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I Abstract - A model of disturbances affecting power
t'systems is proposed and linearized models of the pre-
;and post-disturbance dynamics are derived. These are
'used to study two topics: coherency and near coherency
of a group of generators under multiple disturbances,
•and characterization of the alert region of the stnLe
space. The techniques used are motivated by the geome
tric theory of linear systems.

1. INTRODUCTION

1 We propose a
bances affecting
derive pre- and
around a base-case

model of some of the typical distur-
an interconnected power system and
post-disturbance models linearized
solution. These models are used to

!propose a coherency identification method and a charac
terization of the alert region. The analysis is based
•on the geometric theory for linear systems.
' Security analysis is generally developed for a
jspeeified portion of an interconnected power system,
called the internal or study system and which is often
.coincident with the domain of a particular operating
utility, while details of the remainder or external
portion of the system are considered only to the extent
that they affect the study system. The external sys
tem is approximated by an "equivalent" of lower dimen
sion, the aim is to realize valuable reduction in com
putational effort, and possibly in information require
ments, without introducing an intolerable loss in
'accuracy. For purposes of transient stability analysis
one seeks a "dynamic equivalent" that is, an equiva
lent system of lower order which nevertheless accura
tely reflects the short term impact of the external
system (see, for example, [4], [5]).

The two approaches to the construction of dynamic
equivalents which have been most developed are the
'modal reduction method [18] and the coherency method
[10,13,22]. We shall be concerned with the latter.
Both approaches use a linearized model to approximate
the behavior of a nonlinear power system model in the
:neighborhood of a base-case solution. (Such a linear
ized model is presented in the next section.) The co
herency method is founded on the empirical observation
that, following a disturbance (line or generating unit
outage or sudden change in load), certain groups of
generators "swing together," that is, the generators in
each group maintain nearly constant angular differences
with each other. Each such coherent group can then be
replaced by a single bus. The objective of the method
is, therefore, to identify generators which are coher
ent with respect to single or multiple disturbances.
The case of a single disturbance has been studied
notably by Lee and Schweppe [10], Podmore [13], and by
Wu and Narasimhamurthy [22]. In [10] a method for

recognizing coherency is suggested based on the heuris
tic notions of electrical distance and symmetry, while
[13] suggests examination for coherence within the
solution obtained by numerical integration of the
linearized model.

A mathematically rigorous necessary and sufficient
condition for identifying strict coherency is presented
in [22]. (Strict coherence means that the post-fault
angular differences of generators in a coherent group
are strictly constant.) Besides the fact that this
condition is developed only for a single disturbance it
is not useful for identifying "near" coherency. The
first objective of this paper is to remedy these two
deficiencies. In Section 3 we characterize strict

coherence for multiple disturbances and in Section A
the characterization is extended to near coherency.
Furthermore we indicate algorithms for checking strict
coherency which may be more suitable than the one pro
posed in [22].

Starting with the fundamental work of Dyliacco [6]
and with significant clarification and elaboration by
Debs and Benson [7], and Fink and Carlsen [8], discus
sion of security evaluation and emergency control is
usually posed in terms of a qualitative partitioning
of the state space as shown in Figure 3. In particular
the alert or insecure state indicates reductions in

reserve margins and an increased probability of distur
bance which could result in violation of system inequa
lity constraints such as the power-carrying capacity of
a line or the generating capacity of a unit. The use
fulness of this state description still remains heuris
tic, however, and most.of the literature proposes ad
hoc measures of security evaluation, while the very
ambitious model of Blankenship and Fink [2] remains
analytically intractable. The second objective of the
paper is to propose a characterization of the alert
region which is closer in spirit to earlier formula
tions in that it focuses on a deterministic evaluation

of contingencies. The basic idea is this: We linear
ize the model around a base-case solution at which one

or more lines and units are operating close to capacity
and we consider one or more potential disturbances. We
say that the system is in the alert state (with respect
to the potential disturbances) if there does not exist
any feedback law which isolates the lines and units
under study from the disturbances. While the defini
tion has two major deficiencies, relying on a linear
ized analysis and ignoring probabilistic considera
tions, the characterization seems computationally rea
sonable and it does take into account operating condi
tions. Section 5 is devoted to it. Some suggestions
for future work are given in Section 6. The proofs are
collected in the Appendix.

