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ABSTRACT

t

This paper reports a recent breakthrough in
research on deriving complete stability criteria for
non-reciprocal network having multiple equilibrium
points. Although the proof is quite mathematical
in nature, the method itself is circuit-theoretic
and is applicable to a large class of non-reciprocal
network.

INTRODUCTION

An autonomous system x • f(x), x € ]R is said
to be "completely stable" if all solutions converge
to some equilibrium points in the state space. This
property is extremely important in practice because
it excludes not only oscillations, but also other
more exotic modes, such as almost-periodic
oscillations. In the special case where the system
has only one equilibrium point, the concept of com
plete stability [1,2] reduces to that of "global
asymptotic stability." Much research has been
directed at deriving conditions for identifying
completely stable nonlinear network [3-7]. The
results obtained so far, however, have been
restricted to either "reciprocal" networks [3,5,6].
(or "eventually reciprocal [4] networks), or
networks which have only one equilibrium point [7].
Unfortunately, these results are not applicable
to many non-reciprocal networks of practical
interest, such as switching networks which
invariably have multiple equilibrium points.
This "non-reciprocity" barrier has not been over
come inspite of much research efforts over the
past decade because of the formidable problem of
constructing global Lyapunov functions for such
networks. In this paper, we report a break
through in this non-reciprocity barrier which we
believe would have far reaching significance for
research in this area.

DEFINITIONS AND BASIC PROPERTIES [8]

Consider the system described by an ordinary
differential equation

i - f(x), x € s C ]Rn, z is open (1)

where f : E - H is assumed to be con
tinuously differentiable (unless otherwise
specified). A particular point x is called an
equilibrium point of the system if f(x) = 0. We
will be dealing only with systems having isolated
and a finite number of equilibrium points.

A function x : R . •*• Z is called a solution of

the system if ^ x(t) =f(x(t)) for all t€K+
(where R, • set of all nonnegative real numbers).
A solution is bounded if its range is bounded. A
point p is called an to-limit point of a solution
x(«) if there is an unbounded increasing sequence
{t. } such that lim x(t.) » p. The set of all

k-VQO

w-limit points of a solution is the ar-limit set of
that solution. A subset M C z is called positively
invariant if every solution x(«) with x(0) 6 M
satisfies x(t) € m for all t > 0.

Let id be a map from Z to the collection of all
subsets of E which sends a point p to the w-limit
sets of all solutions x(«) with x(0) =• p. Since f
is continuously differentiable, there is one and
only one solution with p as the initial point. A
fundamental result which will be invoked quite
often in the proofs is that if the solution start
ing at p is bounded, then u(p) is nonempty, compact
and connected. Also well known, is that o>(p)
contains entire solutions, not necessarily x(«)»
and u(p) is invariant in the sense that all solu
tions originating in u(p) remain within w(p).

Also useful in this paper is the notion of a
general solution which is a function 4» : R x I -♦• Z
with the property that (for our purpose) $(*,p) is
a solution for all p € z. A theorem about the
general solution states that if f is r times
continuously differentiable so is <J>.

GENERAL THEOREMS ON COMPLETE STABILITY

A subset K of the space Z is called a complete
set of the system if K is positively invariant and
contains its w-limit sets i.e.

K 3 w(K) ^ U t„(p)

The following theorem is a more general
version of an earlier result [6].

Theorem 1. Let K C Z be a complete set and
V : K + P. be a continuously differentiable function
on K with

a) (VV(x)T f(x) <0 for all x€ K,
b) (VV(x))T f(x) «0 if and only if f(x) - 0,

then all bounded solutions in K converge to
equilibrium points in K.

Corollary 1. If in Theorem 1, K « Z then, the
system is completely stable in the sense chat all
of its solutions that are bounded converge to some



equilibrium points. n

Our next theorem allows us to transform the
extremely difficult problem of global stability
analysis into several albeit much easier stability
analysis within appropriately subdivided complete
subsets of the state space E.

