kkéd :

-bij cos (ai-uj), i8]}

Since F(a) has full normal rank, (16) has a finite num-
ber of isolated solutions in T0~1 [29]. Unfortunately,
there appear to be no useful results on answering ques-
tions related to the exact number of solutions for a
given 1’_9 unique stable solutions etc, Tavora and Smith
[18) have given some useful insights, by way of exam-
ples, into how the number of solutions depends on net-
work topology, line power transfer coefficients b,,,
and go. : 1

The starting point for stability analysis of (14)
i{s a solution of (16) about which the system is locally
stable. The study of stable equilibria seems largely
to rely on the intuitive idea that if all lines satisfy

|og| < 1/2, then the equilibrium is stable. From a

combination of ideas in [19,23], we can actually state
a precise version. In view of structural integrity of
the model, the test takes some significance in its be-
ing based on making tests on cutsets. Further, the
techniques employed prepare the way for the study of
transient stability in later sections. For the study
of local stability, we firstly linearize equations (14)

about the equilibrium point (20,9_) to obtain differen-
tial equations in variables 4a = a - a0 and buy = wy

-_u_:_g = . This gives
4 -1 T. 0
Ao = -T,D, 122.(9. ) I 8a
a7n
. -1 T. 0O -1
9y -M,"T)F@) <MDy

Study of (17) could proceed by eigenvalue techniques
or Lyapunov methods. The latter turns out to give a
simple answer and an appropriate Lyapunov function 1is
a quadratic counterpart to the omne to be used for
transient stability [23]). It is convenient toO define
the polytope
A {g_en" s oyl < n/2, i=1,...,2}

'We observe that for g_OEA", then g(go) is nonnegative
‘definite; this follows from Gershgorin's Theorem [30]
isince g(g_°) is diagonally dominant with positive di-

agonal elements. Motivated by stored energy, consider
a possible Lyapunov function as

! V(tae) = 3 otie + 1 20PN

rbifferenciating V along the solutions of (17) gives
i .
! . R (P M S -1

: V(da,u,) = wiM) (-M, "TiF(a)Aa - Y, Dywy )

+ 8a"F (%) (1,0,

1T, 0 |
2D TpF(@ e +Tju,)

T, -
= ~uyDye) - 80 BT, TP (18)

-tce
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Now V. 0 fmplics that ") 0 and

Izt(s.o)!i_q =0 (192)
:Prom Q@an, glE_Q gives
'f 0
; Tr@))se = 0 (19b)
‘Equations (19) imply

TEEz0 (20)

Then, if F(_o) is gositive definite, V is positive def-
inite and, since T' is a full rank matrix, (20) gives
that V = 0 implies (Ax,w;) = (0,0). From standard lLya-
punov stability theory [}1], we then have that the
equilibrium point (gP.gp is asymptotically stable.
However, so far it has only becn demonstrated that

g(go) is nonnegative definite on polytope Az. To ob-
tain the final statement of stability conditioms, we use
a result given by Tavora and Smith [19]. We will refer
to lines with zero synchronizing coefficients, i.c.,
for which cos 0, = 0, as zero-valued. A cutset of
zero-valued lines is called a critical. cutset. Then,
from [19), we get that det F(a0) = O in A% if and only
if the system has a critical cutset. Hence, the equi-
librium point (29,0) is asymptotically stable 1f o0 €L
and there are not critical cutsets. The absence of
critical cutscts is ensured by having a tree of lines
which are not zero-valued. We can now summarize the
result as it pertains to system (14) as follows.

Theorem 1. Consider .an equilibrium point for
the power system satisfying (16). Suppose that o0 € A%
and the gencrator bus lines are not zcro-valued. Then
the cquilibrium point is asymptotically stable if the

. transmission line network has no critical cutsets.

For a normal operating condition, of course,
these conditions are casily met. However, after a
fault or during abnormal loading conditions the system
could be operating close to the boundary of polytope

Al. Actually, in [19]) the region of stable equilibrium
points is claimed to be bigger than AL and given by the
so-called principal region. However, in general, this
principal rcgion would not be easy to calculate and it
appears that A% is'a close approximation to it.

IV. TOPOLOGTCAIL, I.YAPUNOV FUNCTION

Under normal operating conditions, the system
will be in or ncar an equilibrium state satisfying the
stability conditions of Theorem 1. A fault can alter

ij
giving new post—fault equilibrium states (if P is feas-
ible, 1.ec., 1if PO lics in the range of £(+)). Whether
the system settles to the post-fault s.e.p. is studied
via transient stability analysis using equations (14)as
the basic model. We use a Lyapunov function which “is
motivated by stored energy of the aggregate system.
This, of course, has been the basic Lyapunov: function
going back to early work. However, .with the present
new modecl and using some circuit theory ideas -- sce
Appendix A == additional insights intostahilityasscss-
ment are possible.

* Suppose that (_0,0) is a stable post-fault equi-
1librium point. We define the Lyapunov function :

n-1

Po, the transmission topology, or the coefficients b

v:m xIR +IR by

V(u.wl) = + W(g_.go) (21)

E 111
uhere

a oe

W) - e - e ’e,
a0

In thls form, it is a direct gencrallzation of the

Lyapunov function uscd by Bergen and Gross [21,22] and

represents  the sum of agpregate kinetle energy and
potential cnergy. The integral defining the potential
function w(g,gp) is evaluated over an arbitrary path
between gp and a. Since F(a) is symmetric, the inte-

gral is path independent and V is well-defined. It is

interesting to note the following.

Theorem 2. The function V given by (21) can also

be written as

Viaw,) =3 z; w2+ z; b1 (0, 400 (22)

where

0 fr 0
h(ok.ok) =fo (sin u-sin ok)du

O

Proof: From equation (8), we have

£ = A gD

Then the potential function is given by

s 3
Wee,a?) =f—
0

a

(£ - £ 1%

- J‘l (2T - g(aa®)1 aTar
0

a

(]
. f C 12w -5 e

o
on setting u=ATf and using transformation to branch
angles. Using (7),

0 L k
W@ = 30 by ) o

(sinu-sin og)du (23)
k=1 k ] an

Thus the total potential encrgy is seen to be the sum
of the potential energies of the individuval branches.
What is intecresting here is that just as ' the kinetic
energy may be identified with '~ individual generators,
the potential energy may be identified with individual
transmission lines (including generator transient re-
actances).. Thus the Lyapunov function truly reflects

- the spatial distribution of stored emergy in the phy-

sical system since the originnl topology has been pre-
served in the model. Hence we refer to the  function
(21) or (22) wused in connection with wodel (14) as a
topological Lyapunov function.:

To actually show that V given by (21) is a Lyapun-
ov function involves a simple modification of the steps
used for the quadratic energy function in the previous
section., Firstly, we determine "a reglon where Wis

: poaitive definice. Consider the function h(- ,ok) ‘and

0

suppose g € A* . Then h(. *50) ) is a positive definite

and strictly monotone 1ncreasing funccion ovet the
LA 0- u _ 40
1nterva1 (uk,ck) with ¢~ = -.n % and o = T - o

Now define the polytope



Dt - eemtio € (0p0) L= 1yeenst)

We denote the closure and boundary of l‘"(go) by ?2(20)
and ai“@") reapectively. =Obviously, from (23), w(..-_-_")
is positive definite over the polytape l"’ (where o

- ATt_x_ is assumed throughout). The above mentioned

monotonicity property implies that all u.c.p.'s must
1ie on or outside of ai"'(g_o). Now differentinting V
along the trajectories of (14) gives
t 01T o=1oTrcpos_co O

Vee,) = -uibw - [£@-£@)] 10, T L@-£@D]

. (24)
Thus, since D, >0, D, >0, ¥ 48 at lcast negative
genidefinite. Corresponding to (20), we have v=o0
implying .

