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ABSTRACT

The optimal design centering, tolerancing and tuning problem is

transcribed into a mathematical programming problem of the form

P :min{f(x) |max min max cJ(x,u>,t) _< 0, x < 0}, x,u>,t ^3Rn, f: H +IR ,
g u£Q tQC j€j
£:H x]R x ]R ->r1, continuously differentiable, Q and T compact subsets

of ]R , J = {l,...,p}. A simplified form of P , P :min{f(x) |ip(x)
o

= max min £(x,u>,t) <_ 0} is discussed. It is shown that $(•) is locally
u£ft t^T

Lipschitz continuous but not continuously differentiable. Optimality

conditions for P based on the concept of generalized gradients are

derived. An algorithm, consisting of a master outer approximations algo

rithm proposed by Gonzaga and Polak and of a new subalgorithm for nondif-

ferentiable problems of the form P. :min{f(x) |max min C(x,u),t) <_ 0},
1 0&l± x^T

where A. is a discrete set, is presented. The subalgorithm is an extension

of Polak1s method of feasible directions to nondifferentiable problems.

The overall algorithm is shown to converge under suitable assumptions.
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I. Introduction

A typical electronic design problem involves the determination of

optimal values of the design parameters which are constrained to satisfy

performance specifications in the presence of tolerances. An important

aspect in the manufacture of high performance integrated circuits is the

possibility of tuning. In general, tuning is performed by trimming some

of the circuit resistors by specialized technological processes, such as

by cutting the resistor bodies by a laser beam. While the possibility of

tuning a manufactured circuit enables one to increase yield considerably,

it also leads to very considerable mathematical and computational diffi

culties in the optimal design of electronic circuits.

A sophisticated optimal design of an electronic circuit involves the

selection of optimal nominal values for the design parameters (center of

design), the optimal assignment of tolerances and the optimal determina

tion of the tuning range in order to obtain a specified yield with minimum

manufacturing costs. In addition to requiring algorithm for solving the

above design problem, it is also necessary to have algorithms for tuning.

These algorithms are used after an electronic circuit sample is manufac

tured, to compute, on the basis of measurements, the amounts by which

the circuit elements have to be trimmed.

In [1], Bandler et al. formulated the design centering, tolerancing

and tuning problem as a mathematical programming problem. They also dis

cussed the geometrical structure of the problem and introduced some impor

tant special cases. However, they did not propose any general algorithm

for the solution of this very difficult mathematical programming problem.

Algorithms for post manufacture tuning have been discussed in [2-6]. The
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approach proposed by Lopresti [2], in particular, is worth mentioning.

He proposed a very ingenious optimal tuning scheme based on a transcrip

tion of the trimming problem into a quadratic regulator problem.

In Section 2, we shall present a transcription of the Design Center

ing, Tolerancing and Tuning (DCTT) problem into a mathematical programming

problem. This transcription of the DCTT problem will be shown to be

equivalent to the one proposed by Bandler et al. [1], However, it has

substantial advantages over the one in [1] from an algorithmic point of

view. Our formulation involves functional constraints of the form

max min max C (x,w,t) <_ 0, x,(o,t G H , ft and T compact subsets of 1R ,
uEft t^t j£J
J = {l,...,p}. While there is a good number of algorithms for optimi

zation problems with constraints of the form g(x) <^ 0 (e.g. feasible

direction methods, penalty function methods, multiplier methods), only

one or two general algorithms with options [7-9] are available for the

problem with functional constraints of the form max x(x,cd) <_ 0. When ft is
o^ft

a polyhedron and x(x»') is convex or one dimensional convex [10], this

functional inequality becomes a finite set of inequalities of the form

g(x) _< 0 and hence we can use the previously mentioned efficient algorithms

To our knowledge, no algorithms exist in the optimization literature for

problems with functional constraints of more complex forms max min
wGft t^t

£(x,oj,t) < 0 or max min max C (x,oj,t) j< 0.
w^ft tOT jGj

In Section 3, we concentrate on the simplified DCTT problem involving

a functional constraint of the form i/>(x) = ™ax min C(x,oo,t) <_ 0. We dis-

cuss the differentiability property of i|/(«) and we derive some necessary

optimality conditions for the DCTT problem, based on the concept of

generalized gradients introduced by Clarke [14,15] for nondifferentiable
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optimization problems.

In Section 4, we propose a new algorithm for solving the simplified

form of the DCTT problem. This algorithm is based on an outer approxima

tions scheme proposed by Gonzaga and Polak [9]. It requires as a subrou

tine an algorithm for the solution of a simpler problem of the form

min{f(x)|max min c(x,uj,t) <_ 0} where ft± C ft is a discrete set. We pro-
ojGft. tGT t

pose two subroutine algorithms for these simpler problems: a conceptual

version and a semi-implementable one. The algorithms are extensions of

Polak1s method of feasible directions [11] to the nondifferentiable case.

The algorithms are shown to converge to points satisfying the optimality

condition derived in Section 3.

In Section 5, we discuss the simplified DCTT problem under the

hypothesis that C(•,♦,•) is convex or one dimensional convex [10].

2. Formulation of the DCTT Problem

Let <f> GiRn be the nominal design (expressed in terms of n parameters);
o

t+ n
let e G mn be the relative tolerance vector and <J> e 1R be the tuning vec

tor. Any outcome <J> GiRn of the manufacturing process is required to

satisfy:

d> - E4> < <f> < <J> + Ed) (2.1)
o o — _ o o

where

E = diag(e)A -- — (2.2)

By conceptual we mean an algorithm with unspecified truncation rules for
operations that cannot be easily approximated.

++We use Bandlerfs notation in [1] as much as possible. However for the
sake of generality we deal with relative tolerances instead of absolute
tolerances as in [1].
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and e _> 0, i = l,...,n.

If we introduce a set of scaling parameters -l<^w _<1, i = l,...,n, then,

any outcome of the manufacturing process can be represented as

<j> = d>Q + EQd,o (2.3)

where

Q^ diag(io). (2.4)

Let ft C]R be the subset defined by

ft = {(o eRn|-i < w1 <. 1, i = l,...,n}. (2.5)

The tuning vector £ ^ 3R , 5 > 0, represents the tuning range of each

parameter. Therefore an outcome which has been tuned can be expressed by

d» = (I+EQH + Et (2.6)

where I is the identity matrix,

5 ^ diag(5) (2.7)

and t £ B. is a scaling vector representing the actual amount of

trimming used. In general, according to the particular tuning procedure

followed, t €E t C ]R . if two-way tuning (or reversible tuning) is

considered, we have

T= {t e mn|-l < x1 £ 1, i= l,...,n>. (2.8a)

If one-way (or irreversible) tuning (e.g. laser beam trimming of

integrated circuits) is considered, we have

T= {TGRn|0 it1 <1, i= l,...,n}. (2.8b)

The design specifications can be transcribed into inequalities of

the form
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g(<f>) < 0 (2.9)

where g:]Rn -*-]RP. We can assume g(0 to be continuously dif

ferentiable (C1), since that is usually the case in electronic-design

problems.

In general, the objective function represents the cost of the

manufacturing process. We assume that the cost depends on <f>Q, e and

£. We shall denote by C:ln x lRn x 3Rn x ffi. , the function expressing

the cost of the manufacturing process. In the context of electronic

design problems, we can assume C(•»•»•) to be continuously differentiable,

In [1], the DCTT problem is transcribed into a mathematical programming

problem of the following form, where

R = {d> G m|g(d>) < 0}:
o

r

P: J

minimize C(<j> ,e,C)

subject to

Vw £ ft»3T G T such that

<!) = <(> + EQ6 + 5t G R
y Yo o o

and

<fr ,e,€ > 0.

(2.10)

(2.11)

(2.12)

The constraints (2.11) are not stated in a form which is compatible

with algorithmic evaluations. We propose an alternative transcription

of P which is suitable for solution by computation.

We define the problem P by:

minimize C(<f> ,e,£)

P:<

subject to

and

max min max g (<J>) _< 0; J = {l,...,p}.
ojGfi xer jGj

(}>o,e,S > 0.
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Let us see how constraints of the form (2.13) follow from (2.11), and

vice versa. The design center <j> is obviously chosen so that g(<j>°) < 0.

The production process results in a realization with a tolerance EM4>°

which may result in g(<|>0+EM<j>0) > 0. The most manufacture tuning

process then chooses a Ex so that g(d>°+EM<J>°+ST) < 0. Since the

production process is the "adversary", it results in the first max.
0)Gft

The tuning process then does its very best to rectify matters, which

is expressed as min. Now the trimming must work for all the specification
. xer

constraints g (•) and hence we get the last max. Let us now prove

rigorously the equivalence between P and P.

Proposition 2.1. P is equivalent to P.

Proof. Since the objective function C(•,*,•) is the same, and the

constraints (2.14) and (2.12) are identical, we have only to prove that

T T T T
a set of variables x = [<|> ,e ,£ ] satisfies (2.11) if and only if it

satisfies (2.13).

