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ABSTRACT

In this paper the asymptotic behavior of the closed-loop eigenvalues
(root loci) of a strictly proper linear time-invariant control system as
the loop gain goes to « is studied. Basic properties of the singular .
value decomposition are introduéed and then used to obtain formulae
for the asymptotic values, as the loop gain goes to =, of the unbounded
(with loop gain) root loci. The geometric interpretation of these
formulae is developed and a numerically sound way of computing them is
proposed. Perturbation techniques are used under mild
assumptions to obtain the complete asymptotes of the unbounded root loci.
Usiﬁg these calculations necessary and sufficient conditions for the
cloéed loop exponential stability of a strictly proper linear time-
invariant system under arbitrarily high feedback gain are derived. This
is the generalization to multi-input, multi-output of a well-known result

for single input, single output systems.
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Section I. Introduction

It is well known that high loop gain in a feedback control system
enhances the desirable effects of feedback, for instance, desensitization
and disturbance attenuation, etc. see, for example, Desoer and Wang [13].
It is also well-known that practical control systems are driven to
instability by high gain feedback. With this design philosophy in mind
this paper presents a new geometric way of comprehending and a numerically
stable way of computing the asymptotic behavior of unbounded root loci
of a strictly proper, linear, time-invariant feedback control system
shown in Figure 1 as the loop gain + « (k»=),

The asymptotic behaviof of unbounded root loci has been studied
by Kouvaritakis and Shaked [1], Kouvaritakis [2], Kouvaritakis and
Edmunds [8] and Owens [3,4,5] but the geometric interpretation of their
results is not clear. Also, their assumptions are not explicit (see for
e.g. [5]) and there are some formulae for the asymptotes in [3] and
in [8] which we do not understand.

The present paper recognizes that the computation of the asymptotic
values of the unbounded root loci is essentially a process of identifying
subspaces in the input space (R™) and the output space (R™) where the
effects of the O(k) (oxder (k)),0(/k), O(Q/l-c),... unbounded root loci
dominate asymptotically. This suggests naturally the use of the
numerically stable tool — the singular value decomposition (see for
instance Golub and Reinsch [6] and Stewart [7]) for the computation.

We then use standard perturbation calculations formalized for
instance in Dieudonné [10] and Kato [11] to compﬁte the asymptotes of

the unbounded root loci.
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As 1illustrations of the power of the clear geometric picture
of the root locus behavior we present two applications of the calculation:
(1) State feedback invariance of the asymptotic values of the root loci
in‘the instance that G(s) has a minimal realization (A,B,C).
(ii) A necessary and sufficient condition for the stability of the
feedback control system of Figure 1 for arbitrarily high gain k z_ko.
This is the multivariable generalization of a well known result for
single input, single output systems (see, for instance, Ogata [14]).
More applications are clearly possible and one of them, namely a formula
for establishing the degree of a minimal realization of a rationmal
transfer function G(s) is stated without proof in the Conclusions
(Sec. VIII). The organization of the paper is as follows.
Section I. The present Introduction.
Section II. Mathematical Preliminaries.
Section III. System Description and Assumptions.
Section IV. Summary of Results.
Section V. Asymptotic Root Loci-Asymptotic Values.
Section VI. Calculations of the Asymptotes of the Unbounded Root Loci.
Section VII. A necessary and sufficient condition for the closed loop

ekponential stability of a stricfly proper linear time
invariant system under arbitrarily high gain.

Section VIII. Conclusions.

Appendix. Proofs.



Section II. Mathematical Preliminaries

In this section we state some results and some propositions which

we will use repeatedly in the paper.

II.1. The Singular Value Decomposition (S.V.D.) (see for e.g. [6])

A matrix A € ¢&® may be decomposed as

|
10 |v
A= [Uli U2] -S| -2 (11.1)
0 :0 V2

vhere U = [U,1U,] € ¢™™ with U, € ¢ 5 U, € ¢ @) g

Vs [vlgvzl € ¢™T , v, € (@) e unitary matrices and £, € R *

1 +

is a matrix of positive real numbers and r is the rank of the matrix A.
x

The columns of Vl’ Ul represents orthonormal bases for the range

spaces of A*, A respectively and the columns of V2 R U2 represent
orthonormal basis for the null spaces of A, A* respectively. [A* € ¢
stands for the conjugate transpose of A]. The structure of the linear

map A may be viewed as in Figure 1.

II.2. Restriction of a Linear Map in Domain and Range.

Definition 1. Given a linear map A from ¢” to ¢" and two subspaces

Sl’ S2 of ¢ define the restriction of A to S, in the domain and S, in

1

the range to be the linear map which associates with x € Sl C c® the

orthogonal projection of Ax onto S, C ¢”. The notation for the

2

restricted linear mapis A 31 +Sz .

Comment. If Sl and S2 both have dimension m, Alsl +82 which is a linear
X

map from S, C " to S, C ¢" can be represented by a matrix A € ¢

1

which gives a description of the action of AIS »g_once suitable bases
172

-3-
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have been found for Sl and SZ' This is shown in Figure 2. 1In the

instance that the bases are orthonormal a particularly simple formula

for A accrues. This is proved in proposition II.1l.

Proposition II.l. (Matrix Representation of A )

S.=+S
X 172

Let the columns of P, € ¢ form an orthonormal basis Bl for a

1
mX
subspace Sl C ¢™ and the colums of P, € ¢ ! form an orthonormal basis

2

62 for a subspace S, C c™ and the map A: c® + ¢® be linear. Then the

2

matrix representation of A S.+§ with respect to the basis @;1 in the

172, m, X

1

. e . ot
domain and 62 in the range is P,AP, € ¢

II.3. Eigenvalues of the Restriction of a Linear Map in Domain and Range

Definition 2. If S

1° 82 are subspaces of ¢ of dimension m, 3 AEC is

o =
an eigenvalue of A g »g if ax € ¢ such that Alsl_)s X = )\Ilsl_>s X,

172 2 2

(T denotes the restriction of the identity map to Sl in the domain

S 1+SZ

and 82 in the range).

Proposition II.2. [Polynomial equation for the eigenvalues of A 1.

Sl-rs2

Let the notation of Proposition II.1 stand. Then, the eigenvalues

of A are the zeros of the polynomial
5175,
det [AP P -P AP ] = 0 I.2
et[AP,P)-P)AP, ] (11.2)
‘ *

Comment. If PzPl is of rank n, [i.e. there is no vector in Sl which is

m,
orthogonal to SZ] then the polynomial of (II.2) has leading term A 1

so that there are ml non-zero values of A satisfying (II.2).

We define what we mean by simple null structure of a map A S g °
172

Unlike the previous two definitions which were basis free we use

orthonornal bases for this definition.



Definition 3. With the notation of Proposition II.l; A,S S is said
172
to have simple null structure if ﬁ non zero x € G:ml such that

P*AP # 0 but (P*AP )2 )
X u X = .
2701 m, 2% 1 m,

Comments. (1) The condition above means that there are no generalized

eigenvectors associated with A = 0 for the map A

5178,
(2) 1f AIS +§ does not have simple null structure, then, considering the
172
*
Jordan form of the matrix representation P,AP. we see that there are

271
arbitrarily small perturbationsof A which will give to the perturbed A

a simple null structure.
We use the definition of simple null structure to equate the number

* %
to the rank of P,AP. when P.P. has

of non zero eigenvalues of A oAPy oP1

Sl+82

rank m, .

