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A thesis advanced in thls paper is that much of the
uncertalnty which is associated with soft data is nonstatis-

'tical in nature. Based on this premise, an approach to the

:representation and manipulation of soft data--in which the
‘recently developed theory of possibility plays a central role--

is described and illustrated with examples.

1. Introduction

The term soft data does not have a universally agreed
upon meaning. Some use it to characterize data that are
imprecise or uncertain, while others attach-the label “soft"
o> data whose croedibility iS'oéen 0 queétion.

In dealing with soft data of the tjpe encountered in

' such diverse fields as psychology, socioclogy, anthropology,
. medicine, econcmics, management science, operations research,
' pattern classification and systems analysis, it is a standard

‘practice to rely almost entireiy on the techniques provided

by prcbability theory and statistics, especially in applica-

< tions relating to parameter estimation, hypothesis testing

and system identification. It can be argued, however, as we

do in the present paper, that such techniques cannot cope

*
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effeétivéiy with those problems in which the softness of data
is nonstatistical in nature--in the sense that it relates, in

the main, to the presence of fuzzy sets rather than to random

_. measurement errors or data variability.
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Needless to say, the inability of conventional statis- .
tical techniques to deal with problems of this type would not
matter much'if the predcminancé of fuzziness in softness were
‘a rare phenoménon. InAreality, the’ opposite is the case; for,
upon closer examination, it becomes clear that much of the
,softness in data analysis is nonstatistical in the sense

'explicated above. Moreover, the same is true of most of the

“““ijinguisttc-information that humans manipulate through an T

3§;implicit use of what might be called approximate (or fuzzy)

‘.
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‘reasoning based on fuzzy rather than standard logic.’

To make the latter point more concretely, it will be
helpful to list-—-and subsequently analyze in greater detail--
several typical examples of everyday type of questions which
cannot be handled effectively by conventional probability-
based methods. In these questions, the soft data are
exprassed as propositions appearing above the horizontal line;
the italicized words are the labels of fuzzy sets; and the
answers are expected to be in the form of a fuzzy proposition,
‘that is, a proposition whose constituents may have a fuzzy
‘denotation. Specifically:

(a) X is a large number

Y is much larger than X

(]

How large is ¥Y?'

-

(b) Most Frenchmen are not tall

£lie is a Frenchman

How tall is Elie?

.o v
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It is unlikely that Andrea -is very young
It is likely that Andrea is young
It is very unlikely that Andrea is old

How likely is it that Andrea is not old?

It is true that Hans is not very tall

It is very true that Hans is not short

How tall is Hans?

Bfian is much taller;thén most of his close friends

How tall is Brian?

(L)
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If Bernadette lives in Versailles then she is
-very rich

If Bernadette lives in Monmartre then she is poér
It is likely that Bernadette lives in Versailles

It is very unlikely that Bernadette lives
in Monmartre

How likely is it that Bernadette is.not rich?

- As will be seen in the sequel, our approach to the

- analysis of soft data of the type illustrated by the above

-% examples is based on fuzzy logic [7,22,89] rather than on a
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combination of classical logic and probabiliity-kased mechods
--as. is true of the conventional approaches to soft data
.analysis. In essence, our rationale for the use of fuzzy
:logic for soft data analysis rests oﬁ the premise that the
‘denotations of imprecise terms which occur in a soft database
@m,&rmemapumfuméasmmuthnmwwnhy

‘distributions. For example, in a proposition such as

P =xisa iarge number (1.1)

. the softness of data is due to the fuzziness of the denota-

T tion of large number. Similarly, in the proposition

softness_is_due to:. (a)_the_fuzziness of the denotation of

p = It is likely that Andrea is young (1.2)
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yoﬁhg; and (b) the fuzziness of the term likely, which
characterizes the probability of the fuzzy event "Andrea is
. © young” [71,86]. As we shall see presently, the impreci-
;, sion in (l.l1l) is possibilistic in nature, whereas in (1.2) it

- is partly probabilistic and partly possibilistic. Viewed in

. this perspective, then, a soft datum may be regarded, in

jf general, as a proposition in which the uncertainty is due to.
sL , _

.7 a combination of probabilistic. and possibilistic constituents.

Tt When it is necessary to differentiate between a term and

Egits denotation, the latter will be expressed in uppercase

- ‘symbols. To illustrate, in (1.1) the term large number (or,
e '—"._simp‘ly,—l‘arge) has as its denotation a fuzzy subset, LARGE,
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13 of the interval U = [0,2). This subset is characterized by

'z'its membership function u : U — [0,1] which associates

:: with each number u € g thzhgigde of membership of u in LARGE.
. For example, the grade of membership of u = 100 in LARGE

" might be 0.2 while that of 400 might be 0.9.

3; A basic aspect of a fuzzy proposition such as "X is

-- small” is that it does not provide a precise characterization

> of the value of X. Instead, it defines a possibility distri-

bution [92] of values of X which associates with each nonne-
gat.ve real number u a number in the interval [0,1] which

represencs the possibility that X could take u as a value

i
R NV

.given the proposition "X is small."” To express this in a

(W &R

‘symbolic form, we write

perp -

f X is small — IIx=SMALL (1.3)
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‘which signifies'that the proposition "X is small" translates

..
[

-.into the assigmment of the fuzzy set SMALL to the possibility
! distribution of X, Hx. Equivalently, the proposition "X is
i small” will be said to induce the possibility distribution

3 HX, with the right-hand member of (1.3) constituting a possi-

bility assignment equation. For notational convenience, we

0y

_ shall write

L]

)
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Poss{X =u} 2 ™, (a) ' O (1.4)

where the function Mot U — [0,1] is the possibility distribu-
tion function and U is the domain of X.
T Essentially, the possibility distribution of X is the
:;:collection of possible values of X, with the understanding

~ that possibility is a matter of degree, so that the possi-
'~ blllty that X could take u as. a value may be any number in

" the lnterval [o, l] or, more generally, a poznt in a partlally

'

'Zﬁ ordered set.

4
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In general, a pOSSlbllltY distribution may be induced by

7.
dé a physical constraint or, alternatlvely, may be epistemic in

5f;or:n.g:;n. To illustrate the dlfference, let X be the number of

s -

1~ passengers that can be carried in Carole's car, which is a
fm'five passenger Mercedes. In this case, by identifying wx(u)
with the degree of ease with which u passengers can be put in
-- Carole's car, the tabulation of T, may assume the following

E: form in which an entry such as (7,0.6) signifies that, by

some explicit or implicit criterion, the degree of ease with
~5 which 7 passengers can be carried in Carole's car is 0.6.
= In the above example, the possibility distribution of X
23 :is induced by a physical constralnt on the number of passen-
%2 gers that can be carried in Carole s car. To illustrate the A
ZO case where the possibility dlstrlbutlon of X is epistemic in
7 origin, i.e., reflects the state of knowledge about X, let X

" be Carole's age and let the information about Carole's age be

?fconveyed by the proposition
o) = Carole is young (1.5)

" where young is the label of a spec1f1ed fuzzy subset of the

..t —— e D e T ———
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interval [0,100] which is characterized by its membership

function , with uYOUNG(u) representing the degrée to

YOUNG
which a person who is u years old is young in a specified
context.

The connection between wx and uYOUNG is provided by the

i: so=called possibility postulate of possibility theory [92,93]

EERY

21
o
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- other than that supplied by the propasition p % Carole is

young, the possibility that X = u is numerically equal to the
grade of membérship of u in YOUNG. Thus

Poss{x=u} = T lu) = (w) , u€[0,100] (1.6)
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or, equivalently,

lTAge(Carc:ole) = YOuNG L.7

;é with the understanding that the possibility assignment equa-

-

lf tion (1.7) is the translation of (1.5), i.e.,
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Carole is young — HAge(Carole) = YOUNG . (1.8)

It is in this sense, then, that the epistemic possibility

- distribution of Carole's age is induced by the proposition

- p %—Ca:ole is young.

 Waat is the difference between probability and possi-
bility? As the above examples indicate, the concept of
'possibility is an abstraction of our intuitive- perception of

‘ease of attaimment or degree of compatibility, whereas the

~fconcept of probability is rooted in the perception of likeli-

‘hood, frequency, proportion or strength of belief. Further-
‘more, as we shall see in Section 2, the rules governing the
:manipulation of possibilities are distinct from those which
apply to probabilities. ‘

An important aspect of the connection between probabili-
ties and possibilities relates to the fact that they are

. independ=nt characterizations of uncertainty in the sense

. that from the knowledge of the possibility distribution of a

—— r— —

7 which.asserts that, in the absence. of any information about X

Hyounc —
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variable X we cannot deduce its probability distribution, and

vice-versa. For example, from the knowledge of the possi-

. bility distribution of the number of passengers in Carole's .

w o

car we cannot deduce its probability distribution. Nor can

we deduce the possibility distribution from the probability

distribution of the number of passengers. However, we can

.make a weaker assertion to the effect that if the possibility
_that. X==u is small, then it is ‘Likely that the probabzllty

‘that X=u is also small. However, from this it does not

follow that high possibility implies high probability, as is

¢ reflected in the commonly used statements of the form "It is

1

—““T“p0551bre“but not probable that... ." -
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In the present paper, we shall focus our attention on

only a few of the basic aspects of possibility theory and its

applications to the analysis of soft data. Thus, our main

concern will be with the representation of soft data in lin-

guistic form and with approximate inference from such data.

In addition, we shall touch upon the issue of data granu-

larity and its relation to the theory of evidence. We shall

not consider, however, an issue that is of considerable rele-

vance to the analysis of soft data, namely, the representa-

tion of imprecise relationai dependencies in the form or
flinguistic decision tables and branching questionnaires [10,
971. ' , : '
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lIt was brought to the author’s attention by John E. Shively

(Lawrence Berkeley Laboratory) that an interesting case of
an interplay between probability and possibility occurs in
the historical letter from Einstein to Roosevelt (dated
Augqust 2, 1939). In a passage in this letter, Einstein
writes: ‘

-

In the course of the last four months it has been

made probable--through the work of Joliot in France

as well as Fermi and Szilard in America--that it may
become possible to set up nuclear chain reactions in
a large mass of uranium, by which vast amounts of
. power and large quantities of new radium-like elements
would be generated. Now it appears almost certain
that_this could be achieved in _the_immediate_ future.
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2. Basic Properties of Possibility Distributions

As we have indicated in the preceding section, the con-
_- cept of a possibility distribution plays a central role in
'j our approach to the representation and manipulation of soft

;. data. In what follows, we shall discuss some of the basic
;~ properties of possibility dlstributlonszand lay the ground-
.} work for their appllcatzon to soft data analy31s ln later

sect:.ons .

i".‘

\,\ SIS V) ~s~

'POSSlblllty Measure

Consider a variable X whlch takes values in a universe

o G dt o Ly L s

O B (_;) 4~

of~dfscourse U, and let H be the possibility distribution -
iinduced by a proposition of the form '

Lo

p:Xxisa (2.1)"

O )

1
(o

where G is a fuzzy subset of U which is characterized by its

L
Y]

I membership function u . In consequence of the possibility

postulate, we can assert that
-~ I, =¢6 (2.2)
-2 which implies that

= L (u} = uG(u) , u ef_’ (2.3)

where lels the pOSSlbllltY dlstrlbutlon function of X.

