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Summary

The distribution of the working set size for the page reference strings

generated by the Independent Reference Model (IRM), Easton's model, and the

Markov model is obtained analytically. Simpler equations to compute the

average working set size for these models are also given. Numerical

examples show that the IRM and the Markov model produce quite different

averages and distributions of the working set size. Examples also suggest

that the working set size of the Markov model is not normally distributed.
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1. Introduction

In order to evaluate the performance of a computer system we have to

specify its hardware organization, its workload, and the systems software

which determines how hardware and software resources should be used to

process the workload. The workload can be characterized by the CPU demands,

I/O demands, and memory demands of its components (jobs, job steps,

processes, transactions, and so on). Characterization of the memory demands

is particularly important in virtual memory systems for the purpose of both

performance evaluation and performance improvement.

For the analytical performance evaluation of virtual memory systems,

many models of dynamic address reference behavior of programs, i.e.,

mathematical description of how a program references its address space over

time, have been proposed and actually applied [1]. One of the significant

and important characteristics of address reference behavior (called program

behavior for short in the sequel) is locality of reference, namely the

property that a program exhibits of referencing only subsets of its entire

address space during relatively long intervals of its execution time [2].

As program behavior models which are simple enough to be mathematically

tractable, yet reflect locality of reference reasonably well, the Markov

model and the least recently used (LRU) stack models have been commonly

used. The independent reference model (IRM) has also been popular for its

extreme simplicity, although it does not exhibit locality of reference.

Several operating systems for today's virtual memory computers use the

working set memory management algorithm [3,4,5]. The working set at any

given time is roughly defined as a set of pages referenced in the recent

past [6,7] and the working set memory management algorithm is the one which

holds the working set of a program in main memory while the program is



running. Hence, the measurement of the working set size, which is the

number of pages in the working set, of actual programs is of great interest

and importance [8,9]. Similarly, the derivation of the distribution of

the working set size for program behavior models is the first step towards

analytical performance evaluation of virtual storage systems using the work

ing set memory management algorithm.

The distribution of the working set size for the simple LRU stack

model can be computed either recursively [17] or explicitly [1,10]. The

exact distribution has also been known for the IRM [11] but not for the

Markov model. The principal purpose of this paper is to present a deriva

tion of the exact distribution of the working set size for the Markov model,

In the next section page reference strings, the working set, and three

different Markov models, i.e., the IRM, Easton's model, and the first-

order Markov model, will be formally introduced. Then, the average working

set size of these three models will be computed in the following section,

which leads to the section presenting the exact distribution of the working

set size for the three models. Numerical examples of the average and the

distribution of the working set size will be given in the last section.

2. The IRM, Easton's, and the Markov Model

Let us assume that a program consists of n pages whose page indices

are denoted by l,...,n and let N be the set of the page indices, i.e,

N= {1,2,...,n}. Let ... ,rt_1 ,rt,rt+.j,... be an infinite page reference

string of the program, where rt e N denotes the index of the page refer

enced at discrete virtual time t. The working set at time t with window

size T, W(t,T), is defined as the set of distinct pages referenced in

the interval [t-T+l,t]. The working set size w(t,T) is defined as the



number of pages in W(t,T) [6]. The average working set size w(T) is

the average of W(t,T) over t.

The independent reference model (IRM) assumes that page i, i = !,...,n

is referenced with a fixed probability b. b. > 0, i = l,...,n,
n 1 1

lb. =1, independently of the pages referenced in the past [12]. That
i=l

is, the IRM is a zeroth-order Markov chain whose states correspond to page

indices. Let us define a page reference probability vector b such that

n

b = (br...,b ) , b. > 0, i=l,...,n, I b. = 1 .
1=1 !