For the sake of contradiction, suppose that there exists an

—T —T —T —T
x =[<!>>£,£] which is feasible for P but not for P. Then, there

exists at least one index j, such that

max min max gJ((f> +EQd> +Sx) = max min g3 ($ +EQ<j> +Sx) > 0. (2.15)
toSft xGT jGj ° ° (uGft xGt o o

Let tube a maximizer of (2.15). Then,

min gj($ +EQ$ +Sx) > 0. (2.16)
Ter ° °

Therefore, there exists at least one uj, viz. u>, such that

Vx €T, gj(*o+EQ$o+Sx) >0 (2.17)

and x cannot be feasible for P. Now, suppose that x is feasible for P

but not for P. Then, there exists at least one w G fl, say w, such

that for some j €= {l,2,...,p},
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Vx e T, g-*OF +EQ$ +Sx) > 0. (2.18)

Therefore

I - — - X A (2-19)min gJ((j) +EQ(J> +ET) > 0.
xer ° °

But then

max min max g-*(A +EQ$ +Ix) > max min gJ(<f> +EQd> +Sx) > min gJ (<f> +E0> +Ex) > 0
oieftxerjGj °° ~~ u>eft Ter °° xer

(2.20)

and x is not feasible for P, contradicting our hypothesis. n

For the sake of notational conciseness, we aggregate the variables

((j> ,e,£) into one vector x and rename all functions to obtain a more
o

general form of the problem P:

P :min{f(x)|max min max C3(x,u),t) <_ 0, x > 0} (2.21)
g weft xer jej

where xT =[^,eT,5T]f CJ(x,u),t) =gj (4»0+EQd>o+Sx) and f(x) =C^q9z9K).
In the following sections, we will concentrate on the simplest version

of P , viz.,
g

P:min{f(x) |max min c(x,u),t) £ 0}. (2.22)
weft xer

The understanding of the mathematical properties of P and the

construction of an algorithm for its solution are a fundamental step

towards the solution of the more complicated DCTT problem, P .
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3. Continuity, Differentiability and Optimality Conditions for the
Design Centering, Tolerancing and Tuning Problem

The difficulty in solving P stems from two sources: the reason

ably obvious one being that functions of the form (2.13) are quite dif

ficult to evaluate, and the not so obvious one being that these functions

are not differentiable. We now summarize the relevant properties of the

function ij>(x) = niax min £(x,o>,x) which appears in the constraint of P.
w€ft xer

We shall make use of the following notations:

X(x,w) = min e(x,w,x) (3.1)
xer

and

\J>(x) ° max min c(x,w,x) = max x(x,w). (3.2)
oiBft xer weft

Assumption 3.1. t, :K.n x;Rn x]Rn ->r , is C in x,w,x.

The following result is proved in Appendix 0. n

Proposition 3.1. The function ^(*) is locally Lipschitz, i.e., given

any bounded subset D of 3R , there exists an L > 0, such that for all

x,y e D

|*(x) - 4»<y)| < Lllx-yll. n (3.3)

Corollary 3.1. [16]. The functions ip(») and x(*>0 are differentiable

almost everywhere.

The following results summarizes what we know about the directional

derivatives of iM*»") and <KO»

Proposition 3.2. [23]. For any x,h G]Rn and <o e ft, the directional

+ 1
Due to the particular structure of ;;(•,•,•)• if C(•»•>*) is c in x,
it is also C1 in w and x.
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derivative of x(#»w) exists and is given by

dxd.»;h) Alim X(^htw)-X(x?w) = m±n <V r(x,w,T), h> (3.4)
x+o A xer(x,w)

where, for any x GE , w e o,

T(x,w) = {x e T|x(x,o)) = C(x,a),x)}. (3.5)
n

Proposition 3.3. [23]. Let

ft(x) = {w e ft|,j,(x) = x(x,o))>. <3'6>

If for all x e3Rn, w e ft(x), T(x,w) is a singleton, then for any

x,h Gln, the directional derivative of i|>(-) exists and is given by

diKx;h) =lim »<***y-*M = max min <Vc(x,u,t) ,h>
x+o weft(x) xer(x,w)

= max{<V C(x,w,x),h>|w e ft(x), x e T(x,w)} (3.7)
n

Remark 3.1. The above condition on T(x,w) is very strict. An obvious

case in which it is indeed verified, is when £(-,-,•) is strictly convex

in x and T is convex.

Proposition 3.4. Suppose that ft is discrete, then for any x,h e®. ,

the directional derivative of $(•) exists and is given by

d»(x;h) =lim M**y-»M = max min <VxC(x,w,x),h> . (3.8)
x+o weft(x) xer(x,w)

Proof. Since ft is discrete, ft(x) is discrete for all x G !R . Suppose

ft(x) = U_,...,a).,...,w .}, k(x) ^ 1. Then, by (3.6) and by continuity
1 i iC ^Xy

of x('»0, there exists X > 0 such that for all X € [0,X],
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X(x+Xh,w±) > x(x+Xh,u)), i = l,...,k(x); wen-. a(x). (3.9)

Therefore, for all X e [0,T],

Kx+Xh) = max {x(x+Xh,w±)}. (3.10)
i=l,...,k(x)

By Proposition 3.2, for all X e [0,X],

Mx+Xh) = max (x(x,o) ) + Xd x(x,aj.;h) + o (X) }
i=l,...,k(x) 1x1

max {<Kx)+X min _ <V c(x,w ,x),h> + o (X)}
i=l,...,k(x) xer(x,w.) X 1

1 (3.11)

By (3.8) and (3.11),

dtKx;h) =lim flfr^MO^to = max min _ <V c(x,w.,x),h>
X+0 A i=l,...,k(x) xerfew^ x 1

max min <V £(x,w,x),h> . (3.12)
weft(x) xer(x,w)

It is reasonable to conjecture that (3.8) is valid in the general case,

i.e., when ft is infinite and T(x,w) is not a singleton. The following

counter example due to R. T. Rockafellar [27], shows that (3.8) is

incorrect in the general case.

Example 3.1. Consider

4>(x) = max min x(x-w) (3.13)
men xer

with

ft = [-1,+1], T = [-1,+1]. (3.14)
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It is easy to see that the graph of i|>(») is as shown in Figure 3.1.

Then,

n+i}, x > +1

ft(x) =< {x}, -1 <_ x < +1 (3.15)

L{-1}, x<-1

and

{{-1}, x > w

[-l,+l],x = w (3.16)

{+1}, x < w

If (3.8) were valid, we should have

diK0;+l) = max min x = -1 (3.16a)
weft(o) xer(o,w)

which is obviously wrong, since from Fig. 3.1, d>(0;+l) = 0. Consider

now

i|>'(x) = max min x(x-w) (3.17)
weft1 TeT

where ft1 = {-1,+1} is a discrete set. The graph of i|>'(-) is shown in

Figure 3.2.

In this case

{+1}, x > 0

ftf(x) =«< {-1,+1>, x = 0 (3.17a)

{-1}, x < 0

and T(x,w) is as in (3.16).

According to (3.8), we have now
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dV(0;+l) = max min x = +1, (3.17b)
weft(O) x€t(0,w)

d4>'(-l;+l) = max min x = -1 (3.17c)
weft(-l) xeT(-l,w)

and both results agree with the graph of ^'(*). n

In the general case, it is not even known whether tK*) has direc

tional derivatives everywhere. Thus, the function ^(*) necessitates the

introduction of some additional concepts of differentiability, which have

been developed by F. Clarke [14,15].

Definition 3.1. The generalized gradient of a locally Lipschitz function

ip : H ->IR , at x is denoted by 3iJ>(x) and is defined by the convex hull

of the set of all the limits of the form

lim ViJ>(x+v.)
i-x»

where v. -»- 0 as i -*• » and the v. are such that Vil/(x+v.) is well defined,
i i i

Example 3.2. Consider iK«) as defined by (3.13). From Fig. 3.1, it is

easy to see that i|>(*) is differentiable almost everywhere onl . When

x = +1 and x = -1, iK*) is n°t differentiable. By Definition 3.1, we have

f {-!}, x > 1

co{-l,0} = [-1,0], x = 1 (3.18)

84>(x) = ^ (0}, -1 < x < 1

co{-l,0} = [-1,0], x = -1

^ {-1}, x < -1.

where co denotes the convex hull of the set. n

The generalized gradients have certain important properties which
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we summarize in Proposition 3.5.

Proposition 3.5. [14,15]. Let ty :IRn +H be a locally Lipschitz func

tion. Let D be any open bounded subset of ~R . Then, for all x e D

(a) 8ip(x) is a well defined nonempty convex compact subset of 3R ;

JRn(b) the point-to-set map 3i|; :IRn -»- 2r is bounded on D and is upper

semicontinuous on D i.e., if {x.} C D converges to x and g± e 3iKx±)
T

for each i, then each accumulation point g of {g } satisfies g e 3t|;(x) .
1 n

Lebourg [28] proved a very useful mean value theorem for locally

Lipschitz functions based on generalized gradients.

n' *
Theorem 3.1. [28]. Let D be any bounded subset of 1 and D a convex

subset of D. Let ^:3Rn -»- IR be a locally Lipschitz function. For each

x, y efi, there exists Xe (0,1) and ge ty(X+X(y-x)) such that

4>G0 - *(y) = <g,x-y> . (3.19)
n

The generalized gradients can be used to extend the F. John [11] opti-

mality condition to P.

Proposition 3.6. [13]. If x is optimal for P, then

(i) i|>(x) < 0 (3.20)

+This definition of upper semicontinuity due to Clarke [14,15] is dif
ferent from the one given by Berge [17]: a point-to-set map A:

D ->• 2D ~ $ is upper semicontinuous at D if (i) for each x e D, given
a 6 > 0, there exists p > 0 such that for all y e B(x,p) (={y|Uy-xll<p})

Nr(A(x)) = A(x) + B(0,6) D A(y) (ii) A(x) is compact for each x e D.
o

However, because 3^(.) is compact, it is easy to see that the two

definitions are equivalent as applied to 9^(0.
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and

(ii) 0 e m(x) (3.21)

where

(Vf(x)} if Kx) < 0
M(x) = «< (3.22)

co{{Vf(x)} U 3^(x)} if Kx) 1 0

Remark 3.2. The set M(x) can be defined arbitrarily for i|>(x) > 0, since

the optimality condition involves ij>(x) <. 0. Mifflin [13] defines M(x)

= 3^(x) when ip(x) > 0. • n

Proposition 3.7. [13]. The point-to-set map M(') defined in (3.22) is

bounded on bounded subsets of H , upper semicontinuous on H and, for

each x e]R s M(x) is convex. n

Now, the problem with (3.21) is that we may not have expressions for

3^(x) and, hence, no means for verifying (3.21). Here is what we do

know.

