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SUMMARY

Martingales parameterized by certain families of convex subsets of
]Rn; termed set martingales, are studied. The collection of subsets is
partially ordered by set inclusion and an increasing family of o-fields
is naturally generated by an independent, random measure. It is shown
that square integrable set martingales may be represented as a sum of
certain stochastic integrals with respect to the random measure. The
stochastic integrals are named multiple Ito integrals since they
generalize both the multiplé Wiener integrél introduced by K. Ito and
the stochastic integral of K. Ito. Some properties of multiple Ito

integrals are found.
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1. Introduction

Inspired by work of Kakutani [6], K. Ito [4] introduced the
isometric multiple Wiener integral. K. Ito [3] also introduced random
integrals in the theory of stochastic integration. It is thus fitting
to name the multiple stochastic integrals with random integrands
originally presented by Wong and Zakai [7] multiple Ito integrals. The
purpose of this paper is to identify and study a broad class of
multiple Ito integrals.

Let A be a collection of subsets of E = R™. Suppose that (Q,F,P)
is é probability space and that {FA:A € A} is a collection of sub-o-fields
of F such that FA c FB whenever A C B aﬁd F = FE' A collection of
integrable random variables {XA:A € A} is defined to be a set martingale
relative to {FA:A € A} if E[XAIFB] = X; a.s. whenever A O B.

In this and the following section, it is assumed that the o-fields
FA are generated by a Géussian white noise as follows. Let {W(B):B € B(E)}
be a centered Gaussian random measure (i.e. a process parameterized by
B(E), the Borel subsets of E) with E[W(A)W(B)] = u(aA™B), where p denotes
Lebesgue measure on E. It is assumed that FA = g(W(B):B € A)vV N, where
N is the collection of P-null sets. When n=2 and A consists of sets of
the form [0,21] X [0,22] for Zys29 2 0, the framework of Wong and Zakai
[7] 1is recovered. The case when FA is generated by a differential
process [5], [2] (or "general independent white noise"), which includes
both Gaussian white ncise and poisson point processes as special cases,

will be studied in Section 3.

A certain class of parameter sets A is studied in this paper.



This includes the case when A is the collection of all closed convex
sets and the case when A is the collection of all closed rectangles

n
(where a rectangle in E is any set A C E such that I (ai’bi) Ca

n i=1
cn

o [al’bi] for -= < a; < bi < 4),

Given a collection of sets A, points Sys-++sSK in E are said to be
unordered if each of the points lies outside of some A € A which contains
the other k-1 points. The multiple Ito integral of order k involves
stochastic integration over the unordered portion of Ek. The multiple
Wiener integral defined by Ito [4] 1is the special case when A = B(E) and
unordered means distinct.

It is shown that multiple Wiener integrals may be "collapsed" into
multiple Ito integrals. This is used to establish the completeness of
multiple Ito integrals in the space of square integrable set parameter
martingales. This fact generalizes the representation theorem of Wong
and Zakai (7] which, in turn, has its roots in the work of Ito [4]
and Kakutani [6] .

In the remainder of this section, some facts regarding multiple
Wiener integrals will be reviewed. The multiple Ito integral introduced

in the following section will have similar properties.

The multiple Wiener integral of order k as defined in [4] is‘a map
f > Ik(f) of Lz(Ek) > LZ(Q) which is characterized by the properties.
k

(i) Ik(h) = 121 W(Ai) if h = lAlx"'xAk for disjoint rectangles

Al,...,Ak.
(i1) I (£4g) = L(6) + I (g).

@it) If £, > £ 40 LAE), cthen I (£)) > T (£) in L3(@).

By convention, if k = 0 and h € LZ(EO) =R, define Io(h) = h.
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For f:Ek + R let f defined by

i

= 1
B(t,eent) =37 ) £QE seeest )
T 1 k

denote the symmetrization of £. For f € Lz(Ek), £ is the projection of
f onto the subspace Lé(Ek) of Lz(Ek) spanned by symmetric functioms.

Note that £l < I£l by the Schwartz inequality.

The suggestive notation

f f(sl,...,sk)W(dsl)...W(dsk),
=

where Eﬁ = Ksl,...,sk) € Ek P8y # Sj if i # j} will also be used for
Ik(f). The multiple Wiener integral also has the following properties
(see [2],[4]):
. 2,k 2, k' =
(iv) For £f EL°(E™) and g E L°(E" ), Ik(f) = Ik(f) and

E[L (BT, (@] = 1oy oryk! <f’g>L2(Ek)

>
m

(v) For ¢ € LZ(E) and c,

[}
(Y

2( 2 2 )k
exp(lf ¢ _W(ds) A J ¢ ds) = ¥ o [
E E k=0 “° Ek

¢s ...¢s W(dsl)

1 k

«..W(ds (1.1)

%)
(vi) The Wiener integrals span LZ(BR). Thus (using @ to denote
orthogonal sum),

L@ = & (5 : £ €2@) = @ 12,
=0 k=0

2. Multiple Ito Integrals and Representation of Set Martingales

In this section we will define a class of multiple stochastic

integrals analogous to the integrals 6oW and WereW introduced by Wong

and Zakai [7]. Such integrals will be called multiple Ito integrals

since, as in the one parameter case, they generalize (multiple) Wiemer



integrals in that random integrands are allowed. Also the indefinite
Integrals will be defined so that the resulting integrals will be set
martingales relative to a collection A of subsets of E = Rr°.