The IRM tends to produce larger average working set size than the measured

size for small values of the window [12]. One solution to this problem is

to use a more sophisticated method of estimating the page reference proba

bilities [13]. Another solution is to use higher order, i.e., first-order

Markov model [14,15]. The first-order Markov chain model will be simply

called the Markov model in the sequel. Let P = (p..) be the transition

probability matrix of the chain, where p. . = Pr{r\ = jlr, ,= i}, Y d. . = 1
ij t ' t-1 i=l 1J

i = l,...,n. In the subsequent analysis, we assume that this Markov chain

is irreducible and ergodic. Therefore, it has a limiting probability

vector A=(Ar...,Xn), A. >0, i=l,...,n, .^.=1, where
A.. = Pr{rt=i}. X is the eigenvector of the transition probability matrix

P, i.e., satisfies the eigen equation AP = A. Let P., i = !,...,n, be

the column vectors of the matrix P. Thus, we may write P = (P, ,...,P ).

The Markov model has certainly more modeling power than the IRM.

However, the number of parameters of the Markov model is n2 instead of n

for the IRM. This prohibits practical application of the Markov model to

programs consisting of numerous pages, e.g., database systems. Observing

consecutive references to the same page, a special first order Markov model



requiring only n+1 parameters has been proposed [16]. We will call this

model Easton's model after its inventor's name. The transition probabilities

of Easton's model are given by

Pii = r+(l-r)Ai 9

pij = ^"r^Xj » i* J' '
n

where 0<r<l, £ A. = 1, and A. > 0 for i = l,...,n. Note that
i=l

A= (A-j5...,An) is the limiting probability for Easton's model. Note also

that the model degenerates to the IRM when r = 0.

The average working set size of these three models will be computed

first in the next section, since it gives the basic ideas on how to compute

the distribution of their working set sizes.

3. Average Working Set Sizes

We shall consider a segment of the page reference string of length T

generated either by the IRM, by the Markov model, or by Easton's model. The

string will be represented by r] 9r2,...,rJ9 T >0. The working set, the

working set size, and the average working set size will be denoted as W(T),

w(T), and w(T), respectively. Since page reference strings generated by

the three models are stationary, W(T) = W(t,T), w(T) = w(t,T), and

w(T) = w(t,T) for any given time t.

Let us first compute the average working set size for the IRM,

wIRM(T). Since Pr{i $W(T)} =(1-b^1, l<i<n,

Strm(T) - I Pr{iEW(T)}
i=l

= I [l-Pr{i$W(T)}] (1)
i=l



- ID-0-b,)T]
1=1 1

" T= n- I (1-b )T .
1=1 n

The average working set size for the Markov model, wM . (T), can

be derived as follows. Let xt(i) =(x*(i),...,x*(1)) be aprobability
vector such that

Xj(1) =Pr{rt =j|r^i,...,rt-1^i} , when j f 1,
= 0 , when j = i ,

where t=2,3,...,T. Conditioning on r^, x*(i) can be recursively
expressed as

Xj(D = I xk"1(i)Pkj ' "• =1'2---n •
K"~ I

These equations can be rewritten in a vector form as

x^i) =xt"l(1)Q1 , (2)

where the matrix Q. is defined by

That is, Qi is obtained from the transition probability matrix P by

replacing its i-th column vector P.. with a zero vector. Using equation

(2) recursively, we have

x^i) =x^iJQ^1 , t=2,3,....T , (3)

where Q.." is the (t-l)-st power of Q.. Conditioning on rQ, the page
referenced immediately before r-j, and due to the stationarity of the



Markov chain, x.(1) is given by
<j

x](i) =J1Pr{ro=k}Pkj =J/kPkj when it* •
Mi lyh"

= 0 when j = i ,

where A= (A.j,...,An) is the limiting probability vector of the Markov

chain. The above equation can be expressed in vector form as x^i) = AQ..

Substituting x (i) into expression (3), we have

xt(i) =AQ* , t=1,2,...,T . (4)

According to the definition of xt(i), the probability of not referenc
ing page i in [1,T] is given by

Pr{i$W(T)} = Pr{ryi,...,rT?M}
n T= IxT(i)

j=l J

= llxT(i)ll

=IIAqTh , (5)

where ilyil is the norm of vector y = (y19...,yj, that is By I = 7 y..
k=l

Therefore, the average working set size with window size T, wM , (T),
' Markovv'*

is computed by

SMarkov(T) = I Pr{ieW(T)}
i=l

n

= in-
i=1

•Pr{1$W(T)}]

n

- I 0-
1=1

•IAqTi)

=n- I iUQjil .
1=1 1

(6j
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In particular, when T = 1, using the above equation, AP = A, and

All = 1,

w Markov(1> =n- j/^i"
= n-IA I Q.I

1=1 1

= n- (n-l)llAPH

= 1 .

