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1. Introduction

Much of the universality, elegance and power of classical mathematics derives
from the assumption that real numbers can be characterized and manipulated with
infinite precision- Indeed, without this assumption, it would be much less simple
to define what is meant by the zero of a function, the rank of a matrix, the
linearity of a transformation or the stationarity of a stochastic process.

It is well-understood, of course, that in most real-world applications the
effectiveness of mathematical concepts rests on their robustness, which in turn is
dependent on the underlying continuity of functional dependencies [1]. Thus,
although no physical system is linear in the idealized sense of the term, it may
beregarded as such as an approximation. Similarly, the concept of a normal dis
tribution has an operational meaning only in an approximate and, for that matter,
not very well-defined sense.

There are many situations, however, in which the finiteness of the resolving
power of measuring or information gathering devices cannot be dealt with through
an appeal to continuity. In such cases, the information may be said to be
granular in the sense that the data points within a granule have to be dealt with
as a whole rather than individually.

Taken in its broad sense, the concept of information granularity occurs under
various guises in a wide variety of fields. In particular, it bears a close rela
tion to the concept of aggregation in economics; to decomposition and partition--
in the theory of automata and system theory; to bounded uncertainties--!*n optimal
control [2], [3]; to locking granularity--in the analysis of concurrencies in data
base management systems [4]; and to the manipulation of numbers as intervals--as
in interval analysis [5]. In the present paper, however, the concept of informa
tion granularity is employed in a stricter and somewhat narrower sense which is
defined in greater detail in Sec. 2. In effect, the main motivation for our
approach is to define the concept of information granularity in a way that relates
it to the theories of evidence of Shafer [6], Dempster [7], Smets [8], Cohen [9],
Shackle pO] and others, and provides a basis for the construction of more general
theories in which the evidence is allowed to be fuzzy in nature.

More specifically, we shall concern ourselves with a type of information
granularity in which the data granules are characterized by propositions of the
general form

g = X is G is X (1.1)
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in which X is a variable taking values in a universe of discourse U, G is a fuzzy
subset of U which is characterized by its membership function yg, and the quali
fier X denotes a fuzzy probability (or likelihood). Typically, but not univer
sally, we shall assume that U is the real line (or Rn), G is a convex fuzzy subset
of U and X is a fuzzy subset of the unit interval. For example:

g ^ X is small is likely

g = X is not very large is very unlikely

g - X is much larger than Y is unlikely

We shall not consider data granules which are characterized by propositions in
which the qualifier X is a fuzzy possibility or fuzzy truth-value.

In a general sense, a body of evidence or, simply, evidence, may be regarded
as a collection of propositions. In particular, the evidence is granular if it
consists of a collection of propositions,

E= {g-j9...»gN> 5 C-2)

each of which is of the form (1.1). Viewed in this perspective, Shafer's theory
relates to the case where the constituent granules in (1.2) are cri?p (nonfuzzy)
in the sense that, in each g-j, Gj is a nonfuzzy set and X-j is a numerical proba
bility, implying that g-j may be expressed as

g1 = "ProbtteG.^p." (1.3)

where p-f, i= l,...,N, is the probability that the value of X is contained in G.
In the theories of Cohen and Shackle, a further restriction is introduced through
the assumption that the Gj are nested, i.e., G-j CG2C. CG^. As was demonstrated
by Suppes and Zanotti [11] and Nguyen [12], in the analysis of evidence of the
form (1.3) it is advantageous to treat E as a random relation.