@ - £6M1 =0 (25)
£@ - £%)
In the usual
determine a

Hence, since T is full rank, (25) implies
z 0 and ¥ =0 only at equilibrium points.
way, well-known stability results [311”
region of asymptotic stability defined by

0" - {Q..'.‘!’.l) 3V(c_l,_u_)1) < Vz(‘}_o.)} (26)

vhere Vz is chosen so that nz excludes all the u.e.p.'s.
In particular @1, excludes (a*,0), the u.e.p. of lowest

potential energy.
It is interesting also -to note that substituting
(12b) into (24) gives

V@) = - uDe (27)

Equation (27) shows that all the D, act similarly to
account for dissipation of emergy, &nd the simple pos-
itivity of the coefficicnts insures that V < 0.  Thus
the precise values of the D , which vary and are dif-
ficult to measure, are not fieeded.

V. VULNERABLE CUTSETS AND TRANSIENT STABILITY
. ASSESSMENT

The major part of the effort to make Lyapunov
methods work for transient stability assessment in
realistic power systems has been directed to efficient
algorithms for estimating the region of stability in
the state-space. In this section, we look briefly at
how the techniques can bhe interpreted, and possibly
improved upon, with the new model. A complete presen-
tation is beyond the scope of this paper.

. Most methods for finding the extent of stability
rely on calculating (or approximating) the u.e.p. (a*,0)

with lowest potential Vz(go) = wiar,a®) [1,2,6,18,32].

Other work is not explicitly concerned withcalculating
u.e.p.'s. Bergen and Gross [33]) and Pai and Narayana
(34) present minimization procedures on the polytope

) 37"'(20) (or its equivalent in a space) for estimating
. a close lower bound for V,. The novel feature of the

procedure in [33] is its simple graphical calculations.
Thus it is wmore in the spirit of the equal area crit-
erion for two-machine systems. All of the abovemen-
tioned work is motivated by the need to avoid the pro-
hibitive computational ‘task of caleculating all theu.e.
p.'s and then, testing each one to find W(a*, a¥). In
looking: for fundamental aspects of this problem,we are
-led to the role of system structure in the solution
techniques. Ribbens-Pavella et al. [2] take the atti-
tude that the most likely consecquence of instability is

‘mission network cutsets.

for onc punerator to lene
the problom  to  toal Tng

synchroniam. This reducesn
2(n=1) uw.eope's. In other
results [1,32), the louws of groups of machines is ex~
plicitly allowed for. Physical rcasoning reduces the
number of possibilitlies for the system to wplit up.
For instancce, CGupta and El-Abiad [1]) restrlct atten-
tion to cutrets containing the line on which the fault
occurred. FYor present purposes, it issufficient mere-
ly to note that the transient stability problem scems
related in o fundamental way to a ranking of the network
cutsets in terms of what will be referred to here as vul-
nerability. The structural integrity of the present
model adds to the meaningfulness of such a concept.

In the special case of 2_0 = 0 there 18 a simple
connection between u.e.p.'s and power flows on , trans-
In particular, the u.e.p. of
lowest potential may easily be identified and calculated
by examining an index of vulnerability for all the cut-

In the case I’o

sets. P~ = 0, the solution go = 0 1s the
s.e.p. and by (16) the (neighboring) u.e.p.s. have the
property o, = 0, + . We will refer to lines with

|c | = 7 as saturated lines. Thus, corresponding to
eveéry u.c.p. is a set of saturated branches. A further
result is stated in the following proposition.
Proposition. Assume that _1_{0 = 0. Then a subset
of the saturated branches corresponding to an u.e.p.
form a cutset.

Proof: For a three bus triangular mesh structure the
result is trivial since either all branches are zero or
two are saturated and one zero. Since the system graph
is planar, we can consider it as an interconnection of
triangular meshes and single branches (by introducing
internal zero branches if necessary).

Since we have an u.e.p., at least one branch must
be saturated. . Now, using KVL and the result for a
single mesh, one can argue that the result holds in
general. Starting from a saturated branch, we can
build up a line of saturated branches through meshes
with saturated branches in common. This line can ter-
minate by having the only adjoining mesh at the zero
branch or if the line rejoins itself. In either case,
a cutset of saturated branches has been generated. B

It is easy to see that an u.e.p. can correspond to
a number of saturated cutsets. For instance, each
generator bus line in Figurelb could give a separate
saturated cutset at an u.e.p.

Continuing then with the simple special case of

0

P =0, Let (ge,g) be an u.e.p. of interest. Then,

from Theorem 2, we have
e 2 e
W ,0) = kz_:l b (e, ,0)
Now h@S,0) = {2, 0f =tn
0,o0p =0

Thus K

8
W@®0) =2 Y b,
k-kl .

where the summation ig over the 8

e

saturated 1lines

numbered kl""’ka' Then we have exactly, in view of .
"'the propositien, that the u.e.p. (a*,0) and most vul-

nerable cutset are provided by minimizing the sum in
(28) over all cutsets. (If there is more than one
saturated cutset corresponding to an u.e.p., obviously
a more vulnerable cutset can be found by setting some
branch angles to zero.) It is convenient to introduce
gome notation. Let C, denote the ith cutset and we
write C, = (11....,1q} where ,:l.j identifies the jth

b o —
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branch in the fth cutnet.  Then we have

Q2. IEN
¢y

as an index of vulunerabdlity for fth cutset. (Alarger

f corresponds to a less vulnerable cutset.)

The situation where Ro = 0 is certainly not realis-
tic in practice, except insofar as it approxlmates very
low power levels. However, the 1dea of ranking the
vulnerability of cutsects has been illustrated with a

simple exact answer, Now, in general where g? $0, we

will call branches saturated at an u.e.p. a~ when n/2

i|a:|5}n/2.nowever,exnct calculation of the u.e.p.'s is

to be avoided, so an index of vulnerabilitydepending on
this is not acceptable. This difficulty can be over-
come by adopting some ideas uscd by Prabhakara and El-
Abiad [32) for estimating all the u.e.p.'s. A measure
of the system vulnerability at a cutset can be obtained
by picturing a separation of the system into two parts
along the cutset. This is illustrated in Figure 2. It
is convenient to consider the polytope Pl(gp) corre~

Cutset
Ci

Figure 2 System separation on a cutset
sponding to s.e.p. (g?,g) where gp = é?gp. By posing
the hypothetical situation of the separation occurring

with g on 37°(c?), an index of vulnerability becomes
obvious. Assigning a refercnce direction for the cut-
set C,, we denote the set of positively oriented branches
in C1 by C+ and the remaining branches in ci by CI.

