
 

 

 

 

 

 

 

 

 

Copyright © 1979, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



EVALUATION AND ENHANCEMENT

OF THE

PERFORMANCE OF RELATIONAL DATABASE MANAGEMENT SYSTEMS

by

Paula Birdwell Hawthorn

Memorandum No. UCB/ERL M79/70

7 November 1979

ELECTRONICS RESEARCH LABORATORY

£ College of Engineering
University of California, Berkeley

• 94720



fr

0

Evaluation and Enhancement

of the

Performance of Relational Database Management Systems

Paula Birdwell Hawthorn

Sponsor: National Science Foundation MCS-75-03839-AO1

ABSTRACT

The concurrent advances in the understanding of data manage

ment systems and in the improvements in computer architec

ture technology have led to interest in special-purpose com

puters designed to enhance the performance of data manage

ment systems. In order to judge the relative usefulness of

these machines, their performances can be compared to stan

dard systems. However, there is little data available to

indicate the actual performance characteristics of standard

data management systems. Also, it is not clearly understood

what types of applications are best suited to database

machines.

In order to determine the performance characteristics of a

standard database system, the performance of the relational

data management system INGRES is analyzed. A benchmark

analysis technique is used for the performance evaluation.

The INGRES system and the UNIX operating system were instru

mented and the benchmarks were run in a carefully controlled

test environment with the instrumented systems.

There are three sets of benchmarks, corresponding to three



different types of user database management commands

("queries"). These are overhead-intensive queries, which

reference little data; data-intensive queries, which refer

ence a large quantity of data; and multi-relation queries,

which are found only in relational data management systems.

Since database machines are back-end machines, the functions

of setting up the commands and communicating with the user

are performed in the front-end system. If the proportion of

time spent in such overhead functions is very large, little

performance improvement can be gained by the use of a data

base machine. The proportion of time spent in processing

the data (as contrasted with overhead functions) was meas

ured in order to determine the overall effectiveness of

database machines.

The amount of sequentiality and locality of I/O references

was also measured. This was done to determine the useful

ness of large buffers for pre-fetching data pages, and for

retaining those already referenced. The measurement of

locality also gives an indication of the effectiveness of

those database machines that rely on caching data.

The results show that the performance characteristics of two

query types: data-intensive queries and overhead-intensive

queries, are so different that it may be difficult to design

a single architecture to ODtimize the performance of both

tyoes. Significant sequentiality of reference was found in

CL



9

the data-intensive queries. It is shown that back-end data

management machines that distribute processing toward the

data may be cost effective only for-data-intensive queries.

It is proposed that the be3t method of distributing the pro

cessing of the overhead-intensive query is through the use

of intelligent terminals. It is shown that there is signi

ficant locality of reference in the multi-relation queries.

The performance of the INGRES system is compared to

estimated performances of several database machines. A

numerical analysis is performed for each of five database

machines, simulating the machine's performance in executing

each of four queries. The results are compared to the per

formance of a standard system. It is found that for signi

ficant classes of queries a standard system provides the

most cost-effective processing of the queries.

<.c<



Chapter 1

Introduction

J_. Chapter ±

J_. K Introduction

The concurrent development of data management systems and

computer architecture technology has led to interesting con

jectures about the use of the advanced technology to enhance

the performance of the data management systems [HSIA79].

The focus of this thesis is the projected performance

enhancement gained by the use of two architectural revi

sions. The particular revisions are discussed in Section

1.2. Section 1.3 is the explanation of the methods used in

this thesis to predict the performance changes which would

result from the revised architectures. Section 1.4 contains

the conclusion.

1_.2. Proposed Architecture Revisions

The following two computer system architecture designs are

of particular interest in the performance enhancement of

data management systems.

J..2.1_- Multiple Processors

One of the effects of the rapid decline of the cost of pro

cessing units is that it is feasible to use multiple proces-

Page 1



sors in a single computer system [SU78]. In systems

designed for data management, a simple method of scheduling

those processors is to dedicate different processors to dif

ferent functions: some for data manipulation, some for ter

minal monitors, and so on. This is the multi-processing of

the logical functions of the data management system, using

one or more processors per function. Although no previous

published data management system architectural design has

embodied the use of multiple processors for logically

separate functions, the principle of th'e use of separate

processors for separate functions is well known. For

instance, the CDC 6000 machines were designed with multiple,

special purpose processors [TH0R70].

Another method of using multiple processors is to use them

as array processors, many performing the same logical func

tion at once. In most designs, the action the processors

perform is to process the data as it is read from the mass

memory. This design has been proposed in several systems

[OZKA75, SL0T75, BAUM76, DEW78A] and is the basis for most

special-purpose architectures for data management (database

machines).

J_.2.2. Extended Storage Devices

An extended storage device is any storage system with access

times between those of moving-head disks and very fast ran

dom access memory. This includes fixed head disks, bubbles,

Page 2



CCDs, and slower, cheaper semiconductor random access memory

[HSI76B], Extended storage devices are used in data manage

ment systems to cache the database. If a reference is made

to data residing in an extended storage cache the access

time will be faster than if the data is in the slower mass

memory.

1*3.' Performance Improvement Analysis

In order to predict the effect that a different architecture

will have on the performance of a data management system,

particular performance characteristics of the system must be

examined. In chapters three and four the performance

analysis of the data management system INGRES [STON76] is

described. Chapter three contains the description of

INGRES, the operating system it runs on, and the software

trace facility used to measure the performance of INGRES.

Chapter four contains the results of the performance

analysis of INGRES.

The method of analysis used was to construct benchmark query

streams, and measure the performance of the system as it

executed the query streams. Three sets of benchmarks were

developed from user query streams. Each benchmark set was

constructed to correspond to a particular query type. One

set was composed of queries that are defined as "overhead-

intensive" because the majority of the time spent in execut

ing them is spent in the overhead functions. The second set

Page 3



were the data-intensive queries. These were queries that

spent the majority of the execution time actually manipulat

ing the accessed data. The third set were multi-relation

queries. A complete explanation of the benchmark queries is

contained in chapter four. *

The performance of the system was analyzed with respect to

the improvement possible through the use of multiple proces

sors and extended storage devices. An explanation of the

measurements made, and their significance, is contained in

the following paragraphs.

2.3-1. Determining the effect of multiple processors

To determine the utility of functionally separate multiple

processors the logical functions of the data management sys

tem must be identified. The amount of time spent in each

function must be determined. Therefore, the major functions

of the INGRES data management system were identified and the

time associated with each function measured. It is shown in

chapter four that the overhead-intensive queries spend as

much as 90% of their execution time performing functions

that can easily be delegated to a special purpose processor

(an intelligent terminal). It is shown that the data-
. to

» '-

intensive and multi-relation queries spend a smaller percen

tage of time in the overhead functions. It is also shown

that systems which allow multiple processing of the data *<

manipulation functions can result in the faster processing

Page 4



.of the multi-relation and data-intensive queries.

J..3.2. Extended Storage Devices

Extended storage devices are used as large buffers. The

* " problem of determining the effectiveness of the use of large

I buffers is essentially the problem of determining the data

reference patterns. If the data is referenced randomly

across the database, the buffer size must approach the size

of the database in order increase performance through

obtaining a large percentage of hits in the buffer [RODR76].

There are two data access patterns for which large buffers

result in reduced data access time. These are discussed in

the following paragraphs.

j_.3.2.j_. Locality of access

A process exhibits locality of reference to its data pages

if, once a page has been referenced, there is a high proba

bility that it will be referenced again. It has been shown

that most processes do exhibit locality of reference to

their program pages [DENN68, CHU72, LEWI73]. There remains

the question of the reference behavior of a process with

k respect to file references [RODR75]. This thesis is espe-

cially concerned with one type of process, data management

systems. The problem of characterizing data management sys-

: tem I/O references has been extensively discussed in the

literature. Chapter two contains a summary of the relevant

Page 5



research in that area. In chapter two it is shown that pre

vious analyses of the performance patterns of data manage

ment systems resulted in the conclusion that there was very

little locality of data reference [RODR76]. In chapter four

it is shown that for overhead-intensive queries in INGRES a

there is a great deal of locality of data references. The I

differences in the results are because of a difference in

data management systems and a difference in analysis tech

niques. The studies summarized in chapter two were trace

analysis studies which apparently did not include a large

percentage of overhead-intensive queries.

1.3.2.2. Sequentiality of reference

A data management system exhibits sequentiality of reference

to its data pages if, for a given file, the logical page

reference n + 1 immediately follows the reference n. If the

I/O references are known to be sequential, the data can be

stored sequentially on the disk and read into an extended

storage device an entire track or cylinder at a time, thus

dramatically reducing access time. Therefore the sequen

tiality of data references was measured for the INGRES sys-
»

.4

tem, and the results reported in chapter four. It is shown

that, for data-intensive and multi-relation queries, there

is a great deal of sequential referencing of data. This is ,-

in agreement with the studies reported in chapter 2, where '

sequentiality of access was found in other data management t

systems [SMIT76]. Therefore the use of extended storage ~

Page 6



devices is indicated for data-intensive and multi-relation

queries.

J..3...3. Database Machines

Several special-purpose data management machines have been

proposed [LANG78, LIN76, SLOT75, SCHU78, SU75, BAN78A,

DEW78A, BABB79]. These machines combine the use of extended

storage devices and parallel processing to enhance the per

formance of data management systems. Chapter five contains

an analysis of the performance of the five best known sys

tems. The predicted performance of the systems is compared

to the performance of INGRES running on a general purpose

computer. It is found that for significant classes of

queries the database machined are not cost-effective.

J_.4. Conclusion

The organization of the remaining chapters is as follows.

Chapter two contains the results of the major performance

analyses appearing in the literature. Chapter three is a

general description of INGRES and the UNIX operating system.

Chapter four contains the results of the benchmark analyses.

In chapter five the performance of the major data base

machines is analyzed and compared. Chapter six contains the

conclusions.

Page 7



Chapter 2

Previous Work

2. Chapter 2

2.K Introduction

INGRES is a relational data management system. There exist

no previous published performance analyses of relational

data management systems. This chapter contains summaries of

the performance analyses that do exist, which were of

hierarchical data management systems. There are two addi

tional major differences between the previously published

performance analyses and this one:

1) They were trace analyses, rather than the benchmark

analysis used in this thesis.

2) The intent of the analyses was not to discover the

possible advantage of using advanced technological designs,

which is the intent of this thesis.

It is instructive to examine the performance analyses of

other data management systems to determine the generality of

the results of this study, and to determine the best method

of analysis.

Section 2.2 contains an explanation of the traces which were

analyzed, and an explanation of the data management systems

that produced the traces. Section 2.3 contains the results

Page 8



of the trace analyses. It is shown that the method of

analysis used, which was simply tracing the execution of

"typical user queries" for several days, does not lead to

insight into the functioning of the data management system.

In section 2.4 a separate area of performance analyses is

discussed. These are the analyses concerned with double

paging studies. Although not directly related to the per

formance issues discussed in this thesis, these studies are

interesting in that they reveal the difficulties in the

operating system/ data management system interface.

2.2. The IMS and AAS Traces The following section con

tains an examination of the reports of various researchers

in the search for and analysis of data reference patterns.

Most of the major work in this area consists of analyses of

two page reference traces. In Section 2.2 the traces are

examined, drawing from the papers that describe them. Then

in the Section 2.3 the conclusions that the researchers drew

from the traces are described.

2.2.J[. IM IMS trace

IMS (Information Management System, [IMS360]) is a hierarch

ical data management system developed and marketed by IBM.

The following description of IMS is in part due to Date

[DATE75] and in part to Lavenberg and Shedler [LAVE75].

In IMS, data is organized into "segments" in a tree struc-

Page 9



ture. A segment is composed of related "fields". The root

segment, its child segments, their child segments, etc.,

form a database record. There are several possible physical

organizations of the database; in the one used for the trace

the organization was HIDAM. In this organization, the

access to the root segments is via an index (using an

indexed sequential technique). In general, the access to

child segments is sequential in top-down-left-to-right

hierarchical sequence order (TDLR) except that there are

pointers between segments that allow some data to be

bypassed. The data is first loaded in TDLR sequence. Addi

tions to the database are handled by attempting to place the

added segment physically where it belongs in TDLR order. If

there is no room, pointers are placed which chain it to its

logical siblings and allow it to be stored in a physical

block separate from its place in the logical database.

The trace was made of an interactive installation. In IMS,

an interactive user enters a transaction from a terminal.

The IMS section that handles the terminal interface

translates the transaction to calls to the data language

interface ("Data Language/I", DL/I). The program that does

this translation is most often a user-written program. The

DL/I calls are at a very low level, and navigational in

nature (e.g. "get the first department record with

departmentjsumber = 123"; "get within department the next

employee record")

Page 10



t^-

Using the HIDAM storage structure as an example, to obtain a

list of all employees in the shoe department first the user

program issues a DL/I call to get the department where name

= shoe. Then it issues a call to get the first employee

within the shoe department. It prints the name, and subse

quently issues the call to get the next employee. If the

database was- previously set up with the definition that

employee segments should be linked, the effect of the "get

next" is that the next employee segment is immediately

accessed via a pointer in the first employee segment. If it

is not linked, all the intermediate dependent segments must

be scanned until the next employee segment is found. This

sequential scan results in a physically sequential scan of

the database pages only if there are no added segments

chained to other pages.

Obviously, the most efficient access to a segment is a

direct access to the root segment. A measure of the effi

ciency of the database organization, then, is the number of

segments that must be searched until the user query is

satisfied. This is the segment path length and is the sub

ject of several analyses of this trace.

According to Tuel and Rodriguez-Rosell [TUEL75] the trace

consisted "of probes inserted into the DL/I program, which,

at the completion of the DL/I call, recorded the call type,

transaction, terminal, time of day, segment search argument

(the list of segments and qualifications of them to be

Page 11



searched for the call), status code, and returned key. This

information was written to the IMS log tape.

The database was copied so the trace could be used to simu

late the system activity on a separate test machine. It is

stated in [TUEL75]:

"Shortly before initiation of the trace, the keys
of the relevant data bases were dumped onto tape.
The keys were dumped in hierarchical order (top-
down, left to right) for easy reloading." p.11

By using an ordered dump of the databases, rather than sim

ply copying them as they lay on the disks, all information

was lost regarding the disorder of the database that would

arise from update activity. Since added segments are

chained with pointers and stored away from where they would

fit in the logical database, a logically sequential scan of

the segments is a physically sequential scan of the data

blocks only if the data is close to the condition it was in

shortly after loading. Whether or not the database was in

relatively clean condition was completely lost by this dump

ing technique.

The system itself is described as an on-line manufacturing

control system, and had an average of 80 terminals active at

once. There were five databases, ranging in size from 0.77

MB to 113.65 MB, with a total of 175.77 MB. The system was

traced for seven consecutive days of operation. The trace

itself can be analyzed to obtain such information as the

number of DL/I calls per second, the number of DL/I calls

Page 12

&

««



per transaction, and so on.

2.2.2. The AAS Trace

AAS is an IBM in-house data management system that is simi

lar in design to IMS. The trace of the interactive system

was reported by Easton in [EAST75]. The database was

2*10**6 pages; there were an average of 400 terminals active

at once. Easton noted that Zipf 's law [KNUT73] held for the

data references: in the three days traced, only 4 * 10**5

pages were referenced.

Comparing the two traces, it is stated in [EAST77]:

"...the number of page faults for a particular
buffer size was examined over successive intervals
of 5*10**5 references. In the case of AAS the
fluctuations from interval to interval were small.
In the case of IMS, however, the number of faults
in one such interval was less than 700, while in
another it exceeded 5600 Therefore one must be
cautious about assuming that behavior measured or
modeled in one time period will be maintained in
another time period. A detailed intuitive under
standing of the nature of the workload at the time
of a measurement can aid in attributing any gen
erality to the results obtained"

However, the technique of tracing a random workload leads to

great difficulty in obtaining a detailed intuitive descrip

tion of the workload for either application.

2.3.. The Trace Analysis

In the analysis of the IMS trace done by Tuel and

Rodriguez-Rosell, the database was loaded from the dump tape

onto a test machine. In order to obtain performance meas-

Page 13



ures the trace was used as a batch input stream to a spe

cially written interface to an extremely well instrumented

version of IMS. It is reported in [TUEL751:

Two alternatives exist for the test system: a
batch region DL/I system, or an IMS control region
with several message processing regions. Ini
tially, the batch implementation has been chosen,
because of the relative simplicity of setting up
the system. The corresponding on-line environment
is now being prepared. The main difference
between batch and on-line systems is that in the
batch, DL/I calls are serialized, whereas in the
on-line system, the DL/I calls are multi-
programmed and contend for system resources. How
ever, since there is little data sharing, the CPU
and I/O resources for a set of transactions are

considered to be similar in both cases, aside from
the CPU overhead in supporting
multiprogramming."[p.12].

So what was analyzed in [TUEL75] concerning the I/O perfor

mance of the IMS trace is not actually the seven-day trace

itself, but a secondary trace taken from serializing the

DL/I calls of a working system, and using them as batch

input to operate on a newly-loaded database. Serializing

the calls results in a major perturbation of the results.

It completely changes the validity of the trace as a trace

of an interactive system. In particular, the sequential

referencing of data in a batch system does not appear as

strongly in a multi-process interactive system.

In [TUEL75] the major emphasis was analysis of the data

reference patterns for locality and sequentiality. It was

discovered that there is almost no locality of reference to

segments - that is, there was almost no re-referencing of

Page 14



segments. It was found that when the segments were grouped

into blocks, a high hit ratio was achieved because there was

a large amount of sequential referencing of the segments,

and grouping them into blocks effectively performs a read-

ahead function. The natural conclusion from this discovery

is that the databases should be written on the disk in very

large blocks. There are two problems with this conclusion.

First, it depends on the fact that logically sequential seg

ments will be written physically sequentially on the disk,

which is only true in a database that has experienced little

update activity. Second, this sequentiality of reference,

Tuel and Rodriguez-Rosell point out, is almost bi-modal in

nature:

"...a small number of very long (greater than 200)
access path lengths dramatically affect the sample
characteristics — in fact, the 0.1$ of calls hav
ing long path lengths account for 27.4% of all the
segments touched. Although these fractions are
undoubtedly characteristic of this particular sys
tem, it is believed typical. Thus models of
behavior may have to consider at least two classes
of calls to characterize relationships between
response time and utilization." (p.20)

Where [TUEL75] is an overview of the IMS trace and the seri

alized trace, [RAGA76] is an in-depth analysis of the seri

alized trace. The references to segments and to blocks were

analyzed for sequentiality and locality. In this paper it

is again shown that there is no locality of reference to

segments. Also, it is shown that pre-fetching of segments

is a better technique than demand fetching the segments.

Page 15



Storing the segments into disk pages, and doing block reads

is also shown to be an advantageous technique. When data is

block read, the pages are stored contiguously on the storage

device (assumed to be a moving head disk). Then, when one

page is read, n others are also read. This is called "block

reading" and n is the "blocking factor". The advantage of

reading data in blocks, is that disk arm motion is saved if

the data will eventually be used; the disadvantage is that

extra information may not be used and the channel and memory

have been impacted by having to handle the extra data. In

an IMS system, since the DL/I call is at such a low level,

it is not possible to know if the extra data fetched will be

used. In [RAGA76] block reading with a fixed n is explored,

and various values chosen for n, with the result that read

ing about four blocks at a time was optimal.

Algorithms for dynamically changing the blocking factor were

explored in two studies, [SMIT76 and FRAN76]. The proposal

in [SMIT76] is to assume that past history in some way

predicts future usage. At each request for data, the system

uses information about how many of the past references were

sequential references, and pre-fetches several blocks at a

time dependent on that knowledge. This is shown to be

optimal over a fixed blocking factor, and over demand fetch

ing of blocks. Smith apparently worked with the same seri

alized trace as in [RAGA76],

A similar analysis is contained in [FRAN76]. In this

Page 16



analysis, the original IMS trace was converted to a sequence

of segment references by use of an algorithm devised by

Mommens. The sequence was then used as input to a simula

tion that mapped the segment references to block references.

In [FRAN76] the blocking factor n would be determined from a

"learning period" of dynamically keeping track of sequential

references to blocks, then fixed for another period of time.

This is shown to be optimal compared to demand fetching and

compared to having a fixed blocking factor.

In [RAGA74, SMIT76 and FRAN76] the results of experimenta

tion with using a variation of the LRU strategy for buffer

replacement by handling un-referenced data pages separately

from referenced ones are reported. In [FRAN76] the results

showed that the miss ratios for the AAS and the IMS secon

dary trace derived from the Mommens» sequence were con

sistently better when the read-ahead blocks were maintained

separately than when a standard LRU buffer replacement algo

rithm was applied. The result in [SMIT76] was exactly

counter to that of [FRAN76], although the experimental

design was almost identical, and the IMS trace was used in

both cases. [RAGA74] contains results similar to [SMIT76],

It is intuitively clear that, in a multi-programmed situa

tion, where one buffer is shared among several independently

executing processes, read-ahead blocks will suffer in a LRU

replacement scheme, and probably be over-written by the time

the process requesting them gets around to using them. This

Page 17



is entirely dependent on the number of processes con

currently sharing the buffer space, however, since if only a

single process is using the buffer, and it is processing the

data sequentially, the read-ahead blocks will never be

over-written. We therefore can understand why the analyses

of the secondary trace of the IMS system that was made by

serializing the DL/I calls yield the result that treating

the read-ahead blocks differently makes no difference: in a

uni-programmed system, it wouldn't. What is puzzling, then,

is why the result is different for [FRAN76]. It may be that

the Mommens technique successfully simulates multi

programming of the DL/I calls; or, since all these analyses

use only a portion of the trace, it may be that in the por

tion used in [FRAN76] the sequentiality present was a result

of inter-query sequentiality (successive DL/I calls refer

enced successive blocks, a natural outcome of the "get next"

call). In [SMIT76] it is reported that the sequentiality

present was due to intra-query sequentiality (the result of

one DL/I call was that many blocks were read sequentially).

In the [FRAN76] it is also noted that there was one index

block reference for every five data block references, a

surprisingly high number. It may be these index references

that yield the amount of locality apparent from miss ratio

curves displayed in [FRAN76, SMITH76 and RAGA74]. Although

it is explicitly stated that there is no locality in

[RODR76]:

Page 18



"Comparison of the two plots [miss ratio functions
for IMS and AAS] shows that, in both cases, over
range of several orders of magnitude for window
size values, the average working set size is
almost a linear function of the window size and it
does not show the rapid decrease in slope beyond a
window size value, so characteristic of VMPS [vir
tual memory program systems] programs. This plot
gives clear indication of the lack of locality in
DBS [Data Base Systems]." p10.

the miss ratio curves all show a decrease in miss ratio as

the buffer size increases, even for buffer sizes much

smaller than the databases. This can be explained by the

frequency of referencing the indices.

In an analysis of the AAS trace, Easton found that the ter

minals referenced data at random within the data base, but

that for each terminal there was a high probability of re-

referencing the same data page within one transaction, and

that there was also some re-referencing of the same data

page across transactions from the same terminal. Further

analysis revealed that the re-referencing within a transac

tion was because of sequential reads to the same data page

(an average of 40 reads per transaction) and that the

inter-transaction re-referencing was due to subsequent tran

sactions referencing the same data. He developed a markov

model which expressed the probability of re-referencing a

page as a two-phase probability dependent on whether it had

been recently referenced, and validated the model to the AAS

trace. In [EAST78] a generalization of the model was

applied to a trace of IMS logical record references. The

model itself is not of primary importance in this

Page 19



discussion; we are concerned with the data reference pat

terns exhibited in the traces.

