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33; A thesis advanced in this; paper is that much of the
32: uncertainty which is associated with soft data is nonstatis-
2-1 •tical in nature. Based on this premise, an approach to the
J„ representation and manipulation of soft data—in which the
21 recently developed theory of possibility plays a central role—
23 is described and illustrated with examples.

1 1. Introduction

The term soft data does not have a universally agreed

~: upon meaning. Some use it to characterize data that are

_.. imprecise or uncertain, while others attach-the label "soft"

:•: data whose credibility is open to question.

'_- In dealing with soft data of the type encountered in

7'. such diverse fields as psychology, sociology, anthropology,

15 medicine, economics, management science, operations research,

;7' pattern classification and systems analysis, it is a standard

-_2 practice to rely almost entirely on the techniques provided

*- by probability theory and statistics, especially in applica-
"-0:
i; tions relating to parameter estimation, hypothesis testing

and system identification. It can be argued, however, as we

- do in the present paper, that such techniques cannot cope
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2 LZ

effectively with those problems in which the softness of data

is nonstatistical in nature—in the sense that it relates, in

the main, to the presence of fuzzy sets rather than to random

measurement errors or data variability.

Needless to say, the inability of conventional statis-

j tical techniques to deal with problems of this type would not

'- matter much if the predominance of fuzziness in softness were

..} a rare phenomenon. In reality, the opposite is the case; for,

-upon closer examination, it becomes clear that much of the

:?;softness in data analysis is nonstatistical in the sense

•2 explicated above. Moreover, the same is true of. most of the

^linguistic information that humans manipulate through an

'3 iimplicit use of what might be called approximate (or fuzzy)

:- reasoning" based on fuzzy rather than standard logic.

To make the latter point more concretely, it will be

helpful to list—and subsequently analyze in greater detail—

- several typical examples of everyday type of questions which

'-1 cannot be handled effectively by conventional probability-

- based methods. In these questions, the soft data are

-expressed as propositions appearing above the horizontal line;

^ the italicized words are the labels of fuzzy sets; and the

.:• answers are expected to be in the form of a fuzzy proposition,

_ that, is, a proposition whose constituents may have a fuzzy

5 denotation. Specifically:

- (a) X is a large number

- Y is much larger than X

How large is Y?

(b.) Most Frenchmen are not tall

Elie is a Frenchman

How tall is Elie?



(c) It is unlikely that Andrea'is very young

It is likely that Andrea is young

It is very unlikely that Andrea is old

How likely is it that Andrea is not old?

(d) It is true that Hans is not very tall

It is very true that Hans is not short

3 LZ

How tall is Hans?

(e) Brian is much taller than most of his close friends

How tall is Brian?

"7" Cf) If Bernadette lives in Versailles then she is
3 -very rich

- If Bernadette lives in Monmartre then she is poor

It is likely that Bernadette lives in Versailles

It is very unlikely that Bernadette lives
in Monmartre

How likely is it that Bernadette is. not rich?

As will be seen in the sequel, our approach to the

- analysis of soft data of the type illustrated by the above

-- examples is based on fuzzy logic [7,22,89] rather than on a

'I combination of classical logic and probability-based inei_hods

.o —as. is true of the conventional approaches to soft data

"^analysis.. In essence, our rationale for the use of fuzzy

-5 logic for soft data analysis rests on the premise that the

rZ idenotations of imprecise terms which occur in a soft database

.2: are, for the most part, fuzzy sets rather than probability

"^distributions. For example, in a proposition such as

T p a X is a large number (1.1)

. the softness of data is due to the fuzziness of the denota-

; tion of large number. Similarly, in the proposition

p = It is liJcely that Andrea is young (1.2)

softness._is._due juQ:„ (a)_ the_fuzziness_pf the.denotation of _



4 LZ

young; and (b) the fuzziness of the term likely, which

characterizes the probability of the fuzzy event "Andrea is

young" [71,86]. As we shall see presently, the impreci-

... sion in (1.1) is possibilistic in nature, whereas in (1.2) it

- is partly probabilistic and partly possibilistic. Viewed in

this perspective, then, a soft datum may be regarded, in

- general, as a proposition in which the uncertainty is due to
Ti •

•_-, a combination of probabilistic and possibilistic constituents.

;;*- When it is necessary to differentiate, between a term and

;7 its denotation, the latter will be expressed in uppercase

;~ symbols. To illustrate, in (1.1) the term large number (or,

r~~S±mply, large) has as its denotation a fuzzy subset, LARGE,

13 of the interval u « [0,«). This subset is characterized by

• its membership function u___„: U —*• [0,1] which associates
~ LARGE

-with each number u € u the grade of membership of u in LARGE.

For example, the grade of membership of u = 100 in LARGE

-' might be 0.2 while that of 400 might be 0.9.

A basic aspect of a fuzzy proposition such as "X is

- small" is that it does not provide a precise characterization

._ of the value of X. Instead, it defines a possibility distri-

-- bution [92] of values of X which associates with each nonne-

gat_.ve real number u a number in the interval [0,1] which

.£ represents the possibility that X could take u as a value

'[.given the* proposition "X is small." To express this in a

.d symbolic form, we write

-3; X is small —*• II =SMALL (1.3)

1 which signifies that the proposition "X is small" translates

"into the assignment of the fuzzy set SMALL to the possibility

• distribution of X, II . Equivalently, the proposition "X is

small" will be said to induce the possibility distribution

: II , with the right-hand member of (1.3) constituting a possi

bility assignment equation. For notational convenience, we

- shall write

~ ve ;.~i- » ~.^"~:z. »2d ".ifi cr* •:.••» J2 •* •••: S ~ • r~s _::•; j.-v; ;.- y? a'O J .
iir«":-"ir..*rv -. jCijiS. Zu'. Zvv.ri z'.*z: •~~s :.-_s~ s.r.a r.-.: .?.;...: :••>•: ma: :••<. 'r.~
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POSs{X = U> = TT (u) (1.4)

where the function it : U —»• [0,1] is the possibility distribu-

- tion function and U is the domain of X.

";; Essentially, the possibility distribution of X is the

_:T collection of possible values of X, with the understanding

~; that possibility is a matter of degree, so that the possi-

•ii bility that X could take u as a value may be any number in

~ the interval [0,1] or, more generally, a point in a partially
•*•: ordered set.

•^ ; In general, a possibility; distribution may be induced by

.3 a physical constraint or, alternatively, may be epistemic in

•^origin. To illustrate the difference, let X be the number of

- passengers that can be carried1 in Carole's car, which is a

-five passenger Mercedes. In this case, by identifying ir (u)

.•- with the degree of ease with which u passengers can be put in

•» Carole's car, the tabulation of it may assume the following

_ form in which an entry such as (7,0.6) signifies that, by

8 10

IT.
r

0.8 0.6 0.9

•some explicit or implicit criterion, the degree of ease with

which 7 passengers can be carried in Carole's car is 0.6.

In the above example, the possibility distribution of X

•is induced by a physical constraint on the number of passen

gers that can be carried in Carole's car. To illustrate the

:case where the possibility distribution of X is epistemic in

origin, i.e., reflects the state of knowledge about X, let x

be Carole's age and let the information about Carole's age be

conveyed by the proposition

A

p = Carole is young (1.5)

where young is the label of a specified fuzzy subset of the
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interval [0,100] which is characterized by its membership

function yyouNG/ with VlY0UNG(u) representing the degree to
which a person who is u years old is young in a specified

context.

The connection between ir and UyQnNr is provided by the

:-.: so-called possibility postulate of possibility theory [92,93]

~- which, asserts that, in the absence, of any information about X

„:: other than that supplied by the proposition p = Carole is

• young, the possibility that X = u is numerically equal to the

;7 grade of membership of u in YOUNG. Thus

25 Poss{x =u} « ttx(u) - UjQ^gCu) , uG [0,100] (1.6)

-3 or, equivalently,

~ K ,„ , x - YOUNG (1.7)Age(Carole) v '

_-•: with the understanding that the possibility assignment equa-

: tion (1.7) is the translation of (1.5), i.e.,

- Carole is young —*• II ,„ . , = YOUNG . (1.8)
r Age(Carole)

-- It is in this sense, then, that the epistemic possibility

~ distribution of Carole's age is induced by the proposition

--p = Carole is young.

What is the difference between probability and possi-

1S bility? As the above examples indicate, the concept of

.. possibility is an abstraction of our intuitive- perception of

15 ease of attainment or degree of compatibility, whereas the
2a i . . .
,«:concept or probability is rooted in the perception of likeli-

121hood, frequency, proportion or strength of belief. Further-

~~ more, as we shall see in Section 2, the rules governing the

9 manipulation of possibilities are distinct from those which

2 apply to probabilities.

An important aspect of the connection between probabili

ties and possibilities relates to the fact that they are

". independent characterizations of uncertainty in the sense

. that from the knowledge of the possibility distribution of a

• -•• :ii



variable X we cannot deduce its probability distribution, and

vice-versa. For example, from the knowledge of the possi-

. bility distribution of the number of passengers in Carole's .

. car we cannot deduce its probability distribution. Nor can

we deduce the possibility distribution from the probability

.• distribution of the number of passengers. However, we can

;- make a weaker assertion to the. effect that if the possibility

^0 that.X=»u is small, then it. is likely that the probability

-- that X'u is also small. However, from this it does not

57 follow that high possibility implies high probability, as is

^reflected in the commonly used statements of the form "It is

-rj-possible-but not probable that... ."

^ • In the present paper, we shall focus our attention on

•_ only a few of the basic aspects of possibility theory and its

— applications to the analysis of soft data. Thus, our main

: concern will be with the representation of soft data in lin-

•- giiistic form and with approximate inference from such data.