2. LINEARIZED MODEL OF PRE- AND POST-

DISTURBANCE DYNAMICS

The model used for coherency recognition as well
as for the characterization of the alert region has
been used previously [13,22]. We introduce it below,
making explicit the various assumptions.

2.1. Modeling Assumptions

Al. (Synchronous generators). The classical swing
equation model represents the dynamics of a synchronous
generator on departure from equilibrium. That is, for



the ith generator,

ILAi +DjAu^ - APMt - APCj (2.1)

(2.2)A6 - 2nf_A(iii,

where

M.(D.) - moment of Inertia (dumping constant),

Ati.(A6.) • departure of spued (rotor angle) from

equilibrium value,

APM.(APG.) - departure of mechanical input (electrical

output) power

t • synchronous frequency of power system.

A2. (Decoupled load flow). The power flow, in the
network of load and generator buses is modeled by
linearized load flow equations in which real power and
phase angles are decoupled' from reactive power and
voltage magnitude. (This assumption is valid for trans
mission systems with high reactance to resistance ratios
[16].) „ o

Let APG G rS and APL G R be the vectors of real
power injections into the g generator and I load buses
respectively, with injections into the network being
positive by convention. Let 6€ r8 and 8G R* respec
tively represent the vector of phase angles at the
generator and load buses. Then

APG

APL

Vu

•a V

"ts V

A6

- H

A6

AG A6

L J L «J

(2.3)

where Hog, Hgt etc. are matrices of appropriate dimen-
The mai

example,

'Rfi* "KB. .. -
sions. The matrix entries are partial derivatives, for

apGj
~36" <Vu

3PLd
~To\

(2.4)

the derivatives being evaluated at the equilibrium
angle of the jth generator, 6j(0).

In the special case when the transmission line
resistances are neglected, H is particularly simple,

(H )44-SY8f4cos(«.(0)-«.(0))+Sv?Jcos(6 (0)-0 (0)),
; gg it j^ ij 1 J i^j IK X K

(2.5)

(2.6)

(2.7)

(H^y «Yg cos(61(0)-6j(0)), i*j.

VikBYSCOfl(6i(0)-°K(0))'
88. Y8.1 are the admittances of the lines
ij .ik

connecting the ith generator bus to the jth generator
and the kth load buses respectively. Observe that in
.this special case H is a symmetric matrix of dimension
g + 4.
i A3. (Disturbance model). Three kinds of distur
bances are modeled, namely, (i) load shedding or gain
ing, (ii) generator dropping* and (iii) line switching.
jThese are discussed in turn below.
! (i) This is described as a change, APL, in the
•vector of load power deviations, so that a change in
'the ith load is modeled as

etc. Here Y

APL(t) » (0,...,0,1,....0) q(t), t > 0
t

i

where 1 appears in the ith position, T denotes trans
pose, and q(t) is a bounded rcnl-valued function. For
example, q(t) may be a switching function, q(0) » 0
and q(t) rising monotonically to a non-zero value de
pending upon the characteristics of tue circuit break
ers that may have tripped cams lug load shedding.

(ii) Generator dropping can be modeled as a change
in load as well. To do this we regard each generator
as a bus behind a transient reactance so that each
generator bus is coupled to one load bus only, and there*
are no interconnections between generator buses. Then,
the outage of the ith generator can be described by an
increase in the load at, say, the kth load bus which is
connected to the ith generator (through its transient
reactance). This increase, APLk(t), t > 0, should
equal the ith generator's pre-fault power input. The
resulting dynamics of the ith generator are of course
neglected. The validity of the proposed model can be
seen from the fact that in the view of the remaining
network the dropping of the ith generator is equivalent
to an increase in the load at the kth bus.

(iii) The switching of a line connecting load
buses i and j is described as a change in load at these
buses of the amount of power being carried by the line
at the time of the fault, t » 0, and a change in the
matrix H4A of (2.3). For example, in the case of purely
reactive lines,

APL -(0 1,...,-1,...,0)TY^ sin(8 (0)-6 (0))q(t),
ij

while the post-disturbance matrix is

H«i« *M

i •*•

5 -»

-ej(o)).

o

i

-i

[0 1 -1,• •.0]Y ,cos(6 (0)
+ t J
i J

(2.8)

The function q(t), t > 0 is, as before, a switching
function with q(0) = 0 and q(t) •*• 1 as t •* ».

