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ABSTRACT

Consider a countable state controlled Markov chain whose transition

probability is specified up to an unknown parameter a taking values in

a compact metric space A. To each a is associated a prespecified

stationary control law £(a). The adaptive control law selects at

each time t the control action C(cc ,x,) where x^ is the state and a
t t t t

is the maximum likelihood estimate of a. The asymptotic behavior of this

control scheme is investigated for the cases when the true parameter

value aQ does or does not belong to A, and for the case when £ is chosen

to minimize an average cost criterion. The analysis uses an appropriate

extension of the notions of recurrence to non-stationary Markov chains.
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1. INTRODUCTION

We consider a controlled Markov chain {x , n > 0}, characterized
n —

by

(i) a countable state space S = {1,2,...},

(ii) A control parameter z(i), taking values in a compact separable

metric space Z(i), for each i in S,

(iii) An unknown parameter a taking values in a compact separable

metric space A,

(iv) and a function p(i,j;z,a), i,j S s, z £ Z(i), a € A, which is

the probability of transition from i to j when control z is used and if

a is the true parameter.

The following assumptions are made throughout; additional assumptions

will be made later as needed.

Al For each i,j (p(i,j;z,a) is continuous in z,a.

A2 The actual transition probabilities correspond to the parameter

value a-. We do not assume a priori that a. is in A.

A3 If p(i,j;z',o ) » 0, then p(i,j;z,a) =* 0 for z S Z(i), a € A. If

pCijj^jO f 0, then there is e > 0, independent of i,j,z,a such that

e<pCi,j;z,a) [pCi,j;z,a0)]~ < (e)~ .

A4 For any fixed values of o^A and z(i) € z(i), the Markov chain with

stationary probabilities pCi,j;z(i),a) has a single communicating class

which is positive recurrent.

A control law is any sequence of random variables {zn> n ^ 0} such

that

(i) z ezcxj,
n n

(ii) z is measurable with respect to^ =a(xQ,...,xn)
(iii) P{^. =kPjT} - p(Vk;Va0).
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The framework above is intended to cover two situations. In the

first, {z } is a deterministic sequence representing a known non-
n

stationarity of the Markov process {x }. In the second, z is a

random variable chosen on the basis of the known history, \f , of the

state process in such a way as to satisfy some performance criterion.

It is this second situation which will be addressed in Section 4.

Since this is the main motivation for our work we elaborate a little

more. More specifically, our interest is in adaptive control laws

which are constructed as follows. Suppose that for each a we are given

a control function c(ot) = [?(a,l) ,C(a,2),...] such that if a is the

true parameter then the sequence z - C(a,x ) results in a performance
n n

which is satisfactory (or optimal for some criterion). Next let a be
n

the estimate of aQ at time n obtained by some estimating scheme. The

adaptive control law given by this estimating scheme and the function

C is the random sequence z - C(ct ,x ), n ^ 0. Such an adaptive law

seem to have been rigorously first explored in the context of linear
e

systems by Astrom and Wittenmark [1] where it was called a self-tuning

regulator. A similar scheme for finite state Markov chains was studied

by Mandl [2] under the assumption aQ £ A. In [2] the control function

C was chosen to minimize the time average of the expected cost and

a class of estimators for a. were considered on the basis of "contrast"

functions. This class includes the maximum likelihood estimate (MLE).

Mandl established the a.s. convergence of a to aft and of the time
n 0

average of the cost to the minimum, by imposing an additional condition

which in the case of MLE is the following: for any a ^ 3 in A, there

is iSS such that
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[p(i,l;z,a),p(i,2;z,a),...] f [p(i,l;z,3),p(i,2;z,3),...] for all z G z(i).

(l.D

However such an "identifiability" condition may, in applications, be

too restrictive as seen from the work on linear systems ([1,3], see also

the discussion in [4]) where (1.1) does not hold and it was observed

that the estimates need not converge and,even if they do, not necessarily

to the true value a..

The problem we consider is essentially the same as Mandl's in a

more general setting: (i) S may be countable, (ii) (1*1) is relaxed,

and (iii) the control function € used to specify the adaptive law

is any arbitrary map so that no explicit reference to a cost function is

needed. (The case where S and A are both finite has been treated in

[4].) Our problem is less general than Mandl's in one sense, namely,

we restrict ourselves to MLE and do not consider other estimators.

The paper is organized as follows. Section 2 consists of results

on recurrence of controlled Markov chains. These results will be

used in Sections 3,4,5. Section 3 introduces the likelihood ratio and

the MLE for Markov chains and studies their asymptotic properties.

These results are applied to adaptive laws in Section 4 under the

assumption that afl £ A. The behavior of the MLE when a. ? A is

examined in Section 5. Some concluding remarks are collected in

Section 6.

2. RECURRENCE IN CONTROLLED MARKOV CHAINS

We begin with some definitions.

Definition 2.1 Let {A , n > 0} be a sequence of random events and
_____——-_——__ Q —

{I(A )} the corresponding indicator functions. The sequence {Aq} is
n

. 1rare along a sample path oi if lim — £ I(A )C<d) s 0, and frequent
m=0

otherwise, i.e. if lim — EI(A )(u>) > 0. {A } occurs almost always
n n n
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if {Ac} is rare, where AC =» ft-A is the complement of A . If {A } is
n n n n n

rare along all sample paths outside a set of zero probability it is

rare a.s. Frequent a.s. and almost always a.s. are similarly defined.

Definition 2.2 Let {y } be a sequence of real numbers and y one of its
_________________ jj

limit points. Then y* is a frequent limit point of {y } if for every

neighborhood 0 of y*, the sequence of events {y £ 0} is frequent.
n

A limit point which is not frequent is rare.

The following lemma is useful to test whether a sequence is rare.

-1 nLemma 2.1 Let {a } be a nonnegative sequence such that n _C a "*" ®' ^or

e > 0 let k be the number of terms in {a_,...,a } larger than e. Then

n k -»• 0. If {a} is bounded the converse also holds,
n n

Proof ;rZa>i £ a +I £ e >I V e =•§• ke.
m m m

Hence n k -*• 0. Conversely, suppose a < M for all n and n~ tc -»• 0.
n n — n

Then

- n—1 _ -

Z" 5_ a =* — /_ a + — T) a<e+ — ke^-e.
n m n {a <£} m n {a >e} m " n n

m m~"

Since e > 0 is arbitrary, n" Z a •*• 0. n
m

Some properties of frequent limit points are collected below.

Lemma 2.2 Let {a } be a sequence in a compact metric space with metric

d. Then

i) The set A* of limit points of (a } is compact and a -*• A*, i.e.

there is a sequence {a*} in A* such that d(a ,a*) -»• 0.
n n ny

ii) {a } has at least one frequent limit point.

iii) The set A** of frequent limit points is compact.

iv) For any open set 0 ^ A**, the sequence of events {a ^0} occurs almost
n

always.

