
 

 

 

 

 

 

 

 

 

Copyright © 1979, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



HETEROGENEOUS DATA MODELS - PART I SEMANTIC ISSUES

by

R. H. Katz and E. Wong

Memorandum No. UCB/ERL M79/56

21 August 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ABSTRACT

In this two-part report we shall compare several widely used data

models using a number of operational criteria. There being no one model

that is uniformly superior, we shall consider ways of dealing with hetero

geneous data models in a single system. The problems that must be dealt

with include schema conversion and program decompilation.

Research sponsored by the Army Research Office Grant DAAG29-78-G-0186,
the Air Force Office of Scientific Research Grant 78-3596 and the
Honeywell Corporation.



1. INTRODUCTION

Recent interest in data models has undertaken a subtle change in

emphasis, from one on the comparative advantages of different types to

a recognition that diversity and heterogeneity in data models may be

both necessary and desirable. Two important technological developments

have been responsible for this shift. First, in a distributed database

system, there may be a need to integrate existing local systems that em

ploy different data models, and a need to adopt a global model that is

different from the local models in order to achieve communication ef

ficiency. Second, there is a growing recognition that the different

purposes to be served by a data model cannot be simultaneously attained

by a data model of a single type. The latter consideration has led to

several proposals for multi-schema database architecture.

While the terms "data model" and "schema" are often used interchange

ably, we think it is useful to make a consistent distinction. We shall

use the term "data model" to mean a generic type, consisting of a collec

tion of data object types, and "schema" to mean a specific set of data

objects. For example, a "relational data model" consists of the types

"domains" and "relations", while the following is an example of a re

lational schema:

professor (pname, rank, dept)

student (sno, sname, major)

course (cno, title, prereq, dept)

In this report our objective is threefold:

(1) To articulate the operational purposes that are to be served by a

data model.

2) To gain a full understanding of the differences and similarities

-1-



between different data model types,

(3) To find mapping algorithms that would support different model types

in the same system while preserving the underlying semantics. In

particular, we think that this means developing the following capa

bilities.

(a) Schema Conversion - An ability to convert a schema of one type

into a schema of another type without loss of semantic infor

mation. The test for information preservation should be re-

versability.

(b) Program Conversion - An ability to convert a program expressed

in one data manipulation language into one of another DML, even

when the source is a procedural language and the target is a

specification language.

The remainder of this report will be organized along the lines of

these objectives. First, we shall consider the principal operational

goals of a data model. Next, we shall briefly consider some major data

models and their relative strengths and weaknesses. Using "update con

sistency" as a focus, we shall propose a data model for the purpose of

logical design. The design model will then serve to explicate the seman

tics of both the relational data model and the network model of CODASYL-DBTG.

We shall present mapping rules for converting a design schema into a

schema of either the relational or the DBTG type so as to be free of up

date anomalies. We shall then augment the semantics of both DBTG and re

lational data models to make the mapping reversible. In the process, a

DBTG-relational schema conversion algorithm is thus obtained.

The introduction of a design data model provides a sufficient semantic

bridge between the DBTG and relational data models to render reversible

schema conversion possible. However, it is not sufficient to permit

-2-



the conversion of a program expressed in DBTG-DML into one expressed in

any of the non-procedural relational languages. Here, more than semantic

translation is involved, and a process of decompilation is necessary. To

make decompilation possible, we need yet another bridge. For that purpose

we shall introduce an "access-path data model." The idea here is to de

fine atomic units that can be matched to low level DML operations on the

one hand, and combined through simple syntactical rules into high-level

operators on the other.

This report will appear in two parts. Part I will deal with all

semantic aspects of data models, and Part II will introduce access paths

and consider program translation. Some of the material in Part I also

appears in [Wong 78].

2. OPERATIONAL GOALS OF DATA MODELS

The role of all data models is to take part in the interface between

application programs and the stored data. As such, there are some broad

objectives that a data model must serve.

(a) It must be a good interface for the data manipulation. Two

issues are involved here. First, the constructs of the model should sup

port, naturally and easily, high-level operators, i.e., operators that

specify in a general way subsets of the database. Second, there should

be closure. This means that the- result of an operation can be operated

on once again so that data-manipulation operations can be concantenated

to yield an algebraic structure. Set-at-a-time operators and closure are

essential to a powerful non-procedural data manipulation language. In

addition to providing ease of programming, such a language also contri

butes to program longevity. As long as' the interpreter or compiler con

tinues to be optimized, the program will not only run, but run efficiently

as storage structure changes.