It will be assumed that A is of the foliowing form. Let {‘Ga} be
2 subset of the unit sphere in E = RD® and letp denote its (possibly
infi’ﬁite) cardinality. LetA =A {6 } be the collection of all closed
convex subsets 4 in E such that {B:} contains an outword normal
to A at each point in the boundary of A. The special case P = 2n and
{61, .. .,ap} = {(0...,0,+1,0,...,0)} corresponds to the collection of all
closed rectangles. The special case when{ea} is equal to the unit sphere
in E = RY corresponds to the collection of all convex sets.

Each A CA {o } has the representation
o
4 = {er:x-eaiha Va} (2.1)

where h = (ha)aep €(RU{+1P, Let |x~y| be absolute value for
%,y € R U {+=} with the conventions () = (+=) = 0 and |-l_-°°[ = 4o, A

metric is defined for A,B €A by
{e,}
d(A,B) = min(l, inf Z[ka-hal) (2.2)
a

where the infimum is over k = (ka)’ h = (ha) € (R U {4+=})? such that
A= A‘k and B = Bk'
As in Section 1, let {W(B) : B € B(E)} be a centered Gaussian random
measure with E[(W(a)W(B)] = u(AMB), defined on a probability space (Q,F,P).
Let FA = o(W(B) : B C A) VN for A € B(E), where N denotes the collection of

P-null sets. Formally, W(A) = ] nsds for a white Gaussian noise n and
A

= e E .
FA c(ns.s A)



n
Given subsets Tl,...,Tk of E= R, define RTl”"’Tk
intersection of all A € A such that A N T, # ¢ for each 1. Let

to be the

k
= oo 0y e o
Rsl"“’sk R{Sl}""’{sk} for Sy Sic E A set of points

SyseeesSy is called unordered if for 1 < j < %, sj is not contained in

Rs s s g * Note that a set of unordered points contains
1,00., j-l’ j+l,0'o, 2'

at most p points. A collection of subsets Al""’Az will be called

unordered if sl,...,sz are unordered whenever si € Ai;i = 1,...,%.

Given a subset D of Ez, 5 will denote the set of (sl,...,sl) € D such

that sl,...,sz are unordered.

o
Let Li(EkXQ) denote the set of adapted uk x P square integrable
D
functions on Ek xQ --ie. £€ Li(EkXQ) if f:gk x Q@+ R and

1) =

f is B(E™) x F measurable.

2) £ is uk x P square integrable.

D
3) £(s,*) is FR ) measurable for each s = (S;,...55,) € g5
sl,...,sk 1 k

4

As usual, two functioms in Lg(E xQ) are identified if they are equal

u¥xp a.e., so that Li(EkXQ) becomes a Hilbert space with l£l denoting

the norm of £.
2 -
For £ € La(E xQ), let f denote the symmetrizatiom of f:

= 1
E(tyseeenty) = 5 E E(E, seeesty )

1 k
N
Note that Ifl < Ifl by the Schwartz inequality. Let Li’S(EkXQ) denote
A ’
the collection of symmetric functions in Li(EkXQ); then £ is the
projection of £ onto Li S(gkxﬂ).
9

N
An elementary function £ € Lg(EkXQ) is a finite linear combination

of functions of the form 1E1X...XEk(s)z(m) where El""’Ek is an
unordered collection of bounded rectangles and Z is a bounded,

F(RE E ) measurable random variable. The collection of elementary

1’..‘,k zAk
functions is dense in La(E xQ) as shown in the appendix.
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2/\

IfFfEL (EkXQ) is elementary then f can be expressed as

a

F(tyseeest, ) = Z, (w) for (t.y...,8,) €T, x...T.
1 At S 1 % 1

=0 otherwise

where Tiw..,T are disjoint rectangles, Z . 1s zero unless
1 m il’ e o o ’
Ti s+++>I; are unordered rectangles and then Z

. 1s a bounded,
l il’ooo’lk

F(RT ) measurable random variable. For such f, the (indefinite)
i ,...,Tik §
1

multiple Ito integral of order k, denoted fowk, is defined by

fow =] z

A W('ri Na) ... W(TnﬁA)

il,...,ik 1

for each A € A, It is not hard to see that fowi = fowi, that

D
(f+g)°W§ = f°W§ + g°W§ if g € Li(EkXQ) is also elementary, and that for

any A C AS,
E[(fowlz)z] = 11,1 < 1 N
A A
Thus, for fixed A C A, the multiple Ito integral f°W§ may be extended
)
to all £ € Li(EkXQ) by the requirements that faWA + goWA =v(f+g)owA a.s.

and fn°W§ + foWf in L2(Q) whenever “fk-fﬂ + 0.