Since the IRM is a special case of the Markov model, wM . (T) in
Markov

equation (6) should reduce to wTDM(T) in equation (1) when
IRM'

P =

b-.,... ,b
1 n

^bl bn J
, b. > 0, 1= l,...,n, I b. = 1

1=1 1

Noticing that b is the eigenvector of P, a little computation reveals

Hence,

AQT =(1-bi)T"1(b1,...,bi_1,0,bi+1,...,bn)

Markov^ """.U^l1
1=1

w

B n-(l-b.)T ,

which agrees with the expression of wJRM(T) derived above (equation (1)).

The average working set size for Easton's model vL . (T) can be

computed either by recognizing that this model is a particular case of the

Markov model or by an independent approach. Let us first compute it accord

ing to the latter [16]. If we assume r^ f i, 2<t<T, then

Pr{rt^i|rt-1?*i} =1-Pr{rt= 1|rt-/| jH}

= 1 - A.(l-r) . (7)



Since A is the eigenvector of the transition probability matrix, we have

Pr{r^i} = 1-A. . (8)

Applying equation (7) recursively with equation (8) yields

T-lPr{i$W(T)} = (l-A.)[l-A.(l-r)] (9)

Hence,

"Easton^* .1 Pr{1sw(T)}
1=1

= I [l-Pr{1fW(T)}J
i=l

= n- I (l-A.)[l-A.(l-r)]
1=1 n n

T-l
(10)

Now, let us derive wEastQn(T) from wMapkov(T). The-transition probability
matrix P is given by

P =

' r+(l-r)A1 (l-r)A2
(l-r)A1 r+(l-r)A2

(l-r)An ^
(l-r)XM

. (l-r)A1 (l-r)A2 • • . r+(l-r)An d

After a little computation we find for t = 1,2,...,T,

AQ* =[l-(l-r)Ai]t-1(A1,...,A.^,0,A.+1,...,An) .

Therefore, from equation (5) we have

Pr(i$W(T)} = IIAqTh

»(l-A^D-d-rjA.]1'1 ,

which agrees with equation (9). Thus, even wEastQn(T) can actually be
derived from w

Markov
(T).
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4. Distribution of the Working Set Size

The distribution of the working set size for the IRM was computed by

H. Vantilborgh [11]. We will briefly review his approach; then a new

approach which can be extended to the Markov model will be introduced.

Following Vantilborgh's notations, we define the probability mass

function of the working set size as

p(m;n,T) = Pr{w(T) =m}, 1 < m < n, 1 < m < T .

Because of the independence of page references, p(m;n,T) has a multi

nomial distribution

' ( t\ n s. s ^

P(m;n.T)« I I J.' , I b-T'V •
s1,...,sm>0^T V 1 Jl V
s1+.-.+sm=T Ji,...,jm

Using the inversion formula for binomial coefficients, we have

p(m;n,T) = \ (-1)m"](""*)D(£;nfT) ,
£=0 n"m

where D(£;n,T) is defined as

f I (b. +---+b, )T , 1<a<n,
DU;n,T) = l<1l<--'<1Jl<n '1 ^

0 , otherwise.

Since page references are not independent in the Markov model, Vantilborgh's

approach cannot be applied to the Markov model.

The basic idea of the new solution is to first compute Pr{W(T)cs },

where Sm is a subset of N = {l,...,n} such that |S| = m, m = l,...,n.

