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ABSTRACT

In this paper the asymptotic behavior of the closed-loop eigenvalues

(root loci) of a strictly proper linear time-invariant control system as

the loop gain goes to « is studied. Basic properties of the singular

value decomposition are introduced and then used to obtain formulae

for the asymptotic values, as the loop gain goes to », of the unbounded

(with loop gain) root loci. The geometric interpretation of these

formulae is developed and a numerically sound way of computing them is

proposed. Perturbation techniques are used under mild

assumptions to obtain the complete asymptotes of the unbounded root loci.

Using these calculations necessary and sufficient conditions for the

closed loop exponential stability of a strictly proper linear time-

invariant system under arbitrarily high feedback gain are derived. This

is the generalization to multi-input, multi-output of a well-known result

for single input, single output systems.
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Section I. Introduction

It is well known that high loop gain in a feedback control system

enhances the desirable effects of feedback, for instance, desensitization

and disturbance attenuation, etc. see, for example, Desoer and Wang [13].

It is also well-known that practical control systems are driven to

instability by high gain feedback. With this design philosophy in mind

this paper presents a new geometric way of comprehending and a numerically

stable way of computing the asymptotic behavior of unbounded root loci

of a strictly proper, linear, time-invariant feedback control system

shown in Figure 1 as the loop gain •*• » (k-*»).

The asymptotic behavior of unbounded root loci has been studied

by Kouvaritakis and Shaked [1], Kouvaritakis [2], Kouvaritakis and

Edmunds [8] and Owens [3,4,5] but the geometric interpretation of their

results is not clear. Also, their assumptions are not explicit (see for

e.g. [5]) and there are some formulae for the asymptotes in [3] and

in [8] which we do not understand.

The present paper recognizes that the computation of the asymptotic

values of the unbounded root loci is essentially a process of identifying

subspaces in the input space (3Rm) and the output space (3Rm) where the

effects of the 0(k) (order (k)),0(/k), OQ/k),... unbounded root loci

dominate asymptotically. This suggests naturally the use of the

numerically stable tool — the singular value decomposition (see for

instance Golub and Reinsch [6] and Stewart [7]) for the computation.

We then use standard perturbation calculations formalized for

instance in Dieudonne [10] and Kato [11] to compute the asymptotes of

the unbounded root loci.
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As illustrations of the power of the clear geometric picture

of the root locus behavior we present two applications of the calculation:

(i) State feedback invariance of the asymptotic values of the root loci

in the instance that G(s) has a minimal realization (A,B,C).

(ii) A necessary and sufficient condition for the stability of the

feedback control system of Figure 1 for arbitrarily high gain k > k .
— o

This is the multivariable generalization of a well known result for

single input, single output systems (see, for instance, Ogata [14]).

More applications are clearly possible and one of them, namely a formula

for establishing the degree of a minimal realization of a rational

transfer function G(s) is stated without proof in the Conclusions

(.Sec. VIII). The organization of the paper is as follows.

Section I. The present Introduction.

Section II. Mathematical Preliminaries.

Section III. System Description and Assumptions.

Section IV. Summary of Results.

Section V. Asymptotic Root Loci-Asymptotic Values.

Section VI. Calculations of the Asymptotes of the Unbounded Root Loci.

Section VII. A necessary and sufficient condition for the closed loop

exponential stability of a strictly proper linear time

invariant system under arbitrarily high gain.

Section VIII. Conclusions.

Appendix. Proofs.
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Section II. Mathematical Preliminaries

In this section we state some results and some propositions which

we will use repeatedly in the paper.

II.1. The Singular Value Decomposition (S.V.D.) (see for e.g. [6])

A matrix AS C may be decomposed as

a= [Dl:u2]
£ ' 0

o"T7

*"

vi
*

V2J
(II.1)

where U- [U-, !u9] € <CmXm with U, S <CmXr ;U0 € <EmX<m-r> axid

V«? [V1|V2] e (CmXr ;V2 €€m><(m-r) are unitary matrices and E1 €m*Xr
is a matrix of positive real numbers and r is the rank of the matrix A.

n

The columns of V-, U- represents orthonormal bases for the range

spaces of A*, A respectively and the columns of V_, U« represent

orthonormal basis for the null spaces of A, A* respectively. [A* € (Em*m

stands for the conjugate transpose of A]. The structure of the linear

map A may be viewed as in Figure 1.

II.2. Restriction of a Linear Map in Domain and Range.

Definition 1. Given a linear map A from (C to C and two subspaces

S-, S« of <C define the restriction of A to S, in the domain and S2 in

the range to be the linear map which associates with x £ S- Cc1 the

orthogonal projection of Ax onto S„ C im. The notation for the

restricted linear map is A
VS2

Comment. If S^ and S2 both have dimension m,, AL „ which is a linear

mm - nLxm1
map from S. C <£ to S« C (E can be represented by a matrix A^I

which gives a description of the action of aI c once suitable bases
•VS2
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have been found for S- and S-. This is shown in Figure 2. In the

instance that the bases are orthonormal a particularly simple formula

for A accrues. This is proved in proposition II.1.

Proposition II.1. (Matrix Representation of A )

12mxm-

Let the columns of P. € J form an orthonormal basis $_ for a

m mXmlsubspace S^ C $ and the columns of P. 6 I form an orthonormal basis

fl2 for asubspace S2 Ccm and the map A:Cm -*- Cm be linear. Then the

matrix representation of A with respect to the basis ft, in the
VS2 * m X- 1

domain and (go in the range is P2AP_ € <C . n

II.3. Eigenvalues of the Restriction of a Linear Map in Domain and Range

Definition 2, If S^ S2 are subspaces of Cm of dimension m.; X€c is

an eigenvalue of Ag^ if 3* e<&m such that AJ x=Xll ^ x,

(I s ^.s denotes the restriction of the identity map to S- in the domain
1 2

and S2 in the range).

Proposition II.2. [Polynomial equation for the eigenvalues of A

Let the notation of Proposition II.1 stand. Then, the eigenvalues

VS2]*

of A are the zeros of the polynomial
bl b2

dettXP^-P^] ~0 (H.2)
n

*Comment. If P^ is of rank n^ [i.e. there is no vector in S. which is
m.

orthogonal to S2] then the polynomial of (II.2) has leading term X

so that there are m. non-zero values of X satisfying (II.2).

We define what we mean by simple null structure of a map AI
IVS2

Unlike the previous two definitions which were basis free we use

orthonornal bases for this definition.
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Definition 3. With the notation of Proposition II.1; a| c is said
U hl, ' 1 2

to have simple null structure if 7J non zero x € (E such that

P9AP-x 4 6 but (P*AP-)2x -6 .
z l m- 2 1 m.

Comments. (1) The condition above means that there are no generalized

eigenvectors associated with X = 0 for the map a|_ .
,&TS2

(2) If A e does not have simple null structure, then, considering the
12

Jordan form of the matrix representation P2AP1 we see that there are

arbitrarily small perturbationsof A which will give to the perturbed A

a simple null structure.

We use the definition of simple null structure to equate the number

of non zero eigenvalues of A

rank m..