.- In addition, we shall touch upon the issue of data granu-

-- larity and its relation to the theory of evidence. We shall

•J, not consider, however, an issue that is of considerable rele-

-1 vance to the analysis of soft data, namely, the representa-

r. tion of imprecise relational dependencies in the form of

lo linguistic decision tables and branching questionnaires [10,

";•• 97J. 1 . • '
15-1
. L It was brought to the author's attention by John E. Shively
7Z (Lawrence Berkeley Laboratory) that an interesting case of
7^ •; an interplay between probability and possibility occurs in
77; the historical letter from Einstein to Roosevelt (dated
."".' August 2, 1939). In a passage in this letter, Einstein
~_2; writes:

3 In the course of the last four months it has been
7; made probable—through the work of Joliot in France
; as well as Fermi and Szilard in America—that it may

become possible to set up nuclear chain reactions in
a large mass of uranium, by which vast amounts of
power and large quantities of new radium-like elements
would be generated. Now it appears almost certain

.. 1 that_this_could be^achieyed An._the_ iJ3nmediate__future._

LZ
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2. Basic Properties of Possibility Distributions

As we have indicated in the preceding section, the con-

_- cept of a possibility distribution plays a central role in

- " our approach to the representation and manipulation of soft

._ data. In what follows, we shall discuss some of the basic
• . 2

--• properties of possibility distributions and lay the ground-

.r work for their- application to soft data analysis in later

-- sections.

-« Possibility Measure
37

;]' Consider a variable X which takes values in a universe

>£ dlscuuise U, and let II be the possibility distribution

33'induced by a proposition of the form

-- p = X is G (2.1)

-- where G is a fuzzy subset of U which is characterized by its

"- membership function u . In consequence of the possibility
G

-" postulate, we can assert that

nx = G (2.2)

-- which irrolies that

irx(u) = UG(u) , u e rj (2.3)

li where ir is the possibility distribution function of X.

72; • Now- if F is a fuzzy subset of U, then the possibility •

25 measure of F is defined by the expression

13 n(F) = sup(FHG) (2.4)

_1 or, more explicitly,

^ n-(F) = supa(uF(u) -UG(u)) (2.5)

7 where the supremum is taken over u € U and *• represents the

. min operation. The number 11(F) , which ranges in value from 0

~2
In our exposition of the basic properties of possibility
distributions and related concepts we shall draw on some of
the definitions and examples in [91,94,98],
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to 1, may be interpreted as the possibility that X is F given

that X is G. Thus, in symbols,

11(F) = Poss{x is F|X is G} - sup(FHG) (2.6)

In particular, if F is a nonfuzzy set A, then

i VU(u) = 1 if u S A

- 0i if u $ A

_.-. "and hence

3. 11(A) = Poss{x is a|x is G> =» sup (G) (2.7)

•I •= supA(uG(u)) , u€U

jl £n__impprtant immediate consequence of (2.4) is the

- F-additivity of possibility measures expressed by

•: II(FUH) » 11(F) V11(H) (2.8)

. where F and H are arbitrary fuzzy subsets of U and V is the

-: max operation. By contrast, the probability measures of F

. and H have the additive property expressed by

'__ P(FUH) = P(F) +P(H) -P(FriH) (2.9)

2 The facrt that possibility measures are F-additive but not

-- additive in the usual sense constitutes one of the basic

differences oetween che concepts of possibility and proba-

Li bility [92].

7.1 .As'a simple illustration of (2.6) r assume that the pro-

15 position "X is G" has the form

13 p = X is small (2.10)
•» o :

-- ' 3
11 where SMALL, is a fuzzy set defined by

r SMALL = 1/0-+ 0.8/2 + 0.6/3 + 0.4/4 + 0.25 (2.11)

3
The notation F = u./u.+*--+]i /u signifies that F is a col-

J. J. n n

lection of fuzzy singletons u./u., i = l,...,n, with y.

representing the grade of membership of u. in F. More gen

erally, F may be expressed as F = £.u./u. or F = u (u)/u.
ill Jjj F
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In this case, the possibility distribution induced by p is

given by

II '=» 1/0 + 0.8/2 + 0.6/3 + 0.4/4 + 0.1/5

-2 and if the proposition X is F has the form

-o q = X is large

41 where LARGE is defined, by

10 LZ

(2.12)

'•n.

"lithen
if i

36;

LARGE = 0.2/4 + 0.4/5 + 0.6/6 + 0.8/7 + 1/8 +

SMALL n LARGE = 0.2/4 + 0.1/5

—and-hence—

jj -Poss{x is large|x is small} = 0.2

•- Joint, Marginal and Conditional Possibility Distributions

-p Let X = (X.,...,X ) be an n-ary variable which takes

-• values in a universe of discourse U = U,x- •«xu , with X. ,
1 n i

• i = l,...,n, taking values in U.. Furthermore, let F be an

7- n-ary fuzzy relation in U which is characterized by its mem-

_5 bership function y . Then, the proposition

22 p = X is F
i

•_. induces an n-ary joint possibility distribution

_o

25 which is given by

(X-,...,X )
1 n

\X_,...,x )
1 n

(2.13)

(2.14)

(2.15)

11 Correspondingly, the possibility distribution function of X

-l;;is expressed by

r17^ xn)(ui V =Vui V - »-(v-'V€o
= Poss{x =u. , ,X = u }

_; • -Linn

As in the case of probabilities, we can define marginal

and conditional possibilities. Thus, let s = (i , ,i ) be

a^subsequence-of—the index-sequence- (lr^.. ,n)-and_let~sL —

'•1 •• '"•<:•.': i.'J r.:'j (T'C^ '"
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denote the complementary subsequence s' = (j,,...,j ) (e.g.,
1 m

for n - 5, s = (1,3,4) and s' = (2,5)) . In terms of such

sequences, a k-tuple of the form (Aj,,... ,Aj_) may be

expressed in an abbreviated form as A, .. In particular, the
(s)

variable X « (Xi1#...,Xi. )• will be referred to as a k-ary
-J subvariable of X &(X.,...,X ), with X, ,. » (Xi.,...,X4 )

i n . (s ; Jl Jm

7: being a subvariable complementary to X. r
fkQ-: The projection of 11/Y^ Y\ on U, »• » U.i_"x xu.-,'

It, is a k-ary possibility distribution denoted by • .

^.i \ = Proj ; n (2.16)
:: x(s) u(s) ^i'---V
•:4 and defined by

:i- x(s) ls} u(s') x ^ n
-"^ where i^x/^ is the possibility distribution function of

: H . For example, for n = 2,

:: \(ui} *suV<xrx2) (Ul'U2)
"is the expression for the possibility distribution function

.".I of the projection of H(x.(x2) os U_. By analogy with the
-- concept of a marginal probability distribution, II will be
'•" - xr*)•_. rererrea to as a marginal possibility distribution.

-- As a simple illustration, assume that n= 3, U, = U
.-2 :• 1 2
16 *• E", = a+b ory more conventionally, {a,b},. and II,

. - - ' (X-,X-,X_)
--" is expressed as a linear form

^" £(X x x> = 0.8aaa+laab+0.6baa+0.2bab.+ 0.5bbb' (2.18)

y, in which a term of the form 0.6baa signifies that

->. Possfx^b, X2 =a, X3=a} = 0.6

To derive H(xlfx2) from <2-18) , it is sufficient to
replace the value of X3 in each term in (2.18) by the null
string A. This yields



H,Y v » = 0.8aa+laa+0.6ba+0.2ba+0.5bb

= laa + 0.6ba + 0.5bb

and similarly

II = la+0.6b+0.5b
1

» la+0.6b

12 LZ

An n-ary possibility distribution is particularized by

,!_, forming the conjunction of the propositions "X is P" and

'" "X/. isG," where X. ' is a subvariable of X. Thus,

- nx[nx =G] " pn5 (2"19)
, (s)

: where the right-hand member denotes the intersection of F

-with the cylindrical extension of G, i.e., a cylindrical

-fuzzy set defined by

U-(u ,...,u) = u (u ,...,u. ) , (2.20)
G J. n G 1- 1.

1 k

(u.,...,u ) S u x ••• xu .
1 n 1 n

As a simple illustration, consider the possibility

distribution defined by (2.18), and assume that

In this case,

H/v v \ = 0.4aa+0.9ba+0.1bb .
txl'X2J

G = 0.4aaa+0.4aab+0.9baa+0.9bab+0.1bba+0.1bbb

-:: pni ;ar 0.4aaa+0'.4aab +0.6baa+0.2bab+0.1bbb

.J and hence

;; n(x1,x2,x3)cn(x1,x2)=Gl
"7 - 0.4aaa+ 0.4aab+0.6baa+0.2bab+0.1bbb .

There are many'cases in which the operations of particu-

7 larization and projection are combined. In such cases it is

. convenient to use the simplified notation

Y n[n =G] (2.21)
X(r) X(s)
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to indicate that the particularized possibility distribution

(or relation) II[II =G] is projected onU. ., where r, like
(s) *r'

s, is a subsequence of the index sequence (l,...,n). For

example,

X1xx3ntII(X3/X4) =G]

7 would represent the projection-of II[II,__ .__ =G] on U_ xu,;,
- . (X3,X^J 1 3
Informally, (2.21) may be interpreted as: Constrain the X,

-by nX, % ~ G and read out tne X, .. In particular, if the
(s) vrj

7 values of x..—rather than their possibility distribution—

; are set equal to G, then (2.21) becomes

IT[X, % =G] .
(r)

-3 ' X,_x l"(s)

• We shall make use of (2.21) and its special cases in

:. Section 3.

As we shall see in Section 3, if X and Y are variables

:- taking values in U and V, respectively, then the conditional

-'• possibility distribution of Y given X is induced by a propo-

:sition of the form "If x is F then Y is G" and is expressed

•; as 2^Y|X.,. with the understanding that

ir(v|x)(v|u) =Poss{Y=v|x=u} (2.22)
••'-_ where (.2-21) defines the conditional possibility distribution

: function of Y givenX.

••; If we know the distribution function of X and the condi-

2 tional distribution function of Y given X, then we can con-

•» struct the joint distribution function of X and Y by forming

.-. the conjunction (*• = min)

;". T<X,Y)(u'V) =ir3C(u) ^(Y|X)(VIU) • (2'23>
However, unlike the identity that holds in the case of proba-

•bilities, we can also obtain tt y (u,v) by forming the con
junction of TT(X|Y) (u|v) and tt(yix) (v|u) -.
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In yet another deviation from parallelism with probabil

ities, the marginal possibility distribution function of X

may be expressed in more than one way in terms of the joint

and conditional possibility distribution functions. More

specifically, we may have

.<»>• VU) ^VvXrY) (U,V) (2.25)
where v denotes the supremum over v S V;

<b> Vu) avv^(x|Y)(ulv) (2*26)
and

<c> ffx(u) = """(xIy) (Urv(u)) (2.27)

7 where, for a given u, v(u) is the value of v at which

^(Ylx) ^vlu* a *' if ^u* *•* defined for every uE U.
Intuitively, (a) represents the possibility of assigning

.. a value to X as perceived by an observer ((X,Y) observer) who

observes the joint possibility distribution II, . Simi-
\X, Y )

larly, (b) represents the perception of an observer ((x|y)

observer) who observes only the conditional possibility dis

tribution E/X|Y\ an<i ^s unconcerned with or unaware of

^(yIx) " ^^ ^ exP^^ssas the perception of an observer who
assumes that v is assigned that value, if it exists, which

aakes .ff/yijj'(v|u) equal to unity.
: As will be seen in Section 3,. the. concept of a condi-.