Given a collection of granular bodies of evidence E = {Ei,...,E|<}, one may
ask a variety of questions the answers to which are dependent on the data resident in E.
The most basic of these questions—which will be the main focus of our attention
in the sequel—is the following:

Given a body of evidence E = {g-j,. ..,g|\j} and an arbitrary fuzzy subset Q of
U, what is the probability—which may be fuzzy or nonfuzzy--that X is Q? In other
words, from the propositions

g-j - X is G, is X,
(1.4)

gN = X is GN is XN

we wish to deduce the value of ?X in the question

q = X is Q is ?X (1.5)

As a concrete illustration, suppose that we have the following granular
information concerning the age of Judy (X = Age(Judy))

g-j - Judy is very young is unlikely
g2 = Judy is young is likely (1.6)
g3 - Judy is old is very unlikely

The question is: What is the probability that Judy is not very young; or, equiva
lents: What is the value of ?X in
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q - Judy is not very young is ?X

In cases where E consists of two or more distinct bodies of evidence, an
important issue relates to the manner in which the answer to (1.5)—based on the
information resident in E —may be composed from the answers based on the infor
mation resident in each of the constituent bodies of evidence E,f...,E„. We shall
consider this issue very briefly in Sec. 3. ' K

In the theories of Dempster and Shafer, both the evidence and the set Q in
(T.5) are assumed to be crisp, and the question that is asked is: What are the
bounds on the probability A that Xe Q? The lower bound, X*, is referred to as
the lower probability and is defined by Shafer to be the degree of belief that
Xe Q, while the upper bound, X*, is equated to the degree of plausibility of the
proposition X6 Q. An extension of the concepts of lower and upper probabilities
to the more general case of fuzzy granules will be described in Sec. 3.

As will be seen in the sequel, the theory of fuzzy sets and, in particular,
the theory of possibility, provides a convenient conceptual framework for dealing
with information granularity in a general setting. Viewed in such a setting, the
concept of information granularity assumes an important role in- the analysis of
imprecise evidence and thus may aid in contributing to a better understanding of
the convex issues arising in credibility analysis, model validation and, more
generally, those problem areas in which the information needed for a decision or
system performance evaluation is incomplete or unreliable.

2. Information Granularity and Possibility Distributions

Since the concept of information granularity bears a close relation to that
of a possibility distribution, we shall begin our exposition with a brief review
of those properties of possibility distributions which are of direct relevance to
the concepts introduced in the following sections.

Let X be a variable taking values in U, with a generic value of X denoted by
u. Informally, a possibility distribution, IIv, is a fuzzy relation in U which
acts as an elastic constraint on the values that may be assumed by X. Thus, if tw
is the membership function of Ity* we have

Poss{X=u} = irx(u) , u6 U (2.1)

where the left-hand member denotes the possibility that X may take the value u and
ttj((u) is the grade of membership of u in Ity. When used to characterize ify* the
function -n^: U -»- [0,1] is referred to as a possibility distribution function.

A possibility distribution, Ify, may be induced by physical constraints or,
alternatively, it may be epistemic in nature, in which case Ity is induced by a
collection of propositions—as described at a later point in this section.

A simple example of a possibility distribution which is induced by a physical
constraint is the number of tennis balls that can be placed in a metal box. In
this case, X is the number in question and ttv(u) is a measure of the degree of
ease (by some specified mechanical criterion; with which u balls can be squeezed
into the box.

As a simple illustration of an epistemic possibility distribution, let X be
a real-valued variable and let p be the proposition

p * a<X<b

where [a,b] is an interval in R.. In this case, the possibility distribution

A more detailed discussion of possibility theory may be found in [13]-[15].



induced by p is the uniform distribution defined by

7Tw(u) = 1 for a <_ u <_ b

= 0 elsewhere.

Thus, given p we can assert that

Poss{X=u} = 1 for u in [a,b]

= 0 elsewhere.

More generally, as shown in [16], a proposition of the form

p M is F (2.2)

where F is a fuzzy subset of the cartesian product U = U-| x••• xiL and N is the
name of a variable, a proposition or an object, induces a possibility distribution
defined by the possibility assignment equation

N is F-»• Jl/X X)=F (2'3^

where the symbol -* stands for "translates into," and X= (Xi,...,Xn) is an n-ary
variable which is implicit or explicit in p. For example,

(a) X is small -^ nx= SMALL (2.4)

where SMALL, the denotation of smal1, is a specified fuzzy subset of [0,«). Thus,
if the membership function of SMALL is expressed as uQM«., , then (2.4) implies
that OMALL

Poss{X=u} = uSMALL(u) , u€ [0,«0 . (2.5)

More particularly, if—in the usual notation—

SMALL = 1/0 + 1/1 + 0.8/2 + 0.6/3 + 0.5/4 + 0.3/5 + 0.1/6 (2.6)
then

Poss{X=3} = 0.6

and likewise for other values of u.

