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INTRODUCTION

Felix F. Wu

I. POWER SYSTEM RELIABILITY EVALUATION

The power system reliability problem is to evaluate the ability of

a system to supply the load demand, taking into account the random

effects of equipment outages and load fluctuations. Probability methods

are used in the analysis [1-5]. The classical loss-of-load probability

(LOLP) model [6] for generation reliability has been well developed.

This model assumes that the transmission system is perfectly reliable

and has unlimited power transfer capability. The reliability problem

that incorporates transmission system becomes a difficult problem in

terms of computational complexity. Work in this area has been relatively

scarce and primitive. In this introduction we will present:

(i) a brief review on the current state-of-the-art of methodologies

for bulk power power system reliability evaluation that incorporates

transmission system.

(ii) a description of our research directions in the development of

a methodology for bulk power system reliability evaluation.

(iii) a summary of our research results so far accomplished for this

project.

To put different methods into proper perspectives we first present

a unified conceptual model for power system reliability evaluation.

Different methods are then classified within the model into four

categories. Most of the current research in power system reliability

evaluation falls into the first three approaches. The last one is the

one we are following. It is along the same direction as does the

development of modern mathematical theory of reliability.
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II- METHODOLOGIES FOR POWER SYSTEM RELIABILITY EVALUATION

2.1. A Unified Conceptual Model

The basic components of a bulk power supply system consists of

generation, transmission and load. The generation and transmission

equipments have random outages. The load demand is fluctuating and

unpredictable. The power system reliability problem is to evaluate the

ability of a system to supply the load demand, taking into account the

random effects of equipment outages and load fluctuations.

Generators, transmission lines, and loads will be referred to as

components in the model. The state of a generator is the mfl-g-fmn^ power

that can be supplied. The state of a transmission line can be either the

maximum power that can he transferred or its admittance. The state of

a load is the power demand. Let us for simplicity assume that the states

are discrete and finite. If each component has k states and there are

n components we have k possible combinations, each of which is called

a system state or a configuration.

For a fixed configuration a test is conducted in order to determine

the ability of that particular generation and transmission system con

figuration to supply that particular load demand. The following is a

list of models used in the tests for reliability evaluation. The list

is arranged in increasing order of complexity. References of methods

using the model is cited in the brackets.

1). Service continuity [7]. The test is simply to determine

whether there is a transmission path from generation to load point.

2). Network flow [8]. Only the real power flow and its con

straints are considered.

3). Load flow [9-13]. DC load flow, ac load flow and its

approximations have been used. The model includes real and reactive

power flows, and voltage magnitudes.
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We now describe"bur unified model in'mathematical terms. -Let. x^ de

note the state -of component i. A configuration of a system is represented

by an n-vector x = (x1,x2>.. .,xn). The collection of all possible system

configurations or states x is called the state-space of the system and is

denoted by X. The test to determine whether the configuration is able

to supply load can be represented by a binary-valued function $,

1 if load can be supplied
<Kx) »< (1)

0 if load can not be supplied.

The subset of X for which the corresponding x passes the test is called

the "working" subset and is denoted by W, i.e., W = {x|<j>(x)=l}. The

complement of W is called the "failed" subsets and is denoted by F,

i.e., F = {x|<f>(x)=0}.

For each component there is a probability distribution associated

with the occurrence of different states. In other words, the state of

a component x^ is a random variable. For each configuration x we can

associated with it a probability, Prob{x}, induced from the probabilities

of its components x..

A reliability function is a set function f defined on the subsets

of X such that the function is evaluated on the intersection with either

W or F. For example, let A £ X, we may define

f(A) - Prob{x|x € A H F} (2)

A reliability measure associated with a reliability function f is

defined as f(X). For example if f is defined as above f(X) will be the

loss-of-load probability of the system.

f(x) - I ProMx.} (3)
x€F ±
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The model we have described so far is a probabilistic one in which

the time element is not included. We may view each component of a power

system as an alternating renewal process with exponential distributions

of "working" time and repair time. A continuous-time Markov chain model

of the system is obtained. For reliability evaluation, the expected

duration of being in the set W, and the expected frequency of entering

W, in addition ot the probability of W, can be calculated. They provide

additional reliability measures.

2. Classification of Evaluation Methods

Reliability evaluation of bulk power system based on service

continuity is generally considered inadequate. We will therefore

consider only methods based on network flows and load flows. Because

the number of possible states in the system increases exponentially as

the number of components increases, an'exhaustive enumeration is out of

the question. Various methods have been suggested in practice. Based

on the essential features we classify the various methods within our

unified model into four categories of alternative approaches.

Approach I. This approach selects a few sample points in X. Calculation

of reliability measures are performed using only these points.

The fundamental steps involved in this approach are

1) Select sample points x. (Contingency selection)

2) Evaluate $(x.)

3) Compute reliability J f<£*)

This approach is currently widely used in industry. The second

step of evaluating Kx^) may be carried out by DC power flow, or full

AC power flow.
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The approach used by Reppen [9], McCoy [10] and Marks [11] all

have the same basic features of this category.

Approach II. In this approach it is assumed that the reliability

function f is additive, i.e.,

f(AUB) = f(A) + f(B)

This approach is based on the principle that if a family of subsets {E.}

is a partition of the state-space X, i.e.,

U E. = X
i 1

E± O Ej = e), i ?£ j

then

f(W) »l fans.)
i *

Two fundamental steps are involved in this approach:

1). Select {E±}

2). Compute f(WHEi)

The second step involves performing a test or a number of tests. The

conditional probability method suggested by Billinton and Bhavaraju

[12-13] belongs to this class. A family of subsets consisting of single

contingencies and possibly some double contingencies are used. They do

not exhaust the state-space X, but only form a set of sample points as

in Approach I. The reliability measures used are the loss-of-load

probability and the expected frequency of loss-of-load.

Approach III. It is still required to assume that the reliability

function f is additive. This approach is based on the fact that if we

partition S into nonoverlapping subsets {W.}, then
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f(W) = I f(W.)
i

This approach is viable if the family of subsets {W.} can be generated

recursively.

Two fundamental steps are involved in this approach

1). Perform a test, the result of which defines S.. Update f(W).

2). Decompose W - U W, if necessary. For each subset go to
k<i K

Step 1.

The method developed by Doulliez and Jamoulle [8] belongs to this

class. Here because the network flow model is used it is possible to

generate W. recursively.

Approach IV. Two fundamental steps are involved in this approach.

1). Characterize the working subset W and its properties.

2). Evaluate f(W) based on the characterization and properties of W.

This approach is the one we are following. It is along the same direction

as does the development of modern mathematical theory of reliability [14],

III. RESEARCH DIRECTIONS AND RESULTS OF THE PROJECT

3.1.! Research Directions

The main directions of our research efforts in the development of

a methodology for bulk power system reliability evaluation are the

following:

1). Based on the mathematical model we want to analytically

characterize the set of working states W (or the set of failure states

F) and to derive its properties.

2). Develop methods to evaluate system reliability or its upper

and lower bound based on the characterization and properties of the sets

W and F.
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A/V

We believe that for reliability evaluation of large power systems

the idea of decomposing the system into subsystems or modules is

important. The main directions of our research in modular decomposition

are the following:

1). Study the fundamental requirements of a module and its

properties.

2). Develop decomposition schemes based on the understanding of

the properties of a module.

The model for bulk power system reliability evaluation using flow

networks belongs to the class of systems considered in the modern

Reliability Theory. In section 2 we state some basic concepts in

Reliability Theory to facilitate our later presentation. In section 3

we summarize the research results we accomplished in the area of power

system reliability evaluation using flow network model. This includes

the development of evaluation methods and modular decomposition. In

section 4, we summarize our research in laying a solid foundation for

reliability evaluation based on Markov model. In section 5 we summarize

the on-going research on the analysis of the reliability evaluation

model based on DC load flow and on a direct method for reliability

evaluation.

It seems to be generally agreed in power industry that for trans

mission system reliability evaluation a DC power flow or an AC power

flow should be used. The justification for our investigation of

reliability model with flow networks consists of the following:

1). This is an area where theoretical study is almost nonexist.

2). The results obtained for this model may serve as a foundation

for further research for the model with power flows.

3). This model itself is considered adequate for multi-area or
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regional reliability evaluation, and distribution system reliability

evaluation.

3.2. Basic Concepts from Reliability Theory

The fundamental concept in Reliability Theory [14] is that of

coherency. A coherent system is one where improving the performance

of a component will not cause the system to deteriorate, i.e., the

function <f> is nondecreasing. A coherent system may be characterized by fs-

way of a minimal path representation or a minimal cut representation.

A minimal path set is a minimal set of components whose functioning

insures the functioning of the system. A minimal cut set is a m-tnimal

set of components whose failure causes the system to fail. A coherent

system has a unique family P of minimal path sets and a unique family C

of minimal cut sets such that the system reliability function can be

expressed in terms of either of them. When a coherent system is

represented by a minimal cut structure and a minimal path structure,

bounds for the reliability function can be readily obtained.

The concept of a module is related to decomposition of complex

systems. A module is a set of components which can be replaced con

ceptually by a single fictitious component. The state of the fictitious

component is determined according to a well-defined rule from the

states of the components in the module. The state of the system may be

determined from the state of the fictitious component together with the %?

states of the rest of the components.

3.3. Reliability Evaluation Based on Flow Networks

It can easily be shown that the reliability model with flow network

is a coherent system. Because of this coherency property, when a network

flow is performed the result can also be used for a subset of system
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states. The iterative method developed by Doulliez and Jamoulle [8]

utilizes this property. In order to facilitate probability calculations,

they decompose the set not yet classified at each iteration into

nonoverlapping subsets. Lee in Chapter 2 develops an improved scheme

for decomposition of the unclassified sets in the state space by the use

of lexicographic ordering.

The algorithm by Doulliez and Jamoulle generates a path set or a

cut set one at a time. Eventually the iterative process will reach all

the "minimal" path sets in P and "minimal" cut sets in C one by one.

On the other hand, Willie, in Chapter 3, develops a new algorithm which

generates a family of path sets and a family of cut sets at each

iteration. The scheme will converge to the family of minimal path sets

P and the family of minimal cut sets C. The method is based on the

property that each cut set must intersect all the path sets. Given a

family of sets R, the dual family d(R) is the family of sets such that

each set in the dual family intersects all the sets in R. Willie's

algorithm at each iteration constructs a dual family and tests certain

sets derived from the dual family to enlarge the families of path sets

and cut sets. The method has the provision to terminate when an

"interesting" subfamily is found, e.g., one which is limited by size or

by probability.

In Chapter 4 Hagstrom investigates the possible definitions of

modules in the reliability model with flow metworks. Her starting point

is a graph-theoretic characterization of the set of working states W

by Gale. Two types of modules, structural module and functional module,

are defined. Their characterization, properties and relation are

studied. The report included here does not contain her latest results

on this topic. A complete report is forthcoming.
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In Chapter 5 Shogan defines a special class of modules and develop

a modular decomposition scheme for a certain class of networks. Upon

adapting the graph-theoretic concepts of "cut node" and "block," it is

possible to identify a "block-module," defined as an independent, non-

trivial subnetwork that has one and only one node (the "cutnode")

connected to the nodes outside the subnetwork. The reliability of the

network will increase by a known factor after a "block-modular

decomposition" that consists of a transformation of the.^cutnode's supply-

demand random variable and the deletion of the remainder of the block-

module. Provided that the original network possesses at least one

block-module, the reliability can be determined from a sequence of block-

modular decompositions that reduce the original network to a single node

whose reliability is easily computed.

Hagstrom develops a decomposition scheme in Chapter 6, which

introduces a more general framework. A graph-theoretic decomposition

is used first to decompose the network into its "triconnected components."

A "tree" to show how to. reassemble the graph from its triconnected

components can be generated. This decomposition can be used to compute

system reliability. The procedure is that the probability distribution

of capacity or demand is computed for each of the triconnected component,

then this process is repeated as these components are iteratively

reassembled back into the graph itself.

3.4. Reliability Theory Based on Markov Model

We provide here a solid theoretical foundation fcr the Markov model

of power system reliability. In the Markov model of power system

reliability evaluation, the probability distributions of component working

time and repair time can be assumed exponential. When the components are
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assembled together to form the system the probability distribution of

the time to system failure is no longer exponential. Narasimhamurthi,

in Chapter 7, derives the expression of the time to failure distribution

for systems modeled as continuous-time Markov chains^'"*1»feif, in Chapter 8,

derives an expression for the long-term average frequency of entering and

duration of staying in the set of failure states and develops a recursive

formula for computing the frequency and duration for a coherent system.

The recursive formula is a generalization of the one developed by Hall,

Ringlee and Wood and can be applied to bulk power system reliability

evaluation.

3.5. Reliability Evaluation Based on DC Power Flow

A more accurate model of a power system for reliability evaluation

than the flow networks is the DC power flows. Mbslehi investigates

the properties of this model in Chapter 9 and suggest a direct method

for reliability evaluation without solving the power flow. It turns

out that reliability model using DC power flow is not a coherent system.

The concept of local coherency is introduced and its application to

obtain a characterization of the set of working states W is indicated.

A sufficient condition for local coherency is derived. The class of

network topology which guarantees coherence is identified. A method of

reliability evaluation which is independent of the concept of coherency

is suggested. A sequence of hyperbdxes is iteratively constructed in

this method and a subset of the working states is readily obtained for

each hyperbox. The method is direct and does not require the solution

of a power flow.
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RELIABILITY EVALUATION OF A COHERENT SYSTEM

*
Sun H. Lee

ABSTRACT

We present a method for evaluating the exact reliability of a

coherent system using the concept of lexicographic ordering. The

procedure is general in the sense that it does not depend on the

structure function of the system, and the memory requirement is

negligible when executing the algorithm on a computer.

Department of Electrical Engineering and Graduate Program in Operations
Research, North Carolina State University, Raleigh, N.C.
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I. INTRODUCTION

In system reliability analysis, we often assume that the system

is represented by a probabilistic graph, and the system is functioning

if there exists a path from the input node to the output node. Thus

we have considered reliability as a matter of connectivity only and

reliability analysis has been primarily concerned with the enumeration

of paths or cuts in the graph [l,2,etc.]. But in many physical systems

such as power transmission systems, and oil or water pipeline systems,

there will be numbers associated with every arc, for instance, the flow

capacity of the arc; consequently, reliability of an arbitrary system

may not necessarily be characterized by only connectivity.

In this paper, we give a definition of system reliability [3] and

present a procedure for computing the exact reliability of a "coherent"

system using the concept of lexicographic ordering.

Throughout the paper we assume that the system consists of n

statistically independent components. Let a random variable X. indicate

the state of the ith component:

J1 if component i is functioning

xi=<
10 if component i is failed.

Thus the system can be completely described by a vector-valued random

variable X = (X-,... ,X ).

Let the binary variable i> indicate the performance of the system:

1 if the system is functioning
*=<

0 if the system is failed.

It is assumed that the performance of a system depends on the states of

the components of the system; thus, we define a function tp(X) and call

-15-



it the structure function of the system.

II- PRELIMINARIES NOTATION AND DEFINITIONS

x£ values that X^ can assume.

x = (x-^,... ,xn) values that X can assume

Pi""_7 Pr{xi *1}-

qi(ssl"pi2.. :- - Pr{xi " 0}- "*'

System reliability: The reliability of a system is defined as (see [3]):

Pr{<KX) - 1). (1)

Coherent system: A system of components is coherent if its structure

function i/> is nondecreasing and each component is relevant.

Path vector: A path vector is a vector x such that tj>(x) = 1»

Minimal path vector: A minimal path vector is a path vector x such that

x* < x ** iKx') ° 0, where the notation xf < x implies x' ^ x.,

i =» l,...,n, with at least one strict inequality.

Cut vector: A cut vector is a vector x such that ij/(x) a 0-

Minimal cut vector: A minimal cut vector is a cut vector x such that

x1 > x =* iKx1) a 1.

We wish to emphasize that the meaning of the above-mentioned paths

or cuts is not equivalent to that in graph theory; however, they are

equivalent if we consider reliability as a matter of connectivity only.

The reliability (1) of any coherent system can be computed by using the

minimal path and minimal cut representations [3]. Nevertheless, unless

the structure function of the system is simple, it is not an easy task

to determine all minimal paths or minimal cuts.

A brute force approach to evaluating (1) is to sum over all 2

-16-



binary n-vectors so that we have

x 1—x

Pr{*(X) = 1} =» I i|>(x) np*q i. (2)
x i

Observing that the method (2) is impractical, we can reduce our problem

to one of finding the set of all path vectors {x|Kx) ~ 1} without

complete enumeration. Doulliez and Jamoulle [4] have applied decomposition

principle to calculating the system reliability, in which the whole state

space is decomposed into three categories: sets of functioning states,

sets of failed states and sets of undetermined states. Each set of

undetermined states is again decomposed into three categories, and so

forth. This involves keeping track of numerous sets of undetermined

states as well as the relevant upper and lower limiting states of each

set; hence, it requires large memory size when large-scale systems are

considered.

III. APPROACH

Our procedure hinges on the following definitions:

Lexicography: (a) A vector is lexicographically positive (or negative)

if its first nonzero component is positive (or negative). Thus the

vector (0,0,3,-4,1) is lexicographically positive and the vector

(0,-2,1,5,3) is lexicographically negative. A vector x is lexico-

2 12
graphically greater than (or smaller) than x if (x -x ) is lexicograph

ically positive (or negative).

(b) A vector x1 is lexicographically greater than x" with respect to

the ordered index set A if x'<A> - x"<A> > 0 (see the notation below).

NOTATION

L

x > 0 a vector x which is lexicographically positive.
L

x < 0 a vector x which is lexicographically negative.
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L

x? > x" x1 is lexicographically greater than x".
, L

x» > x"
(A)

x1 is lexicographically greater than x" with respect to

the ordered index set A.

I*| cardinality of the set • .

A "ordered" index set of some or all elements in a binary

n-vector x

F index set, without ordering, of the remaining elements

in x. Note |a| + |f| = n.

x\A> |A|-vector x whose elements are ordered according to the

ordered index set A. For example, given A =• {3,1,5},

F- {2,4} and n« 5, x<A> = (x3,x1,x5).
*i .A4 .
A ordered index set A with [A | = i, whose elements are the

same as the first i elements in A. In the above example,

A2 » {3,1}.

4> null set

Our strategy is essentially as follows. Suppose that we have the

desired set {x|ij/(x) ° 1}; therefore, it is assumed to be possible to

partition this set into exclusive and exhaustive subsets, say IT", M^.-.jM2,

by the following partitioning procedure. In fact, the algorithm described

in the next section is nothing but a systematic scheme for generating

all these subsets.

Partitioning Procedure:

0. Let x be any path vector, i.e., t|>(x) ** 1; order the index set

{j |x. • 1} arbitrarily to get an ordered index set A.

1. Partition the set {x|ij>(x) = 1} into |a| + 1 exclusive and exhaustive

subsets H ,H1,...,^^ so that for any xf S H1 and x" 6 H^,
L jr

xf tf\ x" if i < j. Of course, for some i fir may possibly be empty.
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After partitioning, we have:

|A|
for any x€ h°, x<A> = (1,1,... ,1,1),

for any x€ h1, x<A> « (1,1,.. .,1,0),
• .

• a

N-i+1

for any x€H1, x<A,Al"i+1> =(1,...,1,0),

for any x€h'A», ^A1) = (0).

Note that i|»(x°) = 1, where

x €{x|Xj =1for j€A, x. £0for j$A}, for the system is
coherent by our assumption.

2. Excluding the set H , for each i= 1,...,|a|, partition the set H1,

if not empty, into exclusive and exhaustive subsets. In what

follows, without loss of generality, we explain how to partition H1.
*IaI—i+1 *

For every j € A1 , let x. denote the value of component j of

x in a. Suppose that we can find an ordered index set A bv
a

a IA I—»i«M 4t4t JeJe sfe
augmenting the set A1 ' so that t|/(x ) = 1» where x. = x. for

j€aN-1+1, Xj** =1for i€Ao ^ jflW-i+1, ^ *** =J
for j$Aa. Note that A'A'"i+1 constitutes the first |A|-i+l

elements of the set A. Now partition the set H* into |a|-|a|+1
|A |-|A|+i-l

exclusive and exhaustive subsets G , G ,...,G (some of

them may possibly be null sets) so that for any x1 € Gk and x" € Gr,
L

x1,A>y x" if k < r. As before, we have:
|A |
1 a'

|A|-i+l

for any x6 G , x<Aa> = (1,...,1,0,1,...,1,1),

for any x€g1, x<Aa> =(1,...,1,0,1,...,1,0),

|AJ-|A|+i-l jA,
for any x€ G ,xUjAi-i+2:> = (1,.. .,1,0,0),
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Note that \|>(x ) « 1, where x e {x|x. • x for j € A , x £ 0
for j £ A }.

0 1 |Aj-|A|+i-l
3. Except the set G , we again partition G ,...,G into

exclusive and exhaustive subsets, respectively, in the same way

that we partitioned H . Of course, this partitioning procedure

is applied to all subsets obtained from the partitioning of H ,

k = 1,...,|a|, and the procedure continues until no more partitioning

is possible. This procedure can be visualized in terms of a tree,

as shown in Fig. 1, and the tree may not be uniquely determined.

Now suppose that the above partitioning procedure has yielded

exclusive and exhaustive subsets, say m\... ,M ,... ,MZ, of the set

{x|ip(x) - 1}.

Properties of M : Associated with M^ is an ordered index set A,

satisfying the following:

i) For any x1, x" €^, x1^) =x'KA^; for all j€Afe, let x?
denote the value of component j of x in M .

ii) <J;(x0) =1, where x^ =x for j£A^ and x*? =0for j$A^
consequently, it follows from the assumption that the system is coherent

M^ = {x|x. = x. for jS A,, x. a0 for j$ A,}.

Remark 1: Pr{iJ>(X) = 1} = I Pr{x e m1*}, where Pr{x € j/^}
_. kssl

'- " " = H Pr{X. = x } 1 Pr{X > 0}.

The conceptual implementation of the above idea may be simple;

however, the key to the procedure is the ability to partition sets in

such a way that it does not require large memory size.
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IV. ALGORITHM

We now state the algorithm in detail. The justification of the

algorithm is given in the appendix. Our algorithm begins with any path

vector, say x1; let J = U|x' = 1} and J = {i x!= 0}.

Algorithm:

0. (Initialization) Order the set J arbitrarily to get an ordered set

— *

A and let F « J. Set h = II p., k = 1 and x. = 1 for all i^A.

Let BQ = {x|x. = 1 for i^A, x. £ 0 for i£ F}. Suppose that r is

the last element of A. Go to Step 6b.

it
1. Determine a binary n-vector x such that x. = x. for all i ^ A and

<Kx) = 1. If such an x does not exist, go to Step 5; otherwise go

to Step 2.

2. Let h = h + n Pr{X. = x.} II Pr{X. £ x.}.
i^A 1 X i€F * i

3. If F f_$r go to Step 4a.

Otherwise, let B, = {x|x. = x., i G A} and k = k+1. If the last

element of x<A> is zero, go to Step 5; otherwise go to Step 4b.

4a. Delete from F all elements i^F with x, a 1 to obtain a reduced

set F; add those elements deleted from F, in arbitrary order, to

the right of A to obtain an augmented ordered set A. Let

B^ »{x^ =» k± for iS A, x. £0 for i€ F}, and k = k+1.
it

b. Set x. « x. for all i € A except the last element of A; set the

last element of x <A> equal to 0. Return to Step 1.

5. If x^ = 0 for all i fc A, terminate; otherwise go to Step 6a.

6a. Suppose x is the rightmost element of x <A> such that x = 1.

Reduce the set A by deleting all elements following (coming after)

element r in the ordered set A; augment the set F by including

those elements deleted from F.
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*
6b. Set x = 0 and return to Step 1.

Remark 2: B.'s were defined for the sake of explanation; however, they

need by no means be recorded. At termination h - Pr{tfi(X) a 1} and

UB. - {x|iji(x) « 1}.
i x

It is worth noting that there is room for improvement of the

efficiency of the algorithm. A couple of remarks are in order in this

regard.

Remark 3: The computation time can naturally be reduced by a good choice

of x in Step 1. If the determined x is minimal in the sense that, for

any x < x with x. » x. for all i € A, i|»(x) a 0, then unnecessary steps

will be saved by modifying Step 3 as follows:

3. If x±=« 1 for all i€ f, let Bfc = {x|x± = x±, i» l,...,n}, k = k+1

and go to Step 5; otherwise go to Step 4a.

Justification of this change easily follows from the coherent structure

function ijj.

Remark 4: Component i is said to be vital if x = 0 =* ifi(x) ~ 0.

Provided that we know which components are vital, the computation time

can be saved by making the following changes in Step 6a: Let x be the

it it
rightmost element of x <A> such that x a 1 and component r is not vital.

Of course, in addition to the above general rules, exploiting the

special property of the structure function of the system, additional

modifications can be made to reduce an computation effort.

V. EXAMPLE

Consider the probabilistic network shown in Fig. 2, where the

numbers beside the arcs denote indices of arcs (components). Associated
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with each arc, say are i, are two numbers: y., the flow capacity of

arc i, and p^ = Pr{XA = 1}. Suppose y., = 2, y2 ° 2, y3 = 3, y, =* 1,

yc s 3, y, = 4, and y_ = 2. Assuming that the system is said to be

functioning if it is possible to route 3 units of flow from the input

node to the output node, we want to determine the reliability of this

system. Suppose that flow is conserved at every node of the network.

_> In what follows, let x. and x. represent x. = 1 and x. = 0

respectively and let x determined in Step 1 be denoted by a vector

(x.,i € A;x.,i € F). Suppose we start with an initial path vector

(Xg,x_,x3;x-,x„,x. ,x_). The following in the sequence of path vectors

x determined in Step 1:

>^g'—5'^1 '^2'^3'^7*^A *

^6 »2E5 *—i >̂ 9'^3*̂ A*̂ 7 *

Note that Remarks 3 and 4 have been taken into account when executing

the algorithm. Actually we need two more iterations to consider the

cases, (x,,x_,x- ,x.,x,,x_;...) and (xfi,x_,x. ,x-;...), to reach the final

path vector (Xg,x_,x. ;x«,xg,x, ,x_) from the preceding one. The system

has 128 distinct capacity states and the algorithm terminates after

5 iterations. From Step 2 the reliability of the system is given by

p6p5p3 + p6(i-p5)p1p2p3p7 + p6(i-p5)(i-p1)p2p3p4p7.

Finally we make a comment on finding x in Step 1. For this problem an

efficient labeling algorithm [5] can produce x; furthermore, based

on the knowledge of the current x, subsequent x can be obtained by

rerouting the flows in those arcs whose states have changed to failed

states.
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VI. CONCLUSIONS

In implementing the algorithm on a computer, the memory requirement

is negligible and the value of h before termination yields the lower

bound of the system reliability. Recalling that path vectors have been

extensively dealt with to calculate reliability, we can similarly devise

another algorithm, in a sense the dual approach of the one given here,

for computing the "unreliability" of the system by using cut vectors

instead of path vectors.
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Fig. 1 Partitioning of the set of path vectors

Fig. 2 A flow network for the example
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APPENDIX

Justification of the Algorithm

We will prove the validity of the algorithm by examining how B.'s

generated in the algorithm are related to those sets shown in Fig. 1.

NOTATION

A, set A used in Step 1 in the algorithm just prior to

entering Steps 3 or 4a to generate B, .

a! min{r||Ar| <|AjJ}
a2 min{r||Ar| <|aJ}
a3 min{r||Ar| < \kj}

bx min{r||Ar| < |Aa_+1|}
b2 min{r||Ar| < \k^ |}

V1 V1
It is easily seen that Bn, U b., U b.,... correspond to

jol 3 j=a 3
0 12
H , H , H ,..., respectively. Without of generality, suppose that

Vr1 ..... . ---V1 V1
U B corresponds to H . Then B , U.. -U B., ... correspond to

j=a± 3 ai k^+1 j=b^ 3
0 12
G , G , G ,..., respectively. In conclusion, we should be able to

verify that B., j = 1,2,..., correspond to those sets at terminating

nodes in the tree, shown in Fig. 1, from which no partitioning is

possible.
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ABSTRACT

We consider a capacitated flow network with multiple supplies and

demands. Edges are assumed to be subject to failure and the system

"works" if a flow which meets all demands can be constructed using

unfailed edges. In Part I, methods are given for determining the family

(or an "interesting" subfamily) of all minimal sets of edges whose mutual

failure implies system failure, as well as the family or subfamily of all

minimal sets of working edges that will insure the system is working.

Part II is a guide to use of the Flow Network Analysis Program, a computer

code based on the techniques of Part I.
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PART I. METHODOLOGY

A flow network with edge capacities and multiple supplies and

demands is a useful model for a wide variety of actual systems, such as

transportation and communication network, water resource allocation

systems, and electric power grids. This model has been employed most

frequently for optimization problems involving such systems, but problems

of system reliability can also occasionally be approached by considering

flow networks with edges and/or vertices subject to failure.

This report considers the flow network model from a reliability

standpoint. We shall be concerned with deriving system reliability

minimal cut and path set families, or "interesting" subfamailies, when

the system can be modelled as a flow network. However, the methodology

is very general and can often be usefully extended to other system con

figurations .

Section 1.1 reviews briefly the concept of a coherent system and

introduces most of the notation used in subsequent sections. Coherent

systems have been extensively studied [BP], and reliability analysis for

such systems is usually easier than for non-coherent systems. The advan

tages of the methods discussed here are dependent on the coherency pro

perty, and extension of these methods to non-coherent systems does not

seem worthwhile. Because of the traditional meaning of the terms "cut" -

and "path" in a network context we will call a reliability cut set a

"failure" set and a reliability path set a "success" set.

Section 1.2 introduces the flow network model, and Section 1.3

present the basic algorithm for deriving families of minimal failure and

success sets. Section 1.4 is concerned with obtaining "interesting"
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subfamilies associated with large flow networks. Some examples to illus

trate the methodology are given in Section 1.5. Two variants of the

basic algorithm that are suitable for computer implementation are dis

cussed in Section 1.6. Section 1.7 presents computational results for

a flow network of moderate size. Finally, Section 1.8 suggests an algo

rithm for construction of dual families, to be used in conjunction with

the first method of Section 1.6.

1.1 Coherent Systems

Let E = {l,...,n} the set of component indices for a system Z, and

for e S e, let x be the binary state variable for component e; x =1,

say, if component e is failed, and x = 0 if e is working. The system

state (1 if the system is failed, 0 if the system is working) is then a

binary function of the state vector (x~,...,x ), and it is fair to assume
1 n

that the system is working when all components are working and failed

when all components are failed; i.e., x-(x) = 0 when x = (0,...,0) and

x„(x) =» 1 when x = (1,...,1).

A failure (cut) set is a set of components F C e such that failure

of all components in F implies system failure. The system is said to be

coherent if any set containing a failure set is itself a failure set.

Coherency is an intuitively reasonable property which means that if the

system is failed, failure of additional components will not restore the

system to the working state. For a coherent system, we may define a

failure set F as minimal if no proper subset of F is also a failure set.

It is well known that a given system Z has a unique family Of - [F ,...,F ]
ct JL U

of minimal failure sets, and the logical function for system failure can

be represented as a Boolean sum of products:
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x7(x) = 2~i H x max (min(x )).
L peg; e€F e pe£ e€F e

There is a parallel manner in which we can characterize the system

Z in terms of working, rather than failed, components. A set S C e is

called a success (path) set if the system is working whenever all compo

nents in S are working, and S is minimal if no proper subset of S is a

success set. A coherent system has a unique family JL « [S-,...,S ]

of minimal success sets, and the logical function for the system working

is

y7(z) = S H y =max (min(y )),
se?z e€s e se^ ees e

where ye = (l-x&) and zz(y_) is 1 if and only if the system is working.

A family of sets having the property that no set contains another of the

family is called a clutter. For a family 6(.which is not necessarily a

clutter, it is convenient to let m(ft) (the "minimization ofR") denote

the clutter obtained by removing from (R sets which contain another set

of the family. Families # and d„ are clutters, so for any ,#2 ^7 and

£-^Z> clearly m(£) =& and m(£) =^
There is a simple way to characterize the relationship between

families 3^ and 4 . Given a family of subsets of a finite set, say E,

the blocker or dual family, denoted by d(&), is defined by

Q R 9* 0 for each R <R.

d(R) = ( Q _ E and no subset of Q

has this property
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The family d(fl) is a clutter, and if (ft is also a clutter, d(d(#)) =d.

The pair <0?,d(fl)) is called a blocking pair. In reference [EF] it is

shown that two clutter 0? and S consisting of subsets of E form a blocking

pair if the following condition is satisfied: For any U C e, either U

contains a member of/JJor E - U- contains -a member of ff, but not both. The

families ^ and Jz clearly meet this condition, since for any vector of

component states the system is either working or failed.

By assuming that each component as well as the system itself is

either working or failed, we have adopted the simplest logical scheme for

analyzing reliability of a complex system. The coherency concept may be

generalized to cases where the system and/or its components are permitted

to have multiple performance states [JD, BW]. There does not appear to

be any great difficulty in generalizing the ideas of this chapter to

allow for multiple performance states, but the two-state assumption

leads to clearer exposition and easier computation.

A great deal of literature has addressed the problem of obtaining

minimal failure and success set families for coherent systems. However,

much of this literature has been directed toward specific system models,

such as fault trees and reliability graphs. These models are very

natural for complex systems that can be repeatedly decomposed into sub

systems having only a few components in common. In such cases, the basic

idea is to suggest a procedure for relating the system minimal failure

or success set family to families for major subsystems. Recursive appli

cation of the procedure to various subsystems then eventually permits

construction of the family for the system itself, hopefully without too

much computational effort.
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Unfortunately, for some systems, such as the flow netowrks we are

going to study, there seems to be no appropriate scheme for decomposition

into subsystems so that the results of separate analyses of these sub

systems will be useful for constructing the minimal failure or success

set family for the entire system. Such systems cannot be modelled as

reliability graphs or fault trees. The approach here is to propose a

more general technique for deriving minimal failure and success set

families, or, when these families are too large to obtain in their

entirety, subfamilies that are "interesting" to the reliability analyst

in a special sense. Though we are specifically concerned with analyzing

capacitated flow transportation networks with edges subject to failure,

much of the methodology here can be applied to other types of systems.

Our technique depends on selective testing of sets of failed compo

nents to determine if the system is working or failed. Several other

methods of assessing complex system reliability by selective testing of

component state vectors have also been suggested. The "backtracking"

algorithm of Ball and Van Slyke [BV] may be used in conjunction with a

number of system models, including flow networks, to obtain an expres

sion for system failure as a Boolean sum of logically disjoint products;

each product is represented by a "modified" failure set. Jamoulle and

Doulliez [JD[ employ a testing procedure to partition the space of com

ponent state vectors, thereby facilitating computation of the exact

failure probability of a flow network.

Minimal failure and success set families can be found in many

situations where system size limits the possibility of finding a family

of logically disjoint sets associated with the system failure function.
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Moreover, for large systems it may not be possible to obtain the exact

system failure probability. However, bounds on this probability may be

calculated in a number of ways utilizing these families [BP, HU], and

for the high component reliability values usually encountered in appli

cations, these bounds are quite good. In addition, these families are

useful for evaluating the relative contribution of each system component

to reliable system operation [BU]. Other uses for these families have

also been proposed, such as minimal cost diagnosis of the state of the

system.

1.2 The Flow Network Model

Let (V,E) be a network with vertex set V and edge set E. Suppose

Vg C v is the set of supply vertices, with supplies {av, v € v } and

Vd C v is the set of demand vertices with demands {bv, v € v.}. Each

edge is either directed or undirected and is assumed to have integer

upper bound capacity c(e) and lower bound capacity zero. The network

of Figure 1.2.1 is an example. The notation e/c(e) designates each

edge and its capacity. Vertex 1 is the single supply and Vd = {3,4,5}.

All edges are directed except 6 and 7.

For simplicity, only network edges are assumed subject to failure,

though the methods to be considered can be readily extended to include

vertex failures. The system, call it Z, is taken to be working if and

only if there exists a flow which satisfies all demands and which uses

only unfailed edges. (Alternative definitions of the system working

could also be used. For instance, given weights w , v £ V,, the system

might be assumed working if and only if the minimum weighted sum of

deficiencies at demand vertices is less than some fixed value.)
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A set of edges S C e is then a success set for this reliability

model if and only if there is a feasible flow which is zero on edges in

E - S. Since lower bound capacities are zero on all edges, the system

is coherent and thus has unique minimal failure and success set families

3^ and*^. Given a set UC e, the obvious procedure for checking whether

U is a failure set is to attempt a feasible flow using only edges in

E - U. Perhaps the best known algorithm for constructing a feasible

flow is that of Ford and Fulkerson [FF], but more efficient algorithms

are available [EK[. If edges in E - U admit a feasible flow, U is not

a failure set, but the set S C e - U of edges on which the flow is non

zero is clearly a success set.

