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Symbolic Layout and Compaction of Integrated Circuits

Min-Yu Hsueh

ABSTRACT

A series of computationally efficient algorithms and methods has been

developed for the computer-aided generation of layouts of integrated circuit

building blocks. The layouts that are generated and compacted are based on

symbolic layout plans drawn by the user with an interactive graphics editor.

The layout compaction process minimizes the area of a layout by selectively

reducing the spacing between elements in the layout plan to the minimum

required spacing specified by geometric layout design rules and user-defined

constraints. The compaction algorithms do not attempt to make drastic

changes, such as interchanging the location of elements, to the topology of

the layout plan. The preservation of the general topology makes the compac

tion algorithms efficient and gives the user control over the layout compac

tion process.

The principal algorithm used for compacting the layout is derived from

the rectangle dissection method by Tutte, et al. Layout compaction and

placement methods developed by other researchers are described also for

the purpose of comparison.

A layout generation system is implemented based on the aforemen

tioned layout compaction algorithms. The system is written in FORTRAN and

Ratfor on a minicomputer and can generate compact layouts for circuits of

reasonable size in a few minutes. Because of the almost immediate feedback

from the layout system, the user can improve the layout quickly by modify

ing the topology he has chosen or by trying other topologies. The power of

such a cooperation between the user and the computer is illustrated by



several examples. In particular, one example shows that a layout generated

with this system is more compact and regular than an equivalent layout done

by hand for a high production-volume microprocessor type of circuit.

The speed of the compaction process is limited by the analysis of

design-rule requirements among the elements in the symbolic layout plan.

Statistics collected from experiments show that the compaction time

increases as the 1.4th power of the number of elements in the layout plan. A

hierarchical layout approach may be used with the layout system to keep the

layout generation time reasonable. Because the compaction algorithms are

capable of handling user-defined constraints, the size and shape of com

pacted building blocks can be fixed with such constraints and used in the

same manner as other elements for the hierarchical construction of a layout.
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CHAPTER 1

INTRODUCTION

A circuit layout is an artwork consisting of detailed device geometry and

locations and configurations of interconnection, from which masks for fabri

cating Large-Scale Integrated (LSI) circuit chips can be made. The circuit

layout phase has been one of the major bottlenecks in the development of

LSI circuit chips. Layout by hand-drawing of microprocessor-type LSI chips

typically takes a man-year to complete. It is such a time-consuming process

because physical entities (high-density mask patterns) must be synthesized

from abstract structures (circuit schematics or logic equations) at this

phase of the design. In addition, with ordinary layout methods, errors such

as inconsistent translation and layout design-rule violations are hard to

detect while the layout is being generated. As a result, the initial layout may

have to be modified several times before the circuit can be manufactured

successfully.

Computer-aided layout generation techniques available or under

development today can be categorized as shown in the chart in Figure 1.1. It

must be noted that the use of interactive graphics editors for the purpose of

input and modification of data for most of these layout systems is implied in

that chart.

The hierarchical layout construction approach consisting of chip plan

ning, building-block placement and interconnection, and the construction of

building blocks has been a popular way for developing high-density, high

production-volume LSI circuit chips. Here, a chip is divided into functional



areas (such as a control logic area), and these areas, are further divided into

building blocks (such as a control sequencer) and their constituent cells

(such as a register). With such a division the design and layout of the chip

can be carried out at the individual levels of the hierarchy with reduced com

plexity and improved organization. At all levels of the chip design, most

designers find it advantageous to sketch a rough topological organization of

the layout before generating the actual geometric layout. In particular, at

the cell or the simple building-block level, such a topological planning

involves the conversion of the circuit schematic diagram into a topological

layout plan with an improved placement of circuit elements and routing of

interconnection lines to reduce, for example, the number of line crossovers.