(b) A data model must be a good interface for logical design.

-3-



Specifically, it should facilitate the design of schemas that are free

of update anomalies and support flexible growth and change, The issue

here is primarily one of semantics. There must be sufficient semantics

in the data model to allow the designer to control atomicity and side

effects of update, and to keep apart in the schema components that are

independent semantic units.

(c) A data model must be a good interface for storage design. There

are several issues here. First, the constructs of the data model should

lend themselves to simple implementation. In particular, any integrity

constraint associated with the data construct should be supported by im

plementation without requiring procedural verification on updates. The

data model should also be a vehicle for conveying access requirements,

not at a detailed quantitative level, but at a structural level.

It will turn out that a data model that achieves one or another of

these operational goals will also attain other subsidiary objectives.

For example, a model suitable for logical design will have enough seman

tics for it to be a good vehicle for schema translation. A model that is

particularly good for expressing access requirements will also be a good

vehicle for re-expressing and aggregating the record-at-a-time operations

of a procedural language into higher level operators. These capabilities,

essential to a system supporting heterogeneous data models, are enhanced

by an elucidation of the basic goals served by a data model, and how they

are served by models of different types.

3. DATA MODELS OF THE MAJOR TYPES

3.1 Relational [CODD 70]

Let D., D«,...,D be non-empty sets, not necessarily distinct. A

tuple (r,,r2,...r ) is an ordered collection of elements with r. coming

from D., i = l,2,...,n. A relation R is any collection of distinct tuples,

-4-



and the D.fs are called the domains of R. A database of the relational

type is a collection of time-varying relations in which the tuples of

each relation change as it gets updated but the domains of the relations

do not change (until the database is redesigned). Data definition for a

relational database is given by a schema which specifies for each rela

tion its name and domains, and defines the domains. The domain defini

tion, having nothing to do with the data model, will be omitted from all

our examples.

The only data object types in a relational model are sets that serve

as domains and relations. In nearly all proposed relational data manipu

lation languages, the only objects of data manipulation are relations.

Each operator takes one or more relations and produces a new relation,

which can be operated on again. Clearly, the operators are high level

and achieve closure. As a result, a great deal of expressive power and

data independence is achieved.

The semantic sparsity that makes the relational model so good for

data manipulation also makes it a poor interface for logical design.

It has long been known that one can easily arrive at a relational schema

that poses update problems, and it is not possible to state, in terms of

the semantics of the relational model, rules for design schemas that are

free of these update anomalies. One approach has been to augment the se

mantics of the relational model with "functional dependencies" and define

"normal forms" in terms of these. The resulting theory is complicated

and not without inconsistencies. [CODD 71, BERN 76, FAGI 77]. Most prac

titioners find the theory difficult to understand, and not usable as a tool

for design.

3.2 CODASYL-DBTG (Network) [DATE 77]

The principal constraints here are records and sets. In a simplified

view, a record is a tuple of values but there is no restriction that the

-5-



same tuple does not recur. Hence, there may be many record occurrences

with the same values, and a record occurrence is not self-identified. A

record type is defined by specifying its name and the names of the sets

from which the data values come (called data items).

A set type (again somewhat simplified) is defined by an ordered pair

of record types, called owner and member respectively. A set of a given

type consists of one and only one occurrence of the owner type and

zero or more occurrences of the number type. Presumably, two record oc

currences with identical data-item values will have different set partici

pation somewhere, for otherwise they would represent identical data.

The existing DML (data manipulation language) for systems of the

CODASYL-DBTG type involves record-at-a-time operations. The operations

involve navigating through the database from record to record using both

their data-item values and their set connections.[BACH 73] The language

must be considered both low-level and procedural. The programs are general

ly much longer than the equivalent relational programs, and their execution

efficiency is strongly affected by any changes in implementation.

A number of other features exist in a DBTG schema that are either

implementation related or update related. In particular, deft use of

the "set membership options" on INSERT/DELETE is essential to good schema

design, but the constructs of the model do not provide a clear conceptual

framework for logical design. It is easy to arrive at reasonable schemas

that are not anomaly-free, and it is difficult to give general design rules

for avoiding them.

As an end product of evolution from extensive use, the DBTG model is

rather good as a storage interface. The structures are easily implemented

and most of the integrity constants enjoy support through implementation.