1.3 Obtaining Minimal Failure and Success Set Families for the Flow
Network Model

The Failure and Success Set Family (FSF) Algorithm, which is stated

in this section, represents the basic technique we propose for deriving

minimal failure and success sets associated with the flow network model.

Subsequent sections in Part I discuss some refinements intended to make

the technique practical for large networks and computer implementation.

The motivation for this algorithm is quite simple. Suppose a pro

cedure is available that endeavors to construct the complete minimal

failure set family J? by testing various subsets U C e, seeking a

feasible flow on edges in E - U. At a particular point, collections &

and jo of (not necessarily minimal) failure and success sets have been

obtained from previous tests, and let U be the present candidate. We

can avoid applying the feasible flow algorithm in two situations. First,

U cannot be a failure set if there is at lease one success set S €= Jf

that is disjoint from U, since each failure set must intersect all
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success sets. Secondly, U cannot be a minimal failure set if there is

a failure set F £ &such that F is a proper subset of U. In fact, as

the theorem below indicates, it is only necessary to apply the feasible

flow algorithm when U is contained in d($) -^, that is, when U is a

member of d04) that has not previously been found to be a failure set.

Theorem 1.3.1

Let/; be a collection of (not necessarily minimal) success sets.

Each U € d(J)) is either a minimal failure set or E - U is a success set

not in jo .

Proof:

If U is a failure set, it must be minimal. For otherwise, U has

a proper subset V which is a minimal failure set, and V H s f 0 for each

S^i. Thus, U £ d(i), a contradiction. If U is not a minimal failure

set, E-U£j, since UH S f 0 for all S€/J, but U is disjoint from

E - U. n

Corollary 1.3.1

Let i be a collection of minimal success sets. Each U S d(2) is

either a minimal failure set or E - U contains a minimal success set not

in L

Based on these considerations, an iterative scheme to construct the

minimal failure set family can be outlined. At iteration k, suppose a

k /»k
family & of known minimal failure sets and a family J& of known (not

necessarily minimal) success sets are available from previous iterations,

The k candidates U in the family 7i - d(4 ) -5* by attempting a

feasible flow on edges in E - U. This leads to a new group of minimal

new k
failure sets & , consisting of sets in ZC for which a flow does not
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exist on edges of E - U, and a new group of success sets,£ from

feasible flows constructed. Iteration k + 1 then begins with the col

lection of known minimal failure sets 3T =& U ^new g^^ t^e collec

tion of known success sets X =h U^new. This procedure initially

requires a family^) containing at least one success set. Of course,

one initial success set can always be obtained if the entire network

admits a feasible flow.

A formal statement of the method is as follows:

Algorithm FSF

1. Obtain i , a family containing at least one success set. k •*• 0,

Gr <• 0 and go to 4.

2. k+ k+ 1, Jnew -*- 0, 3-new -«- 0. Perform steps 2a, 2b, and 2c for

each U € 7ik:

a. Select next U € 7L . if all sets U have been considered go to 3.

b. If inew f 0 and Un S-0 for any Seinew, go to 2a.

c. Test U by attempting a feasible flow using edges in E - U. If

no feasible flow is possible, include U in J?-new. If a feasible

flow is possible, obtain a success set S C E - U and include S

anew _ _
in jd • Go to 2a.

3. ^^U^V^^"1^*6". Ifinew= 0, stop.

4. 21 «- d(i ) - 3r . If Zt =0, stop. Otherwise go to 2.

(The notation "symbol •*• formula" means that indicated by the formula

on the right have been performed, the resulting object, whether it be a

family, set, or quantity, is to be represented by the symbol on the

left.)

Theorem 1.3.1 above guarantees that each F added to a family &
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is a minimal failure set. Moreover, no set placed in Gr at iteration

k-1
k can be inJ because minimal failure sets known from previous itera

tions are excluded from tC, Also, the procedure is certainly finite,

since each family of success sets 4 , except possibly the last, contains

ck—1
at least one success set not in^ .In fact, the argument of Theorem

1.3.1 applied inductively shows that sets of jC are distinct and that a

set U tested in Step 2c at some iteration will not be tested again in

any succeeding iteration. Our remaining concern, therefore, is that the

procedure does not end prematurely, that is, before all minimal failure

sets have been generated. Theorem 1.3.2 guarantees that Algorithm FSF

provides not only all minimal failure sets, but also all minimal success

sets.

Theorem 1.3.2

If Algorithm FSF stops at iteration A, the 3 is precisely the

family C?z of all minimal failure sets and J& contains the family J$„ of

all minimal success sets.

Proof:

In Step 3 for k = £, if J>n&w = <J> then it must be the case that3?new

= 71$. Were the stopping condition in Step 3 ignored, we would obtain

Ik = <J> in Step 4, since

tt*1 h dd*"1) - tj*"1 - jnew =it - a1 - ♦

Hence, it suffices to consider the situation where the procedure stops

with Ul+1 = <J>.

Thus, suppose it = <J> but there is aminimal failure set F£$Z.

Since F has a non empty intersection with every success set, there is
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some smallest subset F* C F that has a nonempty intersection with every

set ini ,that is, Ff €d(,&*). Now, if Ff =Fthen F» f3l by assump

tion, whereas if Ff is a proper subset of F, then F» £ 3Z because F1 is

not a failure-^et.' in either case, 11 £ §\ a contradiction. Therefore,

3 contains all minimal failure sets.

To show that^) contains all minimal success sets, we note that
&+1 nZ Z 9.

since ti = <|>, d(i ) £& . Each F €3 has a nonempty intersection with

all S €J 9 and ^ is a clutter. These facts are sufficient to insure

that d(4 )»& . Now the clutter m(Jl) satisfies d(m(#*)) = d(i*); and

from the remarks of Section 1.1 m($Z) =d(£A), so m($l) is precisely the

family <$„ of all minimal success sets. n

Derivation of dual families and construction of flows are clearly

the major tasks associated with Algorithm FSF. To find the dual family

associated with an arbitrary family of sets can sometimes be quite diffi

cult, but it is convenient to discuss this problem in later sections. We

will close the present section with some remarks on construction of flows.

The total number of flow constructions that will be attempted by

the procedure will equal the sum of the numbers of sets in the final

families $ , and «i . The sum will be a minimum if each set of A is a

minimal success set, so i » &„. However, given a flow and the set

of edges having nonzero flow, a few additional flow constructions will

usually be required in order to verify that S is a minimal success set,

or to find at least one minimal success set that is a proper subset of

S. Of course, if S were found not to be minimal success sets, ideally

we woiajbi like to find all prime success sets contained in S and include * ;.

» •• Qnew
these sets in^ .This suggests *i possible recursive application of

the algorithm, that is, applying the algorithm again to the subnetwork
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defined by edges in S fc'6 obtain a~final family which includes all

minimal suceress sets that are subsets of S.

On the other hand, insuring that only minimal success sets are

Qnew
included in ^ for each iteration is often not worth the trouble.

This is so because available techniques for constructing feasible flows

tend to be conservative in the number of edges having nonzero flow,

especially in sparse networks. Hence, a success set obtained from such

a flow is often minimal or "nearly" minimal in the sense that only a few

edges are nonessential to the flow.

Finally, testing sets U in Step 2c of Algorithm FSF is often greatly

simplified when the network has a single supply vertex, especially if

there are a large number of demand vertices. Any network feasible flow

may be associated with an augmented network in the sense of Ford and

Fulkerson [FF]. The augmented network has neither supply or demand

vertices,and each edge of the original network appears in the augmented

network with a forward and reverse capacity. Given a set U to test in

Step 2c and the augmented network for the last feasible flow constructed,

we need only remove edges in the set U from this network and designate

initial and terminal vertices of these edges as supply and demand vertices,

with amounts equal to the edge flows. Because the original network has

a single supply vertex, a feasible flow on the augmented network under

these circumstances is possible if and only if there is a feasible flow

on the original network which is zero on edges in the set U. If a feasible

flow is possible, we obtain a new augmented network to replace the previous

one; otherwise, the previous one is retained. In either case, an augmented

network is available to test the next set U. The general scheme of
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Algorithm FSF can be applied to a wide variety of models. It can be

applied, for example, to the related flow network model where the sys

tem is defined to be working when the minimum weighted sum of demand

deficiencies is less than a fixed constant. In this case, a set U GZJk

is tested by first solving a minimum cost flow problem on the subnetwork

consisting of edges in E - U. For applications outside the flow network

context, the procedure might be useful for coherent systems where no

direct technique is available for constructing either the mi-n-imai failure

or success set family, and testing of individual sets is expensive.

I»4 Obtaining "Interesting" Subfamilies of Failure and Success Sets

Large systems are likely to have so many minimal failure and success

sets that no computer methodology would be successful in deriving com

plete families, even when the system reliability structure allows descrip

tion by a fault tree or reliability graph. This seems not to have

deterred reliability analysts, many of whom are currently formulating

fault trees for systems where the number of components subject to failure

exceeds 1000. The usual practice in such applications is to seek an

"interesting" subfamily of minimal failure sets, a subfamily consisting

of sets which in the opinion of the analyst are most likely to be asso

ciated with actual failure of the system. Such a subfamily, for example,

might consist of all minimal failure sets not having more than a fixed

number of components. When component failure probabilities are available,

the subfamily could be chosen to consist of all minimal failure sets for

which the product of component failure probabilities is greater than

some fixed constant.
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This approach is suitable in many cases for two reasons. First,

components in actual systems tend to be quite reliable, so assuming

independent failure probabilities, the chance of more~than a few compo

nents being failed at the same time is often negligibly small. Secondly,

many actual systems do not possess a great deal of built-in redundancy,

usually due to component costs, so at least a few minimal failure sets

with a small number of components might be expected.

An importance or culling criterion designates each subset of the

component set E as either important or unimportant» with the restriction

that if the criterion declares a set E' C e to be important, it must

also declare each subset of E' to be important. For example, a size

importance criterion chooses important subsets of E to be those not

exceeding some fixed size; a probability product importance criterion

designates a subset of E as important if and only if the product of com

ponent probabilities exceeds some fixed value. Clearly, many other

suitable criteria can be formulated.

Given an importance criterion, let 3' be the subfamily of all impor-

tant minimal failure sets of the complete family 3_. A simple modifica-
Lt

tion to Algorithm FSF permits efficient construction of the family 3X
Li

rather than 3^. The family #k+1 of Step 4is derived as dC^) -3k,
rather than d(J ) -& »where d.(/> ) represents the subfamily of important

sets of the complete dual family d(£ ). Any technique for finding a dual

family can be adapted to efficiently obtain the subfamily of important

sets. Fortunately, the task of deriving this subfamily is usually many

times easier than deriving the complete family. Theorems 1.4.1 and 1.4.2

below correspond to Theorems 1.3.1 and 1.3.2 of the previous section.
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Proofs parallel the earlier proofs through use of the fact that subsets

of an important set are important.

Theorem 1.4.1

Let <Q be a collection of (not necessarily minimal) success sets.

Given an importance criterion, each set U € d ($) an important minimal

failure set, or E - U is a success set not in J.

Theorem 1.5.2

Given an importance criterion, consider Algorithm FSF with d (ik)

replacing dU ) in Step 4. Then if the modified algorithm stops at

iteration Z9 3 is precisely the family of important minimal failure

sets.

9Z
The family of success sets 4 produced by the modified algorithm

will, in general, no longer contain all minimal success sets. However,

rather than being an idle byproduct of deriving the important minimal

failure sets, we argue that J is, in fact, a family of "interesting"

success sets, even when 3- = (f>

Theorem 1.5.3

Given an importance criterion, consider Algorithm FSF with d CX )

replacing dCX ) in Step 4. Then if the modified algorithm stops at
o

iteration Jt, J> contains the complete family of minimal success sets for

a system Z having the properties:

1. System Z is less reliable than system Z.

2. The families of important minimal failure sets for systems Z and

Z are identical.

Proof:

Since m(j> ) is a clutter, it can be viewed as a minimal success set
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family $ for a system Z . This system is evidently less reliable
u W
w

than Z, since each S C*L is either identical with or a superset of
w

a minimal success set for Z.

Z+l _JL
Now from the fact that 71 = <j> and each set of CT has a nonempty

intersection with all sets of JA, d, (i_ )« d.tf*) =«2A. Since d. (<L)
j- «__ i i Z

w
rA . ~£= 3 also,ty represents all important minimal failure sets of both

systems Z and Z.
w

Of course, the family of important minimal failure sets for system

Z may be viewed as a complete family 3_ of minimal failure sets for a

system Z which is more reliable than Z. The families J& and j may
Lt Li*

w b

be used in various ways to obtain upper and lower bounds on the relia

bility of system Z, as well as to approximate the contribution of indi

vidual components to reliable system operation.

1.5. An Example Using Algorithm FSF

To illustrate the use of algorithm FSF, let us again consider the

network of Figure 1.5.1." Any feasible flow will yield an initial suc

cess set for the family J . A suitable flow is represented in Figure

1.5.1, where each edge e with nonzero flow f(e) is labelled e/f(e).

Thus, let 2° - [{1,3,5,6,7}] and 3° =<f>, so l£ -d(i°) - <J> = [{l},{3>,
{5},{6},{7}].

Iteration 1

3nSW = [{1},{5}] Jnew - [{1,2,4,5,7},{1,3,4,5,6}]. Sets in <?neW

are derived from the flows of Figure 1.5.2, obtained by testing sets {3}

and {7}.

31 «- <?° U3new i1 «. J>° U5new
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U2.= dd1) -5F1 - [{2,3},{3,4},{3,7},{2,6},{4,6},{6,7},{4,7}]

Iteration 2

OneW - [{2,3},{3,4},{3,7},{2,6},{6,7},{4,7}]

3?ew = [{1,2,3,5,7}]

Qnew
The single set in & is derived from the flow of Figure 1.5.3,

obtained by testing set {4,6}.

-3-2 +3l Utfnew J 2 +$1 uj new

fl3 - d(i2) -#2 = <fr

Stop.

The complete minimal failure and success set families are

tfz « [{1},{5},{2,3},{3,4},{3,7},{2,6},{6,7},{4,7}]

<?z » [{1,3,5,6,7},{1,2,4,5,7},{1,3,4,5,6},{1,2,3,5,7}].

For a second example, suppose only minimal failure sets of size 1

are considered important, and d.(4 ) represents all size 1 sets of the

dual family. Again let i° = [{1,3,5,6,7}] and 0° « ,so U1 =d.C^0) -*

= [{1},{3},{5},{6},{7}].

Iteration 1

^eW « [{1},{5}] X6W - [{1,2,4,5,7},{1,3,4,5,6}]

onew
Sets in^J again correspond to the flows in Figure 1.5.2 above
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Stop.

The failure and success set families obtained this time are then

31 = [{1},{5}]

£ = [{1,3,5,6,7},{1,2,4,5,7},{1,3,4,5,6}]

1.6 Modified Versions of Algorithm FSF

The two versions of Algorithm FSF stated in this section are intended

to be suitable for computer implementation, and both differ from the

original method only in the aspect of deriving dual families. The first

version, Algorithm FSF.l, has performed more efficiently than FSF on com

puter examples analyzed thus far, but this version still relies on an

explicit technique for deriving dual families. The second modified

version, FSF.2, is self-contained, and dual families are derived impli

citly. Computational experience indicates that when the failure and

success set families to be derived are large, say more than 150 sets,

Algorithm FSF.l is more efficient than FSF.2 in terms of computation time,

whereas, FSF.2 requires less space in main memory.

In order to determine the complete family 3L of minimal failure sets,

Algorithm FSF clearly depends on the computational feasibility of obtain

ing d(JL) as well as dual families for various other collections of suc

cess sets. This is often possible when<07 contains as many as perhaps

200 sets and 3L as many as 1000 sets, but the ability to construct d(JL)

can certainly be a limiting factor in the analysis of large flow networks.

Construction of a dual family falls into the category of problems desig

nated by computer scientists as np-hard, which essentially means that
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for any proposed dual algorithm, there is almost assuredly a class of

examples where the effort required increases exponentially as the number

of elements in the set E. However, it is pointed out in reference [RO]

that problems of this type unavailably arise in the reliability analysis

of many complex system models.

Not much literature is available concerning algorithms to construct

dflR) for an arbitrary family 6{. Therefore, such an algorithm is dis

cussed in Section 1.8. This algorithm has been found to work well in a

number of applications, most of them in connection with analysis of fault

trees [WI]. The technique is also suited to efficient construction of

all sets of the dual family which satisfy an importance criterion.

It is frequently much easier to find a subfamily of d(fl) than to

construct the complete dual family. (Deriving such a subfamily need not

be np-hard.) Rather than deriving the complete family d(i ) in Step 4

of each iteration of Algorithm FSF, therefore, let us derive the sub

family consisting of all sets of d(2 ) not exceeding a particular size.

This size, however, changes with each iteration and is not to be confused

with a size importance criterion. Algorithm FSF.l, stated below, deter

mines all minimal failure sets of a given size at the same iteration.

In Step 4, the notation dm(& ) represents the subfamily of all dual sets

consisting of no more than m elements.

Algorithm FSF.l

1. Obtain j) ,a family containing at least one success set. k < 0,

3 •*• <fc and go to 5.

o i . i j- i pnew , onew _
2. k «- k + 1,*5 -«- <j>, & + <{,. Perform Steps 2a, 2b, and 2c for each

u e#k.
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a. Select next U Zl . If all sets U have been considered go to 3.

b. If inew ^ and 0ns»^ for any SS^new, go to 2a.

c. Test U by attempting a feasible flow on edges E - U. If no

feasible flow is possible and U has exactly m elements, include

new

U in Or . If a feasible flow is possible, obtain a success set

S C E - U and include S in Jnew. Go to 2a.

3. ^k +G^'1 U3new Jk -h i16"1 U2>new.

4. m «- m + 1.

If IL**1 +«go to 2.
k+1

5. If ^C = <J>, stop. Otherwise, fix m to the smallest number of

k+1
elements of any set in and go to 2.

This algorithm can be justified by an extension of the arguments

for algorithm FSF, but using induction on k. If m(k) is the value of

m at iteration k (k ^ 1), the induction assumption is that dm^(^k) _Jk

in Step 4 consists only of sets having m(k) elements; in other words, all

m(k) ok
sets d QJ ) having less than m(k) elements are known minimal failure

sets.

Experience with Algorithm FSF.l indicates that Step 5 is rarely

executed between the initial and final iterations. By deriving a complete

dual family on the final iteration, Step 5 "verifies" that all minimal

failure sets have been found.

Like the original method, Algorithm FSF.l can also be used to find

the subfamily of all minimal failure sets satisfying an importance

criterion, simply by deriving subfamilies d™(ik) and d.ci ) of all

important sets, respectively, of dm^J ) and d(S ) in Step 4 and 5. Of
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course, it is not necessary to perform Step 5 if m has the same value

as the size limitation for a size importance criterion; if this is the

case at the beginning of Step 5, the procedure should be terminated.

Since efficient computer routines to construct the dual of an

arbitrary family are not widely available, there is an advantage to

stating a version of Algorithm FSF that does rely on explicit construc

tion of dual families. Some additional notation is required.

Given families Jf and Mof subsets of a finite set E, let the family

m(#/fl) (the "minimization of if by#"> consist of all sets of if that do

not contain a set of ?i. The simplest way to determine m(£f/l/) is to com

pare each set of 2) with sets in 7J having an equal or smaller number of

elements. The number of set comparison is then bounded above by the

product of the number of sets in if and the number in *#; so for large M

and^/, construction of m(y/^ will involve some measure of computational

effort. A more sophisticated technique might reduce the effort somewhat,

but probably by not more than half in most situations.

Also, given subsets Q and R of E, the sharp product family, denoted

by Q # R, is defined as [QU{e}|e€R], (The terminology and notation

are adopted from reference .£SE].) Thus, for example, {1,2,3} # {3.,A,5}

= [{1,2,3},{1,2,3,4},{1,2,3,5}]. Sets of Q # R need not be distinct.

We extend this notation by replacing Q with a family d? of subsets of E,

writing ## R to denote the union of families U Q # R.

For a family 4? and a set R £^, it is easy to see that d(<ffU [R ])
new " J x *" l new

consists of distinct-sets of d(fi). #~K that do not contain another_ v new . . .

set of this latter family. In fact, if dCR) is partitioned into two

families Q. and Q . such that sets in Q. are disjoint from R and sets
a na d ** new
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inQ . have a nonempty intersection with R , then
nd r new

d«ftU[R ]) =$ . Um«JL # R /£j.
newJ nd d new nd

This relation suggests a computationally useful procedure for obtaining

d(<RU [RnewD when the family dflft) is available.

Based on these remarks, modification of Algorithm FSF is now fairly

straightforward and involves changing only Step 4. In Algorithm FSF.2

below, Steps 4a and 4b iteratively construct the family d(ik-1 Ujnew)
k ok—1 k—1

- 3 from the family d(& ) -Q by considering successive sets
news ci

Algorithm FSF.2

1. Obtain^ ,a family containing at least one success set k «- 0, Cf •*- $,

and go to 4.

2. k -*• K + 1, J «*-({>, #new -«- <j>. Perform Steps 2a, 2b, and 2c for each

U e#k.

a. Select next U6^(. If all sets U have been considered9 go to 3.

b. IfJnew t $ and U n s» <j> for any S€^5new, go to 2a.

c. Test U by attempting a feasible flow using edges in E - U. If

no feasible flow is possible, include U in JneW. If a feasible

flow is possible, obtain a success set S C e - U and include S

in 4 • Go to 2a.

3. 3k -3k U5new, 2k ♦J*"1 uinew. if inew =, ,, stop.

4. ^^k-^neW.

Perform Steps (a) and (b) for each S G J5new:

a. Select next S €^new. If all S€ 2new have been considered,

# +7/ and go to 2.
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b. # «- [h e #h n s = $]

^•[H6jHn s 94 «J>]

If #d o<f>, go to (a). Otherwise #«-#nd u*C^ #S/^d Utfk)
If 71 - <{>, stop. Otherwise, go to (a).

1.7 A Computer Example Using Algorithms FSF.l and FSF.2

The network of Figure 1.7.1 is taken from Reference [JD]. In that

reference, several edges are permitted to have multiple random capaci

ties, so we have selected the maximum capacity given there for our simpler

two-state model. The integer upper bound capacity and the failure pror.

bability for each edge is shown in Figure 1.7.1. These probabilities

are also somewhat different than in [JD], where six edges are assumed

not subject to failure.

A FORTRAN computer program implementing Algorithms FSF.l and FSF.2

was used to analyze this network on a CDC 6400 computer. The first

minimal failure and success set families for the network under a variety

of demand conditions. For a given run, all demands were set to a fixed

percentage of the demand amounts (rated demands) given in Figure 1.7.1.

Another computer routine was used to obtain, the exact probabilities of

system failure based on failure and success set families derived, assuming

independence of edge failures.

Each line of Table 1.7.1 summarizes the results of a particular

run. The percentage of rated demands appears at the left, followed first

by the number of sets ±a.j$„ and the maximum size of any of these sets,

and then by the number of sets in $„ and their ****-**™*m size. Exact

failure probabilities P* and p were obtained respectively by utilizing
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families Jz and 3Z> Finally, the CDC6400 CPU time required for deriving

-^ and 3., is given. This time does include the time to calculate exact

probabilities, but in all cases probability calculations from a failure

or success set family required less than 1.5 CPU seconds. The network

is not feasible for 115% of rated demands, and no runs were made for less

than 90% of rated demands (because of a limited computer budget). All

runs for Table 1.7.1 used Algorithm FSF.l.

% Rated

Demands #5Z
Max

Length *\
Max

Length % %

CPU

Seconds

110 23 2 12 18 .128 .128 3.2

105 27 3 24 18 .119 .119 6.0

100 30 3 30 17 .0840 .0840 8.1

95 26 4 52 16 .0639 .0639 20.1

90 30 4

Table

84

: 1.7.1

16 .0119 .0119 71.8

Derivation of Complete Families 3„ and J-

A second series of runs was made with a probability product impor

tance criterion, and important sets were required to have a product of

component probabilities exceeding 10~ . The family Ji of Table 1.7.1 is

in this case the family of "interesting" success sets associated with

3Z> Thus, according to the discussion of Section 1.4, values p« are

upper bounds for the system failure probability, whereas p , are lower

bounds. Results for 95% and 90% of rated demands indicate a considerable

savings in CPU time over derivation of the complete families {?„ and J[ .
Li Li

All runs in this series were again done with Algorithm FSF.l.
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% Rated

Demands #<?'
Max

Length §JL
Max

Length
V Pi

CPU

Seconds

110 21 2 n 19 .128 .128 2.1

105 21 3 14 18 .119 .119 2.5

100 24 3 17 18 .0840 .0840 2.9

95 20 3 31 18 .0639 .0639 4.7

90 23 3 43 18 .0119 .0120 6.6

80 17 3 42 18 .0116 .0117 6.0

60 11 3 29 16 .0107 .0107 3.9

40 8 2 24 15 .0103 .0103 4.9

20 7 2 23 13 .0103 .0103 4.3

Table 1.7.2

Derivation of Probability Product Important

Subfamilies^ (Critical Value 10"6)

For edge probability values precisely 10 times the values shown

in Figure 1.7.1, a recalculation of exact system failure probabilities

was done based on complete families 3„ and A? for the percentages of

rated demands listed in Table 1.7.1. These probabilities are given in

Table 1.7.3. (For percentages 100, 95, and 90, the slight discrepancy

between values p^ and pj is due to round-off error that accumulates

during calculation of these quantities.)

Finally, a series of runs was made with a probability product impor

tance criterion using edge probability values 10 times the Figure 1.7.1

-3
values. The critical value in this case was 10 , and all runs were

done with Algorithm FSF.2. Table 1.7.4 summarizes results of these

runs.
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Demands
P5 VJ

110 .823 .823

105 .803 .803

100 .740 .739

95 .699 .698

90 .316 .314

Table 1.7.3

Exact System Failure Probabilities (Using Edge
Probabilities x 10) % Rated

% Rated

Demands *&z
Max

Length #i
Max

Length
%< PJ

CPU

Seconds

110 20 2 11 18 .823 .823 1.5

105 20 3 16 18 .803 .804 2.1

100 23 3 17 18 .740 .739 2.1

95 20 3 26 17 .703 .700 3.8

90 25 4 40 17 .316 .324 6.5

80 18 4 31 18 .216 .229 4.9

60 11 4 28 15 .131 .145 3.4

40 7 2 20 15 .124 .130 2.9

20 7 2 25 13 .124 .131 2.9

Table 1.7.4

Derivation of Probability Product
Important Subfamilies (?'

(Edge Probabilities X 10; Critical Value 10"3)
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1.8 Construction of Dual Families

Given a family 61 = [R_,...,R ] of subsets of a finite set E, let
in

6L = [&}>•••>&.] ^or 3£ n* Tne previous section indicates we can con

struct the families d^),... ,d($Q by the following method:

1. j«- 1, tf1 «• [{e}|e €r^. If n=1, stop.
2. Partition sets of Or into families Q~ ahd#-* ,where sets of #^ are

a nd d

disjoint from R and sets of #J have a nonempty intersection with

Rj+r
3. QJ+1^ndUm^d//Rj+1/^d)

j «- j + 1. If j = n, stop. Otherwise, go to 2.

The final family Q produced by this procedure is, of course, the dual

family for $. This procedure is suitable for computer applications when

either K or d(fl) consists of a small number of sets. However, when

both<# and d(dj) consist of more than perhaps 100 sets, significant com

putational effort is required for set comparisons implicit in deriving

the families m(Q{ # R.^/tf^).
d j+1 n

In this section, we propose a more efficient technique for deriving

d(S{) when {R. and/or ddft) has a large number of sets. This technique

endeavors to minimize the number of set comparisons necessary to detect

and discard redundant sets as the dual family is being derived. The

general strategy is to consider a partition of the set E and construct

the dual family by combining subsets from various members of the parti

tion; hence, the method will be referred to as the Partition Subsets (PS)

Algorithm.

From here on, assume the sets of <£ have a fixed order, (R. = [R-,...,R ].
l n

The efficiency of the algorithm depends to some extent on this order,
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but a rule for determining some kind of "optimal" order is not available.

Later, we will consider a good heuristic rule for arranging these sets.

For any nonempty set A C e, let the cover of A, denoted by C(A),

consist of indices of sets in(R that have a nonempty intersection with

A, that is, C(A) ={i|A H R± f <j,, R_^ Gtf?}. c(<f>) is defined to be *.

For example, iffl = [{1,2},{1,3,4},{2,3,4},{3,4,5,6}], C({2}) = {1,3}

and C({3,4}) = {2,3,4}. Clearly, for D S d(R), it must be the case that

C(D) = N, where N is taken to be the set of consecutive integers {1,2,

...,n}. Moreover, for D € d(ff) and any e € D, C(D-{e}) must be a proper

subset of N, by the requirement that no proper subset of D may intersect

all sets of 6{.

A set B C e will be called a basic set if for each e € B, C(B-{e})

is a proper subset of C(B). Also, given a set A C e, let©(A) be the

family of all subsets of A that are also basic sets. (8(A) cannot be empty,

since it contains at least the single element subsets of A. Though <B(A)

IaI
could have as many as 2' ' - 1 sets, this is not often the case for

families IR. that arise in applications, such as minimal failure and suc

cess set families associated with complex systems. If A has, say, 12 or

less elements, & (A) can usually be constructed in a small amount of com

puter time, and a simple procedure to accomplish this is outlined in the

next paragraph. It might be observed that dtf^) = [B € (8(E) |C(B) = N],

but this observation does not yield a suitable algorithm for finding a

dual family, since in many applications of interest, the set E is large

enough to make construction of0(E) impossible.

Let A C e consist of elements e ,...,e . One way to obtain ©(A) is

as follows: Let <fiT consist of just the set {e^ and generate /B2,...,63V
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according to the rule

(&U «- [{e }] U[BU {e }|B Sffif1"1, C(BU{e}) f C(B)].
u u

V

Clearly, (B(A) £ U & , but some sets in this union of families may not
u=l v

be basic. To remove these non-basic sets, first partition U ©u so
u=l

that any two sets B and B* of this union belong to the same member of

the partition if and only if C(B) = C(Bf). Then discard any set that

property contains another set in the same member of the partition. The

sets constitute ©(A).

As an illustration, for the example family (R = [{1,2},{1,3,4},

{2,3,4},{3,4,5,6}] and A » {1,2,3,4}, we obtain

$ [{1} ,C({1}) -{1,2}

2 [{2} , C({2}) o{1,3}
* 111,2} , C({1,2}) ={1,2,3}

<63

d

{3} , C({3}) =* {2,3,4}

{1,3}, C({1,3}) » {1,2,3,4}

{2,3}, C({2,3}) = {1,2,3,4}

{1,2,3}, C({1,2,3}) « {1,2,3,4}

U}, , C({4}) = {2,3,4}

{1,4}, C({1,4}) ° {1,2,3,4}

{2,4}, C({2,4}) = {1,2,3,4}

{1,2,4}, C({1,2,4}) - {1,2,3,4}

4

Partitioning U 6U yields the families [{1}], [{2}], [{1,2}], [{3},{4}],
u=l

[{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}]. Sets {1,2,3} and {2,3,4} must

be discarded because they contain another set in the same member of the

partition. Thus,@(A) = [{1},{2},{1,2},{3,4},{1,3},{2,3},{1,4},{2,4}].
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The sets for which we shall require all basic subsets are sets

A., 1 <_ i < n defined by A = {e S R. |e £ R. 1 < j < i}. Thus, A. con

sists of elements of the set R € £\ that do not appear in any preceding

set of {{. Some of the sets A. may be empty, but Algorithm PS explicitly

ignores these sets. For the example family R=» [{1,3},{1,3,4},{2,3,4},

{3,4,5,6}], it is easy to see that A^ = {1,2}, ^ = {3,4}, A3 = <j>, and

A4 ={5,6}; in addition, ©(A^ =* [{1},{2},{1,2}], fl(A2) = [{3},{4}],

andfi(A4) = [{5,6}]. Note that the collection [A-,...,A ]forms a par

tition of E. The fact which motivates the PS Algorithm is that for any

D ^ d($), there is a unique partition of D, say [B.,...,B ], such that
L m

for each i, l<i<m, either B = <j> or B is a set in (A ). (Evidently,

A. = <J> =* B =» <f>, but B. can be empty even when A is not.) As an example,

{1,2,5} € d(fl) fordl above, and this set may be written as {1,2} U <f> U <j> U {5},

where {1,2} Gfi(^) and {5} €®(A4).

The general idea underlying Algorithm PS is thus to form appropriate

unions of sets from distinct families (8(A.), for A ^ $. Let [A. ,A ,

...,A ] be the group of A's that are nonempty. The method considers
s

these sets successively in s stages. Assume at stage q, there is on hand

a table of sets %Jq with each set T £ 0 composed of elements from

A.,...,A. and having the properties:

q"1 a-1(1) For each T € 3q \ {!,... ,i } C c(T) but C(T) ^ N.
q-1 —

(2) If D is any member of d($) such that D contains elements not in

q~1 -n 1
A ,... ,A , then D H ( U A. ) € 04 .

Vl P=l \ x
Condition (1) simply requires any T 6 J^ to have a nonempty intersec

tion with each of the sets R ,...,R but not all sets of GL Condition

q-1 q~1
(2) requires O to contain, for any D £ d((R), the largest proper subset

of D that can be formed from elements in the sets A-,...,A.
1 i -

q-1
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At iteration q, we find a family «0q, which contains each D € dflft)
q-i q

such that D£UA. but D C U a. . Essentially, construction of D
P-l XP P»l \

is completed by appending a subset of A to a proper subset of D con-

i P
tained in the family 0 • We also generate a family tfi having proper

ties (1) and (2) above for q replacing q-1. Formally, tfi and £? are

obtained through operations described by the following symbolism:

0q <-[T e^"1!{!,...,iq} CC(T)]

u 1-1TuB,T e^.B e(8(A± )
q

C(TMB)^N

C(TMB)^C(T)

{l,...,iq}OC(TUB)

J?MTU B,T 6^,8 eg(A± )C(T UB) -N]
q

Algorithm PS actually utilizes more stringent conditions than

{l,...,i } C c(T) and {l,...,i } C c(T U B) in assigning sets T and

T U B to the family J, but it is convenient to delay introducing these

alternate conditions. A final version of the algorithm will not be

stated until near the end of this section. However, all remarks below

may easily be extended to apply to the final version.

In practice, Oq and jO can be constructed at the same time by consid

ering successively each T € 0 . First, if T has a nonempty intersection

with all of the sets R-,...,R, , then T is included in Cr. Next, each set

o q
B € ©(A ) is considered in conjunction with T. If C(T U B) = N, the T

q _
and B together have a nonempty intersection with all sets of 0\, so the

set T U b is formed and placed in^Cf. If C(T U B) f N, it is determined

whether T and B together have a nonempty intersection with more sets of

^.than T alone. If so, T Ub is formed and included in*J\.
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Proposition A.l guarantees that all sets D € d( ) are obtained.

Proposition 1.8.1

Let the above iterative procedure start with 0 = [B S(g(A ) C(B)

=N] andotf1 «[B egCA^jCCb) =N]. Then d(ft) C U<£<!.
Proof:

. q
For any D £ d(R), we can write D « U b , where 1 < q < s, B„ and

P-l P ~ XBq are nonempty with B± efi^), B_ €(8(A± ), and each B,1<p<qis
n q peither empty or a subset in ©^ ). Using the fact that each subset of

P

D is a basic subset, a simple induction argument establishes that
q-i _ ,

T « U B is a member of (p . Since C(T U b ) = N, D = T U b appears
p=i p q q

in£q. H
s

Since d($) C U jf)q and each set in this union of families has a
q=l s

nonempty intersection with all sets of (ft, d(R) = m( U <Qq), the clutter
s q=l

obtained by discarding sets of u £? which contain another set of the
q=l

family. Proposition I.e.2 allows us to conclude further that d(R)
s

° u mCD ), and this fact usually leads to a considerable reduction of
q=l s

effort in removing redundant sets of U £q. Assume again that the pro-
«1 1 qasl

cedure begins with J and £ as in Proposition 1.8.1.

Proposition 1.8.2

Let D^ef for some r, l<r<s but suppose D£ d<?R). Then there

is a D1 € 3? such that D'Cd.

Proof:

s

Evidently, there is a D' € U £? such that D' <= d$) and D1 C d.
«r p=slWe will show that Df S^. As in the previous proof, we can write

r

D = U b , where B G <Q(A ), B„ € <g(A. ) and each B , 1 < p < r is
p=l p X 1 r \ P

q

ps

either empty or a subset in <8(A ). Similarly, we can write Df = \j B',
P p-l P

-65-



where q _< r since D1 C d.

Let us assume q < r and show this gives a contradiction; thus, q = r

and D» e^fiF. Now B* CB for 1<p<q, because [A^,...,A ]is aparti-
s

tion of E and D' C d. Hence,

q q q q
C( U b») - U C(B») C U C(B ) = C( U B )
p-l P p-l P p-l P p-l p

q q
Now C(D') = N, so C( U b ) - N. But then U b cannot appear in the

P-l P r-1 p-l p
family JH, and since q < r - 1, U b is not a set in any of the families

i P

q ~r-l pssl r
3 ,...,CT . But this contradicts the assumption that D » U B is con-

or P=1 Ptained in JJ~.