Proof 1) This is well known, ii) Let e > 0 and cover A* by finitely many

balls of radius e, say B-^ B . Then {a } is eventually in
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U B,and for at least one i, say i - k, the sequence {a € Bt } is
n k

frequent. Cover B, , the closure of R , by finitely many balls of

radius e/2, say BT^»«**>Bian • T^11 fo* so*ae j the sequence

{an 6 b^ H «} is frequent. Cover B. H w .by finitely many balls

or radius e/4. Continuing in this way we form a sequence of balls

with radius e/2 , n - 1,2,... such that the sequence of events that

a belongs to any of this spheres is frequent. By compactness the

centers of these balls have a limit pcint a* which it is easy to check

must be a frequent limit point of {a }. (iii) Let a S A**, and 6 a

neighborhood of a. Then there are a* € A** and a neighborhood 0* of a*

such that a* 6 0* C 0. Since {a S 0*} is frequent so is the sequence

{a SO}, hence a € A**, (iv) Let B = 0C Ha*. Then B is compact

and B H A** = <J>. Let 0 , 0 be disjoint open sets such that B CO

A** C 0o. For e > 0 let D',...,D* be balls of radius e which cover B.
_> _> m

Then D. - D* H 0,,... ,D =« D1 HO, is a finite cover of B that does not
1 1 1 m m 1

intersect A**. Now if {a S 0 } is frequent then so is {an £ D, } for

some k. Proceeding exactly as in (ii) we can find a frequent limit

point in B. This contradicts B H A** = <|>, hence {a € 0 } is rare. H

Lemma 2.3 Let {n, , k > 0} be a sequence of positive integers such that

, n

lim — 2 I(m - bl for some k) >0. Let {a } be a sequence in a
m=0

compact metric space. Then the subsequence {a , k >_ 0} has a limit

point which is a frequent limit of {a }.

Proof Let A* be the limit points of {a }. For e > 0, cover A* by
°k

finitely many balls of radius e, say B.,...,B . Then a S Ub.
± m n^

eventually and by the assumption regarding {n, } it follows that the

sequence {a £ Ub.} is frequent. Proceeding as in the proof of Lemma 2.2

(ii) leads to the result. Q
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We can now define recurrence concepts for controlled Markov

chains.

Definition 2.3 A state i £ S is said to be recurrent along a sample path

(0 if x ((o) = i infinitely often (i.o). If the sequence {x =i) is

frequent along id it is said to be positive recurrent along w; otherwise

it is null recurrent along oi.

Lemma 2.4 Recall the assumptions A1-A4. If i € s is recurrent on a set

D of positive probability, then every state is recurrent a.s. on D.

Moreover, for any j,k in S such that p(j,k;z,oQ) > 0 for some (hence

all) z S Z(i), the events {x =j,x ,.,-k} occur i.o. a.s. on D.
n n+J.

n

Proof Suppose p(i,i';z,aA) > 0. The series 5^I(x =»iT) and
n n

2E{I(xm=it)|Cym_1> - Ep^i'-^Vi'V converge or diverge
together (see [5,pp. 96-97].) The latter series diverges on D since

n n

-Cp(x™_i»-f Jz_. i>an) > min p(i,if;z»0 T}l(x=i) and> by hypothesis,m-1 m-1 0 -2<£z(i) 0 ---» m
n n

_Cl(x =i) + °° on D. Hence S1^ =if) diverges a.s. on D, i.e., if
"—" m ^^ m

is recurrent a.s. on D. Now by A4 there is a single communicating

class. Hence for any i€S there is a finite path of strictly

positive probability from i to I so that a repeated application of the

preceding argument establishes the a.s. recurrence of %on D. The

second part of the lemma is proved in a similar manner. n

Lemma 2.5 If i 6 S is positive recurrent on a set D of positive

probability, then every state is positive recurrent a.s. on D.

Moreover, for any j,k in S such that p(j ,k;z,ctQ) > 0 for z € Z(i),

the sequence {x =j,x +1=k} is frequent a.s. on D.

proof Suppose pCiji1;z,aQ) > 0. By the Martingale Stability Theorem

([6, p. 387]),
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n£ tI(xm "̂ ""I(x. =1'ig^!}] -±t[Kxm =!•) -pfr^.l's.^..,,)]
-»• 0 a.s.,

and so

, n n

lim- £l(x =i.,)>[min p(i,if;z,an)] lim- £l(x = *> a-s-
u m 7f-n ^ n m

By hypothesis, the expression on the right is strictly positive on D.

Hence iT is also positive recurrent a.s. on D. By arguing exactly as

in the proof of Lemma 2.4 the remaining results may be established. n

The use of the word "recurrent" in Definition 2.3 is clearly

appropriate. Use of the phrases "positive recurrent" and "null

recurrent" is justified by the next result.

Lfnmna 2.6. For Markov chains with stationary transition probabilities

and a single communicating class the preceding definitions of positive

and null recurrence coincide with the usual ones.

1 n"1 1 VJ- -1
Proof For fixed i € S let y - - 5_ Kx_si) so y" an(2] I(x =i)] .

n n *-* m n ^^ m

Let t0 be the first time i is reached and x, , k - 1,2,..., the kth

return time for i. If m is the number of visits to i up to time n,
n

then

m m +1
, n n , n

mn & k-yn-,,,n & k
Now xQ is finite a.s. and the t,, k :_ 1, are independent and identically

distributed. By the strong law of large numbers, therefore,

m m +1

1 n 1 \r»lim - Y. t- - lim— _T t. = Et a.s.,
n --' k m -"* k 1

n n n

where the possibility Et_ - « is included. Hence lim y - (EO
n

a.s. Therefore lim y =• 0 iff Ex, = » iff i is null recurrent in
n 1

either sense, and lim y > 0 iff Ex. < » iff i is positive recurrent
n 1

in either sense. n
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We now introduce a condition which bears a resemblance to the

notion of "tightness" of a family of distributions.

Condition T There exists a null set N and for each e > 0 there exists

J < « such that lim — 5_ *(x =i,i>J ) < e for every sample path 01 £ N.
£ n «"L m e

m=0

The next result is immediate.

Lemma 2.7 (i) For a finite state Markov chain condition T is always

satisfied, (ii) For a Markov chain with stationary transition

probabilities positive recurrence implies condition T.

Lemma 2.8 Under condition T all states are positive recurrent a.s.

Proof Suppose i £ S is null recurrent on a set D of positive probability.