Proposition II.3. (Number of non zero eigenvalues of AIS S ).
172

Let the notation of proposition (II.1l) hold. Assume that

m. X

X .
% %
P2P1 € cml 1 is non singular and that P2AP1 ee¢!? has rank r. Then,
if AIS 8 has simple null structure the number of non zero eigenvalues
172
of A, is r. n
| 5175,

A similar definition can be made for simple structure associated

with an eigenvalue of A|Sl+52. |
Definition 4. With the notation of Proposition II.1, AIS ,g_ 1is said to
1

2
have simple structure associated with A € €, an eigenvalue of A|S

»>S.?
172
if the map (AI—A)I has simple null structure.
5175, |
Comment. With the notation of Proposition II.1; A[S 3 is said to have
1,72 m
simple structure associated with an eigenvalue A if ﬁ nonzero x € ¢ 1

h that (A\P.P.-P.AP.)x # 6 but (AP.
such that ( 9P P AP )x n ut 2P1

* 2
-PAP )" x =06 .
1 271 m1



IT.4. Adjoint of the Restriction of a Linear Map in Domain and Range

Definition 5. With the notation of Definition 1, the adjoint of

A~

A = A is defined to be the linear map A* : ¢" > ¢" and
5175, 82751

is denoted by Ax,
The following proposition is obvious.

Proposition II.4 [Matrix representation of A%, ]

With the notation of Proposition II.1 the matrix representation of
A* with respect to basis 152 in the domain and 451 in the range is
X
* %
PlA P2 € le ml. R

Section III. System Description and Assumptions.

The system under study is the system of Figure 3 where G(s) is the
mXm transfer function matrix of a linear time-invariant, strictly proper

control system with Taylor expansion about s = » given by (III.1).

G1 G2 G3
G(s) ==+ S+ —=+ ... ¥|s| > M (I11.1)
s 2 3
s s
with Gl’GZ"" € ]Rme; k is real and positive. For instance G(s) can be

a strictly proper rational transfer function matrix i.e. G(s) € IR(s)mxm.
If G(s) is the transfer function matrix of a system with state space
representation (A,B,C) then the Neumann series for G(s) converges

¥|s| > Ixmax(A)l, the spectral radius of A, and we have

_CB, caB

G1 = CB, G2 = CAB, etc. are referred to in the literature as the Markov
parameters of the system tl].

We study the closed loop poles of the system of Figure 3 as k + =,
The motivation for this is that G(s) represents the composition of a linear
time invariant plant and a linear time-invariant controller and k » «

represents high gain feedback [with gains tending to =] in all control

—-6-



channels. The curves traced by closed~loop eigenvalues as a function of

k are referred to as the multivariable root loci. As k + = some of

the root loci tend to finite points in the complex plane located at
the (McMillan) zeros of the system [see for e.g., 1,2], the others go

to @ as k + » and are referred to as the unbounded root loci of the

system. We classify the unbounded root loci by the velocity (with k)

with which they tend to =.
Definition. An unbounded multivariable root locus sn(k) is said to be

an nth order unbounded root locus (n=1,2,3,...) if asymptotically

s (k) = un(k)l/ 2 ook (I11.3)

where lunl < = and 0(k’) is a term of order k°.

We now state the assumptions and the results of the paper.

Assumption 0. (Non triviality assumption).

1= G H é =G N
lcepne) T 3 3l

; and so on.

Assume; either

a) Output nontriviality
1 A L A
R" = Rep @ REY @ RE + ... (111.4)

or

b) Input nontriviality

R" = ﬁ_(ci)é ﬁ(é:)é ﬁ(c‘;’;) + ... (III.5)

Comments. (1) (III.4) guarantees that no output (or linear combination
thereof) is trivial i.e., identically zero and (III.5) guarantees that
no input (or linear combination thereof) is trivial i.e., the output is

independent of the value of that particular linear combination of inputs.



For an example of a system violating this assumption, consider

Example 1
0 1 0 0 0O
G1 =10 1 O G2 =10 0 1 Gk =0 k>3
0 0 O 0 0 1

The block diagram for the system is shown'in Figure 4. Note that
¥y, = y;175 and that u, is useless. Also note that &{(Gl)-+ 6{(G2)
1 0
= sp (l) s (1) 5 IR3.
0 1
(2) Only output nontriviality or input nontriviality needs to be

assumed since one implies the other.

Assumption 1. (Simple Null Structure Assumption).

-~ ~

G,,G, =G s G, :=
P2 2 nepane) T3

have simple null structure.

» and so on

G ,
3NEH+NE)

Comment: (1) The assumption 1 of simple null structure is generic
(i.e., given arbitrary matrices Gl’GZ'GS"'° € nfmqn the assumption is
satisfied almost surely). However, it is more than just a technical
condition required for the asymptotic calculations. We will at this
point give an example of systems that violate our simple null structure

assumption to illustrate that the assumption makes engineering sense.

Example 2.

_10 0 _10 1 -
Gl = [; é] G2 = [; 0 Gk 0 k>3

Notice that Gl does not have simple null structure. Figure 5a is a block
diagram of the system (for large k). Notice, that a more desirable
control system is formed by relabelling the outputs of G(s) before
closing the feedback loops as is shown in Figure 5b. (It is obvious that

the wrong output was being used for control in Figure 5a). Notice that



/

the unbounded root loci of Figure 5a are of the O(k2 3) so that they

are not of the 1lst, 2nd,...,nth order defined above and those of

Figure (5b) are of the 1st and 2nd order.

Assumption 2. [Non Redundancy Assumption].

76, ) #¢and G #0=C :=6 . 2 # 0
o €707 e el

for k = 1,2,3,...

Comment. The non-redundancy assumption is clearly generic; also it
makes engineering sense in that it rules out redundant use of integrators

in design as is illustrated in the example below (due to Owens [5]).

Example 3.

{2z o _fo 1 _lo o

Notice that “JU(G,) # O and éz s= = 0. A block diagram

Gz l -~ ak
MU +TUED
of the system for large k is shown in Figure 6a. We notice that the

integrators associated with G, are redundant for large k; since they

2

are dominated by the single integrator in G Figure 6b shows the

1.

system with G2 set to 0. There are two non-interacting control loop

with 1st and 3rd order unbounded root locus behavior.

Assumption 3. (Simple Structure Assumption).

G,,G, := G , G, =G R X
2lineprned” 3 3@ n@E)

’ etc.
have simple structure associated with all of their eigenvalues.
Comment: The simple structure assumption is needed to make asymptotic estimates
of the O(ko) terms in equation (III.3) for the nth order unbounded root

loci (n=1,2,3,...). It is not needed for the calculation of the asymptotic

values of the unbounded root loci. This assumption is purely technical.

Note that assumption 3 includes assumption 1.

-9~



Section IV. Summary of Results

Under Assumptions 0, 1 and 2, the simple null structure and non-
redundancy assumptions of Section III we prove in Section V that the
only unbounded root loci of the system of Figure 3 are the 1st,...,nth

order unbounded root loci and asymptotic formulae for them are given by

1/n
= - + c. + 0(k .
§,(k) =g/ Mokt Cein (&™) '(IV 1)
where A, 1is the eigenvalue of G = for n = 1,2,3,...
i,n n

G
n ~ A*
NG, P> NE )
Under the simple structure assumption 3 of Section III we give formulae
for the ci,n in Section VI. Means of computing the Ai,n and ci,n are also
described.
Using these calculations a necessary and sufficient condition for

the exponential stability of the system of Figure 3 for arbitrarily large

k is derived in Section VII.

Section V. Unbounded Root Loci-Asymptotic Values

In this section we establish formulae and methods for computing
the values of the unbounded root loci as k + =,

For the values of the finite root loci at k = = the following
procedure is well-known (see for e.g., [8]): The closed loop transfer
function of the system shown in Fig. 3 is kG(s)[I+kG(s)]-1. A right

coprime factorization of G(s) of the form
G(s) = N_(s)D_(s) L (v.1)
r r" *

~ yields that the closed loop eigenvalues of the system are the zeros

D_(s)
of det[Nr(s) + i; ]. The finite zeros of this polynomial at k = = are
the zeros of
det Nr(s) =0 (v.2)

which are the zeros of G(s).