Furthermore, a DBTG schema is also a good vehicle for expressing user

-6-



access requirements.

3.3 Entity-Relationship Model [CHEN 76]

Perhaps the most natural way of viewing data is as descriptions of

objects: things, people, places, etc. Collectively, they will be refer

red to as entities. We begin with the following constructs: entity sets

which are sets of objects to be described, and value sets whose elements

are used to describe entities.. The simplest description is through pro

perties. We define a property as a function mapping an entity set into

a value set. A relationship is a relation (in the sense previously de

fined) whose domains are entity sets. These are the basic constructs

of the E-R model. The following is an example of a schema of the E-R

type:

entity sets: Emp, Dept

properties: Emp •* Ename, Salary

Dept + Dname, Floor

relationship: Assignment (Emp, Dept)

Manager (Dept, Emp)

There are integrity constraints associated with many relationships

that need to be recognized by the semantics of the data model. Two of

these: single-valued and complete are of particular operational impor

tance. A relationship R(E]L,E2,... ,En) is said to be single-valued in E1

if each element of E1 occurs at most once in R, and complete in E- if

each element of E1 occurs at least once. A binary relationship (i.e.,

one with two domains) R(E1,E2) that is both single-valued and complete

in E1 is a function mapping E1 into E2> Such a relationship will be dis

tinguished and identified as a new construct that we shall call an associa-

_tipn of E1 to E2 and denote by E1 -*- E2» An association of E, to E2 re

quires that a unique element in E2 be associated with every element in

-7-



Er and represents a tight coupling of E± to E^ For example, let E be

Emp, E2 be Dept and the association be Assignment. Then, an employee is

assigned to a unique department and no employee can exist without being

assigned to a department.

It is useful to define "property of relationship" as a construct.

For example, consider the relationship enroll (student, course). For

each instance of the relationship, we may have "grade" as a property.

It is also possible to add relationship of relationships, but to do so

makes the model unnecessarily complex. Situations where such a construct

might be appropriate can always be modelled by introducing an additional

entity set, and doing so has no important operational disadvantage that

we know of.

As we shall attempt to demonstrate in a later section, the E-R model

is an ideal data model for logical design, because design decisions are

few and the consequences of design choices are exceedingly clear.

As an interface for data manipulation the E-R model is relatively

undeveloped. There have been data manipulation languages proposed for

it, but these are rather simple variants of the relational languages,

without specific attention being given to the semantics of the E-R

model. A major goal in designing a data manipulation language for it

should be to make every syntactically correct query a meaningful one.

3.4 Summary

We see that the relative merits and elements of data models depend

on the goal. What is good for one thing is far from good for another.

Heterogeneity, then, is not only necessary in certain circumstances, but

is desirable and indeed essential for a full understanding of the differ

ent roles that data models play.

-8-



4. LOGICAL DESIGN

4.1 Why is the E-R Model Ideal for Logical Design?

I think the answer is multi-faceted.

(a) Design decisions are few

Identifying objects in a schema in most cases is both

natural and automatic. There is really only one design de

cision that is operationally important, and it is in the choice

of associations.

(b) The consequences of a design choice are clear

The principal consequences of choosing to identify a binary

relationship as an association is to cause certain side effects
i

on insertions and deletions. If, for example, "assigned" is an

association of Emp to Dept, then deleting a department will force

the deletion of every employee assigned to that department.

Further, no employee can be inserted without the department to

which he is assigned already having been inserted.

(c) Update anomalies are well understood

We shall adopt "no update anomalies" as the primary goal

for logical design. By update anomalies we mean either

fragmentation of an atomic operation

or

unplanned side effects.

To make these ideas clear requires atomicity and side effects to be de

fined. These concepts are simply and naturally defined in terms of the

constructs of the E-R Model.

-9-



4.2 Update Anomalies

By an atomic operation we shall mean one of the following:

(i) Inserting or deleting an entity

(ii) Inserting or deleting an instance in a relationship

(iii) Changing the value of an association or a property.

It is understood that inserting/deleting an entity means the simultaneous

specification/removal of the values of all its functions, For example, if

the entity set Emp has properties: "Ename", "Age", and an association:

"Assigned", then inserting an employee means specifying his name, his

age and the department to which he is assigned.

By a side effect of an atomic update operation we mean either an

additional update required for preserving the integrity of the schema,

or a constraint on the order of insertion of another update. For example,

if Assigned is an association mapping Emp to Dept, then the deletion of a

department will require the deletion of all employees assigned to it.