By Lemma 2.5 all states are null recurrent a.s. on D i.e., n 2_,I(x sj) -»•

a.s. on D for all j S s. Hence for any

1 n-1 J n-1
— 2 ^X- = J»J<J)=T_C_C I(x = J) "»• 0 a.s. on D,

m=0 j=l m=0

so that condition T cannot hold. n

To obtain a condition in terms of the transition probabilities

P(i»J;z,aQ) which implies condition T we need the following. Let

C ~ [z(l),z(2),...] with z(i) S z(i) be a fixed control function and

consider the control law {z } with z - z(x ). Such a law {z }, or
n n n n.

equivalently ?, will be called a stationary law. Consider the following

assumption.

A5 There is a finite number M such that for any stationary law C, there

is a state s such that the expected time to hit s from any i in S is

bounded by M.

This is the familiar condition which guarantees the existence of

an optimal stationary law in Markov decision processes with the time

average cost criterion. (See, e.g. [7, pp. 147-148].) In [8],

Federgruen, Hordijk and Tijms have given many equivalent formulations of
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A5. In particular, a simple modification of their proof shows that under

A1-A5, A5 is equivalent to A5'.

A5J_ Let {-(i,c),i € S} be the invariant probabilities under the

stationary law r, and let P?.(5) = P{x =»j|x ==i, z, is used}. Then
n J n u

lim— ^ P.».i(C) =iKj>S) uniformly in i,£ for each j in S.
n n m=l 1J

We can now obtain the following useful results.

Lemma 2.9 Under A1-A5 the set of probability measures {ir(i,e),i € s}

on S for C e Z = II Z(i) is tight i.e. for £ > 0 there exists J < •
iQ3 e

such that J) *(*»?) < e fo* -H 5e Z.
i<J

£

Proof It is easily seen that for each n,i,j p .(O is continuous on Z.

1 nSince, by A5f, - 5.P? 4 -• ir(j.O for each j uniformly in i,£, therefore

tt(j,c) is continuous in C for each j. Hence for J < », _>J ~(j,5) and
j<J

2 ^O*?) ~ 1 ~ _C ffCSC) are both continuous in £. Now as J -*• °°,
j>J j<J

t! ir(j,s) decreases monotonically to zero. Since Z is compact under
J>J

the product topology, it follows by Dini's theorem that _£ ^(JiC) "** 0
j>J

as J -> °°, uniformly in £. Hence lim sup 2 ir(j»5) = 0 ana* -^e result
J c j>J

follows. n

Lp-wna 2.10 Let c(i,j,z) be a continuous, nonnegative, bounded function

defined for (i,j,z) € s x S x Z(i). Then, under A1-A5, for any control

law {z },
n

1 n"1
n ••* m m+l m — _/=r, c, m mr± m

n ZfZ

where E denotes expectation with respect to the stationary probabilities

{-(i,c)>.

Proof This follows from well-known results treating c(•,•»•) as the

reward function of a Markov decision process. n
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Le-™« 2.11 Under A1-A5 condition T holds.

Proof By the Martingale Stability Theorem, for any j,

1 n_1lim ^ E [I(xm =j,j >J) -E{I(xm =j,j >J) I<tFm^1>

so

lim ^ ZIU =j,j >J) =lim ;H I(xm =j ,j >J) |<$f )
n m n m • ^ m—±

1 n-1
=lim - J] S P<x-,»-5z-»an> 1 max 2 *(-»C) £n £3) j>J m m ° C€Z i(=S j>J

P(i,j;?(i),ct0) a.s. (2.1)

The inequality in (2.1) follows from Lemma 2.10 by choosing

c(i,j,z) - 2.) P(-»J;z,a_). As in the proof of Lemma 2.9 one can

show that

lim max £ P(-J ;S(i) ,<0 - 0 for all i in S (2.2)
J S j>J °

From Lemma 2.9 there exists J such that

£ *(±,0 <k e, ?^z.
i>Jl

From (2.2) there exists J. such that

max max £ p(i,j;C(i) ,a )<±- e, so £ 7r(i,0 £ P(i.J;ctt),an)
i±\ C 3>J2 ZJ1 iSs j>J2 °

1 £ v.(i,C) S P(i,J;C(D,a )+ 2 *(-,0 <£, Ce Z.
i_Jx J>J? i>Jx

Using this estimate in (2.1) gives

"^n SI(xm= J'J >J2) <£a-s-
Let N£ be the null set where this inequality fails, and let

00

N = U N , . Then condition T holds outside of N. °
k=l e/K
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Lemma 2.12 Suppose A1-A5 and let N be the null set on which condition

T fails. Let to £ N. Suppose {n, ,k>0} is a subsequence of the integers

such that

, n-1
lim — £ 1^m =% for some k) = <S > 0. (2.3)

m=0

Then there is i € S such that the sequence of events {m=n, for some k

and x =i, m>0} is frequent along i.

Proof Choose 0 < 6 < 6 and J < °° such that

Tim - 2 I(x = j,j > J) < 6 for i»fN. (2.4)
n m

Suppose, contrary to the assertion, that

1 n"1— Y* I(m - n, for some k, x < J) -»• 0 along o>.
n ^<. lc m —

m=0

Then

1 n"1
— 2l I(m = u. for* some k, x > J) = 6 > 6, along u>,

m=u

and, a fortiori, to

lim — E I(x = j,j > J) > 6 along ai,
n m —

thereby contradicting (2.4). n

These results form the basis of the proofs in subsequent sections.

3. LIKELIHOOD RATIOS

We recall from [9] some facts about likelihood ratios. Let (Q,^,?)

be a probability space, and P another probability on (G,»T). Then

there exists an integrable function a _0 on (ftroF,P) called the

likelihood ratio of P to P and a set N with P(N) =0 so that

P(A) = f AdP + P(A ON), Ae^f.
J K
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a is also denoted by -=• . a is unique up to P-equivalence and N is
or

unique up to (P+P)-equivalence. Define the relations P«P, P i P

respectively, by P(N) * 0, P(N) = 1 (or, equivalently a = 0 P-a.s.).

Let P 5 P mean P « P and P « P.

Let (r> >n>0} be an increasing family of a-fields such that

9^- a(U?T). Let P ,P be the restrictions of P, P to to 9T --<*
-/n„ n n *-'n
dP

let a - —- . Then P«P implies P «P . Also a - E{a| Of }P-a.s,
n dT n n n ' '-'n

n

Thus {a-fxr »p} -s a martingale and a ->- a p-a.s.
n n

In our problem ft is the set of all sequences {x } in S and
n

SjTn =a(xQ,...,x ). Each a£Adefines aprobability measure Pa. It

is easy to check that

A (a) _ ____ - y m m+1 m
dpa0 » ^VVl'VV '

n

From the above-quoted facts it follows that for each a € A there is a

a0
function a(a) = dP |dP such that a (a) -+• a(a) a.s. (with respect to

A.