Then a positive shift of line angles from 00 (relative
to the cutset reference) on to 3?2(0 ) selectsthe cor-
ner point' ot defined by

ke€e,*

, k’ 1

+ -

o " °k? kEC,
0

Oy "¢°1

.Similarly, a 'corner point' a_ for negative shift of
line angles can - be defined with obvious modification.
We have from Theorem 2

weteh =T bkh(ok"'.o:)
s e

X (29)

We propose that w(gf}gp) and its negative separation

index  of vulncra-
Introducing the cocfficients uk

counterpart N(u N ) represcent the
bi]ity for cutgct Ci'

A h(u Wy ) and u - h(ok,o ) for all the 1lines, this
mntivntcu dvljnltlon of cutsct vulnerability indices by

- Lbk,. + %:’_, bkuk (30a)

i i

(30b)
i

An overall index for the cutset is
+ -
Cl& min {v,",v, )
and for the system is

(1}- uﬁn Cvi

Evaluatingc\& for each cutset gives a ranking according

to vulnerability. Note that calculation of the coeffi-
cients in (30) is simply done via

= E "k" + cz_bk"k
1

0 0 0

u: = 2[cos oy + (ak-ﬂ/2)sin ok] (31a)
0
k

[X 0 .
u = 2[cos o, + (ukjwlz)sin 02] (31b)

2 and CU =v, = vi-.

how, and within what
Of course, in general,

0
For P" = 0, we have "k = "k

Having sct up the index (LQ.
limitations, can we depend on 1it?

we cannot expect C\} to be an accurate estimate of V,.
The main utility seems to lie in providing a preliminar-
y identification of weak cutsets. Then, using this in-
formation along with other information like fault posi-
tion, we can concentrate on finding the corresponding
u.e.p.'s and an accurate estimate of V,. It is inter-
esting, however, to observe that the method wused by

‘Prabhakara and El-Abiad [32] appears very accurate at

least for low power levels. We can then anticipate
that, for this case, will indeed be a useful esti-
mate for V,. As power levels increase, theu.e.p.'s are
less related to hypothetical separation situations and
there is a greater need for follow-up calculations to
calculate V,.

As a s%mple 1llustration of the use of vulnerabil-
ity indices, the following cxample 18 considered.

ample. For the network iilusttated in Figure 1,
we use the values for power transfer coefficients bk
and powers P from an example in [18] (with some addi-

tions to allow for generator 1ines) " The powersare given

by »

P, = 2.0 P, = 1.0

6, D,

‘P, =20 , P =0.8

G, SECEN FERRa
P, = 1.2
D,
Py =10

Firstly, we note that for 29'5 g”éhtsec (2,4} 1is most
vulnerable. and expect this to be the case for very ' low
power levels. . At the powers: given above, the relevant
coefficients - (31) for each line are tabulated in Table
1. The corresponding cutsct.vulnerability indices are
tabulatcd in Table 2 and they reveal that cutset {1,2)



t

44 most vulnerable., The three cutscts (1,3}, (2,4)
(most vulnerable at very low powers) ond {2,3) form an
almost cqually vulnerable group with the remainder hav-
ing decrcasing vulnerability. We have trom [18) that
the exact value of V, (found by a lowest saddle point

gearch) is 1.63 corresponding to cutset {1,2} being
saturated. Thus the vulnerability indices have identi-
fied the weakest cutset. Note that,in the case consid~
ered, the power lcvels are an appreciable proportion of
the 1line capacities. In fact, at the exact u.e.p. cor-
responding to cutset {1,2) line 2 has p, = by = 0.5.
Thus we do not expect the overall vulnerability index

C}}to give a close estimate of Vz. However, from Table

2, we do have CV = 1,89 which 1s an acceptable course
estimate.

TABLE 1
_Calculation of Branch Vulnerability Cocfficients
0 u R
Line bk ck 1 k uk
(radians)
1 2.0 0.597 0.559 | 4.091
2 0.5 0.152 1.548 | 2.498
3 2.0 0.569 0.605 | 3.991
4 1.0 0.124 1.627 | 2.404
5 5.0 0.412 0.905 | 3.421
6 6.0 | 0.320 |1.064 |3.161
TABLE 2

Cslculation 6( Cutset Vulnerability Indices
cutsee | (2,9] (1,2} (3,01] 11,41 | 0] 1] (e

+
\ 8.755| 1.893] 2.837| 3.522| 2.329| 2.401| 4.524] 6.384

v‘. 2.460] 9.431110.385| 9.810/16.163| 3.653[17.103/18.968

Vi. CONCLUSIONS

A new model for the study of power system stability
has been discussed. The significant feature of this
wmodel is its structural integrity which goes hand-in-
hand with an explicit presence of the system loads in
the network. This avoids the difficult problem of how
to account for transfer conductances in reduced network
_ models. To give a conceptual view of how this model
relates to stability analysis,the concepts of a topo-
logical Lyapunov function and vulnerable cutsets have
been introduced. In view of the relationship with suc-
cessful techniques for the classical model, the rank-
ing of cutsets using vulnerability indices could prove
to be a very useful preliminary step in transient sta-
bility assessment,
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APPENDIX

Some simple results in the analysis of nonlinear
resistive circuits are presented. Familiarity with
basic concepts is assumed. More complete details may
be found in [25-27].
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Figure 3 Nonlincar n-port resistive network

These nxf matrices have full row rank and describe the
interconnections of the circuit graph. Matrix A is
based on specifying branches incident at the nodes
whereas Q specifies the branches in fundamental cut-
sets. Then Kirchhoff's laws have the convenient form
for the above n-port

Aj =1 KCL (A-1)

T
veAe KVL (A-2)
where j, v, e and 1 are vectors of branch currents,

branch voltages, node-to-datum voltages (here serv-
ing as port voltages also) and injected currents res-
pectively. Combining (A-1), (A-2) and the branch re-
lationships gives

1=agTe) (a-3)
This specifies the aggregate n-port description in
terms of circuit structure and branchresistance char-
acteristics. An alternative description is obtained
by using matrix Q to rclate all branch voltages to
just n trec branch voltages zg

v=gQ'z . ¥ (a-4)
Then, we have
T
I=Ag@Q2) (a-5)
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Abstract - A new model for the study of power
system stability via Lyapunov functions is proposcd.
The key fcature of the model is an assumption of fre-
quency-dependent load power, rather than the usual
impedance loads which are subsequently absorbed into a
reduced network. The original network topology is
explicitly represented. This approach has the impor-
tant advantage of rigorously accounting for real power
loads in the Lyapunov functions. This compares fa-
vorably with existing methods involving approximations
to allow for the significant transfer conductances in
reduced network models. The preservation of network
topology can be exploited in stability analysis, with
the concepts of critical and vulnerable cutsets play-
ing central roles in dynamic and transient stability
evaluation respectively. Of fundamental importance
is the feature that the Lyapunov functions give a true
representation of the spatial distribution of stored
energy in the system.