It is easily checked that fewk is a set parametered martingale
relative to A if f is an elementary function. Since conditional
expectations commute with limits in LZ(Q), it follows that fowk is a set

A
EXxQ).

martingale relative to A for any £ € Li(
If p is finite it will be shown next (Propositiom 2.3 below) that
there is a sample continuous modification of the multiple Ito integral

{f°Wi:A € A}. The topology on A is induced by the metric defined in

(2.2). The map h + from RP to A defined by (2.1) is continuous in
Ay

this topology.
.



Lemma 2.1. Let B € B(E) be a bounded subset of E. Then there is a

sample continuous modification of {W(AMB):A € A} if p < +=.

Proof. If each random variable W(aMB) for A € A is redefined omn a
P-null set, then the Gaussian random process {Xh = W(A.hﬁB),h € RP} can
be made ‘sample continuous. This is a comsequence of that fact that
E[ka'k'] < %Ik—k'\ for all k,k' € F, where F is any bounded subse\l:
of Rp+2n and Cq is a constant depending om F. By the definitiom of the

metric on A , the process {W(AMB):A € A} is sample continuous

£or the same modification. B

Lemma 2.2. Suppose p < +=. 1f M is a separable square integrable
martingale relative to A, then
2 P 2
E[sup|M(a)|“] < 4"El |M(E) | ©1-
ASA '

This inequality may be proved by repeated application of Doob's maximal

inequality for l-parameter martingales and positive submartingales [1].

N
Proposition 2.3. If p < 4= and £ € Li(EkXQ), there is a sample

continuous modification of {fowlz:A € Al.

Proof. By Lemma 3.1, the proposition is true if £ is an elementary
function. By Lemma 3.2, a continuous modification of fowk in the
general case is obtained as the a.s. uniform (in A € A) limit of the

sample continuous integrals of elementary functions. a

It is convenient €O extend the multiple Ito integral fowA to foWB
N
for any Borel set B C E as follows. 1If £ € Li(Ekxs}) and if B is a

rectangle, then

fowlg = (flek)eWk a.s. (2.3)



Indeed, (2.3) is true when f is an elementary function and hence for

all £ by approximation. WNow, if B is any Borel subset of E then we can
define a random variable fowl; by (2.3) since the right hand side is still
well defined. fcwch will always be FB* measurable, where B* is the

intersection of all A € A such that B C A. fowlg need not be FB measurable.

A suggestive alternative notation for f °W§ is

foWl; = J”i‘g f(sl,...,sk,w)W(dsl) e W(dsk).
B
This emphasises that the multiple Ito integral permits random integrands

and integration is restricted to uhordered k-tuples of points in E.

Theorem 2.4. (Properties of Multiple Ito Integral)
a) (Linearity) (f+g) °Wl; = fowlg + gowlg a.s. whenever f,g € L:(E/kxn)
and B € B(E).
b) (Orthogonality and Isometric Properties) If £ € L (E xQ),
gLl (Ek xQ), and B € B(E), then
1
E[(£oW5) (goWs )] = Lpiry <lek,g>L 2 B
¢) (Uniqueness of Representation) For £,f' € L (]:‘.kXQ.) and B € B(E),

ol = £'oWS a.s. if and only if E1 . = E'L . a.e. (u5xP).
B B ok ok

A

d) (Projection Property) Given A,B € B(E), L <k < p, and £ € LZ(EkXQ),
/\

there exists an element E[le ] € L (E xQ) characterized by the fact

N

that E[fIFB](s,-) = E[f(s,-)IFB] for all s € E. The multiple Ito

integral sauisfies

E[£oWs |Fy] = (ELE|FG1) oW,y (2.4)

-9=



e) (Elementary Exponential Representation) Suppose p < +=. For all

s € L2(E), all complex A, and all A € B(E),

o) . A2 2
LA exp(AJAcbsW(ds) -5 IAcbsds)
k .
a1+ T 6 .enb Yo (2.5)
k=1 LRsl,...,sk s S A

£) (Relation to Multiple Wiener Integral) Let h € L2 (Em) . Then the

multiple Wienmer integral I.m(h) has the representation

. min%m,p)
I (h) = E[[,(0)] +

hkowk (2.6)

E

A
where h € Li(EkXQ) for k < min(m,p) satisfies

By (SyseeesSow) = Im_k(ﬁ(sl,...,sk,o)l@k () (w) a.e.(2.7)
Rsl,...,sk

g) (Completeness or Martingale Representatiomn) Every square intégrable
set martingale M relative to {FA:A € A} has a (sample continuous,

if p < +=) modification with the representation

M, = E[M1+ % u.°WE: for A € A. (2.8)
A A k A
k=1
The sum converges in LZ(Q) for each A € A if p is infinite.