Furthermore, before an employee can be inserted, the department to which

he is assigned must already exist in the database. A consequence of the

constraint in the order of insertion is that no cycle of associations can

exist. For example, we cannot have Emp ^n , Dept and Dept " > Emp

both as associations, because then a department and its manager cannot

be inserted in either order without the integrity constraint of the

association be violated, at least temporarily.

We observe that only update operations of the type: Inserting/Deleting

an entity have side effects. In addition to the side effects due to asso

ciation, the deletion of an entity causes any instances of any relationship

in which it participates to be deleted.

4.3 An Example of Logical Design

Through an example, we hope to show that for the E-R model schema

-10-



design is simple, and the design decisions limited.

Suppose that our database concerns course-offerings, teaching-schedule

and class-enrollment. Clearly, the database describes "students", "courses"

and "professors" and these should correspond to entity sets. In addition,

assume that dept is also an entity set. It is easy to list for each entity

set "things" that describe the entities but are not themselves being de

scribed in the database, and these will be the properties. Let's say we

have the following properties:

entity set

student

professor

course

dept

i

properties

regno, sname, class yr

ssno, pname, rank

cno, title

dname, location

We may hesitate momentarily on one or two of the properties. For example,

should the "ranks" be represented by an entity set? The answer is an oper

ational one. It depends on whether the "ranks" are themselves being de

scribed in the database, e.g., by being given a salary for each rank.

For our example we assume that they are not, so that the collection of

all ranks is a value set and the correspondence of "professor" to "rank"

is a property, not an association.

Next, consider data that relate entities from different sets. Some

of these involve a pair of entity sets (i.e., binary), e.g.,

major (student, dept)

faculty (professor, dept)

chairman (dept, professor)

preq (course, course)

-11-



We need to decide for each of these whether it is a function. That is,

is it single-valued and complete in one of the two entity sets? For

example, must every student have a major-dept, and only one? Must every

professor be on the faculty of one and only one department? The ones

that are functions can be identified as associations subject to the con

straint that no cycle of assocations can exist. Observe that we say "can

be identified" and not "must be." The designer is free to decide whether

the integrity constraints "single-valued" and "complete" are to be enforced

through implementation, and whether the update side effects that are con

comitants of this enforcement are desirable. Let's say that for our ex

ample, we decide to identify student majof dept and dept c a1"11^ professor

as associations, but not "faculty" and "preq."

Next, we note that a "class" involves students, professors, and

courses. Let's tentatively denote this by a relationship

enrollment (course, professor, student).

However, by definition a relationship cannot have duplicate tuples. Hence,

as it stands, "enrollment" cannot represent the possibility that a student

repeats a course from the same professor. To circumvent this problem, we

introduce an additional entity set offering with properties: year, term,

time, and redefine the enrollment relationship as

enrollment (course, professor, offering, student).

Finally, let grade be a property of enrollment, i.e., a grade-value is

assigned to each instance of enrollment.

Our final schema is given as follows:

-12-



entity set properties

student regno, sname, class yr

professor ssno, pname, rank

course cno, title

dept dname, location

offering year, term, time

associations: student » dept

, _ chairman -
dept *- professor

relationships: faculty (professor, dept)

prereq (course, course)

enrollment (course, professor offering, student)

with property: grade

4.4 Designing a Relational Schema

Our approach to designing a relational schema will be as follows:

first, we design a schema on the E-R model. Then, we shall find an al

gorithm that maps the E-R schema into a relational schema so as to pre

serve atomicity and side effects. We shall define an atomic operation

in a relational system as any operation that affects a single tuple.

Once we have a one-to-one correspondence in atomic operations between

the E-R and relational models, side effects, being defined in terms of

atomic operations, are automatically defined for the relational data

model.

The mapping rules for transforming an E-R schema into an anomaly-

free relational schema are exceedingly simple and are given as follows:

(4.4.1) Make sure that every entity set has a unique identifier. In

troduce one if necessary. An identifier is a property of an

-13-



entity set such that the identifier-value of any entity can

never change. It is a surrogate for the entity. [CODD 79]

(4.4.2) For each entity set E, group its identifier, its properties

and all associations of E in a single relation.

(4.4.3) Map each relationship R into a relationH?. The identifiers

of the entity sets participating in R are domains of H2, as are

any properties of R.

Let's apply these rules to the example of 4.3.