The use of this type of topological layout plan to guide the generation of the

actual layout is commonly referred to as the symbolic layout approach. (The

symbolic topological layout plan also is referred to as the "stick diagram" of

a circuit [1, 18].) Figure 1.2(a) shows the circuit schematic diagram of a

Metal-Oxide-Silicon (MOS) buffer circuit and one of its topological layout

plans drawn in the symbolic form. The symbolic layout plan has an improved

topology compared to the original circuit schematic and makes it possible to

produce a dense and well organized final layout, as in Figure 1.2(b). (This

can be compared with the final layout as in Figure 1.2(c), which is generated

directly from the circuit schematic diagram. Both final layouts are gen

erated with the programs developed in this research project.)

This report introduces a symbolic layout method which converts a loose

symbolic topological layout plan of a cell or a building block into a compact

and correct geometric layout with the aid of a computer. This symbolic lay

out approach can improve the productivity of a layout designer greatly

because
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a) it is often possible to obtain a better geometric layout if

topological constraints and details are thought out

in advance.

b) most layout designers take a comparatively short time

to develop a good layout topology and consume

much more time to generate the actual geometric

layout.

c) geometric layout design rules are enforced automati

cally, so that little effort by the user is required to

ensure the correctness of the layout geometry.

d) with fast turn-around, the user can experiment with

many different layout topologies from which the best

topology can be selected for the final layout.

In effect, the symbolic layout method developed in this research project

reduces the cell layout process to that of topology planning. The designer

can concentrate on developing good topological layout plans, while the com

puter program performs the tedious task of generating the detailed

geometric layout meeting all design-rule requirements.

The layout approach described in this report is just one of a large

number of layout methods being developed for the present and the future

LSI circuit layout needs. In Chapter 2 the representative system realizations

of the computer-aided layout techniques shown in Figure 1.1 are described

briefly.

Chapter 3 describes several representative algorithms for computer-

aided layout generation and methods related to or having similar functions

as those developed in this research project. With the background material
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Figure 1.2(a) The circuit schematic and symbolic
topological layout plan of a buffer.

(b) The compacted layout generated
from the layout plan.

(c) The compacted layout generated
from the circuit schematic is 8%
larger.



introduced in Chapter 3, Chapter 4 presents an overview of the symbolic lay

out system CABBAGE (Computer-Aided Building-Block Artwork Generator and

Editor) that resulted from this research project. The algorithms and tech

niques used in this system are also described. These algorithms are

developed with the emphasis of computation efficiency, good man-computer

interaction, and applicability to hierarchical chip construction, in addition to

realizing the usual advantages of the symbolic layout approach.

The implementation of these algorithms in CABBAGE is the subject of

Chapter 5. Most of the detailed descriptions of the accompanying data struc

tures are placed in appendices. Chapter 6 includes several layout compac

tion examples and the corresponding run time" and memory usage statistics

obtained from the CABBAGE system. In addition to the expected gain in lay

out productivity, one of the examples shows that the CABBAGE system can be

used to generate layouts as compact as those done by hand for

microprocessor-type LSI circuits.

At the present time, the CABBAGE system can perform layout genera

tion for silicon-gate MOS circuits only. Chapter 7 summarizes the possible

future extensions to CABBAGE necessary for handling other types of circuits.

Several features which were excluded from the scope of the present research

project are also described in that chapter as possible future research topics.



CHAPTER 2

LSI CIRCUIT LAYOUT METHODS

2.1. Introduction

Traditionally, most circuit layouts have been done by hand in the hope

to achieve ultimate area efficiency and to lower the fabrication cost of indivi

dual circuit chips. However, layout by hand is both a tedious and an error-

prone task. Repeated modifications and reworks necessary to correct layout

errors often lengthen the total layout time substantially.

