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NO PERIOD TWO IMPLIES CONVERGENCE,

OR

WHY USE TANGENTS WHEN SECANTS WILL DO?+

W. Kahan

Abstract: A familiar task is to solve f(x) = 0 given a continuously differen-

tiable real function /. Newton's iteration could be tried; so could the

Secant iteration. Except when the derivative /' costs appreciably less to

evaluate than does /, the Secant iteration tends in practice to converge

ultimately more efficiently than Newton's whenever both iterations converge

to the desired root. When will they both converge? We find roughly that

whenever Newton's iteration converges from every starting point in an interval

I, so must the Secant iteration converge from every pair of starting points

in I provided only that / actually reverses sign in I. This is an

unexpected way for the Secant iteration to dominate Newton's.

The foregoing discovery was uncovered by techniques like those which

produced the following one. Suppose $(x) maps the closed finite interval

I continuously into itself, and hence has at least one fixed point x = $(x)

in I, perhaps several. The iteration a: = $(x ) need not necessarily

converge, but it will converge in I from every starting point xn in I

if and only if no two distinct points in I are exchanged by <|>. Therefore

the iteration converges only if it cannot be trapped in a cycle of period 2;

on the other hand it is known that the existence of a cycle of "Period Three

Implies Chaos11 (T.-Y. Li & J. A. Yorke, Amer. Math. Monthly 82 1975). These

last results and more can be found in a little-known paper by A. N. Sarkovskil

(1964) "Co-existence of cycles of a continuous mapping of the line into itself"

(Russian) Ukrain. Mat. 2 16 #1 (Math. Rev. 28 (1964) #3121).



§0. Introduction

This work is presented in two parts. Part I deals with the iteration

xn+1 ~ $(&) when $(x) maps an interval I continuously into itself without

exchanging two distinct points of I. The theorem that then the iteration

converges is proved here not because the theorem is new (a proof by Bashurov

and Ogibin (1966) has been translated into English) but because that proof

contains ideas that will be needed in part II and, besides, deserve to be
better known.

Part II deals with Newton's and the Secant iterations for finding where

a continuously differentiable real function f(x) vanishes. The results

presented appear to be new and to provide further incentive, if any be needed,

for preferring the Secant iteration over Newton's.

This introduction includes a summary of all subsequent sections' contents

in order to help the browsing reader locate more easily whatever interests him.

All proofs are terminated by the • sign in order to help the casual reader

skip over them.

Part I, §1 The No Swap Theorem

The main result is stated here together with some of its history, but

not proved until §4. The result is due principally to Sarkovskil. It

is valid both on finite intervals and on infinite intervals regarded

as line segments, but not valid on the projectively closed real axis

(regarded as a circle) except in special cases.

§2 Two Conditions Equivalent to the No Swap Condition

These are technical details used only in §3.

§3 The One-Sided Condition

This condition, first articulated by Sarkovskil (1965), is the

most potent equivalent to the No Swap Condition.



§4 Proof of the No Swap Theorem and some Applications

Among the applications are validations of familiar conditions

sufficient for convergence, and characterizations of the regions from

which convergence is assured. Newton's iteration is seen to be in one

sense a special case, in another sense more general than the iteration

discussed above. The No Swap theorem is applied to show that Newton's

iteration always converges when used to find a zero of a rational func

tion whose poles and zeros are all real, simple, and interlace.

Part II, §5 Newton's and the Secant Iteration

This is where significantly new results begin. The two iterations are

described, and first mention is made of a pathological discontinuity

that must complicate matters (it partially invalidates some of the

claims in the abstract above) even if we begin with an infinitely

differentiable function f(x). The Secant iteration's sparse literature

and history are sketched briefly, and then five examples are presented

to give the reader some feeling for the possibilities with which our

theory must cope.

§6 Projective Invariance of Newton's and the Secant Iterations

Old but unfamiliar results culminate in a Mean Value lemma which binds

the two iterations together more firmly than can any hand-waving about

the Secant iteration being a "discretization" of Newton's.

§7 Inferences from NCI) C I

The hypothesis that N(x) = x-f(x)/f'(x) maps an interval I into

itself, a prelude to the assumption that Newton's iteration converges,

has profound consequences ranging from the monotonicity of / to the

Darboux continuity of N, all of them needed in the next section's

proofs.



§8 The No Swap Theorem for Newton's Iteration

Here are the necessary and sufficient conditions for Newton's iteration

to generate from every starting point a sequence of iterates of which

some subsequence converges to a zero of fix), An example shows that

the subsequence complication is theoretically unavoidable though prac

tically ignorable. One application of these conditions is a generaliza

tion of the familiar convexity conditions sufficient for convergence;

we can allow at least one inflexion. Consequently certain financial

calculations can be accomplished via Newton's (or the Secant) iteration

with no need first to obtain safe starting values. Another application

provides for rapid computation of all the real zeros of a sufficiently

differentiable function (e.g. a polynomial) with no recourse to Sturm

sequences.

§9 The Secant Iteration

Finally Part•II's main result, which tells when the Secant iteration

works as well as Newton's, is stated accurately and proved via a long

sequence of ten propositions which exploit almost all that has gone

before. A final example shows once again that subsequence complications

are theoretically unavoidable though practically ignorable.

§10 Bibliography



PART I

§1. The No Swap Theorem

$(x) is a function which maps a closed finite interval I continuously

into itself. Since x-$(x) cannot have the same non-zero sign at both ends

of I it must vanish at least once in I; consequently <f> must have at

least one and possibly several fixed points x = §(x) in I. A natural way

to seek a fixed point is to iterate,

Xn+1 = *(xri for w° 0.1.2,3,... ;

but the iteration cannot always be expected to converge. For example,

xn+l = sin(2nx ) almost never converges, the exceptions being a countable

set of starting values xQ from which one of the three fixed points x = 0

or x = ±.429368... is reached after finitely many iterations.

Theorem: The condition necessary and sufficient for the iteration x = <b(x )
n+1 T n

to converge from every xQ in I turns out to be

The No Swap Condition: No two distinct points in I are exchanged

by <J>; i.e. if i = 4>(<t>(x)) in I then x = $(x) too.

This theorem will be vindicated below in stages designed to exhibit interme

diate results which will be useful in Part II. But first we digress to dis

cuss the condition's history and generality.

The No Swap theorem is equivalent to the assertion that x = <b(x )
n+1 T n

converges from every xQ in I if and only if no a:0 in I leads to a

sequence of iterates cycling on two points x„ = xn and xn , = x 4 x„.
2n 0 2rc+l 1 0

This theorem appears (not altogether correctly) in A.N. Sarkovskil (1960,1961)

and is (correctly) elaborated upon in subsequent papers (1964,1965) wherein

Sarkovskii proves, among other things, that the integers can be re-ordered



thus

jjj,/,y,...,2/is+±.,.. •,

6,10,14,18,...,4i+2,...,

• • •,

2*3,2*5,2*7,2*9,...,2*(2£+l),.,.,

..., and finally

...,2 ,2 ,...,o,4,Z,l

Cm)
in such a way that if from some xrt « a:, the iteration a: ,, = d>fx ^ cycles

0 0 n+1 n J
(m f )

on m distinct points then there are other starting values x_ = x. in 1

from which follow cycles of every length mf subsequent to m in the re-order-

ing. I am indebted to Prof. Rufus Bowen for references to sarkovskil's work,

which seems to go beyond what has appeared recently in the English language;

cf. Li and Yorke (1975), Stepleman (1975), and Bashurov and Ogibin (1966).

V V

In this paper only those parts of Sarkovskii's work that bear upon

Part II will be repeated.

The No Swap theorem is stated above for a continuous map (J> of a closed

finite (i.e. compact) interval I to itself. Must I be both closed and

finite? No; it could be neither. But a more general form of the No Swap

theorem involves complications which obscure proofs already complicated enough.

For instance, because the No Swap theorem neglects to mention that the itera

tion x . - $(x ), when it converges, converges to a fixed point of (j),

the theorem remains valid whether or not I includes its end-points; the

example §(x) = x on the open interval I = {0<x < 1} illustrates the possi

bility of convergence to an end-point not in I. The reader who wishes to

prove the No Swap theorem for non-closed intervals I may do so by first

adjoining to I any end at which ~\\k\($(x) -x) =* 0 and then modifying in

routine ways every reference to an end of I in §§2-4; fortunately no end
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of I to which <f> cannot be continued continuously figures significantly

in the theorem.

I does not have to be finite, but when I is infinite ambiguities can

arise concerning the meanings of "continuous" and "convergent", and whether

00 can be a fixed point (e.g. of $(x) =» x+1), and whether +» differs from

-00. To avoid these ambiguities and other circumlocutions in subsequent sec

tions of this paper we have assumed without loss of generality that I is a

finite interval. Only in this section, §1, do we digress to justify that

assumption by discussing infinite intervals.

The No Swap theorem remains valid when <J> is a continuous map of an

infinite or semi-infinite interval I to itself provided the word "converge"

be understood to include possible "convergence" to ». This is so because

a suitable change of variables will transform the infinite interval I into

a finite one. For instance, suppose $(x) maps I E {0£x£-H»} continuously

to itself. The new variables y E (x-l)/(x+l) and ^(y) E ($(x) - D/OKxJ +1)

@ x « (l+y)/(l-y) exhibit the corresponding continuous map ty of the

transformed interval J E {-l<y <1} to itself. The example <|>fx; = x+1

with an attractive fixed point at x « +» corresponds to \\>(y) » (l+y)/(3-y)

with an attractive fixed point at y = 1; just as y = ty(y ) converges

to 1, so must xn+1 = <J>rx^; "converge" to -H». The foregoing change of

variables is an instance of a bilinear rational transformation appropriate

when <KIJ's closure is not the whole real axis. Otherwise, when (jX'IJ's

closure is the whole real axis, non-rational changes of variables are more

appropriate. One example is y = tanh x which maps the affinely closed real

axis I= {-«><x<+*>} onto the closed finite interval J E {-l<_y<l}9 and

transforms a function §(x) continuous at all real x into

ty(y) E tanhftKarctanhfz/,);; which is continuous at least in J's interior.

Hence the following ostensibly more general form of the No Swap theorem is true:



If I is a line segment, including or not including its ends,

finite or infinite, and if <f> maps I continuously to itself,

then the iteration ^ .-, = 4>(x ) converges from every xn in

I if and only if <(> exchanges no two distinct points of I.

A line segment, which has two ends that may or may not be regarded as

part of that line segment, is quite different from a circle which has no end

at all. The No Swap theorem is not generally applicable on a circle, and

consequently not generally applicable to real functions <$>(x) which, like

rational functions, are continuous in an extended sense on the projectively

closed real axis I = {all real numbers x} U {«»}. The usual change of varia

bles is the Stereographic Projection (Fig. 1) y E 2 arctanfx,) mod 2tt which maps the

projectively closed real axis I onto the circle C = {-ir£ (y mod 2ir) <tt},

and transforms $(x) into ty(y) E 2 arctanf(j>ftan y/2)) mod 2ir which must

map C continuously to itself whenever (j) is a rational function or, more

generally, whenever either $(x) is continuous or l/^(x) is continuous at

every real x, and either $(lltn) or l/^(l/(a) is continuous at w = 0.