Of the IMS trace Easton remarks:

"The second reference string analyzed, also of
length about 2*10**6 references, is from a meas
urement of an IMS system that is used for
engineering analysis in a manufacturing environ
ment. The original data consisted of a map of the
database at the start of the measurement and a
sequence of DL/I calls that was subsequently exe
cuted. This sequence was constructed by J. Mom
mens, who developed a technique for expanding each
DL/I call. Mommens1 sequence was then converted
to a sequence of references to 4096-byte pages for
this study."

In both the IMS and AAS reference traces, the miss ratio

curves plotted by Easton show that, as the buffer size

increases, the miss ratio decreases. In the AAS trace, this

drop is plotted for buffer sizes extending from 10**3 to

10**5 pages. For the IMS trace, the miss ratio plotted

drops from 0.005 at 200 pages in the buffer, to .0012 at

2000 pages in the buffer.

2.4. Double Paging Studies

There have been several studies of the "double paging ano

maly", which is defined in this section. These studies have

nothing to do with the performance analysis of INGRES since

INGRES was implemented on a non-virtual memory machine.

This discussion is included for completeness, and to show

the problems of buffering data on a virtual memory machine.

From the above studies it can be concluded that buffering

the data pages is optimal, and that large buffer sizes are

Page 20



best. In fact, IMS does buffer the database pages. These

buffers are maintained by IMS; a logical decision since the

cost of communicating with the operating system per segment

would be very high. This implementation of one virtual

memory system (IMS) on top of another virtual memory system

(the IBM virtual memory operating systems) leads to prob

lems. Since the system maintaining the buffer does not know

if a virtual memory page is actually in memory, it can

easily assign a page that currently resides on the paging

device to a new database page being read in. The operating

system, seeing the reference to a page on the paging device,

will read that page into memory first, before the data

management system can write the new database page into it.

This is the "double paging anomaly" identified by Goldberg

and Hassinger [GOLD74].

IMS had an even worse problem: the algorithm for obtaining

information was to search the entire buffer first, then to

go to the disk. If the buffer itself is paged, the buffer

searches cause many page faults. This problem was studied

by Tuel in [TUEL74], and his conclusion was that the entire

buffer should be assigned to real memory, and never be

paged.

Sherman and Brice in [SHER76] report that the later IMS sys

tems used a table to find out what was in the buffer, and so

had only the double paging problem to deal with. It was

shown in [SHER76] that the potential benefits of paging the

Page 21



buffer outweigh the disadvantage of double paging, and in

[BRIC77], an extension of their earlier work, they showed

that it is better to manage the page allocation for buffers

in a partition separate from the program pages.

In [LANG77] the advantage of using virtual buffers is quan

tified by using user-supplied probabilities of re-

referencing the data. It is shown that buffering to fast

paging devices is optimal when the probability of re-

referencing the data is high. In [FERN78] the interaction

between the two page replacement algorithms (one for the

allocation of memory pages, the other for allocation of vir

tual buffer pages) is explored. An algorithm that takes

into account whether or not the buffer page is actually in

memory is found to be optimal.

It is also pointed out in [FERN78] that one solution to the

double-paging problem is to have better communication

between the operating system and the data management system.

2.5^ Conclusion

The following points are clear from the above discussion:

1) The use of trace data for performance evaluation must be

accompanied by a clear, detailed explanation of the work

load and specific programs that created the trace. Other

wise, insight gained by the trace analysis is highly Imited.

This is apparent from the sometimes conflicting results of

Page 22



the AAS and IMS traces. It is for this reason that a bench

mark analysis was chosen for the following performance meas

urements of INGRES. Only in the controlled environment

afforded by the benchmark analysis can the precise phenomena

measured be understood.

2) Data management systems that support only low-level

queries are forced to guess at optimization strategies. The

emphasis on predictive buffering strategies in the above

literature is only necessary if the system can not determine

from the query exactly what data will be needed.

3) When a data management system is implemented with a gen

eral purpose operating system, there can be performance

problems due to the destructive interference of the two sys

tems. The problem of buffering in a virtual memory system

is a case of this destructive interference.

Page 23



Chapter Three

Background

3,- Chapter _3

2-1- Introduction

It is impossible to assess the generality of the results of

any performance evaluation of a real system unless it is

known precisely why the stated results occur. This chapter

presents an overview of INGRES and the operating system UNIX

[RITC74] so the results of the performance analysis of

INGRES that are reported in the next chapter can be properly

evaluated.

The first section of the chapter defines some of the terms

that will be used in the following three chapters. Section

3.3 is a brief summary of INGRES; section 3.4 is an explana

tion of UNIX I/O handling. The final section contains the

conclusions.

3.2. Definitions

2'£*1« Query

A query is a directive to INGRES to display or modify data

or data structures. INGRES queries are written in QUEL, the

INGRES query language, and are single-statement commands.

There is no notion of a transaction that is made up of

several user queries; each query is executed independently.

Page 24



A query stream is a group of QUEL statements, executed

sequentially.

3.2.2. Overhead-intensive and Data-intensive Queries

In this section two query types are defined: overhead-

intensive queries, and data-intensive queries. A more com

plete definition of both types is presented in the following

paragraphs. Intuitively, overhead-intensive queries are

those that reference little data, which means that the data

management system overhead becomes a large component of the

query response time. A data-intensive query is one that

references a large amount of data, so that the overhead

functions are a small portion of its response time. Clearly

there is a continuum between the query types. They are

presented as two separate types in this analysis because the

performance patterns are markedly different on opposite ends

of the continuum. The differentiation is similar in concept

to the that between "simple" and "batch" queries defined in

[GRAY78].

We will define an overhead-intensive query as one for which

data processing time is less than system (operating and data

management) overhead to process the query. The overhead is

the time to communicate with the user, parse and validity

check the query, and issue the command to fetch the data.

The data processing time is the time to actually fetch and

ipulate required data. Therefore, the overhead-intensive

Page 25

man



query is a query which references little data. This case

arises when the query inherently references little data, and

the database has been previously optimized to support the

query. For instance,

retrieve (EMPLOYEE.name) where EMPLOYEE.empnum = 1234

will be a overhead-intensive query if there are few employ

ees with EMPLOYEE.empnum = 1234 and if a useful storage

structure involving empnum is available. Such a structure

exists if the EMPLOYEE relation is hashed on empnum, ISAM on

empnum, or has a secondary index on empnum.

Overhead-intensive queries are common in such applications

as data entry, banking, airline reservation, inventory con

trol, and customer information systems.

A data-intensive query is defined as a query for which the

time to process the data is much greater than the overhead.

It references a large quantity of data, and is the other end

of the continuum from overhead-intensive to data-intensive

queries. A data-intensive query arises from two causes:

1) the query is inherently data-intensive.

If, in the above example, there were two million employees

with EMPLOYEE.empnum = 1234, the query would be a long,

data-intensive query.

Inherently data-intensive queries are produced any time

Page 26



there is a complete scan of a large portion of the data, as

in the production of periodic reports, billing of large sec

tions of customer accounts, and statistical analyses of

large amounts of data for such applications as management

information systems.

2) queries for which the database is not well-structured.

In the above example, if the EMPLOYEE relation is not struc

tured on EMPLOYEE.empnum or if it does not have a secondary

index on EMPLOYEE.empnum, the entire EMPLOYEE relation will

be read.

3.2.3,. Multi-relation queries

Multi-relation queries are specific to relational systems.

They are queries which reference more than one relation and

may be overhead or .data intensive depending on the size and

the storage structures of the relations referenced.

3.2.4. Self-overlapped CPU and I/O Time

If the I/O and CPU time for a single process is overlapped:

that is, if the process is processing data from one disk

page while another of its pages is being read, then it has

self-overlapped CPU and I/O time. Often processes arrange

to do this for themselves, through double-buffering and

read-ahead techniques, or the operating system does it for

them, through read-ahead or block reading. The advantage to

Page 27



such a scheme is that the response time for the process is

greatly increased on a lightly loaded system.

3.2.5. CPU or I/O bound

A set of queries is I/O bound if a major decrease in the CPU

time of the queries has little effect on the speed with

which the query set is executed. Similarly, a query set is

CPU bound if a major decrease in I/O time has little effect

on the execution time.

Whether a system is CPU or I/O bound at a given instant

depends on the transaction mix concurrently executing at

that point in time. If several queries, each of which is

I/O bound when running stand-alone (which is possible due to

the self-overlap of CPU and I/O times explained above) are

accessing data on different devices the mixture can be CPU-

bound or I/O bound. It can be CPU bound if the I/O times of

the queries can be overlapped because there are several dev

ices capable of operating concurrently, but their CPU times

cannot because there is only one CPU. On the other hand,

that same set will be I/O bound if all transactions refer

ence data on the same disk.

Likewise, it is possible that a set of queries, measured to

be CPU-bound on a stand-alone system, when run concurrently

may become I/O bound because they are all referencing the

same device and increasing each others access time due to

Page 28



the destructive interference of each others I/O references.

This destructive interference occurs on moving-head disks

when single queries are referencing data physically within

the same area on the disk, thus causing the disk arm to move

little, but several queries run at the same time are

referencing data in physically separate areas, thus result

ing in more movement of the disk arm.

The following is an example:

query A has 10 units cpu time, 15 units I/O time;

query B has 12 units cpu time, 5 units I/O time.

When run stand-alone, due to self-overlap features, A is I/O

bound, B is CPU bound. When a mixture of two queries of

type A is run, there are two possibilities:

1) The I/O is to two different devices, in which case the

total time to execute both queries is 20 units of CPU time

and 15 units of I/O time (since when one is accessing one

disk, the other can access another disk). So the transac-

tion mix is CPU bound.

2) The two queries reference data on the same device, so the

time to execute the transaction mix is 20 units CPU time and

at least 30 units of I/O time: the mix remains I/O bound.

In case of two queries of type B run concurrently, if the

queries reference data on separate devices the transaction

mix remains CPU bound. However, if the data for both

queries resides on the same device, the destructive

Page 29



interference can more than triple the I/O time of each

query, making the mixture I/O bound. This can occur if, for

instance, all the data necessary for one query resides on

the same disk cylinder at one edge of a moving head disk,

and the data for for the other query resides on another

cylinder, on the opposite edge of the disk. When either

query is run stand-alone it requires an average access time

of half a disk rotation to read each page of data, but when

run with together each requires an average access time of

the time to move the disk head across the full width of the

disk. On most disks, that time is more than triple the

latency time. So to run the mixture, it would take 24 units

of CPU time and 30 units of I/O time, thus making the mix

ture CPU bound.

We conclude, then, that although a single query may be I/O

or CPU bound, that a set of queries is not necessarily bound

in the same manner. Certainly the case of CPU-bound queries

becoming I/O bound is a pathological case, and the case of

I/O bound queries becoming CPU bound is far more common,

since most computer systems have more than one disk. It is

also clear that the measurement of importance is not just

whether the CPU time exceeds the I/O time, or vice-versa,

but the total amount of CPU and I/O time incurred by the

query. For that reason, both times are given in the ana

lyses in the following chapters. s

Page 30



3.3. INGRES

3...3.J_. Introduction

Complete descriptions of the INGRES data management system

are contained in [STON76, WONG76, EPST77]. INGRES is an

interpretative relational data base management system. A

relation is a table with a fixed number of columns,

corresponding to the relation attributes, (called domains),

and a variable number of rows (tuples). For the purpose of

the following discussion the following two relations are

defined:

relation: EMPLOYEE
attributes: name empno salary dept

jones 12575 10000 12

smith 2571 15000 13
adams 1255 12000 12

jones 4433 10000 11

(a partial list)

relation: DEPT

attributes: number name manager

12 toy 12575
13 shoe 2571
11 candy 4433

(a partial list)

The INGRES function to display data to the user is

"retrieve". The functions of "replace" (to change one or

more domain values), and "delete" are implemented as

retrieves followed by the appropriate action.

The organization of this section is as follows. Parts 3.3.2

Page 31



(INGRES Storage Structures) and 3.3.3 (I/O Reference Pat

terns) present general information about INGRES performance

patterns. It is necessary that this general information be

presented before the specific information in chapter 4 so

that the generality of the results in chapter 4 can be

judged. Part 3.3.4 is a detailed explanation of multi-

relation queries within INGRES. The INGRES process struc

ture is defined in part 3.3.6.

One of the results of the study presented in chapter four is

that INGRES is CPU bound in even stand-alone situations.

This is a surprising result, and counter to the usual

assumptions made of data management systems [YA078, OZKA77].

Part 3.3.4 presents general results showing under what con

ditions INGRES becomes CPU bound.

3.3.2. INGRES Storage Structures

The possible organization for INGRES relations are indexed

sequential (ISAM) or hashed on any domain or combination of

domains, or a simple heap. Secondary indices are possible

for any domain. The user controls the storage structure,

and the default storage structure is heap.

example:

create EMPLOYEE (name = c5, empno = i2, salary = i4, dept=i2)

creates a heap structure: tuples are ordered by their

order of addition to the data base

Page 32



If the user decides another structure is more suitable to

the application, the command is typed:

modify EMPLOYEE to hash on dept

the relation is now stored in a hash structure, where

each tuple is stored according to a function applied to

its (not necessarily unique) domain "dept"

A secondary index can be created for any domain, also by the

user:

index on EMPLOYEE is empx (empno)

The secondary index is stored in a relation (named, in this

case, empx). The default structure for secondary indices is

ISAM. The secondary index contains the indexed field, logi

cal page number, and position within the page, for the asso

ciated tuple.

3.3.«3. Reference Patterns

The data reference patterns possible for a single relation

retrieve are:

1) complete scan

A complete scan of the relation is always executed if

the relation is a heap, if there is no qualification, or if

the qualification is not usable in conjunction with the

storage structure.

Page 33



example:

retrieve (EMPLOYEE.name, EMPLOYEE.dept)

no matter what the storage structure of EMPLOYEE is, a

complete scan will result,

retrieve (EMPLOYEE.name)

where EMPLOYEE.salary < 12000

if EMPLOYEE is not ISAM, with salary as the key, and if

there is not a secondary index on EMPLOYEE with salary

as the key, a complete scan will result.

2) partial scan

A partial scan of the relation is executed if the

storage structure is an ISAM relation on one of the qualifi

cations, and that qualification indicates a range of values.

example:

retrieve (EMPLOYEE.name) where EMPLOYEE.salary < 12000

if EMPLOYEE is an ISAM relation, with salary the key,

only that portion of the relation for which salary <

12000 will be. read.

This is a sequential scan only if there are few randomly-

added overflow pages.

3) random reads

Random accesses to the relation pages occur when the

relation is hashed, and the hash key is included in a test

Page 34



for equality in the qualification, when the qualification

contains a domain for which there exists a secondary index,

or when the qualification is equality on an ISAM key.

3.3..4. Multirelation retrievals

The query:

retrieve(EMPLOYEE.name) where EMPLOYEE.number = DEPT.manager

is a multi-relation query. Queries involving more than one

relation are decomposed into a series of one-relation

queries. Several techniques are used to perform this decom

position. They are explained in detail in [WONG76] and

[YOUS77]. A simplified overview is shown in the following

example, using the above query and the relations defined in

3.3.1.

If both relations are very small, simple tuple substitution

is performed, i.e.: each tuple from department is read, and

the resulting one-relation query is performed. The result

ing queries would be:

query 1:

retrieve (EMPLOYEE.name) where EMPLOYEE.number = 12575

query 2:

retrieve (EMPLOYEE.name) where EMPLOYEE.number = 2571

and so on.

A more likely choice of the INGRES strategy algorithm would

Page 35



be to first perform the projection:

retrieve into tempi (EMPLOYEE.name, EMPLOYEE.number)

and the projection

retrieve into temp2 (DEPT.manager)

Now, depending on the size of the relations tempi and temp2,

either tempi can be reformatted to hash on EMPLOYEE.number,

and tuple substitution performed:

query 1:

retrieve (tempi.name) where tempi.number = 12575

and so on

or temp2 can be reformatted to hash on DEPT.manager and

tuple substitution performed:

query 1:

retrieve (name = "jones") where DEPT.manager = 12575

query 2:

retrieve (name = "smith") where DEPT.manager = 2571

and so on

The choice of which method to use is made by applying cost

estimations. If it appears that, for instance, the cost to

modify a temporary relation to hash will be greater than

simply re-reading the relation several times, the modifica

tion will not be made.

The choices for which strategy to use are data-dependent.

The strategy is not fully decided until the temporary rela

tions are formed. When the temporary relation is the result

Page 36



of a simple projection, as in the example above, the size of

the temporary relation can be approximately determined prior

to execution. However, if the temporary relation is the

result of a restriction and projection (if the clause "and

DEPT.name = toy" is added to the above, for instance) the

size of the temporary relation is unpredictable prior to

execution. Knowing the sizes of the temporary relations,

and making strategy decisions dynamically, at execution

time, is one of the sources of optimization of INGRES. If a

query were completely compiled prior to execution, this

source of optimization would be lost.

If tuple substitution is performed without reformatting the

relation, the same data is being repeatedly re-referenced,

once per tuple substituted. This is the most extreme case

of re-referencing. If, for instance, in the above example,

EMPLOYEE were hashed on number, each one-relation query

would be a random read, and there would be no re-referencing

at all. Whether a multi-relation query will exhibit re-

referencing depends on the structure and size of the rela

tions and the data distribution of the domains involved.

^•3,. j>. Conclusion

Since the default method of reading relations is to sequen

tially scan them, we may expect a great deal of sequential

ity in the INGRES data reference streams. The multi-

relation queries can cause the reference stream to show re-

Page 37



referencing.

3.3..6. The Process Structure

INGRES runs as five processes, with a sixth process occa

sionally created to perform sorts. It is forced to run as

separate processes because of the address space limitations

on the PDP 11/70 on which it is implemented.

INGRES is an interpretative system, which means that, as a

query is entered by a user at a terminal, INGRES parses,

optimizes, and executes it. The INGRES processes, their

functions and sizes (in bytes) are:

Page 38



INGRES Process Sizes

monitor interactive terminal monitor 24K

parser parses the query 53K

decomp decomposes the query into 49K
one-variable queries;
plans strategy for
retrieving information

ovqp one-variable query processor 50K
retrieves information

dbu data base utilities: 48K
these are overlays that
carry out functions such
as destroy, help, modify,
print, etc. The size given
is for the most used over
lay, the one with create,
modify, and destroy

ksort sort routine used by INGRES 18K
to sort data;
used in conjunction with modify

total 242K

These processes execute sequentially (when the monitor is

finished, it passes control to the parser, then the parser

passes control to decomp, etc). Process communication is

through "pipes". A pipe is a file that is opened by two

processes. INGRES pipes are all one-way, so, for instance,

the monitor has one pipe to write to the parser, and one to

read from the parser. The cost of the process structure of

INGRES is measured both in space and time. One third of

each of the process (with the exception of the monitor) is

identical access method code. The time to read and write

Page 39



pipes, and the time to swap in processes that are unneeded

except to transmit information through the pipes is not

trivial, as will be shown in chapter four.

Each user at a terminal executes a separate set of five

processes. The text portion of the processes is re-entrant,

so only the data portion (about half of each process) is

replicated for each user.

3.3.7. CPU Time

In preliminary performance evaluations of INGRES it was

found that the system is often CPU bound. The subject of

this section is the determination of when INGRES becomes CPU

bound while handling data-intensive queries. In Chapter

Four the results of running benchmark queries taken from

user query streams shall be reported. In this section, we

report the general performance characteristics of INGRES

that were obtained by using entirely artificial queries, and

varying them to find the sensitivity to parameters of the

query. Several query streams were written, and relations

created, that differed only in one parameter from the previ

ous one. These parameters were the tuples per page and the

number of domains named in each query. A regression

analysis was done on the resulting CPU times. Under the

given conditions:

Page 40



1) The query is a simple aggregate, with little output, as

in the above counts, or a sum, etc.

2) The query is a one-relation query.

3) The qualification is always true.

4) The domains accessed are small (less than 15 bytes

each)

The CPU time spent in the OVQP process for the query is:

CPU = (.01 + (.0012 + .001*md ) * tuppage) * pages

where

md = number of manipulated domains. A manipulated

domain is one that appears in either the target list or

in the "where" clause of the query. If a domain

appears more than once, it is counted as many times as

it appears.

tuppage = number of tuples per page

pages = number of pages in the relation

and the I/O time is

I/O = pages * .03

If the queries are run stand-alone, or on a lightly loaded

system, and if the relation is accessed sequentially (stored

as a heap), the I/O and CPU time will be overlapped. In

that case, the total time to run the query is the maximum of

the CPU and I/O times, plus about a second of overhead.

Page 41



The above estimator is correct within 5% or 2 seconds,

whichever is larger.

The following is a discussion of the effect of relaxing the

conditions. Condition (1) limits the output. If output is

allowed, the time for it must be included in the estimator.

If the output is to a disk file, the extra I/O time is

extra I/O = .03 * ((number of bytes of output)/512 bytes per

page))

If the output is to a terminal, the extra I/O time is a

function of the terminal speed.

The OVQP CPU time becomes

CPU = (.01 + (.0012 + .001*md + .0007 * nbytes) * tuppage)

* pages

where

nbytes = number of bytes of output per tuple

If condition (4), that the accessed domains be small, is

relaxed large character domains are allowed, the estimator

becomes less precise. If the md factor is increased by one

for every accessed non-contiguous domain over 15 characters

long, the estimator is correct within 25%.

Conclusion:

A data-intensive INGRES query meeting conditions 1-4 above

becomes CPU bound on a stand-alone system when

Page 42



(.0012 + .001*md)*tuppage > .20

If, for instance, only one domain is being touched, as in

the query:

retrieve (summ = sura(EMPLOYEE.salary))

then there would have to be 100 tuples per page before the

query would become CPU bound. Since a page is only 512

bytes, that is impossible.

On the other hand, if several domains are referenced in the

query, for instance 10, then at only two tuples per page the

query becomes I/O bound.

Since typical user-written INGRES queries reference several

domains per tuple, INGRES appears to be usually CPU bound,

although there is a large class of queries (the ones with

low work-density per page) for which it is not.

3.4. The UNIX Operating System

UNIX handles the INGRES I/O functions. Read commands for

logical pages are issued to UNIX which maps that logical

address into a physical address, and reads the page. Each-

page is a 512 byte block of data. If the user define a page

to be larger than 512 bytes, UNIX maps the page into two or

more 512-byte pages which may not be contiguous on the disk

and are separately scheduled in read and write operations.

Page 43



3.4^1. Read-ahead

UNIX uses a read-ahead algorithm: when a process references

two logically sequential pages, the third is also read.

From that point on, as each logically sequential page is

accessed, the next sequential one is read by the system.

For example: if a process reads page 24 and then page 25,

when the system reads page 25 it will then read page 26,

putting the data in a system buffer. When the process exe

cutes the read command for page 26, the information in the

system buffer is copied into the user's area, and page 27 is

read. The reason for this one-page read-ahead is to

increase CPU-I/O overlap. This is not a block-read method:

after the initial two pages are read, each page is read one

at a time, incurring the average access time for each page

reference.

The following table contains the results of experiments to

test the effect of the one - page pre-fetch strategy

currently implemented by UNIX. In this experiment, two

relations were created that contained the same amount of

data. One was read logically sequentially by INGRES, so

that UNIX would perform the one-block read-ahead. The other

was disordered by appending one tuple at a time, resulting

in many out-of-order overflow pages, so that the logical

block numbers read by INGRES were not in sequential order.

In the second case, UNIX did not perform the one-page read-

ahead. Note that the decrease in response time due to the

Page 44



increased CPU-I/O overlap which the one-page read-ahead

gives almost disappears by the 3 user case. In the 4 user

case the extra work resulting from the loss of the read-

ahead pages actually results in the read-ahead query taking

more time than the one which does not perform read-ahead.

Table 1: response time for a single query
time in seconds

number users

12 3 4

query A: data read
logically sequentially 2.51sec 3.82 6.08 7.84
query A: data not read
logically sequentially 4.02 4.43 6.25 7.26

There are two problems with the one-page read-ahead stra

tegy: one is that the buffer space must be large enough to

retain the read-ahead blocks until the process requesting

them needs them; the other is the hiding of the true execu

tion time from the user. The first problem, the loss of

read-ahead blocks, results in extra work done by the system.