The iterative procedure will be most successful when the number of

sets in successive families (J does not increase too rapidly. Ideally,

we would like each T€^ to be a basic set, but to insure this requires

a number of set comparisons at each iteration. Algorithm PS has performed

well in computer applications without eliminating nonbasic sets from the

families 0q; however, it seems prudent to consider elimination of these

sets as a possible variation to the method. Removal of nonbasic sets may

be accomplished by the same technique suggested earlier in connection with

obtaining a family &(A); namely, by first partitioning the family 0q so

all sets T with the same C(T) appear in the same member of the partition.

Redundant sets are then discarded from each member.

The arrangement of sets of <R clearly influences the rate of increase

in the size of successive families 0q. Heuristically, it seems desirable

that the sets A be small, so the families <8(A. ) will not contain a
q Xq

large number of sets. Also, the set {l,i2,...,i } of indices of nonempty

A.'s should be well distributed among the set {l,...,n} of subscripts of
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R3 - {2,3,4}, the set having A. = <j>. In general, for any set R. with

Ai = <f>, there is a maximum i- < i such that A. is nonempty and inter-

sects R±. Intuitively, iteration q is the "last chance to cover" R.,

since any T U b produced at this iteration which does not intersect

R. cannot be the core or a set that intersects all sets of $. Let L
1 q

consist of indices i of all sets R. such that iteration q is the last

chance to cover R.. Specifically,

for r > q

L is nonempty, since i e L . The earlier requirements that l,...,i

C C(T) and l,...,i C C(T U B) for sets T and T U B to be included
q ""

inOq may now be replaced by the more restrictive conditions that

L C c(T) and L C C(T U b) . For the previous example, we now find

Lx »{1}, L2 ={2,3}, L4 ={4}; thus, the set {1} is eliminated from J2.

The Partition Subsets Method is stated formally below. For simpli-

city,ij is taken to be the family consisting only of the empty set, so

on the first iteration, <f> U B - B for each B S <0(A ).

Algorithm PS

1. Initialization.

Arrange sets of (ft. Let R^ be the smallest set in <R. After

R ,....,R. have been chosen, let R. be a remaining set having the

smallest number of elements not In R R, ,.
i ' i-1

Determine the family [A ,...,A. ] of nonempty A 's and the corres-
1 xs ±

ponding family [L.,...,L ].
s
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q«- o, o° + [{$}], £+ 4

2. q •*• q + 1 and generate G(A. )

3. Oq +[T S^"1 Lr CC(T)]

U
1-1TUB,T €jq"X,B e<8(Ai )

q

C(TUB)^N

c(t)^c(tMb)

LqOc(TUB)

1-1£q +• [t ub,t eJq"±,B e©(Ai )|C(TMB) «N]
q

4. ,0^Um(Oq)

5. (Optional) Eliminate nonbasic sets from \J .

6. If O 3 (|) or q a s, stop. Otherwise, go to 2.

Note that Algorithm PS can also be used efficiently to find a sub

family of all important sets of d(fl). when an importance criterion is

specified. In this case, sets arising during construction of S(A ) and

2r are simply discarded if they are not important.

In conclusion, we consider some aspects of a computer implementation

of Algorithm PS. Each set V in the family Jq or 43(A. ) is most conven-
q

iently represented in computer memory as a set pair (v,C(v)). Further

more, the set C(v) should have a "Boolean" format; that is, C(v) should

occupy a fixed number of computer words with each bit position in a word

identified with a particular set index intf^. Presence or absence of an

index in C(v) is then indicated by a 1 or 0 in the bit position corres

ponding to that index. With this format, set unions and intersections

can be performed using computer AND and OR operations. If each element

in the set Vis an integer, the same storage format may be used for V.

Alternatively, V can be represented in "vector" format, where the first
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word for V contains the number of set elements, and succeeding locations

contain the individual elements, ordered to facilitate set union and

comparison operations.

Only a portion of% each" famiiy.O** .needscto be retained ifiTmairr memory at

any time; the rest can reside on magnetic disk. Since the family C^'1

is dispensible at the conclusion of iteration q, only two sequential

files are required: Blocks of sets for Jq~ are read into main memory

from one file as blocks of sets for Jq are prepared and written out on

the other. For iteration q + 1, the roles of the two files are inter

changed. In this case, it is usually not practical to eliminate all

nonbasic sets from Cr, though the technique suggested above for eliminat

ing these sets may be applied locally to each block of sets, immediately

before the block is written onto disk.

A subroutine package, mostly in FORTRAN, has been prepared for

Algorithm PS and used in a wide variety of applications. The code con

sists of about 800 FORTRAN source statement. Several small assembler

language routine perform operations involving sets stored in Boolean

format.
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PART II. FLOW NETWORK ANALYSIS PROGRAM

FNAP is a general purpose computer program for flow network relia

bility analysis employing algorithms FSF.l and FSF.2 of Part I. The

bulk of the program consists of about 3000 FORTRAN statements, segmented

into a driver routine and about 25 subroutines. Assembler code performs

several simple operations that cannot be done in the context of standard

FORTRAN. The FORTRAN portion of FNAP is compatible with nearly all

FORTRAN compilers, but assembler routine packages are currently avail

able only for CDC 6600/7600 and IBM 360/370 series machines. However,

versions of these routines can easily be prepared in any assembler

language according to the specifications given in Section II.7.

Considerable effort has been expended to insure that FNAP will be

easy to use. The input format is direct and unified, and input data is

completely checked for correctness and consistency. Error messages are

detailed, allowing the user to promptly identify problems involving

program input or execution. Also, an ample number of comment cards are

interspersed with the FORTRAN source code to relate program operation

to statements of algorithms FSF.l and FSF.2 in Part I. Finally, FNAP

has been extensively tested for reliable operation.

Sections II.1 through II.4 describe program input and output;

Section II.5 discusses the general procedure for implementing FNAP at

a computer installation.

II.1 General Input Structure

The smallest logical units of input data are called program instruc

tions, each of which is confined to a single 80-column punched card.
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Program instructions are classified according to three major groups:

edge definition, option, and execution. Edge definition instructions

specify a flow network for analysis. These are always read first by the

program, and if they are free of errors, a representation of the flow

network is stored in main memory. Errors in network specification are

messaged and cause processing to terminate.

One or more option instructions may follow network specification,

and information provided by these instructions is checked and stored.

Options allow the user to (1) specify supply and demand vertices and

amounts, (2) choose the methodology for analysis, (3) modify the input

flow network, (4) enable construction of an"important subfamily of .minimal

failure sets, and (5) control program printed and punched output.

The next card to be read after the option group is an execution

instruction, which instructs the program to begin obtaining failure and

success set families. Option instructions affect the processing initiated

by an immediately following execution instruction, and this processing

will be referred to as a run. When a run is completed, the program

reinitializes all memory locations except those associated with the

input network and with supply and demand information, so a group of

options and an execution instruction for a new run may immediately

follow the execution instruction for the previous run.

The input data package for FNAP therefore has this general form:

network specification instructions

run 1 option instructions

run 1 execution instruction

run 2 option instructions
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run 2 execution instructions

run n option instructions

run n execution instruction

For convenience, the same basic 80-column card format is used for

all instructions and consists of eight fields across the width of the

card. A particular instruction, however, will typically utilize only

information punched in certain of these fields. Field 1 is composed of

card columns 1-8. Fields 2 through 8 consist, respectively, of columns

11-18, 21-28, 31-38, 41-48, 51-58, 61-68, and 71-78. Data entered in

columns outside these fields is ignored, with the exception of column 10

on edge definition instructions.

The entry in field 1 is either an edge name or an instruction name,

left-justified in the field. Internally, FNAP identifies network edges

with positive integers, but the analyst is allowed the luxury of choosing

names to replace these edge numbers on program input and printed output.

Edge names may consist of any combination of eight or less characters.

Instruction names are fixed strings of eight or less characters and are

discussed in Sections II.3 and II.4.

Depending on the instruction, an entry in field 2 is either a posi

tive integer or a decimal number in FORTRAN E or F format. The entry

may appear anywhere in field 2, except for an E-format decimal number,

which must be right-justified.

Entries in fields 3 through 8 are either edge names or vertex names,

left-justified in these fields. Like edge names, vertex names may

consist of any combination of eight or less characters.
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II.2 Flow Network Specification

The input flow network is specified through a series of edge defi

nition instructions arranged in any order and followed by a card with

the string "ENDGRAPH" left-justified in field 1. An edge definition

instruction is provided for each network edge. Field 1 of this instruc

tion contains the edge name. The integer edge capacity appears any

where in field 2. Fields 3 and 4 contain the names, respectively, of

the initial and terminal vertices for the edge. If column 10 of the

instruction is blank, the edge is assumed to be directed from the initial

to the terminal vertex, so the edge can only carry flow in this direc

tion. If the character "u" occupies column 10, the program permits the

edge to carry flow in either direction.

An an example of network specification, we consider again the net

work of Figure 1.2.1, redrawn in Figure II.2.1 with an unimaginative

choice of edge and vertex names.

All edges are assumed to be directed with the exception of E6 and

E7. The network is specified as follows (where each line is to be

interpreted as a single card):

Col. 1 11 21 31
+ + + 4-

El 20 VI V2

E2 5 VI V4

E3 10 V2 V3

E4 5 V2 V3

E5 10 V2 V4
E6 U7 V3 V5

E7 U12 V4 V5
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II.3 Supply and Demand Options and the Execution Instruction (SUPPLY,
DEMAND, *XEQ)

For the initial program run, the card with "ENDGRAPH" in field 1

is followed by a group of option instructions and an execution instruc

tion. The execution instruction consists only of the string "*XEQ"

left-justified in field 1 of the card; all other fields are blank.

The simplest group of options that are necessary for the initial

run are those that designate supply and demand vertices and the flow

amounts available or required at these vertices. Each SUPPLY instruc

tion gives the supply amount available at a particular network vertex.

Field 1 contains the instruction name ("SUPPLY"), field 2 gives the

positive integer amount, and field 3 contains the vertex name. Fields

4 through 8 are blank. Two SUPPLY instructions may not refer to the

same vertex. DEMAND instructions have the same format and designate

demand vertices and amounts required. DEMAND instructions must also con

tain distinct vertex names; however, the same vertex name may appear on

both a SUPPLY and DEMAND instruction.

As an example, the supply and demand amounts indicated in Figure

II.3.1 can be utilized for an initial run through the following instruc

tion sequence:

SUPPLY 25 VI

DEMAND 5 V3

DEMAND 8 V4

DEMAND 7 V5

*XEQ

For this run, the program determines the complete minimal success and

failure set families associated with the network of Figure II.2.1:
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Minimal Failure Set Family

1

2

3

4

5

6

7

8

Success Set Family

1 El E3 E4 E5 E6

2 El E2 E3 E5 E7

3 El E2 E4 E5 E7

4 El E3 E5 E6 E7

CPU Time For Run

SUPPLY and DEMAND are the only option instructions that may affect

runs other than those for which they are specified. When SUPPLY options

are absent for a given run, supply information remains unchanged from

the preceding run. However, if any SUPPLY instruction appears, no supply

information is retained from the preceding run; thus, all supply ver

tices and amounts must be respecified, even if the supply amount at only

a single vertex is to be altered from the preceding run. The situation

is precisely the same for DEMAND options. As an illustration, suppose

an additional run is to follow the run of the previous example, with

the demand amount at vertex V3 changed from 5 to 7. Appropriate instruc

tions for these two runs are:

E5

El

E6 E7

E4 E7

E3 E7

E3 E4

E2 E6

E2 E3

r

El E3

El E2

El E2

El E3

.289 Sec
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SUPPLY 25 VI

DEMAND 5 V3

DEMAND 8 V4

DEMAND 7 V5

*XEQ
DEMAND 7 V3

DEMAND 8 V4

DEMAND 7 V5

*XEQ

FNAP checks supply and demand totals as soon as the *XEQ instruc

tion is encountered. If either total is zero, or if demand exceeds

supply, the program will terminate the run and immediately begin pro

cessing options for the next run. Errors in individual SUPPLY or DEMAND

instructions will also cause the run to be terminated.

II.4 Additional Option Instructions

The flexibility of FNAP for flow network analysis is due to the

option instructions we now discuss. None of these instructions is

strictly required for a run, but the analyst will nearly always wish to

include one or more. Unlike SUPPLY and DEMAND, the options only affect

runs for which they are provided.

The input sequence for run options is entirely arbitrary, with the

exception that instructions assigning edge probability values for a pro

duct importance criterion must appear together as a group. Moreover,

there is no restriction on the number of times a particular option is

included for a run. However, data from a given instruction will replace

conflicting data from a prior instruction of the same type in the input

sequence. Syntax errors in these options cause termination of the run.

The options are discussed according to four functional categories.
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II.4.1 Network and Supply-Demand Modification (FAILED, WORKING,
SPERCENT, DPERCENT)

FAILED and WORKING instructions consist of the instruction name in

field 1 and edge names in any or all of the fields 3 through 8. Field

2 is blank. When a FAILED instruction is included for a run, edges

whose names are listed on the instruction are assumed to be absent from

the network for the duration of the run. On the other hand, edges speci

fied on a WORKING instruction are treated as present in the network but

not subject to failure, so these edges will not appear in any minimal

failure or success set determined for the run. As an example, for the

input network of Figure II.3.1, consider a run specified by the following

instructions:

SUPPLY 25 VI

DEMAND 5 V3

DEMAND 8 V4

DEMAND 7 V5

FAILED E2 E4

WORKING El E3

*XEQ
E5 E7

The network for analysis by this run is that of Figure II.4.1 with all

edges perfect but E6. For this case, E6 is both the only minimal failure

set and the only minimal success set.

When there is a feasible flow that uses only edges listed on WORKING

instructions, no minimal failure set can be determined. If such a flow

is encountered during processing, FNAP prints a message and terminates

the run.

Use of instructions SPERCENT and DPERCENT greatly simplifies the

task of analyzing the flow network under a variety of supply and demand

conditions. These instructions contain the instruction name in field 1
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E6/7

Fig. II.4.1
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and a positive integer, say p, in field 2. The SPERCENT instruction

indicates that all supply amounts which would otherwise be in effect

for the run are to be multiplied by the factor p/100. If p is 120, for

example, the amount available at each supply vertex will be increased

to the largest integer amount not exceeding 120 percent of the value

specified in field 2 of the last SUPPLY instruction for that vertex

(which may or may not be an instruction for the current run). The

DPERCENT instruction alters amounts required at demand vertices in pre

cisely the same manner.

To illustrate the use of these instructions, suppose we wish to

analyze the network of Figure II.2.1 for supply and demand amounts that

are 200 percent, approximately 150 percent, and finally 100 percent of

the amounts indicated there. A suitable sequence of instructions for

these three runs is the following:

SUPPLY 25 VI

DEMAND 5 V3

DEMAND 8 V4

DEMAND 7 V5

SPERCENT 200

DPERCENT 200

*XEQ
SPERCENT 150

DPERCENT 150

*XEQ
*XEQ

Note that no options are present for the final run; supplies and demands

for that run will then be the same as specified by SUPPLY and DEMAND

instructions for the initial run.
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II.4.2 Methodology Specification (FSF1, FSF2, WRKFILES)

Instructions FSF1 and FSF2 allow the analyst to explicitly specify

which of the algorithms of Section 1.6, FSF.l or FSF.2, is to be utilized

in determining failure and success set families. Each instruction con

sists only of the instruction name in field 1 of a card; other fields

are blank. If neither instruction is included for the run, FNAP auto

matically chooses Algorithm FSF.2, unless a MAXSIZE option is specified,

in which case FSF.l is chosen.

When the success and failure set families to be derived are small,

say less than 50 sets, the computation time and ma-*™ memory requirements

of the two methods should be roughly equivalent. However, if these

families are large, Algorithm FSF.l will usually be more efficient in

terms of computation time, whereas FSF.2 will have the advantage in

terms of main memory utilization. Algorithm FSF.l employs the technique

of Section 1.8 for construction of dual families, but use of this tech

nique at a particular iteration depends on convenient access to success

sets found at all previous iterations, so these sets must be retained

in main memory. Algorithm FSF.2, on the other hand, only requires access

to success sets determined at the current iteration, so success sets

found at previous iterations may either be retained in a compact format

in memory or written on magnetic disk.

The WRKFILES option informs the program that sequentially organized

file space on magnetic disk is available for use as working storage.

The option consists only of the instruction name in field 1. If this

option is included for a run which utilizes Algorithm FSF.l, FORTRAN

file numbers 10,11, and 12 must be assigned to magnetic disk. These
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files will then be available for use as working storage by subroutines

that implement the dual algorithm. In connection with Algorithm FSF.2,

the WRKFILES options causes the family of new success sets found at

each iteration to.be written on FORTRAN file 10 at the conclusion of

the iteration, thereby freeing memory space that would otherwise be

required to retain these sets. Only FORTRAN file number 10 need be

assigned in this case.

If WRKFILES has not been included for a run which must be terminated

because of insufficient working space in main memory, a message may be

printed suggesting that memory could have been supplemented by magnetic

disk storage. In this situation, it is reasonable for the analyst to

try a rerun with a WRKFILES instruction.

II.4.3 Importance Criteria (MAXSIZE, IMPORT)

The MAXSIZE option indicates that only minimal failure sets not

exceeding a fixed size are to be determined for a run. The instruction

name is placed in filed 1 and the integer size in field 2; other fields

are blank.

A subfamily of important minimal failure sets can also be deter

mined, based on a product importance criterion. In this case, the sub

family will consist of all minimal failure sets such that the product

of the probability values for set edges exceeds some fixed critical

value, say c. This option requires a group of cards to specify proba

bility values for network edges and the critical value c. The first card

of the group contains only the option name "IMPORT" in field 1; other

fields are blank.

Cards which assign edge probability values follow this initial card.
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These cards have filed 1 blank, a positive decimal value between 0 and 1

in field 2, and edge names in fields 3 through 8. The value in field 2

may be in FORTRAN E or F format and must contain a decimal point. A

F-format item, such as .5 or .001 may appear anywhere within the field,

but E-format items, such as 1.25E-2 or .1E-1 must be right-justified.

An edge whose name appears on one of these cards is assigned the proba

bility value in field 2 of that card. FNAP assigns a default value of 1

to edges not represented on any of the cards.

The card that must terminate the group has the string "LIMIT" left-

justified in field 1 and the decimal critial value c in field 2. Fields

3 through 8 are blank.

As a simple illustration of the above options, suppose for the

example network of Figure II.3.1, only minimal failure sets not exceeding

size 2 are desired, and failure sets containing either edge E3 or E4 are

arenot of interest. Suitable instructions for such a run are

SUPPLY 25 VI

DEMAND 5 V3

DEMAND 8 V4

DEMAND 7 V5

MAXSIZE 2

IMPORT

.4 E3

LIMIT .5

*XEQ

E4

II.4.4 Control of Printed and Punched Output (STATUS, FSTATUS, DSTATUS,
PUNCH, NOPRINT)

All of the instructions in this category consist only of the instruc

tion name in field 1; fields 2 through 8 are "blank.

The STATUS option yields information on the progress of determining

failure and success set families. Statistics are provided for each
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iteration of Algorithm FSF.l or FSF.2, giving number of new failure and

success sets determined for the iteration, the total number of failure

and success sets determined up to that point, and the number of sets in

the dual family derived at the end of the iteration. Below is a sample

of this output for network of Figure 5.

Iteration

Calls to subroutine /sset/ 7
Number of new failure sets 6

Number of new success sets 1

Number of failure sets 8

Number of success sets 5

Dual

Max number of work table sets 5

Number of dual sets 8

Time in /sset/ .036
Maximum length 2
Maximum length 5

Maximum length 2
Maximum length 6

Time .074

Maximum length 2

Output for the STATUS option also records the amount of CPU time expended

in checking for failure sets and determining the dual family. Subroutine

SSET is responsible for classifying a set as a failure set or obtaining a

disjoint success set, so most of the computational effort for this rou

tine involves flow construction.

The FSTATUS option causes subroutine SSET to print out each feasible

flow obtained for a run. For a particular flow, amounts and edge names

are listed for all edges which carry nonzero flow, as in this example:

Feasible flow (edge flow/edge name)
20/E1 10/E3 10/E5 5/E6 2/E7

For an undirected edge, the flow amount might be negative, which Indicates

that flow passes from the terminal to the initial vertex established for

the edge on the edge definition instruction.
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When Algorithm FSF.l is employed for a run, DSTATUS causes the

subroutine package for deriving dual families to provide data on the

sizes of various tables associated the algorithm discussed in Section

1.8. For Algorithm FSF.2, DSTATUS provides data on the procedure of

Step 4 of FSF.2 for extending the dual family. Information provided by

the DSTATUS option might be of some use in estimating computer time and

memory requirements for large networks, but for most applications, the

analyst will probably choose not to Include this option.

The PUNCH option allows failure and success sets to be punched on

80-column cards for input to other programs. FORTRAN file number 7

should be assigned to the card punch (or magnetic disk) if this instruc

tion is used. Edges associated with the input network are represented

on punched output by positive integers, consequtive numbers 1 to the

total number of edges. The first group of punched cards for a run gives

the correspondence between edge names and edge numbers. The initial

card of the group has a FORTRAN format (5HNAMES,16) where the single

integer field contains the total number of edges in the input network.

On the remaining cards edge numbers are paired with edge names, with up

to five pairs appearing on a card in the format (5(15,3H - ,2A4)).

Output for the success set family occupies the next group of cards,

whose initial card has a (5HSSF ,216) format, containing in the integer

fields, respectively, the run number and number of success sets. Follow

ing this leader card, each success set starts on a separate card with a

(1615) format and may continue onto additional cards with the same

format. On the first card for a set, field 1 always contains the

number of edges in the set. These edges are represented in fields 2
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through 16 on the first card and 1 through 16 on subsequent cards.

The final group of cards represents the failure set family. This

output has the same structure as for the success set family, except the

string "SSF" of the header card is replaced by "FSF."

Finally, the analyst may sometimes wish to obtain punched output

but suppress printed output for large failure and success set families.

In such cases, the NOPRINT option should accompany the PUNCH option.

II.5 Program Implementation

FNAP is designed for use on most general purpose computers. The

code has been carefully prepared to ensure program logic is tight and

efficient, and subroutines for minor tasks such as sorting and searching

use good standard algorithms, such as given in [KN]. The FORTRAN portion

of the program conforms to ANSI specifications, except for array sub

scripts, which are apt to consist of expressions using two or more simple

FORTRAN integer variables with addition, subtraction, and multiplication

operations. Most FORTRAN compilers allow such expressions.

Main memory work space for FNAP is confined to one single subscripted

integer array, denoted by the FORTRAN name IA. Storage in this array is

dynamically allocated for may1mum efficiency in use of main memory. Be

cause flow networks of approximately the same size may differ considerably

in their structure, it is difficult to state even roughly how large IA

should be to accommodate analysis of a network with some given number of

edges. The analyst should make IA as large as feasible for the environ

ment in which the program is implemented; for instance, if the program

is required to execute in a fixed partition of computer main memory, then

the object code length plus storage for IA should fill the partition.
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If the environment is such that program use becomes more inconvenient

as storage requirements increase, an initial length of IA should be

chosen perhaps 500 times the maximum number of edges in any network to

be analyzed; this length may then be increased as necessary.

Implementation of FNAP is accomplished according to the following

steps:

1. The desired dimension of the array IA should be set in the declara

tive statement for this array near the beginning of the main program.

Since the code must be capable of determining when storage requirements

exceed availability, the length of the array must be provided for

internal program use. This is done by initializing the variable

IASIZE through a FORTRAN DATA statement, which also appears near the

beginning of the main program.

2. The first executable statement in the main program assigns a positive

integer value to the variable LWORD. This value should be set to

the length of a computer word less one.

3. A small number of program statements associated with input and output

operations, such as testing for end of input file, may not be accep

table to all FORTRAN compilers. These are clearly flagged in the

program listing and should be modified if necessary.

4. When accessed by other routines, the REAL function TIME returns the

amount of elapsed time since the beginning of the computer job. The

proper form of the subroutine CALL statement in function TIME may

depend on the particular computer installation, and this statement

should be modified accordingly.

5. The group of assembler language routines should be chosen to correspond
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to both the computer and the FORTRAN compiler used. Three groups

of assembler routines are supplied with FNAP: for use with (1)

CDC 6600/7600 machines and RUN compiler linkage convention, (2)

CDC 6600/7600 machines and FTN compiler linkage convention, or

(3) IBM 370 machines (G or H compiler linkage convention). To

Implement FNAP on other machines, six small assembler routines must

be prepared according to specifications given in the following

section.

II.6 Specification for Assembler Language Routines

The routines discussed in this section are all very simple, and the

largest should not require more than 25 statements in any assembler

language.

1. CCM (IWl, IW2, ITEST):

CCM logically compares the contents of computer words IWl and IW2

and returns the result of the comparison in word ITEST. If contents

of IWl and IW2 are identical, then ITEST will contain a 0; otherwise

the value in ITEST depends on the highest bit in which the words differ.

When this bit is 1 in IWl and 0 in IW2, ITEST is returned as 1; din the

reverse situation ITEST is returned as -1.

2. ORM (IWl, IW2, IOR):

The contents of word IOR returned" by~Ehis routine is simply, a

logical OR of words IWl and IW2.

3. ANDM (IWl, IW2, IAND):

ANDM returns in word IAND the result of a logical AND of IWl and

IW2.
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4. PUTM (LV, IV, IW):

When PUTM is accessed, IV is an array of successive words containing

positive integer values in increasing order. No value exceeds the

number of bits in a computer word. The location LV contains a positive

integer representing the length of- IV.__ The function of PUTM is to

place a 1 in each bit position of word IW numbered by an integer

in array IV; other bit positions are set to 0. As an example,

suppose the computer word length is 16, and PUTM is accessed with 4

in LV, and IV(1) through IV(4) contain, respectively, 2, 5, 7, and 16.

On return, IW then contains the bit pattern "1000000001010010."

The bit numbering for this example is increasing from right-to-left.

5. GETM (IW, LV, IV):

GETM performs the reverse operation of PUTM. On return, IV is

a vector of consecutive words containing bit numbers for all bits

that are 1 in word IW. These integers are in increasing order in

IV, and the number of Integers in this vector is returned in LV.

GETM may be accessed with IW having 0's in all bit positions, in

which case LV is returned with an integer value of 0.

6. BCM (IW, NBITON)':

BCM returns in NBITON the count of bit positions containing 1

in word IW. The value in NBITON is thus an integer between 0 and

the number of bits in a computer word.
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Structural Concepts tor the Analysis of Stochastic

Flow Networks

Jane Nichols Hagstrom

University ot Calirornia, Berkeley

ABSTRACT

The model considered is that of a transship

ment network with random capacities on the arcs,

random supplies at source nodes, and random

demands at sink nodes. The concepts of relevance,

minimal cutsets, and modules, developed for the

Boolean network representation of two-state com

ponent reliability problems, are extended to apply

to the problem of determining the probability of

meeting all demands.

K Summary

This paper is motivated by the problem of determining

the reliability of an electrical power system transmission

network. The problem is simplified by treating the system as

September 27, 1978
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a pipeline system for power. Then the system can be modelled

as a transshipment network with random capacities on the

arcs (transmission lines), random supply at the source nodes

(generators), and random demand at the sink nodes (load dis

tribution points). Concepts similar to those used in the

analysis of Boolean network representations of on-off relia

bility problems arise.

We define a vulnerable region in such a way that its

boundary arcs correspond to a minimal cutset. In terms of

this, we can define relevance. We can define a measure on

the space of vectors describing the state of each arc,

source, and sink, which may be used to describe the state of

a vulnerable region. This measure is increasing in each

coordinate•

This leads to two possible definitions of a module.

The definition of a structural module leads to a unique

decomposition of the system into modular factors. The ques

tion of when the two definitions are equivalent is investi

gated.

2. Notation

Let (N,A(N)) be a connected undirected graph (power

system network) where N is the set of nodes (busses) and

A(N) is the set of arcs (transmission lines)•

Let X be a subset of N. X=N-X.

September 27, 1978
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Let A(X) C A(N) be the set of arcs whose endpoints are

both in X. (X,A(X)) is a subgraph of (N,A(N))

Let T(X) C A(N) be the set of arcs, one of whose end-

points is in X, the other in X. Note T(X)A(X)=#.

Let G(X) be the set of sources (generators) at nodes in

X. Let L(X) be the set of sinks (load distribution points)

at nodes in X. G(X)L(X)=#, although a generator and a load

can occur at the same node.

Let C(X) = G(X)UL(X)UT(X).

For i<G(N)UA(N), let c. be its capacity; c. > 0. For

i«L(N), let c. be its demand; c. < 0.

Let V be the set ot state vectors c.

Definition: Let T (X) = 1 c. be the Gale measure of
i<C(X) *

X evaluated at the state vector c.

Let Vx = {c«Virc(X)<C}.

For any set S, let IS I be the number of elements in S.

3. Structural Theory

The following theory is based on the structure of

(N,A(N),G(N),L(N)). No information about the space V of

state vectors is used.

Gale's Supply Theorem. Given c<V, the system's demands

can be met if and only if |V(X) > 0 for all X C N.

September 27, 1978
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Proof: This is Theorem 5.3 in Gale's The Theory of Linear

Economic Models [G,1950].

Lemma 1. Let t(X3,A(X3))Ij=l,2,...,n} be the set of

components (maximal connected subgraphs) of (X,A(X)). Then

n iT_(X) = 5 rc(xJ).

Proof: Certainly IG(X^)} and {L(X^)j are partitions of G(X)

and L(X). Since the subgraphs {(X3 jAfX-1)) } are maximal,

{T(X3)Ij=l,2,...,n} is a partition of T(X).

Definition: Let (X,A(X)) be a connected subgraph such

that L(X) ¥ # and for all components (P,A(P)) of (X,A(X)),

G(P) ^ j&. Then X is a vulnerable region.

Definition: A member i of C(N)UA(N) is relevant if

i<C(X) for some vulnerable region X.

Theorem K Let X C N; c«Vx. Then there exists a vulner

able region Y such that c«Vy.

Proof:

i) Let 1(X^,A(X^))Ij=l,2,...,n} be the set of com-

n iponents ot (X,A(X)). By Lemma 1, 5 T„(XJ) • Tn(X) < 0. Then
j-1 C

there exists j such that T_(X3) < 0.

^ii) Let I(Pk,A(Pk)) Ik=l,2,... ,m) be the set ot com

ponents of (Xj,A(X^)). Let S f lk|G(Pk)=jtf). Let

Y » X^ U U Pk.
k<S

September 27, 1978

-94-



(Y,A(Y)) is connected and the components of (Y,A(Y))

are l(Pk,A(Pk))I G(Pk) ¥ M .

Note G(Y) « G(X3)

L(Y) = L(X3) U U L(Pk)
k<S

T(X3) = T(Y) U U T(Pk)
k<S

where the right hand sides are partitions.

r (X3) = 5 c. + I c. + S c. < 0

i<G(X3) i«L(X3) i«T(X3)
or 5 ci + 5 ci + S ci < 0.

i<G(Y) i«L(X3) UT(X3)
Adding 5 5 c. to both sides,

k<SUL(Pk)

1 ci + 5 c. + 5 c. < 5 S c. < 0.
i«G(Y) t«L<*) UT(XJ, k«HL(pk,

Subtracting 5 5c. from both ends,

k<Si<T(Pk)

I c. + 5 c. + 5 c. < - 5 5 c. < 0,

i<G(Y) i<L(Y) i<T(Y) k«Si<T(Pk)

or TC(Y) < 0.

Hence,

c<vv.

iii) Suppose L(Y)=*$. Then

r (Y) = S c. + 5 c. > 0,
i«G(Y) \ i<T(Y) "

contradicting _H) .

Thus we have exhibited a vulnerable region Y such that

September 27, 1978
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c<VY.

Lemma 2. Let X, Y C N; X a vulnerable region; Y f fb.

Then T(Y) C T(X) and G(Y) C G(X) implies X = Y.

Proof: T(Y) C T(X) implies (Y-X,A(Y-X)) is one or more com

ponents of (X,A(X)). G(Y) C G(X) implies G(Y-X) = *$. Since

X is a vulnerable region, Y-X = tf.

T(Y) C T(X) implies either X C Y or XY = /*. Then

Y-X = fi implies X * Y.

Lemma 3. Fix c«N. If all elements of C(N)UA(N) are

relevant, then every component of (N-{c(j ,A(N-{c(})) contains

a generator or a load.

Proof: Let (Y,A(Y))) be such a component. Suppose

L(Y)UG(Y) « tf. Let X be a vulnerable region.

Suppose c«X. Then Y C X, for otherwise Y-X is a com

ponent of X without any generators. Suppose c(<X. Then Y C X,

for otherwise YX is a component of X without any loads.

Note that the arcs in C(Y) all have one endpoint at c{.

Then for any X, C(Y) C A(X) or C(Y) C A(X). Then the arcs in

C(Y) are irrelevant, contrary to hypothesis.

Lemma £. Arc i«A(N) is relevant if and only if there

exists a simple path from a load to a generator which

includes i.

September 27, 1978
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Proof: Suppose there exists a simple path from a load to a

generator which includes i. Let P be the set of nodes in the

path from the load to and including the nearest endpoint of

i. Let I(Qk,A(Q.))Ik=l,2,...,n) be the components of

(P,A(P)).

Since the path is simple, the rest of its nodes are all

contained in one component, say the kth, of (P,A(P)). Then

P U I) Q. is a vulnerable region, since it is connected, it

contains a load, and its complement is connected and con

tains a generator. Furthermore, i<T(P U U Q.)# so i is
j*k 3

relevant.

Suppose i is relevant. Then there exists a vulnerable

region X such that i<C(X). Let P C X be a simple path in

(X,A(X)) from a load to the endpoint of i in X. Let OCX be

a simple path in (X,A(X)) from a generator to the endpoint

of i in X. P and Q are arc-disjoint as well as node-

disjoint. Then PUQ is a simple path from a load to a genera

tor which includes i.

Remark: If there is a load in the network, all loads

and generators are relevant, since they all occur in C(N) .

Lemma 5. Suppose all elements of C(N)UA(N) are

relevant. Let P C N be a simple path. Then there exists a

vulnerable region X such that exactly one arc of P occurs in

C(X) .

September 27, 1978
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Proof: By induction on k, the number of nodes in P.

True for k = 2, since all arcs are relevant. Suppose

it is true for all paths with fewer than k nodes.

Let c( be one endpoint of P, p the other. Then by the

induction hypothesis, there exists a vulnerable region Y

such that exactly one arc of the path defined by P-{c(j

occurs in C(Y) . If c«Y, p<Y, or vice-versa, we are done.

Assume c(, p < Y. The argument when c{, p < Y is simi

lar .

Let (Z,A(2)) be the component of (Y,A(Y)) that contains

p. Let Q a (P-lcO)Y. Then Q is a simple path which is con

tained in Z.

If c( is not in Z, let X = YUZ, and X is the desired

vulneraoie region. Otherwise, we now have c(, p 4 Z. We are

left with the following five cases.

i) (Z-{c(},A(Z-{q:})) is connected and G(Z-{c(}) + fi. Then

let X - YU{c(}.

ii) (Z-{c<} ,A(Z-{c(})) is not connected. Let (W,A(W) ) be

the component of (Z-{c(} ,A(Z-lc(})) that contains Q.

l±.a) G(W) * jrf. Then let X » YU[Z-W].

ri.b) G(W) = |5. Then let X = YUW.

iii) (Z-{c(i,A(Z-lc(})) is connected and G(Z) = G({c(}).

September 27, 1978
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iii.a) (Z-Q,A(Z-Q)) is connected. Then let X = YUQ.

iii.b) (Z-Q,A(Z-Q)) is not connected. Let (W,A(W)) be

the component of (Z-Q,A(Z-Q)) which contains c{. Then let

X = YU[Z-W].

Definition: Two elements i, j of C(N)UA(N) are rn

parallel if they satisfy one of the following:

l)ir j«G(lc(})UL({cO) for some node c(.

2)i, j<A({c(, p}) for some node pair {c(, p}.

uefinition: Two arcs i, j appear in series if there

exists a node c( such that C({c(}) = {i, j}. A set of arcs

which form a simple path are jn series if every pair of

adjacent arcs appear in series.

Lemma £. Suppose all elements of C(N)UA(N) are relevant

and i, j are elements such that for any vulnerable region X,

i<C(X) if and only if j<C(X). Then i and j are in parallel.

Proof:

i) Suppose i<C(lc(}), j«C(ip}), and c( * p. Then there

exists a simple path from c( to p and by Lemma 5, there

exists a vulnerable region X such that only one of c{ and p

is in X. Then only one of i and j is in C(X), contrary to

hypothesis. Hence c( * p.

ii) Suppose i<A(N). Then since i is not in C(N) , j is

not in C(N) and must be in A(N).