P(X„»X„4.i;Z->a)
Lemma 3.1 On the set {A(a) > 0}, n *"•-• n + x

An+1 <°) P(x »x +1Jz ,a)
Proof Simply note that -^ n n+1 n

An(a) pfr^vrVV *

Corollary 3.1 Suppose the Markov chain has stationary transition

probabilities and is recurrent. Then either a(a) = 0 a.s. and

P IP or a(a) = 1 a.s. and Pa = P in which case the transition

probabilities under a, a are identical.

Define LQ(a) = Jin A^(a). L is the log-likelihood ratio.

Definition 3.1 For each oi let a - a (w) £ A be such that
~~~~~———————————— xi n

L_(a_) __ L (a), a € A. a is called the maximum likelihood estimate
nun n —_________________________________
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(MLE) at time n. If the maximum value of L (a) is achieved at more than
n

one value, we assume that only one of these is chosen according to

some prescribed rule which ensures that a is ^T -measurable.
n n

Lemma 3.2 a (a ) is a positive submartingale. If a. £ A, then

a (a )> 1 a.s. and
n n —

a

P {[a (a )•»••] U [a (a ) converges to a finite value]} - 1.
n n n n

Proof The first statement can be verified directly. The second follows

from well-known convergence properties of positive submartingales

(see, e.g. [5, pp. 89-91]). n

For the remainder of this section assume that A1-A5 hold and a_ S A.

Lemma 3.3 — L (a ) •+• 0 a.s.
n n n

Proof L (a ) > L (a.) = 0. Hence
n n — no

lim - L (a ) > 0 a.s. (3.1)
n n n —

From Lemma 2.10, and for any fixed a in A, an appropriate choice of

the function c gives

lim ^Ln(a) <max __>(i,C) 2_P(->k;C(i) i«J*a ^}VZIZ)7\W a's*
n £

i><i.c)ZKi,fc;c<i),a0)to $£11$:;*)«-

<_ 0 a.s., by Jensen's inequality.

Let A be a countable dense subset of A. By the preceding inequality

there is a null set N outside of which lim - L (a) < 0 for all a S A.
n n —

By Lemma 2.11 condition T holds outside a null set which, we may

assume, is included in N. Then for £ > 0 and u) £ N, there exists J

such that

"= Iz I(xm >J) <s (3-2)
where K > 0 is any number with K > |itn e| and e is as in A3. Fix a

in A. By continuity there exists a £ A such that
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An pQL.k;z.a) _ p(i,k;z,a)
p(i,k;,z,aQ) p(i,k;z,aQ)

for all i,k <_ J, and z £ Z(i). Hence

Irk.(») -:i(5)l ir

£

K2'
(3.3)

. p(xm'xffifl;Zm'C') . *(Wl;Va)
Jin —- x— x-n

n n

-is
n

n n

z ?(VXmfl;Zm>a) P(xm'xm+l;2m>a)
11 *<Vxi_+l;V°0} * ^VVl'VV

+ I(x <_ J and x - <_ J)]} <_ e
m m+1

p(xm>Xm+l'Va0) ~" p(VXm+l;Zm'a0)

a)
[I(xm< J orxm+1> J)

using (3.2), (3.3). Since £ > 0 is arbitrary and lim — L (a) <_ 0,

a) £ N it follows that

lim — L (a) < 0 for all a £ A and tu £ N.
n n —

(3.4)

Now suppose there is oj £ N and e > 0 and a subsequence {a } of
"k

{a (a))} such that
n

— L (a ) > e for all k.

Since A is compact we may suppose a -»• a*. Then, an argument similar

to the above may be employed to show that

lim — L (a*) > £,
k *k °k

thereby contradicting (3.4). Hence it must be that lim — L (a ) < 0
n n n —

for a) £ N which, with (3.1), proves the assertion. n

Theorem 3.1 There is a null set N such that for all u £ N and any

limit point a* of {a (a))}, - L (a*) + 0.
n n n

-1.
Proof By Lemma 3.3 there is a null set N- outside which n L (o ) -»• 0,

l n n

For each rational number r > 0 and integer J cover A by open sets

0r_.(J),...,0 (J) such that if a, a1 are in 0 «(J) then
r

-15-



£n pC±tJg«Fa) _ ln P(i?,1?zya»)
p(i,j;z,aQ) p(i,j;z,aQ) < j for i,j < J, z e z(i)

(3.5)

(Here the left hand side is taken to be 0 if p(i,j ;z,0 =0.) Following

Lemma 3.2, sup{A (a)|a € o AJ)} is a submartingale which converges to

a finite value or to -H» outside of a null set N „(J). Let
rJl

N„ = U N .(J). By Lemma 2.11, condition T holds outside a null set
rJlJ

N_. Let N = Nn U N U N_. Let co £ N and a* be a limit point of {a (tu)}.
3 12 3 u

p(x ,x _;z ,a) n-1
Let Q (a) =» In , n tt1*1 n - . Then L (a) =» Y. Q (a), and the

p(xn>Xn+l;Zn'a0) n ^
and the assertion would be proved if Q (a*) -*• 0. Suppose, in contradiction,

that there are e > 0 and a subsequence {a,»k > 0} with |Q (a*) | > e for

all k. There are two possibilities.

Case 1 There exists J, such that max(x ,x ,-) < J- i.o.
1 "k V1 " !

Case 2 For every £ > 0 and subsequence {n,} with |q (a*) | > £, for every

J,max(x ,x -) > J eventually.
Tc He

Suppose Case 1 occurs. Let r < e be rational and J. such that

"» nS" I(xm "V *tt (3>6)
where K >, |Jin e| and e is as in A3. Let J= max(J-,J2). Suppose

a* e 0 n(j), and let a € 0 (j) satisfy L (a ) > L (a), a € 0 (J) . Then
rJl n r* n n — n r*

SO

Since |Q (a*) | > e > r, it follows from (3.5) that Q (a ) >j or

Q (a ) < - ^-. In either case it follows from (3.7) that

{L (a )} cannot converge to a finite value and so L (a ) •*• ». Hence
n n n n

-16-



lim - L (a ) > 0. But lim - L (a ) < lim - L (a ) = 0, by Lemma 3.3.
n n n — n n n — n n n

Therefore

lim - L (a ) = 0. (3.8)
n n n

Now

-, -, ^;1

llffl In Ln(«n> "Ln<«*> Ii^ n" ^ lO^ "V°*> iK-xCWl*>J)

+"•£ ZJ |Qm(am) -<^(«*)|l(__(VVl) «J) «r
from (3.6) and (3.5). Since r is arbitrary, it follows from (3.8) that

— L (a*) -»• 0 as required,
n n

Now suppose Case 2 occurs. Let e > 0 such that |Q (a*)| > e i.o.

Let 0 < 6 < e and {n, ,k >^ 0} be the maximal subsequence such that

- n-1
lQ_ («*) I >. 5. Let J be such that lim ^ V I(x > J) < 6. By hypothesis

n. n *" m

there is only a finite number of k's such that max(x ,x .-) < J and
\ V1 "

so |Qm(a*)|l(max(xm,xnrf>1) £ J) <_ <5 eventually. Hence

IS ^|Ln(o*)| <IS± J). |Qm(a*)|l(max(xm,xm+1) <J)

+I^£ Z IVa^llOnttCx^x^) >J)
, n-1

< 6+2K lim i T) I(max(x ,x ..) > J) < (1 + 2K)6,
n ~~* m nti —-

where K is as before. It follows that lim — L (a*) =0. °
n n

Corollary 3.2 There exists a null set N such that for every u) £ N,

p(x^,k;zn,a*)

V3?

