Copyright © 1979, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



R

\»

HETEROGENEOUS DATA MODELS — PART I SEMANTIC ISSUES

by
R. H. Katz and E. Wong

Memorandum No. UCB/ERL M79/56

21 August 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



ABSTRACT

In this two-part report we shall compare several widely used data
models using a number of operational criteria. There being no one model
that is uniformly superior, we shall consider ways of dealing with hetero-
geneous data models in a single system. The problems that must be dealt

with include schema conversion and program decompilation.

Research sponsored by the Army Research Office Grant DAAG29-78-G-0186,
the Air Force Office of Scientific Research Grant 78-3596 and the
Honeywell Corporation.



1. INTRODUCTION

Recent interest in data models has undertaken a subtle change in
emphasis, from one on the comparative advantages of different types to
a recognition that diversity and heterogeneity in data models may be
both necessary and desirable. Two important technological developments
have been responsible for this shift. First, in a distributed database
system, there may be a need to integrate existing local systems that em-
Ploy different data models, and a need to adopt a global model that is
different from the local models in order to achieve communication ef-
ficiency. Second, there is a growing recognition that the different
purposes to be served by a data model cannot be simultaneously attained
by a data model of a single type. The latter consideration has led to
several proposals for multi-schema database architecture.

While the terms "data model" and "schema" are often used interchange-
ably, we think it is useful to make a consistent distinction. We shall
use the term "data model" to mean a generic type, consisting of a collec-
tion of data object types, and "schema" to mean a specific set of data
objects. For example, a "relational data model" consists of the types
"domains" and "relatioms", while the following is an example of a re-

lational schema:

professor (pname, rank, dept)
student (sno, sname, major)
course (cno, title, prereq, dept)
In this report our objective is threefold:
(1) To articulate the operational purposes that are to be served by a
data model.

2) To gain a full understanding of the differences and similarities



between different data model types,

(3) To find mapping algorithms that would support different model types
in the same system while preserving the underlying semantics. In
particular, we think that this means developing tﬁe following capa-
bilities.

(a) Schema Conversion - An ability to convert a schema of one type
into a schema of another type without loss of semantic infor-
mation. The test for information preservation should be re-
versability.

(b) Program Conversion - An ability to convert a program expressed
in one data manipulation language into 6ne of another DML, even
when the source is a procedural language and the target is a
specification language.

The remainder of this report will be organized along the lines of
these objectives. First, we shall consider the principal operational
goals of a data model. Next, we shall briefly consider some major data
models and their relative strengths and weaknesses. Using "update con-
sistency" as a focus, we shall propose a data model for the purpose of
logical design. The design model will then serve to explicate the seman-
tics of both the relational data model and the network model of CODASYL-DBTG.

We shall present mapping rules for converting a design schema into a
schema of either the relational or the DBTG type so as to be free of up-
date anomalies. We shall then augment the semantics of both DBTG and re-
lational data models to make the mapping reversible. 1In the process, a
DBTG-relational schema conversion algorithm is thus obtained.

The introduction of a design data model provides a sufficient semantic
bridge between the DBTG and relational data models to render reversible

schema conversion possible. However, it is not sufficient to permit



the conversion of a program expressed in DBTG-DML into one expressed in
any of the non-procedural relational languages. Here, more than semantic

translation is involved, and a process of decompilation is necessary. To

make decompilation possible, we need yet another bridge. For that purpose
we shall introduce an "access-path data model." The idea here is to de-
fine atomic units that can be matched to low level DML operations on the
one hand, and combined through simple syntactical rules into high-level
operators on the other.

This report will appear in two parts. Part I will deal with all
semantic aspects of data models, and Part II will introduce access paths
and consider program translation. Some of the material in Part I also

appears in [Wong 78].

2. OPERATTIONAL GOALS OF DATA MODELS

The role of all data models is to take part in the interface between
application programs and the stored data. As such, there are some broad

objectives that a data model must serve.

(a) It must be a good interface for the data manipulation. Two

issues are involved here. First, the constructs of the model should sup-

port, naturally and easily, high-level operators, i.e., operators that

specify in a general way subsets of the database. Second, there should

- be closure. This means that the result of an operation can be operated
on once again so that data-manipulation operations can be concantenated

to yield an algebraic structure. Set-at-a-time operators and closure are
essential to a powerful non-procedural data manipulation language. In
addition to providing ease of programming, such a language also contri-
butes to program longevity. As long as’ the interpreter or compiler con-
tinues to be optimized, the program will not only run, but run efficiently
as storage structure changes.