• tional possibility distribution plays a basic role in the

T formulation of a generalized form of modus ponens and. in

; defining a measure of belief. What is as yet an unsettled

•_ issue revolves around the question of how to derive irr i

and ^(Ylx) from ^(v y) * Somewhat different answers to this
question are presented in [92]., [57] and [33]. It may well

turn out to be the case that, in contrast to probabilities,

• there does not exist a unique solution to the problem and

• that, in general, the answer depends on the perspective of

• the observer.
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The Extension Principle

Let f be a function from U to V. The extension princi

ple—as its name implies—serves to extend the domain of

definition of f from U to the set of fuzzy subsets of U. In

particular, if F is a finite fuzzy subset of U expressed as

F = u /u. +••• +u /u
. • 1 i . nn

then f(F) is a finite fuzzy subset of V defined as

f(F) » f(u./u- +•-• +u /u ) (2.28)
i i n n

« u./f(u_) +•*• + u /f(u ) .
x l n n

-More—generally, if the support of F is a continuum, i.e.,

then

f(F) «•

F - | lip(u)/u (2.29)

f(F) - U_,(u)/f(u) . (2.30)
]U F

Furthermore, if U is a cartesian product of Un , U and f
In

is a maooing from U, x ••• x u to V, then
"" 1 n

U (u ,...,u )/f(u ,...,u ) . (2.31)
r i n l n

In connection with (2.31) , it should be noted that there

-• are many cases in which we have only partial information

•- about ji^/ e.g., the knowledge of its projections on. U.,.-.,U ,

-~ which implies that the available information consists of the

marginal membership functions u,,...,y , where.
—~ JL n

11 u (u ) = sup u(u,...,u) ,
1: x x ul"--'ui-l'ui+l"--'un F 1 n
I \ • , i — 1,...,n .

- In such cases, the extension of the domain of definition of f

- is expressed by

f(F) = U,(u ) -U (u )/f(u-,...,u ) (2.32)
-.J-l n n 1 n

with the understanding that, in replacing U (u ,...,u ) with
F 1 n



16 LZ

U1(u1) * ••• AU (u ), we are tacitly invoking the principle of
maximal restriction [95], which asserts that, in the absence

of complete information about II , we should equate II to the
x x

• maximal (i.e., least restrictive) possibility distribution

which is consistent with the partial information about II .

0 In applying the extension principle to the analysis of

7 soft data, it is frequently convenient to employ a more expli-

.0 cit representation of f(F). which is equivalent to (2.32)-.

'.' Specifically, on denoting the membership function of f(F) by
17 Ur we have

r: f(F) =» U(v)/v (2.33)
jV

where

U(v) *« Max

n

y1(u1) -
n n

(2.34)

subject to the constraint

v = f (u , .,un)

In this form, the extension principle will be employed in

•- Section 4 to reduce the problem of inference from soft data

: to the solution of a variational problem in mathematical

- programming.

An important aspect of our approach to the analysis of

soft data is the flexibility afforded by the assumption that

-. the variables are allowed to he linguistic [90], that is, are

^ allowed to have values that are represented as sentences in a.

>_ natural or synthetic language, with each such value defining

•3 a possibility distribution in the domain of the variable.

- For example, if Age is a linguistic variable, its linguistic

'- values might be. of the form:

young

not young

very young

not very young

more or less young
quite young
rather young

old

not old

very old

not very old

more or less old

quite old
rather old



not young and not old

not very young and not very old

17 LZ

where youngr is a primary term which has to be calibrated in a

- specified context and old is its antonym. As we shall see in

Section 3, the translation rules for propositions expressed

_ in a natural language provide a method for computing the

^possibility distribution induced by a proposition of the form

: "X is A," where SL- is a. linguistic value of X, from the know-

l ledge of the membership functions of the primary term and its
:£ antonym.
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3. Translation Rules and Meaning Representation

When soft data are represented in the form of proposi

tions in a natural language, it is necessary to have, first,

a system for translating such propositions into a more pre

cise form; and second, a set of rules of inference which

apply to the. translated propositions and which may be

employed to arrive at answers to questions regarding the data.

A meaning representation language which is well-suited

for this purpose is PRUF [93]. In what follows, we shall

state some of the relevant translation rules in PRUF and out

line the associated rules of inference.

The translation rules in PRUF serve the purpose offaci-

:j- litating the composition of the meaning of a complex proposi

tion from the meanings of its constituents. For convenience,

the rules in question are categorized into four basic types:

Type 1: Rules pertaining to modification; Type II: Rules per

taining to composition; Type III: Rules pertaining to quanti-

- fication; and Type IV: Rules pertaining to qualification.

Following a discussion of these rules and the associated

... rules of inference, we shall outline a general translation

principle which forms the basis for PRUF, and sketch a general

••-' question-answering technique which reduces the problem of

•7 inference to the solution of a variational problem in mathe-

.-•: matical programming.

-•- Translation Rules

-- Modifier rule (Type. I) . Let X be a variable which takes

•,-. values in a universe of discourse U and let F be a fuzzy sub-

•• set of U. Consider the proposition

p « X is F (3.1)

• or, more generally,

p = N is F (3.2)

where N is a variable, an object or a proposition. For
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example,

p = Mary is young (3.3)

which may be expressed in the form (3.1), i.e.,

p = Age(Mary) is young (3.4)

by identifying x with the variable Age(Mary).

Now, if in a particular context the proposition X is F

translates into-

XisP-*nx=F (3.5)

then in the same context

X is mF —*- II =F (3.6)

where m is a modifier such as not, very, more or less, etc.,

and F is a modification of F induced by m. More specifi-

cally: If m = not, then F = F' = complement of F, i.e.,

U +(u) a 1-U (u) , u e U . (3.7)
F

+ 2
If m » very, then F => F , i.e.,

U+(u) =UF2(u) ,•uGU. (3.8)
F

If m = more or less, then F =» J¥, i.e.,

• .. U. +.(u).= /lip(u) , ueu . . (3-.9>
F

As a simple illustration of (3.8), if SMALL is defined

as in (2.11), then

-where

2
X is very small —•»- H =*F (3.10)

2
F =1/0+1/1+0.64/2+0.36/3+0.16/4+0.04/5 .

It should be noted that (3.7), (3.8) and (3.9) should be

viewed as default rules which may be replaced by other trans

lation rules in cases in which some alternative interpreta

tions of the modifiers very and more or less are more

appropriate.
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Conjunctive, Disjunctive and Implicational Rules

(Type II). If

X is F —*- II «F and Y is G —*• H^G (3.11)

where F and G are fuzzy subsets of U and V, respectively, then

(a) X is G and Y is G—»• H(x Y) aPXG (3.12)

; where

„
^FXG(U'V) &K(U) ^UG(V) ' (3.13)

:: (b) X is F or Y is G—*• IL v) =fUg (3.14)

.-'-. where

F = pxy , G = Uxg (3.15)

and

U^g(u,v) =yp(u)^uG(v) . (3.16)

(c) If X is F then YisG-»- ^rylx) =^' ®^ (3.17)

where H/Y|v^ denotes the conditional possibility distribution

of Y given X, and the bounded sum e is defined by

U-,e£(u,v) . l-(l-uG(u) +UG(v)) . (3.18)

In stating the implicational rule in the form (3.17), we

have merely chosen one of several alternative ways in which

the conditional possibility distribution II. .„. may be

defined, each of which has some advantages and disadvantages

depending on the application. Among the more important of

these are the following [5,49,66]:

(c2) If X is F then Y is G —»• H. i.=F' Ug (3.19)

(c3) If X is F then Y is G —*• II. «.=FXgUf'xv (3.20)

(c4) If X is F then Y is G —*- iT/yjx) (v|u) (3.21)

= 1 if uQ(v) >Up(u)
uGCv)

= —____. otherwise

Vu)
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(c5) If Xis Fthen Yis G-•• T(Y|X) (v|u) (3.22)

= 1 if yQ(v) > yp(u)

= U-(v) otherwise

As simple illustrations of (3.12), (3.14) and (3.17), if

F = SMALL o 1/1 + 0.6/2 + 0.1/3

G = LARGE = 0.1/1 + 0.6/2 +1/3

then

X is small and Y is large —• IL

• 0.1/(1,1) + 0.6/(1,2) + 1/(1*3) + 0.1(2,1)
: 1-0.6/(2,2) +0.6/(2,3) + 0.1/(3,1)

and

+ 0.1/(3,2) + 0.1/(3,3)

X is small or Y is large —*• II.

- 1/(1,1) + 1/(1,2) + 1/(1,3) + 0.6/(2,1) + 0.6/(2,2)

+ 1/(2,3) + 0.1/(3,1) + 0.6/(3,2) + 1/(3,3)

If X is small then Y is large —*• II •

= 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.5/(2,1)

+ 1/(2,2) + 1/(2,3) +1/(3,1) + 1/(3,2) + 1/(3,3) .

Quantification Rule (Type III). if u = {u ,...,u}, Q

is a quantifier such as many, few, several, all, some, most,
•etc, and" " • '' ' '

XisP-^nx=F (3.23)

then the proposition "QX is F" (e.g., "many X's are large")
translates into

nCount(F) S Q (3-24>
where Count(F) denotes the number (or the proportion) of

elements of u which are in F. By the definition of cardi

nality of F [90], if the fuzzy set F is expressed as

F = ui/Ul +u/u2 +-••+Un/un (3.25)
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then

N

Count(F) = I u. (3.26)
i=l

where the right-hand member is understood to be rounded-off

to the nearest integer. As a simple illustration of (3.24) ,

if the quantifier several is defined as

SEVERAL = 0/1. + 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 (3.27)

+ 0.6/7 +0.2/8

then

Several X's are large —• II (3.28)

:: * 1-1

= 0/1 + 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.6/7 + 0.2/8

thwnere urAaG-.(10 *s the grade of membership of the i value
. of X in the fuzzy- set LARGE.