But ty may lack a fixed point in C; take for example ty(y) E y+1 mod 2ir,

the transform of the rational function $(x) Etan^+arctan x)
= (x + tan —)/(l-x tan~), which has neither cycle nor fixed point. Another

violator of the No Swap theorem is ty(y) E -2y mod 2ir, the transform of

$(x) - 2x/(x -1), which also swaps no two distinct points but does have

three repulsive fixed points to which iteration converges only from a count-
2

able set of starting points. A final example <\>(x) E x(x+2)/((l-x) (x +2x+2))

never swaps two distinct points and has just one fixed point to which the

iteration a?n+^ = <KX J converges from most starting points, but the itera

tion defies the No Swap theorem by cycling through one set of eleven points

starting at xQ = -3.2956364... and through another eleven starting at

Xq = -4.2078536... (there are no shorter cycles). See Fig. 2.
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Two useful special circumstances are known when the No Swap theorem may

be applied to a continuous map ty of the circle C to itself. One we have

already discussed is the case when \\>(C) is a proper sub-arc of C in which

case C may be transformed into a line segment on which \\) is continuous

by cutting C at any point not in ty(C). Such a case is exemplified by a

rational function $(x) E(a?2w-l)/(ar2wfl-l) with m>_ 1 that maps the

projectively closed real axis into the interval -1 < $(x) £ 1 without

swapping two distinct points, whence the No Swap theorem implies that

xn+l ~ $(xn) converges from any xQ. The second special circumstance arises

when if; has in C at least one fixed point n = tyM at which cutting C

yields a line segment on which ip remains continuous and therefore entitled

to the No Swap theorem. Such a circumstance arises whenever tjj never winds

past n, i.e. whenever the equation ty(y) = n has no solution y other

than perhaps y = n across which the expression ty(y) -n changes sign.

3 2
One example is the rational function $(x) E (x +l)/(x-l) whose unique

fixed point °° is approached from just one side as x •*• 1; consequently

the projectively closed real axis may be cut at °° to produce the affinely

closed real axis {-<»£aj <,+»} which (j) maps "continuously" to itself in a

way which justifies the inference from the No Swap theorem that x , = <b(x )
r n+1 Y n

•*• 4» from every real xQ. Another rational example is $(x) E (x -l)/(x -1)

with m >_1 which can be shown to map the projectively closed real axis one-

to-one onto itself without swapping two points; moreover <j> has two fixed

points, an attractive one between 2~1'^2ot"*1^ and 2~1^2m" "^ and a

repulsive one between -2 and -2 /(OT+3' \ After the circle is cut at the

latter fixed point the No Swap theorem implies that x ... = <b(x ) will con-
n+1 n

verge through the extended reals (possibly including one x = <» and the next

xn+l = 0) to the attractive fixed point from every starting point x0 except

the repulsive fixed point. This example and the one before last will reappear

in §5.



Finally, note that no generality is gained by allowing the closed inter

val I mapped continuously to itself by <J> to be a subset of the real axis

instead of all of it, because <j> could be defined outside I by extending

4>'s graph horizontally from its ends. I is significant only in so far as

it represents that part of <f>'s domain in which the No Swap condition is

satisfied, outside which the condition might be violated. I's significance

will become clearer in §4 during the discussion of catchment basins.

Here ends the digression concerning infinite intervals. Henceforth

until §5 assume I is a closed finite interval mapped continuously to itself

by (J>.

§2. Two Conditions Equivalent to the No Swap Condition

The first such equivalent condition to be considered is

The NO Separation Condition: No z in I can strictly separate $(z) from

$($(z)); i.e. either $($(z)) < z £ $(z) or §(z) < z £ $($(z)) in

I implies $($(z)) « z = $(z).

Since the No Swap condition is an obvious implication of the No Separation

condition, our task is to verify that the former condition implies the latter,

so assume that the No Separation condition is violated by, say,

<t>($(z)) < z < $(z) in I and we shall exhibit a consequent violator v of

the No Swap condition. See Fig. 3.

Since $(x) -x takes opposite signs at x = $(z) and at x = s, $(x)

must have a fixed point y = $(y) strictly between z and $(z). Similarly,

as x runs down from z to I's left-hand end-point, <$($(x))-x runs from

a negative value at x = z to a non-negative value (QCQCx)) maps I's left-

hand end-point into I), so $($(x)) must have a first fixed point

v = <J>f<Ki>;; < z; by "first" is meant that $($(x)) -x < 0 for v < x < z.

12



Can v = §(v)1 No; otherwise $(x) -y would be positive at x = z and nega

tive at x = v, in which case we should have $(u) -y = 0 at some u

strictly between v and z and then $(§(u)) -u = $(y) -u = y -u > 0 con

tradicting our choice of v as the first value of x < z for which

§(§(x)) -x >_ 0. Therefore t; = $($(v)) j> §(v) violates the No Swap

condition. Q

The second condition equivalent to the No Swap condition will be called

The No Crossover Condition: If §(v) <«<v< $(u) in I then

$(V) « U = V = $(U) tOO.

Since this condition obviously implies the previous two, our task now is to

verify that they imply this one, which we shall do by inferring from a viola

tion <p(v) < u < v < $(u) of the No Crossover condition that there exists a

violation z of the No Separation condition. See Fig. 4.

Consider $($(v)). If $(<t>(v)) >_v then v violates the No Separation

condition. Otherwise, if <b($(v)) < v, we plot $(x) -v as x runs through

$(v) £ x £ w. Since <\>(x) -v < 0 at x « $(v) and §(x) -v > 0 at x = u

there must exist some z in $(v) < z < u with $(z) = y, and this z

violates the No Separation condition because

$(§(z)) - $(v) < z < u < v = (|)Cs; . Q

We shall use the No Crossover condition in lieu of the No Swap condition

to prove inferences from the latter.

13
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§3. The One-Sided Condition

We return now to the iteration x ,, = $(x ) and show that the No Swap
n+± n

condition is equivalent to another condition first articulated by Sarkovskil

(1965) and used also by Bashurov and Ogibin (1966, Lemma 2).

The One-Sided Condition: Whenever x » $(xJ $ x. in I all subsequent

iterates x^+1 » $(xn) also differ from xQ and lie on the same side

of xQ as does x .

Since the No Separation condition is an obvious inference from the One-Sided

condition, our task is to infer the converse by assuming that x_ violates

the One-Sided condition and deducing that some subsequent iterates violate

the No Crossover condition.

Assume for definiteness that x = Q(xQ) > xQ but that some subsequent

iterate x < xn. We may take x_ to be the first such iterate and then
m — \j m

have x1,x2,.. •t*^ all greater than xQ. Next let x, be the first of

these iterates to satisfy x7 > x ,; now x < x. < x, , < x , < x. ,
k — m-V m — 0 — fc-1 m-1 — k

which exhibits ar- - and x _ as violators of the No Crossover condition.
fc-1 m-1

The One-Sided condition has been interpreted above as a property which

an iterating function $(x) can possess if and only if $ also satisfies

the No Swap condition. But the One-Sided condition can also be regarded as

a property of sequences irrespective of their genesis:

The One-Sided Condition is satisfied by the sequence (xn,x ,X-,...}

whenever each member x of the sequence lies on the same side of all sub

sequent members x . , m > 0; i.e. each x satisfies
n+m n

x < x . for all m > 0,
n n+m

or x > x , for all m > 0,
n n+m '

or else x = x , for all m > 0.
n n+m

15



In particular, if the sequence x^+1 = $(x ) is generated by a One-Sided

iterating function <\>(x) then the sequence must be One-sided too. Such a

sequence is the subject of the following lemma.

No-Man's Land Lemma: If the sequence {xQ,x ,x2,...} satisfies the One-^

Sided condition, and if it is not ultimately monotonic*, then the

sequence can be partitioned into two disjoint infinite subsequences

one of which increases strictly monotonically to a limit x while

the other decreases strictly monotonically to a limit x, and x > x.

Proof: The increasing subsequence consists of those x which satisfy

xn < xn+i and the decreasing subsequence consists of those x which

satisfy x^ > xn+1* For instance, if x^ is a local maximum and x- the

subsequent local minimum in the sequence, so that

•" Vl * xm > xm+l > *" > xl-l >*l * xl+l "' <-m < Z>

then s:_i and x- are consecutive members of the ascending subsequence

(note that xm_-t <#7 because of the One-Sided condition) while

XmiXm+V"' *xl-l are consecutive members of the descending subsequence.

Evidently each subsequence is strictly monotonic and bounded by the other,

and consequently each subsequence converges to a limit which separates it

from the other. If the limits x and x are different they are separated

by a no-man's land which no member x of the sequence may enter. •

"ultimately monotonic" means that either x >_ x for all sufficiently

large n or else x^+1 £ x^ for all sufficiently large n.

16
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§4. Proof of the No Swap Theorem and some Applications

Theorem: Suppose I is a closed finite interval mapped continuously to

itself by (f>. Then the iteration x - = $(x ) converges in I from

every xQ in I if and only if any of the following equivalent condi

tions is satisfied.

The No Swap Condition: If x = $($(x)) in I then x « $(x).

The No Separation Condition: Either $($(z)) <_ z < §(z) or $(z) £ z < $($(z))

in I implies $($(z)) - z = $(z),

The No Crossover Condition: If $(v) < u <_ v <.$(u) in I then

$(v) = u = v => $(u).

The One-Sided Condition: Whenever x = $(xj f x in I all subsequent

iterates xn+i = $(x ) also differ from xQ and lie on the same side

of xQ as does x .

Proof: The equivalence of these four conditions has already been

established, and the necessity of the No Swap condition is evident since

otherwise the iteration could cycle on two distinct points of I. All that

is left is to show that these conditions suffice to ensure convergence.

The sequence of iterates x must be a One-Sided sequence. Therefore,

according to the No-Man's Land lemma, it is either ultimately monotonic and

therefore convergent in I, or else it can be partitioned into two disjoint

infinite subsequences, one ascending to a limit x and the other descending

to a limit x >_x. Is x > x? No. Those iterates x which belong to

the descending subsequence that converges to x are followed by iterates

x - = <j>(x )• which must, because (J) is continuous, converge to §(x) ;

and yet at least some of those iterates x . belong to the ascending



subsequence and must converge also to x. Therefore x = <$>(x) t and simi

larly x = $(x). Finally the No Swap condition implies x = x and the

theorem is proved; x -»• x = x. D
n

The No Swap theorem may be applied in several ways to decide whether

an iteration x^+1 = ^(x^) converges. One way is graphical; the graphs of

y « $(x) and x =* §(y) are mirror images by reflection in the mirror

y = x, and only if those graphs intersect nowhere but on the mirror is the

No Swap condition satisfied by <j>. This technique was used to settle a

conjecture by Stepleman (1975, p. 894) that

xn+1 « xw(sinfl/x ;-1/8) (sinfradians;)

would converge to zero from all x , or at least from all sufficiently

small x . The transformation * = 180/(irx ) converts the iteration into
u n n

an equivalent form

Xn+l =V(s1nrV "1/8) (sinrdegrees;)

which is easier to deal with both numerically and graphically. Then we

find cycles *2 = XQ ? ^ in abundance, for instance X » 1355.5094°...

and ^=-1209.865°..., or XQ =1723.154°... and *- -1568.269°...,

so Stepleman's conjecture is false. But his iteration appears always to

converge in the presence of roundoff.