Then Pr{W(T) =Sm) is computed by the recursive formula
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m-1
Pr{W(T) =ST = Pr{W(T)CSm} - £ I Pr{W(T) =SA . (11)

m m A=l S0CS *
x, m

Although P(m;n,T) can be computed using this equation after all

Pr{W(T) =S^}, 1<_l<m-}, have been obtained, this approach is not

practically applicable since 2n-l words of memory are required to store

all Pr{W(T)csm>. The number n of pages in database systems, for

example, is very large. Even for n = 100, 2n-l is approximately
30

1.27x10 . This limitation due to memory requirements can fortunately be

eliminated. Summing up both left and right hand sides of equation (11)

over all Sm yields

m-1
P(m;n,T) = £Pr{W(T)cs } - £ £ J Pr{W(T) =S0} . (12)

Sm m S A=l SnCS *
m m Am

Due to the symmetry of the page indices, the second term of the right hand
m-1

side of equation (12) can be rewritten as £ a. YPr{W(T) =S.} =
m-1 i=l •" s^. 1

I a.P(i;n,T), where the a.'s are coefficients .to be derived. Since there
1=1 '

are (m) distinct sets of the Sm type (1 .e., of size m), and each Sm
rm.

has (.) terms of Pr{W(T) =S.}, for a given value of 1, 1 < i < m,

there are (JJ)(m) terms of Pr{W(T) =S,} for aparticular value of i in
m 1

the term III Pr{W(T) =S.}. On the other hand, YPr{W(T) =S.} has
Sm Jt=l S„CSm * S. "*n m i m °i

(j) terms. Hence, the coefficient of JPr{W(T) =S.} is given by
Si

(n)(?)
i /iij " Vm; "

Consequently, equation (12) becomes

P(m;n,T) = lPr{W(T)cSfn} - J (^)P(i ;,n,T) , m=2,...,n . (13)
^»«« 1 = 1

m
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Recursive equation (13) requires only n words of memory to store

£Pr{W(T)cm} or P(m;n,T) instead of the 2n-l words needed by the
S "

original equation.

Applying the inclusion-exclusion principle, Pr{W(T)= S } may also be

computed in terms of Pr{W(T) CS^}, I =!,...,m, as

m-1

Pr{W(T) =Sm} =Pr{W(T)CSm} + J(-1)* I Pr{W(T) CSm_£} . (14)
m-x. m

Then, equation (13) will be replaced with

P(m;n,T) =lPr{W(T)CSm) +"j (-1)* £ (nHf*)Pr{W(T) CSm ,} . (15)s m } s x, m-J6
m m-£

Pr{W(T)csm> for any given S C N for the IRM is readily computed by

Pr{W(T)cs } = ( I b.)T . (16)
m iG$ i

m

The computational complexity of this new solution presented by equations

(13) or (14) and (16) is comparable to that of the Vantilborgh's solution.

However, Pr{W(T)CSm> can be computed for the Markov model, and hence the

working set size distribution of the Markov model can be obtained, as will

be shown next.

In order to compute Pr{W(T)cSm> for the Markov model, let us

observe equation (5), i.e., Pr{i^W(T)} = IIAqTh. Since the event i$W(T)

is equivalent to the event W(T) c N- {i}, equation (5) provides an expres

sion for Pr{W(T)cSm} in a special case, i.e., when S = N-{i}.
— m m

Generalizing this idea, we define a vector x(SJ = (x*(Sj,... ,x*(Sj) at
m 1 m n m

time t, t = 2,3,...,T, such that

,t^.fPr{rt=jlr1GV-rt-1GV when J'GSm
*PJ - 0 when j $ Sm .

r m



13

Conditioning on r. ,, x.(S ) may be expressed as a linear function of

x^^S^), that is,

-(x^fSJ.V,) , (17)
t-l,. X trwhere (x " (S ), P.) is the inner product of vectors x^fS ) and V,

ni j m j

and P. is the transpose of P., the j-th column vector of the transition

probability matrix. Equation (17) can be rewritten in matrix form as

xt(Sm) =x^fSjQ- , t=2,...,T ,m, ^m^s ' t = 2,...,T , (18)
m

where matrix Q~ is defined as
^m

Qs = (...,Pi ,...,0,...,P. ,...,0)
m 1 m

1j £Sm , j = l,...,m .