Alternatively, and perhaps more appropriately, the

cardinality of F may be defined as a fuzzy number, as is done

in [91]. Thus, if the elements of F are sorted in descending

• order, so that u < \x if n > m, then the truth-value of the
n •" m —

- proposition

p = F has at least n elements (3.29)

; is defined to be equal to U , while- that of q,

5 q = F has at most n elements , (3.30)

-, is taken, to be 1-u L_. From this, then, it follows that the
•-* n+i

•- truth-value of the proposition r,

:> - r = F has exactly n elements , (3.31)

-' is given by u * (l-]i .,) •
n n+l

Let F+ denote F sorted in descending order. Then (3.29)

- may be expressed compactly in the equivalent form

FGCount(F) = F+ (3.32)

which-signifies that if-the_fuzzy~cardinality .of E- is defined
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in terms of (3.29), with G standing for greater than, then

the fuzzy count of elements in F is given by F+, with the

understanding that F+ is regarded as a fuzzy subset of

{0,1,2,...}. In a similar fashion, (3.30) leads to the

* definition

FLCount(F) « (F+)'-l (3.33)

.1 where L stands for less than and subtraction should be inter-

/"' preted as translation to the left, while (3.31) leads to

1 FECount(F) = (F+) C\ ((F+) »-l)

. where E stands for egual to. For convenience, we shall

.^ rerer to FGCount, FLCount and FECount as the FG cardinality,

-J FL cardinality and FE cardinality, respectively. The concept

: of FG cardinality will be illustrated in Example 9, Section 5.

Remark. There may be some cases in which it may be

appropriate to normalize the definition of FECount in order

to convey a correct perception of the count of elements in a

•- fuzzy set. In such cases, we may employ the definition

FENCount(F) - FSCount(F)
: MM,n(wnMX^W))

Truth Qualification Rule (Type IV) . Let T be a linguis

tic, truth-value,. e.g., very true, qui te true,. more or less,

truer•eitcv. Such a truth-value'may be regarded as a fuzzy-

subset of the unit interval which is characterized by a mem

bership function ]i : [0,1] -»• [0,1].

A truth-qualified proposition, e.g., "It is T that X is

F," is expressed as "X is F is T." As shown in [89], the

translation rule for* such propositions is given by

where

Xis Fis T—*• ITX =F:*" (3.35)

U .(u) = U_(u_(u)) . (3.36)p+ T F
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As an illustration, consider the truth-qualified

proposition

Yolanda is young is very true

which by (3.35), (3.36) and (3.8) translates into

Vttoianda) "» 2(UX0UNG(u)) ' (3"37>
xRUE

Now, if we assume that

u'2 ~r •
UY0DMG(U) " (1 +(25) ' ' u€ C°'10°l <3-38>

PTRUE(V) =* ^ ' VGC°'1]
37 and

:7 then (3.36) yields

"2 _ _ u 2 ~4
;I Age(Yolanda) = (1 +(25* }
- as the possibility distribution of the age of Yolanda.

Probability Qualification Rule (Type IV) . This rule

- applies to propositions of the general form "X is F is X,"

-r where X is a real-valued variable, F is a linguistic value of

X, and X is a linguistic value of likelihood (or probability),

-- e.g-, "X is small is not very likely." Unless stated to the

- contrary, X is assumed to be a fuzzy subset of the unit

-^ interval [0,1]. which is characterized by its membership func-

2^:tion jk , and the probability distribution of X is charac-

-^ terized by its probability density function p, i.e.,

-L Prob{xS[u,u+du]} = p(u)du . (3.39)

--' As shown in [93], the translation rule for probability-

-_ •• qualified propositions is expressed by

(3.40)X is F is X —+ TT(p) = Ua II ]i (u)p(u)dunp) ""x[f "l
where TF(p) denotes the possibility that the probability den

sity function of X is p, and the integral in the right-hand

member of (3.40) represents the probability of the fuzzy

event [36] "X is F." Thus, in the case of

:c •J'.'-r or, ••.-;•
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probability-qualified propositions, the proposition "X is F

is X" induces a possibility distribution of the probability

. density function of X.

As a simple illustration, consider the proposition

q - Yolanda is young is very likely (3.41)

-7ln this case, X = Age (Yolanda) and the right-hand member of

~; (3.40) becomes

2
rrioo

*w =ulikely(J0; ^ouWu>p(u)du) "• (3.42)

:I Used in combination, the translation rules stated above

51 provide a system for the determination of the possibility

-̂^ distributions induced by a fairly broad class of composite

-propositions. For example, by the use of (3.7), (3.8),

:: (3.9), (3.12) and (3.18) , the proposition

*: If X is not very large and Y is more or less small

then Z is very very large.

^_ can readily be found to induce the conditional possibility

•;- distribution described by

2 . .i 0.5

*cz|x.r> (w'u'v> -**(i -(i ->W(U>) ~»&Ll(v>
)•+ U (w)

HLARGE v '

-<;I It is of interest to note that: translation rules like, those

^5.described above have found practical applications in the

-•^design of fuzzy logic controllers in steel plants, cement

^2:kilns and other types of industrial process control applica-

--:tions in which instructions expressed in a natural language

i are transformed into control signals [45,46,39,79],

A more general type of translation process in PRUF which

subsumes the translation rules given above is the following.

Let V - {d} denote a collection of databases, with D

representing a generic element of V. For the purposes of our

analysis, D will be assumed to consist of a collection of

—V
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possibly time-varying relations. If R is a constituent

relation in D, then by the frame of R is meant the name of R

together with the names of its columns (i.e., attributes) .

For example, if a constituent of D is a relation labeled

POPULATION whose tableau is comprised of columns labeled Name

and Height then the frame of POPULATION is represented as

POPULATION!Name|Height1 or, equivalently, as

POPULATION[Name;Height].

If p is a proposition in a natural language, its trans

lation into PRUF can assume one of three—essentially equiva

lent—forms.

(a) p —+ a possibility assignment equation

(b) p —• a procedure which yields for each D in V the

possibility of D given p, i.e., Poss{d|p>

(c) p—•»• a procedure which yields for each D in V the

truth-value of p relative to D, i.e., Tr{p|D>

Remark. An important implicit assumption about the

procedures involved in (b) and (c) is that they have a high

degree of what might be called explanatory effectiveness, by

which is meant a capability to convey the meaning of p to a

human (or a machine) who is conversant with the meaning of

the constituent terms in p but not with the meaning of p as a

whole-. For1 example, a procedure which merely tabulates the

possibility of each D in V would, in general, have a low

degree of explanatory effectiveness if it does not indicate

in sufficient detail the way in which that possibility is

arrived at. On the other extreme, a procedure which is

excessively detailed and lacking in modularity would also

have a low degree of explanatory effectiveness because the

4
It should be noted that (b) and (c) are in the spirit of
truth-conditional semantics and possible-world semantics,
respectively [15,34], in their conventional form, however,
these semantics have no provision for fuzzy propositions and
whence .are ..not suitable .for„.the analysis, of., soft .data...... .
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meaning of p might be obscured by the maze of unstructured

steps in the body of the procedure.

The equivalence of (b) and (c) is a consequence of the

way in which the concept of truth is defined in fuzzy logic

Thus, it can readily be shown that, under mildly

restrictive assumptions on D, we have

Tr{p|D}•= Poss{D|p}
i

which implies the equivalence of (b) and (c).

To illustrate (b) and show how (a) may be derived from

(b), we shall consider first the relatively simple proposition

p = Madan is not very tall . (3.43) ~~

In this case, it is convenient: to assume that D contains two

relations whose frames are:

POPULATION!Name|Height|

TALL|Heightlul

In the relation TALL, each value of height is associated with

tha decree to which a person having that height is tall. In

effect, then, the relation TALL defines the fuzzy set TALL.

The desired procedure involves the following steps.

1.

2.

3.

Find Madan's height, h. In symbols, h is given by the

expression (see (2.21))

h =Hei_ht POPULATION[Name-Madan] .

rind the degree, 6, to which Madan is not very tall in

D- Using the expression obtained in the preceding step,

the answer is:

5=1- (TALL[Height =He± POPULATION[Name =Madan] ])2.
Equate the possibility of D to 5. This yields the

desired translation of p into PRUF, namely

T(D) = 1-(TALL[Height = . POPULATION[Name=Madan] ]) 2
(3.44)
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To find the possibility distribution of Madan's height

from (3.41), it is sufficient to observe that, for a fixed

relation TALL, ir(D) depends only on Madan's height. From

this it follows at once that

"HeighttMadan) =(TMl2)' (3*45)
or, equivalehtly,

Xt • u*„u .* x(«•) a 1-uLtW (3.46)Height(Madan) ^TALL

where u is a generic value of the variable Height. What

should be noted is that the possibility assignment equation

(3.45) could be obtained directly by applying to p the trans

lation rules (3.7) and (3.8). Furthermore, the explanatory

effectiveness of (3.45) is higher than that of (3.44).

Remark. In PRUF, it is important to differentiate

between the meaning of a proposition and the information that

is conveyed by it. Thus, if p is a proposition, then the

procedure, P, into which it translates represents the meaning

of p or, equivalently, its intension [15,41]. On the other

hand, the possibility distribution which is induced by p con

stitutes the information, I(p), which is conveyed by p.

Ihus, i.n the foregoing example the possibility distribution

defined by (3.45) represents the information conveyed by the

proposition p = Madan is not:very tall... The meaning of p,.

then, is the procedure described by the right-hand member of

(3.45).

If p and q are propositions such that

Kp) = Kq) (3.47)

then p and q are semantically equivalent [93], which is

expressed as

p «-* q . (3.48)

On the other hand, if

I(p),..£I(q) (3.49)
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then p semanticaiiy entails q [93], i.e.,

p H- q (3.50)

As we shall see in the next section, the concepts of

semantic equivalence and semantic entailment play an impor

tant role in inference from soft data.
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4. Inference from Soft Data and Mathematical Programming

By interpreting a soft datum as a fuzzy proposition, the

problem of inference from soft data may be reduced to the

problem of inference from a collection of fuzzy propositions.