Theorem 2. System (1) is completely stable if:
1) there is a finite collection {(K ,V )fa § J}
where each Kq is a complete set and i?s associated

the hypotheses of Theorem 1, and

2) there is a continuously differentiable function
VQ:E -KR such that for x 6 i - K (K I U K ), we
have J J aej a

a) (7V0(x))T t(x) £0
b) (WQ(x))T f(x) =

V satisfies on K ,

if f(x) = 0.

Intuitively, we can interpret each K as a
a

"reduced" state space and V as a Lyapunov
function on it. These reduced systems are com
pletely stable in view of Theorem 1. Now, the
existance of V implies that each bounded solution
of the full system is attracted to some K and,
hence, eventually to some equilibrium point. We
can think of V_ as a "global" Lyapunov function
outside of K . Since the behavior of Vn within

J 0

each Kq C Kj is irrelevant, it is usually much
easier tc construct Vn once a suitable set of K
has been identified. The above interpretation a
allows us to think of each "complete set" K as a
magnified "super" stable equilibrium point.a
Roughly speaking, we can establish complete
stability of (1) in two steps: First, identify a
suitable set of "super" stable equilibrium points.
Second, show that each bounded solution tends to
one of these "super" equilibrium points. We
remark that sets with properties similar to K are

sometimes called "regions of attractions" in the
literature. Here, we are more precise since we
also specify the mechanism of attraction.

APPLICATIONS TO NONRECIPROCAL AUTONOMOUS
NONLINEAR NETWORKS

Consider now the very general class of
autonomous nonlinear networks (see Fig. 1) whose
state equations are described ir. [9]. These state
equations are made up of the fciiowing 3
components: 1) Constitutive relation of the

"non-reciprccal" resistive n-ports: y =• g(x).
2) Constitutive relations of the "reciprocal"
capacitors and inductors: x = hfz) where h is an
infective continuously differentiable state
function and H is its potential function.

VH(z) • h(z). 3) Port interconnections: z = -y
The networks in this class are described by

systems of the form

z • -g°h(z) = f(z) (2)

Associated with the network, :-:,. will be called
an operating point if x^ - hlZg) where zQ is an
equilibrium point of Che system (.-) •

One or

more coupled

2 - terminal

capacitors

and

inductors

i
+

V2

Non- reciprocal

resistive'
n-port

Fig. 1. A general autonomous network.

0

Fig. 2. A strictly passive one-port resistor
which is not relatively passive.

Fig. 3. An active one-port resistor which is
strictly passive relative to xn in
A(xQ). 0

Definition. The resistive n--port is strictly
passive relative to an operating point in a set
A(xQ) containing x, if

(x-X«,g(x)) > 0 for all x ^ A<xQ) -xQ

Remarks: 1. This definition is different from the

classical definition of "passivity" and "local
passivity" as illustrated in Figs. 2 and 3,
respectively.

2. This definition would still be meaning.*;u]
even if x,, ? A(xn). However, such an extention is
net intuitively appealing as will be clear
later. It is also possible to relax the definition
where xn need not be 3X1 operating point. However,
there doesn't seem to be any value in such a more



general setting either.
3. Classical thinking would tend to take

A(xQ) to be a sphere around x_. That is all right
except that our dynamics occurs in z-space (charges
and fluxes) rather than x-space (voltages and
currents). Note that a sphere around an equi
librium point in z-space when mapped into the
x-space is not necessarily a sphere around the
corresponding operating point.

4. In this paper, it is convenient to think
of "energy" and "potential" as concepts pertaining
to the dynamical variables in the z-space, and to
think of "power" and "dissipation" as concepts
pertaining to the network variables in the x-space.
These two independent concepts can be represented
graphically as an* "energy profile" and a "power
profile," respectively. To each operating point,
we can draw a corresponding power profile. The
port interconnection "matches" the energy profile
with each of the "power profile." We will now
show in our next theorem, (the main result of this
paper) that if the matching is right, there can be
no oscillation.

Theorem 3. The network described by (2) is com
pletely stable if:

1. there is a set S of operating points such that
for each xQ € S, g is strictly passive relative
to xQ with

A(xQ) = (x = h(z)|[H(s)-H(z0)]

-<x0,z-z0> < a(xQ)}

for some a(xQ) and zQ such that xQ » h(zQ).