Similarly,

(b) Dan1stall^Wt(Dan) =TALL (2-7)
where the variable Height(Dan) is implicit in the proposition "Dan is tall" and
TALL is a fuzzy subset of the interval [0,220] (with the height assumed to be
expressed in centimeters).

(c) John is big - Vight(John),Weight(John)) =BIG ^
where BIG is a fuzzy binary relation in the product space [0,220]x [0,150] (with
height and weight expressed in centimeters and kilograms, respectively) and the
variables X] = Height(John), X? = Weight(John) are implicit in the proposition
"John is big." c

In a more general way, the translation rules associated with the meaning
representation language PRUF [16] provide a system for computing the possibility
distributions induced by various types of propositions. For example

X is not very small -*- nx= (SMALL^)' (2.9)



where SMALL2 is defined by

MSMALL2 =^SMALL)2 (2J0)
and ' denotes the complement. Thus, (2.10) implies that the possibility distri
bution function of X is* given by

*x(u) = l-li<;MAn(u) . (2.11)

ri<

* "Xlu/ " ' '"SMALL

t

In the case of conditional propositions of the form p = If X is F thenYis G,
the possibility distribution that is induced by p is a conditional possibility
distribution which is defined by2

If X is Fthen Y is G~> k(y|x)= ^'u ^ (2-12)

where K/y\v\ denotes the conditional possibility distribution of Y given X, F and
G are fuzzjrsubsets of U and V, respectively, F and G are the cylindrical exten
sions of F and G in UxV, u is the union, and the conditional possibility distri
bution function of Y given X is expressed by

^(Y|X)(VIU) =0"VfM) v^G(v) > ueu, ve v (2.13)
where up and uq are the membership functions of F and G, and V = max. In connec
tion with (2.12), it should be noted that

tt(Y|Xj(v|u) =Poss{Y=v|X =u} (2.14)
whereas

tt/XjYx(u,v) = Poss{X=u, Y=v} . (2.15)

A concept which is related to that of a conditional possibility distribution
is the concept of a conditional possibility measure [13]. Specifically, let IL, be
the possibility distribution induced by the proposition

p = X is G ,

and let F be a fuzzy subset of U. Then, the conditional possibility measure of F
with respect to the possibility distribution nx is defined by

Poss{X is F|X is G} = supu(up(u)A uG(u)) . (2.16)

It should be noted that the left-hand member of (2.16) is a set function whereas
H/yij/x is a fuzzy relation defined by (2.12).

The foregoing discussion provides us with the necessary background for defin
ing some of the basic concepts relating to information granularity. We begin with
the concept of a fuzzy granule.

Definition. Let X be a variable taking values in U and let G be a fuzzy
subset of U. (Usually, but not universally, U = Rn and G is a convex fuzzy sub
set of U.) A fuzzy granule, g, in U is induced (or characterized) by a proposi
tion of the form

g = X is G is X (2.17)

2 "" ' " '
There are anumber of alternative ways in which n(»u may be defined in terms of
F and G [17], [18], [19]. Here we use a definition which is consistent with the
relation between the extended concepts of upper and lower probabilities as
described in Sec. 3.



where X is a fuzzy probability which is characterized by a possibility distribu
tion over the unit interval. For example, if U = R', we may have

g = X is small is not very likely (2.13)

where the denotation of small is a fuzzy subset SMALL of R which is characterized
by its membership function us^/\LL» and tne ^uzzy probability not very likely is
characterized by the possibility distribution function

w(v) =1-^LIKELY(v) ' VG [0J] (2J9)
in which ULIKELY 1S tne membership function of the denotation of likely and v is a
numerical probability in the interval [0,1].