Another way to apply the No Swap theorem is algebraic, applicable when

$(x) is a rational function. Then 1+ (§($(x)) -$(x))/($(x) -x) is also

a rational function, and only if it has no zeros in I which are not also

zeros of $(x) -x is the No Swap condition satisfied by <J>. Therefore the

No Swap condition can be tested by removing some common divisors from cer

tain polynomials and then invoking Sturm sequences to decide whether the

18



polynomials change sign in I. The condition $(1) CI can also be tested

by using Sturm sequences to see whether certain polynomials change sign in

I. The details have been worked out by R.J. Fateman (1977), who has written

a computer program that runs on M.I.T.'s MACSYMA system and realizes the

following assertion:

When $(x) is a rational function the question, whether x , = <b(x )
n+1 n

converges in I from every x in I, can be decided by a finite

number of rational arithmetic operations without solving any poly

nomial equations.

Other applications of the No Swap theorem include easy validation of

conditions sufficient for convergence in I from every x , three examples

of which are these:

i) \§(u) -<t>(v)\ < \u-v\ for all distinct u and v in I separated

by the (it turns out to be unique) fixed point of <j> in I's

interior,

ii) -1 < ($(u) -$(v))/(u-v) for all distinct u and v in I

separated by one of <j> 's fixed points,

iii) <f> has in I just one fixed point that divides I into at most

two sub-intervals at least one of which is mapped to itself by (J).

In all three cases I is presumed to be mapped continuously to itself

by <f>.

The reader is asked to verify that each of the foregoing three condi

tions implies the No Swap condition, keeping in mind that (J> must have a

fixed point between any two points of I that <t> swaps. Although the

three conditions refer to <J>'s fixed point(s) the conditions do not require

that any fixed point's location be known; for example, if <j> is differen

tiable one of the inequalities \<b'\ < 1 or (J)' > -1 or <f>' > 0 respec

tively would suffice.
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A troublesome problem encountered frequently in practice arises when

conditions somewhat like those above are known to be satisfied by $ in

some interval J which is not known to be mapped to itself by <f>. This

problem, locating a suitable sub-interval mapped into itself, is so impor

tant that we digress here to discuss how the No Swap theorem can shed light

on it.

First some terminology. The interval J is the domain of a continuous

real function $(x). A sub-interval X of J is called an interval

attracted to £ whenever from every x. in X the iteration x = <b(x )
o n+1 T n

converges to the fixed point £ = <j>(£J even though perhaps some iterates

may lie outside X (but all lie in J); we do not insist that $00 C X.

The fixed point £ = $(fy is called attractive whenever it belongs to some

non-degenerate interval (one that contains interior points) attracted to £.

The catchment basin X(£j belonging to an attractive fixed point £ is

the largest interval X containing £ and attracted to £. (When £ is

an end-point of its catchment basin most other writers would call £ a

one-sided attractive fixed point and reserve the unmodified term "attractive

fixed point" for one which lies in its catchment basin's interior.) One

property of X(£J is that

£ e <j>rxf£;; cxr£; ;

this is true because Xf£J is just that connected component containing £

of the union of all intervals attracted to £, while $(X(£)) is one of

the intervals attracted to and containing £ in that union. That property

does not characterize X(£; because other larger and smaller intervals

possess the same property; given any sub-interval K C X(%), the smallest

sub-interval X D K with £ e $(X) £ X turns out to be
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X « (convex hullf££}UK; U^Cconvex hullf{£}UK;j C X(£)

as can be verified easily with the aid of the One-Sided condition valid

throughout X(£J. (Cf. Theorem 2 of Bashurov and Ogibin (1966).) Conse

quently the problem of locating a suitable subinterval X mapped into

itself in X(£J is reduced to the problem of deciding when a sub-interval

K lies between the ends of Xf£;; the crucial question is just

Where in J are the ends of £'s catchment basin Xf£J ?

Lemma: The closure of X(£j is the largest closed interval containing £

whose every interior point x satisfies

1) x lies inside J, and

2) $(x) lies in J, and

3) (mw*;;;-5)/(<K*;-c) < i if ¥*) * c

Consequently the ends of X(£J lie among those points x which satisfy

-1) x is an end of J, or

-2) $(x) is an end of J, or

-3) <K(K<Kxjj; = <b(x).

Proof: X(£J can contain no fixed point other than £ of $(x) nor

of <$($(x)) nor of <J>(<j>C<J>CxJj; ...; on the contrary the One-Sided condition

satisfied by <j> throughout X(£J implies that both of $($(x)) and

<b(<b($(x))) must lie on strictly the same side of $(x) as does £ provided

<J>(xJ f £, and hence 3) is satisfied. Moreover each end of X(£j which is

not an end of J cannot be mapped by <f> into Xf£j's interior, but must

be mapped onto either itself or the other end of X(£J, and hence must

satisfy -2) or -3).

This is a convenient place to tabulate the six ways by which the ends

of £'s catchment basin Xf£J may be recognized. We shall denote X(£J's



ends by r\ and £, not necessarily both different from £.

Cases 1-3: £ » <J>(£j is a fixed point at one end of X(£J whose other

end n is

Case 1: an end n of J with $(r\) in X(£J's interior, or

Case 2: another fixed point r| « $(r\) j* £, or

Case 3: mapped onto £ = $(x\).

These three cases are the only ones which allow £ to lie at one end (O

of Xf£J.

Cases 4-5: £ lies strictly inside the closed interval Xf£J one of whose

ends, C, is an end of J with <KCJ in Xf£j's interior and the

other end r| is

Case 4: also an end n of J with $(r\) in X(£J's interior, or

mapped onto the first end £ « $(r\).

£ lies strictly inside the open interval X(%) whose ends n = <KSJ

Case 5

Case 6

and C = ty(v\) are swapped by (f>.

The lemma's proof will conclude with demonstrations appropriate to the

six cases that Xf^'s closure cannot be a proper sub-interval of a larger

interval X whose every interior point satisfies 1), 2) and 3). Each case

will be ruled out either on the grounds that any end of X(£j interior to

X would then violate 1), 2) or 3) or else because some open neighborhood

of an end of X(£J inside X would then be attracted to £ contrary to

XC£J's definition as the largest interval containing £ attracted to £.

Suppose, then, that X(£J's closure is a proper sub-interval of a

larger interval X whose every interior point x (including at least one

of XC£J's ends) satisfies 1), 2) and 3). Case 4 is ruled out by 1),

case 6 by 3), and case 5 by the observation that any sufficiently small

open neighborhood of r) inside X that satisfies 2) must be mapped by $
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into XC£; and therefore ought to belong to X(£j. Case 1 is ruled out

either by 1) (so n is not inside X) or 3) unless ? = £; and case 2

persists only if one of the fixed points at the end of X(£), say n, is

an end of X too while the other end £ « £ is inside X; and case 3

persists only if C =» £ is inside X too. In summary, the persistent

cases are now these (see Fig. 5):

Cases V & 2': £ = $(£) lies at one end of Xf£J and inside X, but the

other end n of X(£J is an end of X too.

Case 3': £ = 4>(£J lies at one end of X(£J, the other end n is mapped

onto the first £ « <$>(t\) , and at least one of these ends lies inside X.

To dispose of these remaining cases introduce V = $(X) UXf£J. Evi

dently V<£Xf£j's closure; otherwise an open neighborhood around one of

Xf£J's ends would be mapped into X(%) and would consequently be attracted

to £ contradicting X(£J's maximality. In fact, every open neighborhood

around one of Xf£J's ends inside X must be mapped by <J> onto an interval

part of which lies outside Xf£J's closure, and since each end of Xf£J

inside X is mapped onto £ we conclude that V contains some open

neighborhood W around £. Moreover, every y £ £ inside that neighborhood

W must satisfy

3') W4(y))-S)/(y-Z) < 1

either because y lies in Xf£J where <J> is One-Sided or because y = $(x)

for some x in X's interior where 3) is satisfied. If W be chosen

small enough to keep <b($(y)) no farther from £ = <$>($ (%)) than n,

inequality 3') above will force the iteration x « = §($(x )) to converge

to £ from any xQ in W either monotonically through W outside XC£J
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Fig. 5: Illustrations for the proof of the Lemma
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or ultimately monotonically within X(£J . (Note that 0 £ ($(x) -£)/(x-£) < 1

for all x inside X(£J in all three cases 1', 2' and 3' because then $

has no fixed point inside X(£J.) Since <f> is continuous at £ the itera

tion xn+1 = §(xn) must converge to £ too, and from any xQ in W,

contradicting X(£J's maxlmality again. Q

The reader may well wonder why the lemma's condition 3) was not written

in the simpler form

31) (<K<j>fx;;-£)/(x-£) < 1 if x t £ .

One reason is that the lemma so modified could be contradicted by a counter

example falling into case 3' in the proof; take £ = 0, §(x) = x(l-x),

n - 1, and the positive real axis for X in which 3') is satisfied. Ano

ther reason is that conditions like 3) have already appeared in the litera

ture; one instance is

Theorem 3.2 of Stepleman (1975, p. 891): Suppose $(x) is continuous

throughout some interval containing in its interior a fixed point

£ = $(%) but no other solution x of $(x) = £; then £ is a point

of (two-sided) attraction for the iteration x ,, = <f>(x ) if and
n+1 n

only if

\<\>($(<t>(x))) -£|/|<KxJ -£| < 1 whenever $(x) t £

throughout some open neighborhood around £.

(The hypothesis that $(x) $ £ whenever x $ £ in the interval cannot be

dropped without abandoning the theorem to counter-examples which answer

negatively Stepleman's "open question" following his Example 3.3 on p. 891.

Incidentally, that example is wrong.)
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None the less, the lemma is defective for practical purposes in so

far as it sacrifices Applicability to Elegance. Equation -3) could better

by replaced by the pair

-3») $(tfx)) =• x or <j>f<Kxj; » ¥x) ,

and inequality 3) by the pair

3 } x-£ < x and ^rx;-£ < 1 if ¥x) * z

that attest to the One-Sidedness of (J> in X(%). The reader is asked to

verify, by retracing its proof, the truth of the lemma when 3) and -3) are

replaced respectively by 3") and -3'), noting that when 3") is satisfied

throughout a non-degenerate interval containing £ so too must

(4>(x) -£)/(x-£) < 1 at every x ^ £ in that interval. Replacing -3) by

-3') improves the lemma because the latter's solution-set is never larger

and often smaller than the former's, and therefore -3') usually costs less

to solve than -3). And inequalities 3") cost less to test than 3) partly

because <j>(<j>($(x))) is such a mess. Finally, the modified lemma is accom

panied by convergence theorems, analogous to Stepleman's but simpler, of

which the following is an example.

Corollary: £ =» <j>f£J is an attractive fixed point of the continuous real

function <J> if and only if 3") is satisfied throughout some non-

degenerate interval containing £; and £ is attractive if it lies

strictly inside an interval throughout which 3")'s first inequality

is satisfied.

Proof: 3") is necessary because $ must be One-Sided throughout X(^).

That 3") is sufficient too will follow after we find an interval I with
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£ e <j>d; C I throughout which (4>(x) -£)/(x-£) < 1 if x ^ £. Then <f>

will have no fixed point in I except £ and will satisfy the No Swap

condition, and the iteration x^+1 =$(x ) will have to converge to £

from every x inside I.