TRn
Proposition 3.8. For any x e]R let the point-to-set map T :]R -»• 2:^ be

defined by

r(x) = co{v c(x,w,x), w e n(x), x e t(x,w) (3.23)

Then, r(») is upper semicontinuous. n

To prove this proposition, we need the following lemma.

Lemma 3.1. The point-to-set maps ft(«) and T(*,-) defined in (3.11) and

(3.9) are upper semicontinuous.

Proof. Let {x.} be a converging sequence and x its limit point. Let
1 I .

w. e ft(x#). Consider an infinite subset I e {1,2,....} such that w. •*• w.

(It is always possible to find such a subset since ft is a compact set.)

For the sake of contradiction, suppose that
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w£ft(x). <3-24>

Let w be any element of ft(x). Then,

Vi e i, x(x±,03.) >_ x(x±,w). (3.25)

By continuity of i|>(*) and of x(*>')>

X(x,w) = lim x(x.,w.) >. lim x(x. ,w) = x(x,w) (3.26)
I 1 x I 1

i-xo i-x»

in contradiction with (3.24). The same procedure can be followed to

prove that T(*,*) is upper semicontinuous. H

Proof of Proposition 3.8. Let

f(x) = {V c(x,w,x)|w e ft(x), x e T(x,w)}. (3.27)

By the definition of a convex hull, if ?(•) is upper semicontinuous, so

is r(-) = co ?(.)•

Let {x.} be a convergent sequence and x its limit point. Let I be

any infinite subset such that z. -*• z, where z e r(xi). We want to show

that z e f(x). Let w. and x. be such that

z. = 7 c(x.,u.,x.). (3.28)
i x l l l

Hence w e ft(x.) and x. e T(x.,w.). Let I1 C I be any infinite subset
1^" j»

such that w. + w, x -»- x. By Lemma 3.1, we ft(x), x e T(x,w) . Hence,

by continuity of V^(•,*,*)»

z = lim z. = lim z, = lim V c(x.,w,,x ) = 7 c(x,w,x) (3.29)
l i' -j-ixi:l:l x

i-x» i-*°° i"**°
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and z e r(x) . a

Proposition 3.9. For any x ^IB?,

WW £ T(x). (3#30)

Proof. Let x^l be arbitrary and consider any vector z such that there

exists a sequence {v±}, v± + 0, and z = lim Vi/Kx+v ). By Definition 3.1,
i-x»

z e 3^(x). Since ij;(.) is differentiable at all the points x + v , for
i

any h e ir11,

Kx+v.+Xh)-iKx+v .)
<ty(x+v;h) = lim ^_ = <V^(x+v.),h> . (3.31)

X+0 1

Moreover, by assumption,

ip(x+v +Xh)-iKx+v.)
lim lim ^-= <z,h> . (3.32)
i-*» X+0

By definition of iKO» and because ft(x+v ) C n,

iKx+v +Xh) _> max x(x+v.+Xh,w)
weft(x+v±) 1

X(x+v +Xh, w)-x (x+v., w)
max [x(x+v ,w) + X - ]

weft (x+v ) A

X(x+v +Xh,w)-x(x+v ,w)
= ^(x+v.) + X max ± . (3.33)

w6ft(x+v.) A
i

Hence, by Proposition 3.2,

i/> (x+v.+Xh) -^ (x+v.)
di|;(x+v ;h) = lim — — _> max d x(x+v.,w;h)

A+0 A weft(x+vi) x 1
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max min <V c(x+v. ,w,x) ,h> . (3.34)
weft(x+v.) xer(x+v.,w)

Let y. be an element of r(x+v ) such that

<y.,h> = max min <V c(x+vi,w,x) ,h) , (3.35)
1 Men(x+v±) xeT(x+vi,w) x

then we have, for i = 1,2,...

<ViKx+v.),h> >. <y.,h> . (3.36)

K -
Now let K C {0,1,...} be an infinite subset such that y. -*• y. Then

y e r(x) by upper semicontinuity of r(*) and, since ViKx+v^ •*• z,

<z,h> > <y,h> (3.37)

i.e., given any hen and z e 3i|>(x), there exists y e r(x) such that

(3.37) holds. Now, suppose that for some z e 3i|>(x), z £ r(x) holds.

Then, because T(x) is convex and compact, {z} and T(x) can be separated

strictly, i.e., there exists h emn such that for all y e T(x),

<z,h> < 0 and <y,h> >. 0. (3.38)

But (3.38) contradicts (3.37) for some y e r(x) and the proof is

completed. n

Example 3.3. Consider the function ^(-) defined by (3.13). The general

ized gradient at x = +1, 3^(1) is equal to co{0,+l}. The set T(l) is

equal to co{[-l,+l]} = [-1,+1]. Then, r(1) => 3^(1), which agrees with

Proposition 3.8. n

Corollary 3.2. If for any x Gln, w e ft(x), T(x,w) is a singleton, then
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T(x) = 3<Kx). (3.39)

The proof of Corollary 3.2 follows from a result in [23] and from a

characterization of the generalized gradient given by Mifflin [19].

Proposition 3.9 leads to a weaker but verifiable optimality condi

tion.

Corollary 3.3. If x is optimal for P, then

(i) iKx) < 0 (3.40a)

(ii) 0 e M(x) (3.40b)

where

o.{{Vf(x)} if iKx) < 0
M(x) =^ (3.41)

co{{Vf(x)} U r(x) if ij/(x) > 0
•

The proof of Corollary 3.3 follows immediately from Proposition 3.6 and

Proposition 3.9.

Corollary 3.4. The point-to-set map M(») defined in (3.41> is upper

semicontinuous. n

The proof follows immediately fromProposition 3.8 and Assumption 3.1.

Since our approach to solving P is to replace it with a sequence of

approximating problems

P. :min{f(x) |^.(x) = max min c(x,w,x) >. 0} (3.42)
1 2 weft± Ter

where, for all i, ft C ft is a discrete set, it is important to investi

gate further the differentiability property of ip.(.). We already know by

Proposition 3.4 that ^.(*) is directionally differentiable. We are about
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to show that i|i. (•) is continuously directionally differentiable, i.e.,

that for any x,h em ,

lim &$ (x+Xh;h) = d^ (x;h). (3.43)
X4-0

To do so, we need the following definition due to Mifflin [19].

Definition 3.2. Alocally Lipschitz function ^ :]Rn ->H is semismooth if

for any x,h ejRn and any sequences {Xfc} C]R+, {zfc}, {vk> CBn such that
\ ->- 0, (1/X)v •-*- 0 and zfc e 3^(x+Xfch+vk), the sequence <zfc,h>

n

converges.

Proposition 3.10. [19]: Let $:*n +H1 be semismooth. Then i|>(-) is
directionally differentiable and for any henn, the directional deriva

tive is given by

d^(x;h) -lim <Vh> (3#44)

where {z, } is any sequence as in Definition 3.2.

Corollary 3.5. Let <p :B.n +B1 be semismooth, then *(•) is continuously

directionally differentiable, i.e. (3.43) holds at any x,h en11. n
The proof follows immediately from Definition 3.2 and Proposition

3.10.

Proposition 3.12. [19]. The function x('»') is semismooth. n

Proposition 3.13. If ft is a discrete set, the function ^(O is semi-

smooth.

The proof of Proposition 3.13 follows immediately from Proposition

3.12 and a result obtained by Mifflin (Theorem 4, [19]).

The most important consequence for us of Proposition 3.13 is the
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fact that i|/.(.) is continuously directionally differentiable. In Sec

tion 4, we show that to obtain a feasible descent direction in a conver

gent algorithm, one needs to compute the set T(x) at an infinite number

of points. Because iK(') is continuously directionally differentiable,

we can construct an adequate approximation to this feasible descent

direction by means of a scanning process which results in only one set

r(x') at an appropriate point x1.
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4. The Algorithms

Our approach to solving P is to replace it with a sequence of

approximating problems

P. :min{f(x)|ij/.(x) = max min c(x,w,x) < 0} (4.1)
1 1 w6ft. Ter

i

where, for all i, ft. c ft is a discrete set. We shall show that, under

certain conditions, the accumulation points of the sequence of stationary

points {x.,} ~ of PJ are stationary points of P. The approximating
i i=0 i

problems are generated by a Master Outer Approximations Algorithm

proposed by Gonzaga and Polak [9]. Obviously, one still needs an algorithm

for the computation of stationary points of the problems P±. These problems

are very difficult to solve because the ty±(') are not differentiable

everywhere. We shall describe a new extension of Polak1s method of

feasible directions [11] which is capable of solving P±. Before we

present this new algorithm, we introduce the ideas upon which the algorithm

is based by discussing how one can solve unconstrained problems of the

form

P:min{iKx)|x G *n}, <4-2)

where \J>(0 is locally Lipschitz. Clarke [14] has shown that a first

order necessary optimality condition for P is as follows: if x is optimal

for P, then

0 e aiKx). <4-3>

We will describe an algorithm which, by means of a descent process,

generates a sequence of points {x.} whose accumulation points satisfy

(4.3). In general, an optimization algorithm consists of two parts:

a direction finding subprocedure and a line search-step size finding

subprocedure. If iKx) were continuously differentiable, then
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h(x) - -V^(x) would be the steepest descent direction. In the non

differentiable case, when iji is convex,

h(x) = argmin{flhll|h e 3,J,(x) }= Nr3^(x) . <4*4>

has been shown to be the steepest descent direction by a number of authors

(e.g., Lemarechal [20], Wolfe [21]). In the nonconvex case, Mifflin [13]

shows that (4.3) is the steepest descent direction in the sense that the

generalized directional derivative at x defined by Clarke is minimized

when h = h(x). We now show that the direction given by (4.3) is indeed a

descent direction. The derivation of the descent property of h(x) will

also be useful to obtain a convergent algorithm based on (4.4). For

6 > 0, let

N6(3iKx)) = 3iKx) + B(0,6) (4.5)

where B(y,6) = {y| tly-yll <_ 6}, be a 6 neighborhood of 3^(x). Obviously,

there exists 6 > 0 such that

-1/2 h(x) = Nr Ng(3iKx)). (4.6)