Proof. (a) and (b) are easily verified if f and g are elementary
fun:ctions, and the assertions extend to the general case by an obvious
limiting argument. (c) follows directly from (b).‘ To prove (d), assume
first that £ is an elementary functiom. Then f is a finite .linear

combination of functioms of the form 8(s,w) = Z(w) lA < (s) where

1 ....><A.k

Al""’A‘k is an unordered collectiom of bounded fectangles and Z is a

bounded, F(R ) measurable random variable. Now

""’A'k

-10-



X k
E(8° A{FB] a E[zile(AﬁAi)lFB]

= E[2|F}] W(ANENA, )

Il
i=1
= (06]FaD) oWy
since a version of E[8]Fg] is given by
E(6|Fgl(s,w) = E(2{F3l () 1A1x...xAk<s"

Thus (d) is true for elementary functions £ by linearity. The case of

general f follows from (b) and the fact that the map £ - E[f!FB] is
N
norm decreasing in Li(Ekxn).

By replacing ¢ by ¢1A, it suffices to prove (e) for the case A = E.
Then (e) may be proved as in [8] by a two step procedure. First, the
differential formula for one parameter processes is applied to Lﬁ}) in

each one of the p directioms al,...,ep in E. This yields a representation
)

of LA as a sum of iterated integrals of order up to p. The second part
of the proof then is to note the equivalence §f the iterated integrals
and multiple Ito integrals. This is accomplished by first considering
elementary processes for integrands. The .details are straight forward
and are almost the same as in (8], and are hence omitted.

To prove (f), first suppose that h has the form h = 1A ... %A where
X X8p

Al”"’Am are disjoint closed, bounded rectangles such that Ai ,...,Ai
2

are unordered and A; ,...54, CR for some permutation
i A, 50004
- 2+1 o] i iz

il,...,im of 1,...,m. Then

m

L = T WaA)

- k=1 .Ak

m 2

( T W, )) I W@, )
K=+l Tk k=l Tk

3
Vg

= h
-11-



where

o )
B (SyseeesS,ow) = C T W, )l . (2.9)
g (8177025 mgtl Ailx...xA .

Thus, Iﬁ(h) has the representation (2.6) with hk = 0 if k> m, and 2.7)

follows from (2.9). Since linear combinations of such functions h are

dense in Lz(Em), (£) is proved for gemeral h by approximation using the
isometric properties of the multiple Wiemer and Ito integrals.

To prove (g), note first that by (f), multiple Wiemer integrals can
be expressed as sums of multiple Ito integrals (evaluated at E). Hence,
since multiple Wienerx integrals are total in Lz(ﬂ), so are multiple Ito

integrals. Thus; the collection of random variables of the form

akowi is dense in Lz(ﬂ), and is a closed subspace of LZ(Q), being

k=0
P
isometric to @ Li g° Thus, any square integrable random variable has
k=0 °’
an integral representation % akoWE. Thus, if M is a square

k=0
integrable martingale with respect to A then

Mg = E % Vg
k=0
R
for some ak'e La(E xQ), ¥« = 0,...p. Hence, a modification of M satisfies

(2.8) since each side is 2 martingale with common final value. &

Remark. If p is finite, the spanning property (g) can also be
proven by using (a), (b) and (e). Indeed, by (e), exp(kj ¢des) has a
representation in terms of multiple Ito integrals. Randoz variables
of this form afe total in LZ(R,P) by a momotone class argument and the
fact that exponentials span the class of square integrable functions of
finite collectioms of Gaussian random variables. Hence, the collection
of random variables of the form E ukcwg is demse in LZ(Q). The proof
is completed as before. k=0

-12-



The idea for this proof 1s essentially due to Yor [8] . It has the
advantage that completeness is proved from scratch, while the proof we
gave depends on the completeness of multiple Wiemer integrals. However,
we have not establiéhed (e) in case p is not finite, so that Yor's

‘proof cannot (yet) be used in this case.

Conjecture. I conjecture that (e) of Theorem 2.1 is also valid for

P = @, One proof might be based on iterated integrals as in the case

P < =, using (b) and (g) to control the limit. A perhaps more gemeral
approach would be to use property (f) in conjunction with the exponential

formula (1.1) for multiple Wiener integral.

Remark. In all cases, Ito integrals are characterized by the fact
that random integrands are allowed so that integration may be restricted
to unordered points. A different class of integrands, the analog of one
parameter predictable processes, is considered in the next sectionm.