Let X be the non-degenerate interval containing £ mentioned in the

corollary and partition X into two sub-intervals which have only £ in

common; say X=\^\ where XL ={x££ in X} and X^ ={x>£ in X}

and at least one of XL or XR has interior points. 3")'s first inequality,

valid inside X^ and X^ prevents any point of X except £ from being

a fixed point of <f>; consequently (4>(x) -£)/(x-£) - 1 cannot change sign

inside X^ or XR and must be negative to avoid contradicting 3")'s first

inequality in some neighborhood of £. Thus, if X D <$>(X), or if non-

degenerate XL 3 <J>fXL; or XR D <J>fXRJ, the choice of I that completes

the proof is obvious. Otherwise there are two cases to consider.

The boundary case: Either XL »{£} or XR ={£}. Say the former; then

£ lies at one end of the non-degenerate interval X_ but $(X ) C X .
R R — R

However, <KXRJ £ (Sup x in X^ because ($(x) -£)/(x-£) < 1 inside

XR, and also <t>($(XR)) < (sup x in XR) because of 3")'s first

inequality. On the other hand, <K<J>fXR;j > (inf x in <KXJ) because

of 3")'s second inequality, which implies (<t>(x) -£)/(x-£) < 1 inside

QtZg)' Choose I= <K*jJ UX to complete the proof.

The interior case: £ lies inside X, and only the first of 3")'s inequali

ties is assumed by hypothesis to hold inside X. and X . We have

already dealt with the possibilities $(X) £ X, <J>fX ) £ X or
Li L

<K\^ £ X^; the only possibility left that is compatible with the

inequality ($(x) - £)/(x-£) < 1 valid inside X and X is either
L R

^L C ^"V or *R C $(\) • Sav the former; then let the non-degenerate
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interval / be that component of <jT (X ) nx_ containing £, and
L R

let I =XLU/ = $(V) UV C X, observing that $(1) £ I because of

3")'s first inequality valid inside V. •

Here ends the discussion of the No Swap theroem for arbitrary continuous

iterating functions <f>. The rest of the paper concerns Newton's and the

Secant iterations for solving an equation f(x) - 0. Contrary appearances

notwithstanding, Newton's iteration x A. = x - f(x )/f'(x) is not iust a
n+L n n n

special case of the previously studied iteration x , =» d>(x ).
n+1 n

Proposition: Newton's iteration is ubiquitous; if $(x) maps the finite

closed interval I continuously into itself, and if <j> has just one

fixed point C = $(& in I, then $(x) « x-f(x)/f'(x) for some

function / which is continuous in I, vanishes only at £ in I,

and is continuously differentiable in I except possibly at £.

In fact f(x) = c exp
tx

dw/(w- $(w)) where the constants c ^ 0 and the

lower limit of integration are assigned different values for x on one

side of Z> than on the other. The hypotheses concerning (J) ensure that

x-$(x) has always the same sign as x-£, so the integral is properly

defined for all x $ £ in I and f(x) + 0 as x -»• C. If / has non

zero one-sided derivatives at x = £ the constants may be altered if

necessary to make / continuously differentiable at x = £ too. •

More generally, the fixed points of $(x) = x-f(x)/f'(x) that are

not zeros of / turn out to be places where f (x) =» <». Rather than

digress into generalities, let us consider the following useful application

of the No Swap theorem to Newton's iteration.
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Suppose f(x) is a rational function whose poles and zeros are all

real, simple, and interlace, with one pole at x = °°. Such a function has
n

the form f(x) « e(x-3-I w./(ar-ir.)) with c j> 0 and all w. > 0 and

irx < tt2 < < u' ; or it may have the form

29

fix) = det(xl-4)/det(xi-4)

where 4 is an hermitian matrix, A is obtained by striking off A1 a last

row and column, and the i's are identity matrices. Such functions / play

important roles during, for example, the calculation of eigenvalues of

hermitian matrices A; cf. Y. Saad (1974). Now we shall see why Newton's

iteration almost always converges to a zero of /; we shall find that con

vergence to a zero can be precluded only if xn is one of a countable

sparse set of starting points from which the iteration x ,, = x - fix )/f'(x )
n+1 n J n n

terminates at a finite pole ir. of / after finitely many steps.

n+1 n

Proof: Write f(x) = c II (x-C .)/n(x-w.) where
1 3 1 d

5-L < "^ < X,^ < v2 < **" < *°n < \ < ^n+1 disPlavs the interlacing poles ir.

and zeros C. of /. Useful equivalent forms for / are

n n+1

fix) = e(x-B-I w./(«-Tr.)) = cf I y./(x-C.)

w n+1 j»l ir.-C. n £..,-*.
where 3 » I ir. - £ C., o>. = n J *(tt .-£.) (C .,,-ir.) n w J > 0,

J'"*1 ^"^ n+1 \-rc7 "t1y- = II / r II —-——*- > 0 and J. y. =» 1. Corresponding forms for
J i=i <*fH Q+i H~Qj i 3
the iterating function $(x) = x-f(x)/f'(x) are

<K«; = 3+1
n o).(2x-ir.),\

1 (x-tt .)
1*

n

1+ 1
w*

1 (X-TT.)

m+1 y .c . ^

j—"
1 1 (x-?,-)

u

I
n+1 v.

1 CHyV
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from which follow immediately the conclusions that the rational function $(x)

is continuous for all real x, has fixed points £. = <J>(C •) and tt . « <KttJ,
3 3 3 3

and maps the whole real axis onto the interval £- < <b(x) < C ,. Conse-
1 — — n+1

quently Newton's iteration a? = <j>(x j will converge from every real xn

if and only if <j> swaps no two distinct values x and y: But if <J> did

swap them we could rearrange the equations x = $(y) and y » §(x), subtract,
w+1

divide out (x-y), and infer that jv.((x-£ .)"2+(x-C O^Gz-C 0"1+(2/-C -)~2)
i 3 3 3 3 3

13 0 when in fact it must be positive. Therefore the iteration must converge

to one of (pTs fixed points. Since each zero £. is a strongly attractive

fixed point ((j>'f£ J = 0) but each pole ir. is strongly repulsive (<J>'(ttJ = 2),

convergence to a pole can occur only "by accident" after finitely many

iterations, and even then rounding errors are likely to intervene in our

favour and deflect the iteration to converge to an attractive fixed point,

a zero of /. Q



PART II

§5. Newton's and the Secant Iterations

I is again a closed finite interval in which we now seek a zero C

of a real function fix) that is continuous in I and continuously once

differentiable too except possibly at its zero ?. The search for £ begins

at one or two starting approximations xQ and x in I and attempts to

improve them via one of the following iterations;

Newton's xn+1 =N(x^) for n - 0,1,2,3,... or

Secant Xn+1 ~ S(xn'Xn-l} for n = 1'2'3>4> •••

where, as illustrated in Figs. 6 and 7,

Nix) = x-fix)/fix) if fix) + 0 ,

- x if fix) a 0 no matter what happens to fTix) ,

Six,y) = x-fix)(x-y)/(fix)-f(y)) = S(y,x) if y t x and fix) * 0 ,

= Nix) if y =» x or fix) = 0 .

Whether either iteration converges, and which iteration is the better, are

important questions without simple answers; but the following theorem sheds

some light upon them.

Theorem: If Nix) is continuous in I, and if Newton's iteration converges

in I from every starting point xQ in I, and provided / not

merely vanishes but actually reverses sign across its zero C in I,

then the Secant iteration also converges in I from every pair of

starting points xQ and x in I.

Before embarking upon the theorem's proof we shall digress first to discuss

the almost superfluous continuity requirement upon N, second to expose
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some of the Secant iteration's history, and third to explore some examples.

When N is continuous in I then, for reasons exposed in §7 and §9,

the theorem's hypotheses imply that S is continuous too in 1*1. This

is the normal state of affairs and arises, for example, when / is twice

differentiable in I and /" reverses sign therein only finitely often

(see §8*s corollary's proof). However, even if / is infinitely differen

tiable in I, N can be discontinuous in I; an example is given in §7.

N can be discontinuous only at £, and then only if /' takes values

arbitrarily close to zero in the neighborhood of £. Despite this discon

tinuity of N> if it occurs, the theorem above perseveres nearly unchanged

as follows.

Theorem: If Newton's iteration generates from every x in I a sequence

of iterates {x} of which some subsequence converges to C, and

provided / not merely vanishes but actually reverses sign across

its zero C in I, then the Secant iteration also generates from

every x^ and x in I a sequence of iterates of which some sub

sequence converges to £.

This statement of the Theorem includes the previous version above for

reasons exposed in §8 where conditions necessary and sufficient for conver

gence of all Newton iterates or a subsequence of them are exhibited.

The possible discontinuity of N complicates proofs but can have no

practical consequences if, as is customary in well-designed computer programs,

two criteria are used to decide when to terminate an iteration designed to

calculate a zero £ of f. Either stop when fix ) is negligible, and

then accept x as the approximation to £; or stop when several successive

iterates •" >xn-2'Xn-VXn differ from eacn otner negligibly and the values

... >f^xn^ >f(xn-i) ^^xn are not a*1 of the same siSn» and tnen accePc x .
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These criteria are equally applicable when only a subsequence of, the

iterates converges to £. Hence, for practical purposes the theorem says

roughly that whenever Newton's iteration must succeed in finding a zero C

at which / reverses sign, so must the Secant iteration succeed.

Compared with Newton's iteration, the Secant iteration has a sparse

literature. For a long time the Secant iteration x .„ = Six ,x J was
n+1 n n-1

not distinguished from the REGULA FALSI x = Six ,xj, a far slower

procedure. Consequently numerical analysis texts used to give it short

shrift, favouring Newton's iteration instead; for instance take the volte-

face between the first and second editions of "Modern Computing Methods"

(1957 and 1961). The Secant iteration was first used on the earliest elec

tronic computers because their users calculated that a simpler (no need to

compute a derivative) but possibly slow method executed on an electronic

computer will usually yield a correct answer sooner than a complicated but

faster (fewer iterations) method executed by hand. The first person to

realize that both Newton's and the Secant iterations run at comparable speeds

when both are executed on the same computer appears to have been David Wheeler

who (according to Wilkes, 1966) modified the Secant iteration cleverly to

serve as a fast general-purpose zero-finder on one of the first electronic

computers, EDSAC I at Cambridge; see program F2 in Wilkes, Wheeler and Gill

(1951). We shall not digress into Wheeler's method beyond listing its order
1/3

of convergence 3 =1.442... published by Wilkinson (1967) and by Dowell

and Jarratt (1971 — what they call "the Illinois Algorithm" is the ILLIAC I

program transcribed from Wheeler's after he visited the University of Illinois

in the early 1950s). See also Dahlquist, Bjorck and Anderson (1974, pp. 231-3).

Wheeler's program is still widely used, for example as program STD14B distri

buted with the Hewlett-Packard shirt-pocket calculator HP-65 (1974). Better

programs, faster, more reliable and, alas, more complicated, have been



devised recently by Brent (1973) and by Bus and Dekker (1974).

Most of the Secant iteration's literature dwells upon its local conver

gence properties. For instance, any iteration has an order of convergence

defined as

11m inf (-ln|x-c|)1/m >l;
m

the greater its order the faster its convergence. In the usual case when /

is a smooth non-linear function with a simple zero £, i.e. fit,) a 0 ^ f'iV

and f"(V $ 0, Regula Falsi has order 1, Newton's iteration 2, and

the Secant iteration (l + i^5)/2 = 1.618... . This last number, first

derived by Bachmann (1954), does not imply that the Secant iteration is

slower than Newton's; on the contrary, as pointed out by Ostrowski (1960 et seq.),

by Traub (1964), and (briefly) by Dahlquist, Bjorck and Anderson (1974),

the Secant iteration is usually the faster unless the time consumed com

puting fix) adds less than half to fix)'s computation.