ri P^x .k;z ,o-;
e > 0, and limit point a* of {a (ca)}, the sequence < Jin , ,—= r-^ n LI p(x„tk;z_tan)
for some k r is rare.

Proof For each a S A let

V* P(x »k;z ,a)
G_(a) = 2- p(x„,k;z ,an)Jln n n^ n n 0 p(xn,k;zn,a0)

-17-
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(As usual, we set the last term to 0 if p(x ,k;z ,0 =0.) It is
n n 0

easy to show that G (a) is continuous in a. Let
n

n-1

B (a) - £ G (a).
n *"' m

By the Martingale Stability Theorem lim —[L (a) - B (a)] = 0 a.s. Let
n n n

A be a countable dense subset of A and N. a null set outside which

lim —[L (a) - B (a) ] - 0 for every a S A. Let N« be the null set in
n n n Z

the statement of Theorem 3.1 and N_ the null set outside which condition

T holds. Let N = ^ U N. U N . Let u f N and a* a limit point of

{a (co)}.
n

, n-1
Let 5 > 0. Let J be such that lim — 5_ I(x > J) < 5. Define

n *™' m

It is easy to see that h(i,j;z,a) is continuous in a, and let

a S A be such that |h(i,j;z,a*) - h(i,j;z,a)| < 6 for all i,j __ J

and z £ Z(i). Note that

so

w-SL (a) - B (a) = 2-. h(x ,x - ;z ,a)
n n ^^ m nrrj. m

- - n-1
lim i|Ln(a*) - Bn(a*) - [L^) - B^Ca)] | =lim ±| £ [h<VXffi+1;zm,a*)

" hl(VXm+l;Vi)]l l11^1 I£h(VXm+l;V°*>

' h(VXm+l;Zm'5) ]I(max(xm'Xm+l) >J) !+"* n Zl[h(x»»Vl;V°*}

- h(x ,xm+1;zm,a)]I(max(xm,xnH_1) <_ J) |

< 8K lim - £ I(max(x ,x__,) > J) + 6 < (8K + 1)6,
— n m mri —

-18-



where K is as in the proof of Theorem 3.1. 6 > 0 being arbitrary, it

follows that

lim £[L (a*) -B(a*)] -lim hlta) -B(a)] =0.
n n n n n n

By Theorem 3.1,this implies

m=0

Now

1 1 nA1
lim - B (a*) - lim -- >_ G (a*) = 0

n n n *-fn m

p(x ,k;z ,an) p(x ,k;z ,a )
-G (a*) ~2-P(x ,k;z ,a) " ' P Jin ,m. m ? .
m ~r m* n* p(x ,k;z ,a) p(x_,k;z,a)

k mm mm

The result follows from the strict convexity of the function x Jin x,

Jensen's inequality and Lemma 2.1. n

The next result is an immediate corollary of the preceding result.

Theorem 3.2 Suppose the Markov chain {x } has stationary transition
n

probabilities and is positive recurrent. Then there is a null set N

such that for every u> £ N, e > 0 and limit a* of {a (a))}, the transition
n

probabilities under a* and a. coincide.

The application of Theorem 3.1 and Corollary 3.2 to adaptive

control appears in the next section.

4. ADAPTIVE CONTROL

Throughout this section it is assumed that A1-A5 hold and an £ A.

We also assume given for each a in A a stationary law

5(a) = [S(a,l)»S(a,2),...]. The actual law is given by the adaptive

law z = 5(<*_>x )» n > 0. The particular choice of £(<*) is not
nnn —

relevant in most of the subsequent discussion, but we shall consider

the interesting case when 5(a) is chosen to minimize, assuming a is
-, n-1

the true parameter, the average cost of the form lim— 2u c(x ,x -,z ).
n m=0 m m+1 m
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In [4] we considered the case where A, S are both finite and the

following result was obtained which is stronger than what seems possible

in the more general setting considered here.

Theorem 4.1 [4] Under the scheme above, there exist a random variable

a* and a random time N < « a.s. such that for almost all a), a (ai) = a*(a>),
n '

n_>N(w) and p(i,j;5(a*(u)) ,i) ,a*(t»))) = p(i,j ;5(ct*(a>) 9l),aJ for i,j in S.

Moreover, if 5(a) minimizes the average cost under a, then the true

1 n_1
cost lim— Y c(x_>x_,i,z ) = J(a*) a.s. where J(a) is the cost

n •—* m mri. m

corresponding to the stationary law 5(a).

Thus in the finite case the adaptive law in "stable" in the sense

1 n~1that the parameter estimate a , and the average cost — J* c(x ,x ,, ,z )
n n *—• m m+1 m

converge. However, the limiting cost J(a*) may exceed J(0 which is

the minimum possible cost. (For an example see [4].)

To see what is possible in the more general setting we need the

following definition.

Definition 4.1 For a sample path a), a limit point a* of {a (to)},

and a state i € s, the pair (i,a*) is said to be frequent if for each

neighborhood 0 of a*, the sequence of events {x =» i,a £ 0} is frequent
n n

along to.

Lemma 4.1 There is a null set N such that for every w £ N and limit

point a* of {a (to)}, a* is a frequent limit point if and only if there

exist i^S such that (i,a*) is frequent along oi

Proof Sufficiency follows from Def. 4.1 and necessity from Lemma 2.12. n

Theorem 4.2 Suppose 5(a,i) is continuous in a for each i. Then there

exists a null set N such that for every (o £ N, limit point a* of

(a (to)}, and i^S such that (i,a*) is frequent along u>, the following

-20-



relation holds: for all limit points a of {a (a))} and j 6 S,

p(i,j;5(a*,i),a) - p(i,j;5(a*,i),aQ).

Proof From Def. 4.1 and Corollary 3.2, for e > 0 there is a subsequence

{n, } such that a -»• a*, x - i, and

In p(x ,j;5(a ,x_ ),a)
"k °k *k

*n p(x ;j;5(a ,xn ),an)
"k "k \ °

In p(i,j;5(a ,i),a)
"k

In p(i,j;5(a ,i),aQ) < £.

The result follows from the continuity of 5(a,i). h

This result is clearly weak in comparison with Theorem 4.1. To

obtain stronger conclusions it is necessary to modify the adaptive

control law through randomization. We study two such schemes.

Randomization of control values

We impose another assumption.

A6.1 For any a ^ 3 in A, there exists iSs such that for every open

set 0 C z(i) there exists z S Z(i) for which

[p(i,l;z,a),p(i,2;z,a),...] ^ [p(i,l;z,0),p(i,2;z,B),...] (4.1)

It is worth comparing this assumption with Mandlfs identiflability

assumption (1.1). Whereas the latter requires that (4.1) holds for

all z S Z(i), A6.1 requires that it hold only for a dense subset of

Z(i). Suppose Z(i) is subset of Rn as is usually the case. Then for

a f $ equality will hold in (4.1) for a set of z € Rn of dimension