It is interesting to note that if A is the collection of all Borel
subsets of R and if the definitions in this section are usgd, then
"unordered" is the same as "disjoint." .Then the resulting ﬁultiple Ito

integral is just the multiple Wiemer integral of Sectiom 1.

3. go-Fields Generated by General Stationary White Noise

The multiple Ito integral and representation theorems are given in
this section in case the o-fields are generated by a general stationary
white noise. Suppose that there is a stationary. independent Borel
random measure {M(A):A € B(E)} definea on the probability space (Q,F,P).
(By independent, we mean that M(A) is independent of M(B) if AMB = ¢.)
Assume that P[IM(A)I >e] + 0 if u(A) ~ 0 for any ¢ > 0. For each A€B(E),

let FA = o(M(B):B C A) v N, where N is the collection of P-null sets.

-]13=



Suppose A = A{ea} as in Section 2. A multiple Ito integral
representation of all square integrable set martingales relative to UZ:A €A}
will be obtained. The relevant stochastic integrals
involve the Levy representative of M. Some facts about multiple Wiener
'integrals (which correspond to A = all Borel sets) will be proved first
and then multiple Ito integrals are considered.

Our assumptions on M imply ihat

E{lexp(iuM(a))] = exp(u_(A)w(u))

where

i

olur UA_1)I(dA)

=1-1uA)I(dA) + J (e

¢(u) = iub - 12'- uzn({O}) +J (
[A]>1

0<|r|<1

for some b € R and o-finite Borel measure I on R with

2
f : J-LL—Z I(dA) < 4=, Furthermore, M has the representation
[A[>0 1+{a]

Afq(dt,dr) + 1|A|>ldt11(dl)]
3.1)

M(A) = bu() + Ww({t:(t,0)€a}) + f
Ax(R~-{0})
where W is a centered Gaussian independent random measure parameterizedf by
B(E) with E[W(A)W(B)] = N({0})u(A™B) and q is a compensated og-finite
poisson point process (viewed as a random measure) on E x (R-{0}) with
intensity measure dtll(dA). W and q are independent random processes. The
integral in (3.1) is improper at Ax{0} and converges in probability.

Define an independent Borel random measure Y om E x R by
Y(dt,dA) = q(dt,dA) + W(dt)<(dA).

Let E=E x R and let p denote the o-finite measure p(dt,d\) = dt x T(dA)
on E. Hence, E[Y(dt,dk)z] = E(dt,d)\). For functions fl""’fk on some
set S, define the tensor product fl ®...0 £, to be the function on

Sk such that
.



fl ®...® fk(sl""’sk) = fl(sl)...fk(sk).

The multiple Wiener integral I L (E ,u ) - L (2) is defined by

the following three properties (51, [2]:

i) 1 (lAl e ® lAk) = ile(Ai) whenever Al,...,Ak =3 B(E) are
disjoint and u(Ai) <4, i =1,...,k.

1) L(f+g) = 1(D) + I, (g)

1ii) Ik(fn) + L (£) in probability if "f-—fnﬂ +0

The alternative notation

-~

L () = [ . E(spoy seves 810X )¥(ds ,dAy) .. Y (dsy,dA,)
Ey(s, ,ki)distinct

is suggestive.

Proposition 3.1. (Additional Properties of General Multiple Wiener Integral)

iv) (Isomett:l.c Properties) For £ €L (Ek,uk), g €1 (l':k ,l-l ),

v) (Product Decomposition) Let f € LZ(Ek,uk) g € L2 (E‘q", _Lf“).
Suppose f and g have totally disjoint supports in the sense that there

exist A,B € B(E) with A™B = ¢ such that £ = f1 i and g = gl . Then
= A B

L (E@g) = L (6)I,(e) (3.2)

vi) (Exponential Formula). Let a:E + R be Borel measurable. Define

a(s,0) if A =0
£(s,A) = (3.3

ga(s,l) - 1 otherwise
2 a(s,0% 181 =0

h(s,\) = (3.4)
ea(s,)\) -1 - a(s,)) otherwise.

~15-



Suppose that o,f € Lz(E,u). Then

a(s,A)Y(ds,dr) - I h(s,A)dsi(dr))
ExIR

2 Ik(fcak) (3.5)

If the condition a € LZ(E, #) is removed, then

(@)

L = exp(J' . a(s,A)[¥(ds,dr) + 1 dsll(dA)]

EXR {a(s,A)>1,A#0}

+ f (ea(s’l)-l-a(s,k))dsH(dA)
{a(s,A)<1,2#0}

+ f 522 1y 4sman) (3.6)
{a(s,A)>1, \#0}

-l-% n¢{o}) J a(s,O)zds)
E

is still well defined and is equal to the right side of (3.5).
vii) (Completeness of multiple Wiener integrals)

2@ = @ (1 (5):£ € L2(E, )}
k=0 ==

o
= @ L§'<£k:g,k)
k=0

Proof.