(b) A data model must be a good interface for logical design.
-3-



Specifically, it should facilitate the design of schemas that are free

of update anomalies and support flexible growth and change, The issue

here is primarily one of semantics. There must be sufficient semantics
in the data model to allow the designer to control atomicity and side.
effects of update, and to keep apart in the schema components that are

independent semantic units.

(c) A data model must be a good interface for storage design. There

are several issues here. First, the constructsof the data model should
lend themselves to simple implementation. In particular, any integrity
constraint associated with the data construct should be supported by im-
plementation without requiring procedural verification on updates. The
data model should also be a vehicle for conveying access requirements,
not at a detailed quantitative level, but at a structural level.

It will turn out that a data model that achieves one or another of
these operational goals will also attain other subsidiary objectives.
For example, a model suitable for logical design will have enough seman-
tics for it to be a good vehicle for schema translation. A model that is
particularly good for expressing access requirements will also be a good
vehicle for re-expressing and aggregating the record-at-a-time operations
of a procedural language into higher level operators. These capabilities,
essential to a system supporting heterogeneous data models, are enhanced
by an elucidation of the basic goals served by a data model, and how they
are served by models of different types.

3. DATA MODELS OF THE MAJOR TYPES

3.1 Relational [CODD 70]
Let Dl’ D2,...,Dn be non-empty sets, not necessarily distinct. A
tuple (rl,rz,...rn) is an ordered collection of elements with ry coming

from Di’ i=1,2,...,n. A relation R is any collection of distinct tuples,



and the D 's are called the domains of R. A database of the relational
type is a collection of time-varying relations in which the tuples of
each relation change as it gets updated but the domains of the relations
do not change (until the database is redesigned). Data definition for a
relational database is given by a schema which spe;ifies for each rela-
tion its name and domains, and defines the domains. The domain defini-
tion, having nothing to do with the data model, will be omitted from all
our examples.

The only data object types in a relational model are sets that serve
as domains and relations. In nearly all proposed relational data manipu-
lation languages, the only objects of data manipulation are relations.
Each operator takes one or more relations and produces a new relation,
which can be operated on again. Clearly, the operators are high level
and achieve closure. As a result, a great deal of expressive power and
data independence is achieved.

The semantic sparsity that makes the relational model so good for
data manipulation also makes it a poor interface for logical design.

It has long been known that one can easily arrive at a relational schema
that poses update problems, and it is not possible to state, in terms of
the semantics of the relational model, rules for design schemas that are
free of these update anomalies. One approach has been to augment the se-
mantics of the ;elational model with "functional dependencies" and define
"normal forms" in terms of these. The resulting theory is complicated

and not without inconsistencies. [CODD 71, BERN 76, FAGI 77]. Most prac-
titioners find the theory difficult to understand, and not usable as a tool
for design.

3.2 CODASYL-DBTG (Network) [DATE 77]

The principal constraints here are records and sets. In a simplified

view, a record is a tuple of values but there is no restriction that the

-5-



same tuple does not recur. Hence, there may be many record occurrences
with the same values, and a record occurrence is not self-identified. A
record type is defined by specifying its name and the names of the sets
from which the data values come (called data items).

A set type (again somewhat simplified) is defined by an ordered pair
of record types, called owner and member respectively. A set of a given
type éonsists of one and only one occurrence of the owner type and
zero or more occurrences of the number type. Presumably, two record oc-
currences with identical data-item values will have different set partici-
pation somewhere, for otherwise they would represent identical data.

The existing DML (data manipulation language) for systems of the
CODASYL-DBTG type involves record-at-a-time operations. The operations
involve navigating through the database from record to record using both
their data-item values and their set connections.[BACH 73] The language
must be considered both low~level and procedural. The programs are general-
ly much longer than the equivalent relational programs, and their execution
efficiency is strongly affected by any changes in implementation.

A number of other features exist in a DBTG schema that are either
implementation related or update related. In particular, deft use of
the '"set membership options" on INSERT/DELETE is essential to good schema
design, but the constructs of the model do not provide a clear conceptual
framework for logical design. It is easy to arrive at reasonable schemas
that are not anomaly-free, and it is difficult to give éeneral design rules
for avoiding them.

As an end product of evolution from extensive use, the DBTG model is
rather good as a storage interface. The structures are easily implemented
and most of the integrity constants enjoy support through implementation.