In the tests performed to produce table one, above, the loss

of read-ahead pages was measured. In the four-user case,

six percent of them were gone from the buffer by the time

the process requested them. Since reading them is at no

time free because it is an average access time whether they

are read as read-ahead pages or when read on demand this was

simply extra work that the system had to do.

Page 45



3.4.2. Sequential Physical Files

The UNIX operating system, unlike most, does not attempt to

implement physical sequentiality of logically sequential I/O

blocks. Each physical disk is divided into one or more log

ical devices, and files are then written to one of these

devices. Each INGRES relation is a file. Blocks of 512

bytes each are kept in a "free" list per device. When a new

page is added to an INGRES relation, the first block on the

free list for the corresponding device is assigned to the

added block. UNIX makes no attempt to put the new block

near its logical predecessor.

In many other operating systems, a file is opened with a

declaration of how large it is likely to become; then the

operating system reserves the correct number of disk tracks

for it. As information is written in logically sequential

pages by the user's process, the operating system writes it

physically sequentially on the disk. Often the pages are

actually stored in a "checkerboard" order: logical page one

is stored one (or even two) pages away from logical page

two, and so on. This is to allow time for the data to be

transferred into the computer's main memory; otherwise, if

page one is next to page two, the time it takes for page one

to completely be stored in memory may be great enough that

page two will have been missed by the disk head, and a full

revolution of the disk necessary to fetch it.

Page 46



An algorithm to force logical sequentiality to imply physi

cal sequentiality in a UNIX system is to copy all the infor

mation from one logical device to another, thus emptying the

first; then, order the free blocks on the first device;

then, copy everything back. This technique was used to

examine the effect of reading logically sequential data phy

sically sequentially from the file. It was found that a

query stream that took 133.16 seconds to run (single-user)

with the pages placed in the usual UNIX random fashion on

the disk ran in 115.05 seconds when the pages were placed in

physically sequential order by using the above algorithm.

The above algorithm saves time by saving disk seek time;

however, if the data had not been placed in strictly sequen

tial order, but stored in "checkerboard" order, an even

greater saving would have been effected.

3.4.3. Global Buffer Strategy

UNIX has a global buffer strategy. When a user process

requests an I/O block, the information is read from the disk

and stored in a system buffer, then copied to the user-

defined buffer area in the user process space. When a write

is done by the user, the data is copied to a system buffer,

and the data moved from there to disk. The total operating

system overhead is about six milliseconds per 512-byte page

[RITC78]. Buffers are allocated on a least-recently-used

basis.

Page 47



3.5. Conclusion

In this chapter we defined terms that are important to the

following analysis. Then overviews of INGRES and UNIX were

given. There are two factors that are of particular

interest:

1) What is the effect of the mini-computer environment and

the UNIX operating system on the performance of INGRES.

2) Can the results from this analysis generalize beyond the

specific implementation of INGRES?

The effect of the minicomputer environment is two-fold.

First, the CPU times will be slower than in many larger com

puters. The PDP 11/70 is about a 1 MIP machine. Second,

the overhead will be larger because the 16 bit word size

forces an address space limitation and the use of multiple

processes. The use of UNIX means that the I/O times will be

larger than on some other operating systems because UNIX

does not support sequentially allocated files. Also UNIX

constrains the page sizes to be a constant 512 bytes.

Page 48



Chapter 4

Performance Analysis

it' Chapter Four

In order to determine the exact performance patterns of

INGRES, three sets of benchmark programs were developed.

These were sets of overhead-intensive, data-intensive, and

multi-relation queries. The benchmarks were run single-user

on a DEC PDP 11/70.

This is a 16-bit minicomputer, with a 2K byte cache, and is

about a 1 MIP machine. The databases were on a disk with an

average access time of .030 seconds per 512-byte block. The

version of INGRES used for the benchmarks was version 6.1;

the next version (6.2) achieved a 10 - 25% pefrormance

improvement over version 6.1. The specific improvement

depends on the query type. Future implementations of INGRES

can be expected to show increasing improvement.

4..1- Overhead-intensive queries

Three benchmark query streams were developed to determine

the performance patterns for overhead-intensive queries.

The three benchmarks were taken from a set of user queries.

The user is the UC Berkeley EECS Department, and the

specific application is course and room scheduling. The

database contains 24704 pages of data in 102 relations. The

Page 49



data is information about courses taught: instructor's name,

course name, room number, type of course, etc.

The first benchmark shall be denoted as "shortl". The fol

lowing are queries from the Shortl benchmark, which are

exactly as the user wrote them.

destroy temp

retrieve into temp

(courseNN.info1, courseNN.info2, ,courseNN.info13)

where courseNN.instructor = "name"

print temp

where courseNN was any one of 8 course relations and "name"

was any one of 76 instructor names.

The courseNN relations were hashed on instructor name. The

data is stored in one relation per quarter. Since the same

relations were used for room scheduling, there is an entry

for each course for each day the course is taught.

First, any relation named "temp" that happens to be in the

database is destroyed. Then the data needed from the cour

seNN relation is put into temp, where the implicit actions

of removing duplicates and sorting on the first field take

place. Then the data is printed. The only reason for using

this "destroy - retrieve into - print" technique, according

to the user, was to remove the duplicates introduced by hav

ing an entry per day per course. That technique is probably

Page 50



not generally necessary for overhead-intensive queries.

Therefore, the benchmark "short2" was created. It is the

query stream shortl except the destroy - retrieve into -

print set is replaced by

retrieve (courseNN.infol,

courseNN.info2, ,courseNN.info13)

where courseNN.instructor = "name"

This prints directly to the terminal without removing dupli

cates.

It was decided that the general user also probably will want

fewer than 13 items of information per query, so short3 was

created. It is:

retrieve (courseNN.infol, courseNN.info2)

where courseNN.instructor = "name"

The three benchmarks were run and the following information

obtained.

For all three query streams, we show the following:

1) The independent, random reference model holds for refer

ences to data pages.

2) There is a high degree of locality of reference to system

and temporary relations.

3) The functions best distributed to other processors are

those associated with the terminal monitor.

Page 51



Both (2) and (3) may be highly INGRES specific; (1) appears

to generalize

iL'1'1- 1/9 reference patterns

Table 4.1

Overhead-intensive queries: I/O reference patterns
(all times are in seconds)

query number I/O time
stream queries per query

number number

system data % ref
ref ref seq

shortl 228 3.06 (*) 170 (*) 5 (*) 13 .3
short2 76 .55 13 3 18,.8
short3 76 .25 8 3 21,.8

(*) : quantities given for each set of three queries

(destroy,retrieve into, print)

Table 4.1 summarizes some of the trace analysis results for

the overhead-intensive query streams. The first column is

the query stream name, the second the number of queries in

the query stream. The third column, the I/O time per query,

was obtained by multiplying the number of page references by

the average physical I/O time per block for the query

stream, and dividing by the number of queries. The average

physical I/O time per block for each query stream varies

slightly from one query stream to another, depending on the

placement of data on the disk. The trace analysis program

reports the total number of references to each of the rela

tions. These are separated into system and data references,

Page 52



divided by the number of queries, and presented in columns

four and five. The trace analysis also keeps track of logi

cally sequential references. A page reference is a logi

cally sequential reference if the logical page number is one

plus the logical page number of the previous reference to

that file. The percentage of the references that were logi

cally sequential are reported in column six.

We note from Table 4.1 that the number of queries in shortl

is three times that of short2 and short3, a direct result of

the way the query streams were formed.

For shortl, the average I/O time for the query set was 3.06

seconds. Most of this time (98%) was spent reading and

writing INGRES system relations. The relation that contains

information about the relations in the database (the rela

tion relation) is referenced to destroy temp and create it

again, and to retrieve information about courseNN. The

relation that contains information about each attribute in

the database, the attribute relation, is referenced once per

attribute in the relation to be destroyed or created, and

once per attribute of courseNN in the query. It should be

noted that a cache of the system catalog information could

be used to substantially decrease the number of system cata

log references. This is not currently done.

The data referenced per query set in shortl includes three

data pages from courseNN read, and one page written to and

Page 53



read from the relation temp. The references to sort the

data are not included.

Comparing the Table 4.1 entries for shortl and short2 we

conclude that the user is paying a lot for duplicate

suppression. The I/O time for short2 is significantly less

than the time for shortl because the system relations do not

have to be referenced as much. The data references are now

the three pages read from the courseNN relation. There

remain an average of 13 references per query to the system

relations because the attribute and relation relations must

still be read for verification. The cost of that verifica

tion is apparent in short3, where the only difference

between that query and short2 is that it references fewer

attributes.

I'l'l'l* Sequentiality of reference

The high percentages of sequential references we see in

Table 4.1 are the result of reading strings of overflow

pages in the system relations. The user's database was

copied from the user's machine to the test machine, so the

overflow pages in the relations were formed when the rela

tions were first created. In that case, strings of overflow

pages tend to be sequential. That would not be the case if

the data had been added a little at a time, through updates.

It would be the case anytime the queries were run on newly

Page 54



modified system relations. Therefore, the sequentiality

observed in Table 4.1 cannot be assumed to be true for

overhead-intensive queries in general, and cannot even be

assumed to be generally true for overhead-intensive queries

in INGRES.

iL•I'l-fL' Locality of reference

A commonly accepted measure of locality is the hit-ratio

curve [RODR76]. The hit ratio curves for the overhead-

intensive queries are presented in Figures 4.1 and 4.2.

Page 55



Overhead intensive queries

'•O"" Short 1

0.6-

0.4-

"I0.0 +

Short 2

Short 3

0 500 IOOC

Number of pages in buffer

Figure 4.1 Overhead-intensive Queri

Overhead intensive queries

i.o-

0.8-

0.6-

0.4-

0.2-

0.0

0 500 1000

Number of pages in buffer

Short 1

xShort 3
/Short 2

500

es

Figure 4.2 Overhead-intensive Queries,
System References Removed

5<*



The vertical axes are the percentage of requests that would

have been buffer hits if the buffer were the size given on

the horizontal axes. These curves were calculated by taking

the output from the software trace, the logical reads and

writes, and simulating the effect of increasing the buffer

size. The LRU algorithm for buffer replacement was used.

In this query stream, because each query references so lit

tle data, we are only interested in inter-query locality.

Figure 4.1 is the hit ratio for the overhead-intensive query

streams. There is a high hit ratio for even a small number

of buffers for all three query streams because of the large

number of reads and writes to system relations. This is

confirmed by Figure 4.2, which shows the same curves, but

with the references to the system relations removed. The

line for shortl in Figure 4.2 is higher than those for

short2 and short3 because shortl is writing and reading
i

small temporary relations.

Since the hit ratios for short2 and short3 are nearly zero,

it is apparent that there is no inter-query locality in the

data references. The data references for the overhead-

intensive queries therefore conform to the random reference

models of data references. When the system relations are

included, the hit ratios become high. The straight lines of

the hit ratio curves indicate that there is no advantage to

adding buffers after the few needed for the system refer-

Page 57



ences are provided.

iL'l'l'i' Conclusion

Whether there is locality of data reference in general in

overhead-intensive queries depends on the application. In

applications such as customer information systems and bank

ing applications, there is little locality of data refer

ence. However, there are systems such as airline reserva

tion systems that may naturally have much locality of data

reference (the plane about to leave).

/

Therefore, for overhead-intensive queries, the only reliable

locality of reference is the references to the system rela

tions. There is a great deal of locality of reference

there. It is clear that caching the system relations would

be very beneficial.

INGRES has a heavier use of system relations than most other

data management systems for two reasons. First, the process

structure forces greater referencing of system relations

because of validity checking in each process. Second,

INGRES is interpretive. Many other data management systems

are compiled, and do only minimal run-time validity checking

of system catalogs. However, as long as successive queries

are to the same database, and there is run-time validity

checking, caching system catalogs should produce performance

improvements for any data management system.

Page 58



4,.J..2. CPU usage patterns

Table 4.2 contains the CPU usage patterns for overhead-

intensive queries. The CPU time for each process is given

in Table 4.2. Also included is the amount of the time in

OVQP spent to fetch and manipulate the data (dp). The OVQP

total includes the dp time.

Table 4.2. Overhead-intensive queries: CPU usage patterns
all times are in seconds

query monitor parser decomp OVQP DBU total
stream total dp

shortl 1.91 .30 .21 .52 (.16)
short2 1.75 .98 .11 .38 (.15)
short3 .88 .26 .05 .28 (.12)

4.48 7.42
3.22

1.47

(dp is included in OVQP total)

The time spent in the terminal monitor is a function of the

number of characters in the query and is mostly spent look

ing for macros. The time spent in the parser process for

shortl is less than the time spent for short2 because some

functions to print the output are done by the parser process

for a "retrieve" (in short2) and are done by the utility

print for a "print" (in shortl). It is greater for short2

than short3 because short3 has fewer domains for verifica

tion and because the query in short3 is smaller, thus easier

to parse.

Decomposition is the process that breaks the query apart

into single relation queries. It must also be called to

Page 59



pass data through the pipes from one process to the next in

line. Since the utilities are at the end of the line, it

must be called several times per query set in shortl .

Therefore, the time in the process decomp is longer in

shortl. The time difference between short2 and short3 for

decomp is accounted for by the difference in length of the

message passed.

The time given for OVQP total includes the data processing

time in the column in the table marked dp. The time is

greater for shortl because OVQP must open two relations

(temp and employee) and write the data to one of them. The

time difference between short2 and short3 is because there

are fewer domains. The data processing time, dp, is the

time to process the three pages.

The time in "DBU" is the time to destroy, create, sort, and

print the relation temp.

4..J..3. Conclusion

Except for shortl , which is probably not a general query

stream, the terminal monitor requires the largest percentage

of time in the overhead - 54% for short2. The actual data

processing time in all cases is much less than the time for

setting up the query. The total CPU time per query in Table

4.2 is, for all three cases, greater than the total I/O time

per query in Table 4.1. We therefore conclude that INGRES

Page 60



is always CPU bound when handling overhead-intensive

queries.

The analysis of the overhead intensive query streams reveals

that the use of multiple processors at the terminal level

will have a much greater effect on the performance than the

use of multiple processors at the dta level. Distributed

processing at the data level (as in DIRECT [DEWI78] and RAP

[OZKA773) will not speed the processing of overhead-

intensive queries at all, since they spend little time pro

cessing data. In fact, an extra staging device between the

I/O device and the user, as in DIRECT, or the inability to

support access to a single item through a key , as in RAP,

will slow the processing of short queries. Instead, either

the processing must be distributed toward the user, through-

use of intelligent terminals and front-end machines, or the

amount of processing reduced through use of a less func

tional terminal monitor. In the overhead-intensive queries

in the benchmark query streams, the movement of the terminal

monitor functions would clearly be a performance improve

ment.

The INGRES terminal monitor provides many functions for the

user (eg. macro definitions, abbreviations) and is certainly

not a minimal terminal monitor. However, if these functions

are to be provided to the user, it is clear they can best be

provided through intelligent terminals.

Page 61



The use of extended storage devices to cache system rela

tions would clearly be a performance benefit. However, any

system that pre-compiled queries would not need the systems

relations at run time. In that case, extended storage dev

ices would not be useful at all for the overhead-intensive

query streams.

£.2. Data-intensive queries

The data-intensive query streams were developed from an

accounting application, the UC Berkeley EECS Department's

Cost Account and Recharge System. Again, as in the

overhead-intensive query case, we use the technique of mak

ing the first benchmark correspond exactly to the user

queries, the third benchmark correspond exactly to our idea

of what a "typical query stream" for data-intensive queries

would be, and the second benchmark is in between.

We shall show in this section that:

1) The INGRES implementation of aggregate functions

(explained below) leads to locality of reference to tem

porary relations.

2) There is a high degree of sequentiality of reference in

data-intensive queries.

3) It will be advantageous to distribute the CPU functions

associated with processing the data.

(1) is INGRES specific; (2) and (3) appear to generalize to

Page 62



other data management systems.

The query stream "longl" is exactly as the user wrote it.

It consists of 58 queries which reference 14 relations which

contain a total of 822 pages of data. This query stream

prints accounting reports by creating temporary relations in

which the domains are both projections of existing relations

in the database and zero or blank summary domains. The sum

mary domains are then filled in by using multi-relation

aggregate functions, and then the temporary relations are

printed. There are an average of 14 domains referenced per

query in longl. Long2 is longl with all multi-relation

aggregate functions removed, and the "retrieve into" con

structs replaced by "retrieve". Long2 contains single-

relation aggregate functions. Long3 is long2 with all

aggregate functions removed, and with the average number of

domains referenced by each query reduced to two. There was

no attempt to do the same work in longl, long2 and long3.

Aggregate functions

The query:

retrieve (outstand.acct,
outstand.fund,
encumb = sum (outstand.encurab by

outstand.acct,
outstand.fund))

is a query from the accounting application and included in

longl and long2. The relation "outstand" has information

about the department's outstanding accounts. The query

Page 63



results in a list of the totals of the outstanding encum

brances grouped by account number and fund. INGRES

processes the aggregate function "sum" by creating a tem

porary relation "tempi" which contains three domains:

account, fund, and sum. It will be hashed on (account,

fund) and is initially empty. The relation "outstand" is

read once, and for each tuple the (account, fund) pair

evaluated, the tuple from "tempi" for that pair read, the

sum updated, and the totals replaced in the "tempi" rela

tion. After the last tuple of "outstand" is read, the

"tempi" relation is read and the results printed on the

user's terminal.

—•£"!• 1/9 reference patterns

Table 4.3
Data-intensive queries: I/O reference patterns

(all times are in seconds)

number number

query number I/O time system data % ref
stream queries per query ref ref seq

longl 58 15.0
long2 18 16.7
long3 13 5.1

129 290 30

73 484 28

15 155 84

Table 4.3 presents the results of the query analysis of the

data-intensive query streams with respect to I/O usage. The

number of queries in longl is greater than the number of

Page 64



queries in long2 because the multi-relation queries in longl

were not included in long2, and because the "destroy -

retrieve into - print" queries were replaced by a single

"retrieve". Long3 contains fewer queries than long2 because

the aggregates were dropped to create long3. The I/O time

per query is the total I/O time for the query stream divided

by the total number of queries in the stream. It is greater

for long2 than for longl because the queries that were

dropped from longl in forming long2 were queries that refer

ence little data. The queries that form the long3 subset of

long2 reference much less data because the aggregates were

dropped from long2 to create long3.

The number of system references per query is a direct result

of the number of temporary relations created and the number

of attributes referenced per query.

l'i.'1'l' Sequentiality of reference

The percentage of sequential accesses is high in all three

cases. It is apparent that the INGRES processing of aggre

gates is dominating the I/O references, because when the

aggregates are removed, the sequentiality dramatically

increases. This sequentiality is the result of reading

entire relations, either to print selected attributes, or to

print summary statistics.

Page 65



4^2. K2. Locality of reference

In Figures 4.3 and 4.4 note the different types of locality

present. In longl and long2 the hit ratio curve is the

gently rising curve indicative of random re-referencing of a

relatively small (compared to the buffer size) set of pages.

Since the re-referencing is random, each page added to the

buffer increases the hit ratio slightly. This pattern is

the result of the INGRES implementation of aggregate func

tions, but the same pattern would result from accessing a

relation through a secondary (non-clustering) index.

In long3 we see the result of sequentiality and locality.

The same relation was referenced sequentially in several

queries; when the buffer size was large enough to hold both

that relation and the relations referenced by intervening

queries, there was a sharp jump, at 350 pages, in the hit

ratio curve.

In Figure 4.4 we see that this locality is not caused by

references to system relations. This is not because system

relations are referenced less in data-intensive queries than

in overhead-intensive queries, but that the proportion of

system references to data references has changed. There

fore, although caching system relations will not hurt the

performance of the data-intensive query, it will not greatly

iraprove it either.

Page 66



Data - intensive queries

Long 1

OOO

Number of pages in buffer

Figure 4.3

Data - intensive queries
system references removed

I.O-i Long *

icl

500 1000

Number of pages in buffer

Figure 4.4



Typical hit ratio curve
for program references

I.On

0 500 1000

Number of pages in buffer

Figure 4.5

(*?



_*2«1«3. Conclusion

There was a high degree of sequentiality found in all three

reference traces. There were two types of locality found.

One type, the locality resulting from the INGRES implementa

tion of aggregate functions (as seen in the hit-ratio curves

for longl and long2) is very like the locality found in pro

gram references (figure 4.5). The buffer sizes needed to

take advantage of this type of locality can be relatively

small. The second type of locality, the cyclic-sequential

(as seen in the curves for long3) would require arbitrarily

large buffer sizes. The buffers would have to contain the

entire relation being re-referenced, as well as all rela

tions referenced between the first and second references to

the same relation. It may be best to simply ignore the

cyclic-sequential case, and only do the read-ahead that the

large amount of sequentiality mandates.

Page 69



4.2.2. CPU usage

Table 4.4. Data-intensive queries: CPU usage patterns

all times are in seconds

query monitor parser decomp OVQP DBU total

stream total dp

longl 1.7 .4 .8 7.1 (6.9) 5.8 15.8

long2 2.0 .9 .26 11.23 (11.0) 14.4

long3 1.3 .3 .07 3.73 (3.5) 5.4

(dp is included in OVQP total)

The variation between monitor and parser times is as

explained in the overhead-intensive queries. The decomposi

tion time for longl is much greater than the others because

of the presence of multi-relation aggregate functions in

longl, which means decomposition has work to do. The OVQP

time is greater per query in long2 because longl includes

queries where most of the work is being done in the utili

ties. When those queries were dropped, the average per-

query time in OVQP increased. The time spent in the utili

ties (DBU) is mostly spent sorting relations and printing

them.

Long3 has less time in OVQP because fewer attributes were

manipulated in the queries in long3.

Page 70



iL»2»3. Conclusion

We note that in all cases the data processing time (dp) in

OVQP is the greatest single item of CPU time. In no case is

the I/O time markedly greater than the CPU time. INGRES

interprets queries, and processes the data by interpreting

on a per tuple, per domain within the tuple basis. The data

processing time for INGRES is therefore probably higher than

the time in other, compiled systems. However, in any system

that supports data-intensive queries the majority of the CPU

time should be spent processing the data. In such systems,

distributing the processing toward the data, as is proposed

in the design of several data management machines, may

increase performance. This is further explained in Chapter

5.

The use of intelligent terminal montors would minimally

affect the performance of the data-intensive query. The use

of extended storage devices, to buffer the data, would be

very advantageous since the data is read sequentially.

4..3. Multi-relation queries

Multi-relation queries are specific to relational systems.

The INGRES implementation of them does not necessarily gen

eralize to other relational systems. They were included in

this analysis because the potential benefits of extended

storage devices and distributed processing may make a very

efficient implementation of multi-relation queries possible.

Page 71



In this section we shall show that:

1) There is extensive locality of reference to temporary

relations

2) The CPU time to process data is most of the total CPU

time to process the query.

In INGRES multi-relation queries are processed through the

formation of temporary relations and the use of tuple sub

stitution. The technique is described in detail in [WONG76]

and [YOUS78] and shall be illustrated by an example. We

shall call this example the "rooms" query. It is included

in the benchmark, and is from the user application. The

query is:

retrieve ( rooms.building, rooms.roomnum, rooms.capacity,
course.day, course.hour)

where rooms.roomnum = course.roomnum

and rooms.building = course.building
and rooms.type = "lab"

The relation "course" contains information about all the

courses taught by the UC Berkeley EECS Department in the

last four years. It contains 11436 tuples in 2858 pages,

and is stored in an ISAM storage structure, keyed on

instructor name and course number. The relation "rooms"

contains information about every room that the EECS Depart

ment can use for teaching courses. It contains 282 tuples

in 29 pages, and is hashed on room number.