If the proposition p = X is G is interpreted as a fuzzy event [20], then
(2.17) may be interpreted as the proposition

Prob{X is G} is X

which by (2.3) translates into

nProb{X is 6} =X' (2,2n)
Now, the probability of the fuzzy event p = X is G is given by [20]

Prob{X is G} = Px(u)pG(u)du (2.21)

where pv(u) is the probability density associated with X. Thus, the translatiwnere pv\u) is zne proDaDlill

of (2.1/) may be expressed as
on

g=X is G is X-• ir(px) =ux( Px(u)pG(u)du) (2.22)

which signifies that g induces a possibility distribution of the probability dis
tribution of X, with the possibility of the probability density px given by the
right-hand member of (2.22). For example, in the case of (2.18), we have

Xis small is not very likely -^ tt(px) =1-ViLIKELY^f Px^^sMALL^^' (2*23)
As a special case of (2.17), a fuzzy granule may be characterized by a propo

sition of the form

9 » X is G (2.24)

which is not probability-qualified. To differentiate between the general case
(2.17) and the special case (2.24), fuzzy granules which are characterized by
propositions of the form (2.17) will be referred to as irp-qranules (signifying
that they correspond to possibility distributions of probability distributions),
while those corresponding to (2.24) will be described more simply as -rr-granules.

A concept which we shall need in our analysis of bodies of evidence is that
of a conditioned iT-granule. More specifically, if X and Y are variables taking
values in U and V, respectively, then a conditioned 7T-granule in V is character
ized by a conditional proposition of the form

g = If X = u then Y is G (2.25)

where G is a fuzzy subset of V which is dependent on u. From this definition it
follows at once that the possibility distribution induced by g is defined by the
possibility distribution function



~(YlX)(vlu) ~Poss{Y= v|X= u} =uG(v) . (2.26)
An important point which arises in the characterization of fuzzy granules is

that the same fuzzy granule may be induced by distinct propositions, in which case
the propositions in question are said to be sernantically equivalent [16]. A par
ticular and yet useful case of semantic equivalence relates to the effect of nega
tion in (2.17) and may be expressed as (-*-* denotes semantic equivalence)

*

**

'J ,

•

X is G is X •*-»• X is not G is ant A

where ant A denotes the antonym of A which is defined by

v e [0,1] .Mant A(v) = ux(l-v) ,

(2.27)

(2.28)

Thus, the membership function of ant A is the mirror image of that of A with
respect to the midpoint of the interval [0,1].

To verify (2.27) it is sufficient to demonstrate that the propositions in
question induce the same fuzzy granule. To this end, we note that

X is not G is ant A— ir(px) =uant x\ px(u) (1 -uQ(u))du (2.29)

1 Ipx(u)uQ(u)du
"ant A

= y Px(u)yQ(u)du

which upon comparison with (2.22) establishes the semantic equivalence expressed
by (2.27).

In effect, (2.27) indicates that replacing G with its negation may be compen
sated by replacing A with its antonym. A simple example of an application of this
rule is provided by the semantic equivalence

X is small is likely ^+ X is not small is unlikely

in which unlikely is interpreted as the antonym of likely.

(2.30)

A concept that is related to and is somewhat weaker than that of semantic
equivalence is the concept of semantic entailment [16]. More specifically, if g-j
and g£ are two propositions such that the fuzzy granule induced by g-j is contained
in the fuzzy granule induced by ^ » then g2 is sernantically entailed by g, or,
equivalently, g-j sernantically entails g,,. To establish the relation of contain
ment it is sufficient to show that

tt-i(px) <_ tt2(px) , for all px (2.31)

where it-, and 7r« are the possibilities corresponding to g, and g?, respectively.