Now if P is-a fuzzy subset of U, then the posszbzllty

"
[ TR & SIS BT P

‘measure of F is defined by the.expresszon

I(r) = sﬁp(r ng) (2.4)

B I O IRCRFICN |
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or, mores explicitly,

3

A

I4E) = sup (U (W) ~u_(w) (2.5)

7 where the supremum is taken over u € U and ~ represents the

; min operation. The number II[(F), which ranges in value from O

2In our exposition of the basic properties of possibility
distributions and related concepts we shall draw on some of
the definitions and examples in [91,94,98].

T ——— ety st — —— - - c——— - va—— —————eat e em cmme e
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to 1, may be intexpreted as the possibility that X is F given
that X is G. Thus, in symbols,

I(F) = Poss{X is F|X is G} = sup(F NG) (2.6)
In particular, if F is a nonfuzzy set A, then

l.lA(u)=l if u€a
=0 if u€a

Lz

I(A) = Poss{X is A|X is G} = sup, (G) ' (2.7)

Po= supA(uG(u)) r u€vu

An_important immediate consequence of (2.4) is the

.- FP-additivity of possibility measures expressed by

I(FUH) = II(F) VII(E) (2.8)

-, where F and H are arbitrary fuzzy subsets of U and V is the

-+ max operz2tion. By contrast, the probability measures of F

. and H have the additive property expressed by

P(F UH)

]

P(F) +P(H) -P(F NH) (2.9)

The fact that possibility measures are F-additive but not

additive in the usual sense constitutes one of the basic

f

fferences between che concepts of possibility and proba-

_¢ bility [92].

. As’a simple illustration of (2.6) , assume that the pro-

‘position "X is G" has the formf

P = X is small (2.10)
where SMALL is a fuzzy set defined by

SMALL = 1/0.+ 0.8/2 + 0.6/3 + 0.4/4 + 0.25 (2.11)

3 1 P .

The notation F = ul/ul+- . --i-]_tn/un signifies that P is a col-
lection of fuzzy singletons ui/ui, i=1,...,n, with ui
representing the grade of membership of u, in F. More gen-

‘erally, F may be expressed as F = Eiui/ui or F = J uF(u)/u.
. §)
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In thls case, the pOSSIblllty dlstrlbutlon induced by p is
given by

- Hx'= 1/0 + 0.8/2 + 0.6/3 + 0.4/4 + 0.1/5

-

~. and if the proposition X is F has the form

{

'i.‘l(ﬁl‘llb’l‘

q £ X is large v (2.12):

PRI

where LARGE is defined by

-~

| LARGE & 02/4+O4/5+06/6+08/7+1/8+---,

Yl L L
PGy - o

L8
|

I
H

SMALL N LARGE = 0.2/4 + 0.1/5

-Poss{X is large|x is small}l = 0.2

o Lt
[ T I W T

-Joint, Marginal and Conditional Possibility Distributions

LTS BN

Let X = (Xl,...,xn) be anfn—a.ry variable which takes

- values in a universe of discourse U = Uy X = =xU_, with Xy

S

=1,...,n, taking values in Ui' Furthermore, let F be an
-2 a-ary fuzzy relation in U which is characterized by its mem-

. bership function uF. Then, the proposition
P2 XisF (2.13)
_ induces an n-ary joint possibilicy distribution

N . S m Amot | (2.14)
. | SR S TROTE S o @y

P R
-5 which is given by

T2 l'[ . =F (2.15)
(xl,...,xn)

;1 ‘Correspondingly, the possibility distribution function of X
fiS'expressed by '

.

.i,'rr

- (xl,...,xn

- A
)(ul.--.,un) = uF(ul,---.un) P (ul‘,-.-.un) €u

]

Poss{z{ SU .. X = un}

1
As in the case of probabilities, we can define marginal
_ and conditional possibilities. Thus, let s 2 (i1/---/4) be

—_— - a.suosequence-of—the index -sequence~ (1,-,. . ,n)—and_—let sl . e




denote the complementary subsequence s' =

forn =5, s = (1,3,4) and s' =

(Gyreeeriy) (eng.,

(2,5)). In terms of such

' sequences, a k-tuple of the form (Ail""'Aik) may be

USSR S l

LW A A

i

expressed in an abbreviated form as A
' variable X

(s)

(s)* In particular, the

= (xil, . ..,Xik) will be referred to as a k-ary

subvariable of X & (xl,...,x ), with Xigry = (le,'...,xjm)

be:.ng a subvariable complementary to X( )°

[ IR VR
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‘I‘he PZ‘OJeCtJ.Cm of II(x].““'x ) om U( y = xu~k
is a k-ary poss:.b:.l;x.ty distribution denoted by T
I 2 proj i i (2.16)
X(s) Uigy Kpre--rXp)
‘and defined by -
1? (u, ) & T(U,eeuru) (2.17)
( (s) u(:s') X1 -

where Tg (s) is the possibility distribution function of

I .

x(s)

For example, for n = 2,

(u

Xl

1

)-‘3sup T

)

(xl,x )

(ul,uz)

is the expression for the possibility distribution function

of the projection of H(xllxz) ox U
concept of a marginal probability distribution, II
referred to as a marginal possibi.ity distribution.

AsS a simple J.llustratn.on, assume that n = 3, U
= LT3 = a+b or; more conventionally, {a,b},. and I

is expressed as a linear form -

'IL(X 1 X,,X.)

2°73

Posé{xl=b, X, =a,

1

. By analogy with the

will be
()
1° 2
(xlllex )

= 0.8aaa +laab +0.6baa +0.2bab +0.5bbb ™ (2.18)

2

To derive H(xl,xz) from (2.18),

- replacs the value of X, in each term

‘4 string A.

3

This yields

---in which a term of the form 0.6baa signifies that

X3=a} =

it is sufficient to

in (2.18) by the null
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= 0.8aa +1laa +0.6ba +0.2ba +0.5bb

Il
(Xl,xz)
laa +0.6ba + 0.5bb

]

and similarly .
la +0.6b +0.5b
la +0.6b

i
%

i

An p-ary possibility distribution is particularized by.

.forming the conjunctior; of,the;propositicns "X is " and

"X(~s)'- is G," where X is a subvariable of X. Thus,

(s) _ _
IIX[IIx =G] 2 FNG (2.19)
(s) -

where the right-hand member denotes the intersection of F

. ;with the cylindrical extension of G, i.e., a cylindrical

fuzzy set defined by

ua(ulr---run) = ﬁG(ui r---vui ) (2.20)
1 k
(ul,...,un) EUIX”'xUn .

As a simple illustration, consider the possibility

- distribution defined by (2.18), and assume that

= 0.4aa +0.%a +0. .
H(Xl’xz) 0.4aa +0.%a +0.1bb

- In this case,

G = 0.4aaa +0.4aab +0.9baa +0.9bab +0.1bba +0.1bbb

.. FNG = 0.4aaa +0.4aab +0.6baa +0.2bab +0.1bbb

and hence

H
|

Eix .x,x )0

172773 |
= 0.4aaa +0.4aab +0.6baa +0.2bab +0.1lbbb .

=Gj
). (Xl,Xz)

There are many cases in which the operations of particu-

larization and projection are combined. In such cases it is

. convenient to use the simplified notation

IO, =aG] (2.21)

X X(s)
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to indicate that the particularized possibility distribution

(or relation) II[II =G] is projected on U( yr where r, like

X

s, is a subsequencé <)>f the index sequence (1,...,n). For
.7 example,
nn, =G]
- X XX, (x3.x4)

t -

= X .
. would represent the project:.on of H[H(x 30%g) =G] on trl U3

Informally, (2. 21) may be interpreted as. Constrain the X
by Iy ( ) = G and read out the x( ye In particular, if the
<= s
37 values of x( )--rather than their possibility distribution--

: are set equal to G, then (2.21) becomes

(s)

B . I[x:
.‘;J; x(r)

~ -

X g =G] .

-~ We shall make use of (2.21) and its special cases in
_' Section 3.

As we shall see in.Section 3, if X and Y are variables

-: taking values in U and Vv, respectively, then the conditional
: possibiiity distribution of Y given X is induced by a propo-

" sition of the form "If X is F then Y is G" and is expressed

.- as H(Y'X) s With the understand:.ng that

"ie|x) (v]u) & Poss{i—-v[& u}l | (2.22)

oo~ where (2.21) defmes ‘the cond:.tional poss:.b::.l:.ty dn.str:.but:.on

ftmc‘uon of 'Y given x.
- £ we know the distribution function of X and the condi-

7. tiomal distribution function of Y given X, then we can con-

- struct the joint distribution function of X and Y by forming

., the conjunction (~ 2 min)

(x Y) (u,v) = Ty (u) ~

: ey (viw) . (2.23)

' However, unlike the identity that holds in the case of proba-

‘bilities, we can also obtain T (X,¥) (u,v) by forming the con-
. 14
s .
junction of ™ x| (u]v) and T | %) (v|u):
(a,v) (u[v) (v[u) . (2.24)

T, 0802 Ty

(YIX) Bt AU e fief S
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In yet another deviation from parallelism with probabil-
ities, the marginal possibility distribution function of X

may be expressed in more than one way in terms of the joint

and conditional possibility distribution functions. More

- specifically, we may have

_(a)~ , W (u) = (u,v) ‘ (2.25)

(X;Y)

where Ve denotes the supremm over v Ev;

o Tyl = (ufv) C (2.26)

(XIY)
and

(c) Ty (u) =T (u,v(u)) (2.27)

(XIY)

. obsexves the joint possibility distribution II

. tribution I

where, for a glven u, v(u) is the value of v at which
(le) (vlw) = 1, if F(u) is def:.ned for every u € U.
Intuitively, (a) represents the possibility aof assigning

-. a value to X as perceived by an observer ((X,Y) observer) who

. Sin‘i-'
(x,Y)

larly, (b) represents the perception of an observer ((XIY)
obsexver) who observes only the conditional possibility dis-

(XIY) and is unconcerned with or unaware of

H(V{x)’ And (c) expresses the perception of an observer who

' assumes that v is assigned that ‘value, if it exists, which

cand T

' makes T(le)(v[u) equal to unlty.

As will be seen in Section 3,. the. concept of a cqndl—
tlonal pOSSIblllty dzstribution plays a basic role in the '
formulation of a generalized form of modus ponens and. in
defining a measure of belief. What is as yet an unsettled .
issue revolves around the question of how to derive T

(x|¥)

(Y]x) from n(x.Y)' Somewhat different answers to this

_ qQuestion are presented in [92], [57] and [33]. It may well

turn out to be the case that, in contrast to probabilities,

- there dces not exist a unique solution to the problem and

- that, in general, the answer depends on the perspective of

' ; the observer.