Furthermore, a DBTG schema is also a good vehicle for expressing user

-6-



access requirements.,

3.3 Entity-Relationship Model [CHEN 76]

Perhaps the most natural way of viewing data is as descriptions of
objects: things, people, places, etc. Collectively, they will be refer-
red to as entities. We begin with the following constructs: entity sets
which are sets of objects to be described, and value sets whose elements
are used to describe entities. The simplest description is through pro-
perties. We define a property as a function mapping an entity set into

a value set. A relationship is a relation (in the sense previously de-

fined) whose domains are entity sets. These are the basic constructs
of the E-R model. The following is an example of a schema of the E-R
type:

entity sets: Emp, Dept

properties: Emp - Ename, Salary

Dept -+ Dname, Floor

relationship: Assignment (Emp, Dept)
Manager (Dept, Emp)

There are integrity constraints associated with many relationships
that need to be recognized by the semantics of the data model. Two of

these: single-valued and complete are of particular operational impor-

tance. A relationship R(EI’EZ""’En) is said to be single-valued in E1

if each element of El occurs af most once in R, and complete in E1 if

each element of E1 occurs at least once. A binary relationship (i.e.,

one with two domains) R(EI’EZ) that is both single~valued and complete

in E1 is a function mapping E1 into E2. Such a relationship will be dis-
tinguished and identified as a new construct that we shall call an associa-
tion of El to E2 and denote by E1 > Ez. An association of El to E2 re-

quires that a unique element in E2 be associated with every element in




El’ and represents a tight coupling of E1 to E2. For example, let El be
Emp, E2 be Dept and the association be Assignment. Then, an employee is
assigned to a unique department and no employee can exist without being
assigned to a department.

It is useful to define "property of relationship" as a construct.

. For example, consider the relationship enroll (student, course). For
each instance of the relationship, we may have "grade" as a property.

It is also possible to add relétionship of relationships, but to do so
makes the model unnecessarily complex. Situations where such a comstruct
might be appropriate can always be modelled by introducing an additional
entity set, and doing so has no important operational disadvantage that
we know of.

As we shall attempt to demonstrate in a later section, the E-R model
is an ideal data model for logical design, because design decisions are
few and the consequences of design choices are exceedingly clear.

As an interface for data manipulation the E-R model is relatively
undeveloped. There have been data manipulation languages proposed for
it, but these are rather simple variants of the relational languages,
without specific attention being given to the semantics of the E-R
model. A major goal in designing a data manipulation language for it
shouldbe.to make every syntactically correct query a meaningful one.

3.4 Summary

We see that the relative merits and elements of data models depend
on the goal. What is good for one thing is far from good for another.
Heterogeneity, then, is not only necessary in certain circumstances, but
is desirable and indeed essential for a full understanding of the differ-

ent roles that data models play.



4. LOGICAL DESIGN

4.1 Why is the E-R Model Ideal for Logical Design?

I think the answer is multi-faceted.

(a)

(b)

(c)

Design decisions are few

Identifying objects in a schema in most cases is both
natural and automatic. There is really only one design de-
cision that is operationally important, and it is in the choice

of associations.

The consequences of a design choice are clear

The principal consequences of chdosing to identify a binary
relationship as an association is to cause certain side effects
on insertions and deletions. If, for example, "assigned" is aA
association of Emp to Dept, then deleting a department will force
the deletion of every employee assigned to that department.
Further, no employee can be inserted without the department to

which he is assigned already having been inserted.

Update anomalies are well understood

We shall adopt "no update anomalies" as the primary goal

for logical design. By update anomalies we mean either

fragmentation of an atomic operation

or

unplanned side effects.

To make these ideas clear requires atomicity and side effects to be de-

fined.

These concepts are simply and naturally defined in terms of the

constructs of the E-R Model.



4.2 Update Anomalies

By an atomic operation we shall mean one of the following:

(i) Inserting or deleting an entity

(ii) Inserting or deleting an instance in a relatiomship

(iii) Changing the value of an association or a property.
It is understood that inserting/deleting an entity means the simultaneous
specification/removal of the values of all its functions. For example, if
the entity set ﬁmp has properties: "Ename', "Age", and an association:
"Assigned", then inserting an employee means specifying his name, his
age and the department to which he is assigned.

By a side effect of an atomic update operation we mean either an
additional update required for preserving the integrity of the schema,
or a constraint on the order of insertion of another update. For example,
if Assigned is an association mapping Emp to Dept, then the deletion of a
department will require the deletion of all employees assigned to it.
Furthermore, before an employee can be inserted, the department to which
he is assigned must already exist in the database. A consequence of the
constraint in the order of insertion is that no cycle of associations can

A_’ssa.gned Dept and Dept—-»Mgr Emp

exist. For example, we cannot have Emp
both as associations, because then a department and its manager cannot
be inserted in either order without the integrity comstraint of the
association be violated, at least temporarily.