By upper semicontinuity of 3^(0, there exists a p > 0 such that, for

all y e B(x,p),

3i|Ky) CNjOiKx)). (4-7)

Now, let X = p/Hh(x)ll. Then by the mean value theorem 3.1 [23] there

exists a £e co{x,x+Xh(x)}C B(x,p) and a g e ZtyiO C Ng(3^(x)) such that

iKx+Xh(x)) - <J>(x) = X<g,h(x)>. (4.8)

By (4.6) (see Fig. 4.1), we have that, for any g e N-(3ip(x)) ,

<g+l/2h(x),h(x)> < 0. (4.9)
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Therefore, for all X e [0,X],

<Kx+Xh(x)) -<Kx) <-1/2 Xilh(x)l!2 (4.10)

and h(x) is indeed a descent direction. Therefore, h(x) is a natural

choice for a "steepest" descent algorithm. As for the step-size

finding subprocedure, our experience with differentiable problems has

shown that the Armijo step-size rule [26] works well. Given h(x), the

Armijo step-size subprocedure computes the smallest integer k such that

iKx+eVx)) -<Kx) l-aekUh(x)H2 (4.11)

where a and $ are two parameters whose value is between zero and one. In

Fig. 4.2, the geometrical interpretation of the Armijo step-size rule is

given.

Now, we have the necessary ingredients to describe a natural extension

of the steepest descent algorithm for P.
A

Algorithm 1; Extension of Steepest Descent Algorithm for Solving P.

Data: x e ]R .
o

Parameters: a,3 e (0,1).

Step 0. Set i = 0.

Step 1. Compute dip(x.) and h(x±) = - Nr3^(x±).

Stop if h(x.) = 0.

Step 2. Compute the smallest integer k. >_ 0 such that

k. k 2
iKx^+b'Vxj)) "*(x±) <-oB "-llMx^ll .

k.

Step 3. Set x±+1 =x± +31h(xi), i=i+1 and go to Step 1. H

Unfortunately the algorithm may fail to converge even if we substitute the

Armijo step size rule with an exact minimization along the line. The

2 A T 1
following example is due to Wolfe [21]. Let x e m , x = [y,z] , y,z e m 9
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.J5(9y2+16z2)1/2 y>z
♦W =19y +16. y<z <4'12>

As shown in Fig. 4.3, if we start at an initial point x such that
o

y > Iz | > (9/16) |y |, the steepest descent algorithm converges
T

to x = [0,0] which does not satisfy the optimality condition (4.3),

since 3^(0,0) C *2 =co{ [u,v]T| (u/15)2 + (v/20)2 »1, |v| £16}

(see Fig. 4.4), and obviously 0 e 3i|;(0,0). The convergence of the

algorithm to a nonstationary point is due mainly to the lack of continuity

of 3iK»)» In fact, we cannot find a lower bound on p such that (4.7)

holds for all x in any neighborhood of a nonstationary point x. Therefore,

h(x) may become feebler and feebler descent direction and may not lead to

a uniform decrease of iK*)> in a neighborhood of x. In the example,

as the points selected by the algorithm converge to the origin, p converges

to zero. In fact, at all the points x, generated by the algorithm, the

gradient exists and 34>(x,) is a singleton, while at the origin the gradient

is not defined and 3^(0) is a set. To overcome the lack of continuity

of 3iK*)> we can "smear" 3^(x), by defining the smeared generalized

gradient, 3 ^(•), as follows

3 iKx) = co U 3l(,(y) (4.13)
£ yeB(x,e)

Smearing has been introduced by Demyanov to overcome the lack of continuity

of the directional derivative for min max problems [22], It has been

also used by Bertsekas and Mitter [29] in their e-subgradient algorithm

for nondifferentiable convex problems and by Goldstein in [30], For a fixed

e, it is easy to see that the smeared generalized gradient 3 i|»(x) has the same

properties as the generalized gradient, i.e., it is convex, compact,

bounded on bounded subsets of H , and upper semicontinuous. By smearing
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3iKx), we will be abie to find a direction, hg(x) « -NrS^x), which

guarantees a uniform decrease in cost, and, hence the convergence of

the descent algorithm.

To demonstrate the effect of smearing, we first describe an algorithm

A

which uses a fixed e, and which will be shown to converge to points x

satisfying 0 e 3 ip(x). Then, we will provide a mechanism to drive e to

zero while the algorithm constructs an infinite sequence in order to

achieve convergence to points x satisfying 0 e 3ip(x) .

A

Algorithm 2: Smeared Steepest Descent Algorithm for Solving P (fixed e).

Data: x ^1 .
o

Parameters: e > 0; a,$ e (0,1).

Step 0. Set i = 0.

Step 1. Compute 3iKx±) and he(x±) =-N^Kx^. Stop if \(*±) = 0.

Step 2. Compute the smallest integer k. >_ 0 such that

k k.

*<x±+B \<*±» "*<xi> l-ae ill\(x1)il2 (4.14)

Step 3. Set x.,x1 = x. + 8 Ti (x.), i = i + 1 and go to Step 1. n
*•— i+l i e i

To prove the convergence properties of the algorithm, it is useful to

n 1
introduce an optimality function, 0 :3t •*• R , defined by

e (x) =min{llh!l2|h e 3£^(x)} =llhe(Xi)[l2.
This function is zero if and only if 0 e aj»(x). The Clarke's optimality

condition [4.3] can then be restated as follows: if x is optimal, then

0 (x) = 0.
o

Lemma 4.1. For all e >^ 0, the optimality function 6 (•) is lower
e

semicontinuous, i.e., for all x e Rn , given an n > 0, there exists

p > 0 such that for all y e B(x,p),

ee(x) - ee(y) < n. (4-15)
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Proof. Given n > 0, there exists 6 > 0 such that

llNrN60£iKx))ll2 +n>llNrS^x) I2 =0£(x) (4.16)

By upper semicontinuity of 3 iKO, there exists p > 0, such that for all

y e B(x,p), 3 ip(y) C N-O Kx)). Hence, for all y e B(x,p),

0 (y) = »Nr3^(y)H2 > 0NrNA(3^(x))tl >e (x) -n (4.17)
E E 0 £ £

and the Lemma is proven. n

Theorem 4.1. Let {x.} be an infinite sequence generated by Algorithm 2.

A A

Then every accumulation point x of {x.} satisfies 0 e 3 i|)(x).

Proof. Let x be an accumulation point of {x.} and I C {0,1,...} an
I 1

A

infinite subset such that x. -»• x. For the sake of contradiction,
l

•* /\

suppose 0 e 3 iJj(x). Hence, 0 (x) > 0. Since 3 iK") is bounded on bounded

subsets of P. , there exists a constant b, such that for all i e I,

•'^(x^U £b. (4.18)

Let X = E/b. Then, by (4.18) and the mean value Theorem 3.1 [23], for

all X e [0,X], for all i e I, there exists g e 3 ^(x ) such that

<Kx.+Xh (x.)) - iKx.) = X <g ,h (x )> (4.19)
X £ J- 1 i c. i

By definition of h (x.), we obtain from (4.19), that
£ i

iKXj+Xh (x.)) - ^(x.) <-Xllh (x.)H2 = -X0 (x.).
iEi i— £i Ei

A

By lower semicontinuity of 0 (•), there exists p such that for all

x e B(x,p),

ee(x) 1 6e(x)/2. (4.20)

I
A

Since x. •> x, by hypothesis, there exists i e i, such that for all

i e I, i >^ i, x. e B(x,p). Therefore, for all X e [0,X]

iKx.+Xh (x.)) - iKxJ + aX 0 (x.) < -X0 (x.) •+ aX 0 (x.) < -(l-a)X 0 (x)/2.
rvl£l i £i_ £i El— £

(4.21)
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A

Let k be such that

3k < X < Bk_1. (4.22)
A

Then by (4.21), for all ie I, i> i, Algorithms 2will select ak± £ k.

Therefore, for all ±± >i, If I, if ±2 e 1is the index following ±1 in I,

then

k.

*(x. )-*(x. )<*(x. +3 \ (x, )) -*(x )<-(l-a)6k ee(x)/2 <0
x2 Xl xl 1 1 (4.24)

and since M*±)}±eL is ™notonically decreasing, it is not Cauchy. From
the continuity of *(•) we now conclude that {x.}.ei is not Cauchy, con

tradicting the hypothesis that x is an accumulation point of (x^^.

Algorithm 2 is an intermediate step towards a descent algorithm which

solves P. The next step requires the development of a mechanism to

drive £ to zero, so that the accumulation points of the sequence generated

by the algorithm, x, will satisfy Clarke's optimality condition (4.3).

The mechanism is based upon a check on the value of ^O^)- If the vaiue

of 0 (x ) is less or equal than e, then £ is reduced and 0 (x±) recomputed.
e i

This process will go on until 0£(xi) is larger than e. At this stage,

the Armijo step-size rule is applied to find the next point x±+1.
A

Algorithm 3: Smeared Steepest Descent Algorithm for Solving P.