- o—— . — ——— + ——
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The Extension Principle

Let £ be a function from U to V. The extension princi-
ple-~as its name implies--serves to extend the domain of
definition of £ from U to the set of fuzzy subsets of U. In
particular, if F is a finite fuzzy subset of U expressed as

ul/u "'""”ll /u

T then f(F) is a f:l.m.te fuzzy subset of \'4 defmed as

o ' : £(F) = £(u,/uy +--- +u o) | (2.28)
= ul/f(ul) '+ LR +un/f (un) .

. '—--%LMore_geneJ:ally, if the support of F is a continuum, i.e., —

T F = f Mg (0) /u (2.29)

, .

£(F) = [ uF(u)/f(u) . (2.30)
U

Furthermore, if U is a cartesian product of Ul, . ..Un and £

_': is a2 mapoing from Ul

£(F) = IUUF(ul,..,,un)/f(ul,...,un) . (2.31)

x"'xUn to V, then

In connection with (2.31), it should be noted that there
- are :na.ny cases in which we have only partial information ‘
= a.bcu‘e 3.1?, e-g., the knowledge of its project:l.ons on. Ul’ ...,U ’
~-< whzch implies that ‘the-available information cons:.sts of" the
kma.rgina.l membership functions Hyr-- .,un, where |

-~ M, (u,) = sup o pyreearn)

cee u u. eoesQ
ll ? ll 1+l' L4 n

i=1l,...,n .

-

- In such cases, the extension of the domain of definition of £

— is expressed by
£(F) = JUul(ul) Ao cu @/, ..l ) (2.32) -

with the understanding that, in replacing Hg (ul, .- .,un) with
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ul(uif‘~°~' “un(un), we are tacitly invoking the principle of
maximal restriction [95], which asserts that, in the absence
7 of complete information about HX, we should equate Hx to the
- maximal (i.e., least restrictive) possibility distribution
L; which is consistent with the partial information about Hx.
-l In applying the extension principle to the analysis of
ff}soft data, it is fréquently convenient to employ a more expli-
" git.repreéentation of £(F) which is equivalent to (2.32).
Specifically, on denoting the member;hi§ function of £(F) by

U, we have

(VI OV S Y RRWY)

LTI TR B Wy B I

£(F) = J H(x) /v (2.33)
o where v e
T NTE X PRSP R

. subject to the constiaint
v = f(ul,...,un) .

In this form, the extension principle will be employed in
}: Section 4 to reduce the problem of inference from soft data
. to the solution of a variational problem in mathematical
- programming.

An important aspect of our approach to the analysis of

-~ soft data ’s the flexibility afforded by the assumption that
.2 .the var;anles are allowed to be lznguzstlc [90], that is, are
.allowed to have values that are represented as sentences in a
natoral or synthetic languaqe,Aw1th each such value defining
-~ a possibility distribution in the domain of the variable.
.. For example, if Age is a linguistic variable, its linguistic

-- values might be of the form:

-

young ’ old
not young not old
very young very old

i not very young not very old
more or less young more or less old
quite young quite old

rather young rather old
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not young and not old
not very young and not very old

- e w e s = W e me E W = W = wr =

~ where young is a primary term which has to be calibrated in a

- specified context and old is its antonym. As we shall see in

- &
—s_,

L
e

Section 3, the translation rules for propositions expressed

_ in a natural language provide a method for computing the
possib:.l:.ty distr:.but:.on induced by a propositlon of the form
"x is 2.,. where 9, is a l:x.ngu:.st:l.c value of X, from the know-
ledge of the membership funct:.ons of the primary term and its
antonym
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3. Translation Rules and Meaning Representation

When soft data are represented in the form of proposi-
tions in a natural language, it is necessary to have, first,

a system for translating such propositions into a more pre-

. cise form; and second, a set of rules of inference which

" apply to the. translated propositions and which may be

f employed to a;rive at answers to questions regarding the data.

A meaning representation language which is well-suited

for this purpose is PRUF [93]. In what follows, we shall

i state some of the relevant translation rules in PRUF and out-

line the associated rules of inference.

The translation rules in PRUF serve the purpose of faci-~
litating the composition of the meaning of a complex proposi-

tion from the meanings of its constituents. For convenience,

. the rules in question are categorized into four basic types:

Type l: Rules pertaining to modification; Type II: Rules per-~

taining to composition; Type III: Rules pertaining to quanti-

- fication; and Type IV: Rules pertaining to qualification.

Following a discussion of these rules and the associated

- rules of inference, we shall outline a general translation

principle which forms the basis for PRUF, and sketch a general

questcion-answering technique which reduces the problem of

‘inférence to the solution of'a‘Vériatiénal problem in mathe-

matical programming.

Translation Rules

Modifier rule (Type.I). Let X be a variable which takes

-~ values in a universe of discourse U and let F be a fuzzy sub-

" set of U. Consider the proposition

X is F ' (3.1)

li»

P

- or, more generally,

N is F (3.2)

P

where N is a variable, an object or a proposition. For

. —— — -
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example, .
p i Mary is young (3.3)
which may be expressed in the form (3.1), i.e.,

P = Age(Mary) is young (3.4)

by tdentifying X with the variable Age(Mary).

then in the same context

Now, if in a particular context the propos:.t:.on Xis F

translates into -

X is F — I, =F (3.5)

‘

+

-

N where m is a modifier such as not, very, more or less, etc.,

- and F is a modification of F induced by m. More specifi-

cally: If m = not, then F o= F' = complement of F, i.e.,

uF+(u) = l-pF(u) , uEevu. (3.7)

. + .
- If m = very, then ? = .':‘2, i.e.,

2 .
BF+(u) = Ho (u ,- u€vu. (3.8)

+ .
m = more or less, then F = vf‘-, i.e.,

a

B =A@, w€u. . (39
F . :

As a simple illustration of (3.8), if SMALL is defined
as in (2.11), then :

X is very small — IIX=F (3.10)
where :
FZ = 1/0+1/1+0.64/2 +0.36/3 +0.16/4 +0.04/5 .
It should be noted that (3.7), :(3.8) and (3.9) should be
iewed as default rules which may be replaced by other trans-
lation rules in cases in which some alternative interpreta-

tions of the modifiers very and more or less are more

. a&ppropriate. __. - e

X is of — Il =F (3.6)



Conjunctive, Disjunctive and Implicational Rules

(Type II).

If

i = i —
X.’LSF"‘"HXF and Y is G l'L£=G
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(3.11)

. where F and G are fuzzy subsets of U and V, respectively, then

(a)

XisGand Yis e — 1

.. (X,Y)
‘- where

. .. .

\. Hpxg (rv) = uF(u)' U (V) -
_ (b) X isF or Y is G — H(X,Y) FU
. where
B FA&FxXV, G&2uxg
; and -

N ufua(u.V) = uF(u) qu(v) .
- (¢) If Xis F then Y is G — H(le) =F'

- where II

[ | B T

(¥|x)

=F XG

G

9G

" of Y givan X, and the bounded sum 2 is defined by

Higg(u,v) =12 (1 -u.(u) +u (v)) .

(3.12)

(3.13)

(3.14)
(3.15) .

(3.16)

(3.17)

denotes the conditional possibility distribution

(3.18)

In stating the implicational rule in the form (3.17), we

have merely chosen one of several alternative ways in which

_the conditional possibility distribution II

(Y|

X)

may be-

def:.ned, ea.ch of which has some advantages a.nd dlsadvantages

depend:mg on the appl:.cat:.on.

(c,)

If Xis F then ¥ is.G — I
If XisF then Y is G — I

Ifxisi‘thenYisG—*Tr

Among the more. mportant of
these are the following [5,49,66]:

(|
(x|
(x|

=E'

X)

x -F

X)

Ue

xG UF ' xv

(v]w)

(3.19)
(3.20)

(3.21)

1 if uG(v) _>_uF(u)

uG(V)
uF (u)

otherwise



21z

(c.) If XisF thenY is G — T

5 (v|u) (3.22)

(¥|x)
= 1if U (v) > u (u)
= Mg (v) otherwise

As simple illustrations of (3.12), (3.14) and (3.17), if

SMALL = 1/1 + 0.6/2 + 0.1/3
LARGE = 0.1/1 + 0.6/2 + 1/3

lie

F

>

- then .

- X is small and Y is large — ‘H(X,Y)

3 = 0.1/(1,1) + 0.6/(1,2) '+ 1/(1,3) + 0.1(2,1)

~0.6/(2,2) + 0.6/(2,3) + 0.1/(3,1) -
+ 0.1/(3,2) + 0.1/(3,3) '

X is small or Y is large — H(x )
=1/(1,1) + 1/(1,2) + 1/(1,3) + 0.6/(2,1) + 0.6/(2,2)

+1/(2,3) + 0.1/(3,1) + 0.6/(3,2) + 1/(3,3)
and
. If X is small then Y is large — H(le)

= 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.5/(2,1)
+ 1/(2,2) +1/(2,3) +'l/(3,l) + 1/(3,2) + 1/(3,3) .

Quantification Rule (Type ITI). If U = {u ,...,uN} o]
J.S a quantlf:.er such as many, few, several ’ all, some, most,
etc” « o e . . . I B .

'--' X is F — I =F (3.23)
then the proposition "QX is F" (e.q., "many X's are large")
translates into '

T ) . 1.[Count.(P) =9 (3.24)

.where Count(F) denotes the number (or the proportion) of
- elements of U which are in F. By the definition of cardi-

nality of F [90], if the fuzzy set F is expressed as

F = ul/ul -!-].12/1.7.2 + cn- -i-],lN/uN (3.25)




N
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then
, N _
Count(F) = iglui (3.26)

. where the right-hand member is understood to be rounded-off

to the nearest integer. As a simple illustration of (3.24),

if the quantifier several is defined as

SEVERAL & 0/1 + 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6  (3.27)
+ 0.6/7 + 0.2/8 '

: then
) Several X's are large — II N (3.28)
- .Z Hranee (%)
. i=1

=0/1 +0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.6/7 + 0.2/8

. ; X .th
where uLARGE(ui) is the grade pf membership of the i~ wvalue

. of X in the fuzzy set LARGE.

ternatively, and perhaps more appropriately, the

cardinality of F may be defined as a fuzzy number, as is done

- in [91]. Thus, if the elements of F are sorted in descending

order, so that un S-Hm if n > m, then the truth-value of the
proposition

P = F has at least n elements (3.29)

is @efined to be equal to W, while that of g,

q 2 F has at most n elements , (3.30)

is taken to be l'-un . FProm this, then, it follows that the

+1
truth-value of the proposition r,

- r 2 F has exactly n elements , (3.31)

is given by un-(l-un+l).
Let ¥ denote F sorted in descending order. Then (3.29)

- may be expressed compactly in the equivalent form

FGCount(F) = F+ (3.32)

" which-signifies that if-the_fuzzy cardinality .of F. is defined _ ._._.
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iﬂ terms of (3.29), with G standing for greater than, then
the fuzzy count of elements in F is given by F¥, with the
understanding that F¥ is regarded as a fuzzy subset of

- {0,1,2,...}. In a similar fashion, (3.30) leads to the

'~ efinition | | ,

" FLCOunt(F) = (F4)' -1 (3.33)

.. where L stands for less than‘aéd subtraction should be inter=’

. prgtéd as translation to the left, while (3.31) lgéds to
- FECount(F) = (F¥) N ((F¥) '-1)

.. where E stands for equal to. For convenience, we shall

RS WTRNY X

1. refer €o FGCount, FLCount and FECount as the FG cardinality,
FL cardinality and FE cardinality, respectively. The concept

[§9)

. of FG cardinality will be illustrated in Example 9, Sectiom 5.