September 27, 1978
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If i and j have exactly one endpoint in common, they
form a siraple path/ an<} by ^^ ^ ^^ ^.^ ^^^_

able region x such that C(x) intersects exactly one of them,
contrary to hypothesis.

Assume then that i and j have no endpoints in common.
Let x be avulnerable region such that i, j<T(X). Let «, p
be the endpoints of i and j which are in x. Let Pbe a path
which includes i, j and a simple path in Xfrom « to p. By
our assumptions, p is simple.

Then the same construction as in the proof of Lemma 5
can be performed and we will have a vulnerable region Y such
that only one of i and j is in C(Y). Since this is contrary
to hypothesis, we are left with i and j having both end-
points in common.

.4 - Modules

me following section makes two possible definitions

for a module and begins to investigate the relation between
them.

Definition: Let M C C(N)UA(N). M is a structural module
if the following holds:

Let x, Y be any vulnerable regions such that

C(X)M * rf, C(Y)M * j. Then there exists a vulnerable region
Z such that

C(Z) = [C(X)M] U [C(Y)-M].

September 27, 1978

-100-



Definition: Let M C C(N)UA(N). M is a functional module

if there exists a real valued function + of cM (c restricted

to M) such that the following holds:

Let X be a vulnerable region such that C(X)M ? fi.

5 c. + *(cM) < 0
KC(X)-M 1

if and only if there exists a vulnerable region Z such that

C(Z)-M = C(X)-M and f (Z) < 0.
c

Definition: Amodule Mis proper if Mis a proper sub
set ot C(N)UA(N).

Theorem 2. Every structural module is a functional
module.

Proof: Let M be a structural module. Let

*(c ) * Minl.<c2x)MCilX is a vulnerable region and C(X)M ? <>\

i) Let Ybe a vulnerable region such that C(Y)M / * and
let c<Vy. By definition, *(cM) < 5c. Then

i<C(Y)rt x

5 c. + *(CM) < 5 c, + 5 c < 0
1<C(Y)-M l - i<C(Y)-M * i<cTY)M *

il) Let Ybe a vulnerable region such that C(Y)M ? fi.
Suppose 3 c. + *(CM) < 0 for some c.

KC(Y)-M x

Let X be a vulnerable region such that C(X)M * * and
M

*(C )=i<C(X)MCl' Let Zbe the vulnerable region such that
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C(Z) = [C(X)M]UrC(Y)-M].

i<C<¥)-M * i«C(X)M i i<C(Y)-M * +*(C ><0*

Hence M is a functional module.

Lfmma 7. Suppose all elements are relevant. Let Mbe a

proper structural module. Then there is no vulnerable region
X such that C(X) C M.

Proof: Suppose there exists a vulnerable region X such that

C(X) C M. Let Y be another vulnerable region such that

C(Y)M ? fi. Then there exists a vulnerable region Z such that

C(Z) = [C(Y)M] U [C(X)-M] = C(Y)M

Then C(Z) C C(Y) implies C(Z) = C(Y) and C(Y) C M.

In particular, L(X) C M, so L(N)M / j, and C(N) C M.

But then L(Y) C M for all vulnerable regions Y, and thus

C(Y) C M for all vulnerable regions Y. This is impossible

since M is proper and the elements outside of M are

re] pvrint-.

Lemma 8. Let all elements of C(N)UA(N) be relevant.

Suppose M2UM2, M2UM3 are structural modules such that

Mj, M2, m3 are nonempty and mutually disjoint, then one of

the following properties holds.

1) For all vulnerable regions X such that C(X)M. * fi for

some i, C(X)Mj * I for all j.
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2) For all vulnerable regions X such th^t C(X)M. j fi for

some i, C(X)rt. = # for all j f i.

Proof: Since the M."s are nonempty and all elements are

relevant, there exist vulnerable regions X,, X2, X3 (not

. ** necessarily distinct) such that

C(X.)M. * phi.

We will show that for any choice of X., X2, X-, C(X.)M. ? 0

for some i ^ j implies C(Xi)M. ? j> for all i, j.

Let P = [A(N)UC(N)J - [MaUM2UM3].

i) Suppose C(X2)M2 f fi.

«2un3 a structural module and C(X,)M2 f fi implies there

exists a vulnerable region Y such that

I

C(Y) = [C(X3)M1] U [C(X1)M2] U [C(X1)M3] U [C(X3)P].

1 M1UM2 a structural module and C(Y)M2 + £ implies there
exists a vulnerable region such that

C(Z) = [C(Y)M2] U [C(Y)M2] U [C(Xa)M3] U [C(X2)P]

= [C(X3)M1] U [C(X1)M2] U [C(Xa)M3] U [CU^P]

I- % Since CUjJMj 7* 0,

C(X3)M2 ? 0,

- for otherwise C(Z) C C(X,).

ii) Suppose C(X3)Ma * f&.

n2{im3 a structural module implies there exists a
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vulnerable region Y such that

C(Y) = [C(X3)M1] U [C(X2)M2] U [C(X2)M3] U [C(X3)P].
MaUM2 a structural module and C(X3)Ma * t> implies there
exists a vulnerable region Z such that

C(Z) = [C(X3)M1] U [C(X3)M2] U [C(Y)M3] U [C(Y)P]

- [C(X3)rt1] U [C(X3)M2] U [C(X2)M3] U [C(X3)P].
Then since C(X3)M3 f j, we may conclude

C(X2)M3 * t>

m.) Suppose C(X2)M3 ? j.

Mi,IM2 a structural module implies there exists a

vulnerable region Y such that

C(Y) = [CtXjJi^] U [C(X2)M2] U [C(X2)M3] U [CfX^P]

M2UM3 a structural module and C(X2)M2 * 4 implies there

exists a vulnerable region Z such that

C(Z) = [C(X2)Ma] U [C(Y)M2] U [C(Y)M3] U [C(X2)P]

» CC(X2)M1] U [C(X2)M2] U [C(X1)M3] U [C(X2)P].
Since C(X2)M3 f fi,

C(Xa)M3 ? fi

iy) Suppose C(X2)M3 t fi.

MjUM2 a structural module implies there exists a

vulnerable region Y such that

C(Y) = [C(X2)M2] U [C(X2)M2] U [C(Xa)M3] U [CfX^P].

September 27, 1978



M2UM3 a structural module and C(X,)M3 jt fi implies there

exists a vulnerable region Z such that

C(Z) = [C(X1)M1] U [C(Y)M2] U [C(Y)M3] U [CfX^P]

= [C(X1)M1] U [C(X2)M2] U [C(X1)M3] U [CU^P].

Since C(X2)M2 ? fi,

C(X2)M2 ? fi,

for otherwise C(X.) C C(Z) .

We now have the following chain:

C(X2)M2 * fi -> C(X3)M1 ? fi -> C(X2)M3 * fi

-> C(X1)M3 f fi -> C(Xa)M2 * fi,

so we can replace implications by equivalences:

C(Xa)M2 * fi <--> C(X3)Ma / fi

<--> C(X2)M3 * fi <--> C(X2)M3 ? fi.

Noting that the roles of 1 and 3 are completely sym

metric, we write

C(X3)M2 ? fi <--> C(X1)M3 * fi

<--> C(X3)M2 * fi <--> C(X2)Ma t fi.

Combining these two, since they have a clause in common, we

get the desired result.

Theorem 3^-. The Three Modules Theorem. Let every ele

ment of C(N)UA(N) be relevant. Suppose that M.UM-, in«UM- are

structural modules such that mi# M2, m3 are nonempty and

mutually disjoint. Then Mj, M2, M3, MjUrt^ and MjUMjU*^ are
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structural modules.

Proof: Let X, Y be vulnerable regions such that

C(X) [MjUMjU*^] j fi

C(Y) [M2UM2UM3] ft fi.

Let P be defined as in Lemma 8.

We wish to prove the following. Given the conditions

specified below, there are vulnerable regions Z whose C(Z)*s

are defined as given below.

C(Z) = [C(X)M1] U [C(X)M2] U [C(X)M3] U [C(Y)P] (a)

C(X)IM1UM3] * fi and

C(Y)[M1Urt3] ¥ fi implies

C(Z) = [C(X)Ma] U [C(Y)M2] U [C(X)M3] U [C(Y)P] (b)

C(X)M1 f fi and

C(Y)MX t fi implies

C(Z) = [C(X)M1] U [C(Y)M2] U [C(Y)M3] U [C(Y)P] (c)

Similar equations to (c) hold for M2, M3.

_i) Suppose condition (1) ot Lemma 8 holds. M.UM- a

structural module implies there exists a vulnerable region W

such that

C(W) « [C(X)M1] U [C(X)M2] U [C(Y)M3] U [C(Y)P]

M2UM3 a structural module implies there exists a vulnerable

region 7. such that
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C(Z) = [C(W)M1] U [C(X)M2] U [C(X)M3] U [C(W)P]

= [C(X)rt1J U [C(X)M2] U [C(X)M3J U [C(Y)P] (a)

M.UM2 a structural module implies there exists a

vulnerable region V such that

C(V) = lC(Y)Mj] U [C(Y)M2] U [C(X)M3] U [C(X)P]

M2U>W13 a structural module implies there exists a vulnerable

region 7 such that

C(Z) « [C(W)M1] U [C(V)M2] U-[C(V)M3] U [C(W)P]

• [C(X)M1] U [C(Y)M2] U [C(X)M3] U [C(Y)P] (b)

M2UM3 a structural module implies there exists a

vulnerable region Z such that

C(Z) = [C(W)M2] U [C(Y)M2] U [C(Y)M3] U [C(W)P]

= CC(X)M1] U [C(Y)M2] U [C(Y)M3] U [C(Y)P] (c)

The cases of M2 and M, are proved similarly.

jjO Cases JA) and iii) are really subcases of condition

(2) of Lemma 8. In case ij) we suppose

C(X)M1 f fi, C(X)M2 * fi, C(X)M3 = fi

C(Y)M2 fi fi, C(Y)M2 = fi, C(Y)M3 = fi

M1UM2 a structural module implies there exists a

vulnerable region Z such that

C(Z) = [C(X)M1] u [C(Y)P] (a),(b),(c)

The proof of (c) is complete.
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iii) Suppose

C(X)M2 fi fi, C(X)M2 = fi, C(X)M3 = fi

C(Y)M2 = fi, C(Y)H2 = fi, C(Y)M3 fi fi

Let R be a vulnerable region such that

C(R)M2 = fi, C(R)M2 fi fi, C(R)M3 = /*

M2UM3 a structural module implies there exists a vulnerable

region V such that

C(V) = [C(R)M2] U [C(Y)P]

M^Urtj a structural module implies there exists a vulnerable

region Z such that

C(Z) = [C(X)M1] U [C(V)P]

= [C(X)M2] U [C(Y)P] (a) ,(b)

The proof of (b) is complete. The proof of (a) involves

repeating iii) for other permutations of subscripts.

Modular Factorization. The discussion of Birnbaum and

Esary in section 5.2 ot their paper on modules [BE,1955]

applies, although for the moment we should replace the con

cepts of "modules in parallel" by "modules satisfying (1)

below" and "modules in series" by "modules satisfying (2)

below."

(1) For all vulnerable regions X such that C(X)M. ft fi tor

some i, C(X)M. ^ fi for all j.

September 27, 1978

-108-



(2) For all vulnerable regions X such that C(X)M. / fi for

some i, C(X)M. = fi for all j ^ i.

Then the statement of modular factorization is that

either the system may be factored into a set of disjoint

maximal proper structural modules or it may be factored into

a set of disjoint structural modules which satisfy (1) or

(2) .

Theorem 4. Suppose all elements of C(N)UA(N) are

relevant. Let M be a proper structural module. Then one of

the following two conditions holds.

(1) For all vulnerable regions X such that C(X)w fi fi,

L(X)M = L(N)M.

(2) For all vulnerable regions X such that C(X)M fi fi,

C(X)-M a L(N)-M.

Proof: We must show that for a specific vulnerable region

X ? N such that C(X)M f fi, either L(X)M • L(N)M or

C(X)-M = L(N)-M, and if Y is another vulnerable region such

that C(Y)M fi fi, the same condition holds for it.

Note that if L(N)M = fi, (1) holds trivially, so assume

L(N)M fi fi.

Since X, N are vulnerable regions, there exist vulner

able regions Z, W such that

C(Z) = [C(X)M] U [C(N)-M]
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C(W) = [C(N)M] U [C(X)-M].

Note that C(N) C C(Z)UC(W).

We will examine T(X).

i) If T(X)M = fi, Z = N, and

C(X)M * C(N)K.

i±) If T(X)-rt - fi, W = N, and

C(X)-M = C(N)-M.

In this case, G(X) = fi, for otherwise X is a vulnerable

region and C(X) C M. Then

C(X)-M = L(N)-M.

Hi) Otherwise both T(X)M and T(X)-M are cuts in

(N,A(N)).

Let (P,A(P)) be the subgraph of (X,A(X)) such that

T(P) = T(X)M. Let (Q,A(Q)) be the subgraph of (X,A(X)) such

that T(Q) a T(X)-M. These are each made up of components of

(X,A(X)), and PQ a fi.

Since X is a vulnerable region, G(P) ^ fi, G(Q) ^ fi.

Then

Z « XUQ or Zap and

W a XUP or Wag

If Z a p and W = Q, L(X)M a fi and L(X)-M a fi, which is

impossible, since X is a vulnerable region.
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If Z = P and W = XUP, then C(N) C C(Z)UC(W) contradicts

G(Q) fi fi. Similarly, if Z a xUQ and W a q.

Hence Z = XUQ and W a XUP.

Suppose L(P) fi fi. Then (Z,A(Z)) connected and G(Q) fi fi

implies P is a vulnerable region.

C(P) = [L(W)-L(X)J U [G(W)-G(X)J U [T(X)M]

= [(L(N)M)-L(X)] U [(G(N)M)-G(X)] U [Y(X)M].

then C(P) C M, contrary to Lemma 7.

Hence L(P) = (L(N)M)-L(X) = fi, or

L(X)M = L(N)M.

Suppose there exist vulnerable regions X, Y such that

C(X)-M fi L(N)-M (a)

L(Y)M fi L(N)M (b)

C(X)M fi fi

C(Y)M fi fi

By the above argument, we know

L(X)M = L(N)M

C(Y)-M = L(N)-M, G(Y)M = fi

Let Z, W be vulnerable regions such that

C(Z) = [C(X)MJ U [C(Y)-M]

• [C(X)M] U [L(N)-M]

C(W) = [C(Y)M] U [C(X)-M]

September 27, 1978

-m-



Suppose T(X)M = fi. Then

T(W) = T(X)UT(Y), T(X)T(Y) = fi

L(W) fi fi implies WX or ViY fi fi.

T(*># T(Y) disjoint and nonempty (since X ^ N, Y ^ N)

implies

XY a W

G(X-W) fi fi, G(Y-W) fi fi

L(X-W) = [L(X)M]-L(Y) = [L(N)M]-L(Y)

L(X-W) ft fi by assumption (b) . Then X-W is a vulnerable

region such that

C(X-W) = [T(X)M] U [(L(X)M)-L(Y)] U [ (G (X) M)-G (Y) ] C M

This is impossible, so T(X)M fi fi.

T(X)-M = fi implies T(Z) = T (X) .

L(Z)L(X) fi fi implies

7X t fi implies

Z = X implies

C(X)-M = C(N)-M = L(N)-M

contrary to assumption (a)•

Hence T(X)-M fi fi.

Then since L(X)L(Z) fi fi, and T(X)-M fi fi, T(X)M fi fi,

X C Z

Let (P,A(P)) be a component of (Z-X,A(Z-X)). (P,A(P))
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is also a component of (X,A(X)). G(P) = G(Z)-G(X) = fi.

But then X is not a vulnerable region. We conclude that

it is impossible that both (a) and (b) hold for the same

module in the same system.

Remark: Figure 1 exhibits a case where (2) holds and

(1) does not.

5. The Connectivity Problem

Assume we have a network (N,A(N),G(N),L(N)) in which

all elements of A(N)UG(N)UL(N) are relevant. Let the state

space V consist of all binary vectors, J.*e.,

cA = 0 or 1 it UG(N)UA(N), c. = 0 or -1 if UL(N). We will

refer to this problem as the connectivity problem.

We may visualize the problem as follows. If an element

of L(N) is in state -1, service is demanded at that node.

If an element of G(N) is in state 1, service is available at

that node. If an element of A(N) is in state 1, it is

available as a communication path. When an element of L(N)

is being served, it ties up both its server and the communi

cation path between them. Then given a state vector c, will

all those who dsinand service get it?

This section will show that the structural theory will

tell us everything we can find out about this system unless

we know something about the actual state.

Theorem 5. Suppose (N,A(N),G(N),L(N)),V describes the
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connectivity problem. Let X be a vulnerable region. Then

there exists c<Vx such that c is not in V for all

Y fi X, Y C N.

Proof: Choose k«L(X). Let c.a -i. Let c = 1 for all
* 3

j«[(G(N)UA(N))-C(X)J. Let c.. = 0 for all other j. Then

TC(Y) = rk < 0.

Let Y C N, Y fi X. By Lemma 2, Y * X implies

T(Y)-T(X) fi fi or G(Y)-G(X) fi fi. Then

TC(Y) = 5 c. + 5 c.
i«C(Y)-C(X) i«C(Y)C(X) *

5 c. + 5 c. + 5 c<
i<G(Y)-G(X) i«T(Y)-T(X) l i«L(Y)L(X) *

= |G(Y)-G(X)| + |T(Y)-T(X)| +ck> 0.

Remark. Theorem 5 does not necessarily hold for other

state spaces V. An example where it does not hold is given

in Figure 2.

Lemma 9. Suppose (N,A(N),G(N),L(N)),V describes the

connectivity problem. Let M be a proper functional module.

Let X be a vulnerable region. Then C(X)-M f fi.

Proof: Suppose C(X) C M. Let Y be a vulnerable region such

that C(Y)M fi fi.

Choose k«L(X). Set ck ' "1' For a11

i«[(A(N)UG(N))M]-C(X), set c. = 1. For all other i, set

C. a 0.
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TC(X) a Cj< < 0 implies >4(c ) < 0, which in turn implies

there exists a vulnerable region Z such that

C(Z)-M = C(Y)-M

TC(Z) < 0.

T(Z)M C f (X)M = T(X) ,

G(Z)M C G(X)M = G(X)

since otherwise

that

rc(z) = 5 C.
i«C(Z)M *

5 c. + 5 c. + 5 c,
i<L(Z)M i<[G(Z)M]-G(X) x i< [T (Z) M]-T (X) X

= ck + I [G(Z)M]-G(X) | + |[T(Z)M]-T(X) | > 0.

Hence we have constructed a vulnerable region Z such

C(Z)-M = C(Y)-M

G(Z)M C G(X)M = G(X) (1)

T(Z)M C T(X)M = T(X) .

Note L(Z)M fi fi for otherwise T (Z) a 0.

Now construct a new state vector c as follows: Cnoose

k«L(Z)M. Set cR a -1. For all i<[A(N)UG(N))M]-C(Z), set

ci » 1. For all other i, set c. a 0.

TC(Z) a Cr < 0 implies r*(cM) < 0, which in turn implies
'that there exists a vulnerable region W such that

C(W)-M a C(X)-M a j

rc(w) < 0.
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T(W)K c T(2)M and G(W)M C G(Z)M

by the same argument as before.

Thus we have constructed a vulnerable region w such
that

C(W)-M = C(X)-M = fi

G(W)M C G(Z)M (2)

T(W)M C T (2)M

Combining the sets of relations (1) and (2), we have

C(W)-M = fi

G(W)M C G(X)

T(W)M C T(X)

or

G(W) C G(X)

T(W) C T(X)

By Lemma 2, W a x. Then T(W)M = T (X) , and

T(W)M C T(Z)M C T(X)

implies T(X) = T(Z)M. Similarly, G(X) = G(Z)M.

Then T(X) C T(Z) and G(X) C G(Z) implies X = Z. Then

C(Y)-M a C(Z)-M = C(X)-M = fi.

Hence C(Y) C M for all vulnerable regions Y.

Since all members of G(N)UA(N) are relevant,

C(N)UA(N) C M.
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Since our hypothesis is that M is proper, we have a contrad

iction and

C(X)-M fi fi.

Lemma 10. Let (N,A(N),G(N),L(N)),V be the connectivity

• problem. Let m be a proper functional module. Tnen one of

the following holds:

(1) For all vulnerable regions X such that C(X)M fi fi,
L(X)M = L(N)M.

(2) For all vulnerable regions X such that C(X)M fi fi,
C(X)-M a L(N)-M.

Proof: if L(N)M = fi, condition (1) is automatically satis

fied, so suppose L(N)M fi fi.

i) Suppose there exists X a vulnerable region such that

C(X)M fi fi and L(X)M fi L(N)M. Then there exists k«L(X)M.

Set ck = -l. For all i«A(N)M, set Cj a i. Fot all
other i, set c. a 0.

TC(N) a ck <0 implies rf(cM) <0, wnich in turn impIies
there exists a vulnerable region Z such that

C(Z)-M = C(X)-M

Tc(Z)<0

k<L(Z), for otherwise T (Z) = 5 c > 0# T(z) „T(x)_rt
i«T(Z)M x ~

for otherwise T(Z) a |T(Z)M| + -1 > 0.
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T(Z) = T(X)-M implies Z-X = U P, where
?<S

Sa{p £ N| (P,A(P)) is a component of (X,A(X)) and T(P) C T(X)M}.

Let P°«S be such that k«L(P°).

T(P°) C T(X)M

G(P°) C G(Z)M

L(P°) C L(Z)M

Hence, C(P°) C M. Also P° is connected and L(P°) / fi.

Furthermore, P° is connected; X C P°.

a) Suppose T(X)-M fi fi. Then T(Z)-M fi fi and G(Z) fi fi.

Then P° C Z implies

Z C P implies

G(Z) C G(P°) implies

G(P ) fi fi impl ies

P is a vulnerable region, but C(P°) C M contradicts the

condition that M is proper.

b) Suppose T(X) C M. Then P° a x.

If G(X) fi fi, then P° is a vulnerable region and

C(P ) c M contradicts the condition that M is proper.

Otherwise G(X) » fi and C(X)-M ^ fi, so

C(X)-M = L(N)-M

Thus we have shown that any given X must satisfy (1) or
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(2). Now it remains to be shown that we cannot have two

vulnerable regions in the same network, one of which satis

fies (2), the other of which does not.

ii) Suppose X, Y fi fi, C(X)M fi fi, C(Y)M / fi,

C(X)-M fi L(N)-M, and C(Y)-M = L(N)-M. Then L(X)M = L(N)M.

Choose k<L(N)M. Set cR = -1. For all

i«[(A(N)UG(N))M]-C(X), set c. = 1. For all other i, set

Cj a 0.

TC(X) = cR < 0 implies i*(cM) < 0, which in turn implies

there exists a vulnerable region Z such that

C(Z)-M = C(Y)-M

TC(Z) < 0.

G(Z)M C G(X)M and T(Z)M C T(X)M for otherwise

TC(Z) a ck + IIG(Z)M]-G(X) | + IIT(Z)M]-T(X) | > 0.

Then C(Z)-M = C(Y)-M a L(N)-M implies

G(Z) C G(X)M

T(Z) C T(X)M

Lemma 2 implies Z a x and thus

C(X)-M a C(Z)-M a C(Y)-M = L(N)-M.

We have a contradiction, so it (2) holds for any vulnerable

region other than N, it holds for all.

Theorem 6. Let (N,A(N),G(N),L(N)),V represent the con-
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nectivity problem. Then every proper functional module is a

structural module.

Proof: Let Mbe a proper functional module. Let X, Y be

vulnerable regions such that C(X)M fi fi, C(Y)M fi fi. We must

show there exists a vulnerable region Z such that

C(Z) = [C(X)M] U [C(Y)-M].

Assume C(X)M fi C(Y)M, C(X)-M fi C(Y)-M, for otherwise the

proof is trivial.

i) Suppose L(N)M a fi.

If L(X)L(Y) fi fi, choose k«L(X)L(Y) and set ck = -1.

Otherwise, choose j«L(X), k«L(Y), and set c. a c = -i. For
3 k

all i«[M(A(N)UG(N))J-C(X), set c. a i. For all other i, set

Cj a 0.

TC(X) =* ck < 0 implies

ck+*(cM) <0 implies
5 c.+»<(cM) < 0 implies

i«C(Y)-M l

there exists a vulnerable region Z such that

C(Z)-rt = C(Y)-M

TC(Z) < 0.

G(Z)M C G(X)M

T(Z)M C T(X)M (1)

since otherwise
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TC(Z) = cR + |(C(Y)M]-C(X)| > 0.

Replacing Y by X and X by Z in the argument above, we

can construct W such that

C(W)-M = C(X)-M

G(W)M C G(Z)M (2)

T(W)M C T(Z)M.

Combining relations (1) and (2), we get

G(W) C G(X)

T(W) C T(X)

and by Lemma 2, W a x.

Then G(W)M C G(Z)M C G(X)M implies G(Z)M = G(X)M. Simi

larly, T(Z)M = T(X)M. Also, L(Z)M = fi = L(X)M. Then

C(Z) = [C(X)M] U [C(Y)-M].

±i) Suppose L(N)M fi fi. By Lemma 10, C(X)-rt fi C(Y)-M

implies L(X)M = L(Y)M = L(N)M.

Choose k<L(N)M. Set cR = -l. For all
i«[M(G(W)UA(N))]-C(X), set c. = l. For all other i, set

TC(X) a ck < 0 implies

*<cM> <0 implies
there exists a vulnerable region Z such that

C(Z)-M = C(Y)-M
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rc(z) < o.

G(Z)M C G(X)M and T(Z)M C T(X)M by the same argument as

in 2) • L(Z)M = L(N)M by Lemma 10.

Then applying the same construction, replacing Y by X

and X by Z, there exists a vulnerable region W such that

C(W)-M = C(X)-M

G(W)M C G(Z)rt

T(W)M C T(Z)M.

Tnen G (W) C G(X) and T (W) C T (X) , so W » x.

From this,

G(Z)M = G(X)M

T(Z)M = T(X)M

and we have already stated

Then

L(Z)M = L(N)M = L(X)M.

C(Z) = [C(X)M] U [C(Y)-M]
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Figure K

Example of Condition (2) Holding for a Structural Module

M = {1, 2, 3}

C({x>) = {2, 4}

C(lx,y}) « {i, 3# 4}

^({X})M = 12} C({X})-M a {4}

C({x,y})M = {1, 3} C({x,y})-M = {4}

C({x,y})-M a C(tx})-M implies this is a valid struc

tural module.

\
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Figure P.

Example of a State Space V for which Theorem 5 is Invalid

Let

C, a

C„ a

C. a

C, a

C,. a

5 or 0

2 or 0

2

5 or 0

-7

The vulnerable regions are {x,z}, {y,z}, {x,y,z}, {z}.

State Vector Gale Measure of

2

{x,z} (y,z) {x,y,z} {z}

!s 2 5 -7 0 0 0 0

10 2 2 5 -7 -5 0 -5 0

15 0 2 5 -7 0 -2 -2 0

10 0 2 5 -7 -5 -2 -7 0

15 2 2 0 -7 0 -5 0 -5

<0 2 2 0 -7 -5 -5 -5 -5

15 0 2 0 -7 0 -7 -2 -5

10 0 2 0 -7 -5 -7 -7 -5

C V C V, >uv C VU> * My,z} v{y,z} t v{z}uv{x,y,z} v{x,z} i v{x,y,zJ
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MODULAR DECOMPOSITION IN STOCHASTIC TRANSPORTATION NETWORKS

Andrew W. Shogan

University of California, Berkeley

ABSTRACT

Consider a flow network having random arc capacities and having

associated with each node n a "supply-demand random variable" Y^ whose

absolute value equals the supply available at the node when Yft assumes a

non-negative value and the demand required by the node when Y^ assumes a

non-positive value. A fundamental problem is the computation of the re

liability R, that is, the probability that the random variables will as

sume values that permit a feasible flow. Upon adapting the graph theo

retic concepts of "cutnode" and "block," it is possible to identify a

"block-module," an independent, non-trivial subnetwork that has one and

only one node (the "cutnode") connected to nodes outside the subnetwork.

The reliability of the network will increase by a known factor after a

"block-modular decomposition" that consists of a transformation of the

cutnode1s supply-demand random variable and the deletion of the remain

der of the block-module. Provided the original network possesses at

least one block-module, R can be determined from a sequence of block-

modular decompositions that reduce the original network to a single node

whose reliability is easily computed. A discussion of the application

of such a decomposition method to the analysis of electrical power net

works is included.
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1. INTRODUCTION

For the purposes of this paper, a stochastic transportation net

work is a flow network having random arc capacities and having associ

ated with each node n a supply-demand random variable Y whose absolute

value equals the supply available at the node when Y assumes a non-
n

negative value and the demand required by the node when Y assumes a
n

non-positive value. An important application of stochastic transporta

tion networks, and one that motivated their consideration in this paper,

is their use in models of electrical power networks.

The range of a random variable is a set consisting of values the

random variable assumes with non-zero probabilities. The range of a

random arc capacity is assumed to be a finite set of non-negative inte

gers, and the range of a node's supply-demand random variable is assumed

to be a finite set of integers. In general, then, the range of a node's

supply-demand random variable may include both positive and negative in

tegers so that the node may supply units in some realizations of the net

work and demand units in others. Based on the range of its supply-demand

random variable Y^, a node n is referred to in one of four ways: source,

sink, intermediate node, or random source-sink. In particular, if the

range of Y^ consists solely of a single value v (i.e., Y is a constant),

the node is a source if v > 0, a sink if v < 0, and an intermediate node

if v « 0; however, if the range of Y consists of at least two values,
n

node n is a random, source-sink. Reference is made to two special types

of random source-sinks; a random source (random sink) is a random

source-sink whose range includes only non-negative (non-positive) Inte

gers;
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It is assumed that the joint probability mass function of the

random variables of the network is known. The exact degree to which

independence must Be assumed is discussed briefly later in this intro

duction and in greater detail in Section'M!*=-^''*'

Given a realization of the stochastic transportation network, the

realization is feasible (infeaslble) and the network functions (fails)

if a (no) flow exists satisfying the following constraints: (i) the

flow in each arc is no greater than the value assumed by its random arc

capacity, and (ii) for each node n with Y assuming a value v, the flow

out of node n minus the flow into node n is at most v when v^ 0 and

equals 0 when v » 0. The fundamental problem is the computation of the

reliability, that is, the probability that the random variables will as

sume values such that the stochastic transportation network functions.

A special class of stochastic transportation networks is that in

which every arc capacity is a binary random variable, one node is a

source having a supply of 1, one node is* a sink having a demand of 1,

and all other nodes are intermediate nodes. The literature refers to

such networks by a variety of names; binary reliability networks is used

herein.

As the bibliographies in [12] and [13] illustrate, there exists an

extensive literature treating binary reliability networks. However,

despite the importance of the problem, the literature treating the most

general stochastic transportation network is scanty. The state-of-the-

art is best represented by the algorithm of Doulliez and Jamoulle [6]

which computes the reliability of a stochastic transportation network by

efficiently partitioning the set of all possible network realizations.

The algorithm as presented in [6] assumes that each node of the network
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is either an intermediate node, a sink, or a random source; however, in

light of the procedure of Section 4 of this paper for eliminating random

source-sinks, the algorithm can be applied to the most general stochastic

transportation networks. An earlier algorithm of Doulliez [5] and a

later algorithm of Pang and Wood [11] are similar to [6] but not as

efficient.

A technique long used in analyzing binary reliability networks is

modular decomposition (cf. [2] and [3]). Intuitively, modular decompo

sition reduces computational effort by first identifying a complex but

specially structured subnetwork whose random variables are independent

of the random variables outside the subnetwork and then replacing this

complex subnetwork with a simpler subnetwork. This paper demonstrates

that the technique of modular decomposition is also useful in analyzing

stochastic transportation networks. After Section 2 introduces some ad

ditional notation and definitions, Sections 3 and 4 develop two types of

modular decompositions: series-parallel-modular decomposition and

block-modular decomposition. Section 5 describes an-algorithm used in

biock-modular decomposition; Section 6 contains" a detailed example; and

Section 7 discusses_the use of block-modular decomposition in analyzing

electriiw^ power networks. Finally, Section 8 discusses both computa

tional aspects of block-modular decompositions and an area of future re

search.

2. ADDITIONAL NOTATION AND DEFINITIONS

The concepts of undirected arc, path, cut, and flow have their

usual meanings (cf. [7], pp. 2-10). All arcs are undirected; nodes are

adjacent if an arc of the network connects them, and an arc is incident
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to the two nodes it.'connects. An arbitrary indexing of the arcs of the

network permits reference to the arc connecting node i and node j and

having index k in qne of two ways: arc (i,j) or arc k.

Given a network N, the subnetwork defined by a set of nodes S

consists of the nodes of S and every arc of N incident to a pair of

nodes both in S. The subnetwork is proper if it is not N itself and is

nontrivial if it contains more than one node.

"Random variable" and "probability mass function" are denoted by

"r.v." and "p.m.f.", respectively; r.v.'s and p.m.f.'s denote their

plurals. A r.v. of a stochastic transportation network is an indepen

dent r.v. if it is statistically independent of all other r.v.'s of the

network. A subnetwork of the stochastic transportation network is an

independent subnetwork if all its r.v.'s are statistically independent

of the r.v.'s outside the subnetwork, even though they may have arbi

trary dependence among themselves.

Given a stochastic transportation network having reliability R,

another network having reliability R* is c-equivalent,'where c is a

known constant, if R * cR*. In cases where c=l, c-equivalent is short

ened to equivalent.

Given a subset S of a set T having a finite number of elements, F

denotes its complement in T, |s| denotes its cardinality, and Pr[S] de

notes its probability under some probability measure defined over T. A

partition {S, } of S consists of disjoint subsets of S whose union equals

S.

If every node i in a set S of nodes has a value v(i) associated

with it, v(S) equals Z± SV(D• For example, if the v(i) denotes the

supplies (demands) at a set S of sources (sinks), then v(S) equals the
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total supply (demand) within the set. Given two subsets of nodes S and

T, (S,T) denotes the set of all arcs connecting a node of S to a node

of T. If every arc. (i,j) of the subset (S,T) has a value v(i,j) asso

ciated with it, v(S,T) equals E(ij)e(s T)v(i,j). For example, if the

v(i,j) denote the capacities of the arcs of a cut (S,S), v(S,S) equals

the capacity of the cut.

3. SERIES-PARALLEL-MODULAR DECOMPOSITION

Given a path between two nodes r and s, the interior nodes are /

all nodes of the path except r and s. A series-module (s-module) is a

path between two nodes r and s that satisfies four conditions: (i) the

path contains at least one interior node, (ii) every interior node is

an intermediate node, (iii) every interior node of the path is adjacent

only to other nodes of the path, and (iv) the n>2 arc capacities

Xj, X2,...,X of the path are independent of all other r.v.'s of the

network. An equivalent network results from the replacement of the

arcs of the s-module by a single arc from r to s having capacity

min[X1,X2,...,Xnl. Hereafter, s-modular decomposition refers to such a

replacement.

A parallel-module (p-module) is a subnetwork consisting of a pair

of nodes r and s joined by n > 2 arcs whose capacities Xi,X2,...,X are

independent of all other r.v.'s of the network. An equivalent network

results from the replacement of the p-module by a single arc from r to

s having capacity X!+X2+...+X . Hereafter, p-tnodular decomposition re

fers to such a replacement.
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A subnetwork is a series-parallel module (s-p-module) if it can

be reduced to a pair of nodes joined by a single arc through a sequence

of s-modular and p-modular decompositions. Hereafter, s-p-modular de

composition refers to such a reduction. The concept of s-p-modular de

composition as used here is a straightforward adaptation of a similar

concept long used in the analysis of binary reliability networks and

first defined by Bodin [4]. Both an s-module and a p-module are special

cases of an s-p-module; Figure 1 contains a more complex s-p-module

(assuming every node except the left-most and right-most is an inter

mediate node).

Hereafter, it is assumed without loss of generality that the

original network under consideration contains no s-p^modules. This as

sumption simplifies both notation and computation.

4. BLOCK-MODULAR DECOMPOSITION

A block-module (b-module) is an independent, proper, and nontriv-

ial subnetwork containing one and only one node (referred to as the cut-

node) adjacent to nodes outside the subnetwork; a minimal block-module

is a b-module containing' no proper subnetworks that are also b-modules.
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Figure 1
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An explanation of the relationship of block-modules and cutnodes to the

graph _theoretic concepts of "cutnode" and "block" is omitted here but

may be found in [14].