less than n and then A6.1 is likely to hold even when (1.1) does not.

Consider now the following random perturbation of the given

adaptive law 5. For each i let u be a probability measure on Z(i)

which assigns positive values to every open set. Pick e > 0 small,

and for each z E z(i) let B(i,z) be the open ball of radius e and

center z. Suppose at time n, a - a is the MLE and x = i. Then the
n n

-21-



control zq is chosen from B(5(a,i)) by an independent experiment

corresponding to the restriction of u. to the set B(5(a,i)). Let

Qn =a(x0,Z0"-"VZn) and Qn =a(W""W'W" Then

P(xn+1 ' JlQn> =p<V^V°0>. *i*M e*\Q$ ' \ <«
n+1

for every open set C C B(5(a +.,x +1)). The results obtained previously

continue to hold if we use Q in place of ^ . The control law

{z } is called an {e.,}-randomization of 5*
n —1

Theorem 4.3 Under any {e.}-randomization of 5, a -+• art a.s.
i n 0

Proof Let Z(i) be a countable dense subset of Z(i) and C^. -he set of

all open balls in Z(i) with rational radii and center in Z(i). By the

Martingale Stability Theorem there exists a null set N outside which

u- i S [i<vie B> - ««vie B) |Q;}] =° (4-2)
fit

for every i and B £^B(i). By Lemmas 2.8, 2.11 there is a null set

N^ outside which every state is positive recurrent. Finally let N« be

the null set in Corollary 3.2.

Let oj f N = N U N U N and let a* $ aQ be a limit point of

{a (co)}. By A6.1 there is i € s such that for every open set 0 C z(i)

there is z^O and j £ S for which p(i,j;z,a*) ^ p(i,j;z,aQ). Let

{n, ,k 3_ 0} be the maximal subsequence for which x (to) - i for every k.
K °k

By Lemma 2.8 the sequence {n =» n, for some k} is frequent and so,

by Lemma 2.3, there is a subsequence {n, } of {n. } and z* S Z(i) such that

along a)

- n-1
5(x ,a~ ) = 5(i,a- ) -»• z*, and lim — T^ I(m = n, for some k) > 0.

*k ^ \ n m^O nL
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We can find M < « and an open set 0 C z(i) such that z* G 0 C B(5(i,a~ )),

k >M. By A6.1 there are z G o, j Gs for which p(i,j;z,a*) 4 p(i,j;z,aQ).
#«*

By Al there exists BeCg. such that ZGBC 0 and IJin P^yj?2?0*) l > 5 > q1 ' p(i,j;z,aQ) 1
for z G B. Now by (4.2)

ii= i n± Uzn €£) =IS i 1m(Za eg) |g^x}

iUmi I y.(B)[y.(B(C(i,a )))]_1I(x - i and BCB(5(i,o )))
n x x m m m

- n-1
>_ vi(B) lim —^ x(m = n, for some k) > 0

m^O

t %n p(x ,j;z ,a*) 1 >
Hence the sequence < —--r- > 6Vis frequent along w,

v. ^n p^x ,j,z ,a-.; j j

contradicting Corollary 3.2. n

Let c(i,j,z) be a nonnegative bounded cost function which is

continuous in z G z(i) for each i,j. For every stationary C G z and

a G A, let

V(C,a) - £tt (i,c)2p(i,j^(i),a)c(i,j,c(i)),
- 3

where {it (i,c)} are the stationary probabilites corresponding to the

transition probabilities {p(i,j;?(i),a)h Thus V(c,a) is the cost

incurred by the control law z = ?(x ) if a is the true parameter.
n n

Lemma 4.2 V(c,a) is continuous in z, for each a.

Proof As in the proof of Lemma 2.9 we see that tt (i,c) is continuous

in X> for each i,a. Given 6 > 0, it follows from Lemma 2.9 and the

boundedness of c that there exists J such that

J

V(C,a) >• 2J Tt (i,c) ]£ P(i,J;C(i),ct)c(i,j,ai)) >V(c,a) - 6
i=l j=i

Now -w PC^-OSSC*),**) -s continuous in z, and converges monotonically, hence

uniformly, to 1 as n •*• « and so, increasing J if necessary, we get
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J J

V(C,a) > £ T (1,0 S P(iJ;?(i),a)c(i,j,C(i)) > V(C,a) - 26
i=l " j=l

The term in the middle is continuous in z, and since 6 > 0 is arbitrary it

follows that V(£,a) is continuous as well. °

Suppose now that the given adaptive law 5 is such that for each a,

V(5(a),a) = v(a) « min V(a,0-
C^Z

We wish to show that if {z } is an {s.}-randomization of 5 then its
n i

cost can be made arbitrarily close to V(aQ) by choosing e. > 0

sufficiently small.

Theorem 4.4 Suppose V(5(a0),aQ) < V(?,aQ) when z, * 5(otQ) i.e. 5(aQ) is

the unique optimal stationary control law. For any 6 > 0, there exists

e > 0 such that if {z } is an {e}-randomization of 5, then
n

, n-1
V(aQ) <lim- £ c(X>X ,z )<V(c )+ Sa.s.

m=0

Proof By Lemma 4.2 there exists an open set 0 in Z with 5(0 G 0 such

that V(aQ) <V(aQ,0 < V(aQ) + 6 for z, G 0. Since Z = n Z(i) has the
i

product topology we may suppose that 0 has the form

m °°

0 = n B(i) x n Z(i)
i=l i=m+l

for some m < » and where B(i) is a ball of radius £ and center 5(ctn,i).

Let {z } be an {£}-randomization of 5. By Theorem 4.3, a -»••<-_ a.s.
n n 0

and so, from Lemma 4.2 and the uniqueness of 5(<0 It follows that

5(a ) •*• 500 a.s. Hence there exists a random time N < °° a.s. such
n U

that

5(a ) G b, n > N a.s.
n —

By Lemma 2.10 it follows that
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n-1
lim- £ c(x-»x-_ui>z )1SUP V(an,5) <V(a) +6. an ~~* m m-KL m — ^-« u — 0

Randomization of parameter estimates

We consider an alternative perturbation of the given adaptive

law 5* For the finite case a similar randomization is proposed in [10].

We replace A6.1 by the following.

A6.2 For every a ^ 3 in A and i in S and every neighborhood 0 of a

there is an open set 0 C o such that for every a G o,

[p(i,l;5(a,l),a),p(i,2;5(a,2),a),...] t [p(i,l;5(a,D ,3),p(i,2;5(a,2) ,3) ,...]

Let v be a probability measure on A which assigns positive values

to every open set. Pick y > 0 small and let B(a) denote the ball of

radius y and center a. Let a be the MLE and x the state at time n.
n n

Then the control z is chosen to be z = 5(a »x ) where a is selected
n n x n n n

from B(a ) by an independent experiment corresponding to the restriction

of v to B(a ). We call the control law {z } a Y-randomization of 5.
n n '

Theorem 4.5 Under {z }, aQ is the only frequent limit point of {a }

almost surely.