Errors in a hand-produced layout generally come in two categories. The

first involves the erroneous translation of a circuit function into a geometric

layout. This type of error often occurs in the form of missing or extra ele

ments and interconnections. The second type of error involves the so-called

design-rule violations. Geometric layout design rules are summaries of chip

production tolerances derived from photolithographic limits, mask align

ment, etching tolerances, oxidation and impurity diffusion effects, and device

physics limitations. (A more detailed description of typical geometric layout

design rules is included in Appendix 4.) Violations of the design rules, such as

placing two distinct elements too close to each other, are often the reason

for drastically lowered chip production yield. These two types of errors usu

ally are detected after a hand-drawn layout is completed. (Often the errors

are detected with the aid of design-rule check and circuit-to-layout con

sistency check programs.)

Digital LSI circuits containing over 20,000 devices are common today,

and the device count has been doubling every two years. With such a growing



chip complexity, it has become even more important to be able to generate

error-free layouts efficiently. Further, in order to manage the ever-

increasing complexity effectively, chips should be well-organized for the easy

addition of future improvements. Most modern computer-aided layout

methods are designed to prevent the aforementioned errors from occurring

in the first place. For example, the standard-cell layout method [2, 3]

accepts logic specifications as input and produces layout with standard

forms almost automatically. The symbolic layout method described in this

report accepts a topological layout specification in symbolic form and pro

duces an area-efficient layout free of design-rule violations automatically.

Because the layout is specified with simpler, higher-level descriptions, both

these methods make it easy to modify the layout quickly.

The following sections describe some of the most popular layout

methods used for LSI circuit design today, as well as some of the most

effective computer-aided layout methods under development.

2.2. The Traditional Layout Method

To date, for the lack of better tools, most LSI circuits have been laid out

by hand. Typically, at the beginning of the layout phase, the designer esti

mates the building-block size, shape, and interconnection requirements and

creates a chip-level organization plan (chip plan) that summarizes the block

placement and the interconnection routing schemes. Based on this chip

plan, the detailed layout for each building-block is drawn by hand. The draw

ings are subsequently digitized and saved in computer-readable formats.

Programs that check layout design-rule violations, and circuit-to-layout con

sistency and performance can then be used to detect errors in the layout.



Correction of some of these errors may require a substantial rework of the

layout because the original layout is normally tightly packed. Frequently,

several passes through the design loop are necessary before a circuit can be

manufactured successfully.

The use of interactive graphics systems has been very popular in the

hope of improving the productivity of this traditional layout scheme [4].

These systems are useful for drawing, editing and archiving layouts, but pro

vide little for the efficient generation of correct layouts. In fact, generating

layouts with interactive graphics systems may be likened with generating

documentations with interactive text editors lacking text-formating capabili

ties. Both tools are incomplete in that they require the user pay attention to

distracting details, such as the spacing requirements between elements in

the case of the layout generation and the length of sentences and the pagina

tion in the case of writting a documentation. With such interactive graphics

systems the basic design flow still loops around the editing and the checking

steps.

The traditional hand or interactive graphics-aided layout approach has

become increasingly ineffective for both present and future layout needs.

Over the years a number of computer-based layout methods have been under

development to tackle the geometric complexity and to best utilize the sys

tem potentials of LSI circuits. Due to the complexity of the layout problem,

most methods attempt to improve just one aspect of the layout process. For

example, the symbolic layout approach is very useful for generating detailed

cell-level layouts but becomes less effective when dealing with the planning of

the overall chip organization. It is most profitable to incorporate all the

computer-based tools shown in Figure 1.1 in a general, hierarchical layout



10

system to maximize the strength of the individual techniques. Despite

apparent differences in the emphasis, the principles behind the majority of

these layout methods are similar, namely:

a) the use of higher-level representations to simplify the

user interface. Rather than letting the user manipu

late the layout at the geometric shape level, function

specification or circuit configuration is used as the

starting point of the layout. Thus, the initial layout

specification and the subsequent modification pro

cedures may be significantly simplified.

b) the introduction of standardization. These methods

call for the use of regular layout forms or existing

ceil structures whenever possible, either in the form

of an array or in a hierarchical fashion. For both the

array-oriented and the hierarchical layout

approaches, the standardization typically requires

the use of cells and building-blocks of similar and

compatible size, shape, and structure (such as the

arrangement of power buses in the buiding blocks).