As an illustration, it can readily be established that (H- denotes semantic
entailment) 0

X is G is X I—*- X is very G is A

or, more concretely,

X is small is likely h+ X is very small is likely

where the left-square of A is defined by

(2.32)

(2.33)



iu (v) = vASv-) , v e [0,1]
2A A

and u^ is assumed to be monotone nondecreasing. Intuitively, (2.32) signifies
that an intensification of G through the use of the modifier very may be compen
sated by a dilation (broadening) of the fuzzy probability A.

To establish (2.32), we note that

X is G is X—* Ui(Pv) = y^ pY(u)yr(u)du
U

2 112X is very G is A—*• ~2(px) = \i^ px(u)yG(u)du
A U

= y- Px(u)yQ(u)du

Now, by Schwarz's inequality

(2.34)

(2.35)

Px(u)yQ(u)du > px(u)yQ(u)du (2.36)

and since u, is monotone nondecreasing, we have

^(px) < ^2(px'
which is what we wanted to demonstrate.

3. Analysis of Granular Evidence

As was stated in the introduction, a body of evidence or, simply, evidence,
E, may be regarded as a collection of propositions

E- {g-p-..3gN} • (3.1)

In particular, evidence is granular if its constituent propositions are charac
terizations of fuzzy granules.

For the purpose of our analysis it is necessary to differentiate between two
types of evidence which will be referred to as evidence of the first kind and
evidence of the second kind.

Evidence of the first kind is a collection of fuzzy irp-granules of the form

gi = Y is Gi is \. , i = 1,...,N (3.2)

where Y is a variable taking values in V, G,,...,GN are fuzzy subsets of V and
A-j,...,Aw are fuzzy probabilities.

Evidence of the second kind is a probability distribution of conditioned
Tr-granules of the form

^ = Y is G1 . (3.3)

Thus, if X is taken to be a variable which ranges over the index set {!,...,N},
then we assume to know (a) the probability distribution Px ={p,,...,p»}, where

(3.4)p. = Prob{X= i} , i= l,...,N

and (b) the conditional possibility distribution H/V.vx, where

H(Y|x* -i) = Gi , i = 1,...,N . (3.5)

-r



In short, we may express evidence of the second kind in a symbolic form as

E={PX'n(Y|X)}
which signifies that the evidence consists of Px and H7Ym> rather than Pv and

.: P(Y]X} (conditional probability distribution of Y given X), which is what is
usually assumed to be known in the traditional probabilistic approaches to the

/ analysis of evidence. Viewed in this perspective, the type of evidence considered
A in the theories of Dempster and Shafer is evidence of the second kind in which the

Gj are crisp sets and the probabilities p-|,...,pn are known numerically.

In the case of evidence of the first kind, our main concern is with obtain
ing an answer to the following question. Given E, find the probability, X, or,
more specifically, the possibility distribution of the probability X, that Y is Q,
where Q is an arbitrary fuzzy subset of V.

In principle, the answer to this question may be obtained as follows.

First, in conformity with (2.20), we interpret each of the constituent pro
positions in E,

g. = Y is Gi is Xi , i= 1,...,N (3.6)

as the assignment of the fuzzy probability X-j to the fuzzy event q^ = Y is G^.
Thus, if p(-) is the probability density associated with Y, then in virtue of
(2.22) we have ,, >

tt.(p) = y p(v)yr (v)dv (3.7)
1 A-|Uv bi J

where ir|(p) is the possibility of p given g., and y\. and yg- are the membership
functions of X.. and G., respectively. 1 ' '

Since the evidence E = {g-|,...,gN} may be regarded as the conjunction of the
propositions g^,...,gN» the possibility of p(-) given Emay be expressed as

ir(p) = ir-|(p) A••• AirN(p) (3.8)

where A = min. Now, for a p whose possibility is expressed by (3.8), the proba
bility of the fuzzy event q - X is Q is given by

P(p) » p(v)yn(v)dv . (3.9)

Consequently, the desired possibility distribution of p(p) may be expressed in a
symbolic form as the fuzzy set [21]

X = ir(p)/p(p) (3.10)
J[-0,l]

in which the integral sign denotes the union of singletons ir(p)/p(p).