Proof Let N be the null set in Lemma 2.12 and Corollary 3.2, and let

a) G n. Suppose a* f aA is a frequent limit point of {a (a))}. Then
u n

the sequence {an(aj) G B(a*)} is frequent and let {n,,k >_ 0} be the

maximal subsequence such that a G B(a*) for all k. By Lemma 2.12
"k

there is i G s and a subsequence {n, } of {n, } such that along w

± a;l
x~ = i, and lim — 2J I(m = n, for some k) > 0
Tc n m=0

Proceeding from here on as in the proof of Theorem 4.2 we can show

r|£n p(x ,j;z ,a*) -»
that for some 6 > 0 and j G s, the sequence < 7 :— > 6rIIto p(xn>3;va0 J

is frequent along to, contradicting Corollary 3.2. a

-25-



Suppose now that V(5(a),a) = V(a) as in Theorem 4.4.

Theorem 4.6 Suppose 5(<xQ) is the unique optimal stationary control

law under a . For any 6 > 0 there exists y > 0 such that if {z } is a

Y-randomization of 5, then

n-1

V(aQ) <lim i£ c(xm,Xm+1,zm) <V(aQ) +6
m«0

Proof The proof is virtually identical to that of Theorem 4.4 with

Theorem 4.5 taking the place of Theorem 4.3, and with the additional

feature that the contribution to the average cost due to rare limit

points of {a (to)} vanish asympotically due to Lemma 2.2 (iv) and the

converse in Lemma 2.1. H

We close this section with the remark that A6.1 may be replaced by

A6.3 which is more similar to A6.2.

A6.3 For every a ^ 3 in A and i in S and every neighborhood 0 of

5(ct,i) there exists z G z(i) for which (4.1) holds.

A heuristic discussion of A6.1-A6.3 is deferred till Section 6.

5. INADEQUATE PARAMETER SETS

So far most of the results were derived under the assumption

a_ G A. In Section 3, a crucial role is played by this assumption in

the proof of Lemma 3.2 where we use the fact that a (a ) > a (art) =» 1 > 0.
n n — n U

This observation motivates the following definition.

Definition 5.1 The parameter set A is adequate if P{A(a) = 0 for all

a} = 0, or equivalently, if P{sup a(a) > 0} « 1; otherwise A is
a

inadequate.

Evidently if aQ G a then A is adequate. The following results

are proved along the same lines as in Section 3.

Theorem 5.1 If A is adequate then Theorem 3.1 and Corollary 3.2

continus to hold.
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Corollary 5.1 If A is inadequate then the conclusions of Theorem 3.1

and Corollary 3.2 hold outside the set N - {a)|A(a,w) =» 0 for all a}.

(Note that P(N) > 0.)

From now on we consider the case when A is inadequate. Suppose

initially that there are no control parameters so that a merely

indexes a stationary transition probability p(i,j;a). Suppose further

that under each a all states are positive recurrent. Then it is easy

to establish the following result which states that the MLE a
n

converges to a subset of A consisting of parameter values which are

"closest" to aQ in a well-defined sense.

Theorem 5.2 a converges almost surely to the subset of parameter

values which maximize

D(a) - £i\W^PUl3,V*np(i,j;a0)
where {it (i)} are the invariant probabilities corresponding to

a0
{p(i,j;o0)>.

The case when the transition probabilities do depend on a control

parameter, discussed next, is considerably more complicated. For

simplicity we assume that Z(i) = {z-,z2,...,z } contains L elements.

The general case can be worked out in a similar way though the details

are cumbersome.

Let A1-A5 hold and let N be the set on which condition T fails.

N is null by Lemma 2.11. Let a> G n and let

1 n~1q_(i,J,A) =- E I(xB =l,.Wl -J,_b -z\).
m=u

Then 0<_ q^ <_ 1and £ qn(i,j,JD =1. Thus q^ defines a(random)

probability measures on triples (i,j,£). Let p = {q (i,j,Jl)} denote

the vector with components q (i,j,Jl). We think of p as an element of

the normed space I .
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Lemma 5.1 Suppose u> G n. Then the I closure of the sequence

{p (a>)} is compact, and each of its limit points is itself a probability.

The set of frequent limit points of {p (<d)} is compact and for any

open neighborhood 0 of this set the sequence {p (to) G 0} is rare.

Proof Considered as a subset of [0,1] with product topology the

set {p } has compact closure. Let p* = {q*(i,j,JO) be such that

lim a (i,j,£) = q*(i,j,JD for each i,j,A.
V.

Clearly q*(i,j,J0 >. 0. By Lemma 2.11 for e > 0 there exists J and K.

such that, along to,

and so, for k > K ,
E

(5.1)1> £ £ % C1'-'*) > l"e
ij=l Jl=l He

From this it follows that

J£ L
1 > £ £ q*(i,j,A) > 1-e (5.2)

ij«l £=1

(5.1), (5.2) imply that p converges to p* in I and that p* is a
"k

probability. The remaining assertions now follow from Lemma 2.2. °

Corollary 5.2 If c(i,j,£) is any bounded function then

lim £ c(i,j,£)q (i,j,J0 - £ c(i,j,£)q*(i,j ,Jl).
k ij* Ha ij£

As before let {ir(i,c)} denote the invariant probabilities under

the stationary law z, G z. Let q (i,j,Jl) = ir(i,?)p(i,j ;C(i) ,aQ)I(c(i) = z£).

Let q = {q (i,j,A)}. Consider G = (q_U G Z} as a subset of I .

Lemma 5.2 There exists a null set N such that if to G n then every limit

point of {p } belongs to the convex hull of G.
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Proof Let c (i,j,&), r = 1,2,... be a countable dense set of functions

in l and N a null set such that for oj G n, and every r
00

± n-1
lim« £c,.<xm>x«u.i»zJ -m3x £7T<i»C)£p(i,j;C(i),an)c (i,j,?(i)).
nnm^Ormm+lm sGzi j ° *

(5.3)

Such a null set N exists by Lemma 2.10. Augment N if necessary so

that Lemma 5.1 applies. Let to G n and suppose p converges to p* along
°k

a). Then by Corollary 5.2, for every r

£ cr(i,j,JDq*(i,j,J0 =lim £. c (i,j,A)q (i,j,Jl)
ijJl k iji r \

1 V1
sl^7J ^VWl'V lmax£7r(i^)£p(i»3.^i)»a0)

• c (i,j,?(i)) = max £ c (i,j,Jt)g(i,j,JL) (5.4)
gGG ijJt r

Now G is a compact subset of Jl and hence so is its convex hull. If
00

{<l*(->j»£)} does not lie in the convex hull of G, by the separation