The result of this query is a list which contains the build

ing, room number, capacity, day, and hour of the use of any

Page 72



lab for the last four years.

To process this query, first INGRES will note that there is

a one-relation restriction ("where rooms.type = "lab"), so

that restriction will be done first. The query is issued

retrieve into tempi (rooms.building, rooms.roomnum,
rooms.capacity)

where rooms.type = "lab"

The temporary relation "tempi" which resulted from the

actual query in this case contained 20 tuples in 2 pages.

The relation "course" is not stored in a way that is helpful

to the processing of this query, and only a few domains of

each tuple are needed for this query. So INGRES performs

the projection of "course" by issuing the query:

retrieve into temp2 ( course.day, course.hour,
course.building, course.roomnum)

This results in a relation "temp2" which contains the same

number of tuples as "course" (11436) but less space (867

pages) since the tuples are smaller.

The final step is tuple substitution, where each tuple in

"tempi" is compared to each tuple in "temp2", and the result

printed on the terminal. For instance, the first tuple in

tempi is the tuple (cory, 119, 15), so the query is issued:

retrieve (building = "cory", roomnum = "119",
capacity = 15,
terap2.day, temp2.hour)

where temp2.roomnum = "119"
and temp2.building = "cory"

Page 73



This process of tuple substitution is repeated 20 times,

once per tuple in tempi. Since temp2 is unordered, the

result is that the entire temp2 relation is scanned 20

times, resulting in 17,340 data pages read. INGRES includes

a set of heuristics which dynamically decide when to refor

mat a temporary relation. Temp2 could have been reformatted

to a relation hashed on building, room number. It was not

reformatted because the cost functions associated with modi

fying the relation to hash showed that cost would be greater

than re-scanning the relation 20 times.

The multi-relation benchmark was prepared by assembling a

collection of unrelated users1 queries which were multi-

relation queries and which referenced the same database.

The database was the UC Berkeley EECS Department's course

and scheduling database. The patterns observed were dom

inated by the "rooms" query. Most of the queries referenced

about 109 pages; the "rooms" query referenced 19000 pages of

data. Most of the queries used about 7.25 seconds of CPU

time; the rooms query used 709.5 seconds of CPU time.

Therefore the results are reported without the query "rooms"

in multil, and for "rooms" alone.

4.3.1. I/O reference patterns

Page 74



Table 4.5
Multi-relation queries: I/O reference patterns

(all times are in seconds)

number number

query number I/O time system data % ref
stream queries per query ref ref seq

multil 24 3.27 23 86 35
rooms 1 505.16 70 19023 85

There are few system references compared to the number of

data references in the "rooms" benchmark because the tem

porary relation is being read so many times. The temporary

relation is read sequentially each of the 20 times it is

read, which is why the percentage of sequential references

is so high. Figures 4.6 and 4.7 show the hit-ratio curves

for the multi-relation queries. We note that there is a

high degree of locality in the multi-relation queries, and

that that locality is not from referencing system relations.

The hit-ratio curve for the rooms query takes a sharp jump

as soon as the window size is above the 867-page size of the

relation being continually re-referenced. This is the

cyclic-sequential referencing found in the query stream

long3, but with a difference: the size of the cycle is pre

cisely known by INGRES, and could be communicated to the

operating system. The operating system could then arrange

to retain the entire relation in extended storage.

Page 75



Multi- relation queries

.On

Multi i
0.8-

0.0 +

0 500 1000
Number of pages in buffer

Figure 4.6

figure 4.7

Multi- relation queries
system references removed

I.O-i

0.8-1

0.6

0.4

0.2-1

0.0
0

7?

Multi 1

Rooms

500 1000

Number of pages in buffer



£.3.2. CPU usage

Table 4.6. Multi-relation queries: CPU usage patterns
all times are in seconds

query monitor parser decomp OVQP DBU total
stream total dp

multil 1.0 .25 .52 4.33 (4.2) 1.15 7.25
rooms 1.37 .81 .71 705.75 (705.4) 1.86 709.5

(dp is included in OVQP total)

Since these queries are data-intensive as well as multi-

relation queries, the cpu time spent in the data-processing

portion of the data management system is the greatest com

ponent of the cpu time.

i*3.«2- Conclusion

The increased data-independence and functionality provided

by relational data management systems over other systems is

provided by the capability of handling multi-relation

queries. However, the algorithms for multi-relation queries

are sometimes claimed, in part, to be responsible for rela

tional data management systems being less efficient than

other systems.

There are many algorithms for handling multi-variable

queries other than those INGRES uses. In [BLAS76] several

other algorithms are described. However, it appears to be

very difficult to devise algorithms that never resort to

re-referencing the same data. The algorithms in [BLAS76]

Page 77



which do not rely on methods involving the re-referencing of

the same data pages rely instead on sorting the data or

indices. Sorting involves a limited kind of re-referencing

of the data, at least to write it, then read it in again.

There is in INGRES and may be in most relational systems

extensive locality of reference in multi-relation queries.

The window size for that locality may be very large - the

size of an entire relation, for sequential referencing, - or

it may be smaller, for random re-referencing, but it is

there, and can be used to increase efficiency. The large

cache sizes necessary will become possible through the use

of extended storage devices.

The CPU time per query in Table 4.6 is greater than the I/O

time per query (Table 4.5) so INGRES at this time would see

little benefit from caching the relations to be re-

referenced. However, combined with the compilation of the

queries and/or distributing processing on the data level,

using extended storage devices may make the increased func

tionality of relational data management systems possible

without the present cost in efficiency.

_4.4. Chapter Four Conclusion

The performance patterns of overhead-intensive queries have

been shown to be completely different from the patterns of

data-intensive queries. It is apparent that machines that

distribute the processing toward the data, as database

Page 78



machines do, are only effective in the case of data-

intensive queries. It has also been shown that data-

intensive queries do not benefit from the distribution of

the processing toward the user, as in the use of intelligent

monitors. The multi-relation queries were shown to be

cyclic-sequential, and could benefit from the use of

extended storage devices.

Extended storage devices were also shown to benefit data-

intensive queries when used as read-ahead buffers. They

also benefit overhead-intensive queries for those systems

that interpret queries when used to cache system data.

Page 79



Chapter Five

Analysis of

the Use of Data Management Machines

5. Chapter 5,

5..J.. Introduction

The rapid advances in the development of low-cost computer

hardware have led to many proposals for the use of this

hardware to improve the performance of data management sys

tems. Usually the design proposals are quite vague about

the performance of the system with respect to a given data

management application. In this chapter we predict the per

formance of several of the proposed data base management

machines with respect to INGRES benchmark query streams.

The term "data management machines" is used here to describe

any special-purpose hardware built to enhance the perfor

mance of data management systems. The systems analyzed in

this section include both those actually built, and those

that remain designs on paper.

The systems that are described and analysed in this chapter

are associative disks [LANG78, LIN76, SLOT75]; RAP [OZKA75,

0ZKA77, SCHU78]; CASSM [SU75]; DBC [BAN78A, BAN78B, BAUM76,

HSI76A, HSI76B, KANN78]; DIRECT [DEW78A,DEW78B]; and CAFS

[BABB79, C0UL72].

Page 80



The underlying focus of each of the above machines is that

they associatively retrieve data. A data element is

requested by content, not by position, from secondary

storage. In section two an overview of each machine is

presented. Section three contains the prediction of the

performance of the machines when executing benchmark

queries, and section four is the conclusion of the chapter.

5.«£* Data Management Machines

5.2.K Overview of machine architectures

In this section each machine is briefly described and the

use of the machine illustrated with an example. That exam

ple is the following query, Q1:

Query Q1:

retrieve (EMP.name, EMP.salary)

where EMP.dept = 10

Each machine is also illustrated with a figure. For compar

ison, figure 5.1 shows a standard computer system (i.e., one

that does not include a back-end machine). In that system,

the data blocks which are read are serially processed by the

disk controller and the channel.

Page 81



>?

H
o

s
t

P
r
o

c
e
s
s
o

r

C
h

a
n

n
e
l

F
ig

ur
e

5.
1

A
St

an
da

rd
sy

st
e

m
R

e
a

d
-W

r
it

e
H

e
a

d



S.'S.'l'l' Associative disks

Most earlier designs for hardware to enhance the performance

of data management systems were associative disk designs.

First proposed by Slotnik [SLOT70], the design is to attach

a processor to each of the heads of a head-per-track device

(disk or drum). Figure 5.2 shows an associative disk sys

tem. The per-track processors are denoted as cell proces

sors, and the processor that co-ordinates their activities

is the controlling processor.

The cell processors can be loaded by the controlling proces

sor with the value or values to search on, the search can

take place in parallel, and the only data returned to the

main computer are the records with the required values. As

originally designed [SL0T70], the cell processors performed

no arithmetic functions (e.g. sum, max, min, etc.). They

were only search engines.

In RARES [LIN76] the design was extended by writing and

reading the data in parallel, across several tracks (in

"bands") instead of serially, as is usually done. The

advantage is to increase the bandwidth to the controlling

processors, and enable the decision to return the data ele

ment to the main computer to be made more quickly. The

drawback to such a scheme is the complicated error detection

and recovery. If the data is to be processed on a word-by-

word basis instead of by blocks, then the parity, checksums

Page 83



and error-correcting codes must be on the order of those

used for core memory, rather than those used for disks.

However, the error rate of disks is much higher than that of

core memory. These problems are questions never addressed

in [LIN76], Therefore, this analysis is confined to the

more standard associative disk designs.

In Slotnik's associative disk system, query Q1 above would

be processed in the host machine, then a command sent to the

associative disk to return all records where the dept field

= 10. The host processor would then format the tuples for

printing, taking only the salary and name field from each

tuple.

If all the cell processors attempt to return a value to the

controlling processor at the same time serious performance

problems could occur. There may be bus contention problems

on the data bus from the cell processors to the controlling

processor. If the system does not bottleneck at the bus,

the controlling processor may have problems keeping up with

the datarate of all of the cell processors transferring at

once.

Page 84



H
o

s
t

P
r
o

c
e
s
s
o

r

C
o

n
tr

o
ll

in
g

P
r
o

c
e
s
s
o

r

=
3

C
D

C
e
ll

P
r
o

c
e
s
s
o

r

C
P

C
P

C
P

C
P

D
is

k
C

o
n

tr
o

ll
e
r

C
o

n
tr

o
l

D
a

ta

Fi
gu
re

5.
2

As
so
ca
ti
ve

Di
sk
s,

DB
C,

CA
SS
M



5.2-1.2. CASSM

CASSM (Context Addressed Segment Sequential Memory) is the

data management machine developed at the University of

Florida. It was developed after associative disks, but

before RAP, and represents a middle ground between them.

CASSM is essentially a processor-per-head device, like an

associative disk, but the processors have added capability

in that they can perform a few arithmetic functions (integer

sum, min, max).

The data is laid out in segments, where each segment is

operated on by a single processor. The segments are not

independent modules, however; data can freely migrate across

segment boundaries. The data and processors operate under

the direction of a separate controlling processor. On the

fixed head disk, each segment is one disk track.

In the following analysis, it is assumed that CASSM is impl-

mented on a moving-head disk. In that case its architecture

closely resembles that of the associative disk, and is

represented in figure 5.2 The differences in the systems lie

in the power and function of the cell and controlling pro

cessors.

In CASSM, the processors all execute the same function at

the same time, where the functions are data-processing

directives (search for, delete, add, etc.) The processors

have a minimum of buffer space, and will only test for a

Page 86



single qualification on one attribute at a time. The system

includes special-purpose functions for string searches,

updates, inserts, and garbage collection. The processors

also have the capability of following pointers within the

records written on the disk, so the hierarchical and network

data models can be supported as easily as the relational

model. The capability exists to write instructions on the

disk itself, to be read later by the processors, and change

their actions. This capability is used, for instance, to

change functions after one pass over the data.

In CASSM data is stored by attribute rather than by tuple or

record. Each attribute is flagged with its name, and attri

butes are grouped together in records, each record defined

by delimitor fields and a record number. Groups of mark-

bits are associated with both individual attributes and

records. One of the mark-bits is a collection bit, which if

set signifies that the CASSM processors should send the data

to the host processor.

A data encoding algorithm is implemented in the hardware:

each character-string value is stored only once, in a table

of values. This table is stored as one of the segments. In

the actual record, a pointer to the value is kept.

CASSM is limited in that only one attribute at a time may be

tested or output. The testing of one attribute may be done

at the same time as the output of another.

Page 87



The following explanation of the processing of a query in

CASSM is based on a narrative of the execution of a similar

query in [SU75]. To process Q1 , CASSM will, in the first

cycle, mark all records that have the attribute-value pair

(relation, EMP). Then, in the next cycle, the attributes

within the marked records are inspected and marked for col

lection if the record contains the attribute-value pair

(dept,10). The marked attributes "salary" are then returned

to the host on the next cycle, while CASSM follows the name

pointers in the marked attributes "name". The final cycle

returns the name fields. The host machine must assemble the

tuples to be printed by matching record numbers.

In the case that many values at once must be sent to the

controlling processor, the same performance problems occur

as in the associative disk. CASSM deals with these problems

by having the cell processors request the bus when they have

a data item to transmit; if it is unavailable, the processor

waits until it can transmit the data item it has before

reading the next block. Therefore bus contention problems

may result in the query execution requiring several extra

disk revolutions.

Page 88



o
Q

C
o

n
tr

o
ll

in
g

P
r
o

c
e
s
s
o

r

D
a

ta

|[
Co

ntr
C

P
D

C

C
P

D
C

C
P

D
C

C
P

D
C

C
P

D
C

C
e
ll

P
r
o

c
e
s
s
o

r
S

F
ig

u
r
e

5
.3

R
A

P

C
h

a
n

n
e
l

D
a

ta

V
D

a
ta

C
el

l
(C

C
D

s)



5.2.K3. RAP

The relational associative processor (RAP) is similar to

CASSM in that it was, at first, implemented by attaching

multiple processors, one per head, to a fixed-head disk.

However, RAP is very different from CASSM in that RAP sup

ports only the relational data model.

There are three functional parts to the RAP design: the con

troller, the statistical unit, and the cells. On a fixed-

head disk each cell is a disk track. There is one processor

per cell. The controller communicates with the front-end

computer and directs the actions of the cell processors and

the statistical unit.

Figure 5.3 shows the RAP system. The "controlling proces

sor" box includes the statistical unit, and directs the

functions of the cell processors. RAP is more powerful in

function than CASSM because of the existence of the statist

ical unit, which performs more functions than the CASSM pro

cessors, and because each cell processor contains several

comparator units, so several attributes at once can be

tested. RAP organizes data in relations which are stored in

the data cells.

RAP, unlike CASSM and the associative disks, is a currently

active research project. Subsequent implementations of RAP

have used CCDs [OZKA773 and may eventually use random access

memory [SCHU78] in place of the fixed-head disk. The

Page 90



version of RAP used in this discussion is that reported in

[SCHU78]. It allows an individual cell to contain parts of

several relations.

Q1 would be processed by RAP by passing the query to the RAP

controller, which would determine which cells contain the

"emp" relation, and direct the appropriate processors to

return all tuples for which the dept = 10. The controlling

processor would then pass these tuples to the host machine.

In the case of bus contention the cell processors hold the

data until the bus is free, thus potentially losing revolu

tions of the cells.

5.2.K4. DBC

The data management machine developed at Ohio State is

called DBC (Data Base Computer). Like CASSM, it is an

attribute based system. It is a backend machine with seven

major components, which are:

1) the data base command and control processor (DBCCP),

which fields queries, communicates with the host machine and

controls the functioning of the other components.

2) the keyword transformation unit (KXU), which makes an

encoded version of the keywords to send to the next unit.

3) the structure memory (SM), which takes the encoded key

word and looks it up in a directory to determine the posi

tions (indices) of the matching attributes in secondary

Page 91



storage.

4) the structure memory information processor (SMIP), which

performs set operations on the information from the struc

ture memory.

5) the index translation unit (IXU) which decodes the infor

mation about the location of the attributes required in

order to produce a physical address on the secondary memory.

6) the mass memory (MM), which is composed of moving head

disks. Each disk has a processor per track (the Track

Information Processors) that will perform basic functions.

7) the security filter processor (SFP), which contains a

capability list of who has permission to access what data.

In the block diagram figure 5.2, all of the above components

except the MM are grouped together in the "controlling pro

cessor" box.

The following explanation of the processing of query Q1 is

derived from [BAN78A] and [BAN78B].

The DBCCP receives the command

Retrieve (name, salary)((relation = 'erapM & (dept = 10))

from the host processor.

The predicate ((relation = femp') & (dept = 10)) is analyzed

by the keyword transformation unit, which determines if dept

or relation are clustering keywords. In the case that they

both are, the KXU transforms them into a coded, internal

Page 92



representation for look-up within the Structure Memory. The

SM produces a series of index terms for relation = erap and

for dept = 10. These index terms are a coded representation

of the cylinder numbers for the data and the security atoms

associated with that data. The Structure Memory Information

Processor performs a logical AND on the coded cylinder

numbers so that only the coded cylinders and security atoms

for the data satisfying the predicate are passed to the next

unit, the Index Translation Unit. It transforms the inter

nal, coded representations into actual disk cylinder

numbers, and passes the information to the DBCCP. The DBCCP

then directs the Mass Memory to perform the given task on

the proper cylinders (find those records with dept = 10 and

relation = erap, and output the name and salary fields). The

data goes from the MM to the Security Filter Processor,

which checks the security atoms to determine if the access

is proper; if so, the results are sent to the DBCCP, which

sends them on to the host computer.

Page 93



4>

C
e
ll

P
ro

c
e
ss

o
r

C
P

C
P

C
P

C
P

C
on

tr
ol

li
ng

P
r
o

c
e
s
s
o

r

•
—
•
—
•
—
♦

\
/

v
/

v
/

<
>

<
•

<
>

!•

+
•

C
r
o

s
s
-P

o
in

t
S

w
it

c
h

D
C

D
C

D
C

D
C

D
C

F
ig

u
r
e

5
.4

D
ir

e
c
t

\

C
h

a
n

n
e
l

D
a

ta
C

e
ll



£•£•1-5. DIRECT

DIRECT is the backend data management machine under develop

ment at the University of Wisconsin-Madison (refer to figure

5.4). It is composed of a controller, an arbitrary number

of query processors and CCD cache memory modules, and secon

dary storage. In the initial implementation there are to be

eight LSI-11/03 microprocessors that will function as query

processors. Thirty-two 16k byte CCD page frames will be the

memory modules, and a PDP 11/40 will function as the con

troller. The page frames are connected through a cross-

point switch to the processors, so that any processor can

act on data on any page; the controller receives the query

from the host computer and directs the processors to act on

the proper pages. If the pages are not in the cache, the

controller directs that they be read in, and allocates the

pages for them. Each processor can execute its instructions

independently, so that it is possible that each processor

can be executing a different query. The controller allo

cates as many processors as necessary to execute a given

query.

To execute Q1, DIRECT would receive a representation of the

query from the host computer; if there were no other queries

running, DIRECT would order that all the processors work on

the query. The processors each request the "next_page" of

the EMP relation from the controlling processor; it coordi

nates which processor is assigned to which page, and

Page 95



notifies each when the page it needs is present. As each

processor scans the page, it writes qualified tuples to a

new, temporary relation which resides on another cell. When

the query processor finishes scanning a page of the source

relation it requests the next page from the controlling pro

cessor. Upon filling a page of a temporary relation or

receiving a "no next page" notice it transfers the temporary

relation page to the controlling processor. Processing

proceeds in that fashion until the end of the relation.

Page 96



Host
Processor

« ' ' ."•'

Data

Figure 5.5 CAFS

Controlling

Processor

Control

CP

CP
Data

CP

CP

CP

Disk Controller

i

Depends on
switch setting ^

Data t
-«—

Switch

Control



£•£•!•£• CAFS

The Content Addressable File Store (CAFS) consists of a

filter box between the disks and the host computer. This

box can simultaneously operate on twelve different data

streams to allow only qualified tuples to pass through to

the host. The system reported in [BABB79] involves using

disks whose track heads can be multiplexed to the CAFS box;

they can also transfer data directly to the host, bypassing

the CAFS system. Figure 5.5 shows CAFS.

The first action by the host processor to run query Q1 with

CAFS is to load the CAFS box with the search key (dept = 10)

and to connect each of the disk tracks that contain the EMP

relation to the box; then the qualified tuples will be

passed to the host.

Collisions that occur in CAFS will result in the extra disk

revolution time.

5.-2.2. Comparison of the machines

Each of the machines described is a cellular system: data is

stored in cells, with a (in some cases dynamically assigned)

processor per cell. Then operations on the cells take place

in parallel. There are minor implementational differences

in the machines: e.g., the RAP CCD pages are larger than

those of DIRECT [DEWI78, OZKA773 and have a slower transfer

rate.

Page 98



Since none of the machines is in volume production, the

minor implementational differences can easily change and

should be ignored in an analysis of the machine. The pur

pose of the following study is to evaluate the effect on the

machine performance of the major design differences. In the

following list of the machines the differences of interest

are explained. i

§.•2.2.1_. Associative disks

There have been several designs proposed for associative

disks. For the purposes of this analysis it is assumed that

the associative disk is a very simple search engine which

returns to the host the entire qualified tuple. The cost of

the processors for this system would be lower than in the

more complicated systems (see Section 5.3.2.2 for a discus

sion of cell processor design).

5.2.2.2. CASSM

Only CASSM includes a data-encoding algorithm as a part of

its fundamental design. Additionally, it uses a very dif

ferent algorithm for multi-relational joins than the other

machines do. The cell processors are simplified in CASSM by

the limitation that only an attribute at a time can be

tested or output; this is a limitation that no other machine

has.

Page 99



5.2.2.3. RAP

RAP.1 [0ZKA75] is a head-per-track device that, except for

the presence of mark-bits, is quite similar to the associa

tive disk system described in Section 2.1.1. It is proposed

in [OZKA773 that RAP.2, which was implemented using CCD

pages as the data cells, be used as a cache for a large

database system. In this analysis, the use of RAP in a

caching system is studied. RAP uses mark-bits to keep

information about the tuples. It shall be assumed that the

mark-bits are kept in a RAM bit map. The implications of

that use shall also be explored.

5.2.2.4. DBC

DBC is designed specifically for implementation on a moving

head device. It contains hardware to use index selection to

narrow the search space for a query to only a few cylinders:

none of the other machines have this functionality.

It also contains hardware to implement security restrictions

on the data. This functionality, although important, is not

present in any of the systems under discussion and was not

used in the INGRES benchmark query streams. Therefore it

will not be a part of the following comparisons.

5.2.2.5. DIRECT

Direct is the only system where the design is dependent on a

cache. The cache in the prototype is made up of CCD pages.

Page 100



Direct is also the only system that implements a cross-point

switch so that all of the processors can work on the same

page, or all on different pages. It is also the only system

that forms temporary relations. RAP and CASSM use mark

bits; DBC, associative disks, and CAFS send temporary

results to the host processor. It is the cross-point switch

that gives DIRECT the capability of writing temporary rela

tions because it allows a cell processor to read one cell

and write the results to another. It is only through the

facility of the cross-point switch that the cell processor

can be attached to two cells at once.

5.2.2.6. CAFS

CAFS is radically different from the other machines in that

it can dynamically connect the cell processors to a subset

of the tracks of several moving-head disks. This increases

the functionality of the machine because more data is avail

able to it. The cell processors themselves are simple, on

the order of the associative disk processors. So the

machine, when operating with the same number of cell proces

sors as the associative disk, and when both are implemented

on a moving head disk, will have the same single-relation

query performance as the associative disk machine. It uses

a different algorithm for multi-relation joins than the

other machines.

Page 101



5«2.2.7. Summary

The following points are of major interest:

1) mark bits

CASSM and RAP use mark bits in their query processing algo

rithms; the effect of the use of these bits will be investi

gated.