2.2. A Unified Model After a Single Disturbance

Continuing (2.1), (2.2), (2.3) and the preceding
discussion gives the following linear model after a
single disturbance has occurred,

Au

A6

0

0

-irt) 0

2WfQI 0

gg

.-1
-M

0

-I

0

0

0

V

ailUL"w J

q(t):

Act)
r-riM i

0

Ad + 0 PM(t) + 0

APG 0 0

„A9 . _°- ,d.

(2.9)

Here Au, A6 are in R8, M and D are g-dimensional dia- ,
gonal matrices with entries Mi,Di, APM ° (APMx,...., **
APMg)T, q(t) is real-valued and, as above,

with v-0 and d» (0 1,...,0)T for a load change



or generator outage, whuroaii n •/ 0 and d u (0,...,1,
I...-1 0)T for line switching.
j Ob.se.rve that (2.9) consists of 3g + I equations of
,which I + g are algubrnic which we assume are. solvable.
! M.« (Solvability of linearized load flow equa
tions). The £ dimensional matrices II' and H are

11

1invertible.

For the case of lossless lines, the nature of this
assumption is clarified by the. following result of
Tavora and Smith [17].
! Proposition 2.1. Suppose the pre-distnnce equili
brium values 0^(0), 6.(0) satisfy the following condi
tions:

'|e±(0) -6j<0)| <\ when Y88 r0,

\\*±W) - ^(0)1 if when

1^(0) -6j(0)| <| when yJ* t 0.

Then H^ is invertible if and only if there exists no
)cutset of zero elements in the subnetwork of load buses
;formed by replacing each line of the original network
by its incremental capacity to deliver power, i.e.,
the line between i and j is replaced by Yj4 cos(0.(0)
s-MO)).

Proposition 2.2. (Linearized model after single
disturbance.) Under A4, Eq. (2.9) can be simplified
'to yield

Au A' Au + BAPM(t) + e'q(t) (2.10)

A6 A6

:where

-m^d !im-1:o] -I

0

8*

11

-1

gg

*g (2.11)A'

2wfox ;

-i (2.12)

[m-1!o] -i In
T-ir^n

8*

0 H
u

(2.13)

Proof. Follows using__^ straightforward algebraic
\manipulations. n

The matrix A' and the vector e' are primed to
emphasize that they can be computed only with post-
fault data, namely H^. The next proposition relates
them to their pre-fault values A, e which are defined
by replacing H£A by its pre-fault value Hai. To guar
antee the nontriviality of e' we make the following
assumption which is implied, for instance, by the dy
namic stability of the load flow solution before the
disturbance.

! A5. (Nontriviality
is positive definite

Proposition 2.3.
pre-fault pair (A,e) and .
are feedback equivalent, that is, there exist r(G R-j- and
Y G R28 such that

of disturbance.) !lw 6 K
(not necessarily symmetric).
(Feedback equivalence.) The
the post-fault pair (A',e')

oil and A' •• A + ey (2.1M

Proof:. See Appendix. B
The terra "feedback equivalence" arises from the

fact that (A',e') can be obtained from (A,e) by state
feedback as shown in Fig. 1. This proposition will be
critical, in the study of coherence.

2.3. A Unified Model for Multiple Disturbances

Equation (2.9) generalizes readily for a set of p
disturbances by regarding q(t) G Rp as a vector of
switching functions, by replacing dG Rz a with Uxp
matrix, again denoted by d, with columns d.,...,d , and

by letting H^-H4i +u^d* +,...,+ Ppdpdp- Under AA>
the resulting system of equations can be simplified
exactly as in Proposition 2.2 to obtain (2.10) with A',
B, e' once given by the formulas (2.10), (2.11), (2.12).
The only difference is that e' is now a matrix ofdimen
sion 2g x p, whereas earlier it was a vector. The
proof of the next proposition is identical to that of
the preceding one.

Proposition 2.4. The pairs (A,e) and (A',e') for
the case of multiple disturbances are feedback equiva
lent, i.e., there exist matrices n of dimension p x p
(positive definite) and y of dimension 2g x p such that
(2.14) holds.