These computer-based layout methods are described in the following sec

tions.

2.3. The Standard-Form Layout Approaches

The standard-form layout methods are aimed at the automatic transla

tion cf logic designs into circuit layouts. Thus, in principle, the layout phase

can be significantly shortened with a standard-form layout method. Typi

cally, a standard-form layout system employs a pre-defined layout structure
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into which logic equations can be mapped directly. Three such layout struc

tures are described below.

2.3.1. The Standard-Cell Layout Method

The standard-cell layout method is a way to automatically place and

interconnect a large variety of standardized cell layouts based on circuit

interconnection information [2, 3]. The standard cells typically perform

logic gate- and register-level functions. They are drawn carefully so that

their heights are identical and their widths integral multiples of a common

grid size. An example of a standard cell is shown in Figure 2.1(a). In addi

tion, the signal and power lines into each cell are put on grid positions or at

predetermined locations. Thus, standard cells can be placed in rows and

interconnected through the intervening routing channels in a uniform

fashion, as shown by the example in Figure 2.1(b).

Because of the similarity in layout configuration between the standard-

cell chip and the printed circuit board (PCB). many methods related to popu

lar PCB placement and wire-routing schemes are used by standard-cell lay

out systems. In the cell placement phase, each standard cell is assigned to a

row based on its connectivity with other cells in the circuit.. The channel

width needed to wire up the cells in a given row is considered also in assign

ing a cell to a particular row. The location of a cell is further optimized with

intrarow manipulations, such as reflection and pair-wise interchange. If a

group of interconnected cells are assigned to different cell rows, feed-

through cells must be inserted into the intervening rows to accommodate

inter-channel routing. Channel routing is then carried out to complete the

interconnection. In the routing phase, the goal is to keep the channel width
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as close to the theoretical lower bound as possible while ensuring routing
completion.

Computer-based standard-cell layout systems can generate error-free

LSI circuit layouts with minimal human intervention (to complete a few
difficult wire routes the computer program failed to handle) in a matter of a

few hours. The resulting layouts, however, are generally large and loose. The

large layout size makes the circuit costly to produce. (The circuit produc

tion yield is higher than what can be expected based on the usual inverse

relationship between the chip size and the yield. The higher than usual yield

may be attributed to the fact that defects in the silicon substrate are less

likely to be covered by active areas in a loose layout.) The looseness of the

layout degrades the circuit performance because power and some signal

lines are often required to extend over long distances. Despite these draw

backs, the standard-cell layout approach has been very popular with system

manufacturers because of its effectiveness to produce system components

(LSI circuits) quickly. The added circuit production cost and the lost circuit

performance of standard-cell-type layouts may be compensated by the

overall system-level design.

2.3.2. The Master-Slice Layout Method

The master-slice layout approach [5] also follows the principle of

repeated use of standardized components in a predefined manner to imple

ment logic designs directly. In this case, frequently used cell-level circuits

are arranged and prefabricated on LSI chips, called the master slices. Rout

ing programs are then used to interconnect the cells on one or more mask

layers to customize a master slice for particular applications. Aschematic
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diagram of a master slice is shown in Figure 2.2. This layout approach has
been heavily used by main-frame computer manufacturers, who prefer to
keep a relatively small inventory of component types (master slices) capable
of covering most ofthe circuit needs of their computers.

Both the standard-cell and the master-slice layout methods attempt to
implement the classical random logic design directly. As such, they must

support any number of cells used by logic designers. Since each cell must be

laid out and checked, the initial overhead of constructing the cell library can

be quite significant. The third standard layout form avoids this problem by

employing a memory-like structure, which remembers logic equations as bit
patterns.