In order to simplify the discussion, it is assumed hereafter that

a b-module possesses two additional characteristics: (i) the cutnode

is an intermediate node, and (ii) the b-module contains no random

source-sinks. As will now be shown, these assumptions are made without

loss of generality. If (i) is not true, an equivalent network results

from rerouting all arcs of the b-module incident to the cutnode n into

a new artificial intermediate node n* and then connecting n* and n by

an artificial arc having infinite capacity; node nf then serves as the

new cutnode for the b-module. Hereafter, such a procedure is referred

to as inserting ah artificial intermediate node n' into the subnetwork

at the node n. If (ii) is not true, there exists a random source-sink

n with a supply-demand r.v. Y that can take on at least two values k

for -d < k < s where d > 0 and s > 0. An equivalent network with one

less random source-sink results from changing node n into a sink with a

constant demand of dj adding a new node nf having a constant supply of

s+ d, and adding a new arc (n',n) having a random capacity X^ « Yfl + d.

When X • k + d for 0 < k < s, node n effectively becomes a source of k
n — —

units since n1 is able to supply the demand of d at n and still serve

as a source of k units for the remainder of the network. Similarly,

when X « k + d for -d < k < 0, node n effectively becomes a sink for
n — —
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-k units since only *d + k of its demand of d can be supplied by nf.

Note that the elimination of the random source-sink does not require

that the supply-demand r.v. Y be independent.

The definition of a b-module motivates an attempt to replace the

b-module with a simpler subnetwork. Given a particular realization of

the random capacities of the arcs of a b-module, one of three cases may

occur: (i) the sources within the b-module not only can meet all de

mands within the b-module but also can "export" units via the cutnode

to the remainder of the network, (ii) the demands within the b-module

can only be met if it is possible to "import" units via the cutnode

from the remainder of the network, or (iii) the demands within the fa-

module cannot be met, regardless of how many units can be imported via

the cutnode from the remainder of the network. Intuitively, then, with

respect to the remainder of the network, the b-module acts in one of

three ways: (i) a source, (ii) a sink with a demand that is possible

to meet, or (iii). a sink with a demand that is impossible to meet. As

will now be shown, a c-equivalent network results from changing the

cutnode from an intermediate node into a random source-sink and deleting

the remainder of the b-module from the network.

Consider a b-module N having cutnode n. Nf denotes the subnetwork

of the original network defined by the cutnode n and all nodes not be

longing to the b-module N. (Actually, N* is itself a b-module.) S (T)

denotes the set of nodes in N that are sources (sinks); for any source

i, a(i) denotes its supply; for any sink i, b(i) denotes its demand.

Suppose N contains r arcs having indices l,2,...,r and random capacities

X * (Xi,X2,...,X ); let n = (x|Pr[X»xJ > 0}. X is the state vector of

the b-module, and Q is the state space of the b-module.
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Given a b-module N with cutnode n, N, for -« < k < « denotes a
k

transportation network identical to N except that n is now either a

source for k units'if k > 0 or a sink for -k units if k < 0. For

-« <k<», let Hfe =» (xen |when X- x, Nfc functions but N fails);

when 0 < k < », Hfc is a set of states for which the sources within N

not only can meet all the demands within N but can also "export" at

most k units to N1 via n; when -« < k < 0, H. is a set of states for

which the demands within N can only be met if it is possible to "import"

at least -k units from Nf via n. Let k equal the maximum of zero
max n

and the largest value of k for which H, is non-empty; similarly, let

kmin e<*ual tne rainiraum of 0 and the smallest value of k for which H. is

non-empty. Note that 0 < k < max (0,a(S)-b(T)] and -b(T) < k , < 0.
— max — — min —

Finally, let H__ - {xe«+!xeH, does not hold for k . <k <k }; that
-" ' k min - - max

is, H_w is a set of states for which the demands within N can never be

met, regardless of how many units can be "imported" from N1 via n.

It is clear that the subsets H, for k * -« and k . < k < k
k min - - max

+
are a partition of J2 . In the remainder of this section, it will be

assumed that H. and Pr[H. ] are known for k » -• and k < k < k .
k k max — — min;

Section 5 contains an efficient algorithm for their computation.
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Since the entire network fails if X • x where xeH , conditioning

upon whether or not xeH^ results in R=R*(l-Pr[H_J) where R* is the

reliability of the entire network given xcH does not occur. Consider

the network obtained as follows: (i) change the cutnode from an inter

mediate node into a random source-sink having a supply-demand r.v. Y

for which _ Pr[H ]
JC

for k M < k < kt t-tt;—r ror k. < k < k
Pr[Y • k] • - Prl-«J min ~" " max

n ~

*- 0 otherwise

and (ii) delete the remainder of the b-module from the network. Here

after, b-modular decomposition refers to such a procedure. It is clear

that b-modular decomposition results in new network having reliability

R*; that is, the new network is (1 - Pr[H^<a])-equivalent to the orig

inal network.

B-modular decomposition will consist of an additional step in

those instances where the cutnode for the b-module is an artificial in

termediate node n1 inserted into the original b-module at a random

source-sink n. In particular, an equivalent network results from chang

ing the supply-demand r.v. of n to Y + Y , and then deleting the node
n n

n' and the arc (n',n) from the network.

As illustrated by the example in Section 7, a b-modular decomposition

may create a new b-module in the revised network. Hence, the number of

b-modular decompositions that can be performed need not be limited to the

number of b-modules in the original network under consideration.
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Provided the'original network under consideration contains at

least one b-module (and therefore two), there exists at least one se

quence of k > 1 b-modular decompositions that reduces the original net

work to a revised network N containing no b-modules. Section 8 dis

cusses the choice of such a sequence; for now, suppose it has made.

Let n denote a node of N whose supply-demand r.v. is independent. The

node that served as the cutnode for the immediately preceding b-modular

decomposition is always one choice for n; for simplicity, it is assumed

hereafter that n is always this node. After inserting an artificial

intermediate node n' into the network at the node n, the node n' serves

as the cutnode for one last b-modular decomposition. The resulting

c-equivalent network consists only of the arc (n',n) and the two nodes

n and n' having supply-demand r.v.'s Y and Y ,, respectively; since

this simple network behaves like a single random-source sink having

supply-demand r.v. Yr +Yn,, its reliability R* equals Pr[Y +Y ,>0]

and is easily computed as R* • I Pr[Y , «k]Pr[Y > -k] where the summa-
n n -

tion is taken over all k for which Pr[Y f» k] > 0. Having been reduced
n

to a c-equivalent network consisting of a single node with reliability

R*, the original network has reliability R-- cR*.

It is interesting to consider the use of a sequence of b-modular

decompositions to determine the feasibility of deterministic

transportation networks; that is, the special class of stochastic trans

portation networks in which every r.v. equals a known constant with

probability one. In such a network, the state space of a b-module

consists ot a single state vector x. If xeH , the entire network must

be infeasible; however, if xeH, for k . < k < k , b-modular decompo-
k min - - max

sition simply adds k to the cutnode's supply-demand constant and de

letes from the network all other nodes and all arcs of the b-module.
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(3- PARTITIONING THE STATE SPACE OF A BLOCK-MODULE

Consider a b-module N having a cutnode n, a set S of sources with

supplies a(i) for i 6 s, a set T of sinks with demands b(i) for i St, a

state vector X»(X^X^... ,XE), and state space G+. This section develops
an algorithm for constructing the partition {H. }of ft* needed to perform

a block-modular decomposition. The algorithm is based on a decompositioa

principle developed by Doulliez and Jamoulle in [6].

5-1 Overview of the Algorithm

Given vectors m=(^.^ ^ and M=(1^,^,...,^) havlng
integer-valued components, the Interval having lower m^mt mand „npot.
^ndP°lnt M (denoted by [m,M]) Is the set of vectors x- (x x v^

having integer-valued components for which m <x <M for 1_< j<r.
Let ft « [LfU] denote the smallest interval contaln±ng Q+f where the size

of an interval is measured by its cardinality. Such aft always exists

since ft is afinite set of vectors all having integer-valued components.
The algorithm in this section constructs apartition {Gk> of ft, where
Gk is defined by replacing ft+ by ft in the definition of H^. Clearly,
Hk 'Gk °"+ and Pr£V =PrlGk] for a11 k-

It is helpful to think of the algorithm as abranching process that

produces arooted tree. The root of the tree corresponds to ft and every
other node of the tree corresponds to an interval contained in ft. Branch

ing from anode corresponds to partitioning the interval into several

smaller intervals. At the end of each iteration of the algorithm, the

leaves of the tree correspond to a partition of ft into intervals.
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Associated with each Interval Is alabel k, If k>0, the cutnode n

is considered to have ademand of kunits, and, If k<0. nIs considered
to have a supply of-k units. An interval Iwith label k is either

I«homed or unfathomed. If Ihas label kand is fathomed, ICG. and no

further branching from I is necessary; that is, Iwill correspond to a

leaf in the final tree produced by the algorithm. If I has label k and

is unfathomed, although IOCj «*for j>k, further branching is
necessary to determine if IO Gfe is non-empty.

Since Gfc « <fr for k > a(S) - b(T), ft is given the label a(S) - b(T)

at the algorithm's initialization; as indicated by the flow chart of

Figure 2, each iteration of the algorithm consists of examining an

interval I and, depending upon whether or not I H G. - <f>, either reducing

its label or partitioning it into one fathomed interval and several un

fathomed intervals. Subsections 5,2-5,5 provide the details of the sub

routines summarized in the flow chart; Subsection 5.6 discusses modifica

tions to the^ algorithm and sensitivity analysis.
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Yea

INITIALIZATION

The only interval is the entire state space Q; it is
unfathomed and has a label equal to the excess
of supply over demand.

Select any unfathomed interval I.

FEASIBILITY SUBROUTINE

Given its current label, does I contain any
feasible points?

No

PARTITIONING SUBROUTINE

Partition I into one fathomed
Interval and possibly several
unfathomed intervals.

LABEL REDUCTION SUBROUTINE

Determine if I can be fathomed; if
not, reduce its label until feasi
bility can no longer be ruled out.

Tes

v u

Have all existing intervals been fathomed?

1
TERMINATION SUBROUTINE

For any k, Pr{Gk> can now be computed.

Figure 2
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5.2 The Feasibility Subroutine

Given the interval chosen is

I - I^al»m2»-*»nr);(Wl»M2>*",Mr)3

having label k, execute the following steps:

(a) Augment the b-module by joining each source i S S to a common

fictitious source s with an arc (s,i), by joining each sink i 6 T to a

common fictitious sink t with arc (i,t), and by joining the cutnode n to

both the fictitious source s and sink t with arcs (s,n) and (n,t).

(b) Define the arc capacities c(») or c(«,») of the augmented

network as follows:

c(j) « M for 1 <. j <, r,

cCs,i) » a(i) for i €.S,

c(i,t) - b(i) for iS T, •

c(s,n) « max(-k,0) and c(n,t) - max(k,0).
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(c) Determine the max-flow from s to t in the augmented network

using the Ford-Fulkerson labeling method [7, pp. 17-19] suitably modified

to handle undirected arcs (cf. [7, p. 23] or [10, pp. 224-228]). For

l£ j < r, denote the flow in arc j by f.. Also, denote the min-cut by

(P,P); upon termination of the Ford-Fulkerson algorithm, P equals the

set of labeled nodes, and P equals the set of unlabeled nodes.

(d) It is well-known (cf. [7, pp. 38-39]) that the deterministic

transportation network having arc capacities M. for 1 < j < r and having

a supply of a(i) at i G S, a demand of b(i) at i € T, and either a supply

of -k at n if k < 0 or a demand of k at n if k > 0 is feasible if and

only if the max-flow in the augmented network equals c(T,t) + c(n,t), or

equivalently, (T Un,t) is a min-cut. Hence, the interval I contains

feasible points if and only if the max-flow in the augmented network

equals c(T,t) + c(n,t).

5.3 The Partitioning Subroutine

Given the max-flow of c(T,t) + c(n,t) from s to t in the augmented

network defined in the Feasibility Subroutine, execute the following

steps:

(a) Let v = (v ,v ,... ,v ) where v « max(f ,m ) for 1 <_ J £ r.

(b) For 1 _< j <_ r, define F.

as the minimum possible flow on arc j given that the max-flow flow from s

to t in the augmented network must equal c(T,t) + c(n,t). Then define

* , * * * * * o
v = (v ,v ,...v ) where v = max(F ,ra ). Note that v = v = m if

xzr J JJ jjj
r * O
f, _< m and that v » v. » M. if arc j is a member of min-cut obtained
J J J J j

in part (c) of the Feasibility Subroutine. Thus, if either f < m or

it

arc j belongs to the min-cut, v can be determined immediately. However,
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if either of these two cases does not occur, F. must be computed prior
*to determining v^. The Ford-Fulkerson labeling method provides acon-

venient means for computing F.. Suppose the direction of the flow in

arc j is from node i to node k. Start the labeling process at node i

and attempt to label node k; the only modification is that node k

cannot be labeled directly from node i even if f < m . If a break

through of value e occurs, increase by e the flow in each forward arc of

the flow augmenting path, decrease by e the flow in each reverse arc

of the flow augmenting path, and decrease by e the flow in arc j. Thus,

the value of the max-flow is unchanged but the flow in arc j has been

reduced by e. Repeat the labeling process until a breakthrough is

is impossible. At termination, F is the current value of the flow in

*arc J. (Actually, since v. * max(F ,m ), the algorithm can be terminated

if the flow in arc j decreases to ra. or lower.)

(c) Partition the interval I into the intervals A,B,,B2,...,B ,

C^,C_,...,C where

A=[(v°,v°,...,v°);(M1,M2,...,Mr)]

and, for 1 < j < r,

Bj *l(w• ••-,vj-i,mj,mj+i•• •*'V;(Mi,M2'• ••'Mj-i,vj~1,Mj+i'• *',Mf)]

Cj S *(V1,V2J *'' ,Vj-l'Vj ,Vj+l»" *' 'V J*M1,M2' **' ,Mj-l,Vj~1,Mj+r **" ,Mr* *

Note that B. * $ if v. = m. and C, « d» if v, » v,. It is easy to show
i J J j j j

that these subsets are indeed a partition of I, especially upon noting

that {B , 1 £ j <_ r) is a partition of
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B = (x G ilx, < v. for at least one j},
1 j J J '

lC4» 1 1 3 1 r* is a partition of

IX Q

x. > v, for 1 < k < r and x. < v, for at least one j}',
k — k — — jj

and {A,B,C} is a partition of I. If additional details are needed,

consult [6].

(d) Given the definition of v and the fact that x j> v for all

x € A, it is clear that A C G,; hence, assign the label k to interval A

and consider it fathomed. Given the definition of v. and the fact that

x. < v for all x G B , it is clear that B O G « <J»; hence, assign the

label k-1 to B. and consider it unfathomed. Because x > v and x. < v°

for all x G c., assign the label k to interval C, but consider it

unfathomed.

5.4 The Label Reduction Subroutine

If the Feasibility Subroutine determines that the interval I contains

no feasible points, execute the appropriate step below:

(a) If n G p, reset the label of I to -•» and consider I fathomed.

(b) If n G p, reset the label of I to k-D where D is defined as

the amount the max-flow in the augmented network falls short of

c(T,t) + c(n,t).

The justification for the above steps will now be provided.

It is well-known (cf. [7, pp. 38-39]) that 7 - t is a-subset of

nodes in the transportation network for which the difference between the

net demand within the subset and the total capacity of all arcs

entering the subset is the strictly positive amount D, thus violating a
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necessary condition for feasibility in the theorem due to Gale [8]. In

particular, one of the following must hold:

(1) If n 6 P, then

b(T HP). a(S np). c(P-s,P-t) » D > 0.

In this case, step (a) is appropriate since the excess net demand in P - t

can never be satisfied, regardless of the degree to which the boundary node

n can serve as a supply.

(2) If n G p, then

b(T O p) + k - a(S Op). c<P-s,P-t) = D > 0.

In this case, step (b) is appropriate since if k were reduced by at least

D, the interval I might then contain some feasible points. If k > 0 (k<0),

reduction of k is equivalent to decreasing the demand (increasing the

supply) at the cutnode.

5.5 The Termination Subroutine

When all existing intervals have been fathomed, execute the follow

ing steps:

(a) For each interval I, compute Pr{I}. If the arc capacities are

independent,

Pr

r / "j
(I) » n y Pr{X.=x.} ;

j*l\ x^m. J V

if not, use the joint p.m.f. of X to compute

Ml M2 Mr
Pr{I} » 2 L ••' H Pr{X « (x1,x2,...,xr)}.

Vml x2=m2 xr=mr
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(b) For k = -« and -b(T) <_ k_< a(S) - b(T) , G is simply the union

of the non-overlapping intervals having label k. Hence, compute Pr{G } by
k

Pr{G.} = £ Pr{I}.
(I|I has label k}

5*6 Modifications to the Algorithm and SensitAvtty Analysis

At the expense of additional and perhaps significant computation time,

the algorithm may produce many* intervals I for which Prfl} = 0. Hence, in some

cases (e.g., when |n | is significantly less than |fi|), it will probably

be more beneficial to reduce computational effort by insuring inductively

that Pr{I} > 0 for each interval I. More specifically, if Pr{X - v0}

-0(Pr{Xj =Vj} a0) after defining v° (v.) In the Partitioning Subrou

tine, redefine v (v ) by increasing it until a value v. is reached for

which Pr{X^ «Vj} >0. Then, given v° and v*, if Pr{X «v° -1} -0,
(Pr{Xj =v^ -1} »0), instead of using v° -1(v -1) in the Partitioning

Subroutine as the j-th component of the upper limiting state space de

fining the interval C (B.), use the largest value v. less than v? - 1
* . J . J J

(v.,-1) for which Pr{X » v } > 0. Hereafter, this modification of the

algorithm will be referred to as Modification A. Although the modified

algorithm will no longer produce a partition of n, the subsets will still

be non-overlapping and their union will include each x G n+.

Other modifications to the algorithm, as well as a discussion of various

forms of sensitivity analysis, are omitted here but may Be found in [14].
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6. AN EXAMPLE

The 10-node, 15-arc transportation network of Figure 3 serves as

an example throughout this section. Nodes 1, 6, and 10 are sources, each

having a constant supply of 20 units; nodes 2, 3, 5, 7, 8, and 9 are sinks,

each having a constant demand of 5; node 4 is the only intermediate node. The •

random arc capacities are independent and denoted by X , X*, and x".

for 1 < j < 5, where each X takes on with equal probability one of the

two values indicated in Figure 3 and where X., x' and x" are identi-
J j J

cally distributed. Thus, the transportation network will be in one of

215 equally likely states.

The subnetworks defined by the three sets of nodes {1,2,3,4},

{4,5,6,7}, and {4,8,9,10} are three identical minimal b-modules all having

node 4 as a cutnode. One possible evaluation of the reliability of the

network by a sequence of b-modular decomposition proceeds as follows:

(1) The subnetwork defined by the set of nodes {1,2,3,4} serves as

the first b-module with node 4 serving as the cutnode. Figure 4 contains

the tree produced by the partitioning algorithm of Section 5 when it is

applied using Modification A to the b-module. Within a node of the tree,

the second and third lines contain the interval*s upper endpoint M and

lower endpoint m, respecitively; the first line of node contains the

interval1 s initial label and any subsequent changes (denoted by-»-). The

remainder of Figure 4 is self-explanatory. Examination of the intervals

corresponding to leaves of the tree confirms the following partition {H,}:
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X

node 6
Yc = 20

X, = Oor5

node 2
Yo = -5

X4 =Oor5

node 5

Y* = -5

X

X

X

node 7

Y7=-5

node I

Y,=20

X, = 0 or 15

x3=o
or 5

node 4
Ya= 0

XJ X
II

Figure 3
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node 3

Y, = -5

X5 =OorlO

X
u

X
II

node 9
YQ = -5

node 8
Y8 =-5

X
II

X
II

node 10
Y,n = 20



•erer

"ens

m o

m o

k-10 515 515

Figure 4
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H10 - {(5,15,0,0,10);(5,15,0,5,10);(5,15,5,0,10);(5,15,5,5,10)}

H5 s {(0,15,5,0,10);(0,15,5,5,10);(0,15,0,5,10);(5,15,5,5,0)}

H0 - {(0,15,5,0,0);(0,15,5,5,0);(5,15,0,0,0);(5,15,0,5,0);
(5,15,5,0,0)}

H_5 » {(O,15,0,5,0);(5,0,0,0,10);(5,0,0,5,10);(5,0,5,0,10);
(5,0,5,5,10);(5,0,5,5,0)}

H-io= {(0,0,0,5,10);(0,0,5,5,10);(0,0,5,0,10)}

H„« a t(0,0,(J,0,O);(0,0,O,5,0);(O,0,5,O,0);(0,0,5,5,0);
(0,0,0,0,10);(0,15,0,0,0);(0,15,0,0,10);(5,0,0,0,0);
(5,0,0,5,0);(5,0,5,0,0)}.

Because each of the 32 possible state vectors is equally likely to oc-

32» **[H_10] - 32cur, Pr[H10] -̂ , Pr[H5] -*-, Pr[Ho] »̂ Pr[H-5] »* Pr[H_10] .i-
and PrfH^] » —. B-modular decomposition then deletes all nodes and arcs

of the b-module except node 4 and results in the c-equivalent network of

Figure 5(a) where node 4 is now a random source-sink having a supply-demand

r.v. Y4. From the values given above for the Prfl^], c»(1 -Pr[H J) =|| and
PrlY, -10] -ij.Pr[T4 -«-*j. p^ .0j .|_, p^..„ .6_ ^
?rtY4 --10] -jj.

(2) The next b-module consists of the subnetwork of Figure 5(a) defined

by the set of nodes {4,5,6,7} with node 4 again serving as the cutnode. This

time, the b-modular decomposition involves two stages since node 4 is now a

random source-sink. In the first stage, an artificial intermediate node 41

is inserted into the b-module at node 4 (as illustrated in Figure 5(b)) in

order to serve temporarily as the cutnode for a b-module identical to the

one analyzed in step (1). Deleting all nodes and arcs of the b-module except

node 4* results in the I 32) -equivalent network of Figure 5(c) where node

4f is now a random source-sink having an independent supply-demand r.v. Y

identically distributed to Y^. The second stage of the b-modular decomposi-
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(a)

(e)

Figure 5
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W4 = Y4+Y4'
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W4

(f)
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tion combines nodes 4 and 4' Into a single random source-sink having a

supply-demand r.v. W4 = Y. + Y4, for which Pr[W4 = 20] = 4g4>

Pri"4 -15' - m> Pr[w« •101 =m> Pr[M4 •5J =m- PrtM4 •01" Ik-
Pr[W4 --5, -84. pr[v,4 ._10] .6|_ pr(„4 ._15) .||_

a

Pr[W, = -20] = TgT-; this results in the network of Figure 5(d).

(3) Since the network of Figure 5(d) contains no b-modules, the final

b-modular decomposition also involves two stages. In the first stage,

an artificial intermediate node 4' is again inserted into the network

at node 4 (as illustrated in Figure 5(e)) in order to serve temporarily as

the cutnode for a b-module identical to the one analyzed in step (1).

Deleting all nodes and arcs of the b-module except node 4* results in the

/22\3
I32) "equivalent network of Figure 5(f) where node 4* is now a random

source-sink having an independent supply-demand r.v. W, f identically

distributed to Y^. The second stage of the b-raodular decomposition combines

nodes 4 and 4f into a single random source-sink having a supply-demand

r.v. W4 +W4, and having areliability R* »Pr[WA +W^ >0]; R* is easily

computed as

R* - I, -'" -' - 61":k --10,-5,0,5,10Pr(V ° k]Pr[W4 ^ "kl =IbT648-

Hence, the reliability R of the original network of Figure 3 is

. »* 6157
R"CR " 327768-
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7. AN APPLICATION

Although the classic network flow of operations research is not a

completely accurate model of the power flow in an electrical power network,

the electrical power industry nevertheless regards a stochastic transporta

tion network as a useful model for assessing the probability of meeting

peak demand (cf. [15]). As an example, consider the network of Figure 6

that arises when modeling the major electrical power transmission network

used by Pacific Gas and Electric (PG&E) to supply electrical power to

northern California. The arcs represent PG&E's 500kV transmission system

and each node represents a source and/or load demand of electricity. Whereas

"s/d" within a node indicates it is a random source-sink of the most general

type, "s" or "d" within a node indicates it is a random source or a random sink,

respectively. Each random source represents either a major generation station or

a 500kV substation where the total supply of power within the service area

of the substation is always greater than or equal to the total demand by a

random amount; a random sink represents a substation where the total load

demand within the area is always greater than or equal to the supply by a

random amount; a random source-sink of the most general type, however,

represents an area that sometimes has excess power and at other times is

short of power. The random sources include the node at the top of the

figure representing potential power transfer of a random amount of PG&E

from the Bonneville Power Administration in Oregon; the random sinks include

the node at the bottom of the figure representing potential power transfer

of a random amount from PG&E to Southern California Edison. The p.m.f.'s

of the network's random arc capacities and random source-sinks are omitted

here. The dotted lines in the figure outline independent subnetworks

N_, N„» N», and N,. A broad description of one possible sequence of

b-modular decompositions that can be used to compute the network's reliability

follows:
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Figure 6

-155-



(1) N^ and N^ are both b-modules in the original network; two

successive b-modular decompositions retain only the cutnodes Ni and N2 share

with N2 and N3, respectively.

(2) The revised network consists only of the newly created b-modules

N2 and N3 having a common cutnode; two successive b-modular decompositions

collapse this revised network into a single random source-sink located at the

common cutnode.

The existence of b-modules and cutnodes in PG&E's major (highest voltage)

transmission network is due to the geography of California; that is, the

Pacific Ocean on the west and the Sierra Nevada Mountains on the east dictated

the linear nature of the network. B-modular decomposition will be of limited

use in computing the reliability of a major transmission network located

elsewhere in the United States (with the possible exception of Florida)

since such a network will usually be highly redundant and, therefore, possess

few (if any) b-modules and cutnodes. However, b-modular decomposition is more

applicable to the lower voltage subtransmission and distribution networks

(cf. [16]). More specifically, a subtransmission network connecting several

substations usually has only a few cycles so that the existence of b-modules

and cutnodes is likely, and a distribution network emanating from a substation

is often a tree, in which case any node except a leaf of the tree may serve

as a cutnode so that, for example, the reliability can be computed by a

sequence of b-modular decompositions that successively "prune" branches of

the tree.
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8. CONCLUSION

Provided the stochastic transportation network under consideration

contains at least one block-module, block-modular decomposition is an

alternative to existing methods for computing the network's reliability.

Instead of computing the reliability of one large network, it is possible

to analyze a sequence of smaller subnetworks. Block-modular decomposi

tion is particularly useful in the analysis of large electrical power

networks.

A computer code implementing block-modular decomposition is under

development. Upon its completion, experiments will provide an empirical

answer to the question: "In performing a sequence of block-module

decompositions that reduce the original network to a single node, are there

heuristic rules for selecting the next block-module if the objective is

to minimize the total computation time?". One possible answer is to always

select the minimal block-module whose state space has the smallest

cardinality. The experiments should also validate the conjecture that

block-modular decomposition, where applicable, is computationally more

efficient than existing methods; such a conjecture is based on the following:

(1) The concept of modular decomposition and other types of decomposition

have proved quite effective in the analysis of binary reliability networks

(cf. [2], [3], [12], [13], and references cited therein).

(2) Using modular decomposition, the reliability of the network of

Figure 3 can be computed by hand in the manner discussed in Section 6; hand

computation would be Impossible using any other existing method.

-157-



(3) Block-modules are not only easily identified visually but also

can be identified efficiently on a computer by a straight forward

adaptation of an algorithm in Aho, Hopcroft, and Ullman [1] which computes

a graph's articulation points and biconnected components (graph theoretic

concepts similar to cutnodes and block-modules) in a number of steps

proportional to the number of arcs in the network.
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Using Decomposition to Improve the Efficiency of

Computing the Rel iab il i ty o f a Capacitated Flow

Network

Jane Nichols Hagstrom

University of California, Berkeley

ABSTRACT

Reliability computations for an undirected

transportation network with multiple sources and

sinks are extremely time-consuming at best. It is

here proposed that using the combinatorial tech

nique of decomposing the underlying graph into its

triconnected components is frequently a useful

first step toward minimizing computation time.

This is considered particularly for the case where

capacity and demand constraints are independent,

discrete random variables.

October 15, 1979
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Using Decomposition to Improve the Efficiency of

Computing the Rel iab il i ty o f a Capacitated Flow

Ne t wo r k

Jane Nichols Hagstrom
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jL* Introduction

It is often desirable to calculate the probability of

successful operation of the transportation network of some

commmodity such as oil, water, electric power. Related

problems for which much work .has been done are binary

coherent system reliability and communication network relia

bility. The introduction of capacities to the arcs of a

network greatly increases the difficulty of doing an effi

cient computation.

The main thrust of this paper will be to introduce a

general concept of decomposition of a transportation problem

into smaller problems. Under many conditions, the problem

will be most efficiently solved by solving the smaller prob-
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lems and building up the solution from these smaller prob

lems. Three papers which deal with the same problem are

those of Doulliez and Jamoulle [1972], Shogan [1978], and

Willie [1979]. Shogan1s paper and this one are intimately

related; in fact the main contribution of this one over that

is the more general framework introduced. Like Shogan's,

this paper will resort to a method based on that of Doulliez

and Jamoulle when it comes to proposing a specific method

for solving the subproblems. Willie's method is signifi

cantly different from the other papers' and is not readily

adaptable to building up the solution from the solutions to

subproblems since he restricts himself to situations in

which all components of the system have only two possible

states .

Wa will introduce at this point an example which will

be followed throughout the rest of the paper. We are given

the transportation network whose graphical representation is

shown in Figure 1. There are three vertices of the graph

which are special: one represents a point of supply (s) , one

a point of demand (d) , and one a point of both supply and

demand (s/d). All other vertices are simply points where

there is a choice of route for shipment. The numbered edges

represent transportation paths between vertices. The amount

of supply, demand, or capacity of the shipping routes will

be assumed to be independent, discrete random variables. We

will indicate how to calculate the probability that the net

work is able to supply the demands.
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Figure 1
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The organization of the rest of the paper is as fol

lows. In the next section, we will clarify details of the

problem and model. The following section will describe the

. , decomposition concept and procedure for performing it. The

last section will describe the general method of using the

decomposition and specifically how it might be implemented.

2. Problem and Model

The deterministic version of this problem, sometimes

known as the supply problem or transshipment problem, is

studied in Gale's book [I960]. Given a transportation net

work with routes with fixed capacity, supply points with

fixed capacity, and demand points with fixed requirements,

he characterized the circumstances under which there is a

feasible assignment of commodity flows to the possible

routes so that all demands are satisfied. Unfortunately,

this characterization does not in general suggest good algo

rithms, even for solving the deterministic case. We will be

dealing.with a stochastic version of this problem, in which

all capacities and demands are independent, discrete random

variables, and we will ask what the probability of the

existence of a feasible flow is. As pointed out before,

" " Figure 1 is an illustration of such a problem.

For this problem, it will be convenient to construct a

slightly different graphical representation. To the ver

tices already described, we will add a new vertex, a super

source-sink. To the super source-sink, we will draw edges
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from every supply point and every demand point. If we

require a flow on this new graph such that the flow from the

super source-sink along an edge to a supply point does not

exceed the capacity of that supply point and that the flow

into the super source-sink along an edge from a demand point

exceed the requirements at that point, we can consider all

constraints of the problem to be associated with edges

(requiring, of course, flow conservation at every vertex).

This procedure has been performed in Figure ?.

At this point, let us introduce some terminology and

notation. A graph (Often what is defined here is called a

multigraph.) G = (V,E) consists of a set of vertices V and a

set of edges E, such that each edge is incident with exactly

two vertices. The edge is di rected if one of those vertices

is identified as the head of the edge and the other is the

tail . The graph is di rected if every edge is directed. If

every edge is undirected, the graph is undi rected. Except

where stated otherwise, a reference to a graph will mean an

undirected one. If a graph represents a flow network, we

may identify certain vertices as sources, in which case,

flows out of them may exceed flows into them, or sinks,

where the opposite case may or must hold.

A subgraph of G is a graph whose vertices are a subset

of V and edges are a subset of F such that its vertices and

edges have the same incidence relation that they did in G.

Let V„ be a subset of V. Then G(V_) , the subgraph induced
i »' —————
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by V , is the subgraph of G whose vertices are V and whose

edges are those which are incident only to vertices of V„.

Let E„ be a sublet of E. Then similarly, the subgraph

induced by En, G(E ) , is the subgraph of G whose edge set is

E , and whose vertices consist of those to which some member

of E„ is incident.

A path is an alternating list of vertices and edges

(v ,e ,v e , .. . ,e. ,v.) such that e. and v. are incident and

v. and e.., are incident. A graph is connected if there is
1 i+l * r

a path between every pair of vertices.

Consider a graph on which we wish to define a flow.

There may be certain vertices designated as sources and cer

tain as sinks. If the graph is undirected, choose arbitrary

directions for each edge. A flow on the graph is an assign

ment of a real number f. to each edge i called the flow on
1 ^

that edge such that

1) For every vertex which is a source, %the sum of the

flows on edges into that vertex is no more than the sum of

the flows out of that vertex.

2) For every vertex which is a sink, the sum of the flows

on edges out of that vertex is no more than the sum of the

flows into that vertex.

3) For every other vertex, flow conservation holds, that

is, the sum of the flows on edges into that vertex equals

the sum of the flows on edges out of that vertex.

A flow on a network is of no interest unless there are
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constraints. Constraints may be of the form of an upper

bound or lower bound on the flow on an edge or they may be

vertex capacity constraints or they may be constraints asso

ciated with sources and sinks. We will consider only the

first and the last. For a source, a constraint will be on

the amount by which the flow out may exceed the flow in.

For a sink, a constraint will be on the amount by which the

flow in must exceed the flow out.

As was suggested above, we can alter the graph of a

flow network so that there are only edge constraints and no

source or sink constraints. Furthermore, sources and sinks

lose their identity and flow conservation must hold at every

vertex. Consider the constraints in our example problem.

Since they are random, we do not know their actual value,

but we do know their form. Let o* be the super source-sink

we added to the graph. Our original edges, which were not

incident with <y, were undirected. The capacity constraint

applies whether we have flow in one direction or the other.

Then if we arbitrarily choose a direction for such an edge

i, the flow f will be positive or negative depending on

whether it uses the edge in a forward or backwards direc

tion, and will be constrained to lie between c. anvd -c,
1 i

where c^ is the capacity of that edge. Suppose i is an edge

incident with o* and a source (supply point) . Let us direct

i away from cr. Then the flow on i is constrained to lie

between P and c., where c. is the supply capacity of the

source. Actually, to maintain feasibility and maximize
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excess supply, these flows will always be positive, so that

we can consider the flow on such an edge to have an upper

bound of c. and no lower bound. If i is an edge incident

with a and a sink, it is natural to direct that edge towards

o- and speak of the flow being constrained to be greater than

the demand at the sink. For simplicity of later discus

sions, it turns out to be more convenient to direct the edge

away from cr, and assign the flow a (negative) upper bound of

c. where -c. is the demand at the sink.
i 1

We now have just two types of edges, ones incident with

o* which have an upper bound of c. and no lower bound, and

the rest which have an upper bound of c. and a lower bound

of -c.. Soon we will introduce some fictional edges, some

of which will have constraints on them. The same two cases

for the constraints will hold.

Figure 3 shows all the edges for our example with

directions. We will here explain the purpose of the added

edge 15. We are going to solve a slightly more general

problem than that of finding the probability that there

exists a feasible flow on a network whose constraints (the

c.) are random. Two possible versions of this general prob

lem exist. In the first version let us concentrate on a

certain demand point. We might ask "What is the probability

that all other demands in the network are met and the excess

supply available at this demand point exceeds a certain

number?" The other version allows us to look at a vertex
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which is not a demand point and ask "What is the probability

that all demands in the network are met and an excess supply

greater than a certain number could be delivered to this

vertex if it could be used?" This second version is the kind

of question an expansion planner might ask.

Thus we are going to do the following. We are going to

select a vertex of the graph which is for some reason of

particular interest to us, and we are going to compute the

(defective) distribution of the excess supply, which may be

negative, available at that vertex when all demands are met.

It is defective because for each value k, we will find

Prob{V < k and all demands are met)

In general, for no value of k will this probability be 1. A

slight variation in approach would give us for each k,

Prob{V < k and all demands are met whenever possible).

This distribution would not be defective.

By adding an edge from our chosen vertex to <j and find

ing the probability distribution of the maximum flow V on

this edge when the flow is feasible on the network, we will

have accomplished this task. In Figure 3, vertex c( has been

chosen and edge 15 has been added.

To review what we will get by doing this: For any real

ization of the c., one of three possible cases will hold.

First, there may be no feasible way of supplying the demands

associated with vertices other than our chosen one. Second,
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there may be a feasible flow which yields a positive maximum

flow of value k through our added edge, in which case it is

possible to supply all demands and have an excess supply of

k available at the chosen vertex. Third, there may be a

feasible flow which yields a negative maximum flow -k

through our added edge, in which case it is necessary to

supply an added quantity k at our chosen vertex in order for

there to be a feasible flow. If the chosen vertex is a

demand point, we will have more information than just the

feasibility or infeasibil ity of the network, we will also

know by how much the demand at the chosen vertex is exceeded

or undersupplied. If it is not a demand point, we get

information on the feasibility and the desirability of mak

ing that vertex either a supply or demand point. In the

probabilistic form of the problem, this information is in

the form of a probabil ity distribution.