This extension to multiple disturbances of the
single disturbance case considered in the literature
(see e.g., [22,10]) is of more thanminor interest since
under environmental stress there is an increased likeli

hood of multiple outages or increases in load and the
model above in which these contingencies are assumed to
occur simultaneously may be a reasonable one.

3. COHERENCY UNDER MULTIPLE DISTURBANCES

3.1. Characterization of Coherency

Definition 3.1. A group of generators I C {1,...,
g) is (strictly) coherent for a single disturbance if
6i(t) - 6j(t) is constant for all t ^ 0, for all i,j in
I; and it is coherent for a set of disturbances if the
group is coherent for any linear combinations of these
disturbances.

Fix a group of generators I c {l,...,g) and a set
of p disturbances which define the matrices A', e' in
(2.10). Evidently the group I is coherent if every
pair (i,j) of generators, with i and j in I, is coher
ent. Suppose there are m such pairs. Form the m x 2g
matrix C with rows c

I**"

: o .

0

r-

cl

C2
0 I

L'm J

j

-1

I

0 .."

-1.0...

(3.1)

Here the first g columns of C are identically zero, clt
corresponds to the pair (i,j), C2 to the pair (k,i)
etc. Thus

Au

A6

A6± - Afij. ,P2 Au

A6

•» A6 - A6., etc.

For the post-fault pair of matrices A*, e' let
(A'le') denote the subspace of R28 spanned by the col-

2g-l
umns of the matrices e',A'e',...,(A') e'. Similarly
define <A|e> for the pre-fault pair A, e. Finally let
Kcr C be the null space of C i.e. Ker C » {x G R2fi|Cx
- 0).



Theorem 3.1. The group T In coherent, for the set:
of p distiiL'haiH-e.s if and only if

<A'|o'> C Kcr C. (3.2)

Furthermore, <A|e> » <A'je'> so that coherency cau also
be characterized in terms of pre-fault data as

<A|c> C Kcr C (3.3)

Proof. Sec Appendix. n
As mentioned in the Introduction this theorem was

prbved for the case of a single disturbance by Wu and
Narsimhamurthy [22]. It may be worth pointing out
here that there are efficient algorithms for checking
(3.2) or (3.3), especially in view of the structure of
C. One of the most popular of these is due to Rosen-
brock and Mayne [11], or Aplcvich [1]. However both of
these, as well as the algorithm proposed in [22], rely
on Gauss elimination which is known to be numerically
unstable for large matrices (see [15, p. 152]). Better
methods of computation using singular value decomposi
tion (see, e.g., [9]) are now available and, in parti
cular, the Rosenbrock-Mnyne procedure can be replaced
by one due to Sastry [14].

3.2. Physical Implications of the Coherency Condition

Various measures of electrical distance to a dis
turbance have been proposed to explain coherence (see
e.g., [10]). We relate one such measure to the charac
terization given above, confining the discussion to the
case of lossless lines and a single disturbance of the
load change type. The entries of the matrix H can be
interpreted as admittances and are given by (2.5),
(2.6), (2.7). Moreover, the incremental power injec
tions corresponding to the load changes (APLi(t) at the
ith load bus) are interpreted as current sources of
the same magnitude. We now group th* nodes of the net
work into two sets: the first, i^Wg, consists of the
generator nodes and the second,cAlfc» consisting of the
load nodes, as shown in Figure 2. If we now take the
Norton equivalent of^^ with respect toJUg, then the
resulting equivalent current source at the generator
nodes is given by Hga(H1»)-1dq(t). This should be
clear from the Ward reduction procedure [19] which led
to Eq. (2.13). Let J- Hgi(HJlJl)":idq(t) denote the re
sulting vector of injections at the generator buses.
The quantity Jj is intuitively the electrical distance
of the ith generator to the fault; its units, however,
are power/admittance. The vector e' in (2.13) is re
lated to J by

e' -(J1/M1,,..,Jg/Mg,0,...,0)TGR28

so that its non-zero entries are the ratios of the
electrical distance to the corresponding moments of
Inertia. The following result is almost obvious.