•:. Suppose that E = {p.,...,p } (with E standing for

- evidence) is a collection, of fuzzy propositions and let p be

_ a proposition that is inferred from E. At this point, it is

' natural to raise two basic questions. First, what does it

: mean to say that p is inferred from E; and second, by what

1 methods can p be inferred from E.

2 To answer the first question, it is convenient to make

J2 use of the concept of information, as defined in Section 3.

52 More specifically, let I(p * ••• *p ) be the information con-

-%7 veyed by the conjunction of propositions p , ,p or,

;. equivalently, the possibility distribution induced by

..: p A...Ap an(j let x(p * ••• *p ^p ) be the information
l n 1 n n

conveyed by the conjunction of p. *• ••• ^p and p. Then, we
* In

-- shall say, informally, that p may be inferred from

"• E= {pL,...,pn} if

I(P1A,,,APJ a Kp. A"*Ap Ap) . (4.1)
i n i n

In other words, p is inferrable from E if the addition of p

-^ to the evidence, E, does not affect the information conveyed

•76:bysL'" - •.'••••• •• •• : • •• ; ••• ••• :- I-.---.".

-- As shown in [91], the above definition implies that the

-3 possibility distribution induced by the conjunction of

-- p ,»».,p is contained in that, induced by p. It is this con-
- •. ± n

-;-. tainment property that underlies the entailment principle

'- [91,93] which serves as a basis for the rules of inference

- stated in the sequel.

Remark. In speaking of entailment, it is necessary to

differentiate between the entailment which obtains for par-

. ticular denotations of the labels of fuzzy sets in

•c.'j. S^.t ;r< ,:n.-? 'jj ••• •
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p ,...,p ,p, and strong entailment, which results when (4.1)

holds for all denotations. As an illustration, if very is

interpreted as a squaring operation, then the proposition

p = Veronica is intelligent

is strongly entailed by

since

p, - Veronica is, very intelligent

. 2 '•" '
INTELLIGENT C INTELLIGENT

regardless of the way in which INTELLIGENT, the denotation

5 of intelligent, is defined. On the other hand, in the case

•* of the propositions j
;

;- pT = John is not young

p2 = John is not old

p = John is. middle-aged

the conjunction of p and p may be expressed as (see

• (3.12))

p., ^Pj = John is not young and not old . (4.2)

Consequently, if the denotations of young, old and middle-

d.ged are such that the 'jontiinment. condition

- YOUNG' HOLD' C MIDDLE-AGED (4.3)

•'" is satisfied, then p is. entailed by p- and p . However,

2 since the question of whether or not (4.2) is satisfied

—• depends on the denotations of the labels of fuzzy sets in p_,

-_ P2 anci ?r ^fc foll°ws that p is not strongly entailed by p
•- and p .

Remark. In some ways, the entailment principle appears

to be counterintuitive because we generally expect a conclu-

- sion, p, to be sharper than the totality of data on which it

is based. However, the reason for the apparent sharpness is

that, in general, p involves only a small subset of the
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variables present in p ,...,p . More specifically, as we

shall see in the sequel, in the process of inference we

usually focus our attention on a small number of functionals

defined on V and preceive the higher degree of focusing as a

manifestation of sharpness of p. An example illustrating;

this and other aspects of the entailment principle is

described in Section 5.

Rules of Inference

For purposes of inference from a collection of fuzzy

propositions, it is convenient to have at one's disposal a

system of basic rules which may be used singly or in combina-

~ tion to infer a fuzzy proposition p from a body of evidence

-> E .= Cp,/...,p }. Several such rules,which constitute a sub-
i n

- set of the inference rules in fuzzy logic, FL [89], are stated

.in a summary form in the following.

1. Projection Principle. Consider a fuzzy proposition

whose translation is expressed as

p-n(*. x)=F <4-4'
J. n

and let x. . denote a subvariable of the variable
is)

x = ;n_,— ,x ), i.e.,
in

x(S) v'V-"-"'*1*!.-. (4"5)
where the index sequence s = (i , ...,i) is a subsequence of

the sequence (l,...,n).

Furthermore, let IIX denote the marginal possibility

- distribution of X, .; that is,
C \S)

'• n - Proj F (4.6)
X(s) U(s)

where U.,
i

i s= 1,.. • t n, is the universe o

ciated with X.;

°( s)
= U.

xl
x ... *U. (4.7)
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and the projection of F on U. . is defined by the possibility

distribution function (see (2.17))

tt (u ,...,u ) = sup u (u ,...,u ) (4.8)
*(s) xl \ Uj '••#,Uj F X n

'm

A

..where s' = ^i"-*'3m) is the index subsequence which is com-
-- plementary to s, and u, is the membership function of F.

>l'.. Now let <•[ be a. retranslation (i.e., reverse translation)

'; of the possibility assignment equation

:; (s) ; U(S)
- Then, the projection rule asserts that q may be inferred from

--* p. In a schematic form, this assertion may be expressed more

'-. 2 transparently as

vx_,..., x )
in.

I (4.10)
q •*— II =s Froj F

X(s) U(s)
As was indicated in Section 2, the rule of inference

.." represented by (4.10) is easy to apply when H is expressed

- as a linear form. As an illustration, assume that U = u

•7 = {a,b}, and

E(X x = 0.8aa + 0.6ab + 0.4ba + 0.2bb

7 in which a term of the form 0.6ab signifies that

;• Poss{xi=a, X2=b} = 0.6 .

2 To obtain the projection of II on, say, U it is suffi-

7 cient to replace the value of X. in each term by the null
: string A. Thus

7 Pro"Ju n(x x ) =°-8a +0-6b+0-4a +0.2b = 0.8a+0.6b

and hence from the proposition

(X1,X2) is 0.8aa +0.6ab +0.4ba +0.2bb
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we can infer by (4.10) that

X is 0.8a +0.6b .

2. Conjunction Rule. Consider a proposition p which is

an assertion concerning the possible values of, say, two

variables X and Y which take values in U and V, respectively.

Similarly, let q be an assertion concerning the possible

1 values of the variables Y and Z, taking values in V and W.

•With these assumptions, the translations of p and q may be

- expressed as

p —*• II? =» F
. _ • (4*11)

£. - q"*n(Y,Z)=G
-y. Let F and G be, respectively, the cylindrical extensions

•' of F and G in U*VXW. Thus, .

F - F xw (4.12)

" and

- G = U*G . (4.13)

Using the conjunction rule, we can infer from p and q a

•2 proposition which is defined by the following scheme:

2 r~* *«,*,=*

:7 r^nuc.*.»-*n5 (4-14)
On combining the projection and conjunction rules, we

.2 obtain the compositional rule of inference (4.17) which

'7 includes the classical modus ponens as a special case.

j More'specifically, on applying the projection rule to

_ (4.14), we- obtain the following inference scheme

-^x,Z)-=F0G — <-4-15)
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where the composition of F and G is defined by

UF°G(U,W) ° SUPV(PF(U'V) ^G(V'W)) * (4.16)
In particular, if p is a proposition of the form "X is F" and

q is a proposition of the form "If X is G then Y is H," then

(4.15) becomes

p-*IIx =F

q-*n(Y|x)~5,e5
r «— IT = F°(G'®K) (4.17)

The rule expressed by (4.17) may be viewed as a generalized

form of modus ponens which reduces to the classical modus

ponens when F =» G and F, G, H are nonfuzzy sets.

Stated in terms of possibility distributions, the

generalized modus ponens places in evidence the analogy

between probabilistic and possibilistic inference. Thus, in

the case of probabilities, we can deduce the probability

distribution of Y from the knowledge of the probability dis

tribution of X and the conditional probability distribution

of Y given X. Similarly, in the case of possibility distri

butions, we can infer the possibility distribution of Y from

the knowledge of the possibility distribution of X and the

:conditional possibility distribution of. Y given X.

rt is important to note that the generalized modus

ponens as expressed by (4-17) may be used to enlarge signifi-

.cantly the area of applicability of rule-based systems of the

type employed in MYCIN and other expert systems. This is due

primarily to two aspects of (4.17) which are not present in

conventional rule-based systems: (a) in the propositions "X

is F" and "If X is G then Y is H," F, G and H may be fuzzy

sets; and (b) F and G need not be identical. Thus, as a

result of (a) and (b), a rule-based system employing (4.17)

may be designed to have an interpolative capability [88,97].

c. :o: .'•..:• r..-:'.f.
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In addition to the rules described above, there is an

important method of inference through which the deduction of

p is reduced to the solution of a variational problem in

mathematical programming.

In general terms, suppose that we have a database D and

that we wish to answer a question q which relates to the data

resident in D. For example, we may have a database which

contains a relation with the frame

POPULATIONllName [Age1

and q may be: What is the average age of individuals in

-POPULATION?

In PRUF, the translation of q is expressed as the trans

lation of the answer to q, with a symbol of the form ?ct iden

tifying the variable whose value is to be determined. As an

illustration, for the example under discussion the proposi

tion to be inferred from D may be expressed as

p = The average age of individuals in

POPULATION is ?f

where f is a function of the entries in D, say X_,...,X .
1 m

Thus, to answer q we must compute the value of f(X , ,x )
1 m

from whatever information is available about D.

To link the method under discussion to our earlier

formulation of the problem of inference •, we shall assume that

the available information about D consists of the evidence

E - ip^r **-tP }t in which the p. are fuzzy propositions.
Our definition of translation in Section 3 implies that

each of the p. in E induces a possibility distribution over

V. Thus, letting ir^(X ,...,X ) denote the possibility of D
given p^, we can assert that the possibility of D given

p^/.-./P is given by the conjunction

TT(D) = TT (X. ,...,XJ -IT (X. ,...,X ) (4.18)
ii m n i m

Thus, tt(D) , as expressed by (4.18), may be viewed as an
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elastic constraint on D which is induced by the evidence

E..~ {p ,.. .,p }.
i • n

From the knowledge of ir(D) we can infer the possibility

distribution of the function

z = f(X_,...,X ) (4.19)
i m

by invoking the extension principle,, as shown in Section 3.

In this way/ the determination of the possibility distribu

tion of f reduces, in principle, to the solution of the follow

ing variational problem in mathematical programming.

u(z) = Max.

subject to

-Xl xW-'-V W—'V
1 (4.20)

Z = f(X.,...,X )
i m

In terms of u(z), the possibility distribution of f may

be expressed in the form

nf =
r

U(z)/z (4.21)
V

where V is the range of z. An example illustrating the

application of this technique will be discussed in Section 5.