Thus, Qs is obtained from P by replacing its k-th column vector with a
m izero column vector for all keN-Sm. x,(Sm) is computed in terms of the

limiting page reference probabilities A and the transition probability

matrix P by conditioning on rQ as follows:

( kVr{r0=k}PkJ= ^Vkj • whe" J€Sn.
X](V = kGSm ^m

>° > when j $ Sm ,

or in vector form

xl(sJ =*Qc • (19)m' yS
m

Repeating equation (18) recursively starting from t = T down to t = 2

and using equation (19), we get
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xT(V B^Qs • (20)
m

According to the definition of xt(S ), Pr{W(T)cs } is given by
m" fc * '- nr

Pr{W(T)csm> =llxT(Sm)ll
=IAqI II . (21)

°m

In particular, when T = 1 and m = 1,

Pr{W(l) =l} = IIA I QQ II
Sl ]

= HAP II

= IIAII

= 1 .

For the IRM, it turns out that

*Qs =(IM^to ^ ,...,0,...,b. ,...,0)

hGSm> l = !»•••»"»•

Hence, from equation (21),

Pr{W(T)cSm> = IXQg II
m

=(Ib/ .
1€Sn,

which agrees with equation (16).

Pr{W(T)CSm> of Easton's model can also be computed either independently

or by using the solution (21) for the Markov model. The direct solution

will now be described. Since the probability of referencing page i conse

cutively is r+ (l-r)A.j,



15

Pr{rt€SJrt-ieV " r+n-r).I X1 , t= 2.....T .
l^O

m

and for t = 1,

PKr1esm}= I x .I HI ies I
m

From these two equations, we have

T

Pr{W(T)cs } = Pr^esi n Pr{r.esjr. ,esj
ni l m ..p t m1 t-l m

= ( I A^Cr+O-r) I X,]7"1 . (22)
i€Sm iesm

This equation can also be obtained from equation (21). However, we will not

present the procedure in detail; we shall only mention that

AQ^ =[r+(l-r) I A.f-V,...,*. ,...,0,...,A. ,...,0) ,
m 1ESm 1 '] \

In order to compute the working set size mass function p(m;n,T) in a

systematic, effective fashion, the following algorithm can be followed:

Step__h Solve the eigen equation AP = A for the limiting page

reference probabilities A.

Step 2: Compute q(m;n,T) = IIIAQ5 II.
Sm m m-1 n.

steP 3: Compute p(m;n,T) = q(m;n,T) - £ (""')p(i;n,T) recursively

from m=2 up to m=n with p(l;n,T) = q(l;n,T). p(m;n,T)

can also be computed by p(m,n,T) = q(m;n,T)
m-1

I
*=1

The computational complexity of q(m;n,T) is on the order of Tn32n, since

the summation of IIAQ$ II has to be taken over all 2n-l subsets of N and

+-J_:(-l)1tn"Jf£)q(m-liniT).

m
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T 3the computation of Qs requires about Tn multiplications. However,
j m

Qs can be computed easier by noticing that if a matrix A is expressed
-1 T T i

as PBP , where matrix B is a diagonal matrix, then A = PB P and

B is a diagonal matrix whose diagonal element is given by the T-th power

of corresponding element of B. Therefore, the computational complexity of

q(m;n,T) c-an be reduced to n 2 . Hence, the computational complexity of

the algorithm for the Markov model is on the other of n32n. Since

q(m;n,T) = £( I MT for the IRM and q(m;n,T) =1(1 A-)[r+(l-r) £ A,]1"1
Sm i^n, S ies ies
mm m m m

for Easton's model, the computational complexity of the algorithm for these

models is on the order of 2n.

5. Numerical Examples

As numerical examples of the distributions of the working set size of

the IRM, Easton's model, and the Markov model, page transition matrices

were obtained from instruction trace data. The programs used in this paper

are a FORTRAN execution (FORTRANGO) and a COBOL execution (C0B0LG0). The

program size of FORTRANGO is about 28K bytes and about half a million

instructions were executed and traced. C0B0LG0 has a size of 2K bytes and

3.6 million instructions were executed and traced. Since instruction

references were available at hand, they were used in the examples to

construct page transition matrices with a page size of 4096 bytes. The

distributions and the averages of the working set size for window sizes up

to 2048 have been computed using the algorithm presented in the previous

section.