(iv) follows by approximation by elementary functions. (v) is
proved by approximating f and g by éle.mentary functions fj, g4 with
totally disjoint supports.

(vi) 1is true if a = o, where al(s,k) =0 if A # 0, for then (3.5)
and (3.6) specialize to the expomential formula (1.1) for Gaussian white
noise. (vi) is also true if « = @, where ¢, is bounded and az(s,k)
= az(s,k)lA for some A € B(E) with A CE x (R-{0}) and i(A) < 4w,

-16-



Indeed, in this case the quantities in (3.5) and (3.6) may be interpreted
as Stieltjes integrals (defined for each fixed w) with respect to the
compensated Poisson point process YIA of finite total intensity measure.
This reduces (3.5) and (3.6) to algebraic facts which may be easily
proven by induction on the (a.s. finite) number of point masses of Y

contained in A.

Now, for a(s,A) = al(s,l) + az(s,k), property (v) yields

(@D )
- L LA nel e
i k;fo zzo Gl I‘d'“(a? ‘e aZ@ E
) :izo ?l'- {kio @ '3 (al® ‘o °‘2® 479
- jzo & LY - jzo 1, .

(3.5) and (3.6) then follow for gemeral a by an easy approximation
argument.
The comple;eness of the multiple Wienmer integrals follows from
(3.5) and the fact that random variables of the form
exp(f a(s,A)Y(ds,d))),
ExR

with a = al+u2 as in the proof of (vi), are total in LZ(Q). n

Remark. Proposition 3.1 and its proof easily generalize to the
case when E is an arbitrary separable measure spacewith o-finite, non-
atomic measure u. Many properties of multiple Wiener integrals follow

from the expomential formula (3.3), which we have not seen elsewhere.

-17-



Thelmultiple Tto integral with respect to ¢ will now be defined.
Let A= A{e } be a collection of subsets of E = R® as in Sectiom 2.
Let, A = Ax {R} = {AxR:A € A}, and L\. = g(1(8):B € B(E), L(B) < =,
B CA) for A c B(g). Note that FA = ZAX]R for A € B(E). Hence, under
the correspondence AeAx R, set martingales relative to
{F KL € A} may be jdentified with set martingales relative to

R , "ynordered," and D as in

(F :A € Al. Define ,
=A = RT ,.o. k Sl,oocsk

Section III.2. These definitions are relative to A or Ag .
D
Fix a positive integer k. A function defined on ;n_.;k x @ is elementary

if it is a finite linear combination of functiomns of the form

Z1 (3.7
Alx"'xAk

where Al,.. "Ak C E are unordered, pounded rectangles with u(Ai) < 4 and

A, OR =¢fori=l...k andZisabOundedF
i ye oo 9’ E R ] ’
Byseeeaby RAI,...,Ak

n;\easm:able random variable. Let P be the o-algebra of subsets of

E:k x SZ generated by the elementary functions, and define L.i(‘{)
=1 (Ekxﬂ P, ¥ XP) to be the Hilbert space of P-measurable, uk x P square
integrable functions on Ek x Q. By partitioning rectangles into unions
of smaller rectangles and adding like terms, it can always be assumed
that there is at most one non—zero term in the finite sum Of/\ random
variables defining an elementary function at each point of Ek. This fact
makes it clear that the collection of elementary functions is an algebra
closed under pointwise minimums and maximums. BY the Stone-Weierstrass

theorem and a momotone class argument, jt follows that the collection of

elementary functions is dense in Ll?;(‘{).
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2
If 8 € Lk(Y) is of the form (3.7), define the multiple Ito integral
6°Y for A € A by
Kk k
9°YA =Z(w) I Y(AﬂAi) (3.8)
i=]
Extend the definitiom to ‘elementary functions f € le{(Y) by linearity.
For elementary f,g, (f-l-g)chz = f°Y§ + gon, and

2 1/2

B[(£YD] = IE < lsl.

Also, f°YA is a set parameter martingale relative to i and {EA:A € i}.
By invoking the requirement that %sz * oni in LZ(Q) whenever
ﬂfi—f“ >0 for £,,f € Li(Y) the multiple Ito integral I (f) is defined
for all £ € L2(m).
If p is finite, there exists a version of the multiple Ito integral
with nice sample: path properties. Note that A {9 X{O}}
and the metrics on A and itdefined by (2.2) agree under the correspondence
A®Ax R. A function n:A + R (or equivalently n :é -+ R) is outer

continuous (or continuous from the outside) if lim n, = n.. n has inner

B+A B A
=
limits (or has limits from the inside) if lim ny exists for each A € A.
BrA
BA

Let B € B(E) be a bounded subset of E with u(B) < +=,

Lemma 3.2. There is a modification of {Y(AMB):A € A} that is outer

continuous and has inmer limits with probability omne.