As a further example, consider the proposition which

occurs in Example 'e)r Section 1, namely:

p = 3rian is much taller than most of his close friends

• For the purpose of representing the meaning of p, it is

expedient to assume that D is comprised of the relations

POPULATIONllName[Height[

FRIENDS II Name1 Name2

MUCH TALLER||Heightl|Height2 I]i

MOST p y

In the relation FRIENDS, |i represents the degree to which an

individual whose name is Name2 is a friend of Namel. Simi

larly, in the relation MUCH TALLER, ]l represents the degree

to which an individual whose height is HEIGHT1 is much taller
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than one whose height is HEIGHT2. In MOST, u represents the
degree to which a proportion, p, fits the definition of MOST
as a fuzzy subset of the unit interval.

To represent the meaning of p we shall translate p~in

the spirit of (c) (Section 3)—into a procedure which computes
the truth-value of p relative to a given D. The procedure—

;as described below—may be viewed as a sequence of computa
tions which, in combination, yield the truth-value of p.

:1. Obtain Brian's height from POPULATION. Thus,

Height(Brian) =jjeight POPULATION[Name »Brian]

~2^ Determine the fuzzy set, MT, of individuals in

:POPULATION in relation to whom Brian is much taller.

Let Nan^ be the name of the 1th individual in
POPULATION. The height of Name, is given by

Height(NameJ =Hei ht POPULATION[Name =Name. ]

Now the degree to which Brian is much taller than Name is
i

given by

°i % iMUCH ™^ER[Height(Brian),Height(Name.)]

and bene? MT may he axpressred a?

241 = L $j/Name. , Name. G POPULATION
j. x i i Name

where NameP0P0LATI0N *s ttle u"st of aaja^s of individuals in
POPULATION, 6^ is the grade of membership of Name, in MT, and
J\ is the union of singletons <S./Name. (see footnote 3).

3. Determine the fuzzy set, CF, of individuals in POPULATION
who are close friends of Brian.

Toform the relation CLOSE FRIENDS from FRIENDS we inten

sify FRIENDS by squaring it (i.e., by replacing u with u2) .
Then, the fuzzy set of close friends of Brian is given by

^ =UXName2 FRIENDs2[N««l =Brian]

-'''.::! 'i?:^ .c:
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4. Form the count of elements of CF:

Count(CF) =» lL uCF(Namei)

where \i (Name.) is the grade of membership of Name, in CF

and £. is the arithmetic sum. More explicitly

Count(F) = l± u^j^g(Brian, Namei)
\'5. Form the intersection of CF and MT, that is, the fuzzy

;; set of those close friends of Brian in relation to whom he is

much taller.

": HaCPHMT

: ft. •Pnrm fhg count of elements of H.

I ~ Count(H) = J\ uH(Namei)

- where u(Name.) is the grade of membership of Name, in H and

: 7. is the arithmetic sum.
- *•!

- 7. Form the ratio

Count(MTHcF)
r =

Count(CF)

•-' which represents the proportion of close friends of Brian in

- relation to whom he is much taller.

8. Compute the grade of membership of r in MOST

I; t •= MOST[p=r]

2 . The value of x is the desired truth-value of p with

-respect to D and, equivalently, the possibility of D given p.
"3

'7, In terms of the membership functions of FRIENDS, MUCH TALLER

•2 and MOST, the value of x is given explicitly by the

- expression

'I•V (Height(Brian) ,Height(Name.)) ~U (Brian,Name.) t
T = U

^MOST L u (Brian,Name )
^ (4.22)

In summary, the procedure in question serves to repre

sent the meaning of p by describing the operations that must
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be performed on D in order to compute the truth-value of p

with respect to D. Thus, viewed as an expression in PRUF,

(4.22) is in effect a mathematical description of a procedure

which defines T as a function of D. However, as was stressed

in Section 3, the meaning of p is the procedure itself rather

than the value of T which it returns for a given D.
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5. Examples of Inference from Soft Data

To illustrate the application of some of the techniques

described in the preceding sections, we shall consider

several simple examples, including Examples (a), (b), (c) and

(e) of Section 2. As is generally the case in inference from

soft data, the chains of inference in these examples are

short.

Example 1 (Example (a)., Section 1).

X is a large number

Y is much larger than X

How large is Y?

Solution. On applying the compositional rule of infer

ence (4.15), we obtain the following expression for the

possibility distribution of Y

IT a LARGEoMUCH LARGER (5.1)

or, more explicitly,

VV) = SUPu(1We(U) "VmCH IflRGER(u'V)) (5-2>
where LARGE and MUCH LARGER are the fuzzy denotations of

largre and much larger, respectively*

Example 2.

X is small

Y is approximately equal to X

•Z is much larger than both X and Y

How large is Z? *

Solution. Proceeding as in Example 1, we obtain the

following expression for the possibility distribution of Z

11. = (MUCH LARGER THAN °APPROXIMATELY EQUAL o SMALL)
Li

n MUCH LARGER THAN o SMALL (5.3)

in which the intersection implies that Z is much larger than



X, and Z is much larger than Y.

Example 3 (Example (b), Section 1).

Most Frenchmen are not tall

Elie is a Frenchman
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How tall is Elie?

Solution* First, we interpret the question as follows:

Most Frenchmen are not tall

Elie is a Frenchman picked at random

What is the probability that Elie is tall?

Second, we assume that the database consists of a single

relation of the form

POPULATION!!Name |u I

in which ui is the degree to which Name, is tall, and i
ranges from 1 to N.

Now, the constraint on the database induced by the

proposition

p » Most Frenchmen are not tall

gives rise to the possibility distribution expressed by

tp(SOBOI*»BW-1|llog!r(ijia-Ml), (5.4)
in- which 'the argument'of U:.OSm represents the proportion of
Frenchmen who are not tall.

Furthermore, if a Frenchman is chosen at random, then

the probability that he is tall is given by (see (3.40))

Prob{Frenchman is tall} = —£. u. . (5.5)

Thus, the proposition (in which X is a linguistic probability)

q = The probability that a Frenchman is tall is X

induces the possibility distribution

TT (POPULATION) =U^J^U^ . (5.6)
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To apply the entailment principle to the problem in hand,

we have to find a X such that

u, (-Y.u.) >u (—y.u.) . (5.7)
^XNH'i — *MOSTvN*i*i v '

Furthermore, to be as informative as possible, the X in q

should be as small as possible in the sense that there should

be no X' such that

X'(v);< X(v> (5.8) .

for all v in [0,1] and X'(v) < X(v) for at least some v in

[0,1]. \
With this as our objective, we first note that (5.4) may

be rewritten as

TT (POPULATION) » UM^m(l -- 7. U.) (5.9)
p :^MOST N '•i *i

":^ANT MOST N*iUi

where ANT MOST stands for the denotation of the antonym of

•nost, i. e.,

"sot most(v> - ^most'1"^ ' v s [0'1] (s-10)
which signifies that the membership function of ANT MOST is

the mirror image of that of MOST.

At this juncture, then, we can assert that

p = Most Frenchmen are not tall (5.11)

• while

TT (POPULATION) «U m^^(^L U.)
p ANT MOST N Ll *i

r = Prob{Frenchman is tall} is y (5.12)

-* TTr(POPULATION) =^^Zi^)
where y is a linguistic probability.

On comparing (5.11) with (5.12), we note that if the

fuzzy set LIKELY is defined to be equal to MOST, i.e.,

"umiw =umost(v) ' ve[°'1l <5-13>
so thai



44 LZ

UUNLIKELY(V) " »ANT LIKELY(v) (5"14)
= UANT MOST

then we can infer from (5.11) and (5.12) the semantic equiva

lence (3.48)

p =» Most Frenchmen are not very tall •*-*•

r = Prob{Frenchman is tall} is unlikely

Consequently, as the answer to the posed question, we

have

Most Frenchmen are not tall

Elie is a Frenchman

It is unlikely that Elie is tall

In essence, then, what we have shown is that, under the

assumption that the fuzzy sets MOST and LIKELY are equal, we

can infer from the premise

p = Most Frenchmen are not tall

the semanticaiiy equivalent proposition

r s It is unlikely that a Frenchman

picked at random is tall

from which it follows that "It is unlikely that Elie is tall."

Example 4.

Most Swedes are tall

How many Swedes are very tall?

Solution. Suppose that the answer is of the form

r = Q Swedes are very tall

where Q is a fuzzy quantifier. • Then, proceeding as in

Example 3, we have

p = Most Swedes are tall —*• IT (POPULATION) =u qip(— Z- U-)

(5.15)
ana
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r = Q Swedes are very tall —> IT (POPULATION) =U0(ttZ- V.)
(5.16)

Consequently, what we have to find is the "smallest" Q such

that

U (-7.U?) >U (— y.U.) . (5.17)^QvN^iHi — ^MOSTvN^i^i' v '

It can easily be verified that such a Q is given by

Q —2MOST (5.18)

where the 'left-square" of MOST' is defined by

U2 (P) " UMOST(v^) ' VG [°'1] ' (5'19)
MOST

For, from"the elementary inequality

/1/N.Z. u? >hi- V- (5.20)
l l — N ul l

and the monotonicity of UMOSn, it follows that

^OST^W^MOST^iV (5-21)
which, in view of (5.19) , implies that

MOST

and hence that the proposition

'2 entails

p = Most Swedes are tall

•... 2 • • •
q = Most Swedes are very tall

Example 5.

Naomi is not very tall is true

How true is it that Naomi is tall?

Solution. Suppose that the answer to the question is

expressed as a proposition q:

q = Naomi is tall is T

If MOST is interpreted as a fuzzy number [90,18,20] then
--I0ST may be expressed as the product of MOST with itself
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where x is a linguistic truth-value, e.g., very true, more or

less true, etc.