I. INTRODUCTTON

The analysis of power system transient stability
using Lyapunoy function techniques has recently a-
chieved a status as a viable tool for on-line security
asscssment. Particularly promising results are report-
ed by Gupta and El-Abiad [1], Ribbcuns-Pavalla, et. al.
[2}, and Athay, et. al. [3]. The first on-line appli-~
cation to a real operating power svstem is discussed
by Saito et. al. [4]). This follows efforts beginning
around 1970 to apply Lyapunov methods to realistic
multimachine power systems [5-8] and some twenty yecars
of interest in such an approach -- sce surveys by
Ribbens-Pavella [9] and Fouad [10]. A major difficulty
wvhich remains to be overcome rigorously is that asso-
ciated with allowing for significant transfcr conduct-
ances. This is essentially an issue of modeling the
loads in the network. The present paper offcrs a new
model which can bypass this difficulty while maintain-
ing the features related to the success obtained in
previous work.

While many of the assumptions made to arrive at
the wusual classical model for transient stability
analysis arc reasonable, that. of ignoring transfer
conductances is usually quite crude [10]. This eman-
ates from modeling the loads as impedances (with a
substantial resistive component). These are then ab-
sorbed into the bus admittance matrix for a reduced
network based on generator buses. Thus, although the
original transmission network is very reasonably mod-
eled as lossless, the rcduced network certainly cannot
be in general. Consequently, a path-independent poten-
tial function is not readily available for construct-
Lyapunov fuactions. Attempts to develop general Lya-
punov functions have met very limited success, espec-

.power system equilibria,
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ially when it 1s considercd that ultimately these
functions should replace thosc based on assuming the
conductances are zero., Pai and Murthy [11] have a
Lyapunov ' function for the two machine case, but a
generalization has inherent difficulties [12]. Jocie
et, al, [13] report an approach based on large-scale
systems theory, but a clear improvement in practice
is not achicved [14}. The inclusion of transfer com-
ductances is sometimes handled by some approximatiom,
either in the system description [6,15] or in evaluat-
ing the 'Lyapunov function' (or transient energy func-
tion) [3,7,16].

A further disadvantage of forming a reduced net-
work (by suppressing load buses) is that the original
network topology is lost. This can mask the role ' of
structural aspects in stability assessment.

In this paper, a new model is ptesentedvﬁich does
not rely on a reduced network. This follows from the
rcasonable assumption, for bulk power supply systems,
that each load on the transmission network can be
represented as a frequency-dependent power load (as-
suming constant bus voltages). Taking this relation-
ship to be 1lincar 1leads to a very simple dynamic mo-
del which includes the state variables of the classical
model plus extra variables associated with the loads.
Since the loads are not incorporated intc the trans-
mission system, it can be quite accurately modeled as
one with zero transfer conductances. Thus, it is a
simple matter to generate Lyapunov functions. Fur-
ther, the original network topology is preserved and the
model can be regarded as having structural integrity.
In exploiting this feature, it is natural that circuit
theory ideas play an important role. Although used in
other areas of power system analysis [17]), circuit
theory has not played a significant role in tzchniques
for stability assessment. Tavora and Smith [18,19]
have wused it in a limited way to gain insight into
.while Jenkins and Liu [20]
have formulated a network flow model and used graph
theoretic ideas to develop stability results. The
model used here is presented in two forms: a network
form in terms = of circuit watrices and an aggregate
view, which is an adaptation of a similar presentation
for classical models given by Bergen and Gross [21,22].

This formulation proves to be a convenient basis
for consideration of the dependence of stability pro-
perties on network topology and system loads. For
dynamic stability, the linearized dynamical equations
are studied. Adapting results in [18,19,23], a result
is given for testing stable equilibrium points in
terms of so-called critical cutsets. For transient
stability, reference is madeto the abovementioned
work on stability assessment using Lyapunov functions
(and transient energy functions). Implicit in this is
the importance of cutscts along which the system tends
to separate. The notion of a vulnerable cutset is
formulated and some indication given of how to use it
in the preliminary stages of transient stability as-
sessment. Taking a. transient energy: type Lyapunov
function for the aggregate system, it is readily seen
that this is the sum of kinetic energles associated
with the gencrator rotors and the sum of potential en-
ergies associated with all the lines. Thus the Lya-
punov function can truly represent the spatial dis-
ribution of stored energy in the physical power
system. 7This lcads to the concept of a topological



iyapunov function. :

The structure of the paper is as follows. Scction
II gives a description of the new wodel. In  Secction
II1, a discussion 1is given on the system aquilibrium
points and a test provided for stable equilibria. The
concept of a topological Lyapunov function is the sub-
ject of Section IV. 1In Section V, thisis considered,
along with the idea of vulnerable cutscts,in transient
stability analysis. Section VI gives some conclusions
and the Appendix summarize results from circuit theory.

II. MULTIMACHINE POWER SYSTEM MODEL

In this section, a model of a multimachine power
systom is developed. Its novelty lies in not taking
the usual step of assuming impedance loads, which are
abgorbed into the transmission network. Otherwise, we
make the same assumptions that go with the classical
model -~ see [9,10,24]) for instance.

Our starting point for the model is the network
of buses connected by transmission lines,which is the
one described by load flow equations, The system
shown in Figure la will be used in the sequel for il-
lustrative purposes. It has four buses, two of which
have generators attached. In general, suppose there
are m generators and n buses in the physical system,

with ny,~m buses having loads and no generation. It

is convenient to introduce fictitious buses repre-
aegting the internal generation voltages. These are

Pigure 1 a) A four bus power network
b) Augmented network with generator bus lines
¢) Analogous nonlinear resistive circuit

connected to the generator buses via reactances  ac-
counting for transient reactances and connecting lines.
These renctances can be regarded as 'transmission lines'
and henceforth are referred to as the generator bus
lines. Thus in the augmented network there is a total
of n=min, buses. For convenience, we number the ficti~
tious generator buses 1,...,m, the corresponding physi-
cal buses mtl,...,2m and the remaining load buses 2mtl,
«eepn.  Suppose that within the transmission necwork
there are zo lines. Then &, must satiafy 205%rn°(n0-1)

and the total number of 'linea' in the augmented notwork
is 2wm+2°. We number the transmission network 1lines

1,....20 and the generator bus lines zo+1....,zconnect‘

ed to buses 1,...,m respectively. The nth bus will be
used as a reference. For the four bus example, Figure
1b shows the augmented network., At this stage, it is
useful to recognize that the network is analogous to a
nonlinear resistive network with real power correspond-

. ing to current and the angle difference across a line

corresponding to branch voltage. Assuming a lossless

transmission network and P 1" 0, where P 1 is the injec-

ted power at bus i, Kirch%o%f‘s laws hold in the obvious
sense. For the four bus example, the analogous cir-
cuit is shown in Figure lc. The nonlinear resistance
characteristic for each branch is given by the familiar
power-angle relationship for a line. We assume that
the graph for the network is conmected and planar and
the branches are oriented according to associated ref-
erence directions. We will make use of certain concepts
and results from circuit theory. The Appendix summar=—
izes some essential facts and further details are a-
vailable in references [25-27].