~10-



To obtain the unbounded root loci of the system notice that for k
sufficiently large the zeros of det(I+kG(s)) of unbounded magnitude
(with k) are closed loop eigenvalues of the system. To obtain the
first, second;...,nth order unbounded root loci of the system we derive

the asymptotic values of s satisfying

det(I+kG(s)) =0 (V.3)

2 n

s s )
as k +=«sguch that~E = Al; * = Az;...;1:-= An’ respectively, where the

Ai's are finite and nonzero.

v.1l. Asymptotic values of the first order unbounded root loci

Using (III.1) we note that

G
lim . det(I+kG(s)) = det(I+—3)
A (v.4)
k,s% 1
k/s=1/k1
Then a first order root locus will exist provided a)\l # 0 such that
G
det(I-bil) = 0. Let Gl have the S.V.D. given by (V.5)
1 1 1!
ol o']v T 4 0
i .
6, = [huly bt L ot (v.5)
1 L2 ; 1% ;
0, 0]V, 0 , 0
mX mx(m-m, ) mx mX (m-m, )
WithUlEIle,U]'eR ml,vlem ml;vlem L
1 2 1 2
Then, we have (using III.1l) o ' )
1 1 1%
IT/A 1 0}V
1 11! 1
lin  det(I+kG(s)) = det | I + k[U] U3] . zll=0
K, 50 0o o_lv;
k/s=l/Al ' g

*
Premultiplying by the unitary matrix U1 and post multiplying by the

unitary matrix Vl, we obtain

=11~



* 1,, ,.1%x1
Uivi"zl“l- u'v,

det L =0 (V.6)
1% 1 1 * 1
Uzvi ;“:zlvz

Proposition V.1 now follows immediately by comparing (V.4) and (V.6).

Proposition V.1l. Given the Taylor expansion (III.l) of G(s) and the

S.V.D. of G1 given by (V.5) the values of Al

the negatives of the non-zero eigenvalues A 1 of Gl. H
1’

We conclude that the first order unbounded root loci of the system of

for which (V.6) holds are

Figure 1 are of the form

- _ 0
si,l = kxi,l + 0(k") (v.7)

where each Ai,l is a non-zero eigenvalue of Gl. Under the simple null
structure assumption (Assumption 1) it wili be shown in the proof of
Theorem 1 that the number of non-zero kl satisfying (V.6) is m, , where
n, is the rank of Gl’ We assume m, < m.
V.2. Asymptotic values of the secoﬁd order unbounded root loci

G G

Recalling (III.1l) we now label —%-+'—%-+ eses as Pl(s) (which is

S s

06359).' Then, we have

s 1% 1,k .1, 1%
[-Ul (I+kP1(s))Vl + = zl: Ui (I-I-kPl(s))V‘.ZL
det (I+kG(s)) = det ;
' 1% 1 - 1
LUZ (I+kP1(s))V1 ( U2 (I+kP1(s))V2
(v.8)

1f G2 = 0 we skip this step and proceed to the next step for the
computation of the third order unbounded root loci as detailed in

Section (V.3). Using the Schur formula for the determinants of

partitioned matrices in (V.8) we have, either

det[Ui*(IﬂcPl(s)Vi +§ (zi)] =0 (V.9)

~-12-



or

1% 1 * 1. 1% 1 k 1,-1
det[U, (T+P, (s))V, + Uy (TP, ())V [0 (THP, ()77 + £ 5717
%
u)" (R ())V51 = 0 (v.10)
We now examine (V.9) as k,s both +~ = with k/s2 = 1/X2 where Az is a
non-zero constant: then Pl(s) > GZ/A2 and k/s = 3/12, thus
1% k 1, * 1
det[U} (1+kp, (V] + £ £l - det[U7" (146, /2,) VL + sEL/A, ]
m
1
= (S= 1

Since Zi is nonsingular by construction (see (V.5)), the left hand side
of (V.9) goes to infinity along the 2nd order root loci. In other words,
the second order root loci are specified exclusively by (V.10). Now
using the calculation above, the inverse in the second term of (V.10)
becomes as k,s + » with k/s2 = 1/12,

% ept

and the second term is easily seen to be 0(1/s); whereas the first

term becomes
1*
U, (I+G2/A2)V;

Hence, in the limit (V.10) becomes

1% 1 * _
dec U}V + " u; czv;] = 0. (v.11)
*
By our assumption 2, (non redundancy), we have G2 #0 ='U; G2V% # 0 so

that equation (V.1ll) is indeed a polynomial equation in A From

2°

Proposition (II.2) it follows that the values of A, satisfying (V.1l)

2

are the negatives of the non-zero eigenvalues of G . Thus,

2 *
UGS

the second order unbounded root loci are of the form

-13-



Sp,0 = A L + 0. (V.12)

where each A is a non-zero eigenvalue of G

* L
1.2 2| ey 1))
This procedure is in the spirit of the singular perturbations

approach (see for e.g. Desoer and Shensa [7]) in the following sense:
to compute the second order unbounded root loci which tend to = at a
lower velocity than the first order unbounded root loci we renormalize
the s variable sd as to place at = the first order unbounded root loci

and then examine the (slower) second order unbounded root loci.

(m-m. ) % (m-m. )
*
Let the S5.V.D. of U1 G Vl ER "1 be given by

2 272
2 2%
I,V 0} VvV
1% o2 11 _] 1
UZ ZV% - [Ul U%] ' J 2% V.13
.0 0 v,
(m~ )Xm (m~-m, ) (m~ -m, - (m-m. ) Xm
ﬁthUiER "1 Ug ! ,VielR 1 2,
(w-m, ) % (w-m; -m, )
V§ € R . It is shown in the proof of Theorem 1 that

under the simple null structure assumption on G the

2 %
716> TG

number of non-zero solutions to (V.12) is mz, the rank of U% 2Vl

For each non-zero solution Ai 2 equation (V.12) gives two
>

asymptotic root loci corresponding to the two branches of the square

root. In order to have third order root loci we assume m1 + m2 < m.

We explain at this point what could happen in the absence of the
non-redundancy assumption (Assumption 2). If we hadG2 # 0, U, #0

1* v1 k 1
and 02 G2 7 = 0 then as k,s + « such that = "3 < @ we would obtain from

2
equation (V.10)
det(U3 V) = 0

which is false as is seen in the proof of Thereom 1. Thus none of the

14—



solutions of equation (V.15) are second order unbounded root loci.

If we do take the limit of equation (V.10) as k,s - » such that

l£-= l-< ® we obtain
s3 s
* * 1*  + _
det [T, V}"“’(U; G3"%*'“2 €616,7)] = 0
-1
where GI is the pseudo inverse of G1 given by ViZi U%. Thus, there

are now third order unbounded root loci in the solution of equation
(v.10) in the absence -of Assumption 2 (non-redundancy).

Thus, assumption 2 yields us at the end of the procedure a bona fide
polynomial equation in 12 guaranteeing the existence of second order
unbounded root loci. In the absence of assumption 2 the calculation can
still be made and the procedure can be suitably modified as suggested
above. Notice, however, the redundancy of the integrators associated
with Gz which is reflected in the fact that there are no second order

unbounded root loci.