•ft &

s - to the rank of P?^! w^en P9P1 ^ias

Proposition II.3. (Number of non zero eigenvalues of a| _ ).
|&rs2

Let the notation of proposition (II.1) hold. Assume that
* ^ t\xt\ x m XBL
P2P1 is non sinSular and that P9APi e c has rank r» Then,

if A c e has simple null structure the number of non zero eigenvalues
VS2

of A is r. n

•VS2
A similar definition can be made for simple structure associated

with an eigenvalue of A

Definition 4. With the notation of Proposition II.1, A

have simple structure associated with X € c, an eigenvalue of A
VS2

if the map (XI-A)I _ has simple null structure.
1Sl b2

Comment. With the notation of Proposition II.1; A|_ is said to have
h 2 mi

simple structure associated with an eigenvalue X if J nonzero x £ <E

such that (XP*P1-P*AP.f)x f 9 but (XP*Pn-P*AP,)2x =6 .
Z J. Z L m_ ZJ.Z1 ITL.

W
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II.4. Adjoint of the Restriction of a Linear Map in Domain and Range

Definition 5. With the notation of Definition 1, the adjoint of

A :- A is defined to be the linear map A* „ „ : (Cm -> Cm and
Sl S2 a VS1

is denoted by A*.

The following proposition is obvious.

Proposition II.4 [Matrix representation of A*.]

With the notation of Proposition II.1 the matrix representation of

A* with respect to basis Jz?2 in the domain and Q in the range is
* lye™

P1A P2 € # H

Section III. System Description and Assumptions.

The system under study is the system of Figure 3 where G(s) is the

mxm transfer function matrix of a linear time-invariant, strictly proper

control system with Taylor expansion about s = » given by (III.l).
G G C

G(s) °"r +~2 +~~f+ "'• ^|s| >M (III.l)
s s

with G-,G2,... S 1R ;k is real and positive. For instance G(s) can be

a strictly proper rational transfer function matrix i.e. G(s) G H(s)mXm.

If G(s) is the transfer function matrix of a system with state space

representation (A,B,C) then the Neumann series for G(s) converges

VIsl > X
max

(A) |, the spectral radius of A, and we have

GCS) -S+ CM +... ,|.| > |X (A)| (ni.2)

G1 = CB, G2 = CAB, etc. are referred to in the literature as the Markov

parameters of the system [1].

We study the closed loop poles of the system of Figure 3 as k -»- ».

The motivation for this is that G(s) represents the composition of a linear

time invariant plant and a linear time-invariant controller and k -*• »

represents high gain feedback [with gains tending to «] in all control
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channels. The curves traced by closed-loop eigenvalues as a function of

k are referred to as the multivariable root loci. As k ->• » some of

the root loci tend to finite points in the complex plane located at

the (McMillan) zeros of the system [see for e.g., 1,2], the others go

to « as k •> « and are referred to as the unbounded root loci of the

system. We classify the unbounded root loci by the velocity (with k)

with which they tend to ».

Definition. An unbounded multivariable root locus s (k) is said to be
n

1*1*1

an n order unbounded root locus (n=l,2,3,...) if asymptotically

Sn(k) =Vk)1/n +0(k0) OTL.3)
where |y | <» and 0(k ) is a term of order k°.

n

We now state the assumptions and the results of the paper.

Assumption 0. (Non triviality assumption).

Let G2 := G2

or

5 G3 :=* G3 a ; and so on.

Assume; either

a) Output nontriviality

lRm = <tC61) © (^(G2) © ^(G3) + ... (III.4)

b) Input nontriviality

m " niV© ^(G2}© ^-(G3} + •'• (HI.5)

Comments. (1) (III.4) guarantees that no output (or linear combination

thereof) is trivial i.e., identically zero and (III.5) guarantees that

no input (or linear combination thereof) is trivial i.e., the output is

independent of the value of that particular linear combination of inputs
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For an example of a system violating this assumption, consider

Example 1

r "\ r~

0 0 0

Gl =

0 1
"1
0

0 1 0

0 0 0

0 0 1

0 0 1

G. = 0 k > 3
k —

The block diagram for the system is shown in Figure 4. Note that

y2 = yi^3 and that ul is useless« A1-30 note that fi.(Gt) + jl(G2)

= sp m3.

(2) Only output nontriviality or input nontriviality needs to be

assumed since one implies the other.

Assumption 1. (Simple Null Structure Assumption).

GrG2 := G2 * *G3 :" G3

have simple null structure.

* , and so on

?1<G,)+*Z<0*)

Comment: (1) The assumption 1 of simple null structure is generic

(i.e., given arbitrary matrices G-,G2.G ,... G ]RmXm the assumption is

satisfied almost surely). However, it is more than just a technical

condition required for the asymptotic calculations. We will at this

point give an example of systems that violate our simple null structure

assumption to illustrate that the assumption makes engineering sense.

Example 2.

10 01 In il
k > 3;i - [; o] s - [o § G = 0

k

Notice that G^ does not have simple null structure. Figure 5a is a block

diagram of the system (for large k). Notice, that a more desirable

control system is formed by relabelling the outputs of G(s) before

closing the feedback loops as is shown in Figure 5b. (It is obvious that

the wrong output was being used for control in Figure 5a). Notice that
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the unbounded root loci of Figure 5a are of the 0(k ) so that they

are not of the 1st, 2nd,...,nth order defined above and those of

Figure (5b) are of the 1st and 2nd order.

Assumption 2. [Non Redundancy Assumption].

^((W * * and Gk *°** \ := Gk ^ 0

•<?«W^Gk-i>

for k = 1,2,3,...

Comment. The non-redundancy assumption is clearly generic; also it

makes engineering sense in that it rules out redundant use of integrators

in design as is illustrated in the example below (due to Owens [5]).

Example 3.

!1"[0 o] 62 "|l o| G3 =[o l)
Notice that ^(G.) ?& 0 and G, := G, . = 0. A block diagram

1 2 2•ftt61)vfl<^)
of the system for large k is shown in Figure 6a. We notice that the

integrators associated with G2 are redundant for large k; since they

are dominated by the single integrator in G-. Figure 6b shows the

system with G set to 0. There are two non-interacting control loop

with 1st and 3rd order unbounded root locus behavior.

Assumption 3. (Simple Structure Assumption).

GrG2 := G2 * » G3 := G3
-n.(G1)->yyG1)

have simple structure associated with all of their eigenvalues.

Comment; The simple structure assumption is needed to make asymptotic estimates

of the 0(k ) terms in equation (III.3) for the nth order unbounded root

loci (n=l,2,3,...). It is not needed for the calculation of the asymptotic

values of the unbounded root loci. This assumption is purely technical.

Note that assumption 3 includes assumption 1.

-9-
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Section IV. Summary of Results

Under Assumptions 0, 1 and 2, the simple null structure and non-

redundancy assumptions of Section III we prove in Section V that the

only unbounded root loci of the system of Figure 3 are the 1st,... ,nth

order unbounded root loci and asymptotic formulae for them are given by

Sn(k) =*/=V^ +c.jn +0(k1/n) (Iv.i)
where X. is the eigenvalue of G := G

i,n n n

Under the simple structure assumption 3 of Section III we give formulae

for the c in Section VI. Means of computing the XJ and c, are also
^•s11 i,n i,n

described.

Using these calculations a necessary and sufficient condition for

the exponential stability of the system of Figure 3 for arbitrarily large

k is derived in Section VII.

Section V. Unbounded Root Loci-Asymptotic Values

In this section we establish formulae and methods for computing

the values of the unbounded root loci as k ->• ».

For the values of the finite root loci at k = » the following

procedure is well-known (.see for e.g., [8]): The closed loop transfer

function of the system shown in Fig. 3 is kG(s) [I+kG(s) ]'1. A right

coprime factorization of G(s) of the form

GCs) =Nr(s)Dr(s)"1 (V.i)

yields that the closed loop eigenvalues of the system are the zeros

D Cs)
of det[Nr(s) + — ]. The finite zeros of this polynomial at k = » are

the zeros of

det Nr(s) » 0 (V.2)

which are the zeros of GCs).