Now the key assumption of dynamic loads is intro-

duced. Let PD be the real power drawn by the load at

bus i. In general P, is a nonlinear function of volt-

For constant voltages and _small
it
H]

age and frequency.
frequency variations around the operating point PD
: i

is reasonable to assume

p. =90 +p,é @)

D, Di i1

where D, > 0, Note that as D 4-0+ we obtain a constant
load model. This load frequency dependence is usually

i=ml,...,n

~assumed in modeling the power-frequency control system,

but has not been used in modeling for transient sta-
bility. Using (1) we are led to
n .

- . L0 0 a0 4.
“1‘1*”151*-?;‘:1 by sin(s,-6,) PM;I. 1>D1..1’1 icd,...,n
2
31 )
where
“1 >0 4i=1,...,m (generator inertia constants)
"1 =0 4di=mHl,...,n
D, > 0 4i=1,...,m (steam and mechanical
damping of generator)
D, > 0 4$=mntl,...,n (frequency coefficient of
load)
P =0 4=1,....m .
1 .
0
PH =0 {i=mtl,..cyn
i

Equation (2) looks similar to the usual classical swing
equation model used in previous studies of transient
stability via Lyapunov methods. However, there are
important differences.

Along with the mechanical input
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iwwom l':: , the Joads l‘g are shown  cexplicitly., Con-
f i
sequent ly, the network topology le preascrved  Just  an

in the case of the load {low model,

lt will be convenlent to make the assumpt fon that

2 P s 0, but In practice this may not be reasonable
i=]

for the period following a fault, A resolution of
this 1is achieved by adopting the ldea supgested by
Willems [28]}. Adding equations (2) gives

m n n

0 (3)
L Mo + Y D o= P
ey BRI = B = R

The required equilibrium is given by § 1-6 mCyss where
c,, is a constant, for all 1,j. Thus all w, approach

i)
the same constant spced w . From (3), we have

0 n
=3 P 2 D,
i=1 i=1
(Recall that D1>O for all i.) Then consider

transformation

0
'a -
i W w

i
0 0
' = -
P:l Pi Diw

the

W,

n
It is easy to check that 2 Pi = 0 and the equilibrium
1=1
angular velocity is w'o = (). Henceforth, we assume that
this change of refercence has been carried out if appro-
priate and drop the prime superscripts.

More convenient forms of the model can be derived
as state-space descriptions and some flexibility is
achieved by using various notions from circuit theory.
The following is largely an extension of the develop-
ment in [21] to the present situation. The m genera-
tors require a state-space dimension of 2m-1 with
nonuniform damping [9,21] so, on including the loads,
equation (2) defines a state-space of dimension ntm-1.
The state variables can be chosen as the m velocities

4 §. and n-1 internodal angles a, = § Gn' However,
other choices of angles for the state arc ugseful. De-
T
: n-1] *
Also, define a vector of line angle differences g
® [0y...0,]" where o, = si-sj for the kth line joining
buses 1 and j. The vectors -g and aare related to § via
transformations ¢ = L§ and ¢ = T§ . Matrix T is given
by
I=0,

fine § = [61...6n] , WS [wl...un] and o= [ul...

:-e)

vhere I -1 is the (n-1) identity matrix and e the (n-1)

vector with unity entries. Now we introduce the reduc-
ed incidence matrix

!
ol -
- (%)
By I
()
'

“where At is the reduced incidence matrix of the trans-

wmission network. Then, we have
o= ATa

= A"rs )

Now part ition T according to

a0 o Ao |
S R [}1 : ‘z] (6) -
\ '
0 ! T,
Hence '
T T
LeaZ=]2 8%
1, -1 0
In)

As an alternative to a we may wish to use a set of n-l
tree branch angle differences . With the chosen
numbering system, we further nuibcr cotree branches
first and then the tree branches. Writing g = [o 0 ]
and defining transformation 8§=K§ , we see that K can
be obtained as an appropriate submatrix of L. Note
that g= qro where Q is the fundamental cutset matrix
and so alternatively L QK. These matrix relation-
ships can be explored further for their own sake, but
we only study them further as required in the sequel.
With the resistive circuit analogy in mind, we
definc the constitutive relationship for branch k by
P = gk(ck) where Py is the power flow in the branch.

We have
gk(ok) = b sin % ' ¢))

where bk b,, and it is assumed always that' branch k
connects buses i and j. In vector form, write p=g(o).

Now Po LI Z Pi’ so there are n-1 independent excess
i=1

node powers. Let g_o = [l’1 n-ll . Then via nodal
analysis (A-3), the load flow can be written
P=Ag0©
=ag0'w & £ ®)
Note that
n-1 .
fi(g_) = kglbik sin (ai-ak)+bin sin ayy i=1,...n-1
k#i (¢))

Alternatively, in terms of trec branch angle differenc-~
es, we get from (A-5)

P=2a5@D £ £@ a0’

Now define
M = diag{M,}
D = diag({p,}

Then it is straightforward to

show that (2) ecan be
replaced by [21] :

M«L+Dw+'rT[f(u)-'P°]=0’ (11)

‘With appropriate partitioning of M,D and ‘using (6),
(11) ¢an be rewritten as

May + D + 1) (L@ - 21 = 0 (12a)
Dyuw, + .r_§ £ -1 =0 (12b)

where subscripts 1 and 2 refer to the generators and
loads respectively.

We now proceed to develop a third model descrip-
tion as so-called normal form or state-space form.
Firstly, we have



"Tw
(13)
in (13) along with (12a)

- 11.“.’.1 + 12_"12

Using (12b) to ellminate w

. glves =2
a - - -1 T . _ a0
8= Ty = D)1, (£ -L7 (14a)
$ w7} S W _ 0
@ = <M Dw - ML (£ -F7) (14b)

Equations (14) define the system trajectories in a
staté-space of dimension min-1.

Equations (2), (12) and (14) give three alterna-
tive mathematical representations of the model. Equa-
tions (12) and (14) give aggregate representations,
but substituting equation (8) provides the structural
information in terms of circuit matrices. Sometimes
it {8 convenient to have (12) or (14) in terms of tree
branch angles 6 or write (12) in terms of branch an-
gles 0. Using the above transformations, these alter-
native representations can be developed as required.

The assumption that all D1> 0 is certainly reason-

able, but a comment is in order on the case where some
D, are assumed to be zero. Purther, the above has

implicitly assumed generator damping to be nonuniform.
Setting 1).1- 0 or with uniform damping the obvious

extension of the classical case applies. That is, the
state-space dimension is reduced by one. Setting some
of the load D, 0%, however, gives a model in terms of
differential and algebraic equations. Mathematically
this is relatively more difficult to accomodate. In
view of the presence always of some frequency depen-
dence in the load, this will not be investigated fur-
ther.,

~ III. EQUILIBRIUM POINTS AND LOCAL STABILITY

Before considering the global stability proper-
‘ties of the system described by equations (14), atten-
;tion should be given to the equilibrium points and
: thelr stability.