V.3. Asymptotic values of the third order unbounded root loci

G G
Mimicking the previous section we label -%-+-—%-+ ese as Pz(s)
s S s
(which is 06;5)). Then using (V.13), the S.V.D. of U% G2V§ in

s
equation (V.l1ll) we have

, Ui*U;*(Iﬂd':‘z(s))Vi'Vi + k}:i /323 Ui*U;*(I-i-sz(s))Vi"lg]

det (V.14)

U5 0 T+, () VAV : 030" T+, (s) )vJZng_J

Using the Schur formula for equation (V.14); and identifying the
equation corresponding to the higher order (order > 2) unbounded root
loci and partially simplif&ing it as k,s > = such that-k% < o for some

)
i = 3,4,

-15-



det [Ui*Ulz'*(I+kP2(s))v‘;V§] =0 (V.15)

Taking limits as k,s -+ « such that l%-= %;-equation (V.15) yields
s 3

2 k12 ok k. 12]
det| U5 "0 v’l'v2 vy G3VlV =0 (V.16)
X

3

% 1%
By the non-redundancy assumption G3 #0 =’U§ U; G3V§V§ # 0, so that
equation (V.16) is indeed a polynomial equation in AB.
It follows from Proposition (II.l) that the ks satisfying

equation (V.16) are the negatives of the non-zero eigenvalues of

« In this step the my first order umbounded root

G
M@+ NED

loci and the 2m2 second order unbounded root loci are driven to = to

study the third order unbounded root loci of the form

— %r:————- 0
51,3 = k)\i,s + O(k )o

whereas each Ai 3 is a non-zero eigenvalue of G
. ]

~ A% °
>IN @+ e
(m—m -m )X(m -m)
Let the S.V.D. of Ug G V1V2 €ER 1 be given by
3! 3%
;0 |V
2% 1% 1 2 _ 3 H 1
Uy U G,V,V, = [U ] == 3% (v.17)
0 ;0 |V
(m— )xm, (m-m, -m,) x( (m-m, ~m, ) xm
w1thU1€]R i ,U:;EIR ™ mom) ~m)=mg) ViGIR b ) 3,
(mm, -m,) % (w-m; -m,-m,)
V2 € R £ N . Then, under the simple null structure

assumption on Gl’ =3 Gz;
"I’L(G )+“’L(G ) “YL(G )->“ﬂ(c )

in the proof of Theorem 1 that there are m, non-zero solutions to (Vv.16)

it is shown

%
where m3 is the rank of U% U% C3V2V2. Under the non-redundancy

assumption m; +m, < m,G, #0=>m, >1.

3
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V.4,

Higher order unbounded root loeci

These are computed in a manner exactly as described above for

the first, second, and third order umbounded root loci.

ends at the noth order unbounded root loci provided that

zero matrix; that is G

eigenvalues.

m1+m2+. . .-I-mn

n Ak
0 %(éno_1>+ e, o

= m so that the entire

The procedure
n°+1
Uy

has no zero

is the

-~

G
n

Assumption 0 guarantees that the procedure ends and that

input (and output space) has been de-

composed as the orthogonal direct sum of subspaces associated

with the lst,an,...,néth order root

section V.5. Then, the total number

V.5. Interpretation of the results

loci as will be explicated in

of unbounded root loci is

so far

The usefulness of the S.V.D. in
values of the unbounded root loci at

the orthogonal bases it provides for

extracting the equations for the
k = » stems from the fact that

the null space of a linear map

and its adjoint give an explicit representation of the restriction

of a linear map in its domain and range.

Equation (V.6) for the first order umbounded root loeci is an

equation for computing the negatives

of the eigenvalues of Gl.

Equation (V.11) for the second order unbounded root loci is an equation

for computing the negatives of the eigenvalues of

A

*
G2 =G, % using orthonormal basis for the Vfl(Gl) and "V?(Gl)
N6 +1(E)) |
mX (m~-m, ) mx (m-m, )
furnished by the columns of U']z' €ER 1 and V]2' €ER "1

respectively. Equation (V.16) for the third order unbounded root

loci is an equation for computing the negatives of the eigenvalues

-17-



~ A*
of G . Notice that the °ﬂ£G2), 44(G2) are subspaces

" atk
3@+

%*
of the “ﬂ(Gl), 41(91) respectively. The bases used for the representation

of this restriction of G3 are the orthonormal columns of V%V%
(m.-ml--m2 of :them) in the domain and the orthonormal columms of
U;Ug (m—ml-m2 of them) in the range. The interpretation for the
higher order unbounded root loci follows naturally.

Roughly speaking, the procedure consits of identifying in turn
subspaces of the input space (R™ and outﬁut space (R™) where the
effects of the first order, second order,... unbounded root loci
dominate. Thus d{(vi), Gk(vé;vi),dlgv;vgvi),... are subspaces of the
input space where the effects of the lst order, 2nd order, 3rd order,...

wnbounded root loci respectively dominate and the ﬂ(Ui), ﬁ(UJZ'Ui),

&KﬁU;UgUi) are subspaces of the output space where the lst order,
2nd order, 3rd order,... unbounded root loci respectively dominate.
The identification procedure is demonstrated pictorially for the second
order and the third order unbounded root loci in Fig. 7. Assumption
0 guarantees that the entire input and output space can be written as
the orthogonal direct sum of subspaces associated with the
1st, 2nd,...,noth o;der unbounded root loci. We now state the main
result of this section.
Theorem 1. (Asymptotic values of the unbounded root loci)

Given a strictly proper linear time-invariant control system with

Taylor series expansion about s = « given by

6 G
) =L +-2+ ... ' (III.1)
8

where G, ,G € g™® satisfy:

1, 2,.0.

-18~



(1) Assumption (0) - Non-triviality.
(ii) Assumption (1) - Simple Null Structure

(1ii) Assumption (2) - Non-redundancy

The nth order unbounded root loci of the system of Fig. 3 comsist of

collections of n branches given by

= n /B 0 - .
Si’n - i’n + 0(1(. ) n - 1,2,3,...,110
where Ai n is a non-zero eigenvalue of 6 = G . ak
’ B RE _pnee )

and ‘ﬂ(Gn ) = 0.
o
The number of ath order root loci is nmn where mn is the rank of

the matrix representation of G

@ e )

Furthermore the lst, 2nd,...,noth order unbounded root loci are the

only unbounded root loci of the system. B

Proof: See Appendix.

V.6. Ways of/cquuting the asymptotic values of the unbounded root loci

Under the assumption of simple null structure for Gl,éz,és,etc...
the amount of computation required to solve equatiomns (V.6), (V.1ll)
and (V.16) can be reduced. The motivation for doing this is that the
number of operations involved in solving a generalized eigenvalue problem
is the order of the cube of the size of the matrix. Clearly, if a
generalized eigenvalue problem is known to have a certain number of zero
solutions, computational effort is wasted in computing them. Also, the
accuracy of compﬁtation is empirically observed to be higher with smaller
dimensional matrices. From the proof of Theorem 1, we notice that
equation (V.6) is an eigenvalue problem in ngnnn with M nbn—zero

(m-m, ) X (m-m, )

solutions, (V.1l) is an eigenvalue problem in R with m,

non—-zero solutions and so on. Our goal then is to replace (V.6),
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(V.11), (V.16) and subsequent equations for higher order unbounded root
) mz"mz 33

loci by eigenvalue problems in R s R and so on.
We carry out this program in detail for the first and second order
unbounded root loci. The extension to higher order unbounded root
loci is essentially obvious.

Recalling the S.V.D.s of G1 and U% 2V§ from equation (V.5) and
(V.13) respectively we state the reduced dimension versions of (V.6)
and (V.11l) in Proposition V.2.

Proposition (V.2) [Computation of lst and 2nd order unbounded root loci]

With the notation and assumptions of Theorem 1 the non-zero solutions
to equation (V.6) are the solutions of the generalized eigenvalue problem

of (V.18) in matrices of dimension my
det [u (U "V} ul*vl(ul* ) ek = o, (v.18)

Similarly, the non-zero solutions to equation (V.12) are the solution’
of the generalized eigenvalue problem of (V.19) in matrices of dimension

m,

det[u(U (ul vl)v2 2*(01 )vi[uﬁ*(u%*v%)vi]"—ug*

W, vy)vi)-52] = (V.19)

Proof: See Appendix

X
Comment: Since the matrices 21 € E:ﬁ'ml and Ei

invertible the generalized eigenvalue problems of (V.18) and (V.19)

2Ty

€ R

can be restated as ordinary eigenvalue problems.