To determine x, we set q semanticaiiy equal to p (see

(3.49)), i.e., we assert that the possibility distributions

induced by p and q are equal. Now, by (3.8) and (3.36), we

have

Naomi is not very tall is: true —* IL . .._,„ .x =F
Height(Naomi).

where (5.23)

Vu) - W(1_,W(U)) (5-24)
and

Naomi is tall is x —»• yT(UTaTT(u)) (5.25)

where UTATT and Umprro are the membership functions of TALL

and TRUE, respectively. Consequently, for all u in the

domain of the variable Height(Naomi), we have

UTROE(1-UTaLL(u)) =V1Wl<U,) (5"26)
from which it follows that the membership function of x is

given, by

UT(v) -1-v2 , v<= [0,1] . (5.27)
Thus, if U-^.™ is defined by

TF.IT3

''TRUEyfflotrel(v) = v2 (5.28)
••. then. j

''" ''•."'" •" VV) =^" UTBOE(V» '" " fS*29)
- and hence

" X = not true . (5.30)

. On the other hand, if

"hob™ mv (5-31)
then

\*" " '"TRUEU (v) - l-uLTT1=,(v) (5.32)
and

X = not very true . (5.33)
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Marvin lives near MIT

Lucia lives near MIT

47 LZ

What is the distance between the

7 residences of Marvin and Lucia?

7: Solution. Let (X„,YM) and (X_,Y„) be the coordinates of
•i. •••• ... MM. !•• Ii

0 the residences of Marvin and Lucia, respectively. Further-

^more, let II/v y * and II/x y ^ be *ke possibility distribu-
7ltions induced by p and q, that; is, derived from the defini-

. tion of the binary fuzzy relation NEAR.

~y Now, tne distance between; the residences of Marvin and

J:Lucia is expressed by
•j;

d = /(X -X.) 2 + (YM-YT) 2 . (5.34)
M I* M L

: Using (5.34) and applying the extension principle (2.34), the

possibility distribution function of d is found to be given

;: by

:• v«> =-%w/\v (Ul'Vl) "f«vv (U2';2))35)
•- subject to

w= /( *l~k2)2 + (vx-v2)2 (5.36)

-j> where the supremum is taken over ail possible values of x,

v;-"Z^V X^/ and Y7 subject- to the constraint (5.36) .• 'Generally, *
•- ir^ as defined.by (5.35) will be a monotone decreasing func-

z tion of w, with TJ" (w) = 1 for sufficiently small values of w.

^ Example 7 (Example (c) , Section 1).

p, = It is unlikely that Andrea is very young

X P2 - It is likely that Andrea is young

P3 = It is very unlikely that Andrea is old

q = How likely is it that Andrea is not old?

Solution. To find the answer to the posed question, we

shall -reduce—the-.statedproblem -to—the. solution of.- a . . ..
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mathematical program, as described in Section 4.

First, each of the premises is translated into a con

straint on the probability density, p, of Andrea's age. Thus,

using (3.8), (5.14) and (3.40), we have

P, =» It is unlikely that Andrea is very young
x f flOO 2TTn (p) =U^_„(l -j UyQaNG(u)p(u)du)

LXKELY'

riuu

Vp) -*aua\ "young(u)pCu)du)
L 2 flOO
Vp) -^LIKELY^1 "J WU)p(u)du)

tlOO

where J ^yoUNG(u)p(u^du rePresents *&& probability of the
fuzzy event "Andrea is young," with the understanding that

the range of the variable Age(Andrea) is the interval [0,100].

Next, we must translate the answer to the posed question,

which we assume to be of the form "It is X that Andrea is not

old," where X is a linguistic probability. Thus

rlOO

(5.37)

(5.38)

(5.39)

7Tq(p) = UX (X-VlnTn(u))p(u)du (5.40)
OLD

where iu is the unknown membership function of X.

Finally, by using (4.20), the problem ir. question is

reduced to the solution of the variational problem

• ^m,
A.

- max

subject to

^LIKELY^1-^ 4>UNG(u)p(u)dU)
j-100 .

*^LIKELY^. *WG(u)p(u)dU)
2 .

"VLIKELY C1 "J ^OLD(u)P(u)dU)J}

rlOOauu

Y= J (l-U0LD(u))p(u)du

(5.41)

where y is the numerical probability of the fuzzy event



"Andrea is not old."

Example 8 (Example (e), Section 1).

Brian is much taller than most of his close friends
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How tall is Brian?

Solution. Let x denote Brian's height. In Section 3,

we have found that, relative to a given database D, the truth

of p is given by

rii^TKX'^eiSFA-c lName4;) * \
x = u,

'li^MT(X'He±9ht<Namei)) *> ]i (Brian,Name.) -j
MOST

^10ST

I^CP(Brian,Name )
— (5.42)

where y^(x,Height(Name^) is the degree to which Brian is
much taller than Name, and u is the degree to which Name, is

IF !

Brian's close friend.

Now, for a given value of x and a given D, the value of

X may be interpreted as the possibility of x given D. Thus,

the possibility distribution function of Brian's height is

given by the same expression as x, and hence

?oss{Height(Brian) =x} (5.43)
'^i^MT(X' Hei9ht(Namei)) *u^,(Brian,Name.)^

~ 7

ZiUCF(Brian'Naltlei)

Example 9. Find the consistency of the proposition

p = Sharon has more than a few good friends

with the database

^Sharon = Mary + °-9ValYa + 0.9Doris + 0.8John (5.44)
' + 0.7Chris + 0.6Pat + 0.5 Denise + —

FEW = 0.8/1 + 0.9/2 + 1/3 + 1/4 + 0.8/5 (5.45)

+ 0.5/6 + 0.2/7

where GFSharon is the fuzzy set of Sharon's good friends
(arranged in order of decreasing degree of friendship) and
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6
FEW is the fuzzy denotation of few.

Solution. If FEW is defined by (5.45) , then at least few

is expressed by

>oFEW = 0.8/1 + 0.9/2 + 1/3 + 1/4 + ••• (5.46)

where >©FEW is the composition of the binary relation >^ with

the unary relation FEW.

The FG cardinality of the fuzzy setGF is given by

FGCount(GFsharon) » 1/1 + 0.9/2 + 0.9/3 + 0.8/4 (5.47)

+ 0.7/5 +0.6/6 + 0.5/7 + •••

-.and_henceL_£he degree of consistency of p with the database is -

given by

Y » sup(FGCount(GF_, ) H >oFEW) (5.48)
bnaron —

= sup(0.8/l+0.9/2+0.9/3 +0.8/4 + •••)

= 0.9

o

A fuller discussion of problems of this type may be found
in [II].
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6. Evidence, Certainty and Possibility

An important issue that arises in the analysis of soft

data relates to the need for a way of assessing the degree of

credibility of a conclusion which is inferred from a body of

evidence.

For our purposes, it will be convenient to regard a body

of evidence—or simply evidence, E—as a collection of fuzzy

propositions, E =* {g ,...,g }. Furthermore, we shall assume
x . n • •

that the evidence is granular in nature, that is, each g.,
7 •L

i = l,...,n, is a granule of the form

Xal

and/or

(b)

and/or

(c)

and/or

(d)

jg. = Y is G. is X.
i li

g. » If X is P. then Y is G.
iii

g. = If x is P. then Y is G. is X.,
1 i 3 3

g. = X is F. is p.
i i *i

j = l,...,m

(6.1)

(6.2)

(6.3)

(6.4)

where X and Y are variables taking values in U and V, res

pectively; F^, i = l,...,n and G., j » l,...,m, are fuzzy
subsets of U and V; and p. and X. are linguistic

probabilities.

Although E may comprise a- mixture of granules of the

form. Ca)-,. (b), (c). and- (d),; there, are two- special cases which

are typical of the problems encountered in practice. In one,

which we shall label Type I, all of the granules in E are of

the form (a), and E may be regarded as the conjunction of

g ,...,g . In the other, all of the granules in E are of the

form (b) and (d), and the evidence is said to be of Type II.

In the latter case, we shall assume for simplicity that X

ranges over a finite set which for convenience may be taken

to be the set of integers {l,...,n}.

7
A more detailed discussion of the concept of information
granularity may be found in [94].
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As a simple illustration of evidence of Type I, assume

that we are interested in Penny's age and that the available'

evidence about her age is comprised of the following soft
data granules:

(a) g » Penny is very young is unlikely

g2 =» Penny is young is very likely

.-..-. g^ = Penny is not young, is unlikely •'.••

As an- illustration of evidence of Type II, we may have,
as in Example (f) in Section 1:

^ gl = If Pennv is an undergraduate student, then she
— is very young

A •

g2 = If Penny is a graduate student, then she is
young

93 = !f Penny is a doctor then she is not very
young

g4 = Penny is an undergraduate student is unlikely

g5 = Penny is a graduate student is likely

gg = Penny is a doctor is not likely

•_ Given a collection of data granules such as those appear-
-ing in (a) and (b), we wish to infer from E an answer to a

question of the general form:

': •• • •:* ..-. <5 % * is Q is ?a •••..•.' •••,• (6.5).

jwhere Q is a specified fuzzy subset of V and ?d is the desired

;linguistic probability. For example:

q = Penny is not very young is ?a (6.6)

to which the answer might be, say,

?a = not very likely .

In the case of evidence of Type I, an answer to a ques-

.tion of the form (6.5) may be obtained, in principle, by using

the mathematical programming technique employed in Example 7,

Se?t.ioIl_5* In the case of evidence^ of..Type II, however, we
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shall use a different approach involving a replacement of the

posed question with a surrogate question, q , that is, a
s

question which, unlike q, may be answerable based on the

information contained in E. Such a question in the case of

(6.6), for example, might be

q = What is the degree of certainty that Penny is
s

not very young?

or

q =* What is the degree of possibility that Penny

is not very young?

-Thje_approach described in! the sequel is based on a

generalization-of the concepts; of upper and lower probabili-

- ties [17,29] which serve as a point of departure for Shafer's

theory of evidence [67]. Viewed from the perspective of our

approach, the latter theory is: concerned with the special

case where (a) the evidence is of Type II; (b) the G. and Q

are nonfuzzy sets; and (c) the p. are numerical probabilities,

Assuming, first, that the G. are fuzzy sets but the p.

- are numerical probabilities, we define the conditional possi

bility and the conditional certainty of the proposition "Y is

QR (o:?r equivalently, the event "Y is 0") given that "Y is

G." as follows:
i

22 where

Poss{Y is QJY is ,G".} = sup(Q HG.)

Cert{Y is QlY is G.} = inf(G. =>Q)
1 i i

sup(QOG.) = supw.(y_(v) ~u_ (v)) ,
i v y \s.

i

irif (G, =>Q) » inf ((1 -u (v)) - u0(v))
1

and -u_ and u_ are the membership functions of Q and G.,

respectively.