; " In the previous section, we saw that without loss
:of generality the equilibria correspond to (a,u)=(a%,0)
§whero ae is constant. From (14), we have

. 15)

| M -2 -0
iuhere

T -1,T
B N=T +T0, 1,
=l o
- - 1
+— e > e
0 5—1 Dn— -
9 D

w;lth 22 = diag(D MRTTLE .Dn_l}

Thus N has rank n-1. Then using (15) the equilibria.
are given by w = 0 and the solutions of .

£@H= 2

We call the function £(°) the flow function [18]. Due.
to the periodic dependence of f(a) on a, the domain of
the flow function is the n-1 dimensional torus. That,

18 we write £:17° 1+ R™ uhere

(16).

™ o (o mod 20 : g€R™D)

To study proporties of the solutions of (16), we note
.that f(+) is continuously differentiable and identify
its Jacobian matrix denoted by F(x). The (i,3)th term
of F(a) is given by !
|

n-1
3.{1(2) . b, cos a, + Elblk coa(ai-ak), 1= -
day kéi
"bij cos (ai-aj). 143 ‘

Since F(a) has full normal rank, (16) has a finite num-
ber of isolated solutions in =1 [29]. Unfortunately,
there appear to be no useful results on answering ques-
tions related to the exact number of solutions for a
given 2_9 unique stable solutions etc. Tavora and Swmith
[18) have given some useful insights, by way of exam=-
ples, into how the number of solutions depends on net-
work topology, line powér transfer coefficients bij’
and PY. M

The starting point for stability analysis of (14)
18 a solution of (16) about which the system is locally
stable. The study of stable equilibria seems largely
to rely on the intuitive idea that if all lines satisfy

|o0] < /2, then the equilibrium is stable. From a

combination of ideas in [19,23), we can actually state
a precise version. In view of structural integrity of
the model, the test takes some significance in its be-
ing based on making tests on cutsets. Furthexr, the
techniques employed prepare the way for the study of
transient stability in later sections. For the study
of local stability, we firstly linearize equations (14)

about the equilibrium point (a’,0) to obtain differen-
tial equations in variables Aa = a - _c_zo and fAw) = )

‘Qg -ty This gives

[ -1 T., 0

AR Al I L -
17

. -1, T, 0 ~

b | | 'mred  An| |y

Study of (17) could proceed by eigenvalue techniques
or Lyapunov methods. The latter turns out to give a
simple answer and an appropriate Lyapunov function 1is
a quadratic counterpart to the one to be used for
transient stability [23]. It is convenient tO define
the polytope

A= qoert ¢ o | < w2, 1e1,...,8)

We observe that for goet\z, then _1_?_(30) is nonnegative
‘definite; this follows from Gershgorin's Theorem [30]

'since _F:(g_._o) is diagonally dominant with positive di-
agonal elements. Motivated by stored energy, consider
a possible Lyapunov function as

? Va,w) = L ulme +1 ae"Fedme

Differentiating V along the solutions of (17) gives

i

~ . SR TR T, SO N |
i v A“’ﬁl) ﬂ].!l( Hl .'_r.lg.(g'. Jha - M, _D.]_ﬂl)

+ 20"F(@®) (1,05 TF )0 + T )0))

T T -
= w1Dy, - 80 (@) I,D) 1rehe a8)




Now V. 0 faplies that p1?4Q and

1yka)he = 0 (192)
From (17), », =0 gives
T, 0 _
i T F(@)ta = 0 (19b)
'Equations (19) imply
X E(E YAaz0 (20)

Then, if F(_o) is gositive definite, V is positive def-
inite and, since T" is a full rank matrix, (20) gives
that ¥ = 0 implics (Aa,w,) = (0,0). From standard lLya-
punov stahility theory [51], we then have that the
equilibrium point (39,2) is asymptotically stable.

However, so far it has only becn demonstrated that
g(gp) is nonnegative definite on polytope Al.‘ To ob-

tain the final statement of stability conditions, we use
a result given by Tavora and Smith [19]. We will rcfer
to lines with zero synchronizing coefficients, i.c.,
for which cos o, = 0, as  zero-valued. A cutset of
zero-valued lines is called a critical cutset. Then,
from [19], we get that det F(aU) = O in A% if and only
if the system has a critical cutset. Hence, the equi-
librium point (a0,0) is asymptotically stable if o0 € AL
and there are not critical cutsets. The absence of
eritical cutsets is ensured by having a tree of 1lines
which are not zero-valued. We can now summarize the
result as it pertains to system (14) as follows.

Theorem 1. Consider .an equilibrium point for
the pover system satisfying (16). Suppose that o0 € AL
and the generator bus lines are not zero-valued. Then
the cquilibrium point is asymptotically stable if the

, transmission line network has no critical cutsets.

For a normal operating condition, of course,
thegse conditions are ecasily met. However, after a
fault or during abnormal loading conditions the system
could be operating close to the boundary of polytope

Az. Actually, in [19] the region of stable equilibrium
points is claimed to be bigger than A% and given by the
go-called principal region. However, in general, this
principal tegion would not be easy to calculate and it
appears that A% 1s'a close approximation to it.

IV. TOPOLOCICAL T.YAPUNOV FUNCTION

Under normal operating conditions, the system
will be in or necar an equilibrium state satisfying the
stability conditions of Theorem 1. A fault can alter

ij
giving new post-fault equilibrium states (if EP is feas-

tble, d.c., if P lies in the range of £(-)). Whether
the system settles to the post-fault s.e.p. is studied
via transient stability analysis using equations (14) as
the basic model. We use a Lyapunov function which is
motivated by stored energy of the aggregate systen.
This, of course, has been the basic Lyapunov function
going back to early work. However, .with the present
new model and using some circuit theory ideas -- sce
Appendix A ~- additional insights into stability assess-
ment are possible.

Suppose that (_0 0) is a stable post-fault equi-
1ibrium point. We define the Lyapunov function

n-1

29, the transmission topology, or the coefficients b

ViR" x R®+ R by

Vie,uy) = 3 uiht Mo, + Wa,a”) . (21

where

1L} "
W) = ] L) - 21 e
50

In this form, it is a direct gencralization of the
Lyapunov function used by Bergen and Gross (21,22] and
represents  the sum of aggregate kinetic energy and
potential cnergy. The integral defining the potential

W(ﬁ'go)

between gp and a.
gral is path independent and V is well-defined.
interesting to note the following.

function is evaluated over an arbitrary path

‘S!ncc.EQE) is symmetric, the inte-
It is

Theorem 2. The function V given by (21) can also

be written as

1 & 2 & 0
Vie,w) =3 kgl Mo + kzulbkh(ok’ok) (22)

where
g

0 k 0
h(ak,ok) = fo (sin u~sgin ok)du
%%
Proof: From equation (8), we have
£ = Ag@D

Then the potential function is given by

o
w(g_.g_o) -J‘—
0

@

f [2a%) - g(ATuo)]TATdE:

(£ - £NH17ae

Q

j ~ g - 26”1 4

on setting u=A E to branch

angles. Using (7)),

and using transformation

0 g [k
Wa,a') = 2: bk o0

(sinu-sin og)du
k=1 k : )

(23)
n

Thus the total potential encrgy is seen to be the sum
of the potential energies of the individual branches.