V.7. State Feedback Invariance of the Asymptotic Values of the Unbounded

Root Loci System Representation (A,B,C)

Let the linear time invariant system represented by the transfer

function G(s) have a minimal state space realization (A,B,C) with

-20-



A E ]Ran; B € IRnxm; CE mmxn then the Markov parameters are
G1 = CB, G2 = CAB, G3 = CAZB, and so on, we now move the invariance
of the asymptotic values as k + = of the unbounded root loeci under
state feedback u = -Fx with F € Eﬂ“n, under the assumptions 0,1 and 2
of non-triviality, simple null structure and non-redundancy. This
property of the asymptotic values at k = » of the unbounded root loci
is reminiscent of the identical property for the McMillan zeros of the
system, which is well known.

Let GF(s) denote the transfer function of the system (A,B,C)
with state-feedback u = -Fx. Let the Markov parameters of the system

with feedback be

F_ . F
G, = CB; G,

F

= C(a+BF)B; G = C(A+BF) 2B

and so on. Then, we have

Proposition V.3 [Asymptotic values of the root loci are invariant under

constant state-feedback]

The asymptotic values of the root loci of the system with transfer
function GF(s) are the same as the asymptotic values of the root loci
of the system with transfer function G(s) provided both G(s) and GF(s)
satisfy assumptions 0,1 and 2.

Comments. Proposition (V.3) establishes the existence of n feedback
invariants where n is the order of the system. Since (A,B,C) is

minimal, A is a McMillan zero of G(s) if and only if X is a root of
| :

AI-A 'B
det |-===—de| =0 (V.20)

-c 'o
I
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(see for instance Desoer and Schulman [12].) However (V.20) is

equivalent to (V.21) below as is easily seen by elementary columm

operations i
AI-A-BF I B
det | ——===d==| =0 : (v.21)
-C 10

The proof of Proposition (V.3) establishes the feedback invariance of
the so-called "infinite zeros" (terminology of [1],[2],[31,[4],[51,[81).
It is clear that o, + m1 + 2m2 +...+ nomno = n where n, is the number

of solutioms, A, of equation (V.20).

Section VI. Calculation of the Asymptotes of the Unbounded Root Loci

By the asymptotes of the unbounded root loci is meant the leading

term in the series for the 0(k0) terms in the asymptotic expansion of

.

the unbounded root loci. We postulate that the nth order unbounded root

loci have asymptotic series of the form given by (VI.1)

d .
i,n
= - — =
si’ Q/ Eli, + ci’ + + ... n l,2,3,...,n° (Vi.1)

ok

with A d € ¢.

i,n;‘ci,n; i,n

This form for the asymptotic series is justified by explicit
substitution into the equation that they should satisfy and a
verification that terms of different orders in k sum independently to

zero for suitable choices of A g5 ¢
b4

in the derivation of formulae for-ci a for the first and second order
9

unbounded root loci (n = 1,2) and then present a way of computing them.

i,n; di,n etc. We present the steps

The extension to higher order unbounded root loci is essentially obvious.

To make the estimates we make the Simple Structure Assumption

(Assumption 3) in addition to the Simple Null Structure and Non-Redundancy

Assumptions. The procedure followed is essentially that prescribed by

Dieudonne [10] or Kato [11].
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VI.1 Asymptotes for the first order umbounded root loci

The asymptotic formula for a first order unbounded root locus

s is of the form of (VI.2)
i,1 _
di 1
= e —
si,l Ai,lk + ci,l + ) + ... (V1.2)

To compute c; 1 ve substitute (VI.2) for s in det(I+kG(s)) and take
]

limits as k,s + = and retain terms of the order of &0 and Kt as

suggested by Dieudonne [{10]. We then obtain

Seg T- 36 + 01 =0 (VI.3)

i,1 k

By the simple structure assumption G1 has no generalized eigenvectors

det[(-A, ,I+G ) +

i,l1

associated with its eigenvalues. Thus only two cases can arise namely

Ai 1 having multiplicity 1 and Ai 1 having multiplicity > 1. These are
’ ’

treated separately as Cases 1 and 2, respectively.

Case 1. -Ai 1 has multiplicity 1.
’

m
Then,'4[(ki’ll-G1) C ¢ is one dimensional, say, spanned by ® 0"

Let us write the null space of the matrix in (VI.3) as the span of
e

e +-—1-’-l for some e € ¢", Using this in (VI.3) we obtain after
i,O k ial

some simplification

[-A, 1]'.+Gllei ] = — G,.e (VI.4)
c,-
i1l

Proposition VI.l. [Formula for c, , when A has multiplicity 1]

i1 il

If Ai 1 has multiplicity 1 as an eigenvalue of G1 then there do exist
?

i 1 € ¢ and ci 1 € ¢ satisfying equation (VI.4) for any G2 € ¢™m,

Furthermore, any solution to equation (VI.4) yields the same value

of ci,l'

Proof: See Appendix. n
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Case 2. A, has multiplicity p.
—_— i1

Under the simple structure assumption there exist p linearliy

independent eigenvectors say eilz,...,eipl each € ¢®. 1t is expected
9 ?

that formulae similar to (VI.4) hold for each of the p ey l's associated
]

with these p first order unbounded root loci. This is almost true and
we have

Proposition VI.2 [Formula for ci,l when Ai,l has multiplicity p].
(k)}i=1 C ¢P such that the equations (VI.5)

There exist p vectors {ao

each have a solution

o
9
(k) € ¢m+1 for k = 1,...,p
c,
i,1l
()
P i,l1 :
Dot B oPeB) [ -l £ oo oy
’ 1 =1 ’ (k) i, 1 ¢=1 ?
¢1,1
with Efk> = (a{k)...aék)) k=1,...,p. Furthermore for each k any two

solutions of (VI.5) yield the same value of cgfi . B

Comment: We notice that (VI.5) and (VI.4) are essentially the same
since any linear combination of eigenvectors associated with an
eigenvalue is an eigenvector for that eigenvalue.

Proof: See Appendix. R

VI.2 Asymptotes for the éecond order unbounded root loci

The asymptotic formulae for the second order unbounded root loci are

d
S, , = VKK, S +ec, o +—2Zy .. (VI.6)
i,2 i,2 i,2 /i
Using (VI.6) in (V.8) and taking limits as k,s + « and retaining terms
of order ko and k-]'/2 we obtain the finite solutions of the resulting

equation [i.e. neglecting those driven to =] to be the solutions of
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2V3) i,2 %1,2

det) (-1 ulv;u;L vh —]'—(3/:}\—c U;*v§+-—i-’-z—ul*cvl
vk

Ul
27372 1
+0( Y| =0 (vi.7

Recall that the Ai o are solutions to the generalized eigenvalue problem
: C ’

of (V.10) namely

o vi-o¥e vl = o. (¥.10)

det (A U, V,-U, G,V

Under the simple structure assumption on G2 &« With respect

NG+ N(E))

to Ai g We treat the two cases Ai 2 having multiplicity 1 and A having
] ’ .

i,2
multiplicity p > 1 separately. ¢

Case 1. Ai 2 has multiplicity 1:
H

We assume that the null space of the matrix in (VI.7) is of the

e m~
forme, +-leg mlwith

1,0 &

* %
[Ai,ZU% V%-Ué GZV;]ei,o = em.-m1 (VI.®)

we then obtain from (VI.7)
%
1% ' °1,1 % 1 -1 U% GSVI]Z.ei o
LT e e | - = g
¢ 10 2¢c V=X,
i,2 i,2
(VI1.9)

% 1. -
[The existence of (Ué V%) 1 was established in Proposition (V.1)]. By
the same proof as that of Proposition (VI.l) we can verify the

1.1 m—ml+1
existence of o ’ €¢ satisfying (VI.9) and that two solutioms
i,2

of (VI.9) yield the same value of Ci 90
?

Case 2, A has multiplicity p.

i,2
Under the simple structure assumption there are p vectors

{e, (2 l}z 1 associated with the eigenvalue A{ , of G i.e.