2) the use of temporary relations

Dewitt states [DEWI78] that the use of temporary relations

to hold intermediate values is better than the use of mark

bits. The analysis of the implications of the use of tem

porary relations is therefore of interest.

3) the effect upon performance of the transfer of entire

tuples to the host

The simpler database machines return the full tuple to the

host; the effect of this design is explored.

4) joining algorithms implemented in the machines

Each of the machines uses a different join algorithm; these

shall be investigated.

5•!• Performance

^•i'l* Introduction

In this section the performance of the data management

machines is analyzed. It is assumed that each is connected

Page 102



to a host system supporting a relational query language.

Their performances are compared to a conventional system

supporting INGRES. Additionally, the performances of the

database machines are compared to INGRES running on a con

ventional system augmented with a large buffer cache.

In the following analysis the execution times of four

queries (from the INGRES benchmark query streams) is

predicted for each of the systems. This prediction is made

in terms of both numbers of seconds, to obtain intuitive

insight into the functioning of the machines, and algebraic

parameter values, to easily compare performance under

changed assumptions. When it is not possible to estimate

exactly how long a function will take "best case" and "worst

case" values are given. These are denoted by (best case —

worst case).

The organization of the remainder of this section is as fol

lows. Section 5.3.2 contains the physical specifications of

the machines. It also contains the specification of the

conventional and augmented systems supporting INGRES. There

is certain work that must be performed in the host that is

independent of query type and independent of the type of

backend system. That time is described in Section 5.3.3.

Section 5.3.4 contains the query performance analyses, and

Section 5.3.5 the conclusion.

Page 103



5.3.2. Specification of the systems

5.3.2.K Cell storage media

For the purposes of comparing the systems, it is assumed

that all except RAP and DIRECT use moving head disks as the

data cell storage media. Actually, associative disk

machines and CASSM were designed for fixed-head disks, but

the use of the same media for all the systems helps make the

analysis of the design differences independent of the

storage media.

Since RAP and DIRECT are very interesting as caching sys

tems, they are assumed to have the faster, but sequential,

storage media that CCDs provide.

5.-3.2.KJ.. Physical specifications for disks

The physical specifications for the disks are assumed to be

those of the disk on the INGRES standard machine. The rota

tion time of the moving head disk is denoted by DROT. For

the numerical analysis, this is taken to be .0167 seconds,

the rotational speed of the disks on the INGRES system. The

average access time, DAVAC, is .030 seconds on the same

disk. The block size is the same as the sector size; it is

denoted by BSIZE and is 512 bytes on the INGRES system. The

data transfer rate of the disk, through the controller and

mass bus, is DRATE = .0012 seconds per 512 byte block. The

Page 104



time for a cell processor to read a block is not the same as

DRATE because the block goes directly to the cell processor,

instead of through the bus and the operating system proto

cols into the computer's main memory. This time, DREAD, on

the INGRES disk would be .0167 sec. per rotation / 22 blocks

per track = .0008 seconds per block. DRATE is not equal to

DREAD in most computer systems. DRATE is the time required

to completely transfer a page into memory; it reflects the

time to interrupt the operations of the computer and use the

services to the operating system to store the data; it is a

function of the speed of the controller, the DMA interface

to the host, and the amount of memory interference at the

host. DREAD, on the other hand, is merely dependent on the

disk and disk controller speeds. The fact that DRATE is

usually slower than DREAD is reflected in the widespread

practice of "half-tracking" disks, where sequential disk

blocks are stored one block away from each other, in effect

slowing down the data rate of the disk.

The number of 512-byte blocks per cylinder is DCYL. This

is, on the INGRES disk, 22 blocks per track * 19 tracks per

cylinder = 418 blocks of 512 bytes each.

The following table summarizes the above.

Page 105



Table 7. Disk parameters and values

parameter meaning value

BSIZE block size

DROT disk rotation time
DAVAC average access time
DRATE data rate to host
DREAD cell read time
DCYL number 512-byte blocks per

cylinder

512 bytes
.0167 seconds
.0300
.0012 / block

.0008 / block

418 blocks

5.3.2.JL2. CCD physical specifications

For the CCD pages, it will be assumed that both RAP and

DIRECT use the high-speed, smaller pages specified for

DIRECT [DEWI78]. This assumption is made simply to keep the

obviously changeable parameter of page size from entering

the analysis. The size of the pages (CSIZE) is taken to be

16k bytes, the DIRECT page size. This is 32 times the block

size of the moving-head disk. The scan time for an entire

page is CSCAN = .012 seconds for the DIRECT pages. The

above is summarized in the following table.

Table 8. CCD parameters
parameter meaning

CSIZE size of CCD page
CSCAN page scan time

Page 106

value

16k bytes
.012 seconds



5.3_«2.£. Speed of the cell processors

It is assumed that the cell processors are fast enough to

keep up with the rotation speed of the cell storage media.

This speed is the page scan time on CCDs and the cell read

time on disks. This is a non-trivial assumption. The

implications of this assumption are discussed in this sec

tion.

If the cell storage media is a disk track, it can be assumed

that the functions of converting the analog signal from the

disk to a digital signal, and of error detection and correc

tion, are handled in separate per-track devices. Then the

work that the cell processors must do is independent of the

storage media. This work is:

1) store the tuples in a buffer until the entire block is

read and the per-block error checking done to be certain

that the data is correct;

2) if there are qualifications, compare the attribute values

in each of the records in the block to the values in the

query qualification;

3) if a tuple is a match or is unqualified, any of the fol

lowing:

a) perform the arithmetic function specified in the

query

b) transmit the tuple from the buffer to the host over

a bus.

c) transmit the specified attributes to the host

Page 107



In order to operate optimally, this work must be done at the

rotational speed of the cell. This rate is .0008 seconds

per 512-byte block on most standard disks. Therefore, the

processors have less than 2 microseconds per byte to process

the block. If the storage media is CCD pages, the time is

about 1 microsecond per byte. If there are three instruc

tions per byte, the cell processor for the disk tracks must

be about a 1 MIP processor, and that for the CCD cells a 2

MIP processor. Such speed is within the state-of-the-art

processor speeds, but the processors could be very expen

sive.

The fact that data base machines which require numerous cell

processors are at all feasible is due to the following con

siderations:

1) All 512 characters in the block do not have to be manipu

lated. The data can be stored in the processor's memory

through a DMA device, without taking processor time. The

addresses of the attributes to be tested can be stored into

cell processor registers by the controlling processor. Then

the only data that has to be touched by the cell processor

are the attributes involved in the query qualification.

There are two figures of merit in this case:

i) the ratio of bytes in the attributes involved in the

qualification to the total number of bytes per block (the

qualification ratio)

ii) the ratio of equal comparisons to the total number of

Page 108



tuples (the attribute hit ratio)

If both the attribute hit ratio and the qualifcation ratio

are small, the cell processors can be slower and still keep

up with the cell cycle time.

2) In [SU75 and BAUM76] it is observed that the cell proces

sors can be made inexpensively to be very fast because they

are simple, single function devices. The cell processors do

not have to have to functionality of a conventional proces

sor: in conventional processors there are many addressing

modes, protection modes, interrupt handling, etc. It is

reported in [0ZKA77] that the RAP cell processors were bound

in speed by the datarate of the CCD pages, not the processor

speed.

3) If the cell processor is not fast enough, recovery routes

are possible. One is that taken by the data base machines

investigated in this analysis: if the query qualification

can not be completed in the time alloted, the next block is

not read into the cell processor's memory. Then the cell

processor must wait a full revolution of the cell storage

media until it can read the next block. Another is that the

controlling processor would limit the number of attributes

in the qualification to the maximum number the cell proces

sors can handle; then it would send the partially qualified

tuples to the host. Yet another is to use cell storage

mediums that do not revolve, such as bubbles or RAM.

In the following analysis of INGRES benchmark queries,

Page 109



condition 1, above, held. In the queries that contained

qualifications, the qualifications involved only a few

attributes per page; additionally, there was a low incidence

of equal comparisons. Therefore, the assumption that the

cell processors can operate at the rotation speed of the

cells is a proper assumption for this analysis, but may not

always be reasonable for all systems.

5.3.2.3. Cylinder selection time in DBC

The machine DBC contains special hardware to narrow the

number of cylinders that need to be processed. This is done

through the use of indices similar to INGRES secondary

indices.

The DBC indices specify only the cylinder number of the

associated data. Part of the design effort in DBC has been

to make the index selection and manipulation very fast.

Nevertheless, a time must be associated with the cylinder

selection operation in DBC. This is denoted by DBCY. If it

is assumed that the indices reside in RAM the time to fetch

and manipulate them is probably on the order of the time to

fetch a disk- resident page in UNIX, .006 seconds. There

fore, for the numerical analysis it is assumed that DBCY =

.006 seconds.

Page 110



l.,2,£,iL* Number of cells

The moving-head disk on the INGRES system contains 19 tracks

per cylinder. The number of tracks per cylinder is odd

since the top track of each cylinder, the 20th track in this

case, is reserved for the disk controller to use as a timing

track to sense when blocks start and stop. Consequently,

the number of cells for those systems that are disk-

resident, NDCELL, is assumed to be 19.

The cells in DIRECT are not tightly coupled to the cell pro

cessors. There are 8 processors and 32 data cells in the

prototype. .Therefore for DIRECT the number of processors,

NDRP, is 8; the number of data pages, NDPAG, is 32.

RAP tightly couples the processors to the data cells. The

controlling costs of the database machines will probably be

the expensive high-speed processors. Therefore, for compar

ison purposes, the number of processors in DIRECT and RAP is

assumed to be the same. Therefore, the number of cells in

RAP, NRCELL, is assumed for this analysis to be 8, the

number of processors present in DIRECT.

The following table summarizes the above.

Page 111



Table 9. Cell parameters and values

parameter meaning value

NDCELL Number of cells for
CASSM, CAFS, DBC and
associative disks 19

NDRP Number of cell processors
for DIRECT 8

NDPAG Number of data cells in

DIRECT 32
NRCELL Number of cells in RAP 8

1#1'£.5. Specification of conventional systems

It is evident that an analysis based on the current INGRES

implementation may not lead to general results, due to the

particular constraints of INGRES. Therefore, it is assumed

for the purpose of this analysis that the conventional sys

tem supports a new, high-performance INGRES. The high-

performance INGRES has a low amount of overhead and pre-

compiles the queries. The overhead is explained in Section

5.3.3.1. On inspection of the INGRES code it appears that a

decrease of half the CPU time per query would be possible if

the query were pre-compiled. It is assumed that the system

supporting INGRES is the system used in the benchmarks.

It is of interest to determine if the conventional system,

when augmented with a large number of buffers, will provide

significantly improved performance. It is therefore assumed

Page 112



that there is a 1 Megabyte cache in the augmented system.

Therefore NBUF, the number of 512-byte pages in the cache,

is 2000. This augmented system will be denoted as "Large

Buffer".

5.3..3. Host time

The host for all the backend machines, and the entire system

for the conventional machines, is assumed to be a DEC PDP

11/70.

There are two functions that the host system must perform no

matter what machine is used as the backend system. These

are the functions of processing the query to put it in a

form acceptable to the backend and communicating with the

backend. The former is denoted as "overhead", the latter

"communication time". The time that these functions take is

described in the following sections.

I'l'l'l* Overhead

Each of the backend machines will accept the query in a form

similar to that which is sent to the INGRES process

"Decomp". That is, the query must have been retrieved from

the user's terminal, parsed and validity checked before it

can be sent to the backend. This time shall be split into

two parts for this analysis: OVCPU denotes the overhead CPU

time, and 0VI0 denotes the overhead I/O time.

Page 113



It was shown in Chapter 4 that a back-end machine will not

significantly affect response time if the query is heavily

overhead-intensive. Therefore the only queries that need be

analyzed are those for which the overhead is small. To

assign numerical values to OVIO and OVCPU it shall be

assumed that the queries are pre-compiled, and that terminal

communication time is so small that it can be disregarded.

Both of these assumptions heavily favor backend systems. If

the host overhead time per query is very large, the added

advantage of the backend is reduced. It is a realistic

assumption because any system involving a backend machine

would surely implement the functions of pre-compiling the

queries and fast terminal handling.

The usual strategy for pre-compiling queries is that the

user defines a query prior to execution time; the data

management system parses, validity checks, and sets up a

run-time module for the query. When it is executed, infor

mation about what the query depends upon (e.g. presence and

type of attributes) must be checked. The minimal I/O time

for such checking is one reference per relation. Therefore

OVIO = DAVAC s .030 seconds per relation. •This is assuming

the validity checking is done entirely in the host and does

not involve the backend.

The overhead CPU time (OVCPU) is the time to perform the

work outlined above. It takes .006 seconds of CPU time to

Page 114



request a page of data from the operating system and

transfer it into the user space. In Table 4.2 it is

reported that the total OVQP time for an average query in

the short3 query stream was .28 seconds. Of that time, .12

seconds was data processing time, and .16 seconds was over

head. This overhead was the time for validity checking and

setting up a minimal query. Clearly the time for the

minimal overhead must fall between .006 seconds and .16

seconds. Where it falls between these two values depends on

the functionality of the validity checking: the amount of

optimization present or possible, the level of security,

etc. These two values shall be assigned to OVCPU as best

case — worst case assumptions. It must be pointed out that

this is an absolute minimum; that it will be much more com

mon that there is more work to do. If the database has

changed, and the query must be re-compiled, the extra work

of creating the run-time module actually increases the over

head. Any security algorithm would add overhead to check

access rights. Additionally, any natural-language inter

faces would also increase the overhead.

5.3..2«2. Host - to - Backend Communication Time

BCOM denotes the host CPU time to send a query to the back-

end system and receive the results. To assign a numerical

value to BCOM, the following considerations must be taken

into account.

Page 115



In UNIX, the inter-process communication time (from chapter

4) is .12 seconds for 5 processes to send messages to and

receive messages from each other linearly. This is .03

seconds for a send-and-receive transmission per process

pair. The time, in UNIX, for a process to request a page of

data from the operating system, and to receive that page, is

.006 seconds if the page is in memory. Whether the time to

communicate between the backend system is closer to the

inter-process time or the page-transfer time depends on the

design and the functionality of the interface. Rather than

attempting to narrow the time any further, the .006 sec.

time is assigned as the "best case" time, and the .03 sec.

time as the "worst case" time to set up a single communica

tion with the backend system.

,5..3..3..3. Host data processing time

Each of the machines relies on the host to format the

results for printing and move the results to the user's ter

minal. Some rely on the host to perform arithmetic func

tions. The amount of time required in the host is query and

machine dependent. It is denoted by HDP, the host data pro

cessing time.

The host parameters are summarized in the following table.

Page 116



Table 10. Host parameters and values

parameter meaning value
best case —worst case

OVIO

OVCPU

BCOM

HDP

host overhead I/O time
host overhead CPU time
host CPU time to

communicate with backend

host time to format results
. for printing, perform math

functions, etc.

.0300 seconds
(.006—.1600) sec

(.006—.0300) sec

query

dependent

5.3..4. Query performances

It will be recalled that there were three classes of bench

mark queries: data-intensive, overhead-intensive, amd

multi-relational queries. Four queries were chosen for the

following analysis: one from short3 (S1), one from long3

(L1), the "ROOMS" query (M1), and an aggregate function

query from "long2" (A1). The query-S1 is an overhead inten

sive query; L1 is a data intensive query; M1 is a multi-

relation query; and A1, an aggregate function, is also a

data intensive query.

The first part of this section contains an analysis by query

type. Both the total work and response times are calculated

for each query on each machine. The total work is the sum

of the time spent in all components of the machine. The

response time is the sum of the component times that cannot

be overlapped. The second part contains the conclusions.

Page 117



I'l'l'l' Short queries

The query chosen for this analysis is:

query S1:

retrieve(QTRCOURSE.day, QTRCOURSE.hour)
where QTRCOURSE.instructor = "despain, a.m."

QTRCOURSE contains 1110 tuples. Each tuple has 24 attri

butes, and is 127 bytes long. The relation can be stored as

a heap in 274 pages. The attribute "day" is a character

field, 7 bytes long; "hour" is also a character field, and

is 14 bytes long. The query resulted in 3 qualified tuples

returned to the user.

This particular query was picked because its performance

characteristics match those of the "average query" in the

benchmark short3, as reported in Table 1 of Chapter 4. In

the following machine comparisons the following considera

tions are important.

1) The relation fits on one cylinder because the number of

pages is less than DCYL, the number of disk blocks per

cylinder.

2) Since there were only four tuples returned to the host,

the time to process the retrieved data and send it to the

user terminal is assumed to be 0. Also, since the hit ratio

is so low, it is assumed that there is not a problem with

bus contention or controller processor speed.

Page 118



3) There is one relation in the query, so the host overhead

cpu time, OVCPU, is a constant factor, (.006—.160)

seconds. OVIO, the host overhead I/O time, is .030 seconds.

The machine comparisons follow.

5.3.4.J_.J_. Fast INGRES

The work to execute this query in a "fast INGRES" system is

*

FWORK = OVIO + OVCPU + DPIO + DPCPU

OVIO = overhead I/O time = .0300 seconds.

OVCPU = overhead CPU time = .006—.160 seconds.

DPIO, the data processing I/O time, is calculated in the

following section.

In chapter 4 it is reported that there were 11 I/O refer

ences to process this query: three to the QTRCOURSE rela

tion, and eight to system relations. The references to

QTRCOURSE are the data processing references. QTRCOURSE was

hashed on instructor name. The three QTRCOURSE references

include two overflow pages and one main page. The time for

the three references is in the worst case an average access

per reference. This would occur if the pages reside on

separate cylinders. If they are on the same track the best

case condition arises. Then the reference time is one

access and 3 block transfers. Therefore:

DPIO = DAVAC + 3*DRATE, best case — 3*DAVAC, worst case

Page 119



numerically, this is

DPIO = .0336 best case — .090 worst case

DPCPU, the data processing CPU time, is calculated below.

In Table 2 of Chapter Four it is reported that the query

required .12 seconds of data processing CPU time. Since the

"Fast INGRES" system is compiled, the data processing CPU

time will be half of the measured interpreted query. There

fore DPCPU = .06 seconds.

The total work that a query incurs is a measure of the

impact of the query on system performance. The total work

for this query is:

FWORK = OVIO + OVCPU + DPIO + DPCPU
= OVIO + OVCPU + ((DAVAC+(3*DRATE)) — 3*DAVAC)

.+ DPCPU

= .0300 + (.006—.160) + (.0336—.0900) + .06
= (.13 —.34) seconds

The response time is that amount of the work which cannot be

overlapped with any other part of the work. Clearly the

overhead CPU and I/O times must be done serially since the

one I/O reference contains information necessary for the

validation of the query. However, the data processing I/O

and CPU times can be overlapped. The response time is

therefore:

FRES = OVIO + OVCPU + max [DPIO, DPCPU]
= OVIO + OVCPU +

max[((DAVAC+(3*DRATE)) — 3*DAVAC) , DPCPU]

The best case response time uses the maximum best case

Page 120



values; the worst case the maximum worst case values.

FRES = ( .096 — .280) seconds

The best case is dominated by the CPU time to process the 3

pages which at .06 seconds is almost half of the total best

case work and almost two-thirds of the best case response

time. The overhead CPU, at .16 seconds worst case, dom

inates the worst case work and response times.

5.3.4.J_.2. Large Buffers

It is assumed that the presence of large buffers only serves

to decrease the I/O time, not the CPU time. This is a

slight simplification, since the operating system does

require time to schedule requests to disks, field inter

rupts, etc., in processing I/O requests. This time would be

saved if the data were already in memory, but it is assumed

to be negligible in relation to the time the queries

require.

If that time is very small the large buffer

system uses the same amount of CPU time as the fast INGRES

system.

The I/O time for query S1 is composed of the one page of

overhead and three pages of accesses to the QTRCOURSE rela

tion; therefore, with buffers large enough to cache the sys

tem relations, the I/O time would decrease to the time to

Page 121



access the QTRCOURSE relation. This time, as calculated

above, is at best.0336 seconds, and at worst .09 seconds.

If the entire relation is stored in the cache, the time is,

of course, zero.

Then the work in large buffer systems is:

LWORK = OVIO + OVCPU + DPIO + DPCPU
LWORK = 0 + (.006— .160) + (0—.0900) + .06

= (.066—.229) seconds

and the response time is the same:

LRES = (.066 — .229) seconds

The best case time is dominated by the data processing CPU;

the worst case time by the overhead CPU time.

5.3..4.K3. Associative Disks

The associative disks and CAFS have the same functionality

for this query. The time in either system is:

AWORK = OVCPU + OVIO + BCOM + DAVAC + DROT

BCOM, the time to communicate with the backend, is (.006 —

.030) seconds. There must be one disk access to position

the machine at the right cylinder. Then, since the data

resides on a single cylinder, and since the cell processors

operate at the rotational speed of the disk, the data pro

cessing will take one revolution of the disk.

Numerically, this is:

Page 122



AWORK = (.006—.160) + .030 + (.006— .0300)
+ .030 + .0167

= (.0887— .2667) seconds.

The response time is exactly the same,

ARES = (.0887 — .2667) seconds.

The major components of the best case time are the two disk

access times: one to perform the overhead functions, the

other to position the disk arm for data processing. The

worst case time is dominated by the host CPU overhead.

5.3.4.2.4. CASSM

First the storage requirements for the QTRCOURSE relation on

CASSM must be determined. There are 1110 tuples in the

relation, so assuming a two-byte encoding of the relation

name there must be 2220 bytes to store the per-tuple rela

tion name. There are 25 attributes per tuple; assuming a 1

byte encoding of attribute names is stored per attribute per

tuple, 27,750 bytes are necessary to identify attributes.

Each tuple is 127 bytes long; however, in CASSM no character

fields over 4 characters long are directly stored. They are

stored once, then pointers to the correct character string

are stored in each tuple. Using that method for storing the

relation requires 74 bytes per tuple, which includes 9

pointers to character strings. The 9 attributes that are

represented as character strings were measured to require

6417 bytes of storage. So the total storage required is 221

blocks, validating Langs conjecture that the extra storage

Page 123



required for the delimitors in CASSM is offest by the data

encoding algorithm it uses [LANG78]. This data will fit on

one cylinder.

Therefore, the work performed in this query is:

CWORK = OVCPU + OVIO + BCOM + DAVAC + n*DROT

The number of rotations, n, is:

1 rotation to mark all tuples
for the relation QTRCOURSE

1 rotation to find the pointer to
character string "despain,a.m."

1 rotation to mark all tuples with
the pointer to "despain"

1 rotation to return all "day"
attributes in marked tuples

1 rotation to return all "hour"
attributes in marked tuples

It is assumed that CASSM sends the attributes to the host in

their coded form, and also sends the decoding information.

The host will therefore have the CPU time to decode the

attributes, but since, there were only 3 tuples returned from

this query, that time can be disregarded.

The value for n for this query is therefore 5, and the work

to process the query is:

CWORK = (.006—.16) + .030 + (.006—.030)
+ .030 + 5 * .0167

= (.156—.234) seconds

The response time is the same

CRES = (.156 — .234) seconds

Page 124



The best case time is dominated by the five rotations. The

major component in the worst case is the same as in the pre

vious systems, the host overhead CPU time.

5.3.4.K5. DBC

The time in DBC is:

DBWORK r OVCPU + OVIO + BCOM + DCYL + DAVAC + DROT

This differs from the associative disk case in only the time

required to perform the cylinder select in DBC, DCYL. If

that time is .006 seconds, the work in DBC is:

DBWORK = (.0947—.273) seconds

Since the cylinder selection must be done before the data

processing can begin, it cannot be overlapped. The response

time is therefore the same as DBWORK,

DBRES = (.0947 — .273) seconds

5-3.4.K6. DIRECT

The work DIRECT must perform is:

DWORK = OVCPU + OVIO + BCOM + n*CSCAN + DPIO

CSCAN is the CCD page scan time; DPIO is the time to read

QTRCOURSE from the disk.