What is interesting here is that just as ' the kinetic

energy may be identified with individual generators,

the potential energy may be identified with individual

transmission lines (including generator transient re-

actances). Thus the Lyapunov function truly reflects
the spatial distribution of stored energy in the phy-

sical system since the original topology has been pre-
served in the model. Hence we refer to the function
(21) or (22) used in connection with model (14) as a
topological Lyapunov function.

To actually show that V given by (21) is a Lyapun-
ov function involves a simple modification of the steps
used for the quadratic energy function in the previous
section., Firstly, we determine a region where W is

- positive definice. Consider the function h(- ,uk) and

suppose op € \* . Then h(- ,ak) is a positive definite

and strictly monotone increasing function over the
2 u 2 A 0 u 0

interval (ok.ok) with 07 & - T -0y and o =T Oy

Now define the polytope
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l‘"(o_o) - {0 C rt 10, € (o:.u‘;) Lwlyeee,yk)

We demote the closure and boundary of (%) by F2(a")
and 37“@0) reaspectively. Obviously, from (23), W(-.Lt_o)

is positive definite over the polytope l‘g' (where o

- _A_Tt_l_ i8 assumed throughout). The above mentioned
monotonicity property implies that all uv.e.p.'s must

110 on or outside of a7%(g%). Now differentiating V
along the trajectories of (14) gives
t 0, ,T. ~~-1.T 0

Yk = -uin - E@-£ED) LD, L ILE@-£@))]

. (24)
Thus, eince D, >0, D, >0, ¥ 1s at least negative
semidefinite. Corresponding to (20), we have ¥ =0
implying :

@ - £ =0 (25)
@ - £e0
In the usual
determine a

Hence, since T is full rank, (25) implies
£ 0 and V=0o0nly at equilibrium points.
way, well-known stability results [31)
region of asymptotic stability defined by

8, = () V) < V@) (26)

vhere V" is chosen so that @ excludes all the u.e.p.'s.
In particular 9, excludes (a*,0), the u.e.p. of lowest

potential energy.
It is interesting also-to note that substituting

(12b) into (24) gives
V@) = -uDe | (27

Equation (27) shows that all the D, act similarly to
account for dissipation of energy, &nd the simple pos-
itivity of the coefficients insures that V < 0. Thus
the precise values of the D , which vary and are dif-
ficult to measure, are not needed.

V. VULNERABLE CUTSETS AND TRANSIENT STABILITY
: ASSESSMENT

The major part of the effort to wmake Lyapunov
methods work for transient stability assessment in
realistic power systems has been directed to efficient
algorithms for estimating the region of stability in
the state-space. In this section, we look briefly at
how the techniques can be interpreted, and possibly
improved upon, with tlie new model. A complete presen-
tation is beyond the scope of this paper.

Most methods for finding the extent of “stability
rely on calculating (or approximating) theu.e.p. (a*,0)

vith lovest potential V, () = W(a*,a®) [1,2,6,18,321.
Other work is not explicitly concerned withcalculating

u.e.p.'s. Bergen and Gross [33) and Pai and Narayana
{34) present minimization procedures on the polytope
' 3?"(0_0) (or its equivalent in & space) for estimating

a close lower bound for V". The novel feature of the

procedure in [33] is its simple graphical calculations.
Thus it is more in the spirit of the equal area crit-
erion for two-machine systems. All of the abovemen-
tioned work is motivated by the need to avoid the pro-
hibitive computational task of calculating all theu.e.
p.'s and then testing each one to find W(a*, al), In
looking for fundamental aspects of this problem,we are
led to the role of system structure in the solution
techniques. Ribbens-Pavella et al. {2] take the atti-
tude that the most likely consequence of instability is

‘mission network cutsets.

for onc penerator to lone synchronism. This reduces
the problom  to Lot ing  2(n=1) Wettapo'n. In athor
results [1,32], the loss of groups of machines is ex-
plicitly allowed for. Physical rcasoning reduces the
number of possibilities for the system to aplit up.
For instance, Gupta and El-Abiad [1] restrict atten-
tion to cutrets containing the line on which the fault
occurred. For present purposes, it issufficient mere-
ly to note that the transient stability problem scems
related in a fundamental way to a ranking of the network
cutgets in terms of what will be referred to here as yul-
nerability., The structural integrity of the - present
model adds to the meaningfulness of such a concept.

In the special case of EO = 0 there is a simple
connection between u.e.p.'s and power flows on , trans-
In particular, the u.e.p. of
lowest potential may easily be identified and calculated
by examining an index of vulnerability for all the cut-~

sets. In the case _1}_0 = 0, the solution go = 0 is the
s.e.p. and by (16) the (neighboring) u.e.p.s. have the
property o, = 0, + 7. We will refer to lines with

Ioil = 7 as saturated lines. Thus, corresponding to
every u.e.p. is a set of saturated branches. A further
result is stated in the following propositiom.
Proposition. Assume that go = 0. Then a subset
of the saturated branches corresponding to an u.e.p.
form a cutset.

Proof: For a three bus triangular mesh structure the
result is trivial since either all branches are zero or
two are saturated and one zero. Since the system graph
is planar, we can consider it as an interconnection of
triangular meshes and single branches (by introducing
internal zero branches if necessary).

Since we have an u.e.p., at least one branch must
be saturated. , Now, using KVL and the result for a
single mesh, one can argue that the result holds in
general. Starting £rom a saturated branch, we can
build up a line of saturated branches through meshes
with saturated branches in common. This line can ter-
minate by having the only adjoining mesh at the zero
branch or if the line rejoins itself. In either case,
a cutset of saturated branches has been: generated. R

It is easy to see that an u.e.p. can correspond to
a number of saturated cutsets. For instance, each
generator bus line in Figure 1b could give a separate
saturated cutset at an u.e.p.

Continuing then with the simple special case of

g°-g. Let (ge,g) be an u.e.p. of interest. Then,
from Theorem 2, we have

2
W@®,0) = 1;21 b, h(ay,0)

e
k
e

k

Now h(ai,o) = 12 s O, =+

0,0 =0
Thus k
]
w(?_eog) =2 Z by
k-kl

where the summation is over the 8 saturated lines
numbered kl" "’ks’ Then we have e:;actly, in view of

(28)

" the proposition, that the u.e;p. (a*,0) and most vul~-

nerable cutset are provided by minimizing the sum dn
(28) over all cutsets. (If there is more than one
saturated cutset corresponding to am u.e.p., obviously
a more vulnerable cutset can be found by setting some
branch angles to zero.) It is convenient to introduce
gsome notation. Let C, denote the ith cutset and we
write C; {11,....1q} where Aij identifies the jth

e




" obvious.

J

branch in the ith cutnet. Then we have

Qs T
1 C k
i
as an index of vuluneraldlity for fth cutset. (A larger

f corresponds to a less vulnerable cutset.)