From now on we will assume we have a graph of the form

in Figure 3, with all sources and sinks joined by edges to a

special vertex cr, and an added edge joining some selected

vertex to cr. When we wish to consider the directed version

of the graph, we will have our added edge directed into cr,

all other edges incident to <j directed out of o-, and the

directions on all other edges arbitrary. In the next sec

tion, we will forget the directions, and look again at them
in the last.
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3. Decomposi tion

In this section, we will describe a combinatorial

notion of decomposition of a graph. The same notion may be

applied to matroids and blocking systems, as described by

Cunningham and Edmonds [19791. We will have to start with

more definitions.

A subset V~ of the vertices of a graph will be said to

disconnect a graph G if the subgraph of G induced by the

complement of Vn is not connected, or if it consists of a

single vertex. We say a graph is k-connected if the smal

lest set of vertices which disconnects the graph has more

than k elements. As drawn in Figure 1, our graph is singly

connected but not biconnected. In Figure 2, it is bicon-

nected but not tr iconnec ted. The graphs in Figure A are

tr iconnec ted . Graph (e) is also 4-connected.

If a flow network is well-designed, then its graph with

super source-sink cr will be biconnected. Otherwise one ver

tex can be removed to disconnect it. If cr can be removed,

the network is composed of two independent networks which

can be treated separately. Otherwise every other vertex

lies on a path from a source to a sink and thus there are

two paths from it to cr. Removal of any single vertex will

lea\/e all other vertices connected to o*.

In order to decompose our biconnected graph, we want to

partition the edges and associate them with smaller graphs
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which will preserve information about sets of vertices which

are triconnected . The conceptualization described here is

due to Tutte [1966]. We look for a partition (EwE ) of the

edges of the graph G such that E, and E each have at least

two edges and the induced subgraphs G(E.), G(E ) have

exactly two vertices in common. This pair of vertices is

called a hinge, and we see that any path including a vertex

from G(E.) and a vertex from G(E ) includes a hinge vertex.

We call such a partition a spl i t. In Figure 3, hinges are

[cr,c(] , [|B,/], r/,cr], rcr,,Bl, [c(,yi. Two possible splits of

the graph in Figure 3 at [c(,cr] are shown in Figure 5.

Splitting edge 15 away from the rest of the graph is concep

tually possible but not productive and therefore disallowed.

We have lost information in this split. Consider a

pair of vertices other than this hinge that lie in one of

the generated subgraphs. They are connected by a path which

passes through the hinge and along edges belonging to the

other subgraph. This path contributes J to the degree of

their connectivity. Then to the subgraph in which they lie,

we will add a vi r tual edge joining the hinge to represent

the lost path. The other subgraph will also need such a

virtual edge. These two subgraphs with their virtual edges

added are called spl i t graphs of the- original graph. In

Figure 6, the split graphs generated by the split (a) in

Figure 5 are shown. We wish to split our split graphs as

long as any hinges remain. Looking at graph (b) in Figure

f>, we see [ cr,c(l is again a hinge. Splitting at [o-,c(l and
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adding virtual edges corresponding to the split, we now have

the three graphs illustrated in Figure 7. Note that we

would have the same three graphs if we had started with

split (b) shown in Figure 5 and then split again at Tcr,c(] .

Now starting with the graphs shown in Figure 7, we can

imagine splitting successively at hinges until no more

splits on any of the graphs generated can be performed. As

discussed in more detail in Cunningham and Edmonds [19791

and Hopcroft and Tarjan T1973], with two adjustments this

decomposition of the graph is unique. First, at some point
we split at either [c( ,y) or [cr,(Bl and' in our final decompo

sition ended up either with a pair of triangles c(,|B,/ and
Y,<jA or the pair o-,c(,p and p,y,cr. In either case these

triangles each have a virtual edge which was generated by
the same split. Our rule will be: Merge any pair of

polygons which have virtual edges generated by the same

split back into a larger polygon by joining thorn at the

hinge corresponding to the split and erasing the virtual

edges, thereby undoing the split. Thus in our example, no

matter which way we had done the split, we merge the trian

gles back into the polygon cr,c(,fB,K. a second problem that

can arise is associated with bonds. Abond is a graph with

two vertices and at least three edges. Graph (b) in Figure
7 is a bond. The problem did not arise in our example, but
sometimes several bonds may be generated by successive

splits at the same hinge. Cur second rule is: Merge all
bonds associated with the same hinge by joining them at the
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hinge and erasing the virtual edges that arose when they

were split from each other, thereby undoing that particular

split.

After merger of any such graphs, we will have a unique

collection of graphs called the set of triconnected com

ponents of our original graph. Each of the triconnected

components is either a truly triconnected graph, a bond of

three or more edges, or a polygon of three or more edges.

Figure 8 contains the triconnected components of the exam

ple.

In performing this decomposition, we can form a map

from which we can recreate the original graph. This map is

in the form of a decomposition tree formed of nodes and

arcs. Each node will correspond to a triconnected component

of the graph. Two nodes will be joined by an arc if their

corresponding components have virtual edges generated by the

same split. This map is described as a tree since there is'

exactly one path of arcs between any pair of nodes.

•At this point, it will be convenient to introduce more

information into the tree. We have chosen some special ver

tex to concentrate on, and added a special edge to our ori

ginal graph joining this vertex to a. That special edge

occurs in exactly one triconnected component of the graph.

Call the corresponding node of the decomposition tree the

£oot of the tree. Because the map is a tree, each node of

the tree will have a distance from the root, defined by the
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number of arcs in the (unique) path joining it to the root.

Now we can define a direction for each arc, by calling the

endpoint of the arc nearer to the root the tail and the end-

point farther from the root the head. The following termi

nology will apply to this directed tree. If {/ and ui are

nodes of the tree, such that there is an arc directed from {/

to in, then (/ is the father of uu, and ui is the child of {/.

Each node except the root has exactly one father. A node

which has no children will be called a leaf. Figure 8 shows

the decomposition tree with directed arcs for our example.

In the next section, we will show how this decomposi

tion can be used to simplify reliability computations. It

should be noted that Hopcroft and Tarjan [1973] have an

algorithm which finds these triconnected components in time

proportional to the total number of vertices and edges in

the graph. Appropriate background for this material can be

found in Tarjan [1972] or Aho, Hopcroft, and Ullman ri974].

1' Using the Decomposi tion

In this section we will describe how to use the decom

position tree to generate the probability distribution of

the maximum flow possible to our chosen node when the flow

is feasible. This approach is usable with any method of

finding the probability distribution of the maximum flow

possible through some chosen edge in a triconnected graph,

but the problem remains of finding a good method for such a

graph. After discussing the method in its generality, we
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will discuss its use in conjunction with the method of Doul

liez and Jamoulle applied to each triconnected component.

We have introduced directions on the edges of the graph

so that we will be able to keep track of signs on flows and

their constraints. We will need directions on the virtual

edges of the triconnected components as well. In the dis

cussion that follows, we will not attempt to distinguish

between a node of the decomposition tree and the tricon

nected component that corresponds to it. A father and son

pair in the decomposition tree will have virtual edges that

were generated by the same split. Let us give these edges

the same name, say i. in the son, we will often refer to i

as the return edge of that component. We will also refer to

the special edge in the root as the return edge of the root.

To determine how to direct i, we look at it in the father.

Ir" i is incident with cr, direct i away from o*. Otherwise,

assign it an arbitrary direction. In the son, we always

give i the opposite direction.

Let us examine what we have now. We have a directed

decomposition tree, in which our special edge appears in the

root, and every other edge of our original graph appears in

exactly one node. A father-child pair of nodes shares a

virtual edge. Each node of the decomposition tree

corresponds to a triconnected graph, a bond, or a polygon.

Furthermore, every edge of one of these triconnected com

ponents has a direction. Whenever cr occurs in a tricon-
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nected component, it is the head of the return edge.

The following algorithm may be used to process the

decomposition tree. In essence, we will be "plucking" off

the leaves, until we have nothing left but the root.

1) Choose a leaf {/ of the tree. Let r be the return edge

in (/. .Find the probability distribution of c , the maximum
r '

flow feasible through r, using the probability distributions

of the constraint coefficients on the rest of the edges in

2) If (/ is the root, STOP; we are done. Otherwise, change

r to a real edge in the father of (/, let c be its con-
r

straint, and erase (/ from the tree. Go to step 1).

As was pointed out, the probability distribution com

puted could either be in the form of the probability that

"there is a feasible flow in the rest of the graph and there

is a maximum flow < k in r", or the probability that "all

demands in the rest of the graph have been met as far as

possible and there is a maximum flow < k in r ."

The remaining problem is a serious one. How do we com

pute the probability distribution in the triconnected com

ponents? The computation is simple for a bond or a polygon,

as we will show. In general, the computation will be

laborious for a triconnected graph.

If the triconnected component being processed is a

bond, the real edges are in parallel. The maximum flow
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through the return edge will be the sum of the c.'s for the

real edges i of the component. If only one realization of

the c.'s yields a given level of maximum flow through the

return edge, the probability of that level will just be the

product of the probabilities associated with the c.'s.

If the triconnected component being processed is a

polygon, the real edges will be in series. The maximum flow

through the return edge will be the minimum of the c.'s over

all real edges i in the triconnected component. The proba

bility calculation is again straightforward.

The following proposed method for dealing with tricon

nected graphs will be sketched only briefly as it is for all

intents and purposes equivalent to the methods described by

Shogan [1978] and Doulliez and Jamoulle [19721. To keep the

exposition simple, we will ignore a subtlety introduced by

Doulliez and Jamoulle which may be faster and allows finding

upper and lower bounds when exact computation is prohibi

tively expensive.

We are given now a triconnected graph in which one edge

is called the return edge r and all other edges i have a

random constraint c.. If o is in the graph, r is directed

into cr and every other edge incident with o- is directed out

of it. For every one of these latter edges, c. is an upper

bound on the flow and there is no lower bound. For all

other edges i, c. is an upper bound on the flow and -c. is a

lower bound
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In general, we will fix a value V of flow we want to

pass through r. We will compute the probability that a flow

greater than or equal to V is feasible in the graph. By

performing this for all possible V's, we can compute the

probability distribution for c .
r

The algorithm works as follows. Let £ be the event

that V is feasible. Using as constraints the maximum values

assumed by the c^'s, find a feasible flow of value V. Let A

be the event that c. > f. for this assignment of flows.

Then

Prob(Q) = Prob(A)+Prob(£ and not A).

The next step is to find a subevent B to partition

(£ and not A) , say

B = Q and f c < f }

and calculate the probability of B and (Q and not (A or B) )

similarly to our attempt to calculate the probability of £.

Fortunately, a whole, new maximum f 1 ow cal cul ation does

not have to be performed. To calculate the probability of

B, we may take the solution and last augmentation graph from

the Ford-Fulkerson determination of A, and search for aug

menting cycles that include edge 1 (in reverse).

Having calculated the probability o.': £ for a specific

value of V, when we wish to proceed to V-l , again we do not

have to start from scratch, but can adjust the solution and

augmentation graph from the last calculation made for V.
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Essentially, this algorithm just partitions the state

vectors for the edges of the graph into sets that are known

to be feasible for a given V. There is no reason to assume

that we would not have to enumerate nearly all the states,

so that we cannot expect this to be a particularly fast

algorithm. However, if it is used in the recursive fashion

suggested by the decomposition tree, the number of arith

metic operations will be reduced considerably whenever two

states of the edges of a triconnected graph yield the same

flow V. In the appendix, the number of operations are com

pared for the simple problem of Figure 9, with and without

decomposition. /

Thus decomposition into triconnected components will

reduce the number of Doulliez and Jamoulle type computations

required to find the reliability of a flow network. In

applying any other algorithm to flow networks or communica

tion networks, the possibility that decomposition will

reduce computation time should be considered.
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Decomposition Tree

c =1 with probability p_,

<j) with probability 1-p.

c =1 with probability p?,

<{> with probability 1-p.

c=2 with probability p.,

<J> with probability l-p~

c =<j> with probability p.,

-1 with probability 1-p.

/ *

m »
4 i

y

VL-*

Figure 9
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Appendi x

Doulliez. & Jamoulle-type Algorithm Applied to Original Graph

of Figure 9

a) Probfcr > 2} :

cl>1 C2» c >2 C.>0
4— prp2p?p*

3 mul ti pi ications

b) Prob[c5 > 1}:

cl>1 C2>0 V1 c.>0
4—

c =0 V1 =3>] c.>0
4—

Cj-1 "V"1 V1 V1

prrp?*p^

n-Pj)"p2'p?-p4

p.p.p.(1-p.)
1 2 ?

9 mul ti pi ications

2 additions

c) Probfc. > 0}

c.>0 C?>0 c_>o c„>0
4—

1-1'1-p,

<V-i cl>1 c2>0 c3>l (l-p4) Tpj'l'p,

c. =0 c?>l c3>l + (1-P,) *P/P?1

8 multi PJ ications

2 additions

d) Prob{c5 >-l }

c >0 c2>0

total operation*

C^>0 c.>-l l'l.'lM
4—

3 mul ti pi ications

27
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Doulliez and Jamoulle-type Algorithm Applied Recursively to

the Triconnected Components of the Graph in Figure 9

l.a) Prob{cx > 2}

c2>l c?>l

b) Prob{cx > 1}

C.>1 C >0

c =0 c ^ 1
cl " c2-i

c) Prob{cx > 0}

Cj>0 ' c22n

2.a) Probfc > 2}

cx>2 c?>2

b) Prob{c > 1}

Pl P2

1 mul tipl ication

(i-pj)-p2

2 multi piications

1 addition

1 -1

.1 mul ti pi ication

p,#Prob{cx>2)

1 mul tipl ication

cx^! C3>T P3-Probfcx>l}

1 mul ti pi ication

c) Probfc > 0}

cx>0 c3>0

3.a) Prob[c5 > 2}

cy>2 ca°

b) Prob{c_ > 1}
5 —

c >1 c„>0
y- 4-

1*1

1 mul ti pi ication

p ' Probf c, >2}
y-

1 multi pi ication
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<V~1 cy>2

c) Probfc5 > 0}

cy>0

C4="1

c4>0

c >1
y-

d) Probfc5 > -1}

c2>0 ca1'1

total operations

(1-p.) 'Probfc >?}
y-

2 mul tipl ications

1 addition

P„"J

(1-P4)-Probfcy>l}

2 multiplications

1 addition

1-1

1 mul ti pi ication

16
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ABSTRACT

In this paper the expression for the 'time to failure distribution'

for systems modelled as continuous-time finite state Markov Chains is

derived using only elementary concepts of probability. This is used to

obtain the expressions for expected time to failure and expected cycle

time of the system. It is shown that under steady state assumptions the

system can be modeled as if it were a two state Markov Chain for the com

putations of commonly used reliability indices.
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1. Introduction

We consider a finite-state continuous-time Markov Chain. The state

space is partitioned into two sets: U, the set of 'up-states' and D,

the set of •down-states.1 Suppose that initially the system is in U

with a given probability distribution. In this paper we derive the

expression for the distribution of the time at which the system leaves U.

Based on this general expression for the time to failure distribution,

we present a simple derivation of the expected cycle time.

This problem arises in reliability studies [1]. Consider, for

example, a complex repairable system with many independent components

where each component has an exponentially distribured failure and rapair

time. The system can then be modeled as a 2n-state continuous-time

Markov Chain, where n is the number of components in the system. Of

these states, some correspond to the system being up (working) while the

others correspond to system failure. In such models it is of great

interest to find 'time to failure' distribution. Such models have been

applied to large-scale power system studies [2] in the so called frequency

and duration method.

Brown [3] has derived the time to failure distribution for a parallel

system (system for which the set D consists of only one state, viz,

where all components have failed). Kielson [4] has considered the struc

ture of various failure time distributions of a general system and their

inter-relationships. Ross [5] and Barlow and Proschan [6] have consid

ered the case where initially all the components are up. They have

derived some important properties of the time to failure distributions.

The derivation presented here makes use of only elementary concepts
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of probability. We first note that the time to failure distribution

function satisfies a linear first order differential equation with time

varying coefficient. This coefficient is seen to depend on the vector

of conditional probabilities. This vector satisfies a first order non-

linear differential equation. We obtain the solution of this differen

tial equation to derive the expression for the mean time to failure

distribution. This expression is used to obtain the expression for

expected cycle time and the expected time to failure of the system.

2. Preliminaries

To make the analysis manageable let us number the states 1 to N

with the states in U numbered 1 to M. Let x(t) denote the state at time

t. The assumptions inherent in the system model are given by:

Basic Assumptions.

1. For each time t, for each i,j such that i ^ j there exists a

A. . such that

Prob{x(t+At)«j|x(t)=i} « A At + o(At); At > 0 (1)

2. The Markovian assumption that:

ProMxCt^-jIxCt^S} = ProMxCt-^j |x(t)=i}

where t, > t and S is any condition prior to time t.

3. A. . is independent of time t.

4. Prob{x(t+At)=i;x(t+6At)=j for some 6 G (0,1) IxCO^k} = 0(At)

whenever i ^ j and j ^ k.

In view of the above assumptions the system is time-invariant and without

loss of generality let us assume that the initial time of interest is 0
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(the result that we obtain can be easily translated to any other start

ing time).

Problem Formulation.

We are given that at time 0 the system is in the set of up-states

and we are also given the initial probability distribution o where the

i-th component of £Q is the Prob{x(0)=i}. Let T represent the time at

which the system leaves the set U. We are interested in obtaining the

distribution of T viz.

F(t) - Prob{T>t|x(0) 6 U;p }

» Prob{x([0,t]) C u|x(0) <= U;jp_}

In order to obtain F(t) we shall obtain the differential equation

governing the function F with At > 0

F(t+At) = Prob{x([0,t+At]) C u|x(0) € U;p }

- Prob{x([t,t+At]) Cu|x([0,t]) c U;p }

Prob{x([0,t]) Cu|x(0) ^U;^}

» (l-Prob{x(t!) is not in U for some t' in

[t,t+At]|x([0,t]) CU;^}) F(t)

= [l-(A(t) At + o(At))]F(t)

Prob{x(t+At)Q)|x([0,t])OJ;p }
where A(t) » lim -2-

At>0 At
At>0
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From this it follows that

dF

dt
(t) = - A(t)F(t) (2)

Remarks. We can regard A(t) as the rate of departure from the set

U. This would depend on the state of the system at time t. Thus in

order to obtain A(t) we require the probability distribution of the

state at time t. This as we shall see presently depends on t and

satisfies a nonlinear differential equation. We are however given the

initial probability distribution viz. p and the initial value problem

has a closed form solution. Using this solution we obtain the expres

sion for F(t).

3. Expression for F(t)

Notation: When we use tQ,t->..., it is assumed that t_ < t-,

Definitions.

N

liia- L ^± ,and A= {A }
U j=l ±,J i,J i,j=l

J*i

£(t) a row vector of dimension M such that

ADU ^D

£ (t) «Prob{x(t)=i|x([0,t]) cU;£o},

.s(t) a row vector of dimension N such that

s1^,^) =Prob xCt^-ilxao.tJ) Cu;^};

clearly s. (t,t) =^(t) i= 1,2,...,M.

Also we define jL as a column vector of proper dimension with each
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component equal Co 1. This vector is useful for summation of components
of row vectors.

3-1. The Differential Equation for p(i-)

i M
s (t+At,t) - £ Prob{x(t+At)«i|x(t)«i}

Prob{x(t)»j|x([0,t]) Cu;^}

M

53 X) s(t,t)(A iAt+o(At))+si(t,t)(l+A. <At+o(At)) (3)

Now

Prob{x(t+At) 6u|x([0,t]) CU;p } - £ /(t+At.t)
i-1

M ± M
-.S <« (t,t) +2 sj(t,t){A. ,At+o(At)}}

ial jaiX J*1

M M

Sl+Z E sJ(t,t){A. ,At+o(At)}
i=l i=i Jti

1 +£(t)AuulAt+o(At)

Hence for i « 1,2,... M

i s (t+At,t)
£ (t+At) l+E(t)AU(Jl t-f-o(At)

Using (3) we get

£(t)+p.(t)ATTTTAt+o(At)
£(t+At) - UU

l+E(t)AuulAt+o(At)
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and

£(t)iL At-p_(t)JL lp(t)At+o(At)

£(t+it)-£(t) i^wOKottc)
where

d£

3.2. The Expression for F(t)

Also

prob{x(t+At) <=D|x([0,t]) CU;p}
A(t) = lim - =2-

At->0 At
At>0

N

E prob{x(t+At)=j|x([0,t]) C U; p >
iim Jss* Z
At->0 At
t>0

N M Prob{x(t+At)=j|x(t)=i}

"• L E i—" At "At->0 j=ttKL i=l ac
At>0

Prob{x(t)=i|x([0,t]) CU;£o}]

N M

E E 2 (OX ,At+o(At)
lim J-**1 isi —

At->0 At
t>0

N M M N

E L/w^ i - E E £±(t)x1 .
j=m+l i=*l lfJ i=l j=m+l i,J
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AiJLM.M

1=1j=m+li,J~l^ii'J

MM

=-EE^(t)A
i=lj=lX»J

-"^OA^l(5)

Itiseasilyverifiedthatthesolutionfor(4)isgivenby

£(t)-^°
Auut1(6)

Substituting(6)in(5)weget

A(t)«.2o6^
(°*od\(7)

Substituting(7)in(2)andnotingthatthenumeratorin(7)isthe

defivativeofthedenominatorweget

F(t)-V^i(8)

Remarks.Supposethatthefollowingholds:

SumoftheelementsineachrowofA.—isthesame(sayA).(9)

AUUt"Xt*
T^11^jk=*-*outi=*e»leou.Thiswiththeinitialcon

ditionthatpi»1yields
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F(t) = e out (10)

Also it easily verified that F(t) is of the form (10) for any p

(with 2^1 = 1) if and only if (9) holds.

Professor R. E. Barlow, after seeing the priliminary version of

this report, has suggested an alternative derivation based on the theory

of Markov Chains. His derivationis based on considering a new Markov

Chain with M+2 states with transition rate matrix A given by

A - A. . for 1 < i, j < M

M

=- E x± kfor 11 ±1 Mand j=M+l
k=l '-

= - A for i = j and i > M

- A for i ^ j and i,j > M

= 0 for all other cases

With this {M+l, M+2} becomes an absorbing set and F(t) is the same as

the probability of finding the system in one of the first M states at

time t. Using the standard expression for this probability one obtains

Eq. (8).

4. Application to Reliability Evaluation

4.1. Preliminaries

In the previous section we derived an expression for the time spent

in a group of states, given the initial probability vector. In this
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section we shall apply the result to obtain the distribution of certain

important random variables used in reliability analysis. Since the

expression (8) requires that the initial probability vector be given we

proceed under the assumption that the system is in steady state. This

idea will be made precise after we define the random variables of

interest.

Definition

We say that the time spent in the down (up) states at time t is
o

TD (Tu) if the following event takes place

x(0") 6 U; x([t ,t +TJ) C D; x(t +T.) € U.
— o o a — o a

Also we define the cycle time T at t as follows
co

x(t~) €.D; xat^t^)) CO; x(to+trto+tc)) CD; x(tp+tc) €U.

with 0 < t, < t .
1 c

Also it is useful to define another random variable y * t - t„ . Through-
c. l

out this analysis we take t =* 0.
o

Underlying Assumptions

1. Vt Trx(t) » Prob{x(t)=»i} exists.
1 2 N

Lemma: ir(t) =» (it (t),Tr (t)...ir (t)) is a constant and satisfies

ir(t)A = 0.

Proof: Using (5) we have

A(t-t )

£(t) » *(V* °
A(t-t )

JL(tQ)e ° 1
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A(t-t )
= ir(t )e

— o

since Al = 0, Tr(t )1 = 1
— o

Hence jt(•) is bounded

<==>jr('«) is a constant

<=> ttA = 0

2. In view of the above lemma let jk = jr(t) .

We assume that Vi tt > 0

4.2. Distributions

Statement of the problem:

Given the above two assumptions we require the following distribu

tions

1. Fu(t) = Prob{Tu>t} and similarly F

2. F\(t) = Prob{T >t}
c c

Since T = T + y we have an equivalent formulation of 2 as

2f. F (t,x) = Prob{T >t|T =x}

Remark. If we have F (t,x) then clearly

F
c
(t) =- fFy(t-x,x)dFu(x)

In order to use (8) we require the initial probability vector p .

Since the following problem comes up often in our work we solve it

first.

Problem. Given a set of states A, given that at 0~, x(0~) 6A,

the complement of A, given £(0 ) the probability vector at time 0 , find
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£(0) the probability vector at time 0, given that x(0) €A.
Clearly

Prob{x(0)-i|x(-6)-j} - A. a+ o(5)

hence

Prob{x(0)=i} -ZI^^)^ ±4 +o(5)

=» Prob{x(0)»i|x(0) E A}

•E£j<-5>^>:L<S+o(6)
" El^H)A. ,6+o(<S)
i^j" J'1

?£,(0~)A.

i^ j J J*1

Hence £A(0) is a multiple of £,(0~)A

Let J^CO) be a row vector such that

^(0) » Prob{x(0)=i|x(0") €D;x(0) € U}

Also let ^(t) be a row vector such that

j£ =» Prob{x(t)-i+M|x(t) GD;x[0,t) CU;x(0") €D}

In view of the result just stated we have

%(0). is amultiple of jrr^ --jr^

and
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£D(t)isamultipleofSgWe^A^

Directapplicationof(8)yields

Fu(t)-j^COeUU1

a^\

^U^

1dw
JIuA^dSjeA

and

FyCt.x)=£D(x)eDD1

VlJU8AUDe1

where

Fc(t)=-fFy(t-x,x)dFu(x)

-JFy(t-x,x)dFu(x)-JdFu(x)

Fu(t)~(Fv(t"x'x)dFu(x) Joy

=F(t)+\VuueV*ldx
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where we have made use of the fact that

A^de x W

- e **£

Remark; tte integral is a standard convolution integral of the form

J H(x)G(t-x)dx. While aclosed form for the integral is not possible
we have the following easily verifiable result.

\ H(x)G(t-x)dxdt - f H(x)dx ( G(t)dt

4.3. Expectations

While the distributions we obtained in Section 4.2 are of importance,

in reliability studies one is more interested in the expected values of

these random variables. These values are sometimes used for reliabi

lity indices. In this section we shall compute these reliability indices.

While these computations are straightforward, the results we obtain can

be given extremely simple physical interpretations.

1- E(T^) « Expected time spent in up-states

I F (t)dt

•o u

- ir„l »

Similarly
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2. E(T_J = Expected time spent in down states

ir^l

1dadu^

Remark: The vector JErr^l represents the vector of rates out of U,

i.e.

± prob{x(At) G D|x(0)=i}
(lroi) .^ At Yd

At->0

and —-=- represents the vector of conditional steady state probability,

given that the system is up. If we define the steady state failure

rate of the system (A) as

Prob{x(At) € D|x(0) € U}
A- 2 Prob{*=i|x € U}A = lim —

±<=0 1,u At-K)
At>0

and similarly steady state repair rate of the system (y) we have the

following:

E(y =A and E(TD) =±

Also noting that JEo^rJL = JLnKjnL we have

Prob{x S U} = """"^ = -£- and Prob{x G D} » -r-^-
J^l+TT^L

3. E(T ) « Expected cycle time
c

-f
Jo

Fc(t)dt
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e(v+VBDadd1
Vlffii

where we have eade use of the fact following the re-ark on convolution
integrals. Making use of the fact that

VUD ="Vdd ."* VuU " -%>XW

we obtain

E(T ) « | +1
c A y

5. Conclusion

We collect the results in the previous section as the following
two key observations.

1. Even under steady state assumptions the transitions between two

groups of states in a time finite-state Markov chain' will not be a 'two-

state Markov chain' and hence the residence time in any group of states

wiU in general not be exponentially distributed.

2. However, for the calculations of the expected time spent in the

up-states, the expected time spent in the set of down-states, the

expected cycle time (or the mean time between failures), the probability

of finding the system up or down in a system modelled as 'continuous-time

finite-state Markov chain' we can model the system as if it were a 'two

state Markov chain' the two states being the 'up-state' and the'down-

state.'
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I,. Introduction

Power System Reliability is the study of system performance

at various levels based on the individual component availability

and the system configuration. In other words,given the life time

and the repair time distribution of various components

(generators,transformers, transmission lines etc.) the purpose is

to find indices which characterize the probabilistic behavior of

the system. The models currently used in Power System Reliability

studies are:

1. LOLP model which gives the probability that certain

demands cannot be satisfied and the expected amount of the

demand not served. The time parameter is not included in

this model.

2. FAD model which gives the expected frequency of

outages of certain magnitudes along with the expected dura

tion of these outages.

The idea of the FAD model seems to have been suggested . by

De Sieno and Stine [5]. Hall,Ringlee and Wood [6] later gave a

recursive formula for computing the expected frequency and dura

tion of outages thus making its application to real large-scale

power systems more attractive. The FAD model in power systems

assumes that component lifetime and repair time are exponential.

The recursive formulas were derived, without proof, using intui

tive arguments and generalization from simple two component -
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four state systems.

The objective of this report is to provide a mathematical

foundation for the FAD model. More general formulas than the ones

currently used are derived. The approach in this report follows

the paper by Ross [1].

After the introduction, the development of the work in this

report is presented in three steps. In III the frequency of

encountering any state is derived. In IV a formula for the fre

quency of system breakdown is obtained. A recursive formula for

computing the frequency of breakdowns of a coherent system is

derived in V.
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H. Preliminaries

1.Renewal Model of Components

Consider a system of n independent components; at any

instance of time each component can be up (functioning) or down

(failed).

1 if component i is up at time t

Define x.(t) =

0 if component i is down at time t

Let us assume that for every i, {x.(t), t>0} is an alternat

ing renewal process, i.e. the state of the i-th component alter

nates between up and down periods with up and down times indepen

dent and identically distributed. Specifically, if we let

it.* s the j-th up time of component i

J) . = the j-th down time of component i

then

1 t< 11

x.(t) =

1 ^^t^^v^
etc.

and we assume that, for every i, the pairs (Z/.1 ,$ -1) ,jM are

independent identically distributed random vectors. Let

Fi(t) , G.(t) be the distribution functions of the life time

(Zu1) and repair time W.1) of component i, and let •— and — be
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their means (0< J- <oo,0< -7- <oo). We assume that F.*G. is non-
Ai ^i 11

lattice [3, p41 ].

The steady state probability that the i-th component is on

is

1

Pi = lin P(t) =yir- =y-i- (2.1)
Xi »t

and the steady state probability that the i-th component is down

is

1-Pi = lim [1 - P(t>] =r^r (2.2)

For a given state J of the form (x.,,...x ), let

Uj={ki xk= 1 in state J }

dj={k| xk= 0 in state J }

then we can write the probability of state J, using independence

of components as

P{state J }=Prob{(x .xn)}= n pv II (1-p.) (2.3)
k4Uj K k«da k

Define the frequency of encountering the up or down state of com

ponent ^ as

f± = lim number of up times of component i in t
k->oor~~
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= —1- - ^ ^ - 1
4-+-L " h±+»i ~ t. ccycie time ) (2-4)
7^>i

It is also useful to introduce the following notation:

(1i,x)=(x1,...,xi-1,1.,xi+l,...,xn)

(Oi,x)=(x1,...,xi-1,0.,x.+1,...,xn)

To simplify notation and check the results with previous works

based on exponential distribution, let us call the reciprocal of

the expected life time (repair time) of the i-th component , the

failure rate ( repair rate ), i.e.

failure rate = X- = -f ^ _• -, .„ -
'^i Expected life time of component i

repair rate = u. = •= r--; : ]
^i Expected repair time of component i

Remark: In reliability theory [ 2, p53 3, the failure rate r(t)

of a lifetime distribution F(t) is

r(t) = liml ^t+x)-F(t)
x-»0x F(t)

This failure rate r(t) is a constant (does not depend on time )

if and only if F(t)=1-e"^fc. In this case,

r(t)=^=Expected lifet:pected lifetime

For non exponential distributions r(t) is not a constant and r(t)

^ Expected—lifetime—* Therefore for non-exponential distribu
tions, what we call as failure rate is not the same terminology

used in reliability theory.
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2. Regeneration Points

Even though {xi(t),t>0 } i=1,2,...n are independent alter

nating renewal processes and the system can alternate between

functioning and failed states, the process may not have any

regeneration points, i.e. there may not be a time at which the

process starts all over again. Such regeneration points are only

a consequence of particular distribution functions of the up and

down times of each component. One distribution which would make

the process regenerative is the exponential distribution; there

are, however, weaker ways to ensure this property.

Suppose that for each i=1,2,..n either the up or down time

is a mixture of an exponential and an arbitrary distribution,i.e.

either

or

-X-t
Ft(t) is of the form pi(1-e 1 )+(1-p.)H.(t)

-u.t

Gi(t) is of the form pi(1-e x )+(1-p.)H.(t)

(2.5)

with Hi(t) arbitrary, with the same, mean as the exponential

(Y~ or IT respectively ), p arbitrarily small, 0<p.<1. This
f^i r*j. A i

process will regenerate itself at those instances of time at

which, for every i, the exponential part of the distribution is

in effect; the mean regeneration cycle is finite since a finite

state Markov chain has no null recurrent states [4, p392, th.4 ].
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3.- Limiting Frequency and Average Duration of System Breakdown

Let the limiting frequency of system breakdown be, by defin

ition, the average number of system breakdowns per unit time,

i.e.

N( t)
lim where N(t) is the number of system breakdowns in [0,t].

t-»oo

Under the assumption (2.5) (i.e. system has regeneration

points), we can obtain the limiting average system up time Z(U )
oo

4)and down time E(«c/ ) as
oo

Z(7l ) - Prob{ system is up } ( fi.
oo' " frequency of system breakdown v.*.o;

and

£/-og \ _ Prob{ system is down } ,? ?.
oo " frequency of system breakdown Kd.f)

Remark: In [8], (2.6) and (2.7) are assumed to be valid for any

type of distribution. These are actually limiting average results

(not exact results) for any distribution under the assumption

that the system has regeneration points.
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III. Frequency and Duration for One State

Consider a system of n independent components and a certain

state K = (x1,...,xn). Let NK(t) denote the number of times the

system reaches the state K in [0,t] and define the (limiting)

frequency of encountering the state K as

N„(t)

fK =^m -V- (3-D
t->oo

Let Ki be the state (x1 f... ,x1-(| f1-xifxi+1,... ,x ), i.e. the

state which differs from K by the i-th component. Let N„ .(t) be
K., 1

the number of times system reaches K due to a transition of the

i-th component in [0,t], i.e. from Kj>. Then,

NK(t) ECNK(t)j
fK = lim —r— = lim r with probability 1.

t-»oo t-»oo
n

But *E(N„(t)) = 2 ECN™. .(t))+o(t) due to the non-lattice
* i=1 K'x

assumption; hence

n

2 E(N„ ,(t) )

*V = lim ^ E = 2 lim ^4
t->oo u i-1 t->oo
n NK .(t)

= 2 lim —*-| with probability 1. (3.2)
i=1 t->oo z

nk- ,(t)Let f = urn J4—
' t—>oo

= frequency of encountering state K from K.. (3.3)

To find fK ^, we can distinguish two similar cases:

!)• xi = 1; to reach K from jq component i has to be repaired,
ii). xi = 0; to reach K from Ki component i has to fail.

-221-



i). Assume that xi = 1. We use the renewal reward argument. Let

j1 if system is in K
~\o otherwise

and

f 1 if the j-th repair of i takes system from K. to K

j [o otherwise
Then

K i(t) NK .(time of j-th repair of i)
lim —2-r = lim ? . «—: r

t->oo t j->oo fcime of J"th rePair of i
I-+...+1.

s lim _J J 3
j-»oo J * time of J"tn rePair of i

=lim 3 1 . -^ (3.4)
Xi "i

I- +-- «+I . ECI.. +-. .+1 .)
But lim , >± = lim L— i- = limE(I.) (3.5)

j->oo J j-»oo J j->oo J
and since

E(Ij) = Prob{j-th repair of i takes system from K. to K}
we have

E(Ij)=Prob {^(0.,x)=0,^(1.,x)=1 } (3.6a)
and

Xi ^ifK,i =X +p. Prob {^(0i,x)=0,jzJ(1.,x) =1 } (3.6b)

But ^(0i,jc)= 0 for any jc by assumption and 0(1.,x) s 1 if x is

such that (l^x) : K . Also

Prob {^(1i,x)=1) = Prob{^(x)=1|xi=1}. So
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Finally

FfT ) - Prob{K} ,, 7v
E(V * Prob {x,=1} (3-7)

f - Prob{K} h ^i - Prob{K} ,, Q,
%i " Problxi=1} ' }^JJ7 = *i Prob{x.=1} C3'8;

Similarly if xi=0 in K we have

We then get

f - f Prob{K}
rK,i ' i ProblxTToT C3'9)

=pr0b(K} 2 ^Lh^X 2 h^h^Li
Ku^^i^i pi j<d>j^j ^r

=Prob{K} [2^+2 u.] (3.10)
i<u7 j<dv J

In other words:

Frequency of encountering state K

=( probability of state K ) * (rates out of X) (3.11)

Also, the limiting average time spent in state K is

E(state PC) = ProbCK} a 1 (
fg rates out of K vo '

Remark: (3.10) is used in [6] based on an intuitive reasoning.