2. A(s) ^ U A(xn)

3 (x|<x,g(x)> £ 0 and g(x) jt 0}. n

This theorem gives a criteria for matching the
"energy" to the "power" profiles so that the net
work is completely stable. To give an inter
pretation of condition 1, consider the following
Taylor expansion:

H(z) - H(zQ) +(7H(z0),z-z0>
2

+I<z-zo»'Ll(zo>(2-zo)>
3z

+ 0(lz-znD3).

Since 7H(z0) -h(zQ) -xQt and ^ (zQ) -f| (zQ),
3z

we can write

[H(z)-H(z0)] -<x0,z-z0> 4<z-zQ, f£ (z0)(z-z0)>

+0(llz-z0II3)
and interpret this quantity as an approximation of
the incremental potential function around the
equilibrium point zQ.

V. AN ILLUSTRATIVE EXAMPLE

Consider a non-reciprocal autonomous nonlinear
network described by the following component
equations:

1) gx(x,y) -x(x2-l) +|xy2

g2(*.y) -y + y +jxy

2) (x,y) - h(zltz2) « (zlvz2)

3) zx » -gjte.y)

*2 " -*2*x,y*

The associated state equations are given by

x--[x(x2-l) +| xy2]

y»-[y + y3 +I x2y]

and the operating points are (-1,0), (0,0), (1,0).
Let S - {(-1,0),(1,0)}.

Relative to (1,0): (x-1) x(x2-l) +| (x-l)xy2
. 2. 4^1 22
+ y +y +2xy

-x(x-l)2 (x+1) +y2(2x2-|x+l)
+ y •

> 0 for x > 0

Suppose we choose

a((l,0)) « ~ , then

[H(z)-H(z0)] -<x0,z-z0> -i<z-z0,z-z0>

-| [(x-l)2+y2l <\
2 2

implies that (x-1) + y < 1. Consequently,
A((l,0))is an open disc of radius 1 centered at
(1,0).

Relative to (-1.0): (x+l)x(x2-l) +| (x+l)xy2
j. 2 . 4
+ y + y

> 0 for x < 0.

Choosing again a((-l,0)) - -j ,we obtain

[H(z)-H(z0)] -<xQ,z-z0> -|(z-z0,z-z0>
-i [(x+l)2+y2] <\

2 2and (x+1) + y < 1. Consequently, A((-1,0)) is
an open disc of radius 1 centered at (-1,0).

Now to check condition 2, we calculate



<(x,y),g(x,y)> =x2(x2-l)+|x2y2 +y2 +y4+ix2y2

+ (x2+y2) - (x2-y2)

Observe that this expression is negative inside the
shaded area shown in Fig. 4, which in turn is a
subset of A(S). Since all hypotheses of Theorem 3
are satisfied, it follows that the network is
completely stable.

PROOFS OF THEOREMS

1. Proof of Theorem 1. Let x(t) be a bounded
solution in K. Then oj(x(0)) is compact and there
fore V((j(x(0))) i's bounded. Moreover,

lim x(t) £ <u(x(0))
t-+«°

•» lim V(x(t)) = V(lim x(t)) € V(w(x(0)))
t-*» t-x»

Hence, for any unbounded increasing sequence {t. },
tk. e [0,»), (V(x(tk))} is a bounded sequence
with a finite limit. It remains for us to show that
this sequence actually converges. Since x(t, ) S k
Vt. S [0,»), k

V(x(t)) = <VV(x(t)),f(x(t))> <_ 0 Vt e [0,»)

Therefore, {V(x(t))} is a decreasing sequence of
real numbers. Hence it converges to a unique limit
V .
CD

Next we show that V is constant on w(x(0)).
Let x £ w(x(0)), then there is a sequence

{tk>
then

k-x°

such that {x(t )} •+• x.
k-Ko

V(x) = V(lim x(tfc)) = lim V(x(0) = V^ .
k-*» ^ k-*«

Finally, because oj(x(0)) is invariant, there
is a solution $(t,x) c w(x(0)) Vt. So along this
solution,

V(<J>(t,x)) = 0, in particular V($(0,x)) = V(x) = 0

Consequently, V(w(x(0))) = 0 and it follows
from the hypothesis that ui(x(U)) consists of equi
librium points only.