theorem there exists c such that for all q
r

£ c (i,j,Jl)[q*(i,j,iO - q(i,j,*)] > 0
ijJl r

contradicting (5.3). n

Lemma 5.3 Let N be as in Lemma 5.1 and to G n. Suppose p converges
*k

to p* along to. Let p~ , k > 0 be another subsequence such that
"k

|n, -n, | <_ M < » for all k. Then p~ also converges to p* along to.it fc i^

Proof For any i,j,£, if i^ J_ n^,

l^a^iD -q^CLj.i)! l^ Kx. =i,Xm+1 "Jf»n -z\) <2L .
Thus ^ (i,j,Jt) -q~ (i,j,A)| <M(— +±-) +0ask +». n

To describe the asymptotic behavior of {p } we need another concept,

Let {a,n >, 0} be a sequence in a metric space. Let 0, 0 be open sets

with 6 CO Co. Let
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m, (6) -min{n >nu (6) |a G 6,aQ G 6}

be the kth time a enters 0 after leaving it. Let

^(0) -min{n >rn^Co) |an G o},

Jlk(0) =max{n £ hl (6) - l|an G o}

We say that {a } drifts slowly if for any open sets 0, 0 with 0 C o C o,

the sequences {n - n, (0) for some k} and {n - £i_(0) for some k} are both

rare.

Theorem 5.3 There exists a null set N such that if to G N then {p^M)
• n

drifts slowly considered as a sequence in l^.

Proof Let N be as in Lemma 5.1 and to G N. Let 0, 0 be open sets in

Jt^ with 0 C 0 C 0, and define JL , m. , n, as previously with a = PnM •

We shall only show that the sequence {n « JL for some k} is rare, the

proof of the other half of the assertion being similar. We may suppose

p Go for infinitely many k because otherwise there is nothing to

prove. We claim first that

m. - JL •*• « as k -*• ». (5.5)

For, suppose in contradiction that there is a subsequence k., with

m, - I. £ M < » for all i.
fei fei

Now, by Lemma 5.1, there exists a subsequence, denoted again by {k.} such

that

lim p - p* and lim p. a p.

Clearly p* G o and p G o 3 6 so that p* ^ p contradicting Lemma 5.3.

Thus (5.4) must hold.

Now JL - > m. > I, and so (5.5) implies lim — = 0. Let

k(m) = max{k|£,, <_ m}. Then
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n Lt I(- =\ for some k) iwnj £ I(i =\ for some k)

- k(m) _
=• -—* »• 0 as m -* ». h

*k(»)
In summary the results of this section show that when an G A

(more precisely, when A is inadequate) and for any control law, the

relative frequencies, p , of the various state and control combinations,
n *

converges to a tight set of probabilities which is the convex hull

of the set G of invariant probabilities under all stationary control

laws. The sequence p may, however, drift slowly.

In [4] we have given an example which shows that p may not

converge almost surely. In that example, z = 5(a ,x ) is an adaptive

law constructed in such a way that, as p begins to converge to some p*

and hence a to some a*, the corresponding control values z = 5(a*,x )

are such that the likelihood ratio is maximized at some other parameter

value a f a* and so a begins to drift slowly to a. But at a, the control

values 5(a»x ) are such that the likelihood ratio is maximized at a**
n

Thus the MLE a keeps switching more and more slowly between a* and a.

The following conjecture seems plausible

Conjecture - For a,3 in A define

Then a sufficient condition for the MLE a to converge a.s. to some
n

A-valued random variable is

M(a,a) > M(a,3) (5.6)

for all a,3 G a such that a $ 3.

If true, the above conjecture suggests the following choice of

C(a) for each a. Choose C(a), from among the strategies that are near-

optimal under a, to make (5.6) hold for as many 3 ^ a as possible. This
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is a manifestation of the trade-off between identification and optimality

considerations in the choice of inputs. Thus the control in the

adaptive scheme fulfills a dual purpose — to ensure good convergence

properties for the estimates (with, of course, convergence to the true

parameter value if possible) and to satisfy the optimality criteria as

closely as possible. Clearly, this discussion is only heuristic and

much needs to be done.

6. DISCUSSION

The approach adopted here puts greater emphasis on "time domain"

or sample path behavior and many of the concepts introduced can be

seen as analogs of certain ensemble concepts, viz., rare events are

analogs of null sets, condition T is an analog of tightness etc. The

reduced dependence on ensemble averages makes this approach more suitable

for non-stationary processes which are asymptotically well-behaved.

Many of the concepts introduced in Section 2, such as recurrence

and positive recurrence, can be extended to more general spaces such as

an arbitrary Borel state space, and it seems reasonable to expect that

similar results will hold.

Assumptions A6.1, A6.2 and A6.3 have the common objective of

overcoming the limitations of Theorem 4.2 which says that at the

limiting values of the parameter estimates, the frequent limits of

control values are such that these control values cannot distinguish

between different limits of the parameter estimates. This cannot

occur if for each a# aQ we use frequently a control to distinguish

between a and aQ. This can be achieved, as in A6.1 and A6.3, by a

small randomization if for each a the set of control values which cannot

distinguish between aand aQ is "thin" i.e. has empty interior.

A6.2 permits an analogous randomization in parameter space. The
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latter appears more appealing for practical problems even though the

result is slightly weaker.

The case when aQ G a is practically important since models used

for identification and control are approximations of the true system.

The results presented here are very incomplete and much needs to be done.
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