Proposition 3.1. (Necessary condition for coher
ence). If generators i and j are coherent for the
single disturbance of the type described above then

VMi "w
Proof. See Appendix. n
The equality of the electrical distance (weighted

by the moment of inertia) is necessary for coherence.
On the other hand the symmetry of the reduced electri
cal network is sufficient as seen next. Note that the
admittance matrix of the Norton equivalent resulting
from the procedure above is

•« - - vwV
Proposition 3.2. (Sufficient condition for co

herence). If the interconnection pattern of genera
tors i and j is symmetric i.e.,

-1 .-1

V(WlK"MJ(WjVk"1'

and if there is equal damping i.e.,

then i nnd j are coherent.
Proof. See Appendix. n
We can conclude that to relate electrical dis

tance to coherence it is necessary to "normalize" the
former by the moment of iuertia and, moreover, the re
lation is only necessary. On the other hand, symme
try, again appropriately ormalized, guarantees coher
ence but is not necessary.

4. NEAR COHERENCE UNDER MULTIPLE DISTURBANCES

For the purpose of constructing a dynamic equiva
lent it seems reasonable to demand only that the post-
fault angular differences of a group of generators be
nearly constant. Definition 3.1 needs to be relaxed
accordingly.

Definition 4.1. A group of generators I <- 11,...
,g) is e-coherent on [O.T] for the disturbances q(t)
G RP, t >. 0, if

(4.1)fe [6i(t)-6j(t)-«i(0)+6j(0)]2l1/2 <eOq[

where

M2 -

the

.T

summation is over all pairs i,j in I and

J|q(t)|2dt is the L2morra of the disturbance.
0

Before deriving conditions for c-coherence some
remarks on the definition may be helpful. *Jrst, no
tice that the magnitude of the disturbance, IqU, does
not figure in Definition 3.1. This is to be expected
since strict coherence demands that the "outputs,
«i(t) - 64(t), be completely decoupled from the dis
turbance q. Indeed if in (3.1) c is set to zero, then
it is easy to show that Definition 4.1 collapses to
Definition 3.1. From this observation and Theorem
3.1, it may be expected that if, for the disturbance
represented by A',e«, (A'|e»> is "close" to Ker C,
where C » (0,...,0,1,.,-1,0) corresponds to the pair of
generators i,j as in (3.1), then the latter should be
e-coherent for appropriate e. The burden of this sec
tion is to make this intuition precise. This turns
upon getting the correct measure of distance between
subspaces which we take up next.

4.1. Distance Between Subspaces

This is obtained using the notion of orthogonal
projection. The following lemma is well-known (see,
e.g., [15]). m v .

Lemma 4.1. Let U be the nxm matrix whose ortho
gonal columns form a basis for a subspace R £
Then UUT is the orthogonal projection operator form R
onto C\). ^,"

Let C\J be the orthogonal complement of v-l/* T"en
x in Rn can be uniquely expressed as x » v + w with v
in 6) and w ±nC\JK By Lemma 4.1 v - W^x, and so
I - UUT is the orthogonal projection operator from R
onto^V • /\i /m , cDefinition 4.1. Let %., CV2 be two subspaces of
Rn and \J± matrices whose orthogonal columns span <-\ylf
i» 1,2. Then the distance fromC^ to C\)2 is

&«\)v<\)2) -max{|x-U2u£c||x G^,|x|=l> (4.2)



where |*| is the Euclidean norm.
For any nixn matrix U let |u| denote the matrix

norm induced by the Euclidean norm i.e., |ll| • max
{|llx| |x<~Rn, x »1}. Then (4.2) can be easily re
phrased as follows,

dA/i.%) - l(I-U2U2)Ull' (4.3)

(4.3)

To give an appreciation for the proposed definition we
list some properties. First, in general, d(C\)^,(\)?)
j dCCU^CH) unless £\/,, C\j2 have the same dimension.
Second, 0<d((\)v(\)2) <1, and d(C[)vC\J2) =1only if
there is an xin C\h orthogonal to €[)-, whereas d((\}l,
C\)2) •0only if (\j. C^V2. The next property will be
useful later.