-10-
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To obtain the unbounded root loci of the system notice that for k

sufficiently large the zeros of det(I+kG(s)) of unbounded magnitude

(with k) are closed loop eigenvalues of the system. To obtain the

first, second,...,nth order unbounded root loci of the system we derive

the asymptotic values of s satisfying

det(I+kG(s)) = 0 (V.3)

as k+«such that ^= \±; •— =A2;...;-|- =X^, respectively, where the
X's are finite and nonzero.

V«I- Asymptotic values of the first order unbounded root loci

Using (III.l) we note that

lim det(I+kG(s)) = det(I+-A
k,s-*° Al
k/s=l/X,

(V.4)

Then a first order root locus will exist provided ^X, ^ 0 such that
r. J 1

det(I+—) « 0. Let Gx have the S.V.D. given by (V.5)

"i,1 1 olv1*"1

Gi=^ "H 77
o o vi*Lu • UJV2

= u" -i—' ^

m><i, ui^m. T mx(m-m-) - mxnL. 1 mx(m-m )
with u^em •L;u2e]R ±;vj;em x; v2 e m 1.
Then, we have (using III.l) C

*>1

(V.5)

lim det(I+kG(s)) » det
k,s-*»

k/s=l/X,

I + k [Ui4]

-

0
1*\

vl

0 ?
—J

= 0

a*Premultiplying by the unitary matrix U and post multiplying by the

unitary matrix v , we obtain
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det

i*i +Wi*i

L 2 vl U^*"12V2J

= 0 (V.6)

Proposition V.l now follows immediately by comparing (V.4) and (V.6)

Proposition V.l. Given the Taylor expansion (III.l) of G(s) and the

S.V.D. of G1 given by (V.5) the values of X for which (V.6) holds are

the negatives of the non-zero eigenvalues X of G . «
i,l 1

We conclude that the first order unbounded root loci of the system of

Figure 1 are of the form

Si,l ="\l +0(k°> (V.7)

where each X± 1 is a non-zero eigenvalue of G-. Under the simple null

structure assumption (Assumption 1) it will be shown in the proof of

Theorem 1 that the number of non-zero X satisfying (V.6) is hl, where

m- is the rank of G.. We assume m_ < m.

v«2. Asymptotic values of the second order unbounded root loci

G2 SRecalling (III.l) we now label -| +-j + ... as P (s) (which is
s s

0(—j)). Then, we have

det(I+kG(s)) = det

i

U^(I+kP1(s))V^ +| e]"| U^(I+kP1(s))V^

U2*(I+kP1(s))V^ JU^*(I+kP1(s))V^J
(V.8)

If G2 = 0 we skip this step and proceed to the next step for the

computation of the third order unbounded root loci as detailed in

Section (V.3). Using the Schur formula for the determinants of

partitioned matrices in (V.8) we have, either

det[U^*(I+kP1(s)V^ +^ (2^)] =0 (V.9)
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or

det[U2*(I+kP1(s))V2 +U^*(I+kP1(s))vJ[U^*(I+kP1(s))V^ +|E^]"1

uJ*(I+kP1(s))V^] =0 (V.IO)
2

We now examine (V.9) as k,s both -* «> with k/s = 1/X„ where X is a

non-zero constant: then P;,(s) + Gj\ and k/s = s/X , thus

det[uJ;*(i+kP1(s))v]; +|zj] »det[u^*(i+G2/x2)v^ +szj;/x2]
ml

- if-) det(Ej)

Since 2 is nonsingular by construction (see (V.5)), the left hand side

of (V.9) goes to infinity along the 2nd order root loci. In other words,

the second order root loci are specified exclusively by (V.IO). Now

using the calculation above, the inverse in the second term of (V.IO)

2
becomes as k,s •*• «» with k/s = 1/X_,

X2 1 -1

and the second term is easily seen to be 0(l/s); whereas the first

term becomes

uf(i+G2A2)v£

Hence, in the limit (V.IO) becomes

det[u£*v£ +±- U^*G2V^] =0. (V.ll)

By our assumption 2, (non redundancy), we have G- f 0 =* U« G«vf ^ 0 so

that equation (V.ll) is indeed a polynomial equation in X2. From

Proposition (II.2) it follows that the values of X. satisfying (V.ll)

are the negatives of the non-zero eigenvalues of G«

the second order unbounded root loci are of the form

-13-
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Si,2 ='q^ +0<k>-

where each X „ is a non-zero eigenvalue of G0
2fttG^/KG")

This procedure is in the spirit of the singular perturbations

approach (see for e.g. Desoer and Shensa [7]) in the following sense:

to compute the second order unbounded root loci which tend to » at a

lower velocity than the first order unbounded root loci we renormalize

the s variable so as to place at » the first order unbounded root loci

and then examine the (slower) second order unbounded root loci.

Let the S
!* i (m-m-) x(m-m-)

.v.d. of ur g„vt em1 L
2 2*2

Uz"Vz* =fUl ^
r^

2*"

2*
Vv2 J

be given by

(V.12)

(V.13)

2 ^_ _ (m-m1)xm2 2 (m-m.)x(m-m--m ) (m-m1)xm2
with Uj <= 3R ;u2 e m • v n

v^m
(m-m_) x(m-m--m„)

It is shown in the proof of Theorem 1 that

under the simple null structure assumption on G,
^(G1)-v7l(G1)

the

number of non-zero solutions to (V.12) is nu, the rank of U^ G9vi.

For each non-zero solution X. equation (V.12) gives two
i,z

asymptotic root loci corresponding to the two branches of the square

root. In order to have third order root loci we assume m_ + m0 < m.

We explain at this point what could happen in the absence of the

non-redundancy assumption (Assumption 2). If we had G f 0, U„ f 0

, TT1* „1 k 1
and U9 G-VT = 0 then as k,s -»• «• such that —— = — < » we would obtain from

s2 \
equation (V.IO)

det(U2*V^) =0

which is false as is seen in the proof of Thereom 1. Thus none of the
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solutions of equation (V.15) are second order unbounded root loci.

If we do take the limit of equation (V.IO) as k,s -*• » such that

—- a — < oo we obtaxn

s3 u

det[U^*V^+u(U^*G3V^+U2*G2G^G2V^)] =0

where G1 is the pseudo inverse of G- given by V7E:" UT. Thus, there

are now third order unbounded root loci in the solution of equation

(V.IO) in the absence of Assumption 2 (non-redundancy).

Thus, assumption 2 yields us at the end of the procedure a bona fide

polynomial equation in X guaranteeing the existence of second order

unbounded root loci. In the absence of assumption 2 the calculation can

still be made and the procedure can be suitably modified as suggested

above. Notice, however, the redundancy of the integrators associated

with G2 which is reflected in the fact that there are no second order

unbounded root loci.

v»3. Asymptotic values of the third order unbounded root loci

G G

Mimicking the previous section we label —v + -r- + ... as P„(s)

1 s s i* i(which is 0(-j)). Then using (V.13), the S.V.D. of U^ GnV^ in
'2 ~2"2

equation (V.ll) we have

U2*U^*(I+kP2(s))V^V2 +kZ2/s: Ui*U2*(I+kP2(s))V2V
det

U2*U2*(I+kP2(s))V^V2 U2*U^*(I+kP2(s))V^V2J
(V.14)

Using the Schur formula for equation (V.14); and identifying the

equation corresponding to the higher order (order ^2) unbounded root

kloci and partially simplifying it as k,s ->• » such that —r < °° for some
s

i = 3,4,
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det[U2V*(I+kP.(s))viv?] =0
'2 u2 2'2 (V.15)

k 1Taking limits as k,s •>• » such that -j = -r— equation (V.15) yields
s 3

det «*^2♦Ws^i = o (V.16)

By the non-redundancy assumption G $ 0°> UT UT G VTV2 ^ 0, so that

equation (V.16) is indeed a polynomial equation in X .