Data: x e n .
o

Parameters: e > 0; a,3 e (0,1).
o

Step 0. Set i = 0.

Step 1. Set £ = £Q.

' step 2. Compute 3^(x±), h£(x±) and ^(x^.

Step 3. If 0 (xj > £, set e(x.) = e and continue, else set e = e/2
— e i — i

and go to Step 2.

Step 4. Compute the smallest integer k± such that

k. k.

u,(x±+e \(x±)) - iKx±) i- ae1 ee(x±)
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ki.Step 5. Set x = x + g "Ti (x ), i = i + 1 and go to step 1. n

To prove that Algorithm 3 cannot converge to a point x such that

0 (x) > 0, we show that in a neighborhood of any point x satisfying
A

0 (x) > 0, the algorithm does not drive e below a certain lower bound
o

£ > 0. Therefore, by Steps 2 and 3, 0-(x) >_ z > 0 in a neighborhood

A

of x. But, then, the behavior of Algorithm 3 is similar to the behavior

A

of Algorithm 2 with e = e and we know by Theorem 4.1 that Algorithm 2

cannot converge to x such that 0*(x) > 0.
£

Lemma 4.2. Let e(x) = max{E|£ = 0 or £ 2" , k^i, 0 (x) ^ e>. If 0 (x)

> 0, then, there exist p >^ £ > 0 such that for all x e B(x,p)

e(x) >_ £ > 0. (4.25)

Proof. Let 6 > 0 be such that

llNrN. 3iJ/(x)ll2 > 0 (x)/2 = £ > 0 (4.26)
o — o

A

By upper semicontinuity of 3^(')> there exists p > 0 such that for all

x e B(x,2p)

3iKx) CN. 3iKx)). (4.27)
o

Therefore, all x e B(x,p)

3^(x) C N(3iKx)). (4.28)
p 6

Consequently,

0-(x) > IlNrN.(3iKx))H2 > e (4.29)
p — 6 —

Now, let £ = min{£,p}. Then, for all x e B(x,p)

0*(x) > £ (4.30)
£ —

and, by definition of e(x), (4.24) holds. n
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Theorem 4.2. Let {x } be an infinite sequence generated by Algorithm
A

3. Then every accumulation point x of {x±}, is such that 0 e 3i{>(x)

(or 9 (x) = 0).
o

Proof. For the sake of contradiction, suppose that there exists an

accumulation point of x of {x.}, such that 0Q(x) > 0. Then, by Lemma 4.2,
A A

there exist p,£ > 0 such that for all x e B(x,p), (4.25) holds. Then,

for all x e B(x,p),

3 . .ifi(x) 3 3mKx) (4,31)
£(x)T £

Let IC {0,1,2,...} be an infinite subset such that x± -> x. Then, there
A

exists i e I, such that for all i >_ i, i e I,

x±eB(x,p), <4'32>

and, therefore e(x ) computed in Step 3, satisfies

£(x±) >e (4-33>

Let b > 0 be such that for all i e I,

llh , ,(x,)H < b; (^-34)e(x±) i -

and X = £/b. Then, by the mean value Theorem 3.1 [23], by (4.31), (4.32)

(4.33) and (4.34), for all Xe [0,X] for all i > i, i € I there exists

g. e 3Alh(x.) such that
1 £r i

♦^i+^Cx^^i^ "̂ ^ ="^i^ECx.)^ ^^^(X^^1'2
= -X 0 , ,(x.) < -Xe(x.) < -Xe. (A.35)

e(x±) i — i

The remainder of the proof follows the same lines of the proof of

Theorem 4.1 and is, henceforth, omitted.

We are now ready to present our algorithm which "solves" the non

differentiable constrained problem P±, in the sense of that it finds

approximations to points xe lRn which satisfy the optimality condition
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^(x) < 0 (4.36a)

0 e m±(x) (4.36b)

where

{{Vf(x)} if *±(x) < 0
(4.37)

co{{7f(x)} U r±(x)} if *1(x) > 0

and

r±(x) = co{V c(x,o),t)|o) e ^(x), xe T(x,u>)}, (4.38)

The algorithm is based on Polak1s method of feasible directions [11]. For

the differentiable optimization problem

P* :min{f(x) |^*(x) <_ 0} (4.39)

f:H -* !R , ij>*: It -*- ]R continuously differentiable, the algorithm

is as follows:

Algorithm 4: Polak's Method of Feasible Directions for P*.

Data: x e F* = {x|^*(x) < 0}.

Parameters: n > 0; a,3 e (0,1).

Step 0. Set j = 0.

Step 1. Set n = n .
* o

Step 2. Compute

h*(x.) » -NrM*(x.)

where

|{Vf(x )} if i/>*(x.) < -n
A J J 3

M*(x.) =<
n 3 ]

Ico{{Vf(x.)} U (V^*(x.)}} if ip*(x.) > -n
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and

0*(x.) = llh (x.)ll2

Step 3. If 9*(x.) < n, set n = n/2 and go to Step 2.
c— n j

Else continue.

Step 4. Compute the smallest integer k. such that

k. k
f(x.+B 3h*(x.)) - f(x.) < -a3 J0*(x )

3 n J 3 ~~ "3

and

k.

t|>(x.+3 Jh*(x.)) < 0.
3 n 3 ~

k.

Step 5. Set x.^n = x. + 3 3h*(x.), j = j + 1 and go to Step 1. n
c— j+1 3 n 3

It can be shown that if the sequence {x.} produced by Algorithm 4 has

A

accumulation points, then every accumulation point x produced satisfies

the F. John optimality condition, i.e., x is is such that 0 (x) = 0 [11].

In Algorithm 4, n plays a role similar to the one played by £ in
k.

Algorithm 3. It prevents the step size 3J from becoming excessively
A A

small when x. is not in a small ball about a point x satisfying 9 (x) = 0 [11]
3 °

A natural, but simple minded, extension of Algorithm 4 to P^,

results from the substitution of I\(x) for {Vi|>*(x)} in the expression

for the optimality function and in the computation of the descent direction.

Unfortunately, the resulting algorithm may converge to a point not

satisfying the optimality condition because of the lack of continuity of

T (x). In the unconstrained case we overcame the problem of lack of

continuity of 3^(«) by smearing it. In the constrained case, we have

to smear T.(x) to obtain a convergent algorithm. Let

r!(x) = co U r (y), (4.40)
1 yeB(x,£)
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We substitute r.(x) for {Vip*(x)} in Algorithm 4, and, since we also

need a mechanism for reducing e, as ri in Algorithm 4, for the sake of

simplicity, we combine these two mechanism into one, controlled by a

single parameter, £. Thus, for any e ^.0, we define the set M. (x)

{Vf(x)> if iKx) < -£

M^(x) M (A-41)
co{{Vf(x)} U r*(x)} if i|i(x) 1 -£,

e n 1
the optimality functions 9 : It + ]R by

6*(x) =min{!lhll2|h eM^(x)} (4.42)

and the descent direction h.(x) by

h*(x) = -Nr M*(x). (4.43)
i i

It is rather obvious that (4.38 ) holds at x if and only if 9±(x) = 0.

Algorithm 5: Extension of Polak1s Method of Feasible Directions to P^

Data: x e F. = {xll(x) < 0}.
o 1 i

Parameters: e > 0, a,3 e (0,1).
o

Step 0. Set j = 0.

Step 1. Set e = £ .

Step 2. Compute

h*(x.) = -Nr m!(x ).

and

e!(x.) ^ Oh!(x.)il2.
3-3 13

Step 3. If 9^(x.) <_ £, set £= e/2 and go to Step 2. Else set

e(x.) = £ and continue.

Step 4. Compute the smallest integer k such that

k. k.
f(x.+3 3h^(x.)) -f(x.) l-ct3 3eiUj)
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and

k.

iKx.+3 3^(x4>) 1°-
3 i 3

k.

Step 5. Set x.+1 =x. +3jh*(x.), j=3+1and go to Step 1. «

The following standard assumption for feasible directions methods is

needed to ensure that Algorithm 5 does not stop at xq and that the

sequence constructed by Algorithm has accumulation points.

Assumption 4.1. The set F|(xq) defined by

F'.(x ) = {x e ]Rn |f(x) - f(x) < 0, i|i (x) < 0}
10 O -L

is compact and has an interior.

The proof of the following theorem can be found in Appendix 1.

Theorem 4.3. Let Assumption 4.1 be satisfied. Let {Xj} be any infinite
A

sequence generated by Algorithm 5. Then, every accumulation point x of

{x.}, satisfies ip.(x) <_ 0 and 9 (x) =0. H
3 x

Algorithm 5 is a conceptual algorithm since it may involve an

infinite number of gradient evaluations to compute r±(x). Fortunately,

the fact that i|>.(0 is continuously directionally differentiable

(see Corollary 3.5 and Proposition 3.13) make it possible to devise an

algorithm based on an approximation to the descent direction h±(x) which

does not involve the computation of the entire set M±(x). The

approximation subprocedure is based on the line search introduced in

[13,21]. In particular, suppose that ^(x ) _> -£- Then, we start our

approximation by computing M°(x±,£) =M°(x..) =co{{Vf(x^)} Ur±(xi)},
and h = -Nr M?(x.,e). Because of the lack of continuity of M.(.), h

i 3

may be a "bad" descent direction for ^±(-). Therefore, we have to insert

a test in the algorithm that detects if h is indeed a bad descent direction.