2.3.3. The Programmable Logic Array as aStandard Layout Form

AProgrammable Logic Array (PLA) consists of a regular array of transis

tor sites so arranged that desired logical AND-OR-NOT or OR-AND-NOT func

tions can be obtained if transistors are placed in the proper sites. Further-

more, finite-state machines can be implemented with PLA's by adding inter

nal or external feed-back and state-registering mechanisms. Figure 2.3

shows the implementation of two different logic equations with the same PLA

structure.

The regularity of the PLA structure makes it ideal for automatic genera

tion from logic specifications. However, since the size of a PLA grows with

the number of prime implicants (the product terms appearing in the output

of an AND-OR-NOT PLA). a straightforward translation of a complex logic

specification into the PLA form often results in a large PLA layout with

sparsely planted transistors. The long interconnects in such a large PLA may
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significantly degrade the electrical performance.

The problem with the low density has been tackled with logic equation

minimization schemes. The classical approach to the PLA minimization prob

lem uses a process in which all prime implicants are generated first, and a

minimal set is then selected to cover the outputs. Because of the computa

tional complexity, this formal procedure is impractical for most real-world

design problems. A heuristic approach capable of minimizing function

specifications consisting of a few hundred implicants has been reported by

Hong et al. [6]. Recently, a new PLA generation technique has been proposed

which implements complex functions with a hierarchy of small PLA's [7].

This new scheme may realize significant area reduction and is compatible

with a top-down hierarchical design methodology.

2.4. The Hierarchical Layout Approach

The hierarchical layout approach calls for the structured implementa

tion of a layout to manage the complexity of the layout problem. At each

level of the hierarchy the layout schemes best suited for the implementation

of individual system functions may be selected to perform the layout opera

tion. In contrast to standard-form layout methods, where the layout process

is effectively eliminated from the design cycle, the hierarchical approach

stresses the fact that layout requirements may be used to advantage as an

integral part of system design considerations. Adetailed presentation on the

structured design methodology is given by Mead and Conway [l].

The traditional hand layout method that begins with the chip planning

process is in fact a hierarchical layout method. As described in Section 2.2,

this hierarchical scheme begins with the preparation of a chip organization
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plan that partitions the layout into functional areas and constituent building

blocks. With the chip plan as a guide, each building-block is then con

structed with cells and devices in a hierarchical manner. The building-blocks

are subsequently merged, and fine adjustments are made to both the blocks

and the chip organization plan until these blocks are bound together snugly.

At the present time, an integral system of computer aids does not exist for

this type of layout approach. However, components for such a system have

been the subject of an increasing number of research and development pro

jects. The two major types of components are those for the chip-level design,

such as the chip planning and the building-block placement and interconnec

tion techniques, and those for the block-level design, such as the symbolic

layout method. The organization of these tools into a layout system is dep

icted previously in Figure 1.1.

2.4.1. Chip-Plan Development and Layout of Building-Blocks

Building-block layout methods deal with the problem of placing and

interconnecting blocks to form a complete chip layout [8, 10, 11]. The indivi

dual building blocks are usually laid out as random logic, PLA, or collection of

standard-cells and may have arbitrary size, shape, and locations of connec-

tion points. As such, the building-block layout problem is quite complex and

most work in this area uses separate placement and interconnection phases

to generate the final solution. Because of this separation, layouts generated

with building-block layout programs tend to be larger than what can be pro

duced by hand. However, with the development of new algorithms that han

dle placement and routing simultaneously [12] and the complexity of typical

LSI circuits increasing beyond the level of 50 building blocks and 100 buses,

the computer-based building-block layout methods have received growing
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acceptance.

The chip planning problem encompasses not only the generation of an

approximate block placement and interconnection routing scheme, but the

estimation of block size and wiring requirements as well. Although there has

been some work on the subject of predicting wiring space requirements [13],

a formula for estimating the block size is not yet available.