Conditions sufficient to ensure the Secant iteration's convergence are

found in survey texts like Ostrowski's, Traub's or Ortega and Rheinboldt's,

and summarized in Householder (1970) or Dahlquist, Bjorck and Anderson (1974).

Characteristic of all such sufficient conditions in the literature known to

this writer is that they also suffice to ensure Newton's iteration's conver

gence. This characteristic might suggest that Newton's iteration converges

whenever the Secant iteration does, but the facts are contrariwise as stated

in the Theorem above and illustrated by our first example A below.

The following five examples A to E all have only fiO) =0, so £ = 0,

and either fi-x) = -fix) or else f(-x) = fix). Moreover, / is everywhere

at least once continuously differentiable.
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3 ... 5Example A: fix) = 23x-l0x +3xD .

Despite that fix) is strictly monotone increasing for all x, and despite

that the Secant iteration converges to C from every real xn and x ,

Newton's iteration will converge from xQ if |xQ| < Z23/27 » .922958207...

but alternates with xn =» (-l)nxQ if xQ =±/23/27 . Worse, if
Z23/27 < xn < 1.06977829... then (-l)nx -• 1.

Example B: fix) =x(4 +v^5 +|x|)/(l+ (4+/§)|x|) .

Despite that fix) is strictly monotone increasing for all x, the Secant

iteration fails to converge but cycles instead on four points, x = C-l)mx
n+2m n'

from a;0 =2+ v^5 =4.23606797..., x1 =l, x2 =-xQ, x3 =-xlf ... ; otherwise
I conjecture that the Secant iteration converges from almost all starting

points. Newton's iteration fares worse; it converges provided

|xQ| <x =(16+7/5- 2/95 +56^/11 =.179351475... , but otherwise diverges
to acycle on two points, with (-l)nx -* ±(l6 +7vT+2*^5+56i/5) /ll
= 5.57564413... unless (-l)"x = ±x .

The next three examples illustrate what can happen when / vanishes

at £ but does not reverse sign, thereby vindicating the proviso in the

Theorem above. The change of sign can be essential for the Secant itera

tion's convergence though irrelevant for Newton's because the latter is

unchanged when fix) is replaced by \f(x) \.

Example C: fix) =x"*1 for integer m>1.

This example's analysis is facilitated by the observation that first

xn+1 =N(xn) is tantamount to xn fx =m/(m+l)

and secondly

Xn+1 =S(xn>xn-1} is tanta*°™t to *n+1/*M =O'V'W



where $(y) = {y -l)/(j/ -1) has been discussed at the end of §1 above.

Newton's iteration converges to £ = 0 from every x . So does the

Secant iteration when m is even, but when m is odd (then / does not

reverse sign) the iteration converges from almost all xfi and x . The

exceptions are first when x./x^ coincides with the negative fixed point

of (j), in which case (-1) x diverges monotonically to infinity, and

secondly when x./x~ coincides with one of a countable set of values from

which will follow an x =», x ,, = -x ,, x ,« =* mx ,/ (m+1) and
n * n+1 n-V n+2 n-1

subsequently x . •*- 0 as 3 •* °°.

Example D: fix) =x2(7- 2/5+ |x|)/(l+ (7- 2/5)x2) .

Newton's iteration converges from every x . The Secant iteration converges

if x^Xq >0 and \x \ < .365966339... but otherwise is likely to tend to

cycle. One cycle on four points is

«0 =2+/5 =4.236067977..., x^-1, ^-Xq, x^-^, *„+2m=(-»% .

Another is
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xQ =7.7019690..., xx =-1.81818824..., x^-x^ x^-xv xn+2m=» (-1)™* ,

and this cycle is stable and attractive with a contraction factor per cycle,

near .278 .

Example E: fix) =1.0- 3/(3+x2) .

Newton's iteration converges to £= 0 from any xQ with xQ < 9, oscil-
nlates with x^ = (-1) xQ if xQ = ±3, and diverges alternatingly to ±°°

2 2if Xq > 9. The Secant iteration converges if x.x. >^ 0 and both xQ < 3
2

and x- < 3 but frequently diverges otherwise, and certainly diverges when

2 2 /xQ >^ 9 and x1 _> 9; it can cycle on four points xQ = /15 +6/5 = 5.33070425...,

x = -As-6/5 = -1.25840857..., x0 = -x_, x. =- -x,, x ^ = (-l)mx .
-L 2. 0 3 1 n+ati n



Changing the constant 1.0 in the last example to, say, 1.000* "0001

illustrates how difficult in practice is the problem of determining where a

function fix) vanishes when it does not reverse sign. The difficulty is

not caused entirely by roundoff. For example, even though the values of

2
fix) = (x- (5- (x- (5-x)))) (Do not remove the parentheses!)

and its derivative must be calculated, on any North American or Western

European elctronic computer, precisely (i.e. with no rounding errors) for

every x close enough to 3j, none of those values of fix) vanishes

because the value x » 3j « 3.333333... is never represented precisely in

floating point. Consequently the Theorem's proviso might as well be taken

for granted in practice.

§6. Projective Invariance of Newton's and the Secant Iteration

Projective transformations are those which transform straight lines

into straight lines. They are pertinent to Newton's and the Secant itera

tions because tangents are transformed into tangents, secants into secants.

The particular projective transformations useful here map the pair ix,fix)}

onto a pair {£,<f>f£J} in such a way that either both or neither of fix)

and $(%) are linear functions of their respective arguments, and yet the

mapping is independent of / and (j>. Well-known results from Projective

Geometry lead to the following formulas.

Let C = pix) = (ax+6)/(yx+6) with a6 - By ° !• Hence pix) is

invertible; x = p~ (%) = (8-<5£)/(Y£-a) or, more symmetrically,

(yx+6)(a-Y£) = 1 = (a+3/x)(6 - $/£) . Having transformed the variable x

into £ we further construct
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MV =/rx;/(Yx+6) <§ x = p"1^;

as the corresponding transform of /. Now calculation suffices to verify

that the transforms of Nix) and Six9y) are respectively

EiV = l-MVW(l) = piNip^ify)) and

rr?,n; =c-<K£>Ks-n)/(<KSJ-<Kn;) = Pisip'1^)^'1^))) ,

whence Newton's iteration applied to (J> takes the form £ ,, = fffE J, the
n+1 n

Secant iteration is £n+1 = Ef^,*;^;. The projective invariance implied

by these equations can be stated in words as follows.

Projective Invariance: Let {x^} be the sequence of iterates generated

when either Newton's or the Secant iteration is applied to fix).

Then the projective transformation

5- pix) = (ctx+e)/(Yx+6) and +(£) = (o-yO/Yp"1^;; with a6 -3y =1

maps the iterates {x } upon the sequence {£ -p(x )} generated

respectively by either Newton's iteration from £ = pixJ or the

Secant iteration from £Q = p(xQ) and £ = p(x ) applied to $(%).

One application of projective invariance is that whatever convergence

theory pertains to the iterations in finite intervals I may be extended

with few changes to semi-infinite intervals pit) by virtue of an appro

priate choice for p. One of those few changes is a nuisance illustrated by

the example fix) = 1+ expf-xJ on the semi-infinite interval 0 < x < +»;

both iterations converge to +°° but f(+*>) $ 0. Consequently semi-infinite

intervals will not be mentioned again in this paper.



A second implication is that natural hypotheses implying the iterations'

global convergence should also be projectively invariant. For instance,

since the second derivative

4>"iV = (yx +6)3f"ix) @ x= p"1*^ ,

any hypotheses about the number of zeros /" has in I, or about

Signiff") = signf#"j, are invariant provided pit) remains an interval.

Just such hypotheses abound in the literature (cf. Ostrowski (1960 et seq.,

ch. 9 and 10) or Dahlquist, Bjorck and Anderson (1974, p. 225)) and are

tantamount to the observation that the convexity of /'s graph is a projec

tive invariant implying ultimately steady convergence of both iterations

provided they do not first escape from I. More about this in §8.

A third implication of projective invariance, the one most pertinent

to our proof, is a kind of mean value theorem which relates the two iterat

ing functions Nix) and S(x,y) in a way more general than Six,x) - Nix).

Mean Value Lemma: If Siytz) does not lie between y and 3, (i.e. if

f(y)fiz) > 0), if y f z, and if / is differentiable between y

and z, then strictly between y and z must lie some t for which

either S(y,z) = Nit) or fit) = fit) = 0.

See Fig. 8.

Proof: A projective transformation could be applied to push w =» Siy,z)

to °° while preserving the interval between y and z, but the resulting

calculations would boil down to what follows. Let tyix) = fix)/(x-w), and

observe that the equation w = Siytz) is equivalent to

tyiy) = \\>iz) = (fiy)-fiz))/(y-z). Since tyix), like fix), is differen

tiable between y and z, Rolle's theorem (cf. Apostol (1967)) provides

that ty'it) = 0 at some t strictly between y and z. That t turns

out to satisfy either fit) = fit) = 0 or w = Nit). •

40



41

= 'sCi>>*) =

**=• s&*) -fr*) » f/&) ~o

^.3* 77,<> /J^ l/^^ /_ e-trfsruzc



In other words, just as Nix) - S(xtx) implies that Newton's itera

tion cannot escape from an interval from which the Secant iteration cannot

escape, the Mean Value lemma implies that the Secant iteration cannot escape

from an interval from which Newton's iteration cannot escape unless /

vanishes in that interval without changing sign. This implication will

become clearer later.

§7. Inferences from Nil) £ I

Henceforth we activate two of the hypotheses of the Theorem of §5.

First, I is a closed finite interval in which fix) is continuous, and

continuously once differentiable too except possibly where / vanishes.

Second, Nix) maps I into itself. We do not yet assume that x , = Nix )
n+1 n

converges. What do these hypotheses tell us about / and N?

Lemma: / has just one zero £ in I, and ? divides I into at most

two sub-intervals inside each of which fix) is strongly monotonic

(i.e. frix) cannot vanish inside either sub-interval).

Proof: At the outset we beg the reader to put up with an abuse of

language; in the unlikely event that / vanishes throughout a non-degenerate

sub-interval of I we shall count that sub-interval as a single zero £ of

/ in I and write "x = £" when we mean "x belongs to the interval £".

This perversion avoids circumlocution in dealings with functions that are

not analytic but merely differentiable.

The essential hypothesis is that Nil) £ I. Now / cannot have two

or more distinct zeros in I because otherwise Rolle's theorem would supply

between two adjacent distinct zeros of / at least one xn where

f(xQ) = 0 J> f(xQ) whence N(x ) - « would escape from I. Neither can

/ fail to vanish in I since otherwise f would take non-zero values
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with like signs at I's ends, whereupon the Secant iteration started from

I's ends would escape from I to a place whither Newton's iteration, accord

ing to §6's mean value lemma, could escape too. Therefore / does have

just one zero £ in I. If / were not strongly monotonic strictly

between £ and either end of I, I would contain some x« where

fr(xQ) =0^ f(xQ) so again N(xJ =<» would escape from I. •

Corollary: No x $ £ in I can separate £ from Nix); i.e.

(Nix) -x)/(C-x) > 0 for every x in I except x = £. And if Newton's

iteration #n+1 s #(#>* converges from some x. in I it must con

verge to C» the zero of / in I.