Page 125



First, the value of DPIO will be determined. The QTRCOURSE

relation is 274 512-byte blocks long so it will fit in 9 of

DIRECT's 16K byte data cells. In this query the cell pro

cessors will read from one data cell and write the requested

attributes of the qualified tuples to another cell, thus

forming a temporary relation. Therefore 8 of the cells must

be reserved as processor output cells. Assuming no other

queries are running, 24 cells are available to read in the

relation. Therefore the entire relation can be read at

once. DPIO therefore is one disk seek plus the transfer

time. Of course the best case I/O time is if the relation

is already in DIRECT's buffers; in that case the time is

zero.

DPIO = (0 — (DAVAC + 274*DRATE))
= (0 — .030 + (274*.0012))
= (0 — .359) seconds

Next, the number of page scans required (n) is determined.

Since 9 data cells are required to store this relation, and

there are only 8 cell processors, two scan times are

required to write the qualified tuples to the temporary

relation: one for the first 8 pages, another for the last

one.

If the partial results of queries are stored in separate CCD

pages, DIRECT exhibits performance problems. These problems

are related to the assignment of processors to CCD pages,

and are explained in [DEWI79]. In order to avoid the

Page 126



problems, the partial pages are compressed into a fewer

number of full pages. Since there are 7 idle processors in

the second scan, the compression of the first 8 temporary

relation pages can be done during that scan. The compres

sion of the remaining page and the work of sending it to the

host can certainly be accomplished in a third scan time.

Therefore n, the number of scans required, is 3 for this

query.

Then the total work is:

DWORK = OVCPU + OVIO + BCOM + 3*CSCAN
+(0 — ( DAVAC + 127*DRATE))

= (.006 — .16) + .030 + (.006 — .030) + 3*.012
+ (0 — .359)

= (.078 — .615)

The response time in the best case is the same as the total

work, because no overlapping is possible. If the pages must

be read from secondary storage, as in the worst case, the

data transfer time for the blocks entering the last data

cell can be overlapped with the processing of the first 8.

Since there are 32 512-byte blocks per data cell, the

response time is

DRES = OVCPU + OVIO + BCOM + 2*CSCAN
+ (1*CSCAN —

(DAVAC + 242*DRATE + max(1*CSCAN,32*DRATE))

= (.006 — .16) +.030 + (.006 — .030) + .024
+ (.012 — (.030 + .29 + raax(.012,.038)

= (.078 — .603)

Page 127



In both the response and work times, the best case is dom

inated by the scan times for the CCD data cells, and the

worst case by the data transfer time from the disk.

5.3.4.1^.7. RAP

The time in RAP is:

RWORK = OVCPU + OVIO + BCOM + n*CSCAN + DPIO

First the time to read the data from the disk, DPIO, will be

discussed.

In order to provide RAP with the same amount of storage as

DIRECT, it is assumed that there are 24 16K-byte CCD pages

available to act as a buffer cache. These are not a part of

any proposed or actual design of RAP, and are not

represented in the RAP block diagram (figure 5.3). On that

diagram the buffers would appear between the disk and the

controlling processor. These pages will be denoted by

"buffer cells" to differentiate them from the 8 cells

attached to the cell processors (the "processor cells").

QTRCOURSE, because it is 9 cells long, will not completely

fit in the RAP processor cells. If QTRCOURSE is not already

in the cache when the query begins, a reasonable algorithm

to read it in is to write it into both the buffer cells and

the processor cells at the same time. Otherwise the first 8

cells would have to be loaded into the buffer cells, then

Page 128



into the processor cells, which takes more time.

The data must be sequentially sent from the buffer cells to

the processor cells because to do otherwise would require a

cross-point switch. Therefore the most reasonable best case

time occurs if the relation is stored in the buffer cache,

is the transfer time of the first 8 cells, or 8 * CSCAN.

The worst case time is the same as in DIRECT.

DREAD is :

DREAD = (8 * CSCAN — (DAVAC + 274*DRATE)

The following section calculates the value for n, the number

of cell scans that must be performed for data processing.

The number of cell scans is:

1 to mark qualifying tuples
in 8 processor cells

1 to send marked tuple to host
1 to transfer the 9th page from buffer

to processor cell
1 to mark 9th page
1 to send marked tuples in 9th page to host

Therefore n is 5, and the necessary work to perform the

query is:

RWORK = OVCPU + OVIO

+ BCOM + (8*CSCAN — (DAVAC + 274*DRATE))
+ 5*CSCAN

= (.006 — .16) + .030 + (.006 — .030)
+ (.096 — .359) + .060

= (.20 — .64) seconds

Page 129



The response time is the time above, except that the disk

transfer rate for the last cell can be overlapped with the

scan time for the previous cells. The best case response

time remains the same as the work, and the worst case

response time is .012 seconds less. The response time is

therefore:

RRES = (.20 — .63) seconds

Page 130



CO

-o
c

o
o

CO

£

a>
to

c

o
Q.
to

cr

.0 -

0.1 ~

0.0

System Complexity —*•

Figure 5.6 Response time vs. Complexity
Hypothetical

IZI



to

C
o

CD

CO

0.7 H

0.6

0.5

0,4

0.3

0,2

0.1 H

0.0

Ingres Large ASSC; CASSM DBC RAP Direct
Buffers CAFS

System Complexity

Figure 5.7 Total Work vs. System Complexity
Query S1

/32-



CO

c

O
o

CD

CO

CD

£

CD
CO

C

o

0.7

0.6 -

0.5 -

0.4 -

0.3 -

°- 0.2to w *"
CD

0.1 -

0.0

Ingres Large ASSC; CASSM DBC
Buffers CAFS

System Complexity

RAP Direct

Figure 5.8 Response time vs. Complexity
Query S1

J33



£'2'i*l*^' Conclusion

Figure 5.6 shows a hypothetical curve- relating system work

to a machine's complexity. It is to be expected that a more

complex system, where that complexity consists of added

buffers, processors, etc., will result in less response time

and less system work.

In Figure 5.7, the system work for each of the systems

described above is plotted against the complexity of the

system.

The systems are ordered along the horizontal axis as fol

lows:

1) INGRES, the "basic" system
2) Large buffers added to a basic system
3) Associative Disks, CAFS

the cell processors are relatively
simple

4) CASSM

more intelligence in the cell
and controlling processors

5) DBC

highly functional controlling
processor

6) RAP
very fast cell processors; CCD cells

7) DIRECT
cross-point switch

It is apparent that neither the best nor worst case

curves follow the expected curve. Figure 5.8 relates

the response time for query S1 to the machine complex

ity. It also shows that the increased complexity of the

machines do not result in faster response times. In

Page 134



both figures 5.7 and 5.8 the worst case times of the

caching systems (RAP and DIRECT) is very much higher

than the worst case INGRES time. That is because INGRES

maintains QTRCOURSE as a hashed relation, and only read

three pages of it. The caching systems had to serially-

read the entire relation.

Even the best case times of the machines barely fluctu

ate below the INGRES best case. RAP and CASSM actually

require more time than INGRES because they must scan the

cells so many times.

It is apparent that, for this query, the increased cost

and complexity of the database machines do not result in

a significant increase of performance.

I'l'l'^' Long Queries

The query chosen as query L1 is:

retrieve (outstand.fund, outstand.acct)

This query was chosen because its performance pattern was

very close to the average for the benchmark it is from, the

"long3fl benchmark. The relation "outstand" has 914 tuples

of 97 bytes each. In INGRES it is a compressed heap, and

requires 145 pages of storage. The query prints the fund

and account numbers for each entry in the relation.

The following conditions apply to the analysis of this

query:

Page 135



1) None of the database machines support compressed rela

tions. OUTSTAND was 185 pages when uncompressed. The data

can be entirely stored within one cylinder of the disk.

2) The time to perform the host data processing is not

trivial for this query, since 914 values are returned to the

host.

3) The query is a single-relation query, so the host over

head CPU time remains the same as in Section 5.3.4.1.

4) There was no duplicate suppression in the INGRES bench

mark query, so no time is allotted to that function in the

following analysis.

5) This query is an unqualified projection of a relation.

In the backend database machines it is quite likely that

such a query will exhibit performance problems due to bus

contention or buffering speed limits in the controlling pro

cessor. In order that the analysis be as uncomplicated as

possible, these problems are ignored. This greatly favors

the backend systems. That is because the bus contention and

buffering problems can be a serious drain on the database

machines' performance.

I*i'i-£'l- Fast INGRES'

The work in INGRES is:

FWORK = OVCPU + OVIO + DPIO + DPCPU

Page 136



The time to perform the data processing I/O, DPIO, is first

discussed.

It is assumed that the relation is stored on a single

cylinder, so only the initial seek is required to access it.

However, few standard systems can or will furnish the 145

pages necessary to store the entire relation if it is read

all at once. Therefore it is assumed that the standard sys

tem reads it a track at a time. The relation occupies 8

tracks; to read the first track requires the average access

time, DAVAC. If the disk heads remained positioned at the

cylinder that the relation resides on, reading the remaining

7 tracks requires only the average latency time. This time

is one-half of a disk revolution time, or DROT/2. DPIO is

therefore:

DPIO = DAVAC + (7 * DROT/2) + 145*DRATE
= .030 + (7 * .008) + 145*.0012
= .26 seconds

The DPCPU time is discussed below.

When run on a standard system this query required 3.2

seconds of CPU time. A compiled system by assumption will

require half of that, so DPCPU is 1.6 seconds.

The total work is therefore:

FWORK = (.006 — .16) + .030 + .26 + 1.6
= (1.90 — 2.05)

The DPIO and DPCPU times can be overlapped. Therefore the

Page 137



response time is:

FRES = (.006 — .16) + .030 + 1.6
= (1.636 — 1.79) seconds

The time, in all cases, is dominated by the CPU data pro

cessing time.

5.3.4.2.2. Large buffers

In a large buffer system, the time is

LWORK = OVCPU + OVIO + DPIO + DPCPU

The times are as defined for the INGRES system, except the

I/O time. In the best case, the relation is in the buffers

and the time is 0. Otherwise, the presence of the buffers

insures that the relation can be read a cylinder at a time,

so DPCPU becomes:

DPCPU = (0 — (DAVAC + 145 * .0012))

The total time is therefore:

LWORK = (.006 — .16) + 0 + (0— (.03 + .174)
+ 1.6

= (1.61 — 1-.96) seconds

The data processing I/O time can be overlapped with the CPU

time in the worst case. The response time is therefore:

LRES = (1.61 — 1.76) seconds

The work and response times are dominated by the CPU time.

Page 138



5«2»it«2.3. Associative disks and CAFS

The associative disks and CAFS require the following time:

AWORK = OVIO + OVCPU + BCOM + DAVAC + DROT + DTRANS + HDP

The host overhead I/O, CPU and backend communication times

are the obvious quantities. DAVAC, the disk access time, is

necessary to position the disk arm. DROT is the rotation

time of the disk, the time to process the query. DTRANS is

the time to transfer the data to the host machine; HDP is

the data processing time in the host.

DTRANS will first be calculated.

Both of these machines return the full tuple to the host

instead of qualified attributes. It is assumed that:

1) the database machine is connected to the host by a chan

nel that has the same maximum datarate as that of the disk

channel, DRATE sec / block, and

2) the machine controller can buffer pages that the host is

not ready for

Then the maximum speed that the data can be sent to the host

is DRATE per block. Therefore DTRANS = 185 * DRATE

Now HDP will be calculated.

The host processor must perform the exact functions on the

tuples as INGRES does, so the host processor time, HDP, is

assumed to be the same as in the INGRES system.

Page 139



The total work is therefore:

AWORK = OVIO + OVCPU + BCOM
+ DAVAC + DROT + 185 * DRATE + HDP

= (.006—.16) + .030
+ (.006—.03) + .0167+ 185*.0012 + 1.6

= (1.88 — 2.06) seconds

The data transfer and disk rotation time scan be overlapped

with HDP, so the response time is:

ARES = (.006—.16) + .03 + (.006—.03) + 1.6
= (1.64 — 1.82)

The data processing time in the host dominates both the work

and CPU times.

5.3.4.2.4. CASSM

The time in CASSM is

CWORK = OVIO + OVCPU + BCOM + DAVAC + n*DR0T + HDP + DTRANS

OVIO, BCOM, DAVAC have been defined above.

HDP, the time to format the tuples for printing, is at least

as great as in the INGRES system because the attributes are

received in coded format, and the host must decode them.

The number of rotations required is:

1 mark tuples of OUTSTAND
1 retrieve attribute "fund"

1 retrieve "out"
1 retrieve decoding information

4 n, number of rotations required

Page 140



DTRANS is the time to send the coded representations of the

attributes and the decoding information to the host. The

data to be sent takes 4 512-byte blocks. If the same chan

nel is used to connect CASSM to the host as is used for the

INGRES disks, and if there is no bus contention, that time

is DRATE * 4.

then CWORK is:

CWORK = .03 + (.006—.16) + (.006—.03)
+ .03 + 5*.0167 + 1.6 +.0048

= (1.77 — 1.94) seconds

CRES = CWORK since there is no significant overlap
possible.

5.3.4.2.5. DBC

The time in DBC is:

DBWORK = OVCPU + OVIO + BCOM + DCYL + DAVAC + DROT

+ DTRANS + DHP

The time to transfer the data to the host, DTRANS, will be

discussed in the following paragraph.

The transfer time is the time to transmit the data from the

controlling processor to the host. It is assumed that the

controlling processor will buffer the data coming from the

cell processors. When a 512 byte block is filled it is sent

to the host. Since the qualified attributes will fit in

four blocks, DTRANS is the time to transfer four blocks.

Page 141



Therefore,

DTRANS = 4 * DRATE

DHP shall be calculated in the following paragraph.

An important question is to what extent the host data pro

cessing CPU time is reduced when the database machine

returns only the needed attributes. The functions that the

database machine has performed for the host are:

1) physically separated the "fund" and "acct" attributes

from the other attributes in the tuple.

2) sent less data to the host, so the host is relieved of

the CPU time to request and transfer pages into its working

space.

The CPU time in INGRES to transfer a page is .006 seconds.

Therefore the 1.6 seconds of the INGRES CPU data processing

time can be reduced to .75 seconds because the number of

page reads is reduced from 145 to 4, and because the query-

is assumed to be compiled. It is estimated, from inspection

of the INGRES code, that the actual time to separate the

attribute from the tuples takes one tenth of the remaining

time. Therefore HDP is .68 seconds.

The total time in DBC is therefore:

DBWORK = OVCPU + OVIO + BCOM + DCYL + DAVAC + DROT
+ DTRANS + DHP

= (.006—.16) +.03 + (.006—.03) +.006 + .03
+ .0167 +.0048 + .68

= (.78—.96) seconds

Page 142



The response time is the same.

5.3.4.2.6. DIRECT

The work DIRECT must perform is:

DWORK = OVCPU + OVIO + BCOM + n*CSCAN + DPIO + DHP + DTRANS

DPIO will first be calculated.

The 185 pages of data fit in 6 of DIRECT fs data cells.

Since the relation can be completely read into the buffers,

the read time is:

DPIO = DAVAC + 185*DRATE

If the relation is already in the buffers the read time is

0.

The number of scans required (n) is calculated next.

DIRECT will send this query to the processors as a "project"

command, so they will not attempt to perform any qualifica

tion on the tuples, merely move the needed attributes from a

page in the source relation to a page in a temporary rela

tion. Therefore the number of scans necessary is:

1 6 processors moving tuples; 2 compacting
1 4 processors compacting; 4 sending data to host
1 rest of data is sent to host

3 n, number of scans

The above numbers assume that as one cell processor puts

data into a temporary relation cell, another can be reading

Page 143



from that cell to compact the relation into a third cell.

This assumes that the controlling processor can schedule the

cell processors to perform these functions, and is highly

favorable to DIRECT.

DTRANS, the time to transmit the qualified attributes to the

host, is included in the scan time and need not be

separately calculated.

HDP, the host data processing time, is the same as in the

host for DBC, since DIRECT transfers only the necessary

attributes.

The total time for DIRECT is therefore:

DWORK = OVCPU + OVIO + BCOM
+ 3*CSCAN + (0 — (DAVAC + 185*DRATE))
+ DHP

= (.006—.16) + .03 + (.006—.03)
+ .036 + (0 —(.03+.222))
+ .68

= (.758 — 1.188) seconds

The response time is exactly the same.

The data processing time in the host dominates the query-

times.

5.3.4.2.7. RAP

The time in RAP is:

RWORK = OVCPU + OVIO + BCOM + n*CSCAN + DPIO + DHP

Page 144



The work in RAP will be the same as the work in DIRECT,

except that the number of scans is different.

The number of scans (n) is calculated below.

RAP requires

1 scan to mark tuples
1 scan to send marked attributes to host

2 total scans, n

Therefore the total work for RAP is:

RWORK = OVCPU + OVIO + BCOM + 3*CSCAN
+ (0 — (DAVAC + 185*DRATE)) + DHP

= (.746 — 1.176) seconds

The response time is the same.

Page 145



CO

"O
c

o
o
CD

CO

CD

E

<D
CO

C

o
Q.
CO

CD

2.0 -

1.8 -

I .6 -

1.4 -

1.2

1.0

0.8

0.6

Ingres Large ASSC; CASSM DBC
Buffers CAFS

System Complexity

RAP Direct

Figure 5.9 Response time vs. Complexity
Query L1

/VC*



co

•o
c

o
o
CD

CO

CD

£

CD
CO

C
o
Q.
CO

CD

<r

2.0-

1.8-

1.6-

1.4-

1.2

1.0

0.8^

0.6
r ^ I I 1 1 1

Ingres Large ASSC; CASSM DBC RAP Direct
Buffers CAFS

System Complexity

Figure 5.10

Total Work vs. System Complexity
Query A1

W7



£.3.4.2.8. Conclusion

Figures 5.9 and 5.10 are the comparisons of response and

total work to system complexity. As in Query S1 , neither

time decreases significantly when compared to the increased

complexity of the systems. We note the following points:

1) The effect of the query was simply to move data. In this

case, it can be expected that the response time is not sig

nificantly improved by the use of database machines.

2) The the major improvement in the response time that was

seen was in those machines that sent only the needed attri

butes, not the entire tuple, to the host. The specific

improvement that can be thus obtained is entirely dependent

upon the implementation in the host system. If the system

implements the splitting apart of the tuples into the attri

butes in a very fast manner, the improvement will be much

less than is shown here.

3) There were several assumptions made that heavily favored

the backend machines. These were:

i) There is no bus contention.

ii) The controlling processor is smart enough, and fast

enough, to fully buffer the results and send them to the
0

host without itself becoming a bottleneck.

iii) The controlling processor is capable of synchronizing

the cell processors in the most optimal way.

In spite of these assumptions, the improvement of perfor

mance effected by the use of the database machines is not

Page 148



commensurate with their increased complexity.

4) The query response time and work were in all cases bound

by the speed of the host in processing the output data. In

other systems, or with other queries, this time will vary

from the time estimated in this analysis. Nevertheless, in

an unqualified scan of an entire relation it is to be

expected that most of the work of the system must reside in

that part of the system which handles the output functions.

This class of queries is typical in reports.

l*3.mHa2.9 A8gregate functions

An aggregate function is an aggregate with a "by clause",

which is a "group by" operator. The following query was

chosen for the aggregate function query, A1:

retrieve (GMASTER.acct,
GMASTER.fund,
encumb = sum (GMASTER.encumb by

GMASTER.acct,
GMASTER.fund))

This query was chosen because it is typical of the aggregate

functions in the long2 benchmark. GMASTER is a relation of

194 tuples, 2 tuples per page. There are 17 unique values

for the (acct,fund) pair. The query returns to the user the

17 unique (acct,fund) pairs, and their associated sums.

The following are considerations in analyzing this query.

1) The relation is 94 pages long; therefore it will reside

on a single cylinder.

Page 149



2) The query is a single-relation query, so the host over

head time is the same as in the previous queries

5.3.4.3.1- Fast INGRES

The work to execute this query in a "fast INGRES" system is:

FWORK = OVIO + OVCPU + DPIO + DPCPU

OVIO and OVCPU are the same as in previous queries. DPIO is

calculated in the following paragraph.

GMASTER can be stored in 5 tracks of the disk. As is

explained in section 5.3.4.2.1, the time to perform the read

is:

DPIO = DAVAC + (4*DR0T/2) + 97*DRATE

DPCPU must be calculated next.

The optimal algorithm to perform this query is to read the

GMASTER relation once, retaining in memory only the

(encumb,acct,fund) attributes from each tuple. These are

stored in a temporary storage area, denoted by T1. T1 is

then sorted on (acct, fund), and the sums performed and out

put.

The CPU time to execute this algorithm is composed of the

time to perform the scan of GMASTER and the projection

(HSCAN), the time to perform the sort (HSORT), and the time

to perform the sum (HSUM). These are calculated below.

HSCAN is the CPU time to read the 97 pages of the relation,

Page 150



which is .006 seconds per block, plus the time to perform

the projection. This time can be no more than the .006

seconds per page that is required by the operating system.

Therefore

HSCAN = .012 * 194 = 2.328 seconds

HSORT, the time to sort the (encumb,acct,fund) tuples will

be calculated next.

The (encumb, acct, fund) tuples are 24 bytes long; 194 of

them are stored in 9 pages. On the 11/70, sorting 9 pages

requires about .24 seconds of CPU time. Therefore HSORT =

.24 seconds.

The time to perform the sum, HSUM, can require no more time

than to sort them. Therefore HSUM = .24 seconds.

Then the total CPU time to process the query is:

DPCPU = 2.568 seconds

Therefore the time to process query A1 is:

FWORK = OVIO + OVCPU + DAVAC + (4*DR0T/2)
+ 97*DRATE + DPCPU

= (.006— .16) + .03 + .032 + .117 + 2.57
= (2.755 — 2.909) seconds

For the response time the data processing I/O can be over

lapped with the data processing CPU time. Then the response

time is

Page 151



FRES = (2.576 — 2.73) seconds

The time in both cases is overwhelmed data processing CPU

time.

i'i'1'3.2. Large buffers

In a large buffer system, the time is

LWORK = OVCPU + OVIO + DPIO + DPCPU

The times are as defined for the "Fast INGRES" system,

except the I/O time. In the best case, the relation is in

the buffers and the time is 0. Otherwise, the presence of

the buffers insures that the relation can be read a cylinder

at a time. Therefore DPIO is:

DPIO = (0 — (DAVAC + 97 * DRATE))

The total time is therefore:

LWORK = (.006 — .16) + 0 + (0— (.03 + .116)
+ 1.64

= (1.65 — 1.95) seconds

The data processing 1/0 time can be overlapped with the CPU

time in the worst case. The response time is therefore:

LRES = (1.65 — 1.81) seconds

The work and response times are dominated by the CPU time.

Page 152

K

r *



5.3.4.3.3. Associative Disks and CAFS

The work in the associative disk system is:

AWORK = OVCPU + OVIO + DAVAC

+ (n» + 1)*DROT + (n1 + 1)*BCOM
+ HSORT + HDP + DTRANS

Since associative disks and CAFS do not directly support

aggregate functions, the host processor must determine the

proper algorithm to use. In this case, a good algorithm is

to retrieve all the (acct,fund) pairs from the GMASTER rela

tion and sort them to remove duplicates. Then the host will

issue a query for each unique value found:

Retrieve (GMASTER.encumb) where acct = value
and fund = value

The host processor must then accumulate the sum, and print

it, with the values of the acct and fund attributes, on the

user's terminal.

The parameter n' is the number of unique values in the

(acct, fund) pair. There were 17 unique values in this

query. Therefore the number of times the relation is read

is 18, the 17 unique values and the 1 to read it to perform

the projection. There are an equal number of communications

to the backend system.