In more explicit terms, (3.10) implies that if p is a point in the interval
- [0,1], then ux(p), the grade of membership of p in X or, equivalently, the possi

bility of p given X, is the solution of the variational problem

* ux(p) =Maxp(ir1(p)A...AirN(p)) (3.11)
subject to the constraint

P={p(v)yQ(v)dv . (3.12)



In practice, the solution of problems of this type would, in general, require
both discretization and approximation, with the aim of reducing (3.11) to a com
putationally feasible problem in nonlinear programming. In the longer run, how
ever, a more effective solution would be a "fuzzy hardware" implementation which
would yield directly a linguistic approximation to X from the specification of q
and E.

It should be noted that if we were concerned with a special case of evidence
of the first kind in which the probabilities X-,- are numerical rather than fuzzy,
then we could use as an alternative to the technique described above the maximum
entropy principle of Jaynes [22] or its more recent extensions [23]-[26]. In
application to the problem in question, this method would first yield a proba
bility density p(«) which is a maximum entropy fit to the evidence E, and then,
through the use of (3.12), would produce a numerical value for X.

A serious objection that can be raised against the use of the maximum entropy
principle is that, by constructing a unique p(-) from the incomplete information
in E, it leads to artificially precise results which do not reflect the intrinsic
imprecision of the evidence and hence cannot be treated with the same degree of
confidence as the factual data which form a part of the database. By contrast,
the method based on the use of possibility distributions leads to conclusions
whose imprecision reflects the imnrecision of the evidence from which they are
derived and hence are just as credible as the evidence itself.

Turning to the analysis of evidence of the second kind, it should be noted
that, although there is a superficial resemblance between the first and second
kinds of evidence, there is also a basic difference which stems from the fact that
the fuzzy granules in the latter are -rr-granules v/hich are conditioned on a random
variable. In effect, what this implies is that evidence of the first kind is
conjunctive in nature, as is manifested by (3.8). By contrast, evidence of the
second kind is disjunctive, in the sense that the collection of propositions in E
should be interpreted as the disjunctive statement: g-i with probability X-j or g2
with probability X2 or ... or g^j with probability Xr.

As was stated earlier, evidence of the second kind may be expressed in the
equivalent form

E={PX'n(Y|X)}
where X is a random variable which ranges over the index set U = {!,...,N} and is
associated with a probability distribution Px = {p-|,...,PN>; and II(y|x) is tne
conditional possibility distribution of Y given X, where Y is a variable ranging
over V and the distribution function of H/Ylx} is defined by

TT(Y|X)^VI^ "Poss{Y=v|X=i} , 1eU, vGV. (3.13)
For a given value of X, X-i, the conditional possibility distribution n,vm
defines a fuzzy subset of V which for consistency with (3.2) is denoted * ' '
by G.. Thus,

H(Y|X=i) =Gi ' 1= T. — .N (3.14)
and more generally

n(Y|X) =GX ' (3-15>
As was pointed out earlier, the theories of Dempster and Shafer deal with a

special case of evidence of the second kind in which the G-j and Q are crisp sets
and the probabilities p],...,pN are numerical. In this special case, the event
q - Y e Q may be associated with two probabilities: the lower probability X*
which is defined--in our notation--as

X* « Prob{H(V|XjCQ} (3.16)



and the upper probability X* which is defined as3

X* =Prob{II(Y|X)nQ^e} (8 ±empty set) . (3.17)
The concepts of upper and lower probabilities do not apply to the case where

. the Gi and Q are fuzzy sets. For this case, we shall define two more general con-
- cepts which are related to the modal concepts of necessity and possibility and
^ which reduce to X* and X* when the G. and Q are crisp.