Proof: (Nix) -x)/(£-x) = -fix)l{{&-x)f '(x)) is continuous and non-

vanishing in I strictly between I's ends and £, and therefore conserves

the positive sign it enjoys at I's end(s) different from £. And if

x = lim x exists and if N is continuous at x (else x = C) then

/Y*J = lim fix ) = lim(x -x )/'rxJ = 0-f'fxJ = 0 so x = c. O

The corollary foreshadows some technical arguments, the burden of the

rest of this section, §7, concerning the continuity of Nix) at x = £ where

/'(£J has not been assumed to exist. Elsewhere Nix) = x- fix)/fix) is,

like fix) and ffix), continuous. But at x = £ we shall infer scarcely

more than that Nix) is Darboux continuous, which means that N assumes

in every sub-interval around £ all values between those N takes at that

sub-interval's ends. Darboux continuity is an intermediate-value property

possessed not only by continuous functions but also, for instance, by deri

vatives even when they are discontinuous. For more details see Bruckner

and Ceder (1965).

43



44

The trouble with N is not necessarily caused by our failure to assume

that /' exists and is continuous at £. For example consider

fix) = (l+x)expfsinfl + l/x; -1/x) for 0<x<l ,

= -expri/xj for -1 < x < 0 ,

= 0 at x = 0 .

This fix) is infinitely differentiable in the interval I = {-l£x<l},

vanishes only at x = 0 and is elsewhere in I strongly monotonic increas

ing. However

Nix) =x(l- (x+l)cosn+l/x;)/(x2+x+l- (l+x)C0Sa+l/x;) for 0<x<1
= x(l+x) for -i < „ < o ,

= 0 at x = 0 ,

behaves discontinuously as x -»» C+. None the less we may infer, after veri

fying first that -1 < Nix) < x for 0 < x < 1 and second that x < Nix) < 0

for -1 < x < 0, that Newton's iteration converges to 0 (slowly!) from

every x in I.

Proposition: The functions Nix), Nix) -x, NiNix)) and NiNix)) -x are

Darboux continuous everywhere in I including at C, and the first

two are continuous everywhere in I except possibly at C; this means

that each of these functions assumes in every sub-interval of I all

values between the ones taken at that sub-interval's ends.

Proof: The proposition will be proved for Nix) first, for which we

need only be concerned with sub-intervals of I that contain £• And if

such a sub-interval is divided at t, into two parts for each of which the

proposition is verified separately, the proposition will be verified for

the whole sub-interval.



For definiteness choose any n < C in I and let us verify the propo

sition for the closure of the unclosed interval J = {n£x<£}. Since

Nix) is continuous in J its image NiJ) is also an interval, and to verify

the proposition we need only show that its closure contains £ = Nil;). Now

there are only two cases to rule out, namely £< closureiNiJ)) and

C > closureftffJ;;.

If for some e > 0 we found £ < £+ 2e < Nix) throughout J, i.e.

for n _< x < C, we should have to find that

Wx) = 2f(x)/f(r\) - (e+e-x)/(£+e-n)

takes values of opposite sign at J's ends;

Kn; = 1 > 0 > -e/(£+e-n) » tyiV ,

so ip must first change sign somewhere in J, say at £ where

WV = 0 >. ty'iV. But this would imply IfiVlfM = (e+e-0/(C+e-n) > 0

and -2f'(y/f(r\) > l/(C+e-n) > 0 whence Ni& « S+{fiV/fW)/[-f'iV/fir\))

< £+(£+£-€) = C+e < C+ 2e! Therefore C { closurefffCX>;.

On the other hand, if for some e > 0 we found Nix) < £ - 2e < £ for

all n £ x < £ we should have to violate the foregoing corollary's

inequality 0 < (Nix) -x)/(C-x) at x = max{£-e,n}. Therefore

C t closureiN(J)).

Thus we conclude that tffxj is Darboux continuous. Consequently

NiNix)) is Darboux continuous too. Moreover, we shall now find that Nix),

and then N(Nix)), belong to the first Baire class of functions, the point-

wise limits of continuous functions. This is evident because we can approxi

mate Nix) by a continuous function differing from N only in an open

deleted neighborhood of £, though both functions match at £ and at the
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boundaries of the neighborhood, and then let the neighborhood shrink down

onto £. The first Baire class is significant because the sum of a Darboux

continuous function in that class with a continuous function is known to be

another Darboux continuous function in that class; see Theorem 7.5 of

Bruckner and Ceder (1965, p. 109). Therefore Nix)-x and NiNix)) -x

are Darboux continuous and the proposition is proved. •

This proposition is crucial; it allows Part I's No Swap Theorem to be

generalized enough to cover Nix). One contrary implication of the No Swap

condition that can be obtained almost immediately is the following, which

shows that the last example above is typical of the kind of discontinuity

that can befall N without precluding convergence. As is customary, we

write x •*• £- to mean that x increases to the limit £, and x -»• Z+

when x decreases to £. Can N be discontinuous both as x -»• C+ and as

x -*• £- ?

Aside: If Nix) swaps no two distinct points in I, Nix) cannot be dis

continuous on both sides of £ but at most one; and as x •*- £ from

the side opposite the discontinuity Nix) must ultimately lie between

£ and x.

Specifically, if Nix) -(*• £ as x -»• £- set n = lim sup Nix) > C;
x-*£-

then £ _< Nix) < x whenever £ < x £ n..

Proof: Suppose on the contrary that Niv) < £ and C < v < n. Since

N is Darboux continuous at X, mNil;), N must, for any y < Z, in I,

assume all values between £ and n as x runs from y up to £; there

fore Niu) = v for at least one u in y < u < ?. Therefore N(Niu)) -u

= Niv) -u < Niv) -y < 0 provided y be first selected in Niv) < y < £;

on the other hand NiNix)) -x > 0 for x close enough to I's left-hand
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end since Nil) £ I. Consequently, because NiNix)) -x is Darboux continuous

too, NiNixQ)) -xQ « 0 for at least one x < u < t, in I, and then

x1 = N(xQ) > xQ because of the Corollary above. So N would swap the

distinct points x and x contrary to hypothesis. Q

§8. The No Swap Theorem for Newton's Iteration

Theorem: Suppose I is a closed finite interval in which fix) is continuous,

and continuously once differentiable too except possibly where /

vanishes. Let Nix) = x - fix) /fix) except Nix) =x when fix) =* 0.

Then Newton's iteration x = Nix ) generates from every x in I

a sequence {x} of which some subsequence converges to a zero t, of

/, i.e. a subsequence of {fix)} converges to zero, if and only if

Nil) £ I (and therefore £ is unique) and N satisfies any of the

following conditions (they are equivalent).

The No Swap Condition: if x « NiNix)) in I then x » Nix) (= c).

The No Separation Condition: Either NiNiz)) <_z <Niz) or Niz) <z < NiNiz))

in I implies NiNiz)) = z = Niz) (= O.

The No Crossover Condition: if Niv) < u < v < Niu) in I then

Niv) = u = v = tffi<; (« £).

The One-Sided Condition: Whenever x. = NixQ) £ xn in I all subsequent

iterates a?.- - N(x) also differ from xrt and lie on the same side
n+1 n 0

of xQ as does X- (and £).

If also N is continuous, or if also either

AClim sup Nix)) i e or il^riim inf i7fx;j ?i e
x -»• c- x •*• z,+

then any of the foregoing conditions implies that x - = Nix ) ->• C

from every x_ in I.



Proof: Only when N is not continuous need the proof involve a little

more work than merely writing N('") in place of $(*") in part I.

Having established in §7 that N(x), N(x)-x, N(Nix)) and N(N(x))-x

are Darboux continuous, we may infer as before that certain expressions

must vanish somewhere between any two points at which they change sign, so

most of Part I's arguments will not need revision. But arguments that for

merly depended upon lim $(x) = <J>nim x) must be revised lest Nix) -j* £

as x -»• £. The first such revision is needed to validate the No Separation

condition; please turn back to and re-read §2 in conjunction with what

follows.

To show that No Swap implies No Separation assume the latter condition

violated by, say, NiNiz)) < z < Niz) in I and seek a consequent violator

v of the former. As before, N must have a fixed point y strictly

between z and Niz), but this time Nil) £ 1 implies y = £ is the

unique fixed point of N, the zero of f in I (cf. §7). Also as before

NiNix)) has a fixed point v < z in I, but this time we don't care

whether v is a "first" fixed point or not because v < z < £ so v

cannot be #'s unique fixed point £. Therefore N swaps v and

Niv) # y.

The No Crossover and One-Sided conditions' proofs survive unchanged.

The next revision is needed to adapt §4's proof that One-Sidedness follow

ing from the No Swap condition implies convergence, because now that impli

cation is invalid.

As before, the sequence of iterates x ,, = Nix ) is a One-Sided
n+1 n

sequence which is either ultimately monotonic and therefore convergent to

£ (cf. §7's Corollary) or else can be partitioned into two disjoint infi

nite subsequences, one ascending to a limit x and the other descending to

a limit x > x. It is not possible for both limits to differ from C
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because then N would be continuous at both limits and §4's argument would

make them both equal £. Therefore at least one of x and x equals £,

as was claimed above.

Moreover, suppose for definiteness that x > x » £; we conclude the

proof by showing that n = lim sup Nix) >_ x > C « Nir\). Since some of those
x-*C-

ascending x• •*- x = £ are followed by x ,_ « Nix ) •*- x+ > C we must find
>* n+1 n

C < x £ r|. Moreover, since i!T is continuous at x, all those descending

xn •*- x+ close enough to x comply with the No-Man's Land lemma (§3) by

having x^+1 »Nixn) -*•£-, so Nix) = ?. But if any such x lay in

x < x < n we could infer from §7's last Aside that £ < x ,, « tf(x ) < x
n — — n+1 n n

contrary to the last sentence; therefore no descending x lies in

* /\

a: < xn < n and hence x » ri and i7^n^ = S as claimed.

Here is an example to show that the phenomenon x < x analyzed in the

last paragraph is possible albeit unlikely. Let I =» {-l£x£3} and therein

let

fix) = (3x-2)2/3 for 1<x<3,
_ 2
= x for 0 £ x < 1 ,

e -/l-x expfsinC-l/xJ +l/x) for -1 £ x < 0 .

This fix) is once continuously differentiable (it could be modified on

0 < x < 2 to be made infinitely differentiable and substantially more com

plicated) , it vanishes only at £ = 0 in I and is elsewhere strongly mono

tonic. Nix) « x-f(x)/ffix) maps I into I and swaps no two distinct

points, and is continuous too except as x ->• £-. If Newton's iteration

xn+1 =Nixn) is started at xQ =-l/(2ir) then x2n =-1/(2w+1tt) -*• £- but
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Fig. 9: Some situations which arise when N swaps u and v
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How may a function / eligible for the application of the No Swap

theorem be recognized in practice? One way is to apply the contrapositive

of the next lemma which exhibits some of the properties possessed by /

when N violates the No Swap condition. Any / which lacks those proper

ties satisfies that condition. Fig. 9 illustrates these properties.

Lemma: If Nix) - x- fix) /fix) swaps the ends u and v of an interval

J in which / is twice differentiable, then one of the following

situations must arise.

1. fiu) fiv) > 0, and then fiu)f(v) < 0 so /' must reverse sign

somewhere inside J, and /" must take the same sign as fiu)

somewhere in J; if also / vanishes somewhere in J then //"

must take negative values in two open sub-intervals of J between

which /" reverses sign at least twice.