2. Proof of Theorem 2. 3y Theorem 1, every solu
tion that starts in KQ, converges to equilibrium
points in KQ, a - J. Since the solution through
each point is unique, every solution whose path
intersects Kj must also converge to equilibrium
points.

Let X(t) be a bounded solution that is con

tained in E-K. for all finite time. If o.(x(0))
H X ^ <t>, then either (x(0)) consists of equi
librium points and we are done, or it doesn't. In
the latter case, there is a solution that is non

constant which starts In cd(x(0)) H k and is con
tained in u)(x(C)). But such solution converges to
equilibrium points in K_.

Finally we ate left, with the case that
<u(x(0)) C E-K,. But then (x(t)} U w(x(0)) is a
complete set and IrVj is defined on E-K. so it is
defined or. (x(t)) O w(x(0)). It follows from
Theorem 1 that x(t) converges to an equilibrium
point in !-•£...

A (1,0)

Fig. 4. The two complete sets A((1,0)) and
A((-1,0)). The point (0,0) is not
in A(S).

3. Proof of Theorem 3. Let A(zQ) - {z|h(z)^A(xQ)}.
We will show that A(zq) is a complete set for all
z_ such that h(z-) 6 S.

For z G A(2()) define

Vz (z) =[H(z)-H(z0)] - <h(z0),z-z0>

< a(xQ).

Pick a point p£ A(zQ) - zQ, then V (p) < a(xQ).
Let z(t) be a solution starting at p. Since

V7 (z(t)) - V (p) = <7V (p),z(0)>
z0 t_U Z0 0

- <h(z(0))-h(zQ),z(0)>

- <h(p)-x0,-g(h(p)).

and p S A(zn) means h(p) G A(xn), therefore
0'-o

V (p) < 0
zo

in view of the "relative passivity" hypothesis.
Hence for some small time E > 0,

V (z(x)) < V^ (p).
Z0 Z0

Let t. be the earliest time such that

V (z(t.)) = V (p). By the mean-value theorem,
Z0 z0
there exists a x £ (0,t.) such that

V (z(t.)) - V (p) = V (z(T))-t = 0.
Z0 Z0 z0

But this is impossible because by our choice of

h>

V (z(t)) < V (p) < a(xn) so that z(t) e A(zn)
z0 z0 ° °

and therefore V (z(x)) < 0.
Z0

Consequently, for all t € (0,°°),

V (z(t)) < V (p) < a(xn), i.e. z(t) S A(z ).
z0 zo



Hence, lim Vz (z(t)) <a(xQ) and u>(p) CA(zQ).
ThSTcAUOlhCxo) SS) is acollection of com

plete sets and°tV2 |h(xQ) SS} satisfies the
0 -

hypotheses of Theorem Z.
Finally, let VQ(z) » H(z),

then

V (z) - <VH(z),z> - -<h(z),g(h(z))>
" -<x,g(x)>, where x - h(z),

which by hypothesis is negative if x9 A(S) and
g(x) 40. Hence, vQ(z) <0if z£^ U A(zQ)
and goh(z) * 0. °

Since all hypotheses of Theorem 2 are satisfied
the network is completely stable.

CONCLUSION

Although networks containing "locally active"
and "non-reciprocal" elements are quite susceptible
to oscillation, Theorem 3 provides us with an
invaluable tool for uncovering a subclass of such
networks where oscillation is impossible.
Intuitively speaking, if one measures power with
respect to ground, a network belonging to this
class may appear "active" in some regions of the
state space. Such regions may correspond to the
"charging" of capacitors, etc. Now if one searches
for a "target" point where the active charging net
work is "aiming" for, then around that point, a
"non-oscillatory" network should appear passive.
In another words, the difference in energy levels
between the instantaneous value and that of the
target diminishes.

It might be conjectured that a substantial
subclass of all "switching circuits" operates in
this manner: they all have stable targets by design,

and the switching mechanism is active. However,
since each target is a stable state, these must
exist a region which is relatively passive with
respect to each target.
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