For our purposes, it will be convenient to use the expressions sup F and
inf F as abbreviations defined by4

sup F= supv yF(v) , ve V (3.18)

inf F* infy yp(v) , vG V (3.19)

where F is a fuzzy subset of V. Thus, using this notation, the expression for
the conditional possibility measure of Q given X may be written as (see (2.16))

Poss{Y is Q|X} = PossCY is Q|Y is Gx> (3.20)

= sup(qnG>;)

Since X is a random variable, we can define the expectation of Poss{Y is Q|X}
with respect to X. On denoting this expectation by Ell(Q), we have

En(Q) = Ex Poss{Y is Q|X} (3.21)

= I p. sup(QnG-)
i

We shall adopt the expected possibility, En(Q), as a generalization of the
concept of upper probability. Dually, the concept of lower probability may be
generalized as follows.

First, we define the conditional certainty (or necessity) of the proposition
q = Y is Q given X by

CertlY is Q|X} ^ 1 - Poss{Y is not Q|X} . (3.22)

Next, in view of the identities

1 - sup(FOG) = inf((FnG)!) (3.23)

= inf(F'UG')

= inf(G=>F')

where the implication => is defined by (see (2.13))

G => F' * G'UF' , (3.24)

we can rewrite the right-hand member of (3.22) as
3 *
It should be noted that we are not normalizing the definitions of X* and X —as
is done in the papers by Dempster and Shafer--by dividing the right-hand members
of (3.16) and (3.17) by the probability that IT/yIX) 1S not an emPty set- As is
pointed out in [27], the normalization in question leads to counterintuitive
results.

The definitions in question bear a close relation to the definitions of universal
and existential quantifiers in La-i u logic [28].

.!*



Cert{Y is Q|X} = inf(Gx=*Q) . (3.25)

Finally, on taking the expectation of both sides of (3.22) and (3.25), we
have

EC(Q) * Ex Cert{Y is Q|X} (3.26)

= I p. inf(G.^Q)

= 1 - En(Q')

As defined by (3.26), the expression EC(Q), which represents the expected
certainty of the conditional event (Y is Q|X), may be regarded as a generalization
of the concept of lower probability.

The set functions EII(Q) and EC(Q) may be interpreted as fuzzy measures.
However, in general, these measures are neither normed nor additive. Instead,
EII(Q) and EC(Q) are, respectively, superadditive and subadditive in the sense
that, for any fuzzy subsets Q, and CL of V, we have

EC(Q1UQ2) > ECfQ^ + EC(Q2) - ECd^nQ^ (3.27)
and

EnO^UQg) < ElKQ.,) + En(Q2) - BlO^nQg) . (3.28)

It should be noted that these inequalities generalize the superadditive and sub
additive properties of the measures of belief and plausibility in Shafer's theory.

The inequalities in question are easy to establish. Taking (3.28), for
example, we have

En(Q1UQ2) =I. p. supf(y0 (v)VyQ (v))AyQ (v)l (3.29)
= I Pi suK(Mq (v)AyG (v)VyQ (v)Ayfi (v))

i (* 1 i ^2 i 1
=I Pi[suPv(Ug (v)AvG(M) Vsupv(yQ (v)AyG(v))

Now, using the identity (a,b * real numbers)

aVb « a + b - aAb (3.30)

the right-hand member of (3.29) may be rewritten as

EII(Q1UQ2) - I pjsup (y (v)Ay (v)) +sup (yQ (v)AyG (v))
1 , 1 i 2 ui -J

" lsuPv^ (v) AyG.(v)^ AsupvfyQ (v) AyQ (v)))J (3.31)
Furthermore, from the min-max inequality

supyf(v)A supyg(v) > supv(f(v)A g(v)} (3.32)
it follows that

suPyfrn (V)A^G (v)) Asup (yn (v)Ay (v)) (3.33)
1 i v w2 i

>Supv(yQ (v)AyQ (v)AvGi(v))
and hence that



EH(Q1UQ2) <£ p. sup (pQ (v)Ay (v)) +Jp. sup (yQ (v)Ayp (v)1 (3.34)
l xl ui i w2 «j

"IPi SUPV^Q (v)a^q MAyGi(v)) .

Finally, on making use of (3.21) and the definition of Q,nQ0, we obtain the
.% inequality • *•

t ' En(Q] UQ2) 1 EiI(Q]) +^(Q2) -En(Q1 OQ2) (3.35)
* which is what we set out to establish.