Here we give a rigorous proof for this limiting result, in the

case of general distributions approximated by a mixture of
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exponential and another distribution as stated in II-2. [8] con

tains a proof for (3.12) in the case of exponential distribu

tions. It is interesting to note that the result holds for any

distribution of the form (2.5) as a limiting average result.
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IV. Frequency and Duration for a Group of States.

2» Frequency of System Breakdown for a General System

Consider a system of n independent components as before.

There are altogether 2n states which constitute the state space X

of the system. Let U ,called the set of 'up1 states, be an arbi

trary subset of the state space. Let D be its complement with

respect to I, called the set of 'down' states. Let 0 be the

characteristic function of U i.e.

( 1 if x4U
*(x> Ho

Iu if x4D

As time goes on we can visualize our system as a random process

moving from one state to the other. We want to find the limiting

number of transitions from U to D per unit time refered to as the

limiting frequency of system breakdown i.e.

f = lim Ei*± (4#1)
t->oo z

where N(t) denotes the number of transitions from U to D in

C0,t].

Let Ni(t) be the number of transitions from U to D in [0,t] due

to the i-th component. As proven in III,

n N.(t)
fn = 2 lim -i-

Let

i=1 t-*oo ^

* i ,. Mt)
XD = .^m -it— (4.2)

t-»oo
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be the limiting number of system breakdowns per unit time due to

the i-th component. We can split N.(t) into two parts:

Ni (t) : transitions from U to D in [0,t]

due to failure of the i-th component.

Ni (t) : transitions from U to D in [0,t]

due to repair of i-th component.

r fThen N^t) = Ni (t) + Ni (t) and consequently, dividing by t and

taking lim we have
t->oo

f1 = fiir+fi|f (H.3)
i r

To find f > we use the same arguments as in III. By defining

r f1 if i-th repair of i causes a transition from U to D
j "10 otherwise

we obtain

f1,r =r—rf- ProbU(0. x) =1,0(1.,x)=0} (4.4)

Similarly,

Then

i f h»if ' = t-^TTT- Probed.,x) =1,jzK0.,x)=0} (4.5)
Ai^^i x 1 ~~

fD = 2 (fi,r+fi,f) (4.6)
i=1

Now define jc= (x1 ,.. .,xn)4U to be a boundary state of U if:
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a. xi = 1 , /rf(1ifx)=1 ,#(0. ,_x)=0 i.e. x. =1 and

(0i,x)4 D. Call this a boundary state of U b£ _i jj£.

b. xi = 0 . ^(0i,x)sl,^(li,x)s0 i.e. xi=0 and

(1^,jc)4 D. Call this a boundary state of U b^ i down

Then Prob{boundary states of U by i up }

= Prob{ xi=1,d(1i,x) =1,«J(0i,x)=0}

'= Prob{ x.=1} Prob{ d(1, x)=1,aK0.,x)=0}
i i , i —

since [6(1^x),^(0i,x)} is independent of x.

Similarly Prob{ boundary states of U by i down }

= Prob{xi=0,d(0i,x) =1,gJ(1i,x)0}

= Prob{xi=0} Prob U(0\,x) =1,«K1i,x)s0}

Substituting into fD we obtain

r _ T *. ,Prob{ boundary states of U by i up }
D" if1ric : Probtx^D

,Prob{ boundary states of U by i down}N , *. „,
PTodTxT^I ; K*'()

Two variations of (4.7) are :

1. Since Prob{boundary states of U by i up } = p.

Prob{boundary states of U by i up, excluding component i }

and

Prob (boundary states of U by i down } = ( 1 - p. ) Prob { boun

dary states by i down, excluding component i }

we have
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n

fD = 2 f{ (ProbCboundary states by i up, excluding component i}
i=0

+ Prob (boundary states by i down, excluding component i}) (4.8)

2. Substitute f. = .x *, Prob( x.=1} = , * and Prob(x,=0} =

t-~j- into (4.7) to get

n

fD = 2 (^i Prob( boundary states of U by i up } +
i=1

+Pi Prob( boundary states of U by i down}) (4.9)

Remarks: 1. Assume U has only one state K of the form

(xltx2 xfl). Then to find; f^ , note that

K is boundary state of U by i up for any i4u~

and

K is boundary state of U by i down for any i4d„

By (4.9)

fK = 2 fa Prob(K} + 2 M, Prob(K}
i4uK i4dK

= Prob(K} { 5 L + 2 u.}
i4uK i4dK

which agrees with equation (3.10).

2. Assume that we have a two component-four state system.

The state space is X =((0,0),(0,1),(1,0),(1,1)}.
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Let U be the set ((0,1),(1,0)}. We want the frequency of going

from U to Ds X-U; then

(0,1) is boun.dary state of U by 1 down and 2 up,

(1,0) is boundary state of U by 1 up and 2 down.

By (4.8)

fD = f1((1-p2)+p2) + fgCO-p^+p^ = f1 + f2 (4.10)

But f(0,1) = Prob ^(0,1)} (u1+^2) = (1-Pl)p2(^l+^2)

_^2^1 +^2^2

Sinllarlv f ^1^1 * ^1^2similarly fn nN = 7^ <•—^ p.
(1,0) (Ai+*V (^2+^2}

From this we get that f(1 0)+f(0 1} = f^+f^- So (4-10) agrees

with the intuitive result that, since states (0,1) and (1,0) are

not linked by a direct path, the frequency of encountering the

group {(0,1),(1,0)} must be f(Q 1)+f(1 0).

2. Frequency of System Repair

Dually let us define x = (x- x ) 4D to be a boundary
— in si-

state of D if

a) x. =0 ,d(0. ,x)s0, «K1. x) =1
All,

called a boundary state of D b^y ^i down

b) xi=1, 4(^i,x)=0, d(0i>x)=1
called a boundary state of D by i up
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By the same argument as in IV-1, we can find f„, the limiting

number of transitions from D to U per unit time :

#

f = lim JL|12.- (4.11)

where N (t) denotes the number of transitions from D to U in

C0,t]. Then

f . ^ * ( Prob(boundary states of D by i up }
U" if0 iC ProbTx.rD *—

,Prob(boundary states of D by i down K /„ ^x
H Problx.rO) ' > (4-12>

or

n

frj = 2 fi(Prob(boundary states of D by i down,excluding component i}
i=0

+Prob{ boundary states by i up,excluding component i}) (4.13)

However, for any boundary state J of D by i up (down), J. is a

boundary state of U by i down (up).Hence equations (4.13) and

(4.8) together imply that

fD = ru (4.14)
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!• Average Duration of System Uptime and System Downtime

Given fD, we can find the average time the system spends in

U (U^ ) or in D (2L ) by
oo oo

F/ 7/ n_Prob( system is in U }

(°°) n
E(£ )_Prob( system is in D }

oo " fD

(4.15)

(4.16)

Note: fD is determined solely based on the probabilities of the

boundary states of U (fig 1 ); to find EtZ^) and E(i) ), we must
include the probabilities of all states in U and D.

Fig 1

(0*,x) l*ouru»U.ry f-^k <4 D
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4^ Frequency of System Breakdown for Coherent Systems

Suppose D has the following property :

If state K of the form x = (x-...x )4D
— in

then, for any i , state (0iTx)4D; (4.17)

then the characteristic function <6 is non-decreasing. To show

this,note that

a) (4.17) implies

<zK1_.,x)=0 =» *J(0.,x)=0 for any x (4.18)
x 1 -* —

b) Consider any state J of the form x = (x-...x )4U. For any
— in *

i4dJf «J(0i,x) = 1. Then «Klt,x) = 1 (suppose not: then «K1.,x) =

0 and <zi(0i,x) = 1 which contradicts (4.18) ).

So srf(0i,x) = 1 =» 2J(1t,x) = 1 for any x

For convenience we shall call a system whose characteristic

function 6 is non-decreasing a coherent system. ( Usually, a

coherent system is characterized by 6 non-decreasing and all com

ponents relevant [2,p6]. We will use the term coherency as

defined above, not implying relevancy of components (which is not

important for our purpose} ) For such a system, the set of up

states U has only boundary states by i up (for some components );

then equations (4.7) to (4.9) become

f - *5 -r Prob{boundary states of U by i up } ril 1Q*
D " jL*1Ii ProBTxTTTl t4.iy;
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n

fn = 2 f.. Prob (boundary states of U by i up,
i=1 x

excluding component i } (4.20)

n

fD = 2 Xi Prob{ boundary states of U by i up } (4.2.1)
i=1

Remark. Reference [7] gives a heuristic development, based on

renewal processes, for the frequency of breakdown for a two com

ponent - four state system. There they assume that for every

component, the uptimes (downtimes) are independent identically

distributed, non-lattice random variables. It is clear that the

system does not renew itself for such general distributions. The

formulas they provide, based on the assumption that the results

for this simple case can be extended to large-scale systems, are

true only as limiting frequencies or limiting average durations.

Examples

1. Consider a two component-four state system. The state space

is 1 = ((0,0),(0,1),(1,0),(1,1)}.

Let U = ((1,1),(0,1)}; D = ((1,0),(0,0)}.

The boundary states of U are

(1,1) by component 2 up

(0,1) by component 2 up

From equation (4.21) we get
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fD = A2(p1p2+(1"p1)p2) = ^2P2 = f2
N°te : Here the first component is not relevant ( hence fD = fp

agrees with the intuitive guess); yet formulas (4.19) through

(4.21) can still be applied.

2. Consider a series - parallel system of 3 components as

below: 4 £

4 h t=^^3
3

The state space X contains 2^=8 states. The set of fup' states U

={(1,1,1),(1,0,1),(1,1,0)}. Its boundary states are

(1,1,1) by 1

(1,0,1) by 1 and 3

(1,1,0) by 1 and 2

Then by equation (4.20)

fD = fi[P2p3+(l"p2)p3+(1'p3)p2]

+f2[p1(1-p3)]+f3Cpi(1-p2)] -
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V Recursive Formula for Frequency Computation

J_. Introduction

In IV we have derived a formula for the frequency of system

breakdown. In this section we are going to describe a systematic

and perhaps more efficient procedure of computing the frequency

of breakdowns of a large coherent system for which the identifi

cation of boundary states are nontrivial. We will first show that

there is a natural ordering of the down states of a coherent sys

tem. With this ordering we can construct a sequence {D-, D~,... D. }

of subsets of the state space X , where D. contains the first j

elements of D and D^ = D when k is equal to the number of ele

ments in D. Then we are going to derive a recursive formula for

computing the frequency of encountering the set D. in terms of

the frequency of encountering the set D. -. Let U. be the comple-
j ~' j

t of D. with respect to I .
w —*

men

2. State Ordering for Coherent Systems

D cl is a set of down states of a coherent system (i.e. it

satisfies (4.17) ) if and only if we can construct a sequence

(D1,D2,...,DjDj} ( where the cardinality of D is |D| ) of sub

sets of X such that

D1 ={ (0,0,..0) }; DjsDj^UCJ} j=2,3,...lD| (5.1)
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and

state J = (x.j,...,x ) has the property:

for any i4ujy the state (0.,x)4D .. (5.2)

To show the above, suppose we have such a sequence

(D1,D2,...,D|Dj}. Let K = (y1,y2,...yR) be any state in D.-..
Then, for any i4uR, (0^) belongs to DjD|. So for any y4D.D|
^(1i,y)=0 =>zJ(0i y)=0. So D is a set of down states of a

coherent system.

Consider now D =D1={ (0,0,...0) } (D1 satisfies (4.17) )

and suppose that after j-1 steps we have D. ..; we want to find a

state J in U^ satisfying (5.2). We will show by contradiction

that such a J exists.

Suppose there is no J satisfying (5.2) in U. 1# Then for any

state K =(x1,...,xn) in U. 1, there exists an i in uR such that

(0i,jc) belongs to U. .; but since

Ki= (°i»i) belongs to U. ^, there exists an m belonging to u„

such that (0ffl,(0i,x) ) belongs to U. 1. By finite induction, the

state (0,0...0) belongs to U- 1 which is a contradiction. So we

can find a state J in U. - to satisfy (5.2) and to build D.

recursively.
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Remark: The sequence of subsets {D1,...D.D,} is not unique for a

given set D.

3,. Recursive Formula

To simplify notation, instead of using fQ let us use f(j)

to denote the frequency of encountering the set D.. We are going

to derive a recursive formula for f(j).

Fig 5.1
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To derive the recursive formula we start with

j s 1 D.j = ( (0,....,0) }. The boundary states of U1 are

(1,0, 0) by 1

(0, 1, 0) by 2
*

(0,0, 1) by n

Then we have by (4.21)

n

f(D = 2 fa Prob{ boundary state of U- by i}
1=1 x '

= 2 fa?t Tl (1-pk)
1=1 x x k^i K

0 V Pi ^k
= 1=1 ** 5v£I k"i h^\

n n K
i=1 x k=1 Ak+^k

n

= Prob{(0,0,...,0)} 2 u. (5.3)
i=1 x

j = j+1 We have f(j-1) and want to derive f(j). Look at D. ,.
sJ '

and U. ... Since J = (x.. ,x2, ..., x ) has the property

that (0.,x)4D. 1 for any i4uT, the state J is a boun-
1 J — I d

dary state of U. 1 by all indices i4uT. We can write

f(j-1) by (4.21) as
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f(j-1)= 2 fa Prob{ boundary states of U. 1 by i }
i=1 1 J"1

= 2 fa Prob( boundary states of U. - excluding J}
i4Uj J-1

+ 2 fa Prob( boundary states of U. 1 by i}
i4dj J-1

+ 2 fa Prob{ state J } (5.4)
i4Uj

Now we want to look at boundary states of U.. Let J.

denote,as before, the state (x1,.., 1-x.,..x ) where
(x1,..,xi;..,xn) is state J i.e. J. differs from J by the i-th

component only. Then, for any k4dJ? the states J. are boundary

states of Uj ( in state J , for any k4dJ? xk = 0; so for J.
x^ = 1 ). Now

n

f(j) = 2 fa Prob(boundary of U. by i }
i=1 J

= 2 X,, Prob(boundary states of U. excluding J, }k4dj K J s k

+ 2 fa Prob(J }
k4dj K k

+ 2 fa Prob{ boundary states of U. by k} (5.5)
k4u, . 3
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But

2 faProb(boundary states of U. .excluding J}
i4Uj J-1

+ 2 XiPr°b (boundary states of U. . by i}

= 2 fa Prob{ boundary states of U.excluding J. }
k4dj K j k

+ 2 fa Prob(boundary states of U.by k }
k4u K J

J

Hence we have

f(j) = f(j-1) - 2 fa Prob(J} + 2 fa Prob(J, } (5.6)
i4uj * k4dj * K

But Prob(Jk} =pr^f{J= 0) ?rob(xk=1} for k4dj. So

f(j)=f(j-1) - 2 fa Prob(J} +

^k ^k+*k

i4Uj

2 *k TTTr^T-^ Prob{J>
k4d

= f(j-D- 2 V.Prob(J}+ 2 u, Prob {J} (5.7)
i4Uj k4dj

Remarks 1. Assume we associate with each component k a certain

capacity c,. Then if state J is x=(x.,...,x ), let its capacity

n

be 2 c. x. . The increasing seauence of the state capacities
k=1 K K

gives a valid ordering of D. To see this suppose that the state J

is to be added to D. ^. Then for every i4Uj, the state(0.rjO has
n n

capacity 2 c, x. = 2 c,.x, -c. < 2 Ci,xi. This means that state
k^i K K k=1 K K x k=1 K K
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(0^,jc) belongs to D. ^ due to its lower total capacity. This

particular ordering is used in reference [6] to write (5.7)

intuitively. It should be noted that (5.7) is not an exact result

but rather a limiting one.

2. Another valid way of ordering is:

k = 0

D.j includes the state with k (=0) components up i.e.

state (0,0...0)

k=k+1

For this given k, append in any arbitrary order, all

the states with k number of components up.

It is obvious that this is also a valid ordering since, if state

J is x then for any i4u,, (0.,jc) has one less component up, so

(0i,jc) already belongs to D.

J*. A Dual Recursive Formula

Dually we can order the set of up states of a coherent sys

tem. To be specific we have the following property:

U c X is a set of up states of a coherent system (

with cardinality of U = !U} ) if and only if we can construct a

sequence (U1,U2,...,U,^.} of subsets of X such that

U1=( (1,1,..1) } ; UjaUj-iu<J> J=2,3...IU| (5.8)
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where J = (x1,x2,...,xn) has the property that for any i<dj, the

state O^x.) belongs to U.

Similarly we can derive the recursive formula

fn = fu + 2 K Prob(J} - 2 u^ Prob(J} (5.9)
j uj-1 k4Uj * k4dj K
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ABSTRACT

The problem of reliability evaluation of a power system with DC

model is formulated as the characterization and subsequent probability

calculation of working states of that system. It is shown that power

systems are generally not coherent. The concept of subminimal paths and

subminimal cuts is introduced to develop bounds on the reliability

function. A class of network topologies Which guarantees coherency is

also characterized. The concept of local coherency is introduced and its

application to the identification of subminimal paths and subminimal cuts

is described. A sufficient condition for local coherency is also

developed. And finally a direct method for power system reliability

evaluation is presented which does not require the solution of the load

flow.
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I. INTRODUCTION

The power system reliability problem is to evaluate the ability

of a system to supply load demand while taking into account the random

and planned outages of its equipment. The purpose of this study is to

develop a methodology for bulk power system reliability evaluation using

DC load flow model for the transmission system. Some methods have been

proposed for bulk power system reliability evaluation, [1]. None of

which have been satisfactory from both theoretical and computational

points of view.

A simple and idealized problem of power system reliability evaluation

is the identification and probability calculation of the set of working

states of the system; a system is said to be in a working state if all

load demands are satisfied and system equipment is operating within

specified limits. We approach this problem by first analytically

characterizing the set of working states.

The concept of coherent systems forms the foundation of the

mathematical theory of reliability. A coherent system is one for which

the performance of a component will not cause the system to deteriorate.

For such a system, the set of working states can be characterized by

minimal path sets or by minimal cut sets and reliability calculation as

well as bounds can be obtained from the above characterization for

coherent system. In this study we will examine the conditions under

which a power system is a coherent system. The results in section II

show that with the exception of power systems under generation improve

ment, power systems are generally not coherent; therefore, to characterize

the set of working states of a noncoherent system the concept of

subminimal paths and subminimal cuts is introduced. This concept will be

used to develop upper and lower bounds on the reliability of the system.
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For a fixed load demand, the noncoherency property is attributed

to the effect of the transmission network on power flows. In section III

we present a characterization of local coherency, i.e., coherency with

respect to a subset of transmission lines. We also present a

characterization of a class of network topologies for which coherency

is guaranteed. This class of networks is quite limited. Later, in

section III, we introduce an application of the concept of local coherency

in the identification of subminimal paths and subminimal cuts of a power

network. Finally, a sufficient condition for local coherency on the

set of lines is established.

A method of reliability evaluation which is independent of the

concept of coherency is suggested in section IV. A sequence of hyperboxes

is constructed for this method and a subset of the working states is

readily obtained for each hyperbox. The method is direct and does not

require the solution of the load flow. Finally, a list of future work

is included.
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II. PROPERTIES OF POWER SYSTEM RELIABILITY MODEL

2.1. Problem Formulation

In the following study the power system 3P is considered to be a

network with generators and load demands interconnected by transmission

w lines. We call both transmission lines and generators components of the

system. Let n denote the number of components in the system and I be

^ ^ the number of transmission lines. Thus, (£-n) will be the number of

generators. Let (N+1) be the number of nodes of the network. Each node

corresponds to either a generator or a load demand or a combination of

N
the two. Let P_, £ 3R . represent the (real) power supply to the network

Nfrom the generators, and let P_ £ 1R_ be the load demand of the system.

NLet us call the sum (Pf+P ) node injection P., € 3R

PN =PG + PD (2.1a)

Let A denote the reduced incidence matrix of the network. We

assume that real power injection at the nodes PN and the voltage phase

angle at the nodes 9 are related by the DC power flow equation

P„ = AYAT6 (2.1b)
N

where Y is the branch admittance matrix, i.e., a diagonal matrix where

(Y).. = y. is the admittance of line i. The line power flows PL can be

* expressed as

P = YAT9 (2.1c)

For steady-state operation, limits exist to the maximum power that

can be supplied by individual generators and likewise on the maximum

power that can be transferred by individual transmission lines.
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Let C„ be the upper bounds on generators output

0 i PG ± CG (2.Id)

and let CT be the vector of line capacities,

"CL ± PL ± CL (2.1e)

The power generation of the slack bus is equal to (- P_ - (P„).) where
u. w 1

G . is the upper bound on it; hence, we have

N N N

i-l i=l i=l

Therefore, relations (2.1a-f) can be written in the matrix form as

Mz < b

where

M

AYA -i

-AYA* i

0 i

0 -i

YAC 0

t
-YA 0

-n' 0

** 0

N

1—• ^-1

PD
"PD

CG
b£ 0

CL
°L
Csb
Cd

A
z =

and t, - J (P_). total load demand
d f\. D i

:sb =Gsb +j, <V±
nc = (i i ... i) e mN
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In reliability studies we are concerned mainly with the effect of

component failure on the performance of the system. Let us suppose

that each component may assume either a working state or a failed state.

Let B,- be the binary indicator of the state of component i

{0 component i failed

1 component i working

The state of the system is defined by the states of its components, i.e.,

it is the collection of the component states.

Thus, there are 2n possible states for the entire system, and Xg will be
used to denote the collection of these states (binary state space).

We would like to incorporate component failure directly into our

initial formulation of the power system constraints (i.e., relation

(2.2) so that one set of relations includes all these 2n states. The

following scheme can accomplish this purpose.

Let each diagonal element of Y,(Y)±i, be a binary variable:

0 transmission line i is failed

yi transmission line i is working
0r)±1

Let each element of CG be a binary variable

0 generator i is failed

g£ generator i is working
<Vi •

The state of the system may thus be represented by a vector x = (x ,x_ )

€ ]R where the ith component of xQ is (CG)± and the ith component of

*L is (Y)ii* The sPace containing the 2n possible states (state space)
will be denoted by X.
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For each system state, the values assumed by (Y).. and (C„). are
11 (7 1

uniquely determined. Clearly, relation (2.2) represents the various

constraints imposed on the values assumed by (Y).. and (O . for the
ii G i

corresponding system state.

For a system state x £ X, we say the system is working if all load

demands are satisfied and system equipment is operating within specified

limits, that is, all constraints in (2.2) are satisfied. Let us now

define a set Q~ for each x £ X as

B = {z S 3R2N|M z<b} (2.3)
x ' x — X

where M^ and bx are defined as M and b in (2.2) for state x. Then, a

system state is said to be working iff Q ^9. Let us denote the set of

working states by W, i.e.,

W= {x e x|«x * $}

Then, X can be partitioned as

X = W U F

where

F = {x e x|fl = <{>}

In what follows, x. and x. will be used to indicate the values of
1 —1

the state variable i when component i is working or failed, respectively.

If the state of every component except i is known, the relative system

state will be denoted by (*i,x). The vectors (x. ,x) and (x. ,x) represent

the system states when component i is working or is failed, respectively.

For ease of reference we may define structure function $( ) to be
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>

•»»

* :X -»• (0,1)

Alternatively, we may use the binary structure function cf>( ) which is

defined as

♦ rXj-^ (0,1)

./eA /1 is a working state _r cY
♦(5) "\_0 is afailed state ¥* ^*B

Similar to the notation for state space X, binary states (0.,£) and

(l.,€) refer to states in XB when component i is failed or working

respectively.

We assume that all components of the system function independently.

Furthermore, we assume that for each component the probability of working

or failed is given, that is

ProbCx. = x.} = p.
Vi i < i < n

Prob{xi = x^} = q£ = 1 - p.^

Consequently, for each system state x £ X, the probability of its

occurring will simply be the product of the respective component state

probabilities.

In evaluating the reliability of a power system IP we are interested

in the proability that the system is in a working state. Let us define

the reliability of system R as

r(3P) = {Probability that 3P is working}

= Prob{$(x) = 1}

- E{$(x)} i.e. expected value of $(x)
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As a result of the assumptions that components function independently,

r(lP) will be the sum of the probabilities of working states

r(3P) = I p(x)
x€W

Direct computation of reliability using the above formulation for

a large system is prohibitive. Computation may be reduced by taking

advantage of the properties of set W.

2.2. Reliability Coherency of Power Systems

The concept of coherent systems forms the basis of modern

mathematical theory of reliability [2]. A vast amount of knowledge is

available in reliability analysis of coherent systems. For such systems,

the set of working states can easily be characterized and subsequently

reliability bounds obtained. In this section we will examine the question

as to whether the power system model (2.2) is indeed a coherent system.

t
First, let us state the definition of a coherent system.

DEFINITION; A system IP is a coherent system (or coherent structure)

if the structural function $( ) of that system is nondecreasing, that is,

Vx,x' Sx if x>x' then $(x) > $(xf)

Intuitively, the coherency property of a system implies that improving

the state of any subset of components will not cause deterioration of

the system.

PROPERTY II-l: Coherency under Generation Improvement

Consider the power system 3P ; for any fixed x_, <fr(*»Xr) is a

nondecreasing function.

We assume all components in a system 3P are relevant.
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For proof refer to Appendix (II-l).

Property (II-l) implies that for a fixed network, a power system

is "coherent" under generation improvement. However, it should be

pointed out that the results obtained in the Appendix (II-l) shows that

if the lower capacity limits of the generators are not zero, generation

improvement may cause system state to deteriorate (noncoherency

property).

PROPERTY II-2; Noncoherency under Load Shedding

Throughout this work we have been assuming a constant set of load

demands. However, in the following analysis we will examine the effect

of load shedding (in a way this can be called load improvement) on the

performance of the system with varying levels of load demand (i.e.,

different states of load demand).

Consider the power system IP and any fixed state x € x. Let P and

P^ be two possible load demand vectors. Suppose state x is aworking

state for load demand P^. However given inequality P _> P', state x

may not necessarily be a working state for load demand P'. For proof

refer to Appendix (II-l).

Intuitively, for a fixed state x G x, the state of the system

may deteriorate, however, if load demand is decreased at certain nodes.

As mentioned, we have assumed constant load demand and thereby have

avoided the noncoherency property of load shedding.

PROPERTY II-3: Noncoherency under Transmission Network Improvement

Consider the power system 3P and a state x = (xG,x_). Let x1 be

any state xf « CXq*2^) such that
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XG *G

4 = ^

That is, for both states x and xf the state of genrators are the same

and the state of transmission lines in xf are improved (or at least not

worsened) with respect to x. If the system were coherent under

transmission network improvement then we would have <Kx*) >, <Kx). The

following example shows that this may not always be true, though.

EXAMPLE (II-2-1)

Consider the power system in Fig. (II-l).

Let PD =

-» —s 15

15 20
20 > °L = 10
- _J

35

and y =

1

2

3

1

CASE 1. Consider state x =* (1,2,0,1). The unique solution to power

flow P* in (2.1) will be

*l~
15

20

0

35

|p£| <CL => $(x') =» 1

CASE 2. Consider state x = (1,2,3,1). The unique solution to power

2
flow P will then be

•2-

**

12.

—^

3

22. 7

2. 7

3. 5

|PtI icr ^^(x2) =0

2 1 2 1
Hence, for x > x we have *(x ) < $(x ).

Therefore, the structure of power system model of (2.2) is generally

not coherent under the system transmission network improvement.
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pG G-*>

Fig. II-l.
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2.3. Other Properties of Power System Reliability Model

In the following we present some alternative characterization of set

W. These various characterizations will in some capacity influence the

approaches to solving the problem of power systems reliability.

FACT II-l. Consider set Q as defined in (2.3).
x

a = {z e ir2n|m z<b}
x ' x — X

A necessary and sufficient condition for Q to be nonempty is:

?X > 0 XeW(Mt) X% >0 (2.4)

where W(M ) denotes the null space of the transpose of matrix M.

Proof; Refer to Appendix (II-l).

Let X» {^jj^^j^rjAejXgjX ,X-) such that <2.4) can be written as

(2.5)

r(\'\)\ +*|CG +(VVX +Veb *VD (a)
I <VX2)t[ATAts~I] +[<X5"X6)tYA^ +(A8"A7)Ilt: (VX4)I] =° (b)

^.>0 i = 1,2,...,6 (c)

(2.5)

relation (2.5b) reveals that A. - X2 = X. - X,; therefore, (2.4) is

equivalent to:

Xftn >0 VX» >0, X» €• W(M!t) (2.6)

where
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X3
*4

x» =
X5
X6
h
h

*• A

r n
AYA

-aya'

YA1

-ya'

•I1
I1

"PD

and n =
°L

Ciib
-s

Let us define set K as

K§a'€m2(£-«H-»|x.tM. =0}

where, by definition, K is a convex cone [3].

FACT II-2. From relation (2.6), fl / $ iff set K j* <fr where

0&' {n 6 m2****1"1^,,1^ <0 VX',ti defined in (2.6)}K

and, by definition K is the polar of cone K, thus it is a convex cone [3]

FACT 1-3. Let set K* be defined as

Kf ={(C^,Pw+c;,-Pw,Cr) €3R2m+1|(PD+CG,-PD,CL,CL,Csb,-tD) 6K0}
sb' D G' D* V

Then

Using the definition of a convex cone and FACT (II-2), it can be shown

that K1 is also a convex cone.

Thus, given a fixed network configuration Y for all (P .C„,C_,C ,)
D G L sb

for which their respective states x are working states, vectors

(C .,PD+PG,-P ,(L) define a convex cone.

REMARK: Consider a power system model (2.2) and suppose node injection

PN is fixed. Then (2.2) is equivalent to:
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Pw = AYAt9
N

Y t <2-7>
~ CT 1 PT = YA 9 < CT

JL Li — L

Let us define V={yL G]r£| (y)^ =(y ) -c^ <Pj[ <CL>

f :/ + TBlZ

f(y) » p£ (2.8)

It can easily be shown that the set of line admittances y for which the

Y
power flow P is feasible is not a convex set, and that the function f(f)

is infact a nonlinear function. Thus, it is expected that the set W does

not possess simple characterizations.

2.4. Reliability Theory of Noncoherent Systems

In this section we will examine the effect of noncoherency on some

of the well-established relationship in reliability theory of coherent

systems. We will, then, present the concept of subminimal paths and

subminimal cuts so as to develop upper and lower bounds on the

structure function of the system. Throughout this section, unless*

mentioned otherwise, a system is not necessarily coherent.

For the systems that we deal with we assume that every component

is relevant, that is, for any component i

$(x.,x) - $(x.,x) ^ 0 for some (*,x) £ X

We also assume that none of the components have a destructive effect on

the system performance, that is, there is no component i such that

$(x±,x) = 0 ¥ (x±,x) € X

$(x.,x) = 1 for some (x.,x) £ X
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Furthermore, we assume

$(x) = 1 for x £ X where (x) = x.^ i = l,2,...,n

and

$(x) = 0 for x e X where (g)± = x± i = l,2,...,n

For the binary structure function ((>( ), not necessarily coherent,

we have [2]

n n

i=l * i-1 * 3

For a coherent system we have [2]

{♦(eW) > ♦(51)n*(52)

12 i 7 <2-10>
♦<r-€-)■•< ♦« ) • *(r)

where

A . , N
x»y =» min(x,y)

x y = max(x,y)

This property can be used to develop bounds on the reliability function.

However, the relation (2.10) is not always valid for noncoherent structures.

Similarly, the following results can also be established for binary

states space Xg and binary structure function <j>( ).

Let set S = {l,2,...,n} be the set of components in the system and

let for given x S x

sx - U es|(x)± - x±y

4 =» (16 S|(x)± = x±}
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A path vector is a state vector x G X such that $(x) = 1. The corresponding

sx is a path set. A minimal path vector is a state vector x £ X such that

$(x) = 1

$(xf) =0 Vxf £ x x* e x

The corresponding S is a minimal path set. A cut vector is a state vector

x £ X such that $(x) » 0. The corresponding S is a cut set. A minimal

cut vector is a state vector x £ X such that

*(x) = 0

$(x') =1 Vxf >. x xf € x

The corresponding S is a minimal cut set.

For a coherent system, set W = {x|$(x) =1} can be characterized

by minimal paths or minimal, cuts. Furthermore, the minimal paths and

minimal cuts can be used to obtain bounds on the reliability of the

respective coherent system. Noncoherent systems, however, do not

possess this property. Thus, for these system we introduce the concept

of subminimal paths and subminimal cuts which characterize set W

partially and can be used to obtain bounds on the reliability function

DEFINITION

A path vector x €: X is called subminimal path vector if

r(x,)± «(x)± i=l,...,n it j
**' exforsome jGS^,^^

Then x' is a minimal cut vector. Corresponding S is called a subminimal

path set.

A cut vector x €= X is called subminimal cut vector if
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(x'^ = (x)± i « 1,2,...,n i * j
Vx1 € X for some j^S \/nJ -x] (x1)^ a Xj

Then x* is a minimal path vector. Corresponding S is a subminima]^_cut

set.

Let the sets SP and SK represent the set of all subminimal path

sets and subminimal cut sets of a system, respectively. For any

subminimal path set S £ SP we define the binary function p ( ) such that
S

p (x) = n sx
S i^S 1

And for any subminimal cut set S € SK we define the binary function

Y ( ) such that

Y (x) = ii £X
1 i€s

where £x =& )± and £X =< X ^L
I ^i =xi

THEOREM II-4-1. For a system with structure function $( ) we have

Vx e X

n Yq(x) >. $(x) > II p (x) (2J.1)
S6SK 1 -sesp s v

and

II Ys(x) .> $(x) >. n p (x) (2.12)
SGSK — S^SP S

Proof. Refer to Appendix (II-l)

Bounds on Power System Reliability

Let us recall that for any binary variable b, we have

E(b) = Prob{b=l}
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and for a system IP,

r(lP) = E(<KS)) - Prob{<KS) » 1}

= E(*(x)) = Prob{$(x) = 1}

THEOREM II-4-2. If <f>( ) is the binary structure function of a system

IP , then

It p < r(]P) < u p.
i=l 1 i=l X

Proof. Refer to Appendix (II-l)

Let us use the result of Theorem (II-4-1) to develop bounds on

system reliability. Taking the expected value of the expression (2.11)

gives

E( n Y<?(x)) > r(lP) > E( II p (x)) (2.13)
sesk - sesp s

For a large system, it is usually a formidable task to compute the exact

values of the above lower and upper bounds. An efficient method for

computing these bound is to apply a decomposition technique similar to

the one used in [8]. To do so we must decompose the subset of working

states which is characterized by the subminimal paths and subminimal cuts

into disjoint subsets. The value for the bounds then, follows by

properly adding the probabilities of all such subsets of states.

We may apply the inclusion-exclusion principle [9] to compute some

bounds on the values of the bounds on system reliability given by (2.13).

However, the bounds given by the following theorem can be easily computed.

THEOREM II-4-3. Suppose $( ) is the structure function of a system. Let

SK and SP be the set of all subminimal cuts and subminimal paths,
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respectively. Then

II Prob(Ye(x) = 1} .> r(lP) >_ n Prob{p (x) = 1}
S^SK - S^SP S

Proof. Refer to Appendix (II-l)

APPENDIX (II-l)

FACT II-l

Proof. Consider the problem of determining whether ft is empty. We may

transform the problem into a standard linear programming problem.

min (j),z)

2z€lR2N
s.t.

Mz < b

Let m(z) = max X (Mx-b). Then,

{0 x € a

2N

Hence, problem P may be written as

P/ min max <0,z >+ <X, (Mz-b) >

W2" w

The dual of this problem can, then, be written [5] as problem D:

Let

D{max min <X, (Mz-b) >

u(X) a min X mz

z€m2N
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P(X) =
-» xha. j> o

o xSi = o

Because of the boundedness of the solution, problem D is equivalent to

r
max - X b
X>0

D s.t.

xhi = o

But, we have

solution to D = solution to P = 0

Hence, from the duality theorem, there is a bounded solution to problem

P iff

min Xub > 0

s.t.

X > 0, X^ = 0
Q.E.D.

PROPERTY II-l

Proof. For some fixed x,, let x = (xG,x,) be some state in X. Then

consider any state x* «(x'g,Xt ) such that x' _> xG.

CASE 1. if <J>(x) =» 0 then either <Kxf) m 0 or 1.