2 2@ ue)

-25-



[Ai,z";*";‘“;*cz";]eﬁ?, = e""ml 2=1,.00,p (V1.10)

As in Proposition (VI.2) we can again affirm the existence of p

m—
vectors {a(z)}p €¢ 1
(k)

i 1 nrm1+l
solution (k) €Ec

=1 such that the equations (VI.1ll) have a

.2
(k)
5,1
L R ! (k) (2) ’
["‘1,21*'(”; V) lU AL ,'ﬁ ()
=1 | 2¢
i,2
¥ oL
= -(Ué*V’;)’l %2 &% (k) (O v o1,...,m. (VI.11)

5w | l i o

Furthermore all solutions of (VI.1ll) yield the same value of c(k)

i’z.
(VI.3) Interpretation of the Results of Sections (VI.1l) and (VI.2).

Equation (VI.4) expresses the facf that the perturbation in the
eigendirection at k = » for finite k depends on the effect of G2 in

that direction. Thus, for instance if G_.e =0 3 c = 0. To
27i,0 m’ 1,1

elaborate on the picture of the previous section we imagine a further

partition of the range into the direct sum of eigenspaces associated

with Ai 1° To calculate ¢y 1 we examine the effect of G, on individual
] s

2

eigenspaces in fi(Gl). When an eigenvalue has multiplicity p and

simple structure it is necessary to pick p linearly independent directions

in the subspace associated with Ai,l to compute the p ci’l's~associated

with the p first order unbounded root loci. This is achieved by the

choice of the'{a(k)}i;l described in Proposition (VI.2) and equation (VI.5).
For higher order unbounded root loci the picture is the same-one

of further subdivision of é{(éz), ft(§3),... into the direct sum of

eigenspaces on which individually we examine the effect of G3,G sresy

respectively.
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(VI.4) Computational Method for Calculating the Asymptotes using the

Formulae of this Section.

We will state the method only for equations (VI.4) and (VI.5) which
are for the first order unbounded root loci. For higher order unbounded
root loci the extension is straightforward. Of the two equations (VI.4)
can easily be solved by any linear equation solving method since a
solution is guaranteed. To solve (VI.5) the vectors {gﬁk)}£=l need to
be computed. But these are shown in the proof of Proposition VI.2 to
be the eigenvectors of a matrix B € chp: we now illustrate how to

compute the matrix B. Let

1 (1) v (P 2 o1y
-3 1 T¥6 1855 +ee 185 o] Ucl[zl ,O]VGI (VI.12)
m, Xmy (my+p) * (m;+p) my Xy
with U €¢ 3 Vg €c¢ and I, € R, (a diagonal
1 1 .
. o 1L (1) 1. ()
matrix) be the S.V.D. of the matrix [ Ai,lI+Glﬁi,o "'lei,o]' Then,
to obtain Bk which is the list of coordinates of the vector Gzeikz
b4
along eili,...,eipg we take a pseudo universe of the matrix of (VI.12)
] s
to obtain (VI.13)
(k) -1
1 e
= VG _— UG GZei ° (VI.13)
Bk 11 0 1 ?
where fiki € le and By € ¢P are as defined in the proof of
s

proposition (VI.2). By repeating (VI.13) for k = 1,...,p the matrix

B is obtained and the cgk)'s can be computed from the eigenvalues

i1
G(k) of B as
K _ (&) _ |
ci,l = § /Xi,l k=1,...,p. (VI.14)
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L3

Section VII. ‘A Necessary and Sufficient Condition for the Closed Loop

Exponential Stability of a Strictly Proper Linear Time-Invariant

Control System Under Arbitrarily High Gain Feedback

It is well known (see for e.g. [14]) that a proper, linear time-
invariant control system is exponentially stable for sufficiently high
feedback gain k 3_k° with the closed loop eigenvalues uniformly
(with k) bounded away from the jw axis for k 3_ko iff
(1) 1its zeros are in the open left half plane;

(1i) the pole excess of the system is no larger than 2;

(i1i) if the pole excess is 2, the intercept of the asymptotes of
the unbounded root loci with the real line is in the open left half
plane.

Using the calculations of the previous sections a similar result
for the exponential stability of linear, time-invariant, multivariable
systems for sufficiently high feedback may be derived under the non-
triviality, non-redundancy and simple structure assumptions. For this
result conditions have to be found so as to exclude third order
unbounded root loci since at least one of the three cube roots of
kai,3 will 1lie iﬁ the right half plane for k sufficiently large.
Also, second order unbounded root loci can be tolerated only if the
eigenvalues of 62, namely Ai,Z’ are real and pdsitive and the ci’2
assoéiated with them have negative real part. The precise statement

i1s as follows.

Theorem 2 [High gain stability]

Under the set up of Theorem 1 with Assumptions O, 2 and 3 of
non-triviality, non-redundancy and simple structure respectively, the

closed loop system of Figure 1 is exponentially stable for all k ;=ko
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(where ko is some finite constant dependent on G(s)) with all the closed
loop eigenvalues uniformly (with k) bounded away from the jw axis

for k > ko, iff

(i) the McMillan zeros of G(s) are in the open left half plane;

(ii) the non-zero eigenvalues of G, are in the open right half plane;

1

(iii) the eigenvalues of G are real and positive;

2

%
')’L(Gl>+“/k(cl)

(iv) the ¢ associated with each eigenvalue of G have

12 26> (e

negative real part; and
» R" = Q) + QG l ).
1 G\ 2‘71131)

(Here the restriction of G, is only in the domain). H

2
Proof: See Appendix.

Section VIII. Conclusions.

In this paper the tool of the singular value decomposition has
been used to establish a clear geometrical picture and a numerically
sound procedure for computing ﬁhe asymptotic behavior of the unbounded
root loci; under the assumptions of simple structure, non-triviality
and non-redundancy.

It has been explained how the non-redundancy assumption can be
removed for the purposes of the computation — but the result is
more complicated to understand geometrically. Also, the simple
structure assumption is needed only for the asymptote calculations
of Section VI. For the calculations of asymptotic values a simple null
structure assumption (Assumption 1) suffices.

To show the benefits of this clear understanding two applications
of the calculations have been demonstrated - namely the state feedback

invariance of the asymptotic values of the root loci of (V.6) and the

-29-
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ey

necessary and sufficient conditions for exponmential stability under
arbitrarily high gain k Z.ko have been demonstrated. More applicatiéns
of these calculations are clearly possible - in fact one on the order of
a minimal realization of a strictly proper rational transfer function
is stated without proof as a Proposition here in the Conclusion to
indicate the scope of the method.

Proposition VIII.1l. (Degree of Minimal realizatiom of a strictly

proper rational transfer function).
Given a strictly proper rational transfer function G(s) € ]R(s)me

with asymptotic behavior given by

G G

i
G(s)-—S +

— + s e
S

with Gl’G2’°°' € pMT the order of a minimal realization of G(s) is
given by

n=n + p(Gl) + p(Gz) + ...
where n, = number of McMillan zeros of G(s), p(Gl) = dimension

6{(G1), p(éz) = dimension é{géz), and so on, provided G(s) satisfies

assumption 1 (simple null structure). H
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Appendix-Proofs

Proposition II.1l. (Matrix Representation of A

) L]
$1%5,

Proof: Note that x € S1 iff
m

x = Ply, for some y € ¢

Here the elements of y € mml represent the coordinates of x with

respect to the orthonormal basis .. A x is the projection of Ax
1 sl+s2

onto S, = span of 652 = span of the columns of P The orthogonal

2
projection of c™ onto S2 is given by P

2'
P*° indeed
2 2. n ’
m

VEES, E=Pn f €c¢l; thus P.P7g = p.27p.n = B.n =
2 on for some n s thus 2 25 oPoPon = Pon = 13
Consider, now p € S;.
%
Then P2P2p = 0, since p is orthogonal to each column of P2. Now,

ml

¥x € Sl’ ay € ¢ ~ such that x = Ply thus

* *
A‘Sf’szx = P,P,Ax = P,P,AP.y € 5, (A.1)
Hence,
AIS »g X = P,z for some z € le (A.2)
172