HSORT, the time to sort the projection in the host, will now

be calculated.

Page 153



In this example, there were 194 tuples in the source rela

tion, and the two attributes are 10 bytes each (both are

carried as character fields since numbers such as "109A" are

allowed). There are therefore (194*20)/512, or 8 pages, to

be sorted. This is was measured at .22 seconds of CPU time

on a PDP 11/70.

Therefore, HSORT = .22 seconds

In the following section, DTRANS is calculated.

The total amount of data transferred by the 17 scans is pre

cisely the size of the relation, since whole tuples are

transferred and each tuple belongs to exactly one (acct,

fund) pair. The first scan also transferred the entire

relation, so the projection could be formed.

Therefore DTRANS = 2*97*DRATE = 194*DRATE

HDP will now be calculated.

The work that the host processor must do, independent of the

sort, is

1) form the projection on GMASTER so the (acct,fund) pairs

can be sorted.

2) As the matching tuples are sent to the host from each of

the 17 sub-queries, it must add the "encumb" attribute, and,

when the sub-query is finished, print the result on the

user's terminal. In query L1 the CPU time was calculated to

be 1.6 seconds, or .0018 seconds per tuple. The amount of

work that must be done by the host processor for the

Page 154



associative disk for query A1 is on the order of the amount

of work INGRES does per tuple for query L1. Therefore the

DHP time is:

DHP = 2 * 194 * .0018 = .70 seconds

The total time to process this query is therefore:

AWORK = OVCPU + OVIO + DAVAC + (n ' + 1)*DR0T
+ (n' + 1)*BC0M + HSORT + HDP + DTRANS

= (.006—.16) + .03 + .03 + 18*.0167
+18(.006 — .03) +.22 +.70 + 194*.0012

= (1.628 — 2.212) seconds

5.3.4.3.4. CASSM

The time in CASSM is

CWORK = OVIO + OVCPU + BCOM + DAVAC + n*DROT + HDP

+ DTRANS

The number of rotations, n, shall be determined below.

CASSM includes as a part of its cell processors the function

of summing attribute values. The following is an algorithm

that will result in the processing of the entire query in

the backend machine.

1) find the first value of acct, and set one of its mark

bits to show it is participating in this sum. Mark every

tuple that contains a pointer to that value of acct. This

requires one pass over the data.

Page 155



2) Find the first value of fund for the marked tuples; set

another mark bit to show these tuples are to be summed in

the next pass. This requires one pass over the data.

3) Add the encumb amount to the sum area in the CASSM cell

processors for each doubly marked tuple, and mark the tuple

in another mark bit to show that it is removed from the

algorithm. This requires one pass.

4) Now find the next unmarked value of the fund field for

this value of acct; mark, sura as in 2 and 3.

When all qualifying values of fund have been found, repeat

from step (1) until there are no more values of acct.

In this particular query, the results are skewed because

there was only one value for acct, and 17 values for fund.

Therefore the algorithm takes 1 pass to mark all tuples for

the one acct, then 17 passes for the 17 unique values of the

fund field. It is assumed that the overlapping of the out

put of an attribute value and the testing of another attri

bute can be used, so the total number of cycles to produce

the results would be 20 cycles. This includes an extra,

unoverlapped cycle at the end to output the last sum, and

the first cycle to mark the records of the GMASTER relation.

The value of n is therefore 20.

The time to transfer the 17 suras to the host machine,

DTRANS, is minimal and may be neglected.

The time in the host to format the sums for printing is also

Page 156



minimal and shall be neglected.

The total work of this query is therefore:

CWORK = OVIO + OVCPU + BCOM + DAVAC + n*DROT + HDP
+ DTRANS

= .03 + (.006—.16) + (.006—.03) + 20*.0167
= (.376 — .554)

5.3.4.3.5. DBC

The time in DBC is:

DBWORK = OVCPU + OVIO + (n' + 1)*BC0M + DCYL + DAVAC
+ (n' + 1)*DROT + DBSORT

+ DTRANS + DHP

Since DBC has no internal mechanism for handling aggregate

functions, the host processor must determine the best algo

rithm to use. The Security Filter Processor contains a sort

mechanism, so when the host processor issues the request:

(Retrieve (acct, fund)(relation = GMASTER)

sorted by (acct,fund))

the 17 unique values of (fund,acct) will be returned to the

host. Then 17 sub-queries can be issued to DBC:

(Retrieve(sum(encumb))(relation = GMASTER)

&(acct=value)&(fund=value))

The number of communications with DBC and the number of

rotations is therefore = 18.

The value for DBSORT will now be calculated.

It cost .24 sec. of CPU time in an 11/70 to perform the sort

of the (acct,fund) attributes; that will be considered the

Page 157



best case time. If the SFP is a slower, cheaper processor

such as an 11/40 the sort time would be longer. An 11/40

is 1/3 the speed of an 11/70; so the worst case time is .72

seconds.

DBSORT = (.24 — .72) seconds

The time to transfer the 17 sums from the controlling pro

cessor to the host processor, and the time to format them

for printing, is very small and will be neglected.

The total DBC time is therefore:

DBWORK = OVCPU + OVIO + (n' + 1)*BC0M + DCYL + DAVAC
+ (n' + 1)*DR0T + DBSORT

= (.006—.16) + .03 + 18*(.006—.03) + .006 + .030
+ 18*(.0167) + (.24—.72) seconds

= (.72 — 1.78) seconds

5.3.4.3.6. DIRECT

The design of DIRECT includes an 11/40 as the processor that

controls the cell processors. It can be assumed that the

11/40 is programmed to perform aggregate functions. The

best algorithm for it to use for this query is to:

1) form the sorted projection of the (fund, acct) attributes

2) issue the command to the cell processors:

if acct = valuel and fund = value2

{
sum = sum + encumb

}

(2) is issued for each of the 17 unique values of the (acct,

Page 158



fund) pair. Using the above algorithm, the work in DIRECT

is:

DWORK = OVCPU + OVIO + BCOM + n*CSCAN + DPIO + DPSORT

OVCPU, OVIO, and BCOM are the host times as discussed in

prior queries. DPSORT is the time to perform the sorted

projection in the 11/40 in the backend. DPIO is the time to

read the relation into the cell processors, and n is the

number of cell processor scans required.

DPSORT will first be determined.

Since the cell processors will return to the 11/40 the

attributes required, the only work the 11/40 must perform is

to sort the attribute pairs returned to it. This time was

determined in 5.3.4.2.4 as .72 seconds.

The number of scans required (n) is determined in the fol

lowing paragraph.

1) formation of the sorted projection

The relation fits in 3 of DIRECT*s pages, so the initial

projection requires 3 scan times: one to write the attri

butes to temporary relation pages, one to compact those

pages into a single page, and one to pass that page to the

host.

2) performing the 17 sub-queries

The cell processors are not constrained to execute the same

Page 159



query at the same time. Therefore, each of the cell proces

sors can be performing a different sub-query. pair. No

temporary relation need be written as a result of the sum

ming operation; each query processor can keep its own sum

and pass it back to the 11/40 when it has read the last page

of the relation. There are therefore 8 processors available

to execute 8 sub-queries at once. Each processor must scan

the 3 pages of the relation. The data-page scans can

operate in parallel, 8 processors at a time. Therefore the

number of scans for the sub-queries is:

3 1st 8 sub-queries
3 2nd 8 sub-queries
1 last sub-query can be performed by 3 processors

at once

7 total scans, sub-query execution

Therefore, n, the total number of scans required, is 8.

The total time in DIRECT is therefore:

DWORK = OVCPU + OVIO + BCOM + n*CSCAN +
(0 — DAVAC + 97 * DRATE) + DPSORT

= (.006 — .16) + .03 + (.006 — .03) + 8*.12
+ ( 0 — .03 + 97 * .0012) + .72

= (1.722 — 2.046)

The response time is the same.

I-i-i-3.7. RAP

RAP does not directly perform aggregate functions. It will

be assumed that the same algorithm is used to perform the

Page 160



aggregate function in RAP as in DIRECT. Since RAP does not

have a general-purpose computer as a part of the back-end,

the sorted projection must be performed in the host. There

fore the work in RAP is:

RWORK = OVCPU + OVIO + (n'+1) *BCOM + HSORT + m*CSCAN

+ DPIO

n', the number of unique values in the sorted projection, is

17.

HSORT, the time required in the host to sort the attributes,

was calculated in 5.3.4.3.4 as .24 seconds.

The number of data cell scans (m) will be determined in the

following paragraph.

1) forming the projection

It is assumed that RAP will perform a projection by simply

passing the attributes required to the host. This requires

one scan time, since all 8 processors can perform the scan

at the same time.

2) performing the sub-queries

Each of the 8 processors is associated with one page of

data. All must perform the same query at the same time.

Since the relation fits on 3 data cells, only 3 processors

at once can be in use. The query requires:

Page 161



17 scans, one per subquery, to mark quaifying tuples
17 scans, one per subquery, to perform sum

34 scans

The total number of scans is therefore 35.

The total work is:

RWORK = OVCPU + OVIO + (n'+1) *BCOM + HSORT + ra*CSCAN
+ DPIO

= (.006 — .16) + .03 + 18* (.006 — .03) + .24
+35 * .012 + ( 0 — .030 + 97 * .0012)

= (.804 — 1.54)

The response time is the same.

Page 162



CO

"O
c

o
o
CD

CO

2.2 -

2.0 -

1.8 -

1.6 -

1.4 -

h 1.2 -

1.0 -

0.8

0.6 -

0.4 -

Ingres Large ASSC; CASSM DBC
Buffers CAFS

System Complexity

RAP Direct

Figure 5.11 Total Work vs. System Complexity
Query L1

IU>1



CO

•o
c
o
o
CD

CO

£

CD
CO

c

o
a.
CO

CD

or

2.2 -I

2.0

1.8 -

1.6 -

1.4 -

1.2 -

1.0

0.8 -

0.6 -

0.4 -

Ingres Large ASSC; CASSM DBC
Buffers CAFS

System Complexity

RAP Direct

Figure 5.12 Response time vs. Complexity
Query A1

/o/



5^.3.4..3.8. Conclusion

In Figures 5.11 and 5.12 it is apparent that the best

improvements over a standard "Fast INGRES" system are seen

in the DBC and CASSM machines. RAP and DIRECT are limited

by the necessity of reading the data from the disk, seri

ally, into the CCD pages. When that limitation is removed

in the "best case" figure for the two systems, the time is

still not extremely improved over an associative disk sys

tem. The reason that the improvement is so small is that

the query requires a CPU-bound sort of one of the relations.

The response times and work for this query are significantly

improved over the standard system; however, the iraproveraent

is never more than 75%.

5.3.4.4. Multi-relation Queries

The multi-relation query chosen is:

Query M1:

retrieve ( ROOMS.building, ROOMS.roomnum, ROOMS.capacity,
COURSE.day, COURSE.hour)

where ROOMS.roomnum = COURSE.roomnum
and ROOMS.building = COURSE.building
and ROOMS.type = "lab"

This query is the "rooms" query from Chapter 4; as explained

in that chapter, the relation "COURSE" contains information

about all the courses taught by the UC Berkeley EECS Depart

ment in the last four years. It contains 11436 tuples in

2858 pages, and is stored in an ISAM storage structure,

keyed on instructor name and course number.

Page 165



The relation "ROOMS" contains information about every room

that the EECS Department can use for teaching courses. It

contains 282 tuples in 29 pages, and is hashed on room

number.

The result of this query is a list which contains the build

ing, room number, capacity, day, and hour of the use of any

lab for the last four years.

Considerations in the analysis of this query:

1) "ROOMS", since it is stored in 29 pages, can be stored on

2 tracks of one cylinder.

2) "COURSE" requires 130 tracks (7 cylinders) of disk space.

3) The query is a two-relation query; therefore it will be

assumed that the overhead to for this query is double that

of the single-relation queries. The overhead CPU time is

therefore .012 seconds best case — .32 seconds worst case;

the overhead I/O is .06 seconds.

5.3.4.4.K Fast INGRES

It is assumed that the "fast INGRES" system uses the follow

ing algorithm for this query:

1) Form R2, the sorted, restricted projection of "ROOMS",

retaining R2 in an in-memory array.

2) Scan the "COURSE" relation, and compare the join fields

of each tuple in COURSE to each tuple in R2.

Page 166



3) Output the required attributes of any matching tuples.

R2 contains 22 tuples in 2 pages, and can easily be kept in

memory.

Using this algorithm, the total work for fast INGRES is:

FWORK = OVCPU + OVIO + RSORT + CCOMP + CDP + DPIO

OVCPU and OVIO are as defined above.

RSORT, the time to perform the sorted, restricted projection

of ROOMS, will be determined first.

The work that must be performed to create R2 is:

1) Read the entire ROOMS relation, testing each tuple to

determine if ROOMS.type = "lab"

2) For those tuples that are the correct type, write the

building, roomnum, and capacity attributes to an in-memory

array (R2)

3) Sort R2 on "roomnum, building" and remove duplicates.

The CPU time to perform the above is composed of the time to

sort R2, which is .06 seconds on the 11/70, and the time to

read ROOMS, which is equal to .006 * 29 = .174 seconds.

Therefore RSORT = .23 seconds.

CCOMP, the time to compare the (roomnum, building) attri

butes in COURSE to those in R2, will be determined in the

Page 167



following section.

There are 22 tuples in R2, and 11436 in COURSE. Since R2 is

sorted, each of the COURSE tuples need be compared only

until a "greater than" result is found. The (roomnum,

building) attribute pair is 20 characters long. Therefore

the average number of comparisons that must be made per

tuple in COURSE is 20 * 11, or 220. Each character compari

son requires at least 3 instructions: the comparison, the

test for condition, and te loop control. Therefore, there

are a minimum of 660 instructions for each of the 11436

tuples in COURSE. This is about 7.5 million instructions;

on the 11/70, which is a 1 MIP machine, it will require 7.5

seconds. This is a minimum time; it does not include the

time to split the tuple into attributes, do type conversion,

etc. The worst case time, however, should be no more than

15.0 seconds.

CDP, the time CPU time required to read the data, is calcu

lated next. There are a total of 2887 pages read; the UNIX

CPU time required to read a page is .006 seconds. Therefore

CDP = 17.322 seconds.

DPIO, the I/O time to read the data into memory, is calcu

lated in the following paragraph.

1) ROOMS

Since the ROOMS relation is on two tracks of the same

Page 168



cylinder, the time to read it is:

RIO = DAVAC + ROT/2 + 29 * DRATE

where DROT/2 = the latency required to access the second

track.

2) COURSE

The I/O time to read COURSE is

CIO = DAVAC + 6*CYAVAC + (130 - 7) * DROT/2 + 2858*DRATE

DAVAC is the average access time to begin reading the first

cylinder. CYAVAC is the time to move the disk head from one

cylinder to an adjacent one; on the disk used on the INGRES

system, that time is .010 seconds. As is usual on disk sys

tems, the time to move the head one cylinder is a large pro

portion of the average access time because the time to over

come the head inertia is a large proportion of the average

access time.

COURSE is stored in 130 tracks; the time to access the first

track on each cylinder is included in the terms DAVAC and

6*CYAVAC; the time to access the remaining tracks is the

average latency, DROT/2. Finally, the time to transfer the

data to memory is 2858 pages * DRATE.

Therefore the total DPIO time is:

DPIO = DAVAC + ROT/2 + 29 * DRATE
+

Page 169



DAVAC + 6*CYAVAC + (130 - 7) * DROT/2 + 2858*DRATE

= 2*DAVAC + 6*CYAVAC + 124*DROT/2 + 2887*DRATE
= 4.622 seconds

The total work to process this query is:

FWORK = OVCPU + OVIO + RSORT + CCOMP + CDP + DPIO
= (.012 — .32) + .06 + .06 + (7.5 — 15.0)

+17.332 +2*DAVAC + 6*CYAVAC + 124*DROT/2
+ 2887*DRATE

= (.012 — .32) + (24.942 — 32.442) +
.06 + .06 + 1.038 + 3.464

= (29.576 — 37.384) seconds

The data processing I/O can be overlapped with RSORT, CCOMP,

and CDP. Therefore the response time is

FRES = (.012 — .32) + (24.942 — 32.442)

= (24.954 — 32.762) seconds

This time is dominated by the operating system time to read

the pages into memory.

5.3.4.4.2. Large Buffers

The use of large buffers only impacts the 1/0 time: The

minimal I/O time is 0, if all the relations are in meraory.

The least that a large buffer system will supply is the

capability of reading an entire cylinder at a time.

The work in a large buffer system is therefore:

Page 170



LWORK = OVCPU + OVIO + RSORT + CCOMP + CDP + DPIO
= (.012 — .32) + 0 + (24.882 — 32.382)

+ (0 — RCYL + CCYL)

RCYL, the time to read ROOMS a cylinder at a time, is

RCYL = DAVAC + 29 * DRATE
= .065 seconds

CCYL, the time to read COURSE a cylinder at a time, is

CCYL = DAVAC + 6*CYAVAC + 2858*DRATE
= .03 + 6*.0083 + 2858*.0012
= 3.51 seconds

Therefore the total work to process the query is:

LWORK = (.012 — .32) + 24.882 + (0 — .065 + 3.51)
= (24.894 — 36.277) seconds

The response time is:

LRES = (.012 — .32) + (24.882 — 37.382)

since the I/O and CPU times can be overlapped; therefore it

is

LRES = (24.894 — 32.702) seconds

5.3.4.4.3. Associative Disks and DBC

It shall assumed that the following algorithm is used in

processing query M1 in an associative disk system:

1) The sorted, restricted projection of ROOMS (R2) is formed

in the host

Page 171



2) The host issues 22 queries, one for each tuple in R2, to

retrieve from- the associative disk the tuples in "COURSE"

with matching roomnura and building attributes as those in

the query. These queries shall be denoted as the 22 sub-

queries, and are of the form

retrieve (COURSE.day, COURSE.hour)
where COURSE.roomnum = valuel
and COURSE.building = value2

As matching tuples are returned, they are output.

The time to perform this query using the above algorithm is:

AWORK = OVCPU + OVIO + RSORT + (n»+1)*BC0M
+ RPROC + n» * CPROC

OVCPU and OVIO have been defined above; RSORT, the time to

perform the sorted, restricted projection of the ROOMS rela

tion in the host, is the same as in section 5.3.4.4.1.

The number of communications required between the host and

the associative disk (BCOM) is the number of subqueries (n'

= 22) plus the one query to form the sorted, restricted pro

jection.

RPROC, the time to process the ROOMS restricted projection,

is:

RPROC = DAVAC + DROT

This is one average access time, plus the disk rotation time

to perform the query.

Page 172



The time to process each of the 22 subqueries, CPROC is:

CPROC = DAVAC + 6*CYLAVAC + 7*DR0T

which is the time to access each of the cylinders, and to

perform the subquery on each of them.

Therefore the total time is:

AWORK = OVCPU + OVIO + RSORT + (n'+1)*BC0M
+ RPROC + n' * CPROC

= (.012 — .32) + .06 + .06 + 23*(.006 — .03)
+ .03 + .0167 + 22*(.207)

= (4.87 — 5.73) seconds

The time to perform the 22 subqueries (4.55 seconds) dom

inates both the best and worst case times.

DBC:

The key question in DBC is whether the search space in the 7

cylinders used to store the "COURSE" relation can be nar

rowed to one or two cylinders by the use of attribute

indices. The DBC system is built around the idea that the

attribute indices, which are stored in the Structure Memory,

will narrow the search space. The "COURSE" relation was

clustered on course number, which is not an attribute even

mentioned in this query. Therefore, even if indices existed

for each of the "COURSE" attributes in this query, they

would not narrow the search space because, in the absence of

any strong correlation between course number and the other

attributes, it is to be expected that qualifying tuples will

Page 173



occur on each of the 7 cylinders.

DBC handles single-relation queries only, and in [BAN78B] it

was shown how joins are split into single-relation queries.

Using the queries in [BAN78B] as a guide, we find that DBC

will process the query M1 exactly as the associative disk

does, and that the time remains the same as in the associa

tive disk.

5.3.4.4.4. CASSM

CASSM uses the following algorithm to implement joins.

There are two bit-maps, one for each of the relations to be

joined.

1) First, a pass is made over the smaller relation (ROOMS),

and the join attributes (roomnura,building) of qualifying

tuples used to hash to a bit map to mark the presence of a

value.

2) A pass is made over the second relation (COURSE) and a

second bit map is marked if the (roomnura,building) attribute

pair hash to a location that is marked in the first bit map.

Also, if both bit-maps are marked the tuple is itself marked

for collection.

3) A second pass is made over the first relation, and those

tuples whose (roomnum,building) pairs hash to marked loca

tions in both bit-maps are marked for output.

Page 174



W I

The marked attributes are sent to the host processor to per

form the actual join.

The time to execute this query in CASSM is:

CWORK = OVCPU + OVIO + BCOM + HJOIN + n*RPROC + m*CPROC

HJOIN is the amount of time required in the host to perform

the join. RPROC is the time required to scan "ROOMS".

CPROC is the time to scan COURSE.

First, HJOIN will be computed.

Using the above algorithm, 22 tuples of "ROOMS" and 422

tuples of "COURSE" are marked in both bit maps. Only the

necessary attributes from those tuples are sent to the host.

Those attributes require a total of 47 pages of storage.

With such a sraall nuraber of pages it is entirely possible

that the host can complete the processing of this query by-

using an in-memory sort of the qualified tuples of the two

relations, then a linear search to match the correct tuples.

The CPU time to sort the 47 pages is 14.1 seconds on the

11/70; therefore HJOIN = 14.1 seconds.

Next the number of scans of the rooms relation (n) will be

computed.

1 scan to mark bit map
1 scan to check COURSE'S bit raap and mark tuple
4 scans to return 4 attributes

6 n, total scans required of the ROOMS relation

Page 175



The nuraber of scans of the COURSE relation (ra) is:

1 scan to mark map and mark qualifying tuples
4 scans to send attributes to host

5 m, the required number of scans of COURSE

The total time to do this query is, therefore:

CWORK = OVCPU + OVIO + BCOM + HJOIN + n*RPROC + m*CPROC
= (.012 — .32) + .06 + (.006 — .03) +14.1 +

6*.047 + 5*.207

= (15.50 — 15.83) seconds

The best and worst case times are dorainated by the tirae to

perform the join in the host.,

I-i-i-1-5. DIRECT

It is assumed that the algorithm used in the back-end 11/40

is the same as that used by the associative disk system.

That is:

1) form sorted, restricted projection of "ROOMS", holding it

in memory.

2) perform 22 sub-queries

Using the above algorithm, the work is:

DW0RK = OVCPU + OVIO + BCOM + RSORT + r*CSCANS + c*CSCANS +

DPIO

The parameter r is the number of CCD page scans required to

form the sorted, restricted projection of ROOMS. The

Page 176



(J)

parameter c is the number of scans required to process the

22 sub-queries. RSORT is the time required in the host to

perform the restricted, sorted projection.

First, r will be calculated.

The entire "ROOMS" relation will fit on one CCD cell.

Therefore r is:

1 scan to read "ROOMS", writing qualified tuples
to temp

1 scan to compact temp
1 scan to send tuples to controlling processor

3 r, number scans required

Next, c will be calculated.

The 2858 pages of "COURSE" will fit on 33 CCD cells. The 22

queries can be performed in parallel, 8 at a time, for a

total of three scans per page of the "COURSE" relation.

Therefore there are 33*3 = 99 scans required to produce the

joined tuples. An additional scan is required to compress

the data, and another to send it to the host, for a total of

101 scans.

Therefore, c = 101.

DPIO is calculated next.

The time to read the ROOMS relation, if it is not in memory,

is:

RPROC = DAVAC + 29 * DRATE

Page 177



The entire COURSE relation will not fit within the CCD

cache. The entire relation will therefore have to be read 3

times, once for each scan. The tirae to perform the three

reads is:

CPROC = DAVAC + 6*CYAVAC + 2825*DRATE +2*(7*CYAVAC +

2858*DRATE)

The above formula assumes that the average access time must

be used for only the initial access to the relation; the

last two scans will be for adjacent cylinders.