Proposition 4.1. Let Cy be a subspace of Rn and
C a pxn matrix such that d(Cy,Ker C) « e; then

max{|Cx| |x G <\Jt \x\»l) < e|c|. (4.5)

4.2. Characterization of c-Coherency

We recall the-definition and some properties of
the "reachability grammian" of a linear system (see
e.g., [3] or [14] for details).

Definition 4.2. The reachability grammian of a
linear system

x » A'x + e'q. (4.6)

where xG r 8, qG rp and A', e' are matrices of ap
propriate size is the matrix

T

W(T) =I cxp(tA,)e,e,Texp(tA'T)dt
Jo

(4.7)

The utility of the definition stems from the fol
lowing elementary proposition (see [14] or [12]).

Proposition 4.2. The set CQ(T) of all states of
the linear system (4.6) reachable at time T, start
ing at 0 at time 0, and using inputs q(«) with L^-norm
IqB _< 1 is given by

<R(T) »UW(T)]1/2n|n G R28,|n|<l). (4.8)

(Here [W(T)]1' is the positive semi-definite square
root of W(T).)

Theorem 4.1. (Characterization of e-coherence).
The group I of generators is e-coherent on [0,T] for
disturbances q(«) G rP if

dtfA'leM.Ker C) <. e|c|"1[p(W(T)) ]~1/2. (4.9)

Moreover, in terms of the pre-fault matrices A,e (4.9)
is equivalent to

d(<A|e>,Ker C) <c|c|"1[p(W(T))r1/2. (4.10)

(In (4.9) A', e' describes the post-fault system (2.9),
C corresponds to the group I as in (3.1), and p(W(T))
is the largest eigenvalue of W(T).)

Proof. See Appendix. n
Note that in (4.10) W(T) is still given by (4.6),

that is, it is the reachability grammian of the post-
fault system. Thus, unlike the (strict) coherency
condition, c-coherency cannot be related in terms of
pre-fault data alone. The next result gives a partial
result in this direction.

Theorem 4.2. Let c > 0, and suppose d(<A|e> ,
Ker C) » 6. Then the group I is e-coherent on [0,T]
where

T " mint
21A*T '2|c|Vp(c'e'T)

}. (4.11)

Proof. See. Appendix. n
The estimate (4.11) Recms computationally more

useful than that provided hy (4.10) since the latter
requires computation of the reachability grammian.
Observe that for any fixed r., 6 and T are inversely
related as is to be expected.

5. CHARACTERIZATION OF THE ALERT STATES

Recall that in the Introduction a base-case solu

tion was said to be in the alert state if some of the
system variables are operating close to their rated
capacities i.e., some inequality constraints are close
to being violated, and if the variables cannot be de
coupled from some likely disturbances. To formalize
this idea we first model the inequality constraints of
interest.

5.1. A Model of Inequality Constraints.

Three kinds of constraints are considered. These

are (i) thermal limits of a line, (ii) generating ca
pacity, and (iii) maximum permissible frequency devia
tion of a generator. The corresponding system vari
ables are discussed in turn below. We assume lossless

lines.

(i) If Py is the power flowing through a lass
ie

less line connecting load buses land j, P
-6j), and so, incrementally, ij

Y~*sin(9i

AP
ij

:JJcos(e (0)-e (0)) [o,... ,0,1 -1,... ,0] ("a«"|

• i \ Ui
(ii) The base-case power output of the ith gen

erator is

PG. I>88sin(«.(0)-6.(0))+£y88cos(«.(0)-9.(0)),
jj*i iJ i i k*i ik * k

so that, incrementally,

APG, a|~A6~|

>g+awhere, a G R6"" is the partial derivative of PG^ with
respect to (6,6).

(iii) Finally, the frequency deviation Au^ is
just one of the state variables corresponding to the
ith generator by (2.1).

From the preceding we can conclude that any vec
tor y G Rm whose components consist of some of the
variables AP^j, APG^, Au^ can be represented with a
suitablemx(3g+£) matrix C as

(5.2)

Au (5.3)

A6

APG

A0

Using (5.3) with (2.9) and assuming A4 we obtain
for a set of likely disturbances the following linear
system model:

x » A'x + BAPM(t) + e'q(t),

y - Cx,

(5.4)

(5.5)

where x a (Au ,A6 ). We are now ready to propose a
definition of the alert region.



5..2-t- tThe Alert Region.