The test consists of checking if the resulting step-size is too small,
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i.e., if for the smallest positive integer k such that 3 llhtl<£, x. + 3 h

is not feasible. If, according to this test, h is not acceptable, then

we add to M (x.,e) a set T.(y ) computed at a point y- in the ball

B(x ,e) and we compute h = -Nr M~(x.,e), where M.(x ,e) = co{M?(x±,e)

u T (y-)}. By doing so, we are sure to improve the approximation to

h.(x.). However, the new approximation may still not be sufficiently

"good" in the sense specified above and we may need to add a new set

p

r.(y«). In order to obtain a satisfactory approximation to h.(x.), in

a finite number of steps, the points y have to be chosen so that the sets

£ ~r
r.(y ) add enough "new" information about h.(x.) to M.(x.,e). It turns

out (see [13,21]) that if y is such that r.(y ) contains an element v

satisfying (h,v) >^ -yllhll where y e (0,1), then the requirements on

r.(y ) are met. To find a point y such that T.(y ) satisfies the

above condition, we proceed as follows. Since ty.(x.) <_ 0 and

£.- ~ ~ ~ kty (x.+3 n) > 0, there must exist a point x. + X h, X <_ 3 such that

di|;.(x.+Xh;h) > 0. By Proposition 3.13 and Corollary 3.5, we know that

i|>. (•) is continuously directionally differentiable. Hence, there exists

a6>0 such that, for all Xe [X-<5,X+S], di|> (x.+Ah;h) > -yilhH2.
3 —

Therefore, if we apply a bisection procedure to the interval [0,3 ],

after a finite number of steps, we obtain X such that diK (x.+X h;h)

2 ~ ~
> -yllhll . Since, by Proposiion 3.4, there exists v e r.(x.+X h) such

that <v,h> =d^i(x.+Xrh;h) >-yllhil2, we add r±(x*+\b) to M^(x.,e).
Algorithm 6: Extension of Polak's Method of Feasible Directions to

P. (semi-implementable version).

Data: x e F..
o 1

Parameters: E > 0, a,3,y e (0,1).
o

Step 0. Set j=0.
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Step 1. Set p = 0, r = 0, D = {x.}.

Direction Finding Subprocedure.

Step 2. Set r = r + 1 and compute

f{Vf(Xj)} if ^(Xj) <-Ep
*riOyV M

co{{Vf(x.)} U co{ U r (y)> if *±(x ) 1 -e .
^ 3 yeDrB(x.,£ ) J p

Step 3. Compute

h = -Nr M*(x.,e\)
i 3 P

and

9r(x.,E ) ft llhll2
i 3 P

Step 4. If 5*(x ,e )1ep, set £p+1 =£p/2, r=0, p=p+1and go

to Step 2. Else continue.

Step-size Computation Subprocedure.

Step 5. Set k = 0.

Step 6. Set k=k+1. If 3kHhll <£p and i|;i(xj+3kh) >0, go to
Step 9. Else continue.

Step 7. If

,krr

and

f(x.+3kh) -f(x.) l-a3 SJC^.e )
j j -J *

^.(x.+3kh) 1 0,

continue. Else go to Step 6.
k._

Step 8. Set k. =k, s(Xj) =e,h(Xj) =h, xj+1 =x.. +33h(Xj),
j = j + 1 and go to Step 1.

Approximation Refinement of M^x.) Subprocedure.
k k

Step 9. Set m = 0, X = 0, p = 3 , y = 3 .
1 o o o
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Comment: X , p are the left and right boundary points of the interval

in 3R to be searched; y is the midpoint of this interval (except for y )

Step 10. Compute

diK (x.+y h;h) = max _ min <V c(x.+y h,oj,x) ,h>
J eift,(x.+Ah) TeT(x.+X h,io) x 3 m

i 3 m j m

Step 11. If

d^±(x +ymh;h) >_ Y9*(x ,e ),

set X = y , D = D U {x.+X h}, and go to Step 2. Else, continue,
r m j r

Step 12. If ip.(x.+ji h) > 0, set p11=y,X._=X and continue.
c i 3 m m+1 m m+1 m

Else set p._=p,X1-=y and continue.
m+1 m m+1 m

Step 13. Set m = m + 1, y =(X+p)/2 and go to Step 10. «
* m mm

Algorithm 6 is convergent in the sense of the following theorem, whose

proof can be found in Appendix 2.

Theorem 4.4. Suppose that Assumption 4.1 is satisfied. Consider any

sequence {x.} generated by Algorithm 6. If {x.} is finite because

Algorithm 6 jammed up at x , then ty. (x ) <_ 0 and 9. (x ) - 0. If {x.}
S "L S J- S J

is infinite, then every accumulation point x of {x.} is such that

iK(x) <_ 0 and 9°(x) = 0.

Remark 4.1. Algorithm 5 is only semi-implementable because at a point x,

it requires the precise evaluation of 4>.(x) and the computation of

T (x), which in turn requires the computation of the sets ft.(x) and

T(x,(o). It is still to be established how to approximate <K(x) and

r(x) in order to make Algorithm 6 implementable without destroying its

convergence properties. a

Remark 4.2. Algorithm 6 requires a starting point x e F.. If such

a point is not available, Algorithm 6 can be easily modified to obtain

a semi-implementable algorithm for the unconstrained minimization of

-36-



i|>.(«). The modified algorithm stops when it finds an x such that

i|>.(x) <_ 0. By setting x = x, we can now apply Algorithm 6 to P±. It

is also possible to derive an extension to the nondifferentiable case of

the phase I - phase II feasible directions algorithm of Polak, Trahan

and Mayne [12]. This approach has two advantages over the previous one:

(i) a separate computer program for the computation of x is not needed;

(ii) while producing a feasible point, the algorithm does not completely

ignore the cost function.

We now present the Master Outer Approximations Algorithm.

Algorithm 7: Master Outer Approximations Algorithm [9].

Data: A discrete set fi c Q.
o

Parameters: K >_ 10, L >_ 2, n > 0.

Step 0. Set i = 0.

ni *Step 1. Compute a point z. such that 9± (z±) <_ n and $±te±) ± n±,

(i.e. solve P± approximately).
tStep 2. Compute \|>(0 and an u± e Q(z±).

Step 3. Include in Qi+1 all a)., j <. i, such that

*(z )> k[—S72 -—S72I • (4-43)
3 L(l+j)1/Z (l+i)1/ZJ

Step 4. Set n±+1 = n±/2, set i=i+1and go to Step 1. n

The crucial part of Algorithm 7 is Step 3, the constraint construction

scheme. The scheme used in Algorithm 7 is a generalization of the

+This requirement can be relaxed to that of requiring a progressively
finer approximation to the uk in step 2.

*Since we use a feasible direction subalgorithm for all i we produce a
point z± such that ty±(z±) <_ 0. Because of the condition i|>i(zi) <. r\±i
we could use as subalgorithms, algorithms based on penalty functions.
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constraint construction schemes introduced by Eaves and Zangwill [7] and

by Mayne, Trahan and Polak [8], It will retain a particular constraint

for a certain number of approximating problems and drop it when,

presumably, it is no longer relevant. The test (4.43) in Step 3

"measures" the relevance of a constraint at a certain iteration i.

The test checks if the constraints were "sufficiently" violated when they

were added to the constraint set in relation to the number of approximating

problems in which they have been taken into account. The test is more

and more difficult to pass as i-j increases, so that "old" constraints

are likely to be dropped. By choosing a large K, we make the test more

difficult to pass and Algorithm 7 is likely to drop a constraint after

only a few iterations. We expect Algorithm 7 to perform better if used

in an interactive computing facility with a graphic display terminal.

In fact, in that environment, the user could select interactively the

parameters of the algorithm, add or retain a constraint that Algorithm 7

would drop if operated in batch mode, so as to improve the computational

behavior of the outer approximations scheme. Not all the existing

optimality functions can be used in Algorithm 7 to ensure its convergence.

They have to satisfy certain conditions. Lemma 4.3 (whose proof can be

found in Appendix 3) shows that the family of optimality functions

9.(»)» satisfies the condition specified in [9].

Lemma 4.2. If {n } C ]R is such that ri -»• 0 and {z } C ir is such that

ni
z. -»• z, with i|>(z) = 0, and, in addition, 9. (x.) -*- 0 as i -*- ~, then

9(x) = llNrM(£)il2 = 0 (i.e., 0e M(z)). a

Since Lemma 4.2 holds, it follows from [9] that Algorithm 7 is

convergent in the following sense.
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Theorem 4.4 [9]. Let {z.} be an infinite sequence constructed by
A

Algorithm 7, then every accumulation point z of {z±}, satisfies

\j>(z) £ 0 and 0e M(z) . n

When used as a subroutine of Algorithm 7, Algorithm 6 has to be slightly

modified. In particular, we have to add an exist to the Master

Algorithm between Steps 3 and 4:

Step 3* (Exit to Master Algorithm). If £ <. t\± and 9±(x..,£ )£ n±,

set z. = x. and go to Step 2 of Master Algorithm. Else continue. n

In order to conclude that the overall algorithm formed by Algorithm

7, with Algorithm 6 with the above indicated modification, used as a

subroutine, it remains to prove that, when Algorithm 6 terminates to

nireturn to the Master Algorithm, 9 (x.) < n^ This is rather obvious

because, by definition of 9^(x.,£ ) and by Step 3f, when Algorithm 6
i 3 P

stops, we have

n. > e > 9!(x.,£ ) > 9*(x.,n.) > 9,1(x,). (4.45)
'i— p— lj'p— 131 — i 3

This ends our discussion of the general case. In the next

section we shall consider the important special cases when ?(•,•,•) nas

certain convexity properties.
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5. The Convex Case

When C(x,«,*) is convex, or one dimensional convex [10] and ft is a

hyper rectangle, the DCTT problem becomes much simpler. In particular,

we show that if £(x,»,») is convex or one dimensional convex, then

max min c(x,w,x) = max min £(x,<o,x) (5.1)
ojen xer u0i xer

where ft is a discrete set.

Proposition 5.1. Suppose that for any x GR fg(x, •, •) is convex (one

dimensional convex). Then, for any xGl , x(x,#) is convex (one dimen

sional convex).