First, we assign the following identifiers to the entity sets:

entity set identifier

student regno

professor eno

course cno

dept dno

offering class-id

The relations that result from entity sets are given by:

relation domains

student regno, sname, class yr, major-dno

professor eno, pname, rank

course cno, title

dept dno, dname, location, chairman-eno

offering class-id year, term, time

The relations that result from relationship are as follows

-14-



relation domain

faculty eno, dno

prereq cno, preq-cno

enrollment cno, eno, class-id, regno, grade

4.5 Designing a CODASYM-DBTG Schema

Our approach to designing a DBTG schema is similar to the relational

case. Here, an atomic update operation is defined as any operation that

affects a single record occurrence and its set participation. The map

ping rules are given as follows:

(4.5.1) Choose identifiers as in (4.4.1).

(4.5.2) For each entity set E define a record type r(E) with the

properties of E as its data items.

(4.5.3) For an association of E- to E2 define a set type s with r(E„)

as owner and r(E-) as member. (r(E«) ^r(Ex)

(4.5.4) For a relationship R(E1,E2,...E ) define a "confluent hierarchy"

consisting of a record type r(R) and a set type s. for each E.

with r(E.) as owner and r(R) as member.

r(E1) r(E0)

r(R)

The properties of the relationship R (if any) are the only data items of

r(R).

(4.4.4) All set types have Automatic/Manditory options for Insert/Delete,

Applying these rules for the example of 4.3 yields the following

-15-



DBTG schema

faculty

student maior »!.__• ^^iP-l. * chapman ^ professor
dept

*. enrollment

offering cou^sT * * Prere<*

One improvement in the DBTG schema is possible with the addition of

the following mapping rule:

(4.5.6) For a binary relationship R(E ,E2) which is single-valued in E.

and has no property, the confluent hierarchy resulting from

(4.5.4) can be replaced by a single set type s(R)

r<Ei>. iSS> .r(V

with Manual/Optional on Insert/Delete for s(R).

Suppose that in our example the relationship faculty is single-

valued in professor. Then, (4.5.6) would change

faculty

dept «r \- professor

-16-



into dept# ^ #professor in the DBTG schema. The improvement

consists of not only a simplification of the schema, but also an implementa

tion support for the integrity constraint "single-valued."

4.6 Schema Translation

Let us call a schema of either the relational or the DBTG type well-

designed if it results from applying the mapping rules of the last two

sections to a schema of the E-R type. The class of all well-designed

schemas does not comprise all legal schemas of the two types. Two ques

tions naturally arise in this connection:

(a) What is the minimum semantic augmentation to the relational and

DBTG data model that is necessary in order for all well-designed

schemas to be characterizable in terms of the constructs of the

two respective models?

(b) Can the mappings of sections 4.4 and 4.5 be reversed, so that a well-

designed schema can be transformed back to the same E-R schema from

which it was derived?

If the answer to (b) is yes, then a reversible translation algorithm be

tween well-designed schemas of the relational and DBTG types follows im

mediately.

To find a characterization of well-designed schemas of the rela

tional type, let us augment the semantics of the model by distinguishing

among three types of domains. We shall them them key, foreign-key, (fk

for short) and value domains. Consider the mapping rules in section 4.4.

An entity set E gives rise to a relation ^Q(E), and we identify the identi

fier of E as the key-domain ofSp (E), its properties as value-domains,

and its associations as fk-domains. For example, the domains of the

"student" relation would be classified as follows:

-17-



key value value fk
student (regno, sname, class yr, major)

We note that the values of the key-domain of a relation are in one-to-

one correspondence with the tuples of the relation.

A relationship R(E-,E2,...E )gives rise to arelation 92CR) >and

the identifier of the entity sets E. will be designated as fk^domains of

he , and any properties of R are designated as value-domains.

We can now characterize a well-designed schema of the relational type

as follows: A well-designed schema consists of relations of two types:

(i) E-type - A relation of E-type has one key domain and 0 or more

each of value and fk domains. Values of the key domain are unique,

(ii) R-type - A relation of R-type has no key domain, 2 or more fk do

mains and 0 or more value domains.

It is obvious that we can now reverse the mapping given in section 4.4.

We observe that semantic augmentation of the relational model occurs

at only the lowest level, viz., domains. This distinction between E-re-

lations and R-relations follows automatically once the domains are class

ified.