The situation where 39 = 0 is certainly not realis-
tic in practice, except insofar as it approximates very
low power levels. However, the idea of ranking the
Yulnerability of cutsets has been illustrated .with a

Now, in general where 29 $0, we
when 1n/2

:la:|§}n/2.nowever,exact calculation of the u.e.p.'s is

simple cxact answer.
will call branches saturated at an u.e.p. @

to be avoided, so an index of vulnerabilitydepending on
this is not acceptable. This difficulty can be over-
come by adopting some ideas used by Prabhakara and El-
Abiad [32] for estimating all the u.e.p.'s. A measure
of the system vulnerability at a cutset can be obtained
by picturing a separation of the system into two parts
along the cutset, This is illustrated in Figure 2. It
is convenient to consider the polytope I'%(gY) corre-

Cutset
Ci

Figure 2 System separation on aAcutset
sponding to s.e.p. (a »0) where o 0. A?ao. By posing

the hypothetical situation of the separation occurring

with o on 3P (g ), an index of vulnerability becomes
Assigning a reference direction for the cut-
get C,, we denote the set of positively oriented branches
in Ciiby C+ and the remaining branches in Ci by C

Then a positive shift of line angles _from 00 (relative
to the cutset reference) on to ar‘(o ) selects the "cor-
ner point' ot defined by

Similarly, a 'corner point‘ c- for negacive shift of
line angles can be defined with obvious modification.
We have from Theorem 2

W' = T bhio o)
c

1 (29)

We propose that w(gf,gp) and its negative separation

counterpart w(u NT ) represent the index of vulnera-

bl]ity [or cutuct C . Introducing the coefficients uk
h(ok.u ) and u h(ok’o ) for all the 1lines, this

motivates definltion of cutsct vulnerability indices hy

- L bk.." +3, bkuk (30a)
o ¢
- L u
Vi ® § by + 2 by (30b)

i i
An overall index for the cutset is
+ -
C\& min {v1 "y }
and for the system is

C\Iﬂmfncvjl

Evaluatingclé for each cutset gives a ranking according

to vulnerability. Note that calculation of the coeffi-
cients in (30) is simply done via

u 0 0
W = 2[cos o+ (o -n/2)sin ok] (31a)
uz = 2[cos co + (o +m/2)sin o ] ' (31b)
k k k
For P" =0, we have M = W 2 and chﬁ vy vy .

Having sct up the index C\} , how, and within what
limitations, can we depend on it% Of course, in general,

we cannot expectC]} to be an accurate estimate of V,.
The main utility seems to lie in providing a preliminar-
y identification of weak cutsets. Then, using this in-
formation along with other information like fault posi-
tion, we can concentrate on finding ‘the corresponding
u.e.p.'s and an accurate estimate of V,. It is inter-
esting, however, to observe that the method used by

‘Prabhakara and El-Abiad [32] appears very accurate at

least for low power levels. We can then anticipate
that, for this case, will indeed be a useful esti—
mate for Vy,. As power levels increase, theu.e.p. 's are
less related to hypothetical separation situations and
there is a greater need for follow-up calculations to
calculate V

As a s%mple illustration of the use of vulnerabil-~
ity indices, the following example is considered.

Example. For the network illustrated in Pigure 1,
we use the values for power transfer coefficients bk
and powers Pg from an example in [18] (with some addi-

tions to allow for generator lines). The powersare given

by

P = 2.0 P, =1.0

1 Dy
P = 2.0 P, =0.8

2 ' D,
Py = 1.2

Dy
P, =1.0

Dg

Firstly, we note that for g? = 0 cutset {2,4) 1is most
vulnerable and expect this to be the case for very 1low
power levels. At the powers given above, the relevant
coefficients (31) for each line are tabulated in Table
1. The corresponding cutset vulnerability indices are
tabulated in Table 2 and they reveal that cutset {1,2)}
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48 most vulnerable. The three cutsets (1,3}, (2,4}
(most vulnerable at very low powers) and {2,3) form an
almost equally vulnerable group with the remainder hav-
ing decrcasing vulnerability, We have from {18] that
the exact valuc of Vl (found by o lowest saddle point

gearch) is 1.63 corresponding to cutset {1,2) being
saturated. ~Thus the vulnerability indices have identi-
fied the weakest cutset, Note that,in the case consid-
ered, the power levels are an appreciable proportion of,
the 1ine capacities., In fact, at the exact u.e.p. cor-
responding to cutset {1,2} line 2 has p, = by = 0.5.
Thus we do not expect the overall vulneragility index

cx/to give a close estimate of Vz. However, from Table

2, we do have CV = 1.89 which is an acceptable course
estimate. )

TABLE 1
. Calculation of Branch Vulnerability Coefficients
0 u 2
Line bk ok llk uk
(radians)
1 2.0 0.597 0.559 | 4.091
2 0.5 0.152 1.548 | 2.498
3 2,0 0.569 0.605 | 3.991
4 1.0 0.124 1.627 | 2.404
5 5.0 0.412 0.905 | 3.421
6 6.0 | 0.340 |1.064 |3.161
TABLE 2

Calculation éf Cutset Vulnerability Indices
outaet| (2,3] 1,2] 3,8] 4] 0] 28] (9] e

vi* 8.755] 1.893) 2.837} 3.522) 2.329 2.401| 4.524] 6.384

vy 2.460] 9.431{10.385]| 9.810/16.1263| 3.653]|17.203|18.968

" V1. _CONCLUSIONS

A new model for the study of power system stability
has been discussed. The significant feature of this
model is its structural integrity which goes hand-in-
hand with an explicit presence of the system loads in
the network. This avoids the difficult problem of how
to account for transfer conductances in reduced network
_ models. To give a conceptual view of how this model
relates to stability analysis,the concepts of a topo-
logical Lyapunov function and vulnerable cutsets have
been introduced. In view of the relationship with suc-
cessful techniques for the classical model, the rank-
ing of cutsets using vulnerability indices could prove
to be a very useful preliminary step in transient sta-
bility assessment.
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APPENDIX

Some simple results in the analysis of nonlinear
resistive circuits are presented. Familiarity with
basic concepts 1s assumed. More complete details may
be found in [25-27].

Figure 3 Nonlinecar n-port resistive network

These nx{ matrices have full row rank and describe the
interconnections of the circuit graph. Matrix A {s
based on specifying branches incident at the nodes
whereas Q specifies the branches in fundamental cut-
sets. Then Kirchhoff's laws have the convenient form
for the above n-port

KCL _ (A-1)

&
n
[

v = é?g KVL (A-2)

where j, v, e and I are vectors of branch currents,
branch voltages, node-to-datum voltages (here serv-
ing as port voltages also) and injected currents res-
pectively. Combining (A-1), (A~2) and the branch re-
lationships gives

1=4aga’e (a-3)
This specifies the aggregate n-port description in
terms of circuit structure and branch resistance char-
acteristics. An alternative description-is obtained

by using matrix Q to relate all branch voltages to
just n tree branch voltages z,

v=Qz . KWL (a-6)

Then, we have

1=4g@Q"2 (a-5)
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