Jhe superadditive property of EC(Q) has a simple intuitive explanation.
Specifically, because of data granularity, if Q/| and Q2 are rouchly of the same
size as the granules Gi,...,GN, then EC(Q-j) and EC(Q2) are likely to be small,
while EfQiUQg) may be larger because the size of Q-\ UQ2 is likely to be larger
than that of G-|,...,Gpj. For the same reason, with the increase in the relative
size of Q-j and Q2, the effect of granularity is likely to diminish, with EC(Q)
tending to become additive in the limit.

In the foregoing analysis, the probabilities p-j,...,pN were assumed to be
numerical. This, however, is not an essential restriction, and through the use
of the extension principle [21], the concepts of expected possibility and expected
certainty can readily be generalized, at least in principle, to :he case where the
probabilities in question are fuzzy or linguistic. Taking the expression for
EII(Q), for example,

EII(Q) = I p. sup(QHG.) (3.36)

and assuming that the p. are characterized by their respective possibility dis
tribution functions -rr-j,... ,ttn, the determination of the possibility distribution
function of En(Q) may be reduced to the solution of the following variational
probl em

*(2) =ltax»,,....vH,ri(vi>A---AVvit) (3-37)
subject to

z = v1 sup(QHG1)+ ••• +vN sup(QOGN)

v<l +"•' +vN = 1

which upon solution yields the possibility, ir(z), of a numerical value, z, of
EH(Q). Then, a linguistic approximation to the possibility distribution would
yield an approximate value for H^/qn expressed as, say, not very high.

As was alluded to already, a basic issue in the analysis of evidence relates
to the manner in which two or more distinct bodies of evidence may be combined.
In the case of evidence of the second kind, for example, let us assume for simpli
city that we have two bodies of evidence of the form

E= {E,,E2} (3.38)
in which

El =^'Vlx^ (3-39)
I h- {px2'n(Y|x2)> <3-4°)

where Y takes values in V; while Xi and X2 range over the index sets
U-j = {1,...,N-|} and U2 = {1,...,N2}, and are associated with the joint probability
distribution P(Xi,X2) wnicn 1S characterized by

p.j = Prob{X1 =i, X2= j} . (3.41)



For the case under consideration, the expression for the expected possibility
of the fuzzy event q = Y is Q given E-\ and E2 becomes

where

EII(Q) =E(x jX } PossIY is Q| (X1 ,X2)> (3.42)
= I Pij supfOOG^Hj)

i,0

n(Y|X.-1) *Gi (3-43) 4
and n(y|vj) *Hj . (3.44)

The rule of combination of evidence developed by Dempster [7] applies to the
special case of (3.42) in which the sets G^ and Hj are crisp and X] and X2 are
independent. In this case, from the knowledge of En(Q) (or EC(Q)) for each of
the constituent bodies of evidence and Q C V, we can determine the probability
distributions of X-| and X2 and then use (3.42) to obtain ETI(Q) for the combined
evidence. Although simple in principle, the computations involved in this pro
cess tend to be rather cumbersome. Furthermore, as is pointed out in [27], there
are some questions regarding the validity of the normalization employed by
Dempster when

G^^ =e (3.45)

for some i, j, and the probability of the event "Y is 6" is positive.

4. Concluding Remarks

Because of its substantial relevance to decision analysis and model valida
tion, analysis of evidence is likely to become an important area of research in
the years ahead.

It is a fact of life that much of the evidence on which human decisions are
based is both fuzzy and granular. The concepts and techniques outlined in this
paper are aimed at providing a basis for a better understanding of how such
evidence may be analyzed in systematic terms.

Clearly, the mathematical problems arising from the granularity and fuzzi-
ness of evidence are far from simple. It may well be the case that their full
solution must await the development of new types of computing devices which are
capable of performing fuzzy computations in a way that takes advantage of the
relatively low standards of precision which the results of such computations are
expected to meet.
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