Suppose that at equilibrium somo of the variables
Pjj(O), PG1(0) and wt(0) are close to their rated
values. Let y be the vector of Incremental changes of
these variables, and letA'.e' correspond to the likely
disturbances. The power system is said to be in the
alert state with respect to these disturbances if there
is no state feedback law APH(t) » Fx(t) such that the
disturbance q(t) is decoupled from y I.e., y(t) = 0,
«t j> 0.

Evidently the system is in the alert state if
tl»er& is no feedback matrix F such that

C[exp t(A'+BF)]e' » 0, t >. 0 (5.6)

This is known as the "disturbance decoupling" problem
and has been well studied (see Wonhara [21].) The char
acterisation of the alert state utilizes the next defi
nition. 2

Definition 5.1. A subspace ^V* C r R is said to
be A' mod B invariant if A' C\j' Cty» + Sp(B), where
Sp(B) is the subspace spanned by the columns of B.

Theorem 5.1. ([21]) There existsj* matrix F sa
tisfying (5.6) if and only if Sp e' Cty'(Ker C) where
Q}' (Ker C) is the largest A' mod B subspace contained
in Ker C.

As a Corollary we obtain the desired characteriza
tion.

Theorem 5.2. (Characterization of Alert States).
to dis-The system is in the alert state with

turgonces q iff

Sp(e') ^qj'(Ker C)

Moreover, in term!
nay be replaced h)

Sp(e) £QJ(Ker C)

respect

(5.7)

Moreover, in terms of the pre-fault matrices A, e (5.7)
nay be replaced by

(5.8)

where Ql (Ker C) is the largest A mod B invariant sub-
space contained in Kcr C.

Proof. See Appendix. »
We close this section with a few remarks. First,

observe that we permit the use of an arbitrary feedback
matrix F to decouple the disturbance fom the relevant
outputs y. This may be too conservative an estimate of
the alert region if only some restricted .class of feed
back matrices are implementable in practice. On the
other hand the decoupling represented by (5.6) may be
too strict and it may be enough to require only that
y(t) be "small" enough. One possibility in this direc
tion is suggested by the recent work of Willeras [20].
Finally a numerical procedure for calculating QI(Ker C)
has been proposed by Moore and Laub [23].

6. CONCLUDING REMARKS

Further work needs to be done in three areas:

(i) The actual formation of a dynamic equivalent
of the external system once coherent groups of genera
tors have been identified. Some work in this area has

been reported by Podmore and Germond [24] and Wu and
Narasimhamurthy [25]; but the results so far are pre
liminary.

(ii) The definitions of Section 5 can be extended
to e-alert states which may then be characterized by
the non existence of an A' mod B invariant subspace
containing Sp(e') (or of an A mod B invariant subspace
containing Sp(e)) which is close to Ker C. However,
estimates of the form of Theorems 4.1, 4.2 cannot be
obtained by the techniques of Section 4. Different
estimates are needed to make this intuition precise.

(iii) The relation between the present linearized
or local analysis with the nonlinear or global analysis
of the power system dynamics needs to be made. Pre
liminary research on the nonlinearanalysis of coherence

and the alert state using techniques of differential
geometry seems to yield results which arc either obvious
or too restrictive. What seems to-be needed is a way of
'VtItching" together theabovelocal (linearized) analy
sis using the topological properties of the load flow.
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APPENDIX

Proof of Proposition 2.3. Define fG R2g by fT
» (O'jd1). Then

[M"1 0]
-X.,H*

-i-l
f " [H 0]

[M"1 0]

- [M"1 0]

-rh
I+uff

-I'll „
I g&

-1

i+pf

-i

+ yff' f,

-1
where, in the last equality, the identity (I+PQ)
- P(I+QPrUs used. Define

1+pf

-1-1*\

*: V £

. -i >

0'
1 Hu

J

•= {1+MdV^d}"1
11

(The positivity of n is insured by A5.) It follows
immediately from (2.13) that e' ° ne. A similar alge
braic manipulation shows that if y is defined by yt
" lYp where

T T "*yt « uf1
i g& [•«]
i

L°:"uJ L"tgJ
then A' - A ** ey , and the proof is complete.