Remark. There may be some cases in which it may be
- appropriate to normalize the definition of FECount in order
to convey a correct perception of the count of elements in a

-- fuzzy set. In such cases, we may employ the definition

FENCount (F) = FECount(F)

=_ — (3.34)
: Magn(Jn (1-u

ne1))

Truth Qualification Rule (Type IV). Let T be a linguis-

-~'ﬁicftfuth—véluer»e.g.[ ve?y true, qﬁite.ttue,.more or less,

.y

‘true,- ete.. Such:a’truth-valuefmay be regarded as a fuzzy
subset of the unit interval which is characterized by a mem-

: bership function u_: [0,1] + [0,1]. .

-~ A txuth-qualified proposition, e.g., "It is T that X is
;;F," is expressed as "X is F is T." As shown in [89], the
f?translation rule for' such propositions is given by

X is F is T — r[x=s~~+ . (3.35)

- where

uF+(u) = uT(uF(u)) . (3.36)
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As an illustration, consider the truth-qualified

proposition

Yolanda is young is very true

" which by (3.35), (3.36) and (3.8) translates into

l.[zlug,'e(lrcoland'a.) = uTRUEZ‘uYOUNG(u)) . (3.37)

Hyouna ™ (1+(—)) . u€ [0,100] - (3.38)"

and

Mope (V) = v2 , v €& I[o,1]

‘then (3.36) yields

- a,2,~4
l.[Ag'e(ifolancla) = 1+

as the possibility distribution of the age of Yolanda.

Probability Qualification Rule (Type IV). This rule

-~ applies to propositions of the general form "X is F is A,"

where X is a real-valued variable, F is a linguistic value of
X, and A is a linguistic value of likelihood (or probability),
e.g., "X is small is not very likely." Unless stated to the
contrary, A is assumed to be a fuzzy subset of the unit

intexval [0,1] which is characterized by its membership func-

:tzon ul, and . the probablllty dlstrlbutlon of X-ls charac-.

terlzed.ny its probablllty den51ty function p, i. e.,‘
Prob{X € [u,u+du]} = p(u)du . (3.39)

As shown in [93], the translation rule for probability-

qualified propositions is expressed by

X is F is A — m(p) = UX[J uF(u)p(u)du] (3.40)
‘ U

" where W(p) denotes the possibility that the probability den-

- sity function of X is p, and the integral in the right-hand

member of (3.40) represents the probability of the fuzzy

" event [86] "X is F.". _Thus, in the case of

- mwome ——— cattaam—— — ou - ——cemmee oo —— v pr—— — .. — ————— —
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probability-qﬁalified propositions, the proposition "X is F
is A" induces a possibility distribution of the probability
. density function of X.

As a simple illustration, consider the proposition
S q & Yolanda is young is very likely . (3.41)

In this case, X = Age(Yolanda) and the right-hand member of
' (3 40) becomes :

: 00 .. . . Do
1r(p) = uLIKELYU ”Youuc;(“”’(“)d“] . (3.42)

Used in combination, the translation rules stated above

3L .
ln NSO G L

é_-prov1de a system for the determination of the possibility
E%fdistributions induced by a fairly broad class of composite

. propositions. For example, by the use of (3.7), (3.8),
S (3.9), (3.12) and (3.18), the proposition

If X is not very large and Y is more or less small

then Z is very very large.

- can readily be found to induce the conditional possibility
- distribution described by ‘

(v)

- T(z]|x.7) MALL

+u (w)J .

.

(wlu,v) =14 (1- (1 12, g ) ~ ~u

Cpero

‘1
Lu \'l‘- vl (g VT

5It'iSjof interest to note that' translation rules like. those

.described above have found practlcal applications in the.

Vg

d951gn of fuzzy logic controllers in steel plants, cement

!
L ) 4:~

b
>

kllns and other types of 1ndustr1al Process control applica-

iR

tlons in which instructions expressed in a natural language

|
o ' 0

Q; are transformed into control signals [45,46,39,79].
<. A mores general-type of translation process in PRUF which
;'subsumes the translation rules given above is the following.
Let D = {D} denote a collection of databases, with D
. representing a generic element of D. For the purposes of our

f analysis, D will be assumed to consist of a collection of

— e e ' e —wemts s e smm——————
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possibly time-varying relations. If R is a constituent
relation in D, then by the frame of R is meant the name of R
together with the names of its columns (i.e., ettributes).

. For example, if a constituent of D is a relation labeled

‘ POPULATION whose tableau is comprised of columns labeled Name
; and Height then the frame of POPULATION is represented as
POPULATIONﬁNameIHeJ.ght[ or, equ:.valently, as

7 POPULATION([Name; sHeight]. ’

If p is a proposition in a natural language, its trans-

lation into PRUF can assume one of three-—essenfially equiva-
4 H

(a) p — a possibility aesignment equation

(b) p — a procedure which yields for each D'in D the
possibility of D given p, i.e., Poss{D|p}

(c) p — a procedure which yields for each D in D the

truth-value of p relative to D, i.e., Tr{p|D}

Remark. An important implicit assumption about the
procedures involved in (») and (¢) is that they have a high

- degree of what might be called:explanatory effectiveness, by

-~ which is meant a capability to convey the meaning of p to a

-7 human (or a machine) who is conversant with the meaning of

~u.the constituent terms in p but’ not w1th the meanlng of p as a

:fwhclea. Fo:‘example, d procedure: which merely tabulates the

ot possibility of each D in D would in general, have a low

-> degree of explanatory effectlveness if it does not indicate

T in sufflclent detail the way in which that possibility is
. arrived at. On the other extreme, a procedure which is
;jexcessively detailed and lackihg in modularity would also

- have a low degree of explanatory effectiveness because the

4It shculd be noted that (b) and (c) are in the spirit of
truth~conditional semantics and possible-world semantics,
respectively [15,34]. In their conventional form, however,
these semantics have no provision for fuzzy propositions and
-hence are not suitable for_the analysis. of soft data._ .
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meaning of p might be obscured by the maze of unstructured
steps in the body of the procedure.
The equivalence of (b) and (c) is a consequence of the
way in which the concept of truth is defined in fuzzy logic
Thus, it can readily be shown that, under mildly

.. restrictive assumptions on D, we have
S -+ rr{p|p} = Poss{p|p}

which implies the equivalence of (b) and (c).
To illustrate (b) and show how (a) may be derived from

(b) , we shall consider first the relatively simple proposition

p % Madan is not very tall . (3.43) —

V ::'In this case, it is convenient: to assume that D contains two

- relations whose frames are:

POPULATION| Name |Height|
TALL| Height |u|

- In the relation TALL, each value of height is associated with
- the degree to which a person having that height is tall. In
- effect, then, the relation TALL defines the fuzzy set TALL.

5} The desired procedure involves the following steps.

1. Find Madan's height, h. In symbols, h is given by the

= . expression (see (2.21))

s h =Height POPULA?ION[Name==Madan] .
-2, Find the degree, §, to which Madan is not very tall in
-- D. Using the expression obtained in the preceding step,

the answer is:

c e _ 2
§ = 1-(uTALL[Helght-ﬁeightPOPULATION[Name3-Madan]]) .

d 3. Equate the possibility of D to §. This yields the

desired translation of p into PRUF, namely

POPULATION[Name=Madan]])2
(3.44)

-——e o FOS——, - co r— ———— — . -

T(D) = l--(uTALL[Helght=Height
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To find the possibility distribution of Madan's height
from (3.41), it is sufficient to observe that, for a fixed
relation TALL, (D) depends only on Madan's height. From
this it follows at once that

- 2.,
Teight(madan) = (TALL) (3.45)

. ox, equivalently,
O ,‘ . . . - . . . . . . . ) 2' ] i o . P R
THeight (Madan) ¥ = 1 ~Hpary, (W (3.46)
where u is a generic value of the variable Height. What
should be noted is that the possibility assignment equation

(3.45) could be obtained directly by applying to p the trans-

-+ lation rules (3.7) and (3.8). Furthermore, the explanatory
effectiveness of (3.45) is higher than that of (3.44).

Remark. 1In PRUF, it is importént to differentiate
between the meaning of a proposition and the information that
is conveyed by it. Thus, if p is a proposition, then the
procedure, P, into which it translates represents the meaning
of p or, equivalently, its intension [15,41]. On the other

-- hané@, the possibility distribution which is induced by p con-
 stitutes the information, I(p), which is conveyed by p.
Thus, w.n the foregoiny exauwple the possibility distribution
. defined by (3.45) represents the information conveyed by the
jﬁ'ptopositiqn'p 2 Madan is not;véry-tall.,,The meaning of p,
; then, is the procedure described by the right-hand member of
~*-(3.45).

-- If p and g are propositions such that

. I(p) = I(q) (3.47)

-

_.then p and g are semantically equivalent [93], which is
- expressed as

p - q . (3.48)

On the other hand, if

_________ R I(P)k I(Q) —— —— . —A3.49)
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then p semantically entails q [93], i.e.,
phHraq (3.50)

As we shall see in the next section, the concepts of

semantic equivalence and semantic entailment play an impor-

- tant role in inference from soft data.

s

[ N L B
)

i 0.

1.
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4. Inference from Soft Data and Mathematical Programming

By interpreting a soft datum as a fuzzy proposition, the

problem of inference from soft data may be reduced to the

problem of inference from a collection of fuzzy propositions.

Suppose that E = {Pl""'Pn} (with E standing for

evidence) is a collection of fuzzy propositions and let p be

‘a proposition that is inferred from E. At this point, it is

. natural to raise two basic questions. First, what does it

mean to say that p is inferred from E; and second, by what
methods can p be inferred from E.

To answer the first question, it is convenient to make

)
RCRTELEN FORN W Ty A

use of the concept of information, as defined in Section 3.

More specifically, let I(p, ~**-~p ) be the information con-
1 n

‘veyed by the conjunction of propositions Pyr---sP_ OX,

equivalently, the possibility distribution induced by

12 ~ess "pn, and let Zl:(pl Ao Apn"pn) be the information
conveved by the conjunction of.pl<~"’ Apn and p. Then, we
shall say, informally, that p may be inferred from

E = {plr.-.,pn} if

‘I(pl"'"'*pn) = I(plﬂ-'-'*pnﬂp) . (4.1)

In other words, p is inferrable from E if the addition of p

to the evidence, E, does not affect the information conveyed

As shown in [91], the above definition implies that the

'possibility distribution induced by the conjunction of
‘Pyr---tP is contained in that induced by p. It is this con-

-~ tainment property that underlies the entailment principle

[91,93] which serves as a basis for the rules of inference

stated in the sequel.