Proof. Let G, = {(e,\) €E=E x R:le| <4, (JA| >+ or A = 0))

Then u(G ) < 4o and U Gi E. Let Yi(A) = Y(AnGinB). For each i, Y
i=1 =
is the sum of an independent Gaussian measure and a compensated Poisson

i

point process of finite total intensity, so we may choose an outer

-19-



£Y \ (Use Lemma 2.1 for the

r limits modification O

continuous with inne
and Yi are set marting

part.) {Y(aMB):A € i}

ales relative to

Gaussian

{FA:A € A}, and

E[(Yi(A)—Y(AﬂB))Z] - p(as) » 0 as ¥
ach A € i Hence, by Lemm2 2.2 and a diagonal subsequence argument,

12,... of posit

s. uniformly for A CG, 1
ed modification of {T(aB

for e
for

ive integers such that,
to a modification
):A € é_‘}.

there is a subsequence ila

ach i, Ylk(A.) converges, a-

This provides the desir

of {Y(AMB):A (= i}.
n
proposition 3.3. Let p < ¥=. For £ € Lk(‘{), there exists a
¢ such that £°Y \ is outer

modification of the multiple Ito integral fo

continuous with left 1imits.

then the multiple Ito

1f £ is an elementary function,
position 3.2.

us with left 1imits by Pro
uniform limit of

Proof.

integral E°Yk is outer continuo

dification of {fﬂzl;:A = i} is the a.S.:

the outer continuous ted multiple Ito integral

of elementary functions by Proposition 2.1. This modification of
jpner limits. =

K _ Gk
define onk by £oT5 = (Eg0)° T

is easily proved for

In general, a WO
s of a sequence

ippner limi
goy®

is outer continuous and h.as

For £ €L (Y) and any B EB(E),
g definition if B € A as

This agrees with the previou
al £ € Lk_(Y) by approximat

ion.

elementary functions and then for gemer

(Properties of Multiple Ito Integral == General

Theorem 3.4.
Independent Noise)

a) For £,£' € Li(Y) g € Li.(Y) and B € B(E)s

(£+£" )°Y = fo Yk + f'on

E[(f°YB)(g°Y )] = 1{ =K'} (fl k, g)
k a.e. ¥ x P.

° = £ k = =
f‘{l_:5 EeYBa.s flk le

-20~



b) (Projection Property) For A,B € B(E) and £ € L,i(Y),

kir o
E(£oTy|F ] = (ELE|Fg]) oWy (3.9

(In (3.9), E[leB] (s,+) = E[f(s,-)IFB] a.e. for each s Egk and a
version E[fIFB] € Li(Y) is chosen) |

¢) (Elementary Exponential Representation) Suppose p < +». Let

a € Lz(i’i) and define f,h by (3.3), (3.4). Suppose a,f € Lz(gag)- Then

for each A € B(E),

L & exp(J a(e,M)Y(dt,dA) - | h(t,M)uldt,dr))
A A
=1+ E k—ln (L;E“) ¥ Ylpt
k=1 31’° '93k

d) (Relation to Multiple Wiener Integral) Let h € L2 (:E_m,g). Thén the
multiple Wiener integral Im(h) has the representation
I, () = E(T (R)] + kgl by oYy

where hk € L{’;(Y) for k < min(m,p) satisfies

(SqsevesSy,w) = I (A(Sqse-0s85 )1 (+)) (w) -
1 k -k 1 k o k.
' SqseecaSy

for a.e. w and s; = (ti,}\i) € i for i = 1,...k.
e) (Completeness or Martingale Representation) Every square integrable

set martingale N (relative to A) has a (outer continuous with inmer

limits, if p < +=) modification with the representation
N, = E o, o7%, AEA

S =

The sum converges in LZ(Q) in case p is infinite.
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Remark. The proof of Theorem 2.4 easily extends to prove Theorem 3.4.
The properties a), b), d) and e) of Theorem 3.4 and their proofs are
very much independent of what tybe of independent random measure Y is.
This is only true for e) when given the facﬁ that mulitiple Wiener integrals

with respect to Y span LZ(Q).
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APPENDIX

The notation of Section 2 will be used in this appendix. The
purpose of this appendix is to prove the following proposition.

A
Proposition A.l. The class of elementary functions is denmse in Li(EkXQ).

N

Lemma A.2. The class of sample-continuous, adapted functions on E:k x Q

is dense in Li(é}(xcz).