Proof. If £(x,.,•) is convex, then for any a^, w2, x1» x2 G]R >*G [0,1],

C(x,Xu)i+(l-X)a)2,Xx1+(l-X)x2) < Xc(x,u)1,x1) + (1-X)s(x,w2,x2) (5.2)

By definition of x(x>0 and from (5.2), for any x, a^, w2 ^1 , Xe [0,1],

X(x,Xo).+(l-X)a)0) = mine (x,Xa)-+(l-X)u)9,x)
1 z xer i

< c(x,Xa)1+(l-X)w2),Xx1+(l-X)x2) (5.3)

where t is any element of T(x,w,) and x2 is any element of T(x,w2).

Therefore, by (5.2), for any x, a 9 iD2eK , Xe [0,1]

x(x,Xo)1+(l-X)a)2) <. Xc(x,(d1,t1) + (1-X)c(x,oj2,x2)

= XX(x,u)1) + (1-X)x(x,ai2). (5-4)

The proof for the one dimensional convex case is a straightforward

generalization of the above steps. n
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By Proposition 5.1,

iKx) - max x(x,ii)). (5.5)
weft

Bandler [10] has proven that, if ft is a polytope and x(x,*) is convex

(or one dimensional convex and ft is a hyper rectangle with sides parallel

to the axes), the maximum of x(x,0 is achieved at the vertices of the

polytope ft. So we can replace (5.5) by

iKx) = max x(x,w) (5.6)
ajeft

where ft is the set of vertices of the polytope. Therefore, we can use

Algorithm 6 to solve P when C(x,«,#) is convex or one dimensional convex

and ft is an appropriate polytope.

6. Conclusion

The algorithm which we have presented is, to our knowledge, the

only available algorithm for problems with constraints of the form

tp(x) = max min e(x,w,x) <_ 0. Because the functions ip(x) are so difficult
cjeft xer

to evaluate and because they are not differentiable, the algorithm is

quite complex and computations with it will be costly. This cause of

difficulty is not likely to diminish in the future, even if, as we hope,

better algorithms will be developed. However, in a design situation, on

the basis of the anticipated benefits, one can justify quite considerable

computing costs and we expect that algorithms of the type presented in

this paper will slowly find their way into the designer's arsenal.
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Appendix 0: Proof of Proposition 3.1

We first prove that x(*»') is locally Lipschitz. Let x , x e j)o

a compact subset of Rn, and let to-, w„ e ft. For k = 1,2, let x, be a
12 k

minimizer of ^i\$^*') over T. Then, xte,^,) = C^.ol ,x ) and

x^xk,a)k^ - ^\,(VT^ with £^ k(£=l,2). Hence

- |c(x1,aj1,x2) - ?(x2,a)2,x2) |1 ^(x^a^jX^ - c(x2,oj2>x2)

= x(x1,a)1) - x(x2,(o2) £ C(x1,a31,x2) - C(x2,a)2,x2)

£ U(x1,o)1,x2) - C(x2,oj2,x2) |. (A.0.1)

Since T is compact and z, is C (and hence also locally Lipschitz), there

exists L 21 0 such that for any x1, x« e sy oj , oj G ft and any x e T,

|c(x1,o)1,x) - C(x2,a)2,x)| <Liy1-y2U (A.0.2)

T T T
where y. = [x ,u> ], i = 1,2. It now follows from (A.0.1) that x('»0 is

locally Lipschitz. By similar means we can easily show that if>(') is

locally Lipschitz. n
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Appendix 1: Proof of Theorem 4.3

We shall need the following facts and lemma.

Fact A. 1.1. For all e _> 0 the point-to-set map T±(>) is upper semicon

tinuous .

Fact A. 1.2. For all e _> 0, the point-to-set map M±(.) is upper semicon-

n
tinuous.

Let

e(x) =max {e|e =e2~k or e=0, k£l, 9^(x) >e}. (A.l.l)

We recall that F. = {x|max min c(x,oo,x) <. 0}.
1 u€Sl± xer

Lemma A.l. For all x e F , if 9 (x) > 0, then there exist p _> £ > 0,
————— i A

such that for all x e B(x,p)

e(x) _> £ > 0. (A.l.2)

Proof. Let 6 > 0 be such that

llNrN,(M°(x))H2 > 9°(x)/2 ^ e>0. (A.l.3)
oi — 1

o ^
By upper semicontinuity of M.(«)> there exists p > 0 such that for all

x e B(x,2p)

M°(x) CN(M°(x)). (A.l.4)
1 6 1

Therefore, for all x e B(x,p)

M?lx) C n(M°(x)) (A.1,5)
l o i

and hence
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.o,*.0.T(x) > HNrN6(M^(x))ll >£ (A.l.6)

Now let e = min{E,p}. Then for all x e B(x,p)

OT(x) _> £ (A.1.7)

and, by definition of e(x), (A.l.2) holds. n

Proof of Theorem 4.3. For the sake of contradiction, suppose that there

exists an accumulation point x of {x.}, such that 0#(x) > 0. First, note

that since f(x.) decreases monotonically, we must have f(x.) -> f(x).

Next, by Lemma A.l, there exists p, e > 0 such that for all x e B(x,p),
A A

(A.1.2) holds. Therefore, for all x e B(x,p),

A

m!(x)(x) DM^(x). (A.18)
l i

J

Let J be an infinite subset such that x. -* x. Then, by the mean value

theorem, we have that for all j,

e(x ) e(x )
f(x.+Xh. J (x.)) - f(x.) + oX6. J (x.)

3 ! 3 3 13

e (x.) e (x )
< X[ sup llVf(x.+rXh. J (x.) - Vf(x.)U IIh. 3 (x.)H

r€(0,l] 3 13 31-3

e(x ) e(x )
+ <Vf(x.),h. J (x.)> + a6. 3 (x.)]. (A.l.9)

31 3 1 3

e(x )
By definition of h. J (x.), for all 3,

e(x.) e(x )
<Vf(x.), h. 3 (x.)> £ - 9± J (x ) (A.l.10)

J .
Since x. •+ x , there exists a j e J, such that for all 3 ,> j, j G J,

x. e B(x,p), (A.1.11)
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and, therefore, e(x.) computed in Step 3, satisfies
3

0. j (x.) > e(x.) > e (A.l.12)
i- 3 3 -

by Lemma A.1.1. Now, since Vf(-) is continuous and M°(0 is bounded on
e(x.)

bounded subsets of ]Rn, Bh 3 (x.)H is bounded on the sequence {x } and
3 J

hence there exists a b > 0 such that for all j e J,

e(x.)
Ilh. 3 (x.)H < b (A.l.13)

i 3 ~

n

Next because of the uniform continuity of Vf(-) on compact subsets of H ,
A

A #

and (A.1.9), (A.l.10), there exists a X > 0, such that, for all j > J,

j e J, for all X e [0,X]

e(x ) £(x )
f(x.+Xh4 J(x.))- f(x.) + aX0. J (x.) < - X/2(l-a)£ < 0. (A.l.14)

3 i 3 3 i 3 ~

Now, suppose that there exists an infinite subset Jf C j such that

i|;.(x.) £ - e(x.). Then for all j >. 3» 3 G J'»

^.(x.) < - e. (A.l.15)
i 3

Therefore by uniform continuity of ij>.(*) on compact subsets of E , there

A

exists p1 such that for all j _> j, j e j', for all x e B(x.,pl)

i^.(x) < 0. (A.1.16)

Because of (A.1.13), it now follows that there exists a X* > 0, such that

for all X e [0,X']> for ali j _> j, j e ,

e(x.)
iK (x.+Xh. J (x.)) < 0. (A.1.17)
i 3 i 3 ~

Let k > 0 be such that
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k —
0 = X < min{X',X}. (A.1.18)

Then, for all j j> j, j Gj', the algorithm wili select, in Step 4,

k. < k, and hence
3 -

k. e(x.) k. e(x.) k
f(x +6 3h± 3 (Xj)) -f(Xj) <-aS 3Q± 3(Xj) <-ag £. (A.1.19)

Therefore {f(x )} and hence also {f(x )} is not Cauchy and by

continuity of f(*)> we conclude that {x.}.pTi» is not Cauchy, contra-
A

dieting the hypothesis that x is an accumulation point of {x,}.^_ ,

J 2 J1.

If no infinite subset of J satisfies (A.1.15), then there exists

A

3* 1. 3» such that, for all j _> j', j e J,

ik(x.) >. - e(x.). (A.l.20)

£(x.) e(x.)
Then, M 3 (x.) ^ V. 3 (x.) and by Lemma A.1.1, for all j >. j',

e(x ) - -
M± 3(Xj) ^M^(Xj) D^(xj). (A.1.21)

By the mean value Theorem 3.i and by Proposition 3.9, we have, for all j

e(x.) e(x )
^(x.+Xtu 3 (x.)) - ^(Xj) =X<g,h± 3 (x )> (A.l.22)

e(x.)
Xllh 3 (x.)ll *

for some g e r 3 (x.). By (A.1.13), there exists X > 0, such

that for all j > j',

X Hh. 3 (x.)H < e. (A.l.23)
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Therefore, by (A.21), and by (A.l.2), for all j > 3f» for all X e [0,X ],

e(x.) e(x.) s(x )
^(x.+Xtu 3(x.)) -*(x )=X<g,h± J(Xj)> <-X0± J (Xj)

< - Xe < 0. (A.1.24)

Let k _> 0 be such that

3k =I < min{X*,X}. (A.l.25)

Then, for all j >. j', 3 e J, because of (A.1.9) and (A.1.24), the algo

rithm will select a k. <. k, and therefore

k. e(x ) £A
f(x.+fl 3h. 3 (x,)) - f(x ) < - a3 e,
3*33

which shows that the sequence {f(x )}, and hence also {f(x )} ^j, is not
A

Cauchy, contradicting the hypothesis that {x.}.Gj converges to x. *
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Appendix 2. Proof of Theorem 4.4

To prove Theorem 4.4, we need the following lemma and facts.