Remark. In speaking of entailment, it is necessary to

2 differentiate between the entailment which obtains for par-

. ticular denotations of the labels of fuzzy sets in
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PyrecesP 1Py and strong ehfailment, which results when (4.1)
holds for all denotations. As an illustration, if very is

interpreted as a squaring operation, then the proposition
p = Veronica is intelligent

plbévVeronicaAis:very intelligent .-

INTELLIGENT> C INTELLIGENT

regardless of the way in which INTELLIGENT, the denotation

of intelligent, is defined. On the other hand, in the case
of the propositions

¥
H
]

>

John is not young

Py
P, & John is not old
p & John is middle-aged

. the conjunction of P, and p, may be expressed as (see

(3.12)}
P, "P, 2 John is not young and not old . (4.2)

Conseguently, if the denotations of young, old and middle-

agad are such that the —ontzinment: conditicn

YOUNG ' NOLD" C MIDDLE-AGED (4.3)

'is satisfié&;Atﬁen § ié.eﬁgéiiédfby P- éﬁd . wae&ér,
| 1 Py

since the-éuestion of whether or not (4.2) is satisfied

depends on the denotations of the labels of fuzzy sets in Py

'pz and p, it follows that p is not strongly entailed by'pl
- and Py- -

-

Remark. In some ways, the entailment principle appears
to be counterintuitive because we generally expect a conclu-

sion, p, to be sharper than the totality of data on which it

is based. However, the reason for the apparent sharpness is

. that, in general, p involves only a small subset of the

ey m— e
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variables present in Pyre-esP - More specifically, as we
shall see in the sequel, in the process of inference we
usually focus our attention on a small number of functionals

defined on D and preceive the higher degree of focusing as a

o manifestation of sharpness of p. An example illustrating

" this and other aspects of the entailment principle is

described in Section 5.

Rules of inferénce

For purposes of infererice from a collection of fuzzy

©. propositions, it is convenientrto have at one's disposal a

55 system of basic rules which may be used singly or in combina-

i
PN

tion to infer a fuzzy proposition p from a body of evidence

E = {pl,...,pn}. Several such: rules,which constitute a sub-

set of the inference rules in fuzzy logic, FL [89], are stated

- in a summary form in the following.

1. DProjection Principle. Consider a fuzzy proposition

whose translation is expressed as

p—1I F (4.4)

(xlrv LR 2 'Xn)

and let x(s) denote a subvariable of the variable

A, - :
: :{= \Hl‘*‘,}.n)l loe-’

o T

reneiX; ) (4.5)

.where the index sequence s = (il,..;,ik) is a subsequence of

ithe sequence (l,...,n).

Furthermore, let Il ) denote the marginal possibility
s

distribution of X

”

(s); that is,

- I = Proj F {(4.6)
X(s) U(s)

- where Ui’ i=121,...,n, is the universe of discourse asso-

| ciated with X,

U = [, X-e- X7, (4.7)
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Ir

-
and the projection of F on U (s) is defined by the possibility
distribution function (see (2.17)) '

1Tx (ui ,...,uik) = sup y e, uF(ul,...,un) (4.8)
(s) 1 i, ip

where s' & (jl, ...,jm) is the index subsequence which is com-
*- plementary to s, and Uy is the membership function of F.

v,

o of the ~possibility assigrment equat:.on

i)

I =: Pr°j F . (4.9)
Xe) U(s)

Then, the projection rule asserts that g may be inferred from

’
DELEED A B TR

P. Ina schemat:.c form, this assertlon may be expressed more
tr:a.nspare.ntly as

p—1I =F

LI LI IS I

‘ (xi;...,xn)
- l (4.10)

— - .
: IIX(s) Pm“(s)F

Lz As was indicated in Sectibn 2, the rule of inference

. representad by (4.10) is easy to apply when l'[x is expressed

T: as a linear form. As an illustration, assume that U. = U

1 2
= {apb}r and

= 0.8aa + 0.6ab + 0.4ba + 0.2bb
..:‘ (Xl,X ) .

in whzch a tem of the form 0. 6ab s:.gn:l.f;l.es that -

Tit Poss{x =a} X

3 =2 2=b}=o_.6.

To obtain the projection of on, say, U, it is suffi-
2

.cient to repl’aqe the value of xl in each term by the null
string A. Thus -

LIS L

‘i

Proj. I = 0.8a+0.6b+0.4a +0.2b = 0.8a +0.6b
V U, (X /X,)

~ and hence from the proposition

(xl.xz) is 0.8aa +0.6ab +0.4ba + 0. 2bb

T e v R L — —— P ] - - ——— e Cmaea

Now let q be a. retranslation (i.e., reverse tra.nslat:.on) '
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we can infer by (4.10) that

X2 is 0.8a +0.6b .

2. Conjunction Rule. Consider a proposition p which is

an assertion concerning the possible values of, say, two

- variables X and Y which take values in U and V, respectively.
‘Simila.tly, let g be an assertion concerning the possible
j_va.lues of _tb.e variables »Y and Z, taking values in V and W.

With these assmnptiohs, the trénslati’ons. of. P and g may be

expressed as

P
P> Iy vy =F

a
. q— Iy 2 =6

let F and G be, respectively, the cylindrical extensions.

" of F and G in UXVXW. Thus,

F=FxW (4.12)

i

" and

G =UXG . (4.13)

Using the cénjunction rule, we can infer from p and q a

proposition which is defined by the following scheme:

P =
r-—*H(x'Y} F
= H?Y.z) =G

3

TNy g =FNG C (a.14)
On combining the projection and conjunction rules, we
obtain the compositional rule of inference (4.17) which
includes the c]:assical modus ponens as a special case.
More "specifically, on applying the projection rule to

(4.14), we obtain the following inference scheme

p _
P iy, v =F
q _
>0y 4 =6
r «+— I FoG

——— ——— —— vm—— s (x'z)--" — e cemmme v c———

. (4.11) _

B ‘e



35 Lz

where the composition of F and G is defined by
Mpog(urw) = sup (u.(u,v) Aug (v (4.16)

In particular, if p is a proposition of the form "X is F" and

.- q is a proposition of the form "If X is G then Y is H," then
(4.15) - becomes

- p— Hx=}':‘
t-’ q H(Y'_Xs =G'®H
- . r <« II =Fo (G'®H) . ‘ (4.17)

: The rule expressed by (4.17) may be viewed as a generalized

form of modus ponens which reduces to the classical modus
ponens when F = G and P, G, H are nonfuzzy sets.
- Stated in temms of possibility distributions, the

N Y

. generalized modus ponens places in evidence the analogy
betwean probabilistic and possibilistic inference. Thus, in
4 the case of probabilities, we can deduce the probability
.7 distribution of Y from the knowledge of the probability dis-
tribution of . X and the conditional probability distribution
.1 of ¥ given X. Similarly, in the case of possibility distri-
% butions, we can infer the possibility distribution of Y from
L;.the knowledge of the possibility distribution of X and the
cond:tlonal pOSSlbllltY dlstrlbutlon of ¥ glven X. '

4
. l e

Tt ls.lmportant to note that the generallzed.modus

e

ponens as expressed by (4.17) may be used to enlarge signifi-
.cantly the area of applicability of rule-based systems of the

I PR TR B A

() I L 0TV Qs )

-tyne employed in MYCIN and other expert systems. This is due
prlmarlly to two aspects of (4 17) whlch are not present in

-conventional rule-based systems: (a) in the propositions "X

is F" and "If X is G then Y is H," F, G and H may be fuzzy

E sets; and (b) F and G need not be identical. Thus, as a

' result of (a) and (b), a rule-based system employing (4.17)
may be designed to have an interpolative capability [88,97].

————— - B - o emn— ——————— ——— ———- =
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In addition to the rules described above, there is an
impertant method of inference through which the deduction of
P is reduced to the solution of a variational problem in
mathematical programming.

In generei terms, suppose that we have a database D and
that we wish to answer a question q which relates to the data

' re31dent ln D. For example, we may have a database whlch
i contalns a relatlon with the frame

POPULATION I[Name |age|

- and q may be: What is the average age of individuals in

.__.__-EOPULATION? . —

- In PRUF, the translation of q is expressed as the trans-

. -

3} lation of the answer to q, with a symbol of the form ?2a iden-
 tifying the variable whose value is to be determined. As an
illustration, for the example under discussion the proposi-

tion to be inferred from D may be expressed as

P 2 The average age of individuals in
POPULATION is ?f

-~ where £ is a function ‘of the entries in D, say l,...,Xm.
' Thus, to answer q we must compute the value of £(XyreeasX)
- from whatever information is available akout D.

51 _To link the method under dlscu531on to our earlier

-2 fo:mulat;on of the ‘problem of lnference, we shall assume that

. the available information about D consists of the evidence
.. E= {pl,...,pn}, in which the p; are fuzzy propositions.

Our definition of translation in Section 3 implies that

.7 each of the pi4in E induces a possibility distribution over
- D. Thus, letting ﬂi(xl""’xm) denote the possibility of D

given D,, we can assert that the possibility of D given

- Pyre--spy is given by the conjunction
4 A e oo A
TT(D) - Trl(Xl,~..,Xm) 'I'Tn(xl,...,xm) (4.18)

' Thu;, T(D), as expressed by (4.18), may be viewed as an

—ta e cecmmtt e - — e o - e
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elastic constraint on D which is induced by the evidence

2 {py,..uup ).
From the knowledge of (D) we can infer the possibility
distribution of the function

z = f(X ,...,X ) (4.19)

by 1nvok1ng the extenSLOn prmncxple, as shown in Section 3.

l; In thls way, the' determlnation of the possibility d;st:zbu-

. tion of £ reduces, in prlnclple,to the solution of the follow-

''ing variational problem in mathematical programming.

—A ® o e
]J(Z) = Ma.xx ’...'x lll(xl,...,x ) ~ T (le-..pX)

i subject to -

= f(Xi,...,xm) .

In terms of u(z), the possibility distribution of £ may

. be expressed in the form

Hf = J u(z)/z (4.21)
v

where V is the range of z. An example illustrating the
apolication of this technique will be discussed in Section 5.
As a further example, consider the proposition which

occurs in Zxample ‘e), Scction 1, ramely:
P = Brlan is much taller than most of his close friends

For the purpose of representlng the meanlng of p, 1t ls )

expedient to assume that D is comprlsed of the relations

POPULATION]Name |Height |
FRIENDS |Namel |Name2 ||
"MUCH TALLER||Heightl|Height2|u|

MosT|p|u|

- In the relation FRIENDS, U repfesents the degree to which an

individual whose name is Name2 is a friend of Namel. Simi-
larly, in the relation MUCH TALLER, Y represents the degree

to which an individual whose helght is HEIGHTl is much taller

o — [P Y e —rmeme e —— —— e —— — e emen ———— - —— —— e mea e,
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- POPULATION in felation to whom Brian is much taller.
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than one whose height is HEIGHTZ. In MOST, U represents the
degree to which a proportion, p, fits the definitian of MOST
as a fuzzy subset of the unit interval.