It follows from Proposition (II.1) that the X, satisfying

equation (V.16) are the negatives of the non-zero eigenvalues of

Go * . In this step the m- first order unbounded root
3*l(G2H-fl(G*) T-
loci and the 2nu second order unbounded root loci are driven to » to

study the third order unbounded root loci of the form

si,3 =V^I~3 +0(k)-

whereas each X ^ is a non-zero eigenvalue of G0
^•9 ^ 3

Let the S
2* 1* 12 (m-m -m )x(m-ni -m )

.V.D. of U2 U2 G3V^V2 € m I2 ± 2

2* 1* 12 3 3

U2 U2 G3V2V2 = fUl!U2]
I

" 3 •* "

Sli°
0 j 0

3*

i
.3*

JV2J

'TKG^TKG*)"

be given by

(V.17)

~ (m-m--m9)xm « (m-m.-m )x(m-m -m -m ) (m-m--m0)xm_
with ujem 1Z 3, u3 e m J-3 ^L23;v^em * ^ 3;
3 (m-m1-m2 )x(m-m1-m2-m3 )

v2em

assumption on G. ,G.

1 zfUG^fKcJ)
in the proof of Theorem 1 that there are nu non-zero solutions to (V.16)

where m3 is the rank of Uj UJ C3V2V2* Under the non-redundancy

assumption m. + m_ < m,G f 0 => m_ ^ 1.

. Then, under the simple null structure

it is shown* =: G2; G3 •*l(G )+*fl(G*)
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V.4. Higher order unbounded root loci

These are computed in a manner exactly as described above for

the first, second, and third order unbounded root loci. The procedure
n +1

ends at the nQth order unbounded root loci provided that U ° is the

zero matrix; that is G
n
o

* =: G has no zero
^Gn-l^*<Gn-l> %

o o

eigenvalues. Assumption 0 guarantees that the procedure ends and that

ml+m2+# *,+mh = m SO that the entire input (and output space) has been de-
o

composed as the orthogonal direct sum of subspaces associated

with the lst,2nd,...,nQth order root loci as will be explicated in

section V.5. Then, the total number of unbounded root loci is

m_+2m2+3mg+.. ,+n m .
o

v*5. Interpretation of the results so far

The usefulness of the S.V.D. in extracting the equations for the

values of the unbounded root loci at k = » stems from the fact that

the orthogonal bases it provides for the null space of a linear map

and its adjoint give an explicit representation of the restriction

of a linear map in its domain and range.

Equation (V.6) for the first order unbounded root loci is an

equation for computing the negatives of the eigenvalues of G .

Equation (V.ll) for the second order unbounded root loci is an equation

for computing the negatives of the eigenvalues of

G9 := G9 using orthonormal basis for the ^(G-) and T7(G,)
,^l(G1)^-ri(G1) 1 1

- mx(m-m-) - mx(m-m.)
furnished by the columns of UT G 1 and VI" G jr. l

respectively. Equation (V.16) for the third order unbounded root

loci is an equation for computing the negatives of the eigenvalues
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^~

of G . Notice that the 'fUO, ^(G*) are subspaces

of the ^T.(G1), ^(G^ respectively. The bases used for the representation

of this restriction of G are the orthonormal columns of V^V?

(m-m--m2 of them) in the domain and the orthonormal columns of

U^U,, (m-BLj-n^ of them) in the range. The interpretation for the

higher order unbounded root loci follows naturally.

Roughly speaking, the procedure consits of identifying in turn

subspaces of the input space (]Rm) and output space (3Rm) where the

effects of the first order, second order,... unbounded root loci

dominate. Thus ^(V^),(ftjV2,V2), &(V^V^) ,... are subspaces of the
input space where the effects of the 1st order, 2nd order, 3rd order,...

unbounded root loci respectively dominate and the &(U?"), ft(uiu?),

"^ z*2 i) are SUDSPaces °f the output space where the 1st order,

2nd order, 3rd order,... unbounded root loci respectively dominate.

The identification procedure is demonstrated pictorially for the second

order and the third order unbounded root loci in Fig. 7. Assumption

0 guarantees that the entire input and output space can be written as

the orthogonal direct sum of subspaces associated with the

1st, 2nd,...,n th order unbounded root loci. We now state the main

result of this section.

Theorem 1. (Asymptotic values of the unbounded root loci)

Given a strictly proper linear time-invariant control system with

Taylor series expansion about s = » given by

G G

G(S) =-g^ +-|+ ... (HI.l)
s

where G-,G2,... £ 3R satisfy:
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(i) Assumption (0) - Non-triviality.

(ii) Assumption (1) - Simple Null Structure

(iii) Assumption (2) - Non-redundancy

The nth order unbounded root loci of the system of Fig. 3 consist of

collections of n branches given by

i,n =V^i.n + 0(k ) n= i*2^, ...-,no

n—J. n—J-

where X. is a non-zero eigenvalue of G := G
i,n ° n n

and Yl(G ) = 0.
n
o

The number of nth order root loci is nm where m is the rank of
n n

the matrix representation of G
n fK^-^O

Furthermore the 1st, 2nd,...,n th order unbounded root loci are the
o

only unbounded root loci of the system. n

Proof: See Appendix.

V.6. Ways of computing the asymptotic values of the unbounded root loci

Under the assumption of simple null structure for G-,G„,G_,etc...

the amount of computation required to solve equations (V.6), (V.ll)

and (V.16) can be reduced. The motivation for doing this is that the

number of operations involved in solving a generalized eigenvalue problem

is the order of the cube of the size of the matrix. Clearly, if a

generalized eigenvalue problem is known to have a certain number of zero

solutions, computational effort is wasted in computing them. Also, the

accuracy of computation is empirically observed to be higher with smaller

dimensional matrices. From the proof of Theorem 1, we notice that

equation (V.6) is an eigenvalue problem in ]Rm with mi non-zero
(m-m-)x (m-m-)

solutions, (V.ll) is an eigenvalue problem in ]R with m„

non-zero solutions and so on. Our goal then is to replace (V.6),
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(V.ll), (V.16) and subsequent equations for higher order unbounded root
m-xm- m2Xm9 m xm

loci by eigenvalue problems in ]R ;1R;3R and so on.

We carry out this program in detail for the first and second order

unbounded root loci. The extension to higher order unbounded root

loci is essentially obvious.

Recalling the S.V.D.s of G^^ and U2*G2V2 from equation (V.5) and
(V.13) respectively we state the reduced dimension versions of (V.6)

and (V.ll) in Proposition V.2.