Since the columns of P2 are orthonormal, we obtain from (A.l) and (A.2)

= PLAP
Z = PANY

m1

where y € ¢ ~ is the coordinate list of x € S

™1
ﬁlandzem

1 with respect to basis

%
e .
is the coordinate list of AISI+SZX 82 Hence, P2APl

is the matrix representation of A with respect to 6, and 45 . =
SI-rS2 1 2
Proposition II.2 [Polynomial equation for the eigenvalues of AIS

].
1>,

Proof: The proof is immediate from the definition and the fact that
m ™y

% *
(=
P2P1 ¢ and PZAPl €¢

are the matrix representations of
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1 3. 5§ and A 3.8 with respect to the bases furnished by the columms

172 172
of P1 (in the domain) and the colummns of PZ (in the range). H
Proposition II.3 [Number of non-zero eigenvalues of A 3.3 ]
el mpm
*
Proof: Since r is the dimension of the range space of PZAPl €E¢ H
*
(ml-r) is the dimension of the null space of PZAPI' Thus, there are
-r
m,-r linearly independent vectors {ei}i=1 such that
P AP o i=1
2 1ei ml - ’.'o,nll ro
* ]
All of these are eigenvectors of PZAP1 €¢ associated with the

zero eigenvalue. But, by the assumption that AIS 8 has simple null

172 :

%
structure (ml-r) is precisely the number of zero eigenvalues of P2AP1
[there are no generalized eigenvectors associated with the zero
* 1.

eigenvalue]. Also, since P.P. € ¢ 1% is non-singular, ‘the number of

2°1
eigenvalues (counting multiplicities) is m, as noted in the comment

following Proposition II.2. Hence, the number of non-zero eigenvalues

A is r.

Sl->-S2
Theorem 1. (Asymptotic values of the unbounded root loci)

Proof: The proof consits of establishing the cardinality of the nth
order unbounded root loci (a = 1,2,...) and establishing that the

1st, 2nd,...,n°th order unbounded root loci are the only unbounded root
loci of the system by a counting argument.

Part I

To show that the number of nth order unbounded root loci is nu:.n where

m is the rank of the matrix representation of Gn " e 3
NG, _+TE )

we first establish a lemma.
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Lemma

X
Let Q € ¢V have simple null structure. Let the S.V.D. of Q be

given by (A.3)

Q. Q*
- I3 ! o'] V3
Q = [UMU] : (A.3)
11727 o ! o_] vy
nxn nx(n-n_.) nxn nx(n-n )
with Ug €¢ _ Q; Ug E¢ Q 3 Vg €¢ Q; Vg €¢ Q . Then,
(n-n.)x(n-n.)
the matrix Ug*vg €¢ Q has rank n-n,.
Proof: Q has simple null structure ¢ £(Q) N N(Q) = {en}. (A.4)

*
Now, for a proof by contradiction, assume Ug Vg not full rank;

equivalently
n-n
Q Q*.Q  _
dn#e _  €¢ “2u Von=8 (A.5)
Q Q

But

£ = Vgn € Q) and & # 6_ (A.6)
and by (A.5),

Uy'€ =6 or equivalent &€ R(Q) (A.7)

n-nQ

(A.6) and (A.7) contradict (A.4). H
Now, G1 has simple null structure and has rank ny hence by

Proposition II.3 G1 has I, non-zero eigenvalues and hence there are m,

* ~m, m=
1 G Vl €ER "1 has rank m

unbounded root loci. Also, U2 AL 5

(from equation (V.13)). Hence by Proposition II.3 the number of non-zero

*
eigenvalues to G is m, provided U% Vé is non-singular.

2
76+ UEY)

But, this follows from the preceding lemma. Since, there correspond
two second order unbounded root loci to every non-zero eigenvalue of

there are 2m2 second order umnbounded root loci.

G
216 Yie])
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m-m, -m, ) X (w-m, -m, )

%
U2 Ul VlV2 ]R has rank m, (from equation
2 72 2°2 3
(V.17)). Also g V%V2 is non-singular from the preceding lemma
applied to G % + Hence by Proposition (II.3) the number of
N6, )+ (e))

3 " % 1s m3 and the number of third
NG+,

order unbounded root loci is 3m3 and so on.

Part II. The only unbounded root loci are the 1lst, 2nd,...,n°th order

non-zero eigenvalues of G

unbounded root loci.
When the Schur formula is applied repeatedly as discussed in

Sections (V.1l) and (V.2) and the limit of the resulting product taken
as k,s + » such that —%— =-x£- < @3 assumption 0 of non-triviality

o n
S o]

guarantees that the matrix I + kG(s) may be entirely decomposed and we

obtain
lim 1 L— ... L . det(I+kG(s))
k, 5o ;-1\ 1-2Y2 1 - o -1
k - “n "
—E;“<“ k k Xk (o}

2
5 X
: LK N 1} det (Y + l ) (A. 8)
n ’ 2 n
of n n_|A o
o OJ n

where Y, X are the matrix representations of I and

I“/l(c 1)+ﬂ(c -1

« X is full rank (m ) since there are no

ol L6 1)-»1kc "o
higher order unbounded root loci and Y is full rank from the argument

in Part I of the proof. Thus there are m, finite values of A\ satisfying
n
o o

the equation (A.9)

det (Y + Ai) = 0; (A.9)

n
[¢)
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Thus the number of solutions in s to the equation in (A.8) are

m + 2m2 +...+ (no-l)m.no_l of infinite magnitude and nomno of finite
magnitude [the nyth roots of the solution to equation (A.9)]. Thus the

number of unbounded solutions (with k) to det(I+kG(s)) = 0 is
m + 2m2 +...+ nomn . But, from Part I of proof this is precisely
o
the number obtained by our procedure. Thus, all the unbounded solutions

to

1lim det (I+kG(s)) = 0

koo
are given by the first, second,...,noth order unbounded root loci.

Q.E.D.

Proposition V.2 [Computation of 1lst and 2nd order unbounded root loci]

Proof: The key to the proof is a lemma requiring the assumption of
simple null structure.

Lemma

If a matrix Q € Cnxn has simple null structure and S.V.D. given by

(A.10)
2! | v
Q Q 1 1
Q= [u] U,] i (A.10)
%*
0,0 ng
nxn nxn-n nxn nxn-n
with Vg €c¢ Q; Vg €¢ Q; Ug €¢ Q; Ug S Q vhere oy is the

rank of Q; then the non-zero eigenvalues of Q are the zeros of (A.1ll)

Q*4Q, Q%0Q Q% Q =1 Q% 0\ .Qq _
getl (uf v VIV luz vH-zd =0 (A.11)
. _Q*.Q (n-nQ)X(n-nQ)
Proof: From the lemma in Theorem 1 we have U2 V2 €¢ to be,
invertible. Now, det(AI-Q) = O may be written as
Q*.Q_.Q ! ., Q* Q
AUl Vl Zl : AUl V2
det * = 03 (A.12)
Q*.Q P Q% Q
AUZ V1 : AUZ V2

-37-
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and if X # 0 we have by elementary column operations

Q% Qi@ -1 Q%0 !
A AR A CAR A A A
det : =0 (A.13)
Q*.Q Q*,Q
AUZ Vl : AUZ V2

Equation (A.11) follows readily from the upper triangular system of (A.13)

%
and the fact that Ug Vg is non-singular. R

The proof of the proposition now follows in straightforward fashion by

*
inserting the S.V.D.s of G1 and U% GZV% into (V.7) and (V.12) respectively.