2.4.2. The Symbolic Layout Method

The symbolic layout method provides a way to convert automatically ceil

or building-block topological specifications in symbolic form to actual

geometric layouts. Thus, the symbolic layout method reduces the tedious

and error-prone layout process to a simple operation-or-topology- planningr

Since layout design-rules are enforced by the conversion program, the

resulting layout is normally free of design-rule violations.

There are two types of symbolic layout methods. The fixed-grid (or

coarse-grid) method [14, 15] requires the layout plan be drawn on equally

spaced grids. Here the grid spacings are determined on the basis of a set of

dominant layout design-rules. The conversion program operates simply to

replace each symbol in the user input with its actual geometric structure.

Figure 2.4 shows an example of a symbolic layout plan and the resulting lay

out from a fixed-grid symbolic layout system.

The fixed-grid symbolic layout technique has been used successfully by a

number of companies in the electronics industry. It has proven to be an

effective method for generating reasonably compact layouts in a short time.

Note, however, that the compactness of the resulting layout depends on two

factors: First, the original user input in the symbolic form has to be very
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compact as the program only performs symbol-to-geometry conversion.

Second, since the design-rules used to determine the common grid spacing

normally do not give rise to identical minimum pitch (the sum of the

minimum line width and spacing) on all mask layers, layers with smaller

minimum pitch are made sparser in order to match the larger minimum

pitch of other layers. Alternatively, several grid spacings can be used for

different mask layers to avoid this low-density problem at the expense of

increased system complexity.

The second type of symbolic layout method avoids these difficulties by

performing geometry modifications, such as compaction and expansion of

elements, and limited topological changes, such as introduction of jogs, on

loose symbolic layout plans or other types of layout representations drawn

by the user [16, 17, 18, 19, 20]. This type of method is termed the relative-

grid method since the loose layout plan indicates only the relative placement

and interconnection of element symbols with respect to other symbols. Fig

ure 2.5 gives an example of a layout generated by the relative-grid method

developed in this research project. (The different mask layers generated by

CABBAGE are represented as follows: diffusion is in solid line or green,

polysilicon is in dashed line or red, metal is in dash-dotted lines or blue, and

a fourth line type or black is used for all other mask layer or symbols.)

The relative-grid method is more versatile because it lets the user

ignore design-rule requirements almost completely. Thus the user can spend

most of the design time wisely on developing good layout topologies based on

his experience, cleverness, and common sense. (The design strategy for the

latch-driver circuit in Section 6.2.1. is an example of this type of heuristic

approach to the topological layout planning problem.) In principle, it is also



A

a

--CK^6—f-H-H -

-*H^ L
-3t—

—

~~"--3«-*-

— *- -At-~ ~""~ "i»-M

--O-Oy^HHHhy-

6YM3QL/C VEPS/QA/

TOPOLOG/CAL \/£R$!QN

Figure 2.4 An example of a fixed-grid symbolic loyout

21



f is

U'Z±zil I

Figure 2.5 The symbolic layout plan and the

compact layout of a T—flip flop.

22



23

possible to generate topological layout plans directly from circuit connec

tivity information with the aid of rigorous graph planarization algorithms [21,

22] and assignment techniques [23]. Since the actual geometric layout of

typical cells and simple building blocks can be generated with relative-grid

symbolic layout systems (such as CABBAGE) in a matter of a few minutes on

minicomputers, the user can receive almost immediate feedback on the

topology he has devised.

The versatility of the relative-grid symbolic layout approach does

require much more intelligence on the part of the computer program. The

next two chapters introduce a number of algorithms and related methods

used in the aforementioned relative-grid layout compaction programs.



CHAPTER 3

ALGORITHMS FOR LAYOUT GENERATION

3.1. Introduction

A relative-grid symbolic layout plan, such as the one in Figure 2.5, pro

vides the designer with an efficient means for expressing the desired layout

topology, from which an actual geometric layout meeting all design-rule

requirements can be generated automatically by a computer program. Pro

vided that a good initial topological specification is given, a geometric layout

of high quality usually can be generated by simply compressing the symbols
close to one another.