Proposition (V.2) [Computation of 1st and 2nd order unbounded root loci]

With the notation and assumptions of Theorem 1 the non-zero solutions

to equation (V.6) are the solutions of the generalized eigenvalue problem

of (V.18) in matrices of dimension m.

det[V(ufvl-ufV^uf^)-1^)-^] =0. (V.18)

Similarly, the non-zero solutions to equation (V.12) are the solution

of the generalized eigenvalue problem of (V.19) in matrices of dimension

m2

-1..2*

2
det[u(^*(^)^-uf(^)v2[u22*(^)v2]-1n

(U2*V2)V1)-Z1] =°- (V.19)
Proof: See Appendix

1 m-xm- nux^
Comment: Since the matrices EI" € ]R -1- and Z^ £ m z are

invertible the generalized eigenvalue problems of (V.18) and (V.19)

can be restated as ordinary eigenvalue problems.

v*7- State Feedback Invariance of the Asymptotic Values of the Unbounded

Root Loci System Representation (A,B,C)

Let the linear time invariant system represented by the transfer

function G(s) have a minimal state space realization (A,B,C) with
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A^K. ; B€]R ; C^l then the Markov parameters are

2
G- - CB, G« = CAB, G, = CA B, and so on, we now move the invariance

of the asymptotic values as k -*• °° of the unbounded root loci under

state feedback u = -Fx with F S lRm , under the assumptions 0,1 and 2

of non-triviality, simple null structure and non-redundancy. This

property of the asymptotic values at k = » of the unbounded root loci

is reminiscent of the identical property for the McMillan zeros of the

system, which is well known.

Let G (s) denote the transfer function of the system (A,B,C)

with state-feedback u =• -Fx. Let the Markov parameters of the system

with feedback be

G?f =CB; G2 =C(A+BF)B; G^ =C(A+BF)2B

and so on. Then, we have

Proposition V.3 [Asymptotic values of the root loci are invariant under

constant state-feedback]

The asymptotic values of the root loci of the system with transfer

function G (s) are the same as the asymptotic values of the root loci
r

of the system with transfer function G(s) provided both G(s) and G (s)
F

satisfy assumptions 0,1 and 2.

Comments. Proposition (V.3) establishes the existence of n feedback

invariants where n is the order of the system. Since (A,B,C) is

minimal, X is a McMillan zero of G(s) if and only if X is a root of
i _

det

XI-A ' B

-C » 0
i -

= 0 (V.20)
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(see for instance Desoer and Schulman [12].) However (V.20) is

equivalent to (V.21) below as is easily seen by elementary column

operations

XI-A-BF i B

det - 0 (V.21)
-C i 0

The proof of Proposition (V.3) establishes the feedback invariance of

the so-called "infinite zeros" (terminology of [1],[2],[3],[4],[5],[8]).

It is clear that n + hl + 2m0 +...+ n m = n where n is the number
* ± Z on z

of solutions, X, of equation (V.20).

o n
o

Section VI. Calculation of the Asymptotes of the Unbounded Root Loci

By the asymptotes of the unbounded root loci is meant the leading

term in the series for the 0(k ) terms in the asymptotic expansion of

the unbounded root loci. We postulate that the nth order unbounded root

loci have asymptotic series of the form given by (VI.1)

d

Si,n =VZK^n"+ ci,n +^f+ — n"1.2,3....,no <VI.l)

^ Xi,n; ci,n; di,n E «•
This form for the asymptotic series is justified by explicit

substitution into the equation that they should satisfy and a

verification that terms of different orders in k sum independently to

zero for suitable choices of X ; c. ; d. etc. We present the steps
i,n i,n i,n r r

in the derivation of formulae for c. for the first and second order
i,n

unbounded root loci (n = 1,2) and then present a way of computing them.

The extension to higher order unbounded root loci is essentially obvious.

To make the estimates we make the Simple Structure Assumption

(Assumption 3) in addition to the Simple Null Structure and Non-Redundancy

Assumptions. The procedure followed is essentially that prescribed by

Dieudonne [10] or Kato [11].
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VI.1 Asymptotes for the first order unbounded root loci

The asymptotic formula for a first order unbounded root locus

s.^ 1 is of the form of (VI.2)

d.

Si,l!3-Ai,lk +Ci,l+-t~+ •" (VI-2)

To compute c± ± we substitute (VI.2) for s in det(I+kG(s)) and take

limits as k,s -»• » and retain terms of the order of k and k as

suggested by Dieudonne [10]. We then obtain

det[(-x i^) +i(c i -177 V +°<rV] - ° <VI-3>
1,1 k

By the simple structure assumption G- has no generalized eigenvectors

associated with its eigenvalues. Thus only two cases can arise namely

*i,l havinS multiplicity 1 and X - having multiplicity > 1. These are

treated separately as Cases 1 and 2, respectively.

Case 1. X has multiplicity 1.

Then, fcf(_(Xi -jI-G^) C <n is one dimensional, say, spanned by e

Let us write the null space of the matrix in (VI.3) as the span of

ei 1e± Q+ —k~ for some e± e (C . Using this in (VI.3) we obtain after

some simplification

[-X ,I4G |e ]
1>1 ±1 1,0

ei,i

L x,l-i

G0e4 a (VI.4)
li,l 2i'°

Proposition VI. 1. [Formula for c. - when X has multiplicity 1]
i,i. i»l

If ^± -^ has multiplicity 1 as an eigenvalue of G then there do exist

e±jl ^$m and c± x€(E satisfying equation (VI.4) for any G£ e(tmXm.
Furthermore, any solution to equation (VI.4) yields the same value

of ci,r
Proof: See Appendix. a
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Case 2. X. has multiplicity p.
*"^™"™~ 1,1

Under the simple structure assumption there exist p linearliy

independent eigenvectors say e; ,...,e)p' each £ (Cm. It is expected
1,0 1,0

that formulae similar to (VI.4) hold for each of the p c. 's associated
1,1

with these p first order unbounded root loci. This is almost true and

we have

Proposition VI.2 [Formula for c. - when X has multiplicity p].
i»l i»l

There exist pvectors {a /JL-, c ^ such that the equations (VI.5)

each have a solution

w

€ (D™4*1 for k» l,...,p

I 1.1 1JJ& * ^J
1,1

ifi.lj

£.<»
i,l Jl=l

G„e
2wi,o

(VI.5)

witha(k)-(a<k>...a«)*
— 1 p k - l,...,p. Furthermore for each k any two

solutions of (VI.5) yield the same value of c. .
i»l

Comment: We notice that (VI.5) and (VI.4) are essentially the same

since any linear combination of eigenvectors associated with an

eigenvalue is an eigenvector for that eigenvalue.

Proof: See Appendix. n

VI.2 Asymptotes for the second order unbounded root loci

The asymptotic formulae for the second order unbounded root loci are

s = /-kX. 9 + c 0+-^ + ...i,z i,z i,2 i/- (VI.6)

Using (VI.6) in (V.8) and taking limits as k,s + » and retaining terms

of order k and k we obtain the finite solutions of the resulting

equation [i.e. neglecting those driven to «»] to be the solutions of

-24-



detL^vXV2> ♦£(^ -li2 Jft ♦ ^=tVz
v- i»^

^*G3^\ 1+ 3zl+offi
v^X

1,2

= 0 (VI..7)

Recall that the X « are solutions to the generalized eigenvalue problem
i,z

of (V.IO) namely

(V.IO)det(Xi,2n2*^-U2*G2^) =°-
Under the simple structure assumption on G, i with respect

fl(G1)->7l(G1)
to X 9 we treat the two cases X. having multiplicity 1 and X „ having

1,^ i,z i,z

multiplicity p > 1 separately.

Case 1. X has multiplicity 1:

We assume that the null space of the matrix in (VI.7) is of the
e. - m—in

form e. + -iiAe<E L with
1.0

^i,2U2^G2^ei,o m-:
*!