To represent the meaning of p we shall translate p--in
the spirit of (c¢) (Section 3)-—into a procedure which computes

~ the truth-value of p relative to a given D. The procedure—-

; as descr:.bed below--may be v:.ewed as a Sequence of computa-
- tions wh:.ch, in combination, yJ.eId the truth-value of p.

T ‘ 2. Determine the fuzzy set, MT, of individuals in

1. oObtain Brian's height from POPULATION. Thus,

Height(Brian) = POPULATION|[Name =Brian]

“He eight

Let Name be the name of the J.th individual in
POPULAI‘ION. ’I'he height of Namei is given by

Height (Namei) =

: .. POPULATION[Name = Name, ]
Height .

- Now the degree to which Brian is much taller than Namei is

-~ given by

l"'
in 3-

:‘!'l

LRI |

lf. -3- termine the fuzzy set, CF, of individuals in POPULATION

8; =, MUCH TALLER[Height(Brian) +Height(Name,) ]
and nence MT may he =xpresced ac
MT = Zi 6i/Name:,L ¢ Naméi EName POPULATION '
. where: NamePOPULATION is the list of names of individuals in -
POPULATION, 6 is the grade of membership of Name, in MT, and

z is the union of singletons §. /Na.me (see footnote 3).

wno are close frlends of Brian.

To form the relation CLOSE FRIENDS from FRIENDS we inten-

sify I;"RIENDS by squaring it (i.e., by replacing p with 1.12) .

-Then, the fuzzy set of close friends of Brian is given by

2 .
CF = JIXName2 FRIENDS [Namel =Brian]
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4. Form the count of elements of CF:
Count(CF) = Zi UCF(Namei)

where ].ICF(Namei) is the grade of membership of Name . in CF

~and zi is the arithmetic sum. More explicitly

[RH

Count(F) = }. U;RIENDS(Brian, Name, )

- Form the. intersection of CF and MT, that is, the. fuzzy

‘set of those c_lose friends of Brian in relation to whom he is

much taller. :
H & CF NMT

6. Form_the count of elementé of H. _—

(R ' -

ot b ta g

DI B Y I

(o

-

Count(H) = .Zi uH(Namei)

where uH(Namei) is the grade of membership of Namei in H and

Zi is the arithmetic sum.

- 7. Form the ratio

A P

U ooy,

S TE uMOST[

_ Count (MT NCF)
Count (CF)
which represents the proportion of close friends of Brian in

relation to whom he is much taller.
8. Compute the grade of membership of r in MOST

T = " M@ST[p=r] h

The value of T is the desired truth-value of p with
respect to D and, equivalently, the possibility of D given p.

"In terms of the membership functions of FRIENDS, MUCH TALLER

and MOST, the value of T is g'iiren explicitly by the

expression

-

. X o 2 .
XiuM'l‘ (Height(Brian) ,He:.ght(Namei) ) “cr (Brlan,Namei)]

2 )
Y. WS (Brian,Name,)
1 CE . (4.22)

In summary, the procedure in question serves to repre-

" sent the meaning of p by describing the operations that must

- — = —— R ] ——— r—— - —— e
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be performed on D in order to compute the truth-valuevof ol
with respect to D. Thus, viewed as an expression in PRUF,
(4.22) is in effect a mathematical description of a procedure

which defines T as a function of D. However, as was stressed

" in Section 3, the meaning of p is the procedure itself rather

than the value of T which‘it returns for a given D.

- .
*
3
i
i
'
t
r
i
’
-
-
-~ ———— et e —— ———- i ————— - et - ——— e . oy v———— ———— - —
< e s = - - -
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5. Examples of Inference from Soft Data

To illustrate the application of some of the techniques
described in the preceding sections, we shall consider
several simple examples, including Examples (a), (b), (c) and
(e) of Section 2. As is generally the case in inference from

soft data, the chains of inference in these examples are

: short.

Example 1 (Example (a), Sédtion l).

X is a large number

Y is much lérger than X

How large is ¥?

-

Solution. On applying‘thé compositional rule of infer-

~ ence (4.15), we obtain the following expression for the

" possibility distribution of Y

1TY = LARGEoMUCH LARGER (5.1)

- or, mcre explicitly,

Tyt = sup, (Mpapee™ “Yuypen rarcer(®rY)) (5.2)

- where LARGE and MUCH LARGER are the fuzzy denotations of

large and much larger, respectively.
Example 2. i -
X 1is small'
Y is approximately equal to X
-2 is much larger than both X and Y

How large is 2?

Solution. Proéeeding as in Example 1, we obtain the

- following expression for the pbssibility distribution of Z

HZ = (MUCH LARGER THAN ° APPROXIMATELY EQUAL o SMALL)
M MUCH LARGER THAN o SMALL (5.3)

in which the intersection implies that 2 is much larger than

—— ——— .« ——— - ————
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X,and Z is much larger than Y.
Example 3 (Example (b), Section 1).

Most Frenchmen are not tall
Elie is a Frenchman

How tall is Elie?
Solution. - First, we iﬁte:;’pret the ‘question as follows:
‘Most Frexiéhine;i are not tall . .
Elie is a Frenchman picked at random

What is the probability that Elie is tall?

T inm tv'vl':.:’_cc:."r ‘the' argument of

Second, we assume that the database consists of a single
.. relation of the form

POPULATION(]Name [u]

in which ui is the degree to which Namei is tall, and i
- ranges fxrcm 1 to N.

Now, the constraint on the database induced by the
- proposition )

P = Most Frenchmen are not tall

" " gives rise to the possibility distribution expressed bv

1 )
T, (POPULATION) = Wy oo (i L, (L-1.)) (5..4) |

T MO.-'. ‘represents the proportion of -
L2 E’reﬁchmen who are not tall.

Furthermore, if a Frenchman is chosen at random, then

- -.1 the probability that he is tall is given by (see (3.40))
= Prob{E"renchman is tall} = %21 My - (5.5)
._ Thus, the propositic;n (in which A is a linguistic probability)
g # The probability that a Frenchman is tall is A

induces the possibility distribution

1
m (POPULATION) = 1 SIiu) . (5.6)

e oo - — — —————— ————— —— - -t re——————
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To apply the entailment principle to the problem in hand,

- we have to £ind a A such that

(FliMy) 2 Myoer NZ (5.7

Furthermore, to be as informative as possible, the A in g

" should be as small as possible in the sense that there should

. be no A' such that

‘:.for all v in {0,1] and A'(v) <'A(v) for at least some v in

Ee ¥ewritten as

-

- [o,1].

XA sy

With thls as our objectlve, we first note that (5.4) may

Wé(POPULATION)

MOST

M Zu)

ANT MOST N

" where ANT MOST stands for the denotation of the antonym of

!
[T S SN I S TR

I
1 Lo

LR I

most, i.e.,

n (v) (1~v) , vE [0,1] (5.10)

ANT MOST WOST

- which signifies that the membership function of ANT MOST is
- the mirror image of that of MOST.

- At this juncture, then, we can assert that

Z  (5.9)

. p  Most Frenchmen are pot tall . . (5.11)

— (POPULATION) = Hanr MOST NZ

while

r £ Prob{Frenchman is tall} is vy (5.12) .

— T_(POBULATION) = i1 (—Z

- where y is a linguistic probability.

Cn comparing (5.11) with (5.12), we note that if the

) fuzzy set LIKELY is defined to be equal to MOST, i.e.,

M rgery (9 = Myoen (), vE[0,1]  (5.13)
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) = Wy prkery (7 (5.14)

(v)

HuNLIKELY

= HanT MosT
" then we can infer from (5.11) and (5.12) the semantic equiva-

lence (3.48)

Most Frenchmen are not very tall <
Prob{Frenchman is tall} is unl;kely

p
r

Il Ue

1.3" Conseqnently, as the answer to the posed question, we ’
" ‘have ' , .

Most Frenchmen are not tall

Elie is a Frenchman

It is unlikely that Elie is tall

;f In essence, then, what we have shown is that, under the
) assumption that the fuzzy sets MOST and LIKELY are equal, we

can infer from the premise

e

P Most Frenchmen are not tall

~ the semantically equivalent proposition

e

r = It is unlikely that a Frenchman

picked at random is tall
. £rom which it follows that "It 1s unlikely that Elie is tall."
_<- .  Example 4. _

: N Most Swedes are tall

How many Swedes are very tall?

Solution. Suppose that the answer is of the form

PS

rs Q Swedes are very tall

- where Q is a fuzzy quantifier.: Then, proceeding as in

* Examoles 3, we have

D = Most Swedes are tall — Trp(POPULA'I‘ION) =u )

MOST N z:. My
(5.15)
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r & Q Swedes are very tall —- ™, (POPULATION) =y %21 1)
- (5.16)

Consequently, what we have to find is the "smallest" Q such
- that

1
u ( Zlul) 2 uMOST(NXiui) * (5.17)
- It can easzly be verified that such a Q is glven by5

: where the "left-square" of MOST is défined by
B, (B) = (/) , ve&EIlo1] . (5.19)

u
MOST MOST

Bl For, from the elementary inequality

. j—m———7 _ 1
% NI g 2 5l0 (5.20)
y na s . .
- and the monotonicity of uMOST it follows that
o ———7 1
2 =

Myosp L/N 2 W2 > w, o (ST 1) (5.21)
.. which, in view of (5.19), implies that
i 1 2
: My  (GLiMD 2 Myoer S Zl M) (5.22)

<l MOST
-. and hence that the proposmtlon

p = Most Swedes are tall

é 2

LA e T g Most Swedes are very tall -
i~ Example ‘5.

Lz ©  Naomi is not very tall is true

AN How true is it that Naomi is tall?

Solution. Suppose that the answer to the question is

. expressed as a proposition q:

q 2 Naomi is tall is T

If MCST is interpreted as a fuzzy number [90,18,20] then
ZHOST may be expressed as the product of MOST with ltself.




where T is a linguistic truth-value, e. g., very true, more
less true, etc.

To determine T, we set q semantically equal to p (see
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or

(3.49)), i.e., we assert that the possibility distributions -

induced by p and q are equal. Now, by (3.8) and (3.36), we

- and TRUE, respectively. Consequently, for all u in the

~ domain of the variable Height(ﬁaomi), we have

TRUE(l u

from which it follows that the membership function of T is

have
_%. Naom1 1s not very tall is. true HHe;ght(Naom;) :
where (5-23)
: UF(u) = uTRUE(l uTALL(u)) (5.24)'
"~ and - i
Naomi is tall is T — ut(uTALL(u)) (5.25)
;- where Hparz, and Yrpge 3F© the membership functions of TALL

(u)) = U, (u (u)) (5.26)

* given by
T W =1-v?, velo1]. (5.27)
. Thus, ix’uTRU? is defined by ‘

- 1} 2
?f “TRUE<V) =V, , (5.28)
- then o ; v v ,
I DRI TR P T P S R S
i Ho(v) = 1£-,uTRUE(V) (5.29)
lf_and hence .
- T = not true . (5.30)
- On the other hand, if '

: - “TRUE(V’ =v (5.31)

" then

2
' uT(v) = 1-uTRUE(v) | (5.32)
and

T = not very true . (5.33)
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Example 6.