We observe that only update operations of the type: Inserting/Deleting
an entity have side effects. In addition to the side effects due to asso-
ciation, the deletion of an entity causes any instances of any relationship

in which it participates to be deleted.

4.3 An Example of Logical Design

Through an example, we hope to show that for the E-R model schema

-10-



design is simple, and the design decisions limited.

Suppose that our database concerns course-offerings, teaching-schedule
and class-enrollment. Clearly, the database describes '"students'", "courses"
and "professors" and these should correspond to entity sets. In additiom,
assume that dept is also an entity set. It is easy to list for each entity
set 'things" that describe the entities but are not themselves being de-
scribed in the database, and these will be the properties. Let's say we

have the following properties:

entity set properties

student regno, sname, class yr
professor ssno, pname, rank
course cno, title

dept dname, location

We may hesitate momentarily on one or two of the properties. For example,
should the '"ranks" be represented by an entity set? The answer is an oper-
ational one. It depends on whether the 'ranks" are themselves being de-
scribed in the database, e.g., by being given a salary for each rank.
For our example we assume that they are not, so that the collection of
all ranks is a value set and the correspondence of 'professor" to 'rank"
is a property, not an association.
Next, consider data that relate entities from different sets. Some

of these involve a pair of entity sets (i.e., binary), e.g.,

major (student, dept)

faculty (professor, dept)

chairman (dept, professor)

preq (course, course)

-11-



We need to decide for each of these whether it is a function. That is,
is it single—valuedAand complete in one of the two entity sets? For
example, must every student have a major-dept, and only one? Must every
professor be on the faculty of one énd only one department? The ones

that are functions can be identified as associations subject to the con- .

straint that no cycle of assocations can exist. Observe that we say "can
be identified" and not "must be." The designer is free to decide whether
the integrity constraints "single-valued" and "complete" are to be enforced
through implementation, and whether the update side effects that are con-
comitants of this enforcement are desirable. Let's say that for our ex-
ample, we decide to identify student Eiigi.dept and dept EEEEEEEE—professor
as associations, but not '"faculty" and "preq."

Next, we note that a "class" involves students, professors, and

courses. Let's tentatively denote this by a relationship
enrollment (course, professor, student).

However, by definition a relationship cannot have duplicate tuples. Hence,
as it stands, "enrollment' cannot represent the possibility that a student
repeats a course from the same professor. To circumvent this problem, we
introduce an additional entity set offering with properties: year, term,

time, and redefine the enrollment relationship as

1]

enrollment (course, professor, offering, student),

Finally, let grade be a property of enrollment, i.e., a grade-value is
assigned to each instance of enrollment.

Our final schema is given as follows:

-12-



entity set properties
student regno, sname, class yr
professor ssno, pname, rank
course cno, title
dept dname, location
offering year, term, time
associations: student _Efigf> dept
dept _EEEEEEEE>-professor
relationships: faculty (professor, dept)
prereq (course, course)

enrollment (course, professor offering, student)
with property: grade

4.4 Designing a Relational Schema

Our approach to designing a relational schema will be as follows:
first, we design a schema on the E-R model. Then, we shall find an al-
gorithm that maps the E-R schema into a relational schema so as to pre-

serve atomicity and side effects. We shall define an atomic operation

in a relational system as any operation that affects a single tuple.
Once we have a one-to-one correspondence in atomic operations between
the E-R and relational models, side effects, being defined in terms of
étomic operations, are automatically defined for the relatiomnal data
model.

The mapping rules for transforming an E-R schema into an anomaly-
free relational schema are exceedingly simple and are given as follows:

(4.4.1) Make sure that every entity set has a unique identifier. In-

troduce one if necessary. An identifier is a property of an

-13-



entity set such that the identifier-value of any entity can

never change. It is a surrogate for the entity. [CODD 79]

(4.4.2) For each entity set E, group its identifier, its properties "

and all associations of E in a single relation.

(4.4.3) Map each relationship R into a relationcIQ. The identifiers
of the entity sets participating in R are domains ofCIQ, as are
any properties of R.
Let's apply these rules to the example of 4.3.