2. fiu)f(v) < 0 so f reverses sign at least once inside J, and

then //" takes negative values at places inside J where /

takes both positive and negative values; therefore /" reverses

sign at least once, and at least once more if f ever vanishes

in J.

Proof: This is a tedious exercize in curve-tracing whose object is to

describe the ups and downs of /' in J. For definiteness assume u < v

and fiv) > 0, and re-write u =» Niv) and v = Niu) > u in the forms

fiv) =• fiv)/(v-u) > 0 and fiu) = fiu)f(u-v) .

Case 1: fiu) > 0. Now f(u)<0<f(v) and consequently /" must

take positive values somewhere between u and v. If also at some ri

between u and v we find f(j\) = min fix) £ 0, then f (r\) = 0 and
u<x<v

f" > 0 somewhere in that neighborhood of n wherein /" > 0; we find
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further that, as x increases from u to n to v, fix) moves from

fiu) < 0 through some lesser value (fir\)-fiu))/(r)-u) < -fiu)/(r\-u)

< -f(u)/(v-u) - fiu) and then moves to a higher value fir)) = 0 and on

up through (f(v)-f(r\))/(v-r\) >f(v)/(v-r\) > fiv)/(v-u) » fiv) and back

down to friv). Hence /' has a negative minimum and positive maximum

inside J, which means that fn reverses sign at least twice in J. As x

increases from u to v, fix) has to decrease before fix) can vanish,

and therefore ff" < 0 in some sub-interval before / vanishes; similarly

//" < 0 somewhere between the last zero of / and v.

Case 2: f(u) < 0. Now fir;) « 0 at some first £ between u and v.

As x increases from w to £, fix) moves from a positive value fiu)

through a larger value (f(V-fiu))/(i;-u) > -f(u)/(v-u) « f(u), so fix) > 0

somewhere between u and £. Similarly f" < 0 somewhere between /'s

last zero and v. More precisely, /' has a positive maximum inside J at

which /" reverses sign. If /' ever vanishes inside J then f' has a

non-positive minimum at which again /" reverses sign at least once more.

D

The next corollary is an advance beyond what was previously known

because it deals with functions / whose graphs are not convex but may have

at most one or two inflexions. As long as Newton's iteration cannot escape

from I via the ends or the inflexion points of fs graph, the outcome

turns out to be the same as if that graph were convex (cf. Dahlquist, Bjorck

and Anderson, 1974, p. 125).

Corollary: Suppose w and z are the ends of a closed (possibly infinite)

interval I in which / is twice differentiable, /' never vanishes

except possibly if and where / vanishes, f" reverses sign at most

once except possibly again if and where both / and /' vanish



simultaneously, and at least one of f(w)fiz), f(w)f"(w) or fiz)frriz)

is positive. Suppose too that Nix) = x-f(x)/fT(x) maps into I's

interior both I's ends and the places if any where f" reverses sign.

/" may vanish arbitrarily often without changing sign. Then f has

in I just one zero Z, and Newton's iteration x ,, = Nix ) converges
n+1 n

to it from every x. in I.

Proof: An argument similar to §7's lemma shows that / must have just

one zero Z, in I; more would violate a hypothesis by providing some x

in I at which fix) = 0 f frix), and fewer would either do the same or

violate a different hypothesis by forcing N to map at least one of I's

ends outside I.

A second argument proves N continuous in I; this is obvious from

the formula for N when /' £ 0, so only the possibility fit) = 0

needs further explanation. When x is confined to a small neighborhood

of C in which /" never reverses sign except possibly at Z,, frix)

must be monotonic separately on each side of Z, and consequently

0 < f iy) /ff (x) £ 1 for every y strictly between Z, and x in that small
rx

neighborhood. Since fix) f'(y)dy,

x

Nix) = z, + (l-f(y)/f(x))dy ;

consequently Nix) always lies between Z, and x in that small neighbor

hood. Therefore N is continuous at £ = NiZ.) and hence throughout I

even when f (Z,) = 0.

The next task is to infer Nil) £ 1. Were this not so despite that N

maps I's ends inside I, N would have to achieve either a maximum or a

minimum value Nix) outside I at some x inside I, and that x f Z,
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because NiZ,) = Z, lies inside I. Moreover, Nr would have to reverse

sign at x or at the ends of that sub-interval of I containing x on

which N = Nix). But ff.' = ff"/(ft) is prevented by hypothesis from

reversing its sign in I except possibly at Z, and at most one other place

also, by hypothesis, carried by N into I's interior. Therefore Nix)

lies inside I after all, and hence Nil) CI,

Now let us verify that N satisfies the No Swap condition. If not, N

would swap the ends of some sub-interval J and the lemma above would imply

that /" changes sign at least once inside J, at least twice inside J if

f (Z,) = 0, and at least once outside J between its end and that end of I

where //" > 0. Thus /" would vanish more often than allowed by the

hypotheses. Therefore N does satisfy the No Swap condition, and Newton's

iteration does converge to £. •

Application 1: Suppose gix) and h(x) are thrice differentiable for all

x >. 0 and giO) = hiO) = 0 but g' > 0, g" >_ 0, -gm >_0, h' > 0,

h" > 0 and h'" _> 0 for all x > 0; and let fix) = gix) -xhil/x) be

the function whose zero Z, is sought. Such a computation is encountered

in certain financial transactions in which x = 1 + i is related to the

interest rate i, gix) represents the present value of various past

investments, xhil/x) represents the present value of anticipated returns

from those investments, and fix) is the net present value of the trans

action, r;, where f(Z,) = 0, determines the putative rate of return on

money invested in the transaction.

Newton's iteration can be shown to converge to jf's sole positive zero

C from every positive starting iterate xQ by invoking the corollary above.

Note that for all x > 0

(xh(l/x))' = hil/x) -h'(ltx)/x =
1/x

(h'iw)-h'il/x))dw < 0
0
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whence /' >0. And /'" (x) =g"' (x) +3x~Vfl/x; +x~V' (1/x) >0 so /»
can reverse sign at most once for x > 0. Moreover, for all x > 0

Nix) =x-fix)/fix) = [xg'(x)-g(x)+htn/x))/{gt(x)-(xh(i/x))t) > o

because xg'ix) -gix) =» (g'(x)-g'(w))dw > 0; therefore N maps the posi-

tive real axis to itself. Finally observe that xhil/x) ->- h'iO) > 0 as

x -• +», while lim (xhil/x)) = lim /zfz/;/i/ = (either +*> or limfc'fi/J) > 0,
x+0+ y++* y-Hm

and consequently fix) and x-fffxj must take negative values in the neigh

borhood of x = 0+, positive values in the neighborhood of x = +»; and

since /'" >_ 0 either f" = 0 for all x > 0 or else //" must take

positive values in at least one of those neighborhoods. Therefore /

satisfies the corollary's conditions in some closed sub-interval I of the

positive real axis. •

Application 2: Suppose £ and n are two consecutive distinct zeros of

f between which f is twice differentiable, and suppose f(fyfir[) < 0.

Then strictly between £ and n lies just one zero Z, of /, and £'s

catchment basin for Newton's iteration x „ = x -fix )/fix ) includes
n+1 n n n

in its interior at least one place, also strictly between £ and n, where

/" reverses sign.

Proof: The term "catchment basin" was defined near the middle of §4.

Let Nix) = x-fix)/fix); it is continuous at Z, because fiV ? 0.

Therefore by restricting x and y to a sufficiently small neighborhood

around Z, we may ensure that |l -/' iy)/fix) \ is as small as we please.
tx

Consequently (Nix)-Z,)/'(x-Z,) = (1 -/'iy)/fix))Ayl(x-Z,) may be made as

small as we please for all x close enough to Z,, and hence Z, is a

strongly attractive fixed point of N, which has no other fixed point

(X



between £ and n. By invoking §4's lemma, or otherwise, we deduce that

the ends of C's catchment basin lie strictly between £ and n, straddle

C, and are swapped by N. The lemma above implies now that /" reverses

sign at least once inside the catchment basin as claimed. •

This result is significant because it permits all the real zeros of a

function / in any interval to be calculated quickly via Newton's iteration

provided first all the zeros of two consecutive derivatives f^ and /^"+1^

(n > 1) in that interval are known. Having straddled a zero of f^""1^

with two consecutive (approximate) zeros of f^n\ compute f^n~1^ at the

enclosed zero(s) of /(n+1> to straddle the desired zero of f(n"1) more
closely, and then start Newton's iteration from one of the straddling zeros
^ 4f(n+l)

or J • The iteration (not just a subsequence of it) must converge to

the straddled zero of fn~ ', and must do so One-Sidedly and rapidly (faster

than any geometric progression), when started from the right one of those

straddling zeros of fn . The right one can be distinguished from the

wrong one when iterates started from the wrong one straddle the right one.

The rapidity of convergence, the fact that the precision of the computation

need not much exceed whatever is required to separate adjacent zeros (multiple

zeros announce themselves first as simple zeros of a higher derivative), and

the freedom from Sturm sequences are three reasons for considering the fore

going vaguely described algorithm as a potential replacement for others that

have appeared elsewhere; cf. Heindel (1971), Collins (1974) and Verbaeten

(1975).
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§9. The Secant Iteration

Theorem: Suppose I is a closed finite interval in which / is continuous,

and continuously once differentiable too except possibly where /

vanishes in I. Suppose too that Nix), defined by

N(x) = x^ fix)/fix) except Nix) = x when fix) » 0 ,

maps I into itself and satisfies the No Swap condition or one of its

equivalents (see §8), as must be the case if Newton's iteration

xn+\ =Nixn) converges in I from every xQ in I. Finally suppose

/ reverses sign across its (necessarily unique) zero £ in I. Then

the Secant iteration x _,, = Six ,x J, where
n+1 n n-1 '

Six,y) = Siy,x) = x- fix)(x-y) t[fix)-f(y)) if y + x and fix) * 0

= NM if y « x or fix) = 0 ,

generates from every xn and x. in I a sequence {x } of which
v 1 yi

some subsequence converges to £; i.e. a subsequence of {fix )} con-
n

verges to 0. If also N is continuous then x -»• C.
n

Proof: Our strategy is to identify certain subsequences of {x }
n

which converge monotonically to £. The Mean Value lemma of §6 and the pro

perties of N and / exposed in §7 and §8 will be exploited heavily. For

instance, §7's lemma implies that in I / is monotonic, has just one zero

Z,, and is strongly monotonic except possibly at Z, where /' may vanish

or fail to exist but cannot reverse sign. Moreover Nix) is continuous in

I except possibly at x = Z,, and S(x,y) is continuous in Ixl except

possibly at x = y = Z,. These inferences are but the first of a long chain

which has been organized into a list of propositions numbered for easier

reference. Some of the propositions, like the first, have a proof so
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straightforward that it is omitted.

Proposition 1: x = S(x,y) for some x and y in I if and only if

x - £; consequently the Secant iteration x ,., - Six ,x „>) has every
n+1 n n-1 J

x.- -x ^ 0 for n > 1 unless x-Z.
n+i n — n

To avoid trivial nuisances we assume henceforth in the theorem's proof

that all x # £.
n

Proposition 2: If xm and x . both lie in I so does x ., = S(x ,x j,
» »-l n+1 n n-1 '

and therefore all Secant iterates x lie in I.
n

Proof: Recall N(l) £ 1 and invoke §6's Mean Value lemma after observing

that if Z, lies between xm and x . so must x ,- since fix )fix *) < 0.
n n—i n+i n n—1 —

Proposition 3: If some subsequence of {x .-,-x } converges to zero then

the corresponding subsequences of {x } and {x -} converge to £.