A
Proof of Lemma. Define an open set G Ek by

Vo
G= {(tyy...,t, ) € Ek:R has non-empty interior}.
1 k tl""’tk
2 A
Suppose that £ € LZ(ESxQ). Then £ = £, + f. where f. = £l  and £, = £1 .
a 1 2 1 2 Gc

It will be shown that fl and f (and hence f) may each be approximated
with arbitrary precision in L (EkXSZ) by sample-continuous adapted functioms.
It suffices to consider the case when fl is supported by an open

set GO with compact closure in G for a.e. w. For € > 0, define

(" 1 £ (r 5o ..,r )dr .dr
u (A (s s,)) 1 h
1 k Af (sl,...,slg
_ < 1f (sq,.-+55,.) € G,
fl(sl,...,sk,m) = (A.1)
N 0 otherwise
where, for (sl,...,sk) € GO,
.
Ae(sl,...,s)={(t, coaty) € Eieg ER s
* 1’ s @ k

and |ti-si| < s(l+diam{sl,....,sk}) vi}

Then fi is adapted and sample-continuous on Gye

=-23=



A

1 in Li(Eka) as € ~ 0. To prove the
Ve
can be well-approximated in L2(Ekxﬂ) by (not

Claim: fi converges to £
claim, first note that fl
necessarily adapted) functions g(sl, ces ,.sk,w) which are bounded, continuous
and have support in GO for each fixed w. (By an easy monotone class

argument.) For ‘such g, if ge is defined by the right side of (A.l) with

fl replaced by g, then ge converges to g pointwise and hence in
2

N
L (EkXQ)vby Lebesgues’ bounded convergence theorem. By Jensen's inequality

and Fubini's lemma,

llgs-feﬂ2=g[j ( 1 ] £.(r,5...,1.)
k i R 3
GO M (Kisl""’sk) Ae(sl,...,sk)

- 2
- g(&l’ooo,rk)drlccodrk) dS ooodsk]

1

1

<E[I . j £.(r 5000,1,)

- k, e 1L Lk
GO H (A (sl’° "’sk) Ae(sl,..o,sk)

| 2
- g(rl,ano,rk)) drlooodrdeIOQOdsk]

=Bl - 2.
E[fG (fl(sl"°"sk) g(sl,...,sk)) S (sl,...,sk)dsl...dsk]

0 (A.2)

where

Se(s,...,s)=J t 1
1 k 3 uk(Ae(rl,...,rk)) (A5(r )5 e ear ) sy see s}

dr,...dr, .

v 1’ k
It is not hard to see that Se(sl,...,sk) is locally bounded on
GO x [O,eo] for some so > 0, so that Ss(sl,...,sk)_g K for all SyseeesSy

and £ < ¢, by the compactness of G,. Thus by (A.2), lg -f I < rlig-£l.

0 0
Therefore
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L/

le-£51 < ||f-gH + "g—geﬂ +'"g§if€ﬂ < (1+K) “f-gﬂ + Ug-gs"

for e < €, Since If-gl and lg~g®l can be made arbitrarily small, the

claim is proven.

The functions f£° are adapted and continuous on the open set GO.
Theﬁfunctions fe, and so also £, can therefore be well-approximated in
A
2,k ;
La(E XQ) by sample continuous functions on Ek of the form uf® where u

A

is a continuous (deterministic) function on Ek, 0<u<l,andu=0on

[~
Go.

It remains to show that f2 may be well-approximated by sample
A

A
continuous functions in LZ(EkXQ). Now, for s.,...,s, € Gc, R
a 1 k sl,...,sk
has zero Lebesgue measure so that F(R ) = N, the collection of

Sl’ o & .mk
2
P-null sets. Thus, fz(sl,...,sk,m) = g(sl,...,sk) a.e. where g € L°(E™)

is defined by g<31""’sk) = E[fz(sl,...,sk)]. By a monotone class
argument, there is a sequence of continuous functions on Ek converging

A
to g in LZ(Ek). Since deterministic functions are always adapted, the

same sequence converges to f2 in Li(EkXQ). B

Proof of Proposition. Suppose that f is a bounded, .sample-continuous,

A
adapted function on Ek X Q. Assume that the support of £ is contained
A
in a fixed compact subset of Ek for each w. By Lemma A.1l it suffices
N
to prove that f may be approximated in Lz(EkXQ) by elementary functionmns.
(1) .(n))

Let m be a positive integer. For each n-tuple i = (i yeeesl

of integers, let A, demote the rectangle in E = R" defined by

i

(D, @ (@_, @
A, = & l,]'m]><-.-><(j'ml,im

]

For each unordered collection Ai yesesl

1 e

of k such rectangles, choose a
k-tuple

-25-



<sil,...,ik il""’ik

l ’ooo,sk )GR

N (Ki Xe.uXd, )

A "..’A
1 L1 L
Define
( i ’...’% i ,...’ik
1 1
f(s seeesS ) 1f (5,504.58,) €A, %x...xA
1 k 1 k 11 ik
and Ai seessd, are unordered for
B (syseeessy) = ¢ ) 1

some il,...,ik

0 otherwise

Then hm is an elementary function for each m and hm converges to £ point-
wise as m + ». Furthermore, hm is uniformly bounded and has support
contained in a bounded subset of Ek, independently of m. Hence, hm -+ £

in Li(EkXQ) by Lebesgue's bounded convergence theorem. n
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