In this report, the generation of an actual layout from a symbolic layout

plan is handled as a global building-block placement problem. The geometric

shapes associated with the symbols are placed according to the planned

topology as close to one another as is permitted by design-rule requirements

and other fixed constraints. Asimilar approach is used by Ivannikov and Sip-

chuk [20]. In fact, the placement method used in this research project is
equivalent to the well-known Critical Path Method (CPM) for task scheduling

[24]. (The symbolic structures can be viewed as individual tasks, and their

locations may be calculated as if they were the starting time of the tasks.)

The CPM approach is also used by Cho et al. [16] in an independent effort to

solve the problem of building-block LSI circuit layout problem. Other formu

lations for the symbolic layout compaction problem include the compression

ridge method used by Akers et al. [25] and Dunlop [17], and the localized
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placement method used by Williams [IB]. All these layout generation

methods can stretch as well as compress symbols in order to generate lay

outs without design-rule violations. For simplicity, the generation of such

tightly packed geometric layouts is commonly termed the layout compaction

operation.

This chapter presents a survey of a number of placement algorithms

which are related to the algorithms and methods developed in this project.

In addition, the symbolic layout compaction techniques used by other

researchers are described for the purpose of comparison.

3.2. Building-Block Placement Algorithms

Building-block placement algorithms are used to solve the.problem of

tightly fitting blocks of dissimilar size and shape on a chip, while observing

connection and proximity requirements. Some of the ideas in bailding-block

placement algorithms are applicable to the layout generation from relative-

grid, symbolic layout plans, since the actual geometric shapes of the symbols

may be considered as blocks.

There are a number of placement techniques [26] which have been suc

cessfully used by printed circuit board layout systems to place standardized

integrated circuit packages on a board. But most of these become less

effective when appUed to the building-block-oriented LSI circuit layout

environment because of the widely varied size and shape of typical building-

blocks. A group of more successful building-block placement methods

employ variations of the rectangle dissection method developed by Tutte et

al. [27], as detailed below.



26

3.2.1. Rectangle Dissection-Type Algorithms

Tutte's method was originally developed to dissect a rectangle into a

finite number of non-overlapping squares. This problem is solved by mapping

the desired organization of the resulting squares into a single source, single

sink, planar directed graph (polar graph). Further, the polar graph is viewed

as a resistive network, where the height-to-width ratios of individual areas

are treated as branch resistances. (Thus unit resistances are used for

dissecting a rectangle into squares.) A current equaling the width of the rec

tangle is fed into the source node to develop voltages. The voltage across

and the current through each branch are considered as the actual values of

the height and the width, respectively, of the corresponding square. Figure

3.1 provides an example of this scheme. This method also can be applied to

dissect a rectangle into many non-overlapping smaller rectangles by using

their aspect ratios as the branch resistances.

Since minimum area requirements of the constituent rectangles can not

be expressed explicitly in the original dissection formulation, modified forms

of Tutte's method are used by most building-block placement algorithms

employing the dissection approach. In one scheme, the power dissipation

(area) of each branch (constituent rectangle) is used in place of the resis

tance (aspect ratio) to fix the minimum available area [28]. However, a

dissection solution is not guaranteed fr>r any arbitrary combination of power

dissipations. A more popular approach is to optimize the maximum cutset

width and the longest path length of the polar graph subject to meeting the

lateral length constraint of the constituent rectangles [29, 30]. Since polar

graphs representing the vertical and the horizontal relations are the dual of

each other [27], an equivalent scheme is to optimize the longest path lengths
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in the dual graphs representing the respective horizontal and vertical struc

tural relationships, as shown in Figure 3.2 [31, 8, 10].

Building-block layout systems employing the placement methods

described above typically carry out the interconnection routing in a separate

phase. It is interesting to note that polar graph-based solution schemes

again may be used here to determine the arrangement of routing channels

[9, 10].