Proof: Since Six,y) -x is continuous throughout the compact square

Ixl except possibly at the one point x = y = Z,, and since Six,y) -x = 0

only on the line x - Zt according to proposition 1, x ,-x = Six ,x n) -x
n+1 n n n-1 n

+ 0 implies x - Z, + 0 and hence x ,, + £ as claimed,
n n+1

Definitions: An iterate x = Sfx .,x J is called a Variance whenever
n n—l n—z

f(x 1)/fix ) < 0, and then x « 5^x ,x .; and Z, must both lie
n-L n n+1 n n-1

strictly between x and x ,.
n n-1

An iterate x • Six„ . ,x J is called a Permanence whenever
n n—l n—L

fix Jlfix ) > 1, and then x .. = Six ,x -) and Z, must both lie
n—x. n n+1 n n—1

strictly on the same side of both x and x ,.
n n-1

Proposition 4: Every iterate i = Six . ,x 0) with n > 2 is either a
n n—l n—z —

Permanence or a Variance.

See Fig. 10.
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Proof: Only the proof that when n > 2 and fix J/fix ) + 0 then
— " n-1 J n r

f(xn-l^f^xn? >1 recluires as mucn effort as invoking the monotonicity of

/ in two cases, fix^/fix^) <0 and fix^lfix^) > 0.

Proposition 5: If two consecutive iterates x - Six ,,x n) and
n n-V n-2'

xn+l =S(xn>xn-i) are both Variances, then x%+1 lies strictly

between a^ and x^, and xn+1 and Z, both lie strictly between

x„,-\ and x , and
n+1 n

(Wl)/(a:n+2-Xn+l) >4 • "
See Fig. 11.

Proof: Only the last inequality is an unobvious inference. By hypo

thesis both fix J/fix ) < 0 and fixJ/fix .J < 0; and because x ,,
n-i n n n+1 n+1

lies between x and £, and / is strongly monotonic, fix J/fix J > 1.
n—x n—1 n+1

Therefore

xn+2 -Vl "^W(xn+l_a:n)

(^fan+i;-^y)^v-/fa„-i^

>i + 2//fVl;//fon+1; + /rVl;//r*n+1;

> 4 .

Proposition 6: If the Secant iterates x are ultimately (i.e. for all

sufficiently large n) all Permanences, or ultimately all Variances,

they converge to 5.

Proof: If ultimately all x are Permanences they form a sequence

which is ultimately monotonic and bounded (by O in I; therefore the

sequence converges and, by proposition 3, converges to C If ultimately
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all x are Variances then the subsequences {x« } and {xn ,} are ulti-
n In 2n+l

mately monotonic and convergent; moreover |x« ,n -x„ I + 0 at least as
zn+i 2n

fast as some multiple of 4 because of proposition 5, so x + 5 as

claimed.

Permanences are best thought of as punctuation marks separating strings

of consecutive Variances, and the only significant property of each string

is whether its length is even or odd. The significance of even length is

suggested by the next proposition, whose straightforward proof is omitted.

Proposition 7: If a Permanence x is followed by an even number 2k >_ 0

of consecutive Variances xn+i>xn+2>•••*x jjn, before the next Permanence

Xn+2k+V then the numbers Vr2«'S«+2'^ 2^'Wl'?'

Xn+2k-V " ,a?n+3,Xn+l are exhibited here in strictly monotonic order.

(If 2k = 0 or 2 delete the appropriate right-hand-most x's.)

See Fig. 12.

If at most finitely many strings of Variances have odd length the

convergence properties of the sequence {x } are relatively transparent,

as the next proposition shows.

Proposition 8: If ultimately no two Permanences are separated by an odd

number of Variances then the Permanences converge to C; if also N

is continuous at Z, the Variances converge to Z, too.

Proof: By re-numbering the iterates to discard some early ones if

necessary, we may assume no two Permanences are separated by an odd number

of Variances, in which case the previous proposition implies that the

Permanences and their antecedent iterates constitute a monotonic bounded

(by C) subsequence of the iterates. In other words, if the successive

Permanences are x ,x ,x ,... then the numbers
nl n2 n3
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V1'VV1'VV1*V'",c

are displayed here in strictly monotonic order. Obviously this subsequence

of x's must converge and, by proposition 3, it must converge to ?. Before

we find out what happens to the rest of the iterates x let us invoke §6's
n

Mean Value lemma to define y^ ^ as a solution of x -»Niy ) between
j i. „ 0' U3 "jXn.-1 and the Permanejice x for j» 1,2,3,... . Evidently y -»• Z, too.

If N is continuous at Z, we may infer first that x = fffz/ J -»• fff?; = 5

and then, from proposition 7, that all ar +? as n + ». If ff is discon

tinuous at C there is some risk that x = Niy ) -\* NiV; this situa-

tion arises with examples / one of which is exhibited at the proof's end.

To complete the theorem's proof we need only deal with the possibility

that infinitely many pairs of consecutive Permanences are separated by odd

numbers of Variances. This possibility is awkward only because the notation

required to deal with it is complicated.

Let us invoke §6's Mean Value lemma again to define for every Permanence

xn the solution yn of Niyn) =xn+1 between x^ and x^ and closest

to xn. These solutions y were useful already during the previous propo

sition's proof, but they are crucial below because they provide the sole

entree for ff's No-Swap condition. Note that y is so far defined not at
n

every n but only at those n for which x is a Permanence.
n

Next define a Scout to be a Permanence x followed by an odd number

of Variances, say xn+1>xn+2>xn+y••>xn+2k +1* and then another Permanence
n

xn+2k +2* That last Permanence might be a Scout too or it might not. Also
vtn

define xn+1 to be a Guard whenever x is a Scout. We shall think of

each yn as a part of a convoy with a Scout ranging ahead of it and a Guard

bringing up the rear, and our last task will be to show that alternate convoys

converge monotonically to Z, from opposite sides. See Fig. 13.
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Proposition 9: Suppose x and x are consecutive Scouts with m > n;

then m > n + 2 and x ,,«,«,.,?,«,«,, are displayed here
— n-1 an* m+1 sm n+1 v J

in strictly monotonic order.

See Fig. 14.

Proof: For definiteness assume x , < x , whereupon it follows that
n-1 n r

x . < y £ x < C < x -. Moreover we know that the Scout x is followed

by an odd number of Variances x ,-,x ,„,... ,x ,«, .. and then the next
n+1 n+2* ' n+2k+l

Permanence x .07.0, so m > n+2k+2 > n+2 and x ,<v <x < x L„ <
n+2k+2' — — n-1 sn — n n+2

<x,.<*"<x.«, <C<x «, n < x «, ,<•••< x * < x ,. We also
n+4 n+2fc * n+2k+2 n+2k+l n+3 n+1

know that an even number of Variances separates every two consecutive

Permanences between x .yjt+i and x , so proposition 7 implies

z < x < x ,<x «, , < x .:
^ m m-1 - n+2fc+l - n+1 '

and then x ,n < Z, < x < y < x , < x ,.. The only question left is whether
m+1 m — am m-1 — n+1 J n

or not yn <x^. If not, if instead x^ - W<VJ < y„ < ? < vm < xn+1

= Niy ), then the No Crossover condition satisfied by ff would be violated
n

contrary to the theorem's hypotheses. Therefore proposition 9 is proved

and more;

x , < y < x < Z, and y < x ,. < Z. < x < y < x -<x(1 .
n-1 vn — n yn m+1 * m — sm m-1 — n+1

Proposition 10: If the sequence of Secant iterates x contains infinitely

many Scouts then a subsequence of Guards converges to £, and all

x + Z, if ff is continuous,
n

Proof: Let the integer sequence mil) < m(2) < m(3) < ••• characterize

consecutive Scouts x ,.,, Guards x /.,,, and convoy's contents y ,.,.
mij)9 m(j)+l J amij)

Assuming for definiteness that x ... , < Z,, we infer from proposition 9

et seq. that for j = 1,2,3,...
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ymi2j-l) <xm(2j)+l <* <*wW; 1 Vm<w <*wW;-l 1 *mW-i;+l and
Xm(2o)+l - Vtf+U-l <ym(2g+l) 1 V2j+i; <5 KXm(2j+1)+1 K^mi2o) ' '

By induction it follows that ym(2j+1) increases to alimit y and z/ .

decreases to a limit y > Z, >_ y9 and the same is true respectively for the

Guards *wW;+1 +g and *wW+i;+1 +*• as J*"• CThe Scouts *wW;
and Xmi2J+l) neec* not form monotonic subsequences.)

The possibility that y < z, < y can be ruled out because

*=l1m Vtfj *? would imP!y 5s11"' V2j;+1 =lim N%i2d)} =*r*;
and similarly J =Niy) in violation of the No Swap condition satisfied

by ff. And if ff is continuous at Z, a similar argument shows y = Z, = y;

but in this case we soon infer that all iterates, Scouts included, are

squeezed towards Z, by the Guards and hence converge to Z,.

Propositions 6, 8 and 10 exhaust all possible ways for the sequence

of Secant iterates to behave, and hence prove the theorem. •

Example: In this example fix) is infinitely differentiable throughout

I = {-l<x<-l/(l-l/ln 2) =2.25889...}, vanishes only at x = £ = 0,

and is elsewhere in I strongly monotonic. Newton's iteration converges

from every xQ in I, but the Secant iteration suffers from an oscillation

in which every third iterate *3n+2 a -1 though the remaining iterates

^X3n and X3n+1^ converSe to £• The construction of / is complicated
enough that only an outline can be presented here.

Start by defining for n « 0,1,2,... the descending sequences

hn =1/1"<»«> and C3n+1 iC53„+53„+3>/2, while ?3n+2 =- for all
n > 0. Next define
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<K£J = £ expfi/s; for -oo < C < o ,

= 0 at £ = 0 ,

1 (53n-53„+3>/2 for «3«+l i S± ?3« ,
han + 6n^(2C-53n+1-C3n)/(53n+1-53n+3); for C3n+3 <51 53n+1 ,

where a„ E(♦'W+^W)'2 >

6«S ^W^W^2- and
are; e tanhftan(Tre/2;; if -l < e < i ,

= SignCe>) otherwise . ,

Finally fix) = (l+x)(f>fx/(1+x)) and x = £ /(l-£ ). The tedious verifi-
n n n

cation of the claims made above for / are left to the reader.

The theorem that has just been proved does not yet render Newton's

iteration obsolete. Rather it supplies a powerful incentive for replacing

Newton's by the Secant iteration in those cases where, as in §8's Application 1,

the calculation of a derivative appears to confer no advantage. Many cases

remain to be analyzed; for instance, we cannot yet say whether the Secant

iteration works acceptably well on that rational function in §4 with inter

lacing poles and zeros on which Newton's iteration works so well.

A final warning; computer programs based upon Newton's or the Secant

iteration rarely use an iteration in its pristine form. Programs usually

incorporate extra "features" which modify the iterations in ways that their

designers hope will effect some improvements. Sometimes those features do

yield an improvement, sometimes not; they almost always undermine the fore

going analysis.

Acknowledgment: I am indebted to Professor B.N. Parlett for helpful discus

sions without which this paper would have been more nearly impossible to read.
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