The time to perform the sorted, restricted projection of

ROOMS is denoted by RSORT. That time was estimated at .06

seconds for an 11/70. The 11/40 is one-third the speed of

an 11/70, so the time for RSORT is .18 seconds.

The total time is therefore:

DWORK = OVCPU + OVIO + BCOM + RSORT + r*CSCANS
+ c*CSCANS + DAVAC + 29 * DRATE
+ DAVAC + 20*CYAVAC + 8574*DRATE

= (.012 — .32) + .06 + (.006 — .03) + .18
+ 3*.012 + 101*.012 + .03 + .034
-»• .03 + .20 + 10.289

= (12.089 — 12.421) seconds

The I/O and the CCD scan times can be overlapped, so the

response time is:

DRES = (10.841 — 11.173) seconds

The response and total work times of this query are totally

Page 178



dominated by the tirae to read the COURSE relation three

times (10.51 seconds), which was necessary because the cache

was not large enough to store the entire relation. An addi

tion of 9 CCD pages would have alleviated this problem. The

figure is 9, not 1, because 8 of the cells must be used at

all times as output cells. Therefore the assumption will be

made that in the best case there are 9 more data cells

available, and that the best case times are therefore

DWORK = 4.189 seconds
DRES =2.94 seconds

5.3.4.4.6. RAP

The best algorithm for RAP to use in executing query M1 is

the algorithm used by DIRECT. However, the RAP backend sys

tem does not include a general-purpose computer. Therefore,

the sorted, restricted projection of ROOMS must be performed

in the host, and the 22 sub-queries issued by the host.

Therefore, the time in RAP is:

RWORX = OVCPU + OVIO + RSORT + (n'+1)*BC0M +
r*CSCAN + n'*(c * SCAN) + DPIO

RSORT, the time to perform the sorted, restricted projec

tion, was calculated above as .06 seconds.

The nuraber of cell scans to produce the restricted projec

tion of ROOMS (r) is:

1 scan to mark output

Page 179



1 scan to return tuples to the host

2 r, number of scans for ROOMS

The number of scans for each sub-query on COURSE (c) is cal

culated in the following section.

Each of the cell processors will execute the same query, but

on a different page of data. Therefore approximately 4 cell

scans are required for each of the 22 sub-queries to mark

the tuples, and an additional 4 scans to return the marked

tuples to the host. Therefore, e = 8.

DPIO, the data processing I/O tirae, is discussed in the fol

lowing section.

The entire COURSE relation cannot fit in the cache at once;

therefore, the relation will have to be read twice for each

sub-query. It must be read once to mark the tuples, and

once to return the marked tuples to the host. Since RAP

maintains the mark-bits in a separate RAM bit map, the rela

tion does not have to be written before it is read. There

fore the I/O time is:

DPIO = RPROC + CPROC

= DAVAC + 29*DRATE
+ DAVAC + 6*(CYAVAC) + 2858*DRATE

(1st read of COURSE)

+ 43* (7*CYAVAC + 2858*DRATE)
(43 remaining reads)

= 2*DAVAC + 307*CYAVAC + 125791*DRATE

Page 180



The total work is therefore:

RWORK = OVCPU + OVIO + RSORT + (n»+1)*BC0M +
r*CSCAN + nf*(c * SCAN) + DPIO

= (.012 — .32) > .06 + .06 + 23*(.006 — .03)
+3*.012 + 22*8*.012 + 154.03

= (2.418 — 3.278) + 154.08 seconds

= (156.49 — 157.36) seconds

As in DIRECT, the time is dominated by the I/O tirae. If RAP

contained a CCD cache of at least 33 data cells, 43 of the

reads would have been avoided. Then the time would be:

RWORK = (6.584 — 6.862) seconds

5.3.4.4.7. CAFS

CAFS handles joins in the same way as CASSM except that it

does not mark qualified tuples, but passes them on to the

host. To review the algorithm:

There are two bit-maps, one for each of the relations to be

joined.

1) First, a pass is made over the smaller relation (ROOMS),

and the join attributes (roomnura,building) of qualifying

tuples used to hash to a bit map to mark the presence of a

value.

2) A pass is made over the second relation (COURSE) and a

second bit map is marked if the (roomnum,building) attribute

pair hash to a location that is marked in the first bit map.

Also, if both bit-maps are marked the tuple is itself sent

Page 181



to the host.

3) A second pass is made over the first relation, and those

tuples whose (roomnura,building) pairs hash to marked loca

tions in both bit-maps are sent to the host.

The host must perform the actual join on the smaller rela

tions passed to it.

The time to process query M1 in CAFS is therefore:

CAWORK = OVCPU + OVIO + BCOM + HJOIN + 2*RPR0C + CPROC

The time to perform the join in the host, HJOIN, was dis

cussed in the section on CASSM, and found to be 14.1

seconds.

RPROC, the time to scan the ROOMS relation and mark the

first bit map, is

RPROC s DAVAC + DROT

CRPOC, the time to scan the COURSE relation, is:

CPROC = DAVAC + 6*CYAVAC + 7*DR0T

The total time is therefore:

CAWORK = (14.48 — 14.81) seconds

and the response time is the same.

Page 182



' J.

in

c

O
o

<D

en

160-H

140

I20H

00

80-

60-

40-

20-

Worst

Ingres Large ASSC CAFS CASSM DBC
Buffers

System Complexity

RAP Direct

Figure 5.13 Total Work vs. System Complexity
Query M1

m



Ingres Large ASSC CAFS CASSM DBC RAP Direct

System Complexity

Figure 5.14 Response tirae vs. Complexity
Query M1

/8Y



I'l'l'l*!' Conclusion

As shown in Figures 5.13 and 5.14, the best response and

total work times are in the associative disk and DBC sys

tems. That is because they process, in parallel, the data

as it comes from the disk. The CAFS and CASSM systems are

handicapped by the fact that they must perform the join in

the host.

DIRECT performs better than INGRES, by almost an order of

magnitude less response time, when the cache is large enough

to hold the entire relation. Otherwise, it operates at only

half the speed of INGRES. Considering the tremendous

increase of complexity of DIRECT over a standard system,

halving the response time does not appear to be significant.

The nesponse time of RAP is very sensitive to whether the

relation can be completely stored in the data cells. That

is because RAP depends on re-scanning the relation, testing

for mark-bits, to output tuples to the host. The best case

RAP tirae assumes there are enough data cells to store the

entire relation, and in that case the response time drops to

less than a third of the response time of INGRES.

5.4. Conclusion

The purpose of this chapter has been to gain insight into

the possibility of the use of database machines. In section

5.4.1 the performance of the database machines is compared

Page 185



to the performance of the database system on a general pur

pose machine. Section 5.4.2 compares the performances of

the machines. Section 5.4.3 analyzes the use of extended

storage systems.

5.4.K Comparison to a standard system

The two query iypes previously defined are data-intensive

and overhead-intensive queries. It has been shown that

database machines are not cost-effective if the application

supported is mainly overhead-intensive queries.

It was shown that data-intensive queries can be performed

very efficiently on database machines if the function per

formed on the data is a function the database machine pro

vides. For instance, if the function is a simple test for

equality, the database machine can perform the query

entirely in the backend system, thus causing a gain in the

system's performance. However, if the queries are such that

the function on the data is one that the database machine

does not provide, as in the function of printing the data in

query L1, the host processor is heavily impacted and the

database machine causes little gain in the system's perfor

mance.

Multi-relation queries were performed better on some

machines and worse on others depending on the join algorithm

used.

Page 186



>

J,

5.4^.2. Machine comparison

It will be recalled from section 5.2.2.7 that the points of

comparison of the database machines were the use of mark

bits, temporary relations, transferring entire tuples to the

host, and the join algorithms. These shall be discussed, in

turn, in the following paragraphs.

The use of mark-bits in RAP clearly hampers the performance

of the system. RAP consistently required more time than

DIRECT to perform the same function, and the extra time was

tirae required to re-scan the cells.

The use of temporary relations in DIRECT was the alternate

method to the use of mark-bits. Because DIRECT forms tem

porary relations, it performed better than RAP.

The effect of the transfer of partial tuples to the host is

not clear. There is some advantage, but the precise advan

tage appears to be entirely dependent on the speed of the

data management system in the host.

The particular join algorithm used effected the total per

formance of the systems in that some algorithms required

more work in the host systems than others did. RAP, DIRECT,

and DBC required very little host time. CAFS and the asso

ciative disk systems required much more.

Page 187



5^4.3,. Extended Storage

A surprising result was that the use of large buffers alone

did not significantly affect the performance of the system.

This is because the system is CPU bound, even in the optimal

"Fast INGRES" that was assumed in this chapter. Only when

the large buffer systems are combined with fast processors

can performance improvements be made.

Page 188



Chapter Six

6. Conclusion

The focus of this thesis has been the performance of one

data management system and possible methods to improve the

performance. These methods have involved the use of

advanced computer architecture designs. The specific archi

tectures under consideration were multiple processors and

extended storage systems. These will be discussed in turn.

Then recommendations will be made for future studies.

6.K The use of extended storage systems

It was found that the data-intensive queries exhibited a

high degree of sequentiality. Therefore using large buffers

to store read-ahead blocks can reduce the I/O times of

data-intensive queries. However, the use of the buffers

requires a level of communication with the operating system

that is not currently available. The data management system

must be able to indicate when a relation is being read

sequentially, so the read-ahead can take place.

The overhead-intensive queries exhibit locality of access to

system relations, so storing the system relations in buffers

will reduce the response times of those queries. INGRES is

an interpretative system, and therefore does more run-time

checking than systems that pre-corapile queries. Neverthe

less, even those systems that pre-corapile queries perform

Page 189



some validity checking of the query and would benefit from

caching the validity information.

The caching of system relations will not affect the perfor

mance of data-intensive queries because their response times

are dominated by the tirae to process the data, not by the

overhead. In the cases studied in this analysis, the system

was CPU bound most of the tirae. Therefore, the use of

extended storage devices must be combined with methods to

decrease the CPU processing time to increase in the perfor

mance of the system.

!•£•• Parallel Processing

The use of multiple processors in the form of intelligent

terminals was shown to be optimal only for overhead-

intensive queries. Intelligent terminals and special-

purpose processors to parse and validity check the data are

best used for those queries where the overhead is a signifi

cant portion of the query response time. The use of such

processors does not noticeably improve the response tirae of

data-intensive queries because most of their processing is

done at the data level.

Database machines were explored. It wa:§ found that in

several cases the time to execute a query in a database

machine was longer than in a standard system. This was

because the database machines are designed to be relatively

Page 190



simple, and do not necessarily execute optimal algorithms.

It was shown that those machines that operate on the data at

the disk level (DBC, CASSM, associative disks) tend to have

better performance than the caching systems (DIRECT, RAP)

unless the data is already fully within the cache. If it

is, DIRECT has the best performance of any of the machines,

because of its cross-point switch.

6.3.. Future work

We have, in this analysis, concentrated on the simple, com

mon queries. An interesting extension is to analyze more

complicated queries, such as those that involve secondary

indices. The analysis of multi-user situations would be

very helpful in comparing database machine architectures,

since the machines may exhibit different performance charac

teristics when they are multi-programmed.

The use of different buffer replacement algorithms should

also be studied. The LRU algorithm may not always be

optimal, since the data pages are only referenced once but,

under LRU, may push the system relation pages out of the

buffers.

It would be interesting to develop different analytic or

simulation models for the different query types. These

models could then be calibrated with the results of this

analysis. Such models would be helpful in evaluating the

Page 191



results of system changes.

In general, the actual measurement of all assumed variables

would be most instructive. Especially in the case of the

database machines and the "Fast INGRES" system, the actual

speeds of the systems may affect the results produced here.

Page 192



Appendix A. REFERENCES

[ALLM76] Allman, E., Stonebraker, M. and Held, G., "Embed

ding a Relational Data Sublanguage in a General Purpose

Programming Language," Proc. Conference on Data:

Abstraction, Definition, and Structure, FDT, vol 8, No

2, March 1976.

[BABB793 Babb, E., "Implementing a Relational Database by

Means of Specialized Hardware", ACM Transactions on

Database Systems, Vol. 4, No. 1, March 1979, pages 1-

29.

[BAN78A] Banerjee, J., and D.K. Hsiao, "Performance Study

of a Database Machine in Supporting Relational Data

bases," Proc. Fourth International Conf. on VLDB.

[BAN78B] Banerjee, J., and D.K. Hsiao, "The Use of a 'Non-

Relational' Database Machine in Supporting Relational

Databases," Proc. Fourth Workshop on Computer Architec

ture for Non-numeric Processing, Syracuse, Aug. 1978.

[BAUM76] Baum, Richard I., David K. Hsiao, and Krish-

naraurthi Kannan, "The Architecture of a Database Com

puter - Part I: Concepts and Capabilities," Technical

Report OSU—CISRC-TR-76-1, Computer and Information

Science Research Center, The Ohio State University,

Columbus, Ohio (National Technical Information Service

Number AD-A034 154)

Page 193*



[BLAS75] Blasgen, M.W. and Eswaren, K.P., "On the Evalua

tion of Queries in a Relational Data Base System," IBM

Research Report RJ-1745, 4/76.

[BRIC773 Brice, R. S., and S. W. Sherman, "An Extension of

the Performance of a Database Manager in a Virtual

Memory System Using Partially Locked Virtual Buffers,"

ACM Transactions on Database Systems, Vol.2, No. 2,

June 1977, P. 196-207

[CHU72] Chu, Wesley, and Holger Opderbeck, "The Page Fault

Frequency Replacement Algorithm", Proc. FJCC 1972,

pages 597-609.

CC0UL72] Coulouris, G.F., J.M. Evans, and R.W. Mitchell,

"Towards content Addressing in Data Bases", Computer

Journal, Vol. 15, No. 2, 1972, pages 95-93.

[DATE75] Date, C. J., An Introduction to Data Base Systems,

Addison-Wesley, Reading, Mass. 1975.

[DENN68] Denning, P. J., "The Working Set Model for Program

Behavior," CACM, May, 1968, Vol. 11, No. 5, pp. 323-

333.

[DESP78] Despain, A. M. and D. Patterson, "X-Tree: A Tree

Structured Multi- Processor Computer Architecture,"

Proceedings, Fifth Annual IEEE Symposium on Computer

Architecture, April 3-5,1978.

Page 194*



»

[DEWI78] Dewitt, D. J., "DIRECT - A Multiprocessor Organi

zation for Supporting Relational Data Base Management

Systems," Proc. Fifth Annual Symposium on Computer

Architecture, 1978.

[DEWI79] Dewitt, D. J., "Query Execution in DIRECT",

Proceedings, SIGMOD International Conference on the

Management of Data, 1979, pages 13-22.

CEAST75] Easton, M. C, "Model for Interactive Data Base

Reference String," IBM J. Res. Develop. 19, 550 (Nov.

1975).

CEAST773 Easton, M. C, "Model for Data Base Reference

Strings Based on Behavior of Reference Clusters," IBM

Reasearch Report # 6450, Watson Research Center,

3/11/77. also published in IBM J. Res. and Develop.

22, #2, 197 (Mar. 1978).

[EPST773 Epstein, R., "Creating and Maintaining a Database

Using INGRES," Electronics Research Laboratory, Univer

sity of California, Berkeley, Ca., Memo 0M77-71.

CFERN78] Fernandez, E. B., Lang, T., and C. Wood, "Effect

of Replacement Algorithms on a Paged Database System,"

IBM Journal of Research and Development, Vol. 22, No.

2, Mar. 1978, pp. 185-196.

[FRAN76] Franaszek, P. A., and B.T. Bennet, "Adaptive Vari-

Page 195*



ation of the Transfer Unit in a Storage Hierarchy", IBM

Research Report RC 6310, Watson Research Center,

11/30/76. also published in IBM Jour. Res. and

Develop. Vol. 22, //4, 405 (July, 1978).

CG0LD74] Goldberg,, R., and R. Hassinger, "The Double Pag

ing Anomaly", Proc. AFIPS 1974 NCC, Vol. 43, AFIPS

Press, Montvale, N. J., pp. 195-199.

[GRAY78] Gray, James, "Notes on Data Base Operating Sys

tems," IBM Research Report RJ2188 (30001) 2/23/78.

[HSIA79] Hsiao, David K., "Data Base Machines Are Coming!",

IEEE Computer, March 1979, pages 7-10.

[HSI76A] Hsiao, David X. and Xrishnamurti Kannan, "The

Architecture of a Database Computer - Part II: The

Design of Structure Memory and itsd Related Proces

sors," Technical Report OSU—CISRC-TR-76-2, Computer

and Information Science Research Center, The Ohio State

University, Columbus, Ohio (National Technical Informa

tion Service Number AD/A-035 178)

[HSI76B] Hsiao, David K. and Xrishnamurti Kannan, "The

Architecture of a Database Computer - Part III: The

Design of the Mass Memory and its Related Components,"

Technical Report OSU—CISRC-TR-76-3, Computer and

Information Science Research Center, The Ohio State

University, Columbus, Ohio (National Technical Informa-

Page 196*



tion Service Nuraber ADA-036 217)

[IMS360] "Information Management System/360, Version 2,

General Information Manual," Form GH20-0765-3, IBM Cor

poration, Technical Pub. Dept.

CKANN78] Kannan, Krishnamurthi, "The Design or a Mass

Memory for a Database Computer," Proc. Fifth Annual

Symposium on Computer Architecture, Palo Alto, CA.

April 1978.

[KNUT733 Knuth, Donald E., The Art of Computer Programming,

Vol.3. Addison-Wesley, Reading, Mass., 1973.

[LANG77] Lang, Thomas, Christopher Wood and Fernandez,

Eduardo f., "Database Buffer paging in Virtual Storage

Systems," TODS, Vol. 2, No. 4, December, 1977.

[LANG78] Langdon, Glen G., "A Note on Associative Proces

sors for Data Management," TODS, Vol. 3, NO. 2, June

1978, Pages 148 - 158.

[LAVE751 Lavenberg, S.S., and G.S. Shedler,"A Queueing

Model of the DL/1 Component of IMS", IBM Research

Report RJ 1561, April 21, 1975.

[LEWI731 Lewis, P.A.W., and G.S. Shedler, "Empirically

Derived Micrmodels for Sequences of Page Exceptions",

IBM Journal of Research and Development, March 1973,

pages 86-100.

Page 197*



CLIN 76] Lin, S.C., D.C.P. Smith, and J.M. Smith, "The

Design of a Rotating Associative Memory for Relational

Database Applications," TODS vol. 1, No. 1, pages 53 -

75, Mar. 1976.

CLIP078] Lipovski, G. J., "Architectural Features of CASSM:

a Context Addressed Segement Sequential Memory",

Proceedings, Fifth Annual IEEE Symposium on Computer

Architecture, April, 1978. [MARC78] March, Salvatore,

"Models of Storage Structures and the Design of Data

base Records based on a User Characterization," Ph.D.

Dissertation, Cornell University, 1978.

[MCGR76] McGregor, D.R., R.G. Thompson, and W.N. Dawson,

"High Performance Hardware for Database Systems," Sys

tems for Large Data Bases, P.C. Lockemann and E.J. Neu-

hold, eds. North-Holland Publishing Co., 1976.

COZKA75] Ozkarahan, E.A., S.A. Schuster, and K.C. Smith,

"RAP - Associative Processor for Database Management,"

AFIPS Conference Proceedings, vol. 44, 1975, pp. 379 -

388.

[OZKA77] Ozkarahan, E.A., Schuster, S.A. and Sevcik, K.C,

"Performance Evaluation of a Relational Associative *v
»

Processor," ACM Transactions on Database Systems, Vol.

2, No.2, June 1977.

[RAGA76] Ragaz, Nicklaus, and Juan Rodriguez-Rosell,

Page 193*

x3



"Empirical Studies of Storage Management in a Data Base

System", IBM Research Report RJ 1843, 10/7/76.

[RODR733 Rodriguez-Rosell, Juan, "Locality in Data Base

Systems", Report, Center for Computer and Information

Sciences, Division of Applied Mathematics, Brown

University, Providennce, R. I.

[RODR76] Rodriguez-Rosell, Juan, "Empirical Data Reference

Behavior in Data Base Systems," Computer, Nov., 1976,

Pages 9-13.

[RODR753 Rodriguez-Rosell, Juan and David Hildebrand, "A

Framework for Evaluation of Data Base Systems", IBM

Research Report RJ 1975, May 23, 1975.

[REIT76] Reiter, Allen, "A Study of Buffer Management Poli

cies for Data Management Systems," Mathematics Research

Center, University of Wisconsin-Madison, Technical Sum

mary Report // 1619, March 1976.

[RITC74] Ritchie, D. M., and Thompson, K., "The UNIX Time-

Sharing System," Comraraunications ACM 17, 7 , July,1974.

^ CRITC78] Ritchie, D. M., "A Retrospective", Bell System

** ~ - Technical Journal, vol 57, number 6, part 2, July-

August 1978, pp 1949-1969.

* [SAD0783 Sadowski, Paul J. and S.A. Schuster, "Exploiting

Parallelism in a Relational Associative Processor",

Page 199*



Proc. Fourth Workshop on Computer Architecture for

Non-numeric Processing, Syracuse, Aug. 1978.

[SCHU783 Schuster, S. A. et al, "RAP.2 - An Associative

Processor for Data Bases", Proceedings, Fifth Annual

IEEE Symposium on Computer Architecture, April, 1978.

[SHER76] Sherman, Stephen W., and Brice, B. W. , "Perfor

mance of a Database Manager in a Virtual Memory Sys

tem", ACM Transactions on Data Base Systems, Vol. 1,

No. 4, Dec. 1976, Pages 317-343.

[SMIT76] Smith, Alan Jay, "Sequentiality and Prefetching in

Data 3ase Systems," IBM Research Report RJ 1743, March

19, 1976.

[SLOT753 Slotnik, D.L. "Logic per Track Devices" in

"Advances in Computers", Vol. 10., Frantz Alt, Ed.,

Academic Press, New York, 1970, pp 291 - 296.

[STOM763 Stonebraker, M. et. al., "The Design and Implemen

tation of INGRES," TODS, Vol 1, No. 3, September 1976.

[SU 753 Su, Stanley Y. W., and G. Jack Lipovski, "CASSM: A

Cellular System for Very Large Data Bases", Proceedings

of the VLD3, 1975, pages 456 - 472.

[SU793 Su, Stanley Y. W., "Cellular-Logic Devices: Concepts

and Applications", IEEE Computer, March 1979, pages

11-28.

Page 200*



r
cr „

/

CTHOR70] Thornton, J. E., "Design of a Computer The Control

Data 6600", Scott Foresman and Co, Glenview 111., 1970.

[TUEL753 Tuel, W.G., and Juan Rodriguez-Rosell, "A Metho

dology for Evaluation of Data Base Systems", IBM

Research Report RJ 1668, Oct. 15, 1975.

CTUEL76] Tuel, W. G., "An analysis of Buffer Paging in Vir

tual Storage Systems," IBM Journal of Research and

Development, Vol. 20, No.5, September 1976.

[WONG763 Wong, E. and Youssefi, K., "Decomposition - A

Strategy for Query Processing," TODS, Vol. 1, No. 3,

September 1976.

CYAO 783 Yao, S.B.,DeJong, D., "Evaluation of Database

Access Paths," Proceedings, SIGMOD International

Conference on the Management of Data, 1978.

[YOUS783 Youssefi, Karel A., "Query Processing for a Rela

tional Database System," Electronics Research Labora

tory, University of California, Berkeley, Ca., Memo

W8-3.

Page 20T


	Copyright notice 1979
	ERL-79-70 (1 of 2)
	ERL-79-70 (2 of 2)