Marvin lives near MIT

Lucia lives near MIT

What is the distance between the

residences of Marvin and Lucia?

Lo

Solutzon. Let (xM Y ) and (Xi Y ) be the coordlnates of _

the reszdences of Marv1n and Luc;a, respectlvely. Further-

) C:« )‘-' [

VR

[

more, let H(XM ¥,,) and H(XL,Y ) be the possibility distribu-

».. -":

tlons induced by p and q, that:is, derived from the defini-

[

tion of the binary fuzzy relation NEAR.

VTR

K3 PP

'
4.

Now, the distance between: the residences of Marvin and

O
)

1.
L~

Luc;a is expressed by :
d—/(x -X)Z-I-(Y —Y)2 . (5.34)

4
l-l..»

Using (5.34) and applying the extension principle (2.34), the

'
M )

- possibility distribution function of 4 is found to be given

. by
o Ty (w) = sup ( (u vy ) ~ (u,,v )]
- Vo0 IV ( Y) ( X)) 2°°2
_: UprVyrly XM XYy (5.35)
-~ subject to
-, = 1 -e}” v2 -t Y2
X /ul )2+ (v =) {5.36)

— ’

-5 where the supremum is taken over all possible values of xM
“?% gt_and Y subject- to .the constraint (5.36). Generally,
137 “é as defined by (5.35) will be a monotone decreasing func-

-tion of w, with nd(w) = 1 for sufficiently small values of w.’
Example 7 (Example (c), Section 1).

£ It is unlikely that Andrea is very young
£ It is likely that Andrea is young
It is very unlikely that Andrea is old

L
(¢ '_"U
] )

e

£ How likely is it that Andrea is not o01ld?

nsl
]

Solution. To find the answer to the posed question, we

~w——-- shall .reduce..the.stated .problem -to-the.solution of.a ..... . . ._..
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mathematical program, as described in Section 4.

_First, each of the premises is translated into a con-
straint on the probability density, p, of Andrea's age. Thus,
using (3.8), (5.14) and (3.40), we have

pl & It is unlikely that Andrea is very young —

e = (- J 100 ;ouus(u)p(u)du) (5.37)
. 100 < . . : : . - e
N ﬂé(p) uummqo uYOUNG(u)p(u)duJ . (5.38)
100 .
f 3@ = uLmy(l Jo uom(u)p‘(u)du] (5.39)
100__ _
- where uYOUNG(u)p(u)du represents the probability of the

;: fuzzy event "Andrea is young," with the understanding that

. the range of the variable Age(Andrea) is the interval [0,100].
Next, we must translate the answer to the posed question,
34 which we assume to be of the form "It is A that Andrea is not

old," where X is a linguistic probability. Thus
100
q — nq(p) =-HX[JO (1 OLD(u))p(u)du (5.40)

" where Uy is the unknown membership function of .
Finally, by using (4.20), the nyoblem in questicn is

' . reduced to the solution of the variational problem

- .ui(-‘{.) EERUN T _-;'- ' -"‘:_. B ; 4 L
A 100 2 . B ' '
=>naxp{[uLIKELY(1-JO UYOUNG(u)p(u)du) (5.41)
100 .
" Wprxery (I Wyog ()P (w) du) -
0- .
g 100
A 2. ) \
| “umw@'L %mmmmmﬂh | -
- subject to '

100
Y =J (1 -y, (@ )pwaa
0

where T is the numerical probability of the fuzzy event

—— [ P son o o PR cmmaniva  memrmimmes  tweme aem .- e e meeeian —-
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"Andrea is not old."
Example 8 (Example (e), Section 1).

Brian is much taller than most of his close friends

How tall is Brian?

! Solution. Let x denote Brian's height. In Section 3,
- we have found that, relatxve to a given database D, the truth
- of P is given by '

Lo . . . 2 ‘

- Teq [ZiuMT(ereight(Namei)) uCF(Brlan,Namei)}

- : HosT Ziuéﬁ(Brian,Namei) J
— a (5.42) _

where uMT(x,Height(Namei)) is %he degree to which Brian is
- much taller than'N'am.ei and M is the degree to which Namei is.
Brian's close friend.
Now, for a given value of x and a given D, the value of
T may be interpreted as the possibility of x given D. Thus,
- the possibility distribution fﬁnction of Brian's height is
'; given by the same expression as T, and hence

Poss{Height(Brian) = x} 5 (5.43)
iiuMT(x,Helght(Namei))'~uCF(Br1an,Namei)\

) "“*ms'r{ 7 oien Neme)
‘ LiUCF\Brldn, amei

- o ;?ample«9. Flnd the con51stency of the proposxtlon “..“f
-2 ' P = Sharon.has more than a few good friends

_5 with the database

sl GF . = Mary + 0.9Valya + 0.9Doris + 0.8John (5.44)

Sharon
+ 0.7Chris + 0.6Pat + 0.5 Denise + s--

- FEW

0.8/1 + 0.9/2 + 1/3 + 1/4 + 0.8/5 (5.45)
+ 0.5/6 + 0.2/7

whexrs GF is the fuzzy set of Sharon's good friends
: Sharon

(arranged in order of decreasing degree of friendship) and




FEW is the fuzzy denotation of few.°

Solution. If FEW is defined by (5.45), then at least few -

is expressed by

29oFEW = 0.8/1 + 0.9/2 + 1/3 + 1/4 + -+~

- the una.ry relat:.on FEW

The FG ca.:d:.nality of the fuzzy set GE'S] :

FGCount(GF ) = 1/1 + 0. 9/2 + 0.9/3 + 0. 8/4

g:.ven by - i

-
[/

sup(FGCount(GFshamn) N >oFEW)
sup(0.8/1 +0.9/2 +0.9/3 +0.8/4 + *++)
= 0.9 ’

o)
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(5.46)

" where >oFEW is the composition of the binary relation > with

is g:.ven by

(5.47)

+ 0.7/5 + 0.6/6 + 0.5/7 + «--

" :’w__.__and_hence_the degree of consistency of p with the database is —

(5.48)

A fuller discussion of problems of this type may be found
[

-
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6. Evidence, Certainty and Possibility

An important issue that arises in the analysis of soft
data relates to the need for a way of assessing the degree of
credibility of a conclusion which is inferred from a body of
evidence.

For our purposes, it will be convenient to regard a body

. of evidence--or szmply ev1dence, E--as a, collection of fuzzy
:1”pr09051tlons, E = {gl,...,g } Furthgrmqre, we shall assume
.. that the evidence is granular in nature, that is, each gy

i=1,...,n, is a granule of the form7

e A . . :
- (al__gi Y is Gi is Ai i (6.1) __
- and/ox -
. a . . )
-? (b) g; = If X is Fi then Y is Gi (6.2)
and/or
A . . .
_ (c) g, = If X is Fi then Y is Gj is kj' (6.3)
and/or i=1,...,m
‘A_: . .
(a) g; =X is F, is p; (6.4)

-~ whexre X and Y are variables taking values in U and V, res-
pectivaly; Ei' i=1,...,n and Gj' j=1,...,m, are fuzzy
-- subsets of U and V; and p; and.}\j are linguistic
. probabi_ities.
N “¢though E may comprlse a. mixture of granules of the
. form, (a), b), (). and (d) there. are two special cases which
are typical of. the problems encountered in practice. In one,.
.- which we shall label Type I, all of the granules in E are of
}- the form (a), and E may be regérded as the conjunction of
_: gyre--s9,- In the other, all of the granules in E are of the
- form (b) and (d),and the evidence is said to be of Type II.
In the latter case, we shall assume for simplicity that X
- ranges over a finite set which for convenience may be taken

~ to be the set of integers {1,...,n}.

7A more detailed discussion of. the concept of information
granularity may be found in [94].

———— Tt ey ———— e ——— ——— — — C e —— ———are rm— B L SN
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As a simple illustration of evidence of Type I, assume
. that we- are interested in Penny's age and that the aveilable'
" evidence about her age is comprised of the following soft
. data granules:

™

g

(a) g, = Penny is very young is unlikely
92

.._93A

Penny is young is very likely
Penny is ‘not young Ls-unlikely

LI

‘As” an lllustration of evidence of Type II, we may have,
‘: as in Example (f) in Section l.

(b) 9

T

If Penny is an undergraduate student, then she

~ is very young ' -
L g, $°If Pemny is a guaduate student, then she is
young
2 If Penny is a doctor then she is not very
young
& Penny is an undergraduate student is unlikely

[Te]
w
]

q
>
|

- . 9g S Penny is a graduate student is likely

.... .‘ ’ g6

1

Penny is a doctor is not likely

o Given a collection of data granules such as those appear-
‘;ing in (2) and (b), we wish to infer from E an answer to a

question o the general form:

T &y isXQ is2a .- o0 e (68J5).

\n LB IR

-where Q is a speclfled fuzzy subset of V and ?d is the desired
:fllnguistlc probability. For example-

- q = Penny is not very young is 2a (6.6)

- to which the answer might be, say,
20 £ not very likely .

In the case of evidence of Type I, an answer to a ques-~
.tion of the form (6.5) may be obtained, in principle, by using
the matt hematical programmlng technlque employed in Example 7,

Sec on 5. _In the case of ey;@ence”ofhyypemll, however, we




R ———__The approach described in. the sequel is based on a
- {
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shall use a different approach involving a replacement of the
posed question with a surrogate question, q - that is, a
question which, unlike q, may be answerable based on the
information contained in E. Such a question in the case of

(6.6), for example, might be

q % What is the degree of certainty that Penny is

not very young?

T oor . ;

q S what is the degree of possibility that Penny

is not very young?

-~ generalization.of the concepts:' of upper and lower probabili-

ties [17,29] which serve as a point of departure for Shafer's

" theory of evidence [67]. Viewed from the perspective of our

" approach, the latter theory is: concerned with the special

' case where (a) the evidence is of Type II; (b) the Gi and Q

" are ponfuzzy sets; and (c) the:pi are numerical probabilities.

-and ‘|

Assuming, first, that the:Gi are fuzzy sets but the p;
are numerical probabilities, we define the conditional possi=-
bility and the conditional certainty of the proposition "Y is
Q" (27, aguivalently, the evenﬁ "y is Q") given that "Y is

Gi" as follows:

* poss{Y is Q|Y is G}
A

"

]

cert{y is g|¥Y is ci} inf(G; =Q) ' (6.8)

where

it

sup(QnGi) supvz(ug(v) "uGi(v)) , VEV (6.9)

iﬁf(Gi?Q) infv;( (1 - uGi (v)) ~ Hy (v)) (6.10)

0 and uG are the membership functions of Q and Gi'

: respectively.l

In effect, the right-hand members of (6.7) and (6.8)

serve as measures of the degree to which the proposition "Y

is Gi" influences one's belief in the proposition "Y is Q."