In effect, the right-hand members of (6.7) and (6.8)

serve as measures of the degree to which the proposition "Y

is G." influences one's belief in the proposition "Y is Q."

(6,;7).

(6..8)

V e v (6 .9)

) (6.10)

.,-:;; a---J :^-:-u i-
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In particular, (6.7) serves as a measure of the degree of

possibility while (6.8) plays the same role in relation to

the degree of certainty. Note that when Q and G. are non

fuzzy, we have

sup(QDG.) = 1 if QDG. is nonempty (6.11)

= 0 if QHG. = 6
i

inf(G =>Q) = 1 if G. C Q (6.12)

\ =0 otherwise •

Now since X is assumed to be a random variable which

-takes_the__Kalues l,...,n with respective probabilities

p ,...,p , the-conditional possibility and conditional cer

tainty of the proposition "Y is Q" are also random variables

whose respective expectations are given by

EIT(Q) = IiPisup(QriGi) (6.13)

EC(Q) = IiPi inf(Gi^>Q) (6.14)
=IiPiinfv(d-UG_(v)) vpfv))
= 1 -ElKQ') X

We shall refer to ElI(Q) and EC(Q) as the expected possi

bility and the expected certainty, respectively, of the pro

position "Y is Q.» When Qand! G^, ... ,G_ are nonfuzzy, EC(Q)
and EH(Q) reduce to the Shafer's degree of belief and degree
of plausibility, respectively, which correspond to the lower

and upper probabilities in Dempster's work [17].8 Our feel
ing is that Shafer's identification of "degree of belief"

with the lower rather than the upper probability (or, more

generally, with E(Q) rather than ElI(Q)) is open to question,
p

It should be remarked that EC(Q) and ElT(Q) are not normal
ized—as are the lower and upper probabilities in the work
of Dempster and Shafer. As is pointed out in [95], the nor
malization in question leads to counterintuitive results in
-application_to .combination.,of bodies..of., evidence._
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since there is no particular reason for singling out EC(Q) or

ElI(Q) or, for that matter, any convex combination of them as

a universal measure of the degree of belief.

Having defined the concepts of expected certainty and

expected possibility, we are in a position to see the

rationale for employing the technique of surrogate questions

in the case of evidence of Type II. Taking for simplicity

the. case where the Gi and Q are nonfuzzy and the p. are
numerical probabilities, the evidence can be expressed in

the form

A.

g = Y6G. or g. = y€go or ••• or g = Y€g
-> 12 2 ''n n

Prob{g }=pr and Prob{g0} =p. and ••• and Prob{g }«p
A J- 2.2 n ^n

Now let us assume that the original question is: What is

the numerical probability that. y€q? It is easy to see that

the granularity of available evidence makes it infeasible to

answer questions of this type for arbitrary Q. Thus, we are

compelled to replace the original unanswerable question with

a surrogate answerable question which in some sense is close

to the original question. In the case under discussion, such

questions would be:

(a) What is die expected certainty lor, equivalemily,

the degree of belief (Shafer) or the lower probability

(Dempster))- that Y € Q?- • f, .. •... • v •-

(b) What is the expected possibility (or, equivalently,

the degree of plausibility (Shafer) or the upper probability

(Dempster)) that Y G Q?

Based on the available evidence, the answers to (a) and

(b) are:

EC(Q) = JiPiinf(Gi=>Q) , i= l,...,n
and

EH(Q) =IiPisup(GiHQ)

where (see (6.11) and (6.12))
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inf(G. =>Q) = 1 if G. C Q
i l

=0 otherwise

and -••'• • .-.•.••:

sup(G. Hq) = 1 if G. Hq = 8

= 0 otherwise

A serious shortcoming of the Shafer-Dempster approach is

_ that if G. and Q are nonfuzzy and the condition

\ G.'C Q
i *

^;is not satisfied exactly, then no matter how small the error

3 might be the contribution of the term p. inf(G. =>Q) to the

value-of-EC (Q) in the summation

;'; EC(Q) = J± PjL inf(G± =>Q)

would be zero. In intuitive terms, what this means is that a

. piece of evidence will be disregarded so long as there is the

slightest doubt about its perfect validity. We avoid this

extreme degree of conservatism in our approach by (a) allow

ing the G^ and Q to be fuzzy; and (b) fuzzifying the concept
-- of containment, with the expression inf(G. =>Q) in (6.14)

;: representing, in effect, the degree to which G. is contained

-. in Q. Thus, if G is regarded as a random variable which

I- takes the values G^,...,G with respective probabilities
V Pnr-«-/P^r then, we can write .
- --;: <*-• • • •• n ..-•••• ; .. .-. ., . r-.i. •.....•-..»••• .. • . . ... : . . "..-..

;5 EC(Q) = Prob{GCQ} (6.15)

.VI with the understanding that G C Q is a fuzzy event [86] and

" that the degree to which G C Q is satisfied is expressed by

^\ ' degree{G CQ} = inf(G=»Q) .

- Viewed in this perspective, (6.15) may be regarded as a

natural generalization of Dempster's lower probability and

Shafer's degree of belief.

For the purpose of illustration, we shall conclude this

section by describing the application of our approach to
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Example (b) . In this example, the G. and Q are fuzzy and the

Pi are linguistic probabilities. More specifically, we have

G = YOUNG2

G0 = YOUNG

G2 = (YOUNG )*

Q = YOUNG'

... p = UNLIKELY = ANT LIKELY

p 4 LIKELY .

p3 = (LIKELY)»

2
where YOUNG is the denotation of young, YOUNG is the denota-

_tion_of veru young, ANT is the antonym, i.e., (see (3.40))

UflOT"LIKELY(V) = WLIKELTC(1-V> ' VS [°'1] (6*16)
and the prime represents the complement.

Now let

a. = sup(YOUNG nYOUNG')

a. = sup(YOUNGHYOUNG')

a. = sup((YOUNG )' OYOUNG*)

(6.17)

(6.18)

(6.19)

where the a. are numbers in the interval [0,1]. (From (6.18)

it folic?s that a. 0.5 but we shall not m?ks us> of this

fact.) Then, using (6.13) we can express Elt(Q) as

:.-.-"., EH(Q) -• a-UNLIKELY ®• Ct^LIKELY «; ^LIKELY-' (6.20)

where e denotes the sum of fuzzy numbers [90,50,18].

To compute ElI(Q) as a fuzzy number, we have to take into

consideration the fact that the numerical probabilities must

sum up to unity. Thus, on denoting these probabilities by

v , v , and v , and applying the extension principle (4.20),

the determination of the membership function of ElI(Q) is

reduced to the solution of the following variational problem:



( 1_V1 v?U(z) &max^ ^ ^ ^iTvr>Tv(—-) .UTTtr_v(_£) (6.21)
vn ,vvv, ^LIKELY a . HLIKELYva

v.

~ f1 - u (_JL\ 1
^ MLIKELYva 'J

subject to
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2 ° Vl+a2V2+a3V3 (6'22>

1 =vi+v2;+v3

Thus,, expressed as a fuzzy set, we have

r :

SH(Q) = U(z)/z (6.23)
J[0,1]

where u(z) is given by (6.21). To compute EC(Q), then, we
: can make use of the identity (6.14)

EC(Q) = 1 -EH(Q') (6.24)

From our definitions of ElL(Q) and EC(Q) it is a simple
matter to derive a basic rule of conditioning which may be

•regarded as a generalization of those given by Dempster and

Shafer:. Specifically, assume that the evidence has the form:

If X - i then Y is G. , i = l,...,n

Prob{x =i} » p.
i

and, in addition, we know that

•'•'•9b=^is'Gd- •-••••
where GQ is a given fuzzy subset of V.

Clearly, the available evidence may be expressed in the
equivalent form:

If X » i then Y is G±riG0 , i= l,...,n
Prob{x =i} = p.

which inplias that

EK(Q) conditioned on "Y is G "= Ell(QHg0) (6.25)

and correspondingly
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EC(Q) conditioned on MY is G " = 1-ElKQ' UG') (6.26)

. Remark. The connection between the definition of

expected possibility—as expressed by (6.13)—with that of

the upper probability in [17] and [67]—may be made more

transparent by interpreting Ell(Q) as the probability of a

fuzzy event—in the manner of (6.15) . More specifically, if

supCgHq) is regarded as the degree of occurrence of the.

fuzzy event G^q?, in which the question mark serves to sig

nify that we are concerned with the degree to which G inter

sects Q rather than with the intersection of G and Q, then we

can write

ElI(Q) = Prob{GOQ?} (6.27)

with the understanding that G is a random variable which

takes the values G ,...,G with respective probabilities

Pl,...,pn,

In summary, then, the expected possibility and expected

certainty may be expressed in the form

EII(Q) = Prob{GHQ?} (6.28)

and

EC(Q) = Prob{GCQ> (6.29)

which clarifies the sense in which EH(Q) and EC(Q) may be

viewed, respectively, as generalizations of the concepts of

upper and lower probabilities—concepts which are defined in
i i

[17] and [67] under the assumption that the G. and Q are

nonfuzzy sets.
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7. Concluding Remark

The approach,to the analysis .of soft data described in...

, this paper represents a substantive departure from the con

ventional probability-based methods.

The main thesis underlying our approach is that, in

"- general, the uncertainty which is intrinsic in soft data is a

ui mixture of probabilistic and possibilistic constituents and, .

~/: as such, must be dealt with by a combination of probabilistic

}.; and possibilistic methods. We have indicated, in general

-;•' .terms, how this can be done through the use of the concept of

35-a possibility distribution and. the related concepts of a lin-

-- guistic variable, semantic entailment, semantic equivalence,

22 and the extension principle. Finally, we have shown how the

-- concepts of expected possibility and expected certainty

•_: relate to the important issue of credibility analysis, and

-•* indicated a way of reducing many of the problems in inference

•^ from soft data to the solution of nonlinear programs.

-- The issues associated with soft data analysis are varied

and complex. Clearly, we have—at this juncture—only a

-- partial understanding of the basic problem of inference from

- soft data and the associated problem of credibility assess-

-: ment. What is likely, however, is that, in the years to come,

77. .our understanding of these and: related problems will be

15 enhanced through a further development of possibility-based '""'
15• • ' '' ..
,L methods for the representation and manipulation of soft data.
I "3 • ; !
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