CASE 2. if (x) = 1 then from Fact (II-l) this is equivalent to

fi ^(j)0 min X% > 0
x A>0 x- (A.l)

XGN(M£)

From the definition of x and xf we have:
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M = M , and b =
x x' X

Hence, from (A.l):

-p.

0

°L

°L

'sb

min X b , ,> 0
X>0 x

X^W^)

or min X t> , >. 0
X>0 x

xe/(Mt)
x

» b ,
x

CG
0

c.

'sb

where C' >, C-

(A. 2)

but, (A.2) is equivalent to ft t ^ <{» => $(x') = 1. Q.E.D.

REMARK, if the lower capacity limits of the generators are C f 0,

i.e., 0?iCg<PG<CG

then b„ and b , will be
x x

b =
x

-P.

"CG
b . =
x

"PD
CG

-c
g

l< sb

where C' > C and Cf >. C . Then VX > 0
g - 8
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x% > o t x% f>0
x — x —

which implies that the lower capacity limits of certain generators are

nonzero; placing those generators into operation may in fact deteriorate

the system performance for some states.

PROPERTY II-2

Proof. If state x is working for load demand PD, from FACT (II-l) we

have

$(x) = 1<> min X% > 0
X>0

xeM(Mfc)
X>0 x

x

where bx = (.^.-V^C^C^^C^).

Let b; = (P',-P^CG,0,CL,CL,CSG)

However, -P* > -P_ does not imply that b* > b or -P' > -P' does not
D — D r J x— x D — D

imply that x'b* >. X% >_ 0 VX ^ 0 although we may have XCb? < 0.
X X X

Hence, state x for load demand P' may be a failed state. Q.E.D.

THEOREM II-4-1

Proof, taking the expected value of expression (2.9), we obtain

n n

E( n £ ) < E{<KS)} 1 E( U €,)
i=l i=l

Since variables £. i = l,...,n are independent, the result follows.

Q.E.D.

THEOREM II-4-2

Proof. (a) constraint (2.11)
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(1) if 3 some S G SP 3 p (x) = 1 we have
S

$(x) = 1

II P (x) = 1
sesp s

(2) if VS € SP p (x) = 0 then
S

*(x) = 0 or 1

U p (x) « 0
^ S^SP S

(i)&(2) => $(x) > n p (x) vx e x
S^SP s

(3) if 3 some 1e SK 3Ys(x) =0 we have

$(x) = 0

n Ys(x) » 0

(4) if VS S SK y (x) = 1 then

$(x) = 1 or 0

n Y-(x) = 1
sesK -

(3)&(4) •* *(x) < n Yc(x) ¥x e x
sesK -

(b) Constraint (2.12)

We have

(i) n yq(x) < II Yo(x)
sssk - s^sk -
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(ii) n p (x) < Up (x)
sesp s sgsp s

The result follows by plugging (i) and (ii) in (2.11)

Q.E.D.

THEOREM II-4-3

Proof.

(a) VS £ SK, Yg( ) is a nondecreasing function of x and x. i = 1,2,...,n

are independent r.v. Hence Yq(x), S £ SK are.associated random variables

and we have [4]

Prob{ u Yq(x) = 1} 1 ii Prob{Yc(x) = 1}
S^SK - SESK -

The relation below follows from (2.12)

(i)

Prob{ u Yc(x) = 1} >. Prob{$(x) = 1} (ii)
sesK -

(i) and (ii) imply

II Prob{Yc(x) = 1} > Prob{$(x) = 1}
sesK -

(b) VS ^ SP, p ( ) is a nondecreasing function of independent r.v. x.
S x

i = 1,2,...,n. Hence p (x), S G SP are associated random variables and
S

we have [4]

Prob{ H p (x) = 1} >_ n Prob{p (x) = 1}
S^SP S SSSP S

From relation (2.12)we can write

Prob{$(x) = 1} >. Prob{ n p (x) = 1}
S^SP S

The result follows from (iii) and (iv).
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III. COHERENCE ANALYSIS OF POWER SYSTEM RELIABILITY MODEL

We have shown that power systems are generally not coherent structures

This noncoherency is attributed to the effect of transmission network

on power flows. In this section we present (i) a characterization of

local coherency, i.e., coherency with respect to a subset of lines, (ii)

a characterization of a class of network topologies for which coherency

is guaranteed, and (iii) some sufficient conditions for local coherency.

3.1. Equivalent Model for Change in Network State

For a power system IP, suppose the set of transmission lines is

partitioned into subsets LI and L2. We are going to derive conditions

which guarantee that if in the absence of lines LI, the system is

working, then, with lines LI, the system is still working.

The state space X can then be written as

X • XG X *L2 Xhi

where X„, X_2 and X., are subspaces of generators, lines in LI and lines

in L2, respectively. Then any x € x can be written as

C ) where €
*L1 ^1 *L1

Consequently we can write:

;] where CT -, A , x
C - . ^

C, = (pL1), A=* [A1 A2] and Y= [•
CL2

are

Y'~ '••" '
respectively those portions of (L, A, and Y related to lines in LI.

Suppose ^(Xj.g,^-) = 1; we want to derive some conditions under

which we have ^(x-g,^-) =1, too.
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For x = (x^.x^), let P =P°
G G

(?)
0 = 8

and for x1 = ^xLg,\i^* let PG=PG+APG

LI

PL^PL2+APL2
e = e + Ae

we may write:

*(x) =1<>
r

V.

O<PD +P°-ApjjAt0°<

-^(4)W'
td 1 ? (p°)± i csb

Hence, x1 » ^^c'^l^ wi^- De a working state iff

r

0<PD + P- + APG-A Y1 At(0°+A0) £ CG

"c^

^.

LI

!l>PL2J
(V

Y2J A(0 +A0) £ CL

Cd i j <PG>i +JUVl ±Csb
i=l i=l
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% •»

From (3.1) and (3.2) we have "Kx^.x.-) = 1 iff

Hw < d

H

aW'+aVa2' -I

-(aW'+aVa2') I

0 I

0 -I

A1' 0

Y2A2t 0

-yV' 0

2 2t
-Y A^c 0

0 -a'

0 +1*

,d4

+y

i

Il

12

-I1

-A2

Ssb

L^sbj

and w= aVa1^0

i * <VPG>
a= -pg

5i 4c^ - yW
U*-C^ - yW

Let a = {we m2N|Hw£ d}

Thus ^(Xlq.^) » 1 o fl / <fr

From Fact (II-l) we have

A2 *-L2 -.-2
8.u =C„v+ J (P°)
'sb sb

fsb "j, <PN>i
i=l

i=l

w

A0

AP.

(3.3)

$(XLG,XL1) s=1°'vxl0=)x€ ^H*) , X^ >0 (3.4)

To characterize all X S W(H ) where \ > 0 we construct a set of basis for

W(H ) with positive terms. This can be done by utilizing the special
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structure of matrix H. Such a set of basis is obtained and is listed

below as the columns of the matrix A.

I _tN TP

I TP -T»

I -T* TP IE

I TP -TN

I

I

1 1

1

(3.5)

P N
where T and T are the positive and negative parts of the matrix T for

T obtained from the following relation:

Y1Alt

Y2A2t
= t'eaW' + aVa2']

T «• T + T» tp e m" xm* ,

(3.6)

Let A be the ith column of A where A > 0. Thus, because of special

structure of matrix A, We have:

2(N+it+l)
VX > 0 3 X S (Hc) o X = ) a.A. = Aa

i=l

where

ai 1 ° vi B 2N 1 i1 2(N+&) + 1

Hence,
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d'x - d'

-TN TP

TP -T»

r "i

+ d'

*N

2N+1

+ d

2(N+Z)

r~

"

I -TN T?

I T* -TN

n

1

1

1

*N+1

2(N+A+1)

Because of the special structure of vector d, the last term in the above

expression is equivalent to zero. And since X j> 0 and considering the

definition for d the second term is always positive. Therefore,

-TN
l2N+l

T -T

dCX - dC + positive term

2(N+£)

Note that this term represents solely the effect of available power

generation on the line power flows. If we substitute this term by zero

In (3.8) (which actually is equivalent to setting APG = 0 in (3.3)

since a^.,...^-., are the dual variables corresponding to constraints
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on APQ) we obtain the following sufficient condition for fi £ <j>
N P

-T T

-I*

> 0

or equivalently

(-T?) (-y) + (T*) (u) +

CO (-y) + (-TN) (y) +
v*.

which implies that

r

TCy +

TCy +

^

11

12

I2

12

> 0

< 0

11

12

-A2

> 0

> 0

(3.9)

We define P.- - Y A 0 as the fake initial power flow in lines LI. Then,

from (3.9) we have

.0

-Tfcy +
LI

L L2_
£ CL =• $(xx) =1

Physical Interpretation of Condition (3.10)

Suppose line m £ LI lies between nodes i and i , i.e.,
mm

A = [A1|A2|...|Ani|...A1] andAm-

U

1

-1

m

m

If n = y (0J 0^ )A , then y = 7 u where il = cardinality of LI,
m m i - i m' ^ \ m

m Jm m=l
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A tLet APL = -Tp

"- I *\
m=l

Then, based on the definition of matrix T, AP will be equivalent to the

power flow in the network of system 3P in the state x - (OsX-^jXt-,) and

P„ = 7 -y for external power flow sources p = -y (0. -0. ) between
N *•, m r rm 'm i j

m=l m m

nodes i and j for 1 < m < U (Fig III-l).
m m — —

State x = (XgjX-jjX..) will, thus be a working state if power flow

(AP +(P_,P 2)) does not exceed the capacity of the lines where AP is

as defined previously. Such an equivalent model for the effect of lines

LI on the power flow will be referred to as the equivalent line model.

REMARK Sufficient condition (3.10) can be obtained directly

from (2.3) by substitutions. However, the approach presented here, using

the duality of linear programming for characterization of constraint set,

is more general.

3.2. Coherent Power Network Topologies

Power systems are generally not coherent systems. However, for a

given network and node injections, the system may be coherent. If, for

a given system, the improvement of components guarantees that the line

flows will decrease (or at least will not increase), then clearly it is

coherent. In this part we will characterize network topologies that

possess such a property.

Consider the set of states x for which AYA 0 = PN has a unique

solution; let p(x) denote the corresponding line flows.
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.e®

SYSTEM IP <5>P.

X=( Q, XL2, XL1)

LI H »• LI

^

LI

Fig. III-l.
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DEFINITION. Given vector PG such that 0 £ PG _< CG if

x1 > x =* Ip±(x)| 21 |pi(x')| i^L

where L is the set of lines which is working for state x, then we say

that the corresponding network is a coherent network topology or simply

a coherent topology.

Clearly, a parallel system which consists of a load demand and a

generator connected by a set of parallel line is a coherent topology.

In fact, any network which consists of a series of connecting parallel

lines is a coherent topology. Let us call such systems parallel

structure systems.

THEOREM (III-l). Parallel structure power systems are the only

topologically coherent power systems.

Proof. Consider a power system TP with any topology. Let (x.,x) and

(x. ,x) Sx. If A? a p(x.-x) - p(x.-x), then (AP). j ^ i can be obtained
1 x —l J

from the equivalent line model of part (III-l) (Fig. III-2). Let line i

lie between nodes k and m. If 0. and 0 are phase angles at nodes k
k m

and m for state (x.,x), then — - (0 -0. ). Let
Vi* " y m k

A0 = vector of node phase angles

AP = power flow in line (s,t) flowing from node s to node t.
St

N. : set of nodes connected to node j by one transmission line.

With no loss of generality, let us assume A0 >^ A0, . We then claim

that

(a) AP . > 0 Vj S Nmj - m (3-11)

(b) APjk <0 VjS^
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SYSTEM IP

X=(Q .XL2»*i ) o—" m

Fig. III-2.
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Suppose now (3.11) is false, then 3 some j ^ N
m

B AP . < 0

ao < &eA

This is not possible since the only source in the network is in branch

(k,m), and according to the no gain theorem [6], the phase angles at

every node must be smaller than the phase angle at node m. This proves

that (3. 11a) is true. Similarly, (3.11b) must be true.

On the other hand, if |p.(x,»x)| > |p.(x.,x)| j e L
j —i — • 1 l x

Then we must have

Ip^x^.x) + (VP)^ > |p (i±,x)| j«i,2,...,

j * i

(3.12)

And this is possible iff p.(x.,x) and (AP). are of the opposite sign.

Specifically, because of relations (3J.la-b) we must have:

r
p < 0 ¥j € N
rmj — J m

Pik>0 vjeNk
V.

we claim that relation(3.13) is true only if

r N

0 = max 0

m q=l q

N

0. = min 0

V.k q-1 q

(a)

(b)

(3.13)

(3.14)

To show this, suppose that (3.13a) is not satisfied, then j some node s

which implies,

N

0 = max 0 s f m
q=l n

p > o vt e ns

-280-



Hence, from (3.12) we have

or

Ap _ < 0 Vt e N
rst — s

s

This contradicts the Kirchhoff Current Law for power flows.

Similarly, (3.14b)must be is true.

Therefore, relation (3.14) implies that only if the improved line

lies between nodes with maximum and minimum phase angle can we expect

power flow to decrease absolutely. This requires that there be only two

nodes in the network. The only network with this property is a parallel

system.

The argument can be repeated for each line if there is more than

one line to be added to IP. Q.E.D.

3.3. Local Coherency

For a fixed demand, the noncoherency property of a power system is

a consequence of the effect of line admittances on the distribution of

power flows. Let us consider the problem of the effect of all subsets

of a specified set of lines, say LI, on the power flow of the system.

Let L2 be the set of remaining transmission lines.

DEFINITION. For a subset of lines LI and a fixed x„ and x_2, we say that

system IP is a locally coherent structure if Vx - (x„,xL2>xL1) and

either $(x) =1

or $(x) = 0

We will refer to the corresponding set X_- - {x = ^kq^-L2'xL1^XL1 S ^Ll*

as a locally coherent subspace.
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Application of Local Coherency

In the following we present an application of the concept of" local

coherency in identifying subminimal paths and subminimal cuts of the

system IP .

A: Identification of subminimal paths

Consider a power system IP . For any fixed xG ^ $(x-t3E-) = 1, let
GLLI be a maximal subset of lines such that xT- is a locally coherent

subspace. If x„, <_ x„ is a minimal vector in Xfi such that $(xc, jX^jX..)

= 1, then x = (xG,_,X-..) will be a subminimal path vector. The

corresponding s will be a subminimal path set. This, of course, follows

from the definition of locally coherent subspaces and the property

that power systems are coherent under generation improvement.

Therefore, to identify a subminimal path vector we may take the

following steps:

1) pick xG => ^(xg,^) =1
GL

2) find a maximal LI => x_- is a locally coherent subspace

3) find a minimal xG, <_ xQ 3 ♦(xG,,xL2,a^1) « 1

4) ^g'l'-^I^ *s a m^nima^ path vector

B: Identification of subminimal cuts

For a power system TB , let x = (xG,x_) be a cut vector such that

$(x») = 0 Vx* £ X3 xf _< x (a)

and

where condition (b) excludes the trivial subminimal cuts for which total

generation capacity is smaller than total load demand. Note that such

a state x can be obtained by either connectivity analysis of the graph
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of system 3P [7], or through network flow analysis [8].

Let LI be the set of all transmission lines such that

(xL)± - % 4 e a

GL
Now, suppose LI is a maximal subset of LJL such that L. is a locally

coherent subspace of IP, i.e.,

GL
If x«, > x„ is a maximal vector in X„ such that X is a locally coherentG - G G x^

subspaces, then x = (x„, jX-^xl..) will be a subminimal cut vector and

the corresponding S will be a subminimal cut set. This result follows

from the definition of locally coherent subspaces and the property that

power systems are coherent under generation improvement.

Therefore, to identify a subminimal cut vector we may take the

following steps

1) pick some x S X 3 $(xf) = 0 Vx' < x

this will give the set of failed line, LI for state x

GL2) find LI a maximal subset of LI 3 X^ is a L.C. subspace

3) find a maximal xG, >. xG 3 *(xg»,xL2,xLl^ = ®

4) (XgijX.-jX.-) is a subminimal cut vector.

Identification of Locally Coherent Subspaces

In order to devise a technique with which to identify locally

coherent subspaces of a power system IP , we consider the following

problem. For a fixed xQL = (x^x^), let x= (*GL,XL1* € X be aworking

state. Suppose the twofold problem is to determine whether $(x) =1

Vx ^x?^ and if not, to find asubset of LI, say Llf, such that
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•«-i ft=(v.\r>£^
where

A (
xGLf ^XG,XL2,XL,;

L1 = LI - Llf

To solve this problem we use the line equivalent model of part (III-l).

Thus, the network of Fig. (III-l) will be used to represent the change in

the power flow of the existing lines AP due to the addition of a subset

LI* of lines in LI. In this model, for each line mSll' we add the

equivalent line model between nodes i and j . Using the Superposition

Theorem we may write

APr
v&U.

m ym
where AP is the power flow change due to the phase angle source —— .

ym
Note that APT m « 1,2,... ,£Lf is obtained by setting all sources equal

ymto zero, with the exception of source — . An obstacle to solving this
ym

problem is that a different network topology is obtained for each subset

of LI.

In the following section we will introduce the concept of supply

loop so as to find a sufficient condition for locally coherency of a

GL
subspace X_- and thereby overcome our obstacle.

Let G(v,k) denote the graph of a network with (v+1) nodes and k

branches. Thus, the graph of system F tna state in which all lines

except those in set LI are working will be denoted by G(N,£-£1).

THEOREM III-2. Let G(V,k) be a connected unhinged graph. If b denotes
s

a branch of this graph (i.e. b 6G(v,k)). Then there is always a set
5

of (k-v) independent loops such that every loop includes branch b .
5
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Proof. Refer to Appendix (III-l).

DEFINITION. Given a connected unhinged graph G(v,k) and a branch

b € G(v,k), any loop which includes branch b is called a supply loop
S 5

of branch b . The set of (k-v) independent such loops is called an
s

independent set of supply loops of branch b .
s

COROLLARY (III-l). Let G(v,k-kf) be a connected unhinged graph. Suppose

we add the set of branches K' to this graph so as to obtain a connected

unhinged graph G(v,k). If b £ K', then an independent set of supply

loops of b can be selected such that any supply loop in this set
s

contains only b„ and no other branches in K1.
s

Proof. Refer to Appendix II-l.

REMARK. Consider a graph G(v,k-kf), a set of branches K' and the graph

G(v,k). If b GK', then in what follows if G(v,k-kf) is a connected
s

unhinged graph we will then always select an independent set of supply

loops of b as the set of supply loops in Corollary (III-l).

Let us now apply the results obtained above in determining whether

GL
XL- is a locally coherent subspace. However, note that if the network

of system W for states (•,xT2,x_1) is not a connected graph, we may

treat each subnetwork separately. In addition, the graph must not be

unhinged for if it is, we can partition the graph into unhinged subgraphs

and again solve the problem for each subgraph separately.

Suppose G,(N,£-Jtl) is the directed graph of system ]P for state
a

(x_ ,x_ -) where the direction cf each branch agrees with the power flow

in that branch. Let Bm be the supply loop matrix of a particular set of

supply loops of branch m € LI, and let Pm be the respective supply loop

power flows. The total power flow change due to all lines in LI C Ll,
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therefore, will be

= I APm = I (Bm) pm
mSLl1 L m^Ll'

Note that p assumes different values for various subsets of LI.

For state (xGL»x_1), let the power flow be

where P 2 and P_2 denote the positive and negative parts of PL«

respectively. As before, let P - be

Let us also select the directions of branches in LI to be the same

as their respective power flows in P-.

GL
Hence, $(x) s 1 for some x £ X.. if

l(PU+APLl(x»il^(CLl>i

l<P22+APL2(x»jl^^CL2>j

Then, $(x) »1 Vx Sx^ if
r r

p£ +max(AP^)

PU +-"CAP^)
and

PL1 + «*»(APu>

^ +»to<^)
V^

"LI

'L2

JL1

12
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+ +
where max(AP ) = max (AP_(x)). i = l,2,...,A

abd min(AP7). » min (APl(x)), i=l,2,...,A

**£
GL

Condition (3.16) is-a sufficient condition for X_- to be a locally

cohernet subspace. We may write

Bm = B^ + B*"*

m m+ , m—
pap + p

Hence,

< =[(Bnri-)tpnri- +(^)\^] +[(B^V* +(B^V"-]
or

(3.17)

Apm+ m(Bnri-)tpm+ +^^^
™_ tn- C m4. nA(.B_ (3.18)

AP*" - (B^) p** + (B^V

... t m»

Let p and p . be such that Vi = 1,2,...,Z
rmax rmin ' ' *

vSq^ (3.19)

G*LX_. = {x|x = (xG,x_2,x^-.), x_- £ X.- and x' is the sources of x_-}

Then, from (3.180 it follows

max rmin

,-»m+ ,_m+N m+ . /_m—v m—APT < (B ) pmav + (B ) p^t - mav ..... (3.20)

^APL i <B )Pnax +(B )Pmin
or from (3.15) it follows

-287-



fmax(AP+ )< I gB^V* +OT)^ )
I v LI — M, max rmin

\ *-. -*t (3.21)(-.C^) >̂ ((B-) p^ +(B^) p- )

Inequality (3.21) and constraint (3.16) provide the following sufficient

*•*-$ GL
conditions for locally coherency of subspace X..:

V* *[P.* + I(CB*)V +(B^V^)] <CL
- 1j l nt&i max min — L

I (3.22)

Note that because of the choice of the branch directions in (322), we

have PL~ = 0. Therefore, to verify the validity of constraint (3.22),

we need to evaluate p and p . Vm G LI. Before we proceed to solve
max min

the problem of evaluating p and p . , we will examine the second part
max min

of the original problem. That is, if condition (3.22) does not hold, then

GL1a set Llf C Ll must be found such that X_.,» is locally coherent subspace.

Suppose now that (3.22) is not satisfied. Let i and j be lines in

the network of state (#»3KT2'*L1^ such that

~P Note that if (3.22) is not satisfied, at least one of such i and j will

exist. Intuitively, i and j are the lines which are expected to be

saturated the most. If i or j € LI then we should remove these lines

from set LI to obtain LI*. If i or j share a node with some line in LI

we must remove that line in LI from the network. And finally, if there

are not such i and j in LI, then we may remove line q € LI with maximum
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related source i.e.,

(-*) = max fcl)
7q j Ll yj

Now if for the new subset of lines Ll', the conditions of

Corollary (III-l) hold, then there is no need for additional computation

except to substitute Ll' for Ll in (3.22). However, if these conditions

are not satisfied, removal of lines i and j, if they belong to Ll, may

destroy some of the supply loops of the other branches in Ll. In this

case, the respective maximum and minimum power flows of these loops

must be set equal to zero. We may repeat the selection of subsets of

Ll as explained above until (3.22) is satified for some Ll1 c Ll. Hence,

G
X^-, will be a locally coherent subspace.

Determinization of p and p .
max min

We present some preliminary results on the computation of p

m—
and p . m = 1,2,...,£1. For a system P with any topology, a crude

... I _—

upper bound on p and (-p . ) m = 1,2,...,&1 can easily be obtained
max min

as done below.

For a supply loop i in the set of independent supply loops of

line m € Ll, suppose L, denotes the set of lines in this loop. Thus,

we will have: for i = l,2,...,Jl-N

r

(P )• <
max l —

^-

m

m

I ±
jet-l •Jim .y,

y.
m

m

&1 yd
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More study is being done to develop a method for determining exact values

of p and p although some results have been reached on computing

bounds on these quantities other than those given by (3.9). However,

for a power system IB whose network topology in state (•,xT2»xT1) is of
... I m»

ladder shaped, we can easily evaluate p and p . . For such systems,
max min

if we select the supply loop directions the same as the flow in the line

m, then P^_ = 0. For any i €= Ll, (p ). can be obtained by removing

all lines in Ll except for those in lm.

APPENDIX (III-l)

THEOREM III-2

Proof. Let T be a tree of G(v,k) such that b ST. Let L denote the

set of links associated with T. For G(v,k) the following holds.

(i) It follows from the definition of connected unhinged graph

that there are at least two independent paths between any

pair of nodes,

(ii) Let b.. € T be a branch that lies between nodes i and j.

Let C.. be the corresponding fundamental cut set. If j

k links in C.., then we can find k independent loops associated

with these links such that all of these loops include b...

This is so because V links b € C.., j two independent tree

paths between (m,i), and (n,j), respectively.

We use the above facts to prove the existence of the (k-v) independent

loops by constructing them. Let L be the set of such loop which is

initially empty. Suppose 3 m links in (^ where from (i), m> 1. Hence,
s

from (ii) we can define m independent loops all of which include b .
s

If m = k-v, we are done. Otherwise there are m < k-v independent loops
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in L and there are (k-v-m) links for which no loop is defined. Let the

graph G1 be a subgraph of G(v,k) which is defined by all the m independent

loops in L. Clearly, Gf is connected and unhinged. By definition, 3

a tree path between any pair of nodes inside of GT and this path includes b ,
5

Let (G-G') be the subgraph of G which results from the removal of branches

in G*. Hence, (G-G1) must consist of a family of connected subgraphs

G = { G-jG^j-.-.G }, for some finite p where each subgraph in G has at

least two nodes in common with G*. Consider G G G9 and let (e,f) be a

pair of nodes shared by G% and G . There is a tree path p - between nodes

e and f in G1, and since e,f € G , 3 aPath P f between e and f in GQ.

Hence, there must be a link in path p - in G . Let b..

be a branch of p - and let C\. be that subset of links in C. which
ref ij ij

does not belong to Gf. As a result no independent loop has been defined

which includes any of the links in C*. yet. Let b. 6Cj.. There is a

t t
tree path p., between (i,k) and a tree path p. between (j,m). In

addition there is a path p.. in G1 which includes b . Hence, a loop

t t t
which includes b.., p., , p. and p.. can be defined. Then there will be

ij rik rjm rij

(m+l) loops in L and (k-v-m-1) links will be left which are not in any of

the loops in L. Of course, p.. may include some links in Lfc. However,

we have already defined an independent loop for each of them since they

belong to G'. Add the new loop to GT and remove it from G to define

new graphs G1 and G . Then G1 and graphs in G = {Gn,.. .,G ,.. .,G } have
n »* jl n p

the same property as before. Repeat the above procedure until each

subgraph in G vanishes. By construction each loop corresponds to one link

in L , i.e., each loop in L is defined for a specific link in Lfc.

Hence, when all subgraphs in G vanish there will be (k-v) loops in L

such that each of them, inlcudes the branch bg. These loops are

independent because, by construction, no two of them share the same subset
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of links in L„. Q.E.D.
t ^

COROLLARY (III-l)

Proof. Consider graph (v.k-k'+l) which is the union of G(v,k-k') and

bg G K'. By Theorem (III-2) we can define the set of (k-k'-v)

independent supply loops of b . The union of these loops gives
s

G(v,k-k'+l) and none of these loops include any branch in K* except b .

Now, for any branch b^K' we must construct a supply loop of b such
s

that except branch b all other branches of this loop belong to G(v,k-kf+l)

Such a loop can be constructed by the following precedure; for any

b^K', consider the graph obtained from the union of G(v,k-kf+l) and b.

By Theorem (III-2) we can define a supply loop of b which includes b.
s

Such a loop includes only b and b of the set K1. Hence, by repeating
s

the procedure for all branches in K1, we obtain the set of independent

loops we are looking for. Q.E.D.
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IV. A NEW METHOD FOR POWER SYSTEM RELIABILITY EVALUATION

Because of the noncoherency and nonlinearity of our model as

explained in sections II and III, the set of working states W does not

yield a simple analytic characterization. In this section we present

the basic idea of a new scheme for identifying the set W by successively

obtaining subsets of W.

4.1. Successive Method for Power System Reliability Evaluation

Consider a power system IP modelled by relations (2.1a/f). These

relations represent the KCL on real power, KVL on voltage phase angles

and the Ohm's Law between real power and phase angles together with

component capacity constraints. Let each of these constraints be

expressed separately. The component capacity constraint and KCL can be

written as:

where

A1 =»

C < A'P, < C

A

-HeA
— —

, c =
CG+PD

L sb..

» c =
PD
0

w —J

After eliminating the redundant constraints.

(4.1) may be expressed as follows

"("Vi 1(PL>i ±(CL}i ±€*L

(4.1)

The reduced form of

(4.2)

where IL is the set of lines and R„ is the set of nodes for which

respectively, their capacity and power flow constraints together form

a nonredundant set of constraints.
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In order to present the basic idea of the successive method, let

us make the following assumption.

ASSUMPTION (IV-1). The generators in system 3P are such that there is

a working generator at every node in set RN. As a result of this

assumption, the following holds

(c)d t (c)d jeJ

Let us define set C as follows

C={PL SHA|PL satisfies (4.2)}

Hence, set C is a nonempty convex polyhedral (there is at least one

working state in X).

Let us define the vector of phase angles across transmission lines

6 as

6 = tfe (4.3)

Then, for system IP , KVL can be expressed by the following linear

manifold:

B6 = 0 (4.4)

where B S ]R x ]R is a fundamental loop matrix. Finally, Ohm's Law

can be written as

PL = Y5 (4.5)

Let us now assume that there is at least one line which is always

working. Let L2 denote the set of lines that are always working. Hence,

L2 is not empty by assumption. We claim that it is possible to select
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the fundamental loops corresponding to B such that every loop includes

at least one line of set L2. This is so because we can choose the

independent supply loops of one line in L2. Let Ll be the remaining set

of lines in the system; B and 6 can be partitioned accordingly:

B= [B1 B2]

6 =
61
62

Hence, (4.4) can be written as

11 2 2
B^ = --err (4.6)

2
Note that as a result of the assumption we just made, every row of B

has a nonzero element.

Relations (42,5,6) represent system IP for all possible states.

The problem of identifying the set W, then, can be stated as: given

a set CCl and the set of lines L2, find all network state for which

there is a P, 6 C that satisfies (4.5) for some 6 in the linear manifold

of (4.6). Let us refer to this formulation as problem (4.7).

In order to solve this problem we present the following method which

involves successive approximation of a set in 3R m - 1,2,..., by a

sequence of hyperboxes.

Let us define disjoint hyperboxes H inside C as

H^ ={pl ecl^ <(PL)j <u j=1,...,*, u.j * u±}

Let HC be the set of such hyperboxes. The set HC is to be constructed

so that in the limit it covers C. Let us consider the special

problem of (4.7) when C is substituted by a hyperbox H £ HC. Let
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a ..

H* ={PL €duj <(PL)j <Uj j«1,2,...,A}

we may write the power flow as

PL = P2 = Y2 «2
Li

For any P_ £ tt" we have
' L c

or

»2 < p2 = Y2*2 < „2

2 2 2 2 -2(YZ) u 1 6 1 (YZ) u

It follows from (4.6)

d < B3^1 < d

(4.8)

(4.9)

2 2 - 2 2
where d = min(B 6 ) and d = max(B 6 ). In Appendix (IV.1) it is shown

that ^ f6 d^ k= 1,2,...,N. Let set D1 be defined as

D1 = {61 E]RU|d <bV<3}

By definition, for any & £ d there is a 6 € ]r* *x SUch that (6,6)

2 2 2
is in the linear manifold of (4.6) and also P = Y 6 satisfies the line

capacity constraint. Then, the problem (4.7) will be reduced to finding

all values of r for which there is a 6 € D1 and a P* S lW such that
Li

and

4 i <PL>i i3
(4.10)

P* = Y161

Equation (4.10) may be tested for disjoint hyperboxes in D as follows.
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Let hyperboxes Hj in D be defined as
a

H^ ={61 SD^h <61 <h} (4.11)

The set of hyperboxes Hj j » 1,2,... is to be constructed so that in the
a •

limit it covers D . Consider the following problem for some H^ £ HD: V

Given H and U. as above, what are the values of i for which J J
" d J

such that

(PL}i =^i^i Vi GL1

If neither (i ). = 0 nor (i ). = y satisfies the above relation for
i i yn

some i G Ll, then there is not any i for which we can find some

P,Sh and 6 € hJ which together satisfy network constraints. However,

if any of values (Y ). = 0 and (Y ). - y. or both satisfy the above

conditions for all i.€ Ll, then the respective values for i together

2
with Y give a subset of working states. If we repeat this successively

for all H S HC and rf S L we obtain all network configurations Y for

which the respective state is in W.

To summarize, the procedures of identifying W are as follows. Given

system ]P,

1) determine set C

2) select set of hyperboxes HC (J

3) Given H1 € HC determine set D
c

4) select set of hyperboxes HD '

5) Given H^ S HD1 find all values of Y for which
a

3 PT e H1 and 61 GH^ 3 P?- =Y161
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VjT

d -

6) repeat 5 for all H^ G HD
a

7) repeat 3 to 6 for all H1 G HC

EXAMPLE III-l

Consider the power network in Fig. (IV-1).

Suppose Generator 1 and 2 are always working and

G)^(S)
Let PD = 20, L2 = {2}, CL = (15,5,5) and y = (1,2,1)

STEP 1. The set C will be defined by the following constraints,

10 < (PL)1 + (PL)3 < 20

-15<-(PL)1+(PL)2<-5

^-15 <(PL)X <15

~5< <V2^5
V"5< (PL)3<5

STEP 2

Let the hyperboxes H , H , H 3 H1 C c be as follows:

c
m

r

h = < p g m

H =

r

V
g m

12.5 < (PL)1 < 15

0 < (0L)2 < 5

-2.5 < (PL)3 < 5

10 <_ (P ) <. 12.5

-2.5 < (PL)2 <5

0 < (PL)3 < 5

7.5 < (PL)1 < 10

~5 1 (PL)2 1 2.5

2.5 < (PL)3 < 5
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H

STEP 3

Consider IT", we have:
c

0 < (PL)2 < 5

Hence,

0 < &2 <_ 2.5

which gives

^-^)\o <-&1 +s3 <:_ 2.5

STEP 4,5,6,

From the definition of a we have
c

12.5 <, (PL) < 15

Consequently, we must have (Y)- - y- ^ 0 which implies:

12.5 <. 6 < 15

This requires

12.5 < 63 < 17.5

or

(1)

12.5 <63< 17.5

which does not satisfy the constraint on (PT)0 for n. Hence, for H
L 3 c c

there is no solution.

NOTE. Since H is such that the upper and lower bounds on (PT). have the
C L X

same sign for H , line 1 must be working. This easily gives constraint

on flow in line 3. Clearly, there is no need for selection of hyperboxex

1
HD .

-300-



STEP 7

Y =

Y =

2
If we repeat the procedure for H , it reveals that for

yi

y2
OJ

lso, re

y
1

y2
y

, i.e., when line 3 is failed, the system will be working.

3
also, repeating the procedure for H reveals that when r*

, i.e., when all lines are working, the system is working. ^

Therefore, since the union of hyperboxes H i- 1,2,3 is a proper

3 i c
subset of C, i.e., U H^ C c, the set of working states obtained is a

subset of W for 3P .

i=l c

REMARK If assumption (IV-1) is not satisfied then in order to take

into account generator outages we may substitute system IP by an augmented

a a
system 3P . System IP is obtained by substituting any generator i

for which x. = (Cn) . and x. =• 0 with a transmission line and a generator
i « i —i

in series. For this equivalent network the capacity of the generator is

(CG). and the generator is always working. However the transmission

line may fail with the same outage rate as the generator i. The

admittance of this line can be selected as any positive value and its

capacity limit must be larger than (C«)..

Consider system 3P , since Assumption (IV-1) is not satisfied, the

set C will be a subset of a linear manifold in 3R . Hence, we cannot

successively approximate C by a sequence of hyperboxes contained in C. ^

However, we may select a set of disjoint hyperboxes whose union covers

the set C to approximate the set. This method is, of course expected '

to be less efficient than the method presented for the case when Assumption

(IV-1) is satisfied.
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4.2. Present and Projected Works

In connection with the results obtained in this study, we are

presently engaged in studying the following topics:

(a) Efficient methods for identifying locally coherent subspaces.

(b) Methods for approximating a set in IR = 1,2,... by a sequence

of hyperboxes.

(c) Developing an efficient method for identifying the set W by

combining the concept of local coherency and the direct method

introduced in section IV.

APPENDIX (IV-1)

_ 2
We prove d. f d. in relation (4.9). Let us partition B into its

positive and negative parts, i.e.,

2 2 + 2BZ = (BZ) + (B2)

Then, from (4.8) it follows:

+ -1 - -1
- 2 2 2 2 -2 2 0 0
d = max(B 6Z) = (BZ) (YZ) u + (BZ) (YZ) uZ

d= min(B262) = (B2) (Y2) u2 + (B2) (Y2) u2

for the sake of contradiction suppose there is some i G {1,2,...,N}

such that d. = d., then we must have:
i i

(B2)±(Y2) u2 +(B2)±(Y2) u2 =(B2)±(Y2) u2 +(B2)^2) u2

which implies:

2 • 2 ~ 7 -9 9[(BZ)± - (BZ)±](YZ) (uZ-uZ) =0

-2 2but, we have u > \i ; hence ^ = d. is impossible.
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