Proof of Theorem 3.1. The coherency of I is

equivalent to C exp(tA')e' • 0, t _> 0. It is well-
known that the latter condition is equivalent to (3.2).
Next, e • «. A' » A + cy and n is nonsingular.(M|,

Hence Ce' =» 0 if and only if Ce «• 0. Also, since CA'e'
«* CAcm + Cey'e. {Co'=0,CA'e'°0} if and only if {Cc»0,
CAe«0). Continuing in this manner reveals that (3.3)
in equivalent, to (3.2).

Proof of Proposition 3.1. Let C » (0,...,0,0,...,
1,...,-1,...,0) correspond to the pair (i,j) as in
(3.1). Next, for the case of load shedding, we see
from (2.13) and the definition of electrical distance
that

M_1H flH7fld
g& 11

» (J^,...^ /M ,0,...,0)\

Hence, using (2.11), we see that

Ae -2TTf0(0,...,0,J1/M1,...,Jg/Mg)T.

Now, if i and j are coherent, then <A|e> C Ker C and,
in particular, CAe = 0, but CAe • 2irf (J /M -J /M.) .

Proof of Proposition 3.2. Consider the equation

Au

A6

Au

A6

+ eq(t)

where A and e are of the form given in (2.11) and
(2.13). From the latter we can check the detailed
equations

Au

A6 » 2Trf.Au.,

A6. » 2TrfflAu..

Hence if the interconnection pattern of i and j is sym
metric it follows that A6i(t) - A6j(t) = A6.(0) - A6 (0),
t > 0 and the two generators are coherent. "*

Proof of Theorem 4.1. Consider the linear system

(4.5) where x =» (Au ,A6 ). By Proposition 4.2,

Max{|x(t)||0<t<T} <p(W(T))1/2flqfl. (A.l)

On the other hand since x(t) G<A'|e') we see from
(4.4) and (4.8) that

Max{|x(t)||0<t<T} £ep(W(T))~1/2Max{|x(t)||0<t<T},
(A.2)

The first half of the assertion follows upon combining
(A.l) and (A.2). The equivalence of (4.8), (4.9) is
immediate from the fact that<A|e> =<A'|e'> since
A,e and A',e' are feedback equivalent.

Proof of Theorem 4.2. Using d((A|e),Ker C) ° e it
follows from Theorem 4.1 that I is e-coherent on [0,TJ
if

P(W(T))1/2 <e|c|"V1.
From (4.6) we obtain the estimate

fT
P(W(T)) <J |exp|tA'|2|e'e'T|dt.

(A.3)

(A.4)



Now, if T|A'| < 1/2 then

max |cxp tA'|» max |l+tA'+^(tA')2+,... |
0<t<T 0<t<T

-1< (1-T|A'|)"X < 2 (A.5)

Using |e*e,T| - P(e'e'T) and (A5) in (A4) we obtain

P(W(T)) »4Tp(e'e,T)

Clearly, with T - min\^ •2|c|Vp(c-e.T)}i<A,3>
is satisfied so that the group I is e-coherent on
[0,T].

Proof of Theorem 5.2. The only part of the theo
rem not obvious from the discussion so far is that

(5.7) may be replaced by (5.8). From Proposition
(2.4), e' = e»n and A' = A + eY with n nonoingular.
Hence Spc' « Spc. We now establish that

Spe' cC\/'(Ker C) *"• Spe C(ty(Ker C) (A. 7)

•»A' C\)'(Ker C) cqj»(Ker C) + Sp(B). Hence,

/^'(Ker C) +ev^OCer C) C(ty'(Ker C) + Sp(B)
But, since Spe » Spe' C£|J» (Ker C); we have

ACy'(Ker C) cqj'(Ker C) +Sp(B)
Hence, (\)'(Ker C) is also an A mod J& invariant sub-
space JM Ker C and CM'(Ker C) CAj(Ker C). Hence,
Spe C <ty(ker C)
*• The converse follows exactly as above.
By negating (A.7) we obtain

Spe' £ Cy'(Ker C) <-» Spe £C\/(Ker C).

-io-i

(A.e)

<2>-

Figure 1. Feedback equivalence of (A,e) and (A',e')
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Figure 2. Resistive network analog of power system.
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Figure 3. State space for emergency control (after Fink
and Carlsen [17]).
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