(VI.8)

we then obtain from (VI.7)

C-Xi,2I+(^rltI2*G2^ Jei,ol
ci,l

L2ci,2J 2 2 iPx—/ 1,2
(VI.9)

[The existence of (UT VT) was established in Proposition (V.l)]. By

the same proof as that of Proposition (VI.1) we can verify the

m-nL+l

existence of '1,1

•1,2

<C satisfying (VI.9) and that two solutions

of (VI.9) yield the same value of c. 9.
i,z

Case 2. X 2 has multiplicity p.

Under the simple structure assumption there are p vectors

00 iP(e. }« - associated with the eigenvalue X _ of G0
1,0 Jt—1 1 jz 2

-25-
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[Xi,2^-n2*G2^]ei!o =V^ *"1.•••.P
As in Proposition (VI.2) we can again affirm the existence of p

(VI.10)

vectors {aW}P0 ,€<E ™1
r*, -J"1
,Ck)
i,l m-m,+l

such that the equations (VI.11) have a

solution
,00
"1,2

e c

1* 1
U7 G«V

w
o

ei,l

2c
(k)
1,2

(U2V "7= 2- aji ei,0 fc-i—.P-

Furthermore all solutions of (VI.11) yield the same value of c

-26-

(VI.11)

(k)
i,2'

(VI.3) Interpretation of the Results of Sections (VI.1) and (VI.2).

Equation (VI.4) expresses the fact that the perturbation in the

eigendirection at k = « for finite k depends on the effect of G2 in

that direction. Thus, for instance if G^e, = e ; c, , « 0. To
2 i,o m i,l

elaborate on the picture of the previous section we imagine a further

partition of the range into the direct sum of eigenspaces associated

with X . To calculate c .. we examine the effect of G„ on individual
1,1 l,i 2

eigenspaces in ^(G^. When an eigenvalue has multiplicity pand

simple structure it is necessary to pick p linearly independent directions

in the subspace associated with X. , to compute the p c. ,Ts-associated
1,1 i,l

with the p first order unbounded root loci. This is achieved by the

choice of the {or >£_•£ described in Proposition (VI.2) and equation (VI.5)

For higher order unbounded root loci the picture is the same-one

of further subdivision of <ft.(G2), A.(GJ,... into the direct sum of

eigenspaces on which individually we examine the effect of G„,G,.....
3 4

respectively.



(VI•4) Computational Method for Calculating the Asymptotes using the

Formulae of this Section.

We will state the method only for equations (VI.4) and (VI.5) which

are for the first order unbounded root loci. For higher order unbounded

root loci the extension is straightforward. Of the two equations (VI.4)

can easily be solved by any linear equation solving method since a

solution is guaranteed. To solve (VI.5) the vectors {a^}p , need to
— k=l

be computed. But these are shown in the proof of Proposition VI.2 to

be the eigenvectors of a matrix 3 £ CP*P: we now illustrate how to

compute the matrix 3. Let

[-X. -iI+Gt , e. ...i,l 1 i i,o :ei?oi • vxi' 0]\ (VI.12)

xn.xnL (m1+p)x(m1+p) m-xm
with UG E<C x •"•; VG S c L and ^ e i+x x (a diagonal
matrix) be the S.V.D. of the matrix [-X. -I+G.ef1^ .. 'efp)]. Then,

i,l li i,o i i,o '

to obtain 3, which is the list of coordinates of the vector G0e;
K 2 i,o

along e± ^...je^ we take a pseudo universe of the matrix of (VI. 12)
to obtain (VI.13)

f00
1,1

= V.

,-1
'1

0
\vS (VI.13)

f, % m_
where f* £G« and j^ € «p are as defined in the proof of

proposition (VI.2). By repeating (VI.13) for k = l,...,p the matrix

(k)
3 is obtained and the c. i's can be computed from the eigenvalues

JL 9-L

6(k) of 3 as

(k) _ (k). _ -
C, - — O /A. - K — J.,...,p,

-27-
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Section VII. A Necessary and Sufficient Condition for the Closed Loop

Exponential Stability of a Strictly Proper Linear Time-Invariant

Control System Under Arbitrarily High Gain Feedback

It is well known (see for e.g. [14]) that a proper, linear time-

invariant control system is exponentially stable for sufficiently high

feedback gain k >_ kQ with the closed loop eigenvalues uniformly

(with k) bounded away from the ju axis for k > k iff
— o

(i) its zeros are in the open left half plane;

(ii) the pole excess of the system is no larger than 2;

(iii) if the pole excess is 2, the intercept of the asymptotes of

the unbounded root loci with the real line is in the open left half

plane.

Using the calculations of the previous sections a similar result

for the exponential stability of linear, time-invariant, multivariable

systems for sufficiently high feedback may be derived under the non-

triviality, non-redundancy and simple structure assumptions. For this

result conditions have to be found so as to exclude third order

unbounded root loci since at least one of the three cube roots of

-kXi 3 will lie in the right half plane for k sufficiently large.

Also, second order unbounded root loci can be tolerated only if the

eigenvalues of G , namely X , are real and positive and the c, „
z 1,^ i,2

associated with them have negative real part. The precise statement

is as follows.

Theorem 2 [High gain stability]

Under the set up of Theorem 1 with Assumptions 0, 2 and 3 of

non-triviality, non-redundancy and simple structure respectively, the

closed loop system of Figure 1 is exponentially stable for all k >, k
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(where k is some finite constant dependent on G(s)) with all the closed

loop eigenvalues uniformly (with k) bounded away from the ja> axis

for k >. k , iff
— o

(i) the McMillan zeros of G(s) are in the open left half plane;

(ii) the non-zero eigenvalues of G are in the open right half plane;

(iii) the eigenvalues of G~ . are real and positive;

^(GjHfKG^)
(iv) the c. 2 associated with each eigenvalue of G„

negative real part; and

(v) mm « (^(G1) + (j^(G, ).
-TiiG^

^ have
IKg^^)

(Here the restriction of G„ is only in the domain) . n

Proof: See Appendix.

Section VIII. Conclusions.

In this paper the tool of the singular value decomposition has

been used to establish a clear geometrical picture and a numerically

sound procedure for computing the asymptotic behavior of the unbounded

root loci; under the assumptions of simple structure, non-triviality

and non-redundancy.

It has been explained how the non-redundancy assumption can be

removed for the purposes of the computation — but the result is

more complicated to understand geometrically. Also, the simple

structure assumption is needed only for the asymptote calculations

of Section VT. For the calculations of asymptotic vaiues a simple null

structure assumption (Assumption 1) suffices.

To show the benefits of this clear understanding two applications

of the calculations have been demonstrated - namely the state feedback

invariance of the asymptotic values of the root loci of (V.6) and the
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necessary and sufficient conditions for exponential stability under

arbitrarily high gain k >_ k have been demonstrated. More applications

of these calculations are clearly possible - in fact one on the order of

a minimal realization of a strictly proper rational transfer function

is stated without proof as a Proposition here in the Conclusion to

indicate the scope of the method.

Proposition VIII.1. (Degree of Minimal realization of a strictly

proper rational transfer function).

Given a strictly proper rational transfer function G(s) £ ]R(s)mXm

with asymptotic behavior given by

Gl G2G(s) =-^ +-^+ ...
s s

with G^G^... € ]R the order of a minimal realization of G(s) is

given by

n =« nz + p(Gx) + p(G2) + ...

where nz = number of McMillan zeros of G(s), p(G ) = dimension

f\CG1), p(G2) = dimension fijG2), and so on, provided G(s) satisfies

assumption 1 (simple null structure). n
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Appendix-Proofs

Proposition II. 1. (Matrix Representation of a| ).
IVS2

Proof: Note that x € S- iff

x - F-,y, for some y € $

Here the elements of y € $ represent the coordinates of x with

respect to the orthonormal basis £?, . a| x is the projection of Ax1 |s^s2

onto S2 = span of (&2 = span of the columns of P«. The orthogonal

projection of C onto S2 is given by P«P2: indeed,

m * *
V5 e s2 £=P2n for some n^ « ;thus P2P25 * P2P2P2n =P2n =?