Sup(QNE;) - (6T
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In particular, (6.7) serves as a measure of the degree of
possibility while (6.8) plays the same role in relation to
the degree of certainty. Note that when Q and Gi are non-

fuzzy, we have

SUP(QfWGi) =1 if Qr'ﬁGi is nonempty (6.11)
=0 if NG, = 8
...and T : _ ; :
inf (G, =Q) = 1 if G, Cg ‘ - (6.12)

\ : = 0 otherwise -

Now since X is assumed to be a random variable which

'n____;_takﬁs_the_zalues l,...,n with respective probabilities

; pl,...,pn, the -conditional possibility and conditional cer-

tainty of the proposition "Y is Q" are also random variables

f whose respective expectations are given by

EN(Q) = Zi p; sup(Q NG, ) (6.13)
= Zi B, supv(uQ(V) "uGi(V))

EC(Q) = J. p, inf(G, =Q) (6.14)
= i.piinfv((l"uG.(V})v UQ(V))
= 1-EI(Q") =

We shall refer to EINl(Q) and EC(Q) as the expected possi-
; all*tg and the expected certalnty, respectlvely, of the pro-

’IPOSlLan "7 is Q." WHen Q and G

l,...,G are nonfuzzy, EC(Q)

and EN(Q) reduce to the Shafer's degree of belief and degree

of plausibility, respectively, which correspond to the lower

- and upper probabilities in Dempster's work [l7]. Our feel-

- ing is that Shafer's identification of "degree of belief"

with the lower rather than the upper probability (or, more

' generally, with E(Q) rather than EN(Q)) is open to question,

-application_to combination. of bodies_of. evidence.__

81t hould be remarked that EC(Q) and EINl(Q) are not normal-

s
ized--as are the lower and upper probabilities in the work
of Dempster and Shafer. As is pointed out in [95], the nor-

malization in question leads to counterintuitive results in

Lz
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since there is no particular- reason for singling out EC(Q) or

Ell(Q) or, for that matter, any convex combination of them as

" a universal measure of the degree of belief.

Having defined the concepts of expected certainty and

expected possibility, we are in a position to see the.

' rationale for employing the technique of surrogate questions

in the case of evidence of Type II. Taking for simpli’city

: ‘the case where the G and Q a::e nonfuzzy: and the p are

- numerical probabn.l:.t:.es, the ev:.dence can be expressed in

the form

2 2 yee s
gL— YGGl or g, £ Yegz or or g. YEGn

Prob{gl} =p; and Prob{gz} =§2 and --- and Prob{gn}'=pn

Now let us assume that thé original question is: What is
the numerical probability that. ¥ € Q? It is easy to see that
the granularity of available evidence makes it infeasible to
answer questions of this type for arbitrary Q. Thus, we are

compelled to replace the original unanswerable question with

- a surrogate answerable quest:l.on which in some sense is close

to the original question. In the case under discussion, such
questions would be:

(a) What is <che expected' certainty (or, equivalencly,
the degree of helief (Shafer) or the lower probab:.lity

(Demostes)) ‘that Y € 0?2 . TR e e e e
(b) What is the expected;possiﬁility (oxr, equivalently,

.the degree of plausibility (Shafer) or the upper probability

(Dempster)) that Y € Q?

Based on the available ev;i.dence, the answers to (a) and

’ (b) ares: .

EC(Q) = Zipiinf(ci-—»g) , i=1l,...,n

" and

EIl(Q) = Xi 1 sup(Gi nQ)

wherzs (see (6.11) and (6.12))
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inf(G; =Q) =1 if G, CQ
= 0 otherwise ‘
sup(G, NQ) = 1 if G, NQ =0

0 otherwise

"~ . A serious shortcoming of the Shafer-Dempster approach is

__ that if G; and Q are nonfuzzy and the condition

SR G; €9

;-:is not satisfied exactly, then no matter how small the error
" 'might be the contribution of the term p; inf(G; =Q) to the

T~ —value-of-EC(Q) in the summation —

e pif--,,pn, then we can write . |

T EC(Q) = I, p; inf(G; =Q)

~~ would be zero. In intuitive terms, what this means is that a
; piece of evidence will be disregarded so long as thére is the
- slightest doubt about its perfect validity. We avoid this

.; extreme degree of conservatism in our approach by (a) allow-

~ ing the Gi and Q to be fuzzy; and (b) fuzzifying the concept

~-- of contaimment, with the expression inf(Gi=>Q) in (6.14)

3

({

presenting, in effect, the degrée to which Gi is contained

~-. in Q. Thus, if G is redarded as a random variable which

?i.takes the values Gl""’Gn with respective probabilities
300 ' EC(Q) = Prob{cCgQ} (6.15)
-2 with the understanding that G C Q is a fuzzy event [86] and
that the degree to which G C Q is satisfied is expressed by

-~ " degree{cCQ} = inf(G=Q) .

- Viewed in this perspective, (6.15) may be regarded as a
t natural generalization of Dempster's lower probability and
) Shafer's degree of belief.
For the purpose of illustration, we shall conclude this
section by describing the application of our approach to

cree .= ~ m—em— s v a— et ———— - - - - — — ——.. P,

R
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Example (b). In this example, the Gi and Q are fuzzy and the
p; are linguisticIprobébilities. More specifically, we have
4 youne? | -

£ YOUNG

(voune?) !

YOUNG'

UNLIKELY = ANT LIKELY

LIKELY .

(LIKELY) '

N Q &
0
e > 0> W

e

g
N .
e U

?5 where YOUNG is the denotation of young, YOUNG2 is the denota--
- tion_of very young, ANT is the antonym, i.e., (see (3.40))

Han LIKELY(V (1-v) , v € [0,1] (6.16)

s

and the prime represents the complement.

) = Vprkery

Now let
0y = sup(YOUNszWYOUNG') (6.17)
a, = sup (YOUNG NYOUNG"') (6.18)
ay = sup((YOUNGz)'rWYOUNG') (6.19)

whexre the a, are numbers in the .interval [0,1]. (From (6.18)
i= S5llcvss that az = 0.5 but we shall not m*k=2 us: of *his
fact.) Then, using (6.13) we can express EI(Q) as

'~"_'.;.._EH(Q)-=uaiUNL;KELY eiazLIKELX ® a,LIKELY' .- (6.20)
ﬁwhere ® denotes the sum of fuzzy numbers [90,50,18].
To compute EI[(Q) as a fuzzy number, we have to take into

.consideration the fact that the numerical probabilities must

7' sum up to unity. Thus, on denoting these probabilities by

te ol
v

- Vyr ¥y, and v, and‘applying the extension principle (4.20),

1
‘the determination of the membership function of EI(Q) is

: reduced to the solution of the following variational problem:

Lz
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l-v v

: 1 2
u(z) 2 max [IJ (—=) ~u (= (6.21)
. v,l'VZ'Y3 I.JIKEIfY O,Ll - LIK_ELYv 92 .

3
(- U TRELY (0‘3) ]
subject to

zZ = alvl +<.12v2 +a3v3 (6.22)

:;; Lo :_ 1l = VI-+Vé:+Y3

Thus, expressed as a fuzzy set, we have

f
Ell =
(Q) J[O'l]

- where U(z) is given by (6.21) To compute EC(Q), then, we

u(z)/z (6.23) -

can make use of the identity (6.14)
EC(Q) = 1 -EIN(Q") | (6.24)

From our definitionsof EIL(Q) and EC(Q) it is a simple
mattar to derive a basic rule of conditioning which may be
.- regarded as a generalization of those given by Dempster and

Shafer. Specifically, assume that the evidence has the form:

If X =i then Y is Gi r T=1,...,n

and, in addition, we know that

_‘;;-;-;~.. W e 9’0 ..Yfls GOY-

where G is a given fuzzy subset of V-
- Clearly, the available evidence may be expressed in the
‘equivalent form:

If X =i then Y is GiﬂG i=1,...,n

. o’
Prob{x =i} = P;

which implies that
EI(Q) conditioned on "Y is Go“ = EI(Q nGo) (6.25)

and corresvondingly

7]
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EC(Q) conditioned on "y is GO“ = 1-—EH(Q'lJG') (6.26)

L . :;f Remark The connectlon between the deflnltlon of _

Ve expected pOSSlbllltY-—as expressed by (6.13)--with that of

x ~ the upper probability in [17] and [67]--may be made more

transparent by interpreting EN(Q) as the probability of a

- fuzzy event--in the manner of (6.15). More specifically, if

'".sup(GfYQ) is regarded as the degree of occurrence of the.

-. fuzzy event GMNQ?, in which the question mark serves to sig-
) nify that we are concerned with the degree to which G inter-
' sects Q rather than with the intersection of G and Q, then we

- can write

" EN(Q) = Prob{cNgz} (6.27)

" with the understanding that G is a random variable which

takes the values Gl”"'Gn with respective probabilities

. Pyreeesd -
In summary, then, the expected possibility and expected

certainty may be expressed in the form

ENI(Q) = Prob{GNQ2} (6.28)
.- and ‘ '
- EC(Q) = Prob{ccCQ} (6.29)
which clarifies the sense in which Ell(Q) and EC(Q) may be
- “v1ewed, respectlvely, as generallzatlons of the concepts of
uppexr and.lower probabllltles-—concepts which are defined in
-z [17] and [67] under the assumptlon that the G and Q are
7? nonfuzzy sets.

-

-
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7. Concluding Remark

_The approach.;oithe analysis of soft data described in.. .

 this paper represents a substantive departure from the con-

ventional probability-based methods.

-

S

The main thesis underlying our approach is that, in
general, the uncertainty which is lntrlnszc ln soft data is a.

: mixture of probablllstic and possibilistic constituents and,,r
? as such, must be dealt with by a‘comblnatlon of probablllstlc.

;;'and possibilistic methods. We have~indicated, in general

<!

T3 “~ 3

tsterms, how this can be done through the use of the concept of
:a possibility distribution and. the related concepts of a lin--

”~ guistic varlable, semantic entallment, semantic equivalence,

N

.and,the extension principle. Flnally, we have shown how the

- - concepts of expected possibility and expected certainty

E: relate to the important issue of credibility analysis, and

C -

> indicated a way of reducing many of the problems in inference

- from soft data to the solution of nonlinear programs.

The issues associated with soft data analysis are varied

" . and complex. Clearly, we have--at this juncture~-only a

ol el R S I

Ji" Ul i.l\ \l (5) "

!

LU P

et
¥

l|-l
- 1 L

CIRY S

partial understanding of the basic problem of inference from
soft data and the assoczated problem of credibility assess-
ment. What is likely, however; is that, in the years to come, -
,oux. understandlng of these and related problems will be
enhanced through a further development ‘of possibility-based’ i

'methods for the representation and manipulation of soft data.'
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