First, we assign the following identifiers to the entity sets:

entity set identifier
student regno
professor eno

course cno

dept dno
offering class~-id

The relations that result from entity sets are given by:

relation domains

student regno, sname, class yr, major-dno
professor eno, pname, rank

course cno, title

dept dno, dname, location, chairman-eno
offering class-id year, term, time

The relations that result from relationship are as follows:

-14=



Bre

relation domain

faculty eno, dno

prereq cno, preg-cno

enrollment cno, eno, class-id, regno, grade

4.5 Designing a CODASYM-DBTG Schema

Our approach to designing a DBTG schema is similar tec the relational

case.

dere, an atomic update operation is defined as any operation that

affects a single record occurrence and its set participation. The map-

ping rules are given as follows:

(4.5.1)

(4.5.2)

(4.5.3)

(4.5.4)

Choose identifiers as in (4.4.1).

For each entity set E define a record type r(E) with the

properties of E as its data items.

For an association of El to E2 define a set type s with r(Ez)

as owner and r(El) as member. (r(EZ)____i__,.r(El)
For a relationship R(El,Ez,...En) define a "confluent hierarchy"

consisting of a record type r(R) and a set type Sy for each Ei

with r(Ei) as owner and r(R) as member.

r(Ey) r(E,) r(E)

r(R)

The properties of the relationship R (if any) are the only data items of

r(R).

(4.4.4)

All set types have Automatic/Manditory options for Insert/Delete.

Applying these rules for the example of 4.3 yields the following

-15-



DBTG schema

faculty
»
-7 =
3 -’ . . \\\\
studengi major ps chaiyman e professor
\\ dept
A &
;c\\fnrollment

7
PN

¢
offering

N\,

N \\
course T Bprereq

One improvement in the DBTG schema is possible with the additiom of

the following mapping rule:

(4.5.6) For a binary relationship R(El,Ez) which is single-valued in E

and has no property, the confluent hierarchy resulting from

(4.5.4) can be replaced by a single set type s(R)

r(El). s(R) .r(Ez)

with Manual/Optional on Insert/Delete for s(R).

Suppose that in our example the relationship faculty is single-

valued in professor. Then, (4.5.6) would change

faculty

A

d

dept d/// professor

~16~

1



into dept‘i o <.professor in the DBTG schema. The improvement

>

consists of not only a simplification of the schema, but also an implementa-
tion support for the integrity constraint "single-valued."

4.6 Schema Translation

Let us call a schema of either the relational or the DBTG type well-
designed if it results from applying the mapping rules of the last two
sections to a schema of the E-R type. The class of all well-designed
schemas does not comprise all legal schemas of the two types. Two ques-
tions naturally arise in this connection:

(a) What is the minimum semantic augmentation to the relational and

DBTG data model that is necessary in order for all well-designed

schemas to be characterizable in terms of the comnstructs of the

two respective models?

(b) Can the mappings of sections 4.4 and 4.5 be reversed, so that a well-
designed schema can be transformed back to the same E-R schema from

which it was derived?

If the answer to (b) is yes, then a reversible translation algorithm be-
tween well-designed schemas of the relational and DBTG types follows im-
mediately.

To find a characterization of well-designed schemas of the rela-
tional type, let us augment the semantics of the model by distinguishing
among three types of domains. We shall them them key, foreign-key, (fk
for short) and value domains. Consider the mapping rules in section 4.4.
An entity set E gives rise to a relation‘qpr), and we identify the identi-

fier of E as the key-domain of<12(E),its properties as value-domains,

and its associations as fk-domains. For example, the domains of the

"student" relation would be classified as follows:

-17-



key value value fk
student (regno, sname, class yr, major)
We note that the values of the key-~domain of a relation are in one-to-
one correspondence with the tuples of the relation.
A relationship R(El’EZ""En) gives rise to a relationcqz(R), and
the identifier of the entity sets Ei will be designated as fk~domains of

CI?, and any properties of R are designated as value-domains.

We can now characterize a well-designed schema of the relational type

as follows: A well-designed schema consists of relations of two types:

(i) E-type - A relation of E-type has one key domain and 0 or more

each of value and fk domains. Values of the key domain are unique,

(ii) R-type - A relation of R-type has no key domain, 2 or more fk do-

mains and 0 or more value domains.

It is obvious that we can now reverse the mapping given in section 4.4.

We observe that semantic augmentation of the relational model occurs
at only the lowest level, viz., domains. This distinction between E-re-
lations and R-relations follows automatically once the domains are class-
ified.