Consider, now p € sf.

Then PoP2p = ^' slnce P is orthogonal to each column of P.. Now,
m-

Vx € si, 3y e G such that x=P-y thus

A

Hence,

A

S1->S2X ° P2P2Ax =P2P2APly GS2 CA.1)

"ls ^s x = P2z for some z € c (A.2)

Since the columns of P are orthonormal, we obtain from (A.l) and (A.2)

z « P*AP y

where y € C is the coordinate list of x € s with respect to basis
m

g) and z € (C is the coordinate list of A -, x € s_. Hence, P«AP_
-*- S-~^o0 Z 2 1

1 2

is the matrix representation of A c with respect to £>- and $«. H
sl**b2 -1 2

Proposition II.2 [Polynomial equation for the eigenvalues of A
VS2]'

Proof: The proof is immediate from the definition and the fact that

a m-xm- ^ m-xm-

P2Pi ^ ^ an<* ^2^*1 ^ ^ are the matrlx representations of
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e +C and A e ^.o ^^ respect to the bases furnished by the columns
*1 &2 Sl b2

of P1 (in the domain) and the columns of P2 (in the range). «

Proposition II.3 [Number of non-zero eigenvalues of A ]
VS2^ m-Xm

Proof: Since r is the dimension of the range space of P AP G (C ;
M JL

JU

(m^-r) is the dimension of the null space of P«AP- . Thus, there are
m--r

m--r linearly independent vectors {e.}_, , such that
-»- i i—1

AP,e. « (

*1Wi'V i=!»...,Vr-
^ hl xhl

All of these are eigenvectors of P2APi € » associated with the

zero eigenvalue. But, by the assumption that A c .o has simple null
Sl S2

structure (n^-r) is precisely the number of zero eigenvalues of P*AP
^ j.

[there are no generalized eigenvectors associated with the zero

* ml "Seigenvalue]. Also, since P^ <= <E ^ ± ±a non-singular, the number of

eigenvalues (counting multiplicities) is n^ as noted in the comment

following Proposition II.2. Hence, the number of non-zero eigenvalues

Als ->S ls r#,S1 b2

Theorem 1. (Asymptotic values of the unbounded root loci)

Proof: The proof consits of establishing the cardinality of the nth

order unbounded root loci (n = 1,2,...) and establishing that the

1st, 2nd,...,nQth order unbounded root loci are the only unbounded root

loci of the system by a counting argument.

Part I

To show that the number of nth order unbounded root loci is nm where
n

m is the rank of the matrix representation of G
" n

we first establish a lemma.
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Lemma

„nxn
Let Q € <E have simple null structure. Let the S.V.D. of Q be

given by (A.3)

=[«]
ft?' "1 vfl

1 1 1

_o ! o_ VQ*V2 J

(A.3)

0 nXn0 0 nx(n-n0) o n*nn n nx(n-n )with UJ €(J ^5 U^ €<£ Q;VJ e(E Q; v!* e <C Q Then,

nie n (n-n )x(n-n )
the matrix U£ V£ € <E ^ ^ has rank n-n_.

Proof: Q has simple null structure *• &(Q) n -f\(Q) = {6 }. (A.4)
n

Q* Q
Now, for a proof by contradiction, assume U« V2 not full rank;

equivalently

n-n.

But

n-nQ 2 2 n-nQ

K:= V^n € «f[(Q) and 5^e
* n

and by (A.5),

U? K» 6 or equivalent 5e fi-(Q)
n"nQ

(A.6) and (A. 7) contradict (A.4). «

Now, G- has simple null structure and has rank m- hence by

Proposition II.3 G- has m- non-zero eigenvalues and hence there are m-

J*
m-m- m-

unbounded root loci. Also, U? G„V« £ 3R.
m- m—hl.

has rank m.

(A.5)

(A.6)

(A.7)

(from equation (V.13)). Hence by Proposition II.3 the number of non-zero

eigenvalues to G,

TKG^-ntG*)

. l* J.
is m provided Uo Vt is non-singular.-^(G^^-ncG*) 2 2 2

But, this follows from the preceding lemma. Since, there correspond

two second order unbounded root loci to every non-zero eigenvalue of

G, there are 2m? second order unbounded root loci.
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u2V*g vVgtr(m"Vm2)x(m-mi"m2).
2 2 3 z 2 has rank mi (from equation

(V.17)). Also U2 U2 V^VT is non-singular from the preceding lemma

applied to G . Hence by Proposition (II.3) the number of1 ,n.(G1)^-n(G1)
non-zero eigenvalues of G. is m„ and the number of third

3n<G2HH(G*> 3
order unbounded root loci is 3m~ and so on.

Part II. The only unbounded root loci are the 1st, 2nd,...,n th order
o

unbounded root loci.

When the Schur formula is applied repeatedly as discussed in

Sections (V.l) and (V.2) and the limit of the resulting product taken

k 1as k,s •+ «» such that —^- =-— < «; assumption 0 of non-triviality
« o n
s o

guarantees that the matrix I + kG(s) may be entirely decomposed and we

obtain

lim ~7 \V 7 w— ••• r. \ . m 'det(I+kG(s))

o

£ z\
a det —. .det — m det(Y +^-) (A.8)

A o
n |a
of n

°> n
o

where Y, X are the matrix representations of I ** and
^(Sn .^^a _!>

G
n

o

^ A ^ A* . X is full rank (m ) since there are no
1(Gn _1)-'fliGn >

o o

higher order unbounded root loci and Y is full rank from the argument

in Part I of the proof. Thus there are mQ finite values of X satisfying
o no

the equation (A.9)

det(Y+rL) "0; (A.9)
n
o
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Thus the number of solutions in s to the equation in (A.8) are

m_ + 2m. +...+ (n -l)in - of infinite magnitude and n m of finite
-l z o n -± ° on

0 o

magnitude [the nQth roots of the solution to equation (A.9)]. Thus the

number of unbounded solutions (with k) to det(I+kG(s)) = 0 is

m^ + 21^ +...+ n m^ . But, from Part I of proof this is precisely
o

the number obtained by our procedure. Thus, all the unbounded solutions

to

lim det(I+kG(s)) = 0
k-x»

are given by the first, second,...,n th order unbounded root loci.
o

Q.E.D.

Proposition V.2 [Computation of 1st and 2nd order unbounded root loci]

Proof: The key to the proof is a lemma requiring the assumption of

simple null structure.

Lemma

If a matrix Q^C has simple null structure and S.V.D. given by

(A.10)

Q-[ug ug]
0

rQ*

Q*

2 J

(A.10)

nxn nxn-n.

with vj 6C Q; V^j 6c Q; U^
rank of Q; then the non-zero eigenvalues of Q are the zeros of (A.11)

det[ (ufv^fv^ufv^-^fv^-E^] =0 (A.ll)

nxn nxn-n

^ where n is the

Proof: From the lemma in Theorem 1we have U^ V^ €$

invertible. Now, det(XI-Q) = 0 may be written as

det

-r« i »ra"

I z z_<^
= 0;

-37-
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• ^,

and if X $ 0 we have by elementary column operations

det .___,.