For the DBTG case, let us distinguish data items of two types: key

and value. The mapping rules of section 4.5 transform an entity set E

into a record type 92 (E). This identifier of E maps into the key data-

item of ^(E), and the properties of E map into the value-data-items of

92(E)' We shall call a record type containing a key a self-identified

record type. A relationship R is mapped into a record type 92(R) which

has no key-data-items and 0 or more value-data-items. These will be

called link record types. We shall call a set type total if it has

-18-



automatic/mandatory rules for insertion/deletion, and partial if the

membership option is manual/optional. For a well-designed schema no

other combination is possible.

We can now characterize a well-designed DBTG schema as follows:

A DBTG schema is well-designed if and only if it has self-identified

and link records types, total and partial set types such that a link

record is the owner of no set, but the member of two or more total sets.

The mapping of an E-R schema into a well-designed DBTG schema can

now be reversed as follows:

(4.6.1) For each self-identified record type r, we define an entity set

E(r). The data items of r define the properties of E(r), and

the total sets of which r is a member define associations of r.

(4.6.2) For each link record type I, we define a relationship R(£).

The data items of I define the properties of R(£), and the

owners of the set of which £ is a member define the partici

pating entity sets of R(£).

(4.6.3) For each partial set type s with owner o and member m, we de

fine a binary relationship R(E(m), E(o)) that is single-valued

in E(m).

Direct schema-translation between relational and DBTG data models is

now straightforward save for the wrinkle that there is no provision in

the relational model for recognizing a single-valued binary relation

ship that is not an association. We can make provision for such dis

tinction in various ways, the simplest being to identify the single-

value entity set with a key-domain. The result, however, is not entirely

satisfactory. The basic problem is that in augmenting the semantics of

-19-



the relational model we have provided a means for recognizing the com

bined integrity constraint of the E-R model "single-valued11 and "com

plete" but not the two separately. Of course, we could have added suf

ficient semantics to identify each one separately, but there is some

question as to whether it is worth doing.

We observe that the characterization of well-designed schemas re

quires no augmentation of the semantics of the DBTG model. The concepts

introduced: link and self-identified record types, total and partial

set types, are defined in terms of constraints that already exist in the

model. In this sense the semantics of the DBTG model are equivalent to

that of the E-R model, except that the primitive constraints of the DBTG

model are less suitable for logical design.

-20-



the relational model we have provided a means for recognizing the com

bined integrity constraint "single-valued" and "complete" but not the

two separately. Of course, we could have added sufficient semantics

to identify each one separately, but there is some question as to

•»? whether it is worth doing.

We observe that the characterization of well-designed schemas re-

r quires no augmentation of the semantics of the DBTG model. The concepts

introduced: link and self-identified record types, total and partial

set types, are defined in terms of constructs that already exist in the

model. In this sense the semantics of the DBTG model are equivalent to

that of the E-R model, except that the primitive constructs of the DBTG

model are less suitable for logical design.

REFERENCES

[BACH 73] Bachman, C. W., "The programmer as navigator." CACM 16, 11,
(Nov. 1973), pp. 653-658.

[BERN 76] Bernstein, P. A., "Synthesizing third normal form, relations
from functional dependencies," Transactions on Database
Systems 1, 4 (Dec. 1976), pp. 277-298.

[CHEN 76] Chen, P. P., "The entity-relationship model - towards a
unifued view of data." Transactions on Database Systems
1, 1 (Mar. 1976), pp. 9-36.

[CODD 70] Codd, E. F., "A relational model of data for large shared
cata banks." CACM 13, 6 (June 1970), pp. 377-387.

[CODD 71] Codd, E. F., "Further normalization of the data base re
lational model," Courant Computer Science Symposia 6,
Data Base Systems, Prentice Hall, New York (May 1971),
pp. 65-98.

r [CODD 79] Codd, E. F., "Extending the data base relational model."
SIGMOD 79. Full paper to be published in CACM.

[DATE 77] Date, C. J., An Introduction to Database Systems, 2nd. Ed.,
Addison-Wesley, Reading, Mass. 1977.

-21-



[FAGI 77] Fagin, R., "The decomposition versus the synthetic approach
to relational database design." Proceedings 1977 Very Large
Data Bases Conference, 1977, pp. 441-446.

[WONG 78] Wong, E., Katz, R. H., "Design goals for relational and DBTG
databases," University of California, Berkeley, Electronics
Research Laboratory Memorandum M78/89.

-22-

!


	Copyright notice 1979
	ERL-79-56