-4

Proposition V.3 [Feedback invariance of unbounded root loci]

Proof: To establish the equality between the unbounded root loci of

G(s) and GF(s) we establish tbe equality of the maps Gl’GZ

% ?
N(G+TUE))

GF % 9 GF %
zlmcfwfz(c{ ) 3|~n<é§>+1'l(é§ )

G3 . & o+ and Gf,
NE)+N(E,)

F _ F ko P&
G1 is clearly the same as G1 and so 71(Gl) = 14(61) and 41(G1) = 44£G1 ).

Since Gg = CAB + CBFB and CBFB & = 0 [the range space
UG +TUE))
of CBFB is contained in the range space of CB and hence orthogonal to

F

*
“Vl(Gl)] we have G, . A straightforward

=G . R
NEH+UE ) zlmc1>+1q<c’{>

calculation verifies the equality of G nd

F

PS AF* a
3"VL<G§>+“/1<GZ )
and so on. H .

G
3 *
7UG,)+1(Ey)

Proposition VI.1 [Formula for ¢ 1 when Ai 1 has multiplicity 1].
b 9

Proof: Equation (VI.4) has a solution for any G, € e ™ if the matrix

2

]
[-Ai’lI+G1:ei’o] is full ranmk. Clearly ei,° & é\(ki,ll—cl) since this

would contradict Assumption 3, the simple structure of G1 at each of its

eigenvalues. Furthermore @\(Ai 1I—Gl) is of dimension (m-1) since
H]

Ai 1 has multiplicity 1 as an eigenvalue of G Hence the matrix
-

10

-\, ] .
[ 1,11+G1,ei,o] has rank m ‘
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Since the [, .I4G.'e, ] =s ei’o C3¢m+1 notice that
N2y, 174608y o "N\ o we

any two solutions to (VI.4) yield the same value of LR H
9

Proposition VI.2 [Formula for ¢y 1 when Ai 1 has multiplicity p].
? 9

Proof: By the simple structure assumption and the same argument as in

Proposition VI.1 above we have

m_ g, (1 (p)
¢ = AL Ay 1T¥6)) ©) sp(e; ) ® ... ® sp(e; o) (A.14)
Then, by (A.14) we may write
® _ & (2) e e® L
GZei,o = lgl Bz,kei,o + ("1,11 c;l)fi,1 k=1,...,p (A.15)
for some fi%i € ¢ and‘{Bz,k}I;‘=l C¢. Let B € ¢”P denote the matrix
of {sz}2=1,...,p and {gﬁk)}£=l the eigenvectors of B8(CEP) with
k=1".0’p .
corresponding eigenvalues {Gk}£=1' Then, we have
J ('1) (l; (Il) (l) (|1) (' )
P = P - p
G2 1%,0 *** Ci,0| = |®f,0 "t Ci,0| Bt Ay g THE) [£7] e £
L | ] | | } !
and
~ ‘ I— [
(1) P & _ 1. () (k)
G’z ei,o RN ei,o g_ - ei,o s e e ei’o 6kg_
- @D P (k)
+ ( Ai,1;+G1) fi,l ces fiil
1 |
(1) @ & _ (k)
Let fi,l coe fi,l [} = ei,l
| |
we can then write (A.1l5) as
5 (k) ( % 2, ()
! k) () i,1 1 - L
[=A, ,I+G.) a, ‘e, "] (=222 = —— a, ‘G,e
1,1 1,:4=:1 I U 1 k;l L 2%i,0
€1,1
) _ (k)
with ci,l ) /Ai,l (VI.5)
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[In the event that B8 does not have a complete set of eigenvectors,
perturb the matrix 8 by an arbitrarily small amount so that it has
simple structure].

This establishes the first part of proposition (VI.2). The second part

follows immediately since the null space of [-A, . I+G.' a(k)e(zg] is

1,177 11 i,
=1
e('q') o 1
i
si(| -=22 for any gﬁk) #0 . H
0 /)e=1 P

Theorem 2 [High gain stability]

Proof: Sufficiency

Condition (i) guarantees that for k sufficient large tﬁe finite
root loci lie in the open left half plane (neighborhoods of the McMillan
zeros). Condiﬁion (ii) guarantees that the first order unbounded root
loci lie in the open left half planme for k sufficiently large.

Conditions (iii) and (iv) together guarantee that the second order unbounded

root loci (if any) lie in the open left half plane since by equation (VI.6)

Q= B, +e

Si,

1
1,2 + O(E) (VI.6)

We show that condition (v) guarantees non-existence of third order

¥
unbounded root loci by showing Ué GZV; to be full rank. But this is

essentially obvious since

o % m _ % *
R = flc) + A 2U @ = hRE) + B nee,y

)
ZI%(GQ
m-
= sp(U;'*) - sp(U;'*GZVJZ') I

It remains to be shown that the closed loop eigenvalues afe uniformly

bounded away from the jw axis for all k ;:ko. To shown, this we use

the asymptotic series of equation (VI.1l). If {zi}z=l C ¢ is the set
of intercepts of the asymptotes of the second order unbounded root loci,

choose
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.1 P )
€ = + 5 max real part{{zi}j_:l, {ci,2}1=1}}'

By the hypothesis of the theorem € < 0. We will establish the
existence of ko such that the closed loop eigenvalues have their real
part less than or equal to e, for all k > ko. Clearly, akl < « such

that the p bounded closed loop eigenvalues {s 1 o(k) }?.=l are such that
-

lsi,o(k)-zil <e  Wkxk
Vi = l,...,p.
Also from the asymptotic series for the first order unbounded root

loci, we have

= 1 =
Si,l(k) '—' kli,l + ci’l + O(k) i 1,...,1111

with Re(A, ,) < 0 for i = 1,...,m1. Hence Jk, < = such that the first
il 2

order unbounded root loci have their real parts less than or equal to

e for all k > kz. From the asymptotic series for the second order

unbounded root loci, we have

S3,2(K) = V-kA; 5 + ey

2

+o) 1= 1,....m,
vk

with ¢-kAi 2 purely imaginary for i = 1,...,m2. Hence, 31(3 < = such
?

that

Re(si,z(k)—ci’z) < e ¥k > k3.

We then conclude that for all k > k_ = max(k k3) the closed loop

1’k2’
eigenvalues have their real part less than or equal to e. This
completes the sufficiency.
Necessity

The necessity of conditions (ii) and (v) is obvious from the

discussion so far. The hypothesis that the closed loop eigenvalues are

uniformly bounded away from the jw axis for all k > ko necessitates

-4]~
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that the McMillan zeros of G(s) lie in -the open left half plane.

Condition (iii) is necessary since one of the two square roots of

V—Ai 2 has strictly positive real part unless Ai 2 is real and positive.
3 L

Further, from the asymptotic series for the second order unbounded

root loci,

—_— 1, .
Si,z(k) - -ui’z - ci,z = O(E) 1= l,coo,m s

the hypothesis that the closed loop eigenvalues are uniformly bounded
awvay from the jw axis for all k ;*kb and the fact that V-kAi 2 is

14
purely imaginary we obtain the necessity of condition (iv).

This completes the necessity. Q.E.D.
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Figure 1.

System configuration.
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Figure 2.
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Structure of a linear map.
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Figure 3. Depiction of an orthonormalg.ly coordinatized version of

1
A as amap A: ¢ " > ¢ .
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*y

Figure 4. Block diagram for the asymptotic behavior of the system of
example 2 showing the triviality of uy and Y, (=yl+'y3).
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Figure 5a. Block diagram of asymptotic behavior of system violating the
simple null structure assumption.

u ;/\ =||]> - Y
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(b)
Figure 5b. The same system as iﬁ Figure 5a with the outputs relabelled } ‘

before closing loops.
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Figure 6. Asymptotic block diagram of a system violating the non-.
redundancy assumption. (the loop shown dotted is redundant)



Figure 7. Identification of the subspaces associated with the second and
third order unbounded root loeci.
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