For the DBTG case, let us distinguish data items of two types: key
and value. The mapping rules of section 4.5 transform an entity set E
into a record type CIQ(E). This identifier of E maps into the key data-
item of <12(E), and the properties of E map into the value-data-items of

CZE(E). We shall call a record type containing a key a self-identified

record type. A relationship R is mzpped into a record type C--‘2(R) which
has no key-data~items and 0 or more value-data-items. These will be

called link record types. We shall call a set type total if it has

-18-

%
"‘\

f;c



automatic/mandatory rules for insertion/deletion, and partial if the
membership option is manual/optional. For a well-designed schema no
other combination is possible,
We can now characterize a well-designed DBTG schema as follows:
A DBTG schema is well-designed if and only if it has self-identified
and link records types, total and partial set types such that a link
record is the owner of no set, but the member of two or more total sets.
The mapping of an E-R schema into a well-designed DBTG schema can

now be reversed as follows:

(4.6.1) For each self-identified record type r, we define an entity set
E(r). The data items of r define the properties of E(r), and

the total sets of which r is a member define associations of r.

(4.6.2) For each link record type &, we define a relationship R(%).
The data items of % define the properties of R(2), and the
owners of the set of which % is a member define the partici-~

pating entity sets of R(%).

(4.6.3) For each partial set type s with owner o and member m, we de-
fine a binary relationship R(E(m), E(o)) that is single-valued

in E(m).

Direct schema-translation between relational and DBTG data models is
now straightforward save for the wrinkle that there is no provision in
the relational model for recognizing a single-valued binary relation-
ship that is not an association. We can make provision for such dis-
tinction in various ways, the simplest being to identify the single-
value entity set with a key-domain. The result, however, is not entirely

satisfactory. The basic problem is that in augmenting the semantics of

-19-



the relational model we have provided a means for recognizing the com-

"single-valued" and ‘'com-

bined integrity comstraint of the E-R model
plete" but not the two separately. Of course, we could have added suf-
ficient semantics to identify each one separately, but there is some
question as to whether it is worth doing.

We observe that the characterization of well-designed schemas re-
quires no augmentation of the semantics of the DBTG model. The concepts
introduced: 1link and self-identified record types, total and partial
set types, are defined in terms of constraints that already exist in the
model. In this sense the semantics of the DBTG model are equivalent to

that of the E~R model, except that the primitive constraints of the DBTG

model are less suitable for logical design.

-20-



the relational model we have provided a means for recognizing the com-
bined integrity constraint "single-valued" and "complete" but not the
two separately. Of course, we could have added sufficient semantics

to identify each one separately, but there is some question as to
whether it is worth doing.

We observe that the characterization of well-designed schemas re-~
quires no augmentation of the semantics of the DBTG model. The concepts
introduced: link and self-identified record types, total and partial
set types, are defined in terms of constructs that already exist in the
model. 1In this“sense the semantics of the DBTG model are equivalent to
that of the E-R model, except that the primitive constructs of the DBTG

model are less suitable for logical design.

REFERENCES

[BACH 73] Bachman, C. W., "The programmer as navigator." CACM 16, 11,
(Nov. 1973), pp. 653-658.

[BERN 76] Bernstein, P. A., "Synthesizing third normal form relatioms
from functional dependencies," Transactions on Database
Systems 1, 4 (Dec. 1976), pp. 277-298.

[CHEN 76] Chen, P. P., "The entity-relationship model - towards a
unifued view of data." Transactions on Database Systems
l, l (Maro 1976)) ppo 9-360

[CODD 70] Codd, E. F., "A relational model of data for large shared
cata banks." CACM 13, 6 (june 1970), pp. 377-387.

[CcODD 71] Codd, E. F., "Further normalization of the data base re-
lational model," Courant Computer Science Symposia 6,
Data Base Systems, Prentice Hall, New York (May 1971),
pp. 65-98.

[CODD 79] Codd, E. F., "Extending the data base relational model."
SIGMOD 79. Full paper to be published in CACM.

[DATE 77] Date, C. J., An Introduction to Database Systems, 2nd. Ed.,
Addison-Wesley, Reading, Mass. 1977.

-21~



[FAGI 77]

[WONG 78]

Fagin, R., '"The decomposition versus the synthetic approach
to relational database design." Proceedings 1977 Very Large
Data Bases Conference, 1977, pp. 441-446,

Wong, E., Katz, R. H., 'Design goals for relational and DBTG
databases," University of California, Berkeley, Electronics o
Research Laboratory Memorandum M78/89.

-7~



	Copyright notice 1979
	ERL-79-56