Lemma A.2.1. The M (x.) Approximation Refinement subprocedure of Algo

rithm 6 terminates in a finite number of iterations.

Proof. For the sake of contradiction, suppose that the subprocedure

does not terminate finitely. Then, for all m,

di|<i(xj+ymh;h) <- Y0^(x.,£ ) <0. (A.2.1)

Moreover, the bisection implemented in the subprocedure produces infi

nite sequences {X }, {y } and {p }, which satisfy
mm m

11m X = lim p = lim y = y. (A.2.2)
m m m

nr*-00 m-*» m-*»

By Proposition 3.13, Corollary 3.5, and (A.27),

lim diK(x.+y h;h) = di|». (x.+yh;h) < - y<£(x.,£ ) < 0. (A.2.3)^^ riv 3 *m riN 3 H '- i j p'

By the test Step 12 in Algorithm 6, for all m,

iK(x.+X ii) < 0 (A.2.4)
i 3 m ~~

and

iK(x.+p h) > 0. (A.2.5)
i 3 in

Hence,

1p (x.+yh) <0. (A.2.6)

By subtracting (A.2.6) from (A.2.5) and dividing by p - y, we obtain
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for all m, since p - y > 0,
m

[i|>.(x.+p h) - ip.(x.+yh)]/(p -y) > 0. (A.2.7)
13m 13 m

By the definition of directional derivative and (A.2.7), we have

lim[i(>.(x.+yh+(p -y)h) - ip(x.+Xh)]/(p -X)
13m 3 m

= di/;.(x.+yh;h) >. 0 (A.2.8)

which contradicts (A.2.3). n

Fact A.2.1. Given any £ >. 0, for all r, for all j,

o!(x.,e) > e!(x.) (A.2.9)
13 ~* 1 3

and

S(x.) >e(x.) = max{E|£ = e 2"k or e = 0, k G», e*(x.) > £> (A.2.10)
3—3 ° -1- J

Proof. Equation (A.2.9) follows from the definition of O^x ,e) and

from the fact that for all r, for all j, M±(x ,s) C M±(x ). Equation

(A.2.10) follows from the definition of e(x.) and from (A.2.9). n

Fact A.2.2. Let M be a compact, converse subset of a compact convex

~ A ~
set M C]R and let y e (0,1). Let h = - NrM and let T be a subset of M,

such that for some v e r

<v,h> > - Y«h02. (A.2.11)

Then h1 = - Nr co{M U r} satisfies

HhMI2 <max{Y,l-(l-Y)2flnll2/4C2}llhH2 (A.2.12)
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where C = max{llhll |h e M}.

Proof. The fact follows from [21] (Theorem 1, part (i)) and from [13]

(Lemma 4.4). n

Proof of Theorem 4.4. Suppose that Algorithm 6 constructs a finite

sequence {x } with last element x . Since it is obvious that ib (x ) < 0
j s r£x s' _ »

we have to prove that 0°(xg) =0. For the sake of contradiction suppose

that 0±(xg) >0. By Lemma A.l.l, e(x )=£2~£>0. By Fact A.2.1,

Algorithm 4.6 jams up with p = p, such that

Sj >£(xs) >0. (A.2.13)

This implies that p <_ I and Algorithm 6 cannot jam up between Step 2 and

Step 4. By Lemma A.2.1, it cannot jam up between Step 9 and Step 12.

Therefore, jamming of Algorithm 6 may only be caused by infinite cycling

between Step 2 and the M.(x.) Approximation Refinement Subprocedure,

i.e., by r •> ». By (A.2.13), we have, for all r,

ei(V^} >h' (A.2.14)

Therefore, for all r,

~r+l ~ ~r ~ ~

Mi (V^ ""tMi^s.Sp) Uri<VXrh) '

By Step 6 and by the M±(x ) Approximation Refinement Subprocedure, for all r,

riCxs+Xrh) Cm^), (A.2.15)

and

£^

^i^s^^ - MiP(xs)# (A.2.16)
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£~

M. (x ) is convex and compact. By Step 11 in Algorithm 4.6, there exists
l s

v e r (x +X h) such that
r i s r

2<v ,-NrMj(x .£-)> >- yDNrM^x ,e-)B • (A.2.17)
r i s p l s p

Therefore, by Fact A.2.2, for all r,

G^Cx ,e;) <max{Y,l-(l-Y) X %P >£(x .e<0i s p - 4C2 l s p

By Fact A.2.1,

~r+i - 20iP(xs) ~rQA 1(xc,e.) <max{Y,l-(l-y)^ x 8 }8^(x,eOi s p ^l i s p

< L0*(x ,£-) (A.2.19)
— i s p

£ A

where L = max{Y>l-(l-Y) 0. (x )/4C } < 1 does not depend on r. There-
J_ s

fore, for all r

©!(xc,e-) <Lr0°(x,E;). (A.2.20)
i s p i s p

Hence, there exists r such that

Si<x.'«p) -h (A.2.21)

which contradicts (A.2.14).

Now, suppose that Algorithm 6 constructs an infinite sequence {x.}.

Since it is obvious that by continuity of ip.(')> for every accumulation

point x of {x.}, i|>. (x) _< 0, we have to prove that for every accumulation

point x of {x.}, 0.(x) = 0. Suppose for the sake of contradiction, that

*• o A

there exists an accumulation point x of {x.}, such that 0,(x) > 0. Let

-51-



J be an infinite subset of the integers such that x. -*- x. By the

first part of the proof of Theorem 4.3, and by definition of

Mi(x.,£ ), there exists e > 0, X > 0 and j e j, such that for all j _> j,

j e j, for all X e [0,X],

f(xj+Xh(xj))-f(xj)+aX0^(x ,£ )<-X/2(l-a)£ <0 (A.2.22)

Since Vf(*) is continuous and r.(») is bounded on bounded subsets,

there exists b > 0, such that for all j e j,

llh(x )H < b. (A.2.23)

Let X = min{E/b,X}. Then, by Step 6 of Algorithm 6 and by Fact A.2.1,
JL

for all r, for all X e [0,X ], for all j >. j, j e j,

f(x +Xh(x )) -f(Xj) +aX0*(x ,1 )<- X/2(l-a)£ <0 (A.2.24)

and

i|^i(xj+Xh(xj)) <0. (A.2.25)

Let k be such that $ _< X < 3 ~ . By (A.2.24) and (A.2.25), Algorithm

6 selects k. <^ k. Therefore, we have for all j 21 3» j e J,

k. ^
f(x.+e Jh(x.)) - f(x.) < - a$ e (A.2.26)

and, since f(x .) < f(x.) for all j, the sequence {f(x.)}.& is not

Cauchy, contradicting the hypothesis that {x.}.^_ converges to x. n
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Appendix 3. Proof of Lemma 4.3

For the sake of contradiction suppose that 0(z) > 0. Since by

hypothesis ^(z) <_ 0,

i|/.(z) 1 <Kz) 1 0> for all i. (A.3.1)

From (A.3.1) and the definition of M.(*)» we have

.o ,*.M(z) 2M^(z). (A.3.2)

Therefore, for all i,

©°(z) A llNrM°(z)ll2 > llNrM(z)ll2 £ 0(z) > 0. (A.3.3)

By (A.3.3), there exists 6 > 0 such that

llNrNr(M(z))H2 >0(z)/2 >0. (A.3.4)
o

By (A.3.2) and by upper semicontinuity of M (•)> there exists p > 0 such

that, for all z e B(z,2p)

M°(z) Cm (M(z)). (A.3.5)
i o

Therefore, for all z e B(z,p), from the definition of M (•)>

M?(z) Cm (M(z)). (A.3.6)
i o

Hence, for all z e B(z,p), by (A.3.2) and (A.3.6)

©:(z) >. 0(z)/2 > 0 (A.3.7)

Since z. ^ z by hypothesis, there exists i such that for all i _> i,

z. e B(z,p), and hence,
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®5(0 >0(z)/2 >0. (A.3.8)

By Step 6 of Algorithm 7, n. -»-0 as i + «, and, hence, there exists

i1 > i, such that for all i > i1

n±±P. (A.3.9)

Therefore, for all i j> if,

e1X<z1> >Vzi> >e<£)/2 >0, (A.3.10)

which contradicts the hypothesis of Lemma 4.3.
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V

FIGURE CAPTIONS

Fig. 3.1. The graph of i|;(x) = max min t(x-co).
fa£[-l,+l] t€[-1,+1]

Fig. 3.2. The graph of i|>'(x) = max min t(x-u)).
u£{-1,+1} Te[-1,+1]

Fig. 4.1. Construction of N*(3^(x)) and property of <g + 1/2 h(x), h(x) >

Fig. 4.2. Geometrical interpretation of the Armijo step-size rule when
iK#) is differentiable at x.

Fig. 4.3. Contours of constant values of ip(-) and a steepest descent path

Fig. 4.4. The generalized gradient 8^(0).
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Fig. 3.1. The graph of ^(x) = max min t(x-id).
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Fig. 3.2. The graph of y* (x) = max min t(x-w).
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Fig. 4.1. Construction of N£(3;Kx)) and property of
<g + 1/2 h(x), h(x)>.
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Fig. 4.2. Geometrical interpretation of the Armijo step-size rule
when #(•) is differentiable at x.
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Fig. 4.3. Contours of constant values of u(*) and a
steepest descent path.
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Fig. 4.4. The generalized gradient 3^(0)
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