<v? <v«
= 0 (A.13)

Equation (A.11) follows readily from the upper triangular system of (A.13)

and the fact that U£ V£ is non-singular. *

The proof of the proposition now follows in straightforward fashion by

inserting the S.V.D.s of G1 and ^G^ into (V.7) and (V.12) respectively,

Proposition V.3 [Feedback invariance of unbounded root loci]

Proof: To establish the equality between the unbounded root loci of

G(s) and GF(s) we establish tbe equality of the maps G ,G9

G.
F F

j. ,•.. and G-,G.

^(G.HfUG*) X 2
GF

.F*v' ^3

* >-n.(G1)^7l(G1)

^(G^f^Y 3^(GP)^(GF*)

Gx is clearly the same as GP and so f^) =-flj(GP) and >fl(G*) ="fl(GP*).
Since G2 = CAB + CBFB and CBFB ^ - 0 [the range space

n(G1)^(G1)
of CBFB is contained in the range space of CB and hence orthogonal to

^(G*)] we have GP
fuc^nccf) °2 ~*

calculation verifies the equality of G.

^(G2)->11(G2)
and so on. n

•n(G1)--^(G1)
A straightforward

and

Proposition VI.1 [Formula for c. - when X - has multiplicity 1].
i,i. i,i

Proof: Equation (VI.4) has a solution for any G e cmXm if the matrix

c~xi,iI+Giiei,o] is ful1 rank- clearly ei 0^ <fV(Ai iI_Gi) since this
would contradict Assumption 3, the simple structure of G at each of its

eigenvalues. Furthermore $£\± ^I-G^ is of dimension (m-1) since

Xi,l has ^^ItlpHcity 1 as an eigenvalue of G_. Hence the matrix

[-X ..I+G 'e. ] has rank m.
i,J- 1| i,o
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Since the ^[-^I-K^Je,.^] -sp (i'°) Cd^1 we notice that
any two solutions to (VI.4) yield the same value of c . H

i>-L

Proposition VI.2 [Formula for c - when X - has multiplicity p].

Proof: By the simple structure assumption and the same argument as in

Proposition VI.1 above we have

Cm= <l(-XiaI-W1) © sp(e^) © ... © sp(e^) (A.14)
Then, by (A.14) we may write

2ei,o "fa 6Jl,kei,o +(Xi,lI-Gl)fi,l k-l---P (A.15)

for some f^> €cm and {g£ ^^ C(J. Let B€(EpXp denote the matrix
°f *eak*Jl=l,...,p and *- *k=l the eiSenvecto*s of B.(QEP) with

k=l,...,p

corresponding eigenvalues {6.}? j- Then, we have

and

Let

"' r
e(D e(P)
ei,o ••' ei,o

e(l) e(p)
i,o i,o 6+ <-X± jTH^)

*i,o
(P)

... e.
i,o

+ <-Ai,lI+Gl>

.(k) e(D e(P>
i,o i,o

f(D f(p)
ri,l *•• ri,l

_j

(k)

f(D £(P)
ri,l •'• ri,l
LI I.

a(k) = e(k)
- i,l

6. a
k-

(k)

we can then write (A.15) as

with c.(k) = 6(k)/X. -
i,l i,l

'i.l

.00
"1,1

=-i- V a(k)G e()l)
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[In the event that £ does not have a complete set of eigenvectors,

perturb the matrix £ by an arbitrarily small amount so that it has

simple structure].

This establishes the first part of proposition (VI.2). The second part

follows immediately since the null space of [-X I+G [£ c/k^e^] is
r/.(A)0| ' i*=i i,Q

1»°\\P (k)
I/ for any a ^ 8 . n

0 /J 1=1 " P

Theorem 2 [High gain stability]

Proof: Sufficiency

Condition (i) guarantees that for k sufficient large the finite

root loci lie in the open left half plane (neighborhoods of the McMillan

zeros). Condition (ii) guarantees that the first order unbounded root

loci lie in the open left half plane for k sufficiently large.

Conditions (iii) and Civ) together guarantee that the second order unbounded

root loci (if any) lie in the open left half plane since by equation (VI.6)

Si,2 ",/=k^ +ci,2 +0(^> <VI-6>
We show that condition (v) guarantees non-existence of third order

unbounded root loci by showing ^2*G2V2 to be full rank. But this is
essentially obvious since

mm - fl(Gl) +<Mg2|̂ (Gi)) ~cf(*») -iJVfoy +if<«.(o2|̂ v,
1* I* I m_1IL|=> sp(U2 )«sp(U2 G2Vp =it ^ .

It remains to be shown that the closed loop eigenvalues are uniformly

bounded away from the jo) axis for all k >_ k . To shown, this we use
— o

the asymptotic series of equation (VI.1). If {zjj , c C is the set

of intercepts of the asymptotes of the second order unbounded root loci,

choose
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1 ^o
e=+ 2" max real parttCz^^, {c± 2\=1^*

By the hypothesis of the theorem e < 0. We will establish the

existence of k such that the closed loop eigenvalues have their real

part less than or equal to e, for all k >_ k . Clearly, J\a < » such

that the p bounded closed loop eigenvalues {s. (k)}p - are such that

|s. (k)-z. | < e Vk >. k-
i,o i' — 1

Vi = 1,...,p.

Also from the asymptotic series for the first order unbounded root

loci, we have

si,i(k) - -^i.i+ ci,i+ °<b i =1 -i
with Re(X± 1) <0 for i= l,...,m.. Hence 3k2 <°° suctl tliat the first

order unbounded root loci have their real parts less than or equal to

e for all k ^ k«. From the asymptotic series for the second order

unbounded root loci, we have

Si,2(k) =̂ 1,2 +ci,2 +0(^) i ' 1 *2
with /-kX _ purely imaginary for i - l,...,nu. Hence, jk. < » such

that

Re(s± 2(k)-ci 2) < e Vk >, by

We then conclude that for all k > k = max(k- ,k.,k„) the closed loop
= o 12 3

eigenvalues have their real part less than or equal to e. This

completes the sufficiency.

Necessity

The necessity of conditions (ii) and (v) is obvious from the

discussion so far. The hypothesis that the closed loop eigenvalues are

uniformly bounded away from the jw axis for all k >_ k necessitates
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«„

that the McMillan zeros of G(s) lie in the open left half plane.

Condition (iii) is necessary since one of the two square roots of

^~X±92 has strictly positive real part unless X is real and positive,

Further, from the asymptotic series for the second order unbounded

root loci,

Si,2(k) "yCkV "ci,2 "°<T> 1-1.....V
A

the hypothesis that the closed loop eigenvalues are uniformly bounded

away from the jw axis for all k > k and the fact that /3eX is
= o i,2

purely imaginary we obtain the necessity of condition (iv).

This completes the necessity. Q.E.D.
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Figure 1. System configuration,
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Figure 2. Structure of a linear map.
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Figure 3. Depiction of an orthonormally coordinatized version of
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c c as a map A : <E -> (C .
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Figure 4. Block diagram for the asymptotic behavior of the system of
example 2 showing the triviality of u and y (=y +y ).
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Figure 5a. Block diagram of asymptotic behavior of system violating the
simple null structure assumption.
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(b)

Figure 5b. The same system as in Figure 5a with the outputs relabelled
before closing loops.
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Figure 6. Asymptotic block diagram of a system violating the
redundancy assumption, (the loop shown dotted is redundant)
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Figure 7. Identification of the subspaces associated with the second and
third order unbounded root loci.
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