The value of the parameter r of Easton's model has been estimated by

two methods as follows. The first, rather crude, method is to sum up both

sides of the expression p^. = r+ (l-r)A. over i= l,...,n. This yields



17

n

I P-h = (n-l)r+l
i=l in

and n

r " n-1

The second method is to take the weighted average of r for each page.

Let r(i) be the estimated value of r for page i, which is directly
p..-A.

derived from p^ =r+(l-r)A.. as r(i) = " 1. Since page i is

referenced with probability A.., the weighted average is given by

n

r = .1 A.r(i)

"1=1 ]-xi *

The estimated values according to the first and the second methods are

called r1 and r2, respectively. It should be noticed that these methods

are independent of the window size T. Easton suggested another method for

a given window size and a given page fault rate [16], Since the page fault

rate for Easton's model under the working set strategy is theoretically

given by M(T) = (1-r) I A.(l-A.)[1 -X.(l-r)] ', we can solve this equation
i=1 -

for r if A.j (i =l,...,n), T, and M(T) are given. However, since v/e

are interested in estimating r using the page transition probability matrix

and independently of the window size, we will not use Easton's method.

Table I shows the transition probability matrix P, the limiting page

reference probability vector A, and the estimates of r for Easton's

model of C0B0LG0. The measured and the estimated average working set sizes

as a function of the window size are shown in Fig. 1. Since the estimated

values of r-j and r2 and hence the corresponding estimated working set
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sizes are very close to each other, the average working set sizes estimated

by Easton's model with r-. and r« are indistinguishable in the diagram.

In Fig. 1 we can see that the IRM grossly overestimates the average working

set size. Easton's model is as good as the Markov model, although both of

them overestimate the average working set. The measured and estimated

distributions of the working set size for window sizes of 128 and 256

instructions are shown in Fig. 2. Both Easton's model and the Markov model

provide good approximations to the distribution.

The page transition matrix, the limiting page reference probabilities

of FORTRANGO, and the values of r, and r« for Easton's model are shown

in Table II. The measured and the estimated average working set sizes are

shown in Fig. 3. The IRM is quite inaccurate again. Easton's model using

r.| overestimates the average working set size, while with r2 it is

accurate when the window size is small and underestimates the average

working set size when the window is large. On the other hand, the Markov

model underestimates the average working set size when the window size is

small and is better behaved when it is large. Fig. 4 shows the distribu

tions of the working set sizes measured and estimated by the Markov and

Easton's (with r2) models for window sizes of 256 and 512 instructions.

Since the window sizes are small, Easton's model with r2 gives a better

estimate than the Markov model, as can be expected from Fig. 3. Note that

the measured distribution for T = 256 is bimodal. Bimodal distributions

were found for other programs which are not discussed in this paper.

6. Conclusions

The exact distribution of the working set size for page reference

strings generated by the zeroth- and the first-order Markov chain models,
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that is, the Independent Reference Model (IRM), Easton's model, and the

so-called Markov model, has been obtained. A practical algorithm to compute

the distribution has been given. The algorithm requires o(n2) words of

storage and o(n 2 ) CPU time for the Markov model, and o(n) words of

storage and o(2n) CPU time for the IRM and Easton's model, where n is

the total number of pages of a program. A simple equation to compute the

average working set size for the Markov model has also been given.

Numerical examples of the use of the algorithm to compute the average

and the distribution of working set sizes have been given. The examples

have been based on transition probabilities matrices and the limiting page

reference probabilities obtained from actual trace data of programs. The

examples show that the IRM and the Markov model have quite different averages

and distributions of the working set size if the page reference probabilities

of the IRM are estimated simply by the limiting page reference probabilities

of the Markov model and not by a sophisticated method [13]. Easton's model

gives almost as good an estimate as the Markov model in terms of both the

average and the distribution of working set sizes when the parameter r of

Easton's model is computed appropriately. Finally, working set size

distributions were observed to be bimodal for several programs.
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