3.2.2. A Chip Topology Planning Algorithm

A chip topology plan is an organizational plan indicating how building-

blocks can be packed together and optimally interconnected, assuming their

approximate sizes and shapes have been determined.

Recently, Keller proposed a method which uses weighted dual graphs of

an initial relation-graph as chip plans [12]. In Heller's algorithm, the initial

relation-graph is an undirected graph whose weighted nodes and branches

represent building-block areas and numbers of interconnection lines

between building-blocks, respectively. Additional nodes representing "global

wiring areas" are placed at the crossover points of branches to planarize the

initial relation-graph. A suitable chip topology plan is then selected from the
l

rectangularized weighted dual graphs of the initial relation-graph. These

dual graphs are constructed from the initial graph such that a) the areas

enclosed by branches are sufficient to accommodate the corresponding

building-blocks, and b) the branches are long enough to accommodate the

total width of interconnection lines crossing them. As such, it is possible to

take into account placement and interconnection constraints simultane

ously. An example from the paper by Heller [12] is shown in Figure 3.3.
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Fig. 3.2 Graph representations of the horizontal
and vertical structures of the dissected

rectangle.
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3.3. Symbolic Layout Compaction Algorithms

Symbolic layout compaction algorithms are used to generate correct

and area-efficient layouts based on the connection, adjacency, and spacing

requirements of constituent elements. The symbolic layout compaction

problem has been dealt with from many angles. Due to its complexity, how

ever, all published algorithms in this area perform the compaction of the

horizontal and vertical dimensions of a layout separately. Also, the original

topology of the layout plan is kept more or less unchanged throughout the

compaction process. Table 3.1 summarizes the statistics obtained from

some of the existing layout compaction programs to provide an overview of

the capabilities of layout compaction methods as a whole. This table is not

intended as a chart of comparison since all methods have different emphases

and are implemented with dissimilar equipments. In particular, the size of a

circuit is measured differently by the four systems as the number of ele

ments (in SLIP) or elements and lines (in CABBAGE), the number of intersec

tions (in STICKS), or the number of rectangle edges (in FLOSS). Area penal

ties of the compacted layouts over the hand-generated equivalent solutions

are available for several of the examples and are listed in the last column of

the table as percentage increases in area. Brief descriptions of the compac

tion algorithms developed by other researchers are given in the following

subsections.

3.3.1. The Compression Ridge Method

In 1970, Akers, et al., described a method to compact a loose layout by

removing excess space from it successively [25]. Specifically, bands of con

tinuous excess area, called compression ridges, are developed and removed
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SYSTEM COMPUTER EXAMPLE
CKT.

SIZE

RUN TIME

(seconds)

MEMORY

USAGE

1,1 ••••

AREA

INCRS.

CABBAGE

HP 1000 E

RTE IV

T-aip aop 87 21 3200

11400
5 T-FF's

IN A ROW 407 191

LATCH-DRIVER 290 220 8800 -2%

FLOSS

IBM 370/168 A 1200 29 +59%

B 4000

20

100

STICKS

HP 3000 3-INPUT GATE 20

C 3000 50 hrs

SLIP

PDP 11/70

UNIX

INVERTER 14

28

28

44

CONSTANT 0%

5-INPUT NAND ii

-15%

D-FLIP FLOP 52 215 M

+30%

Table 3.1 Statistics of Layout Compaction Systems



33

in succession from the entire span of the layout, as shown in the example in

Figure 3.4. Also shown in the example is the use of shear lines to join adja

cent excess areas to achieve a higher layout density.

This algorithm was first implemented with a fixed-grid type data struc

ture. Symbols and excess areas were contained in equally spaced grids such

that uniform compression ridges can be developed easily. Recently, Dunlop

[17, 32] has taken this approach one step further by partitioning the area of

compaction and applying nonuniform compression ridges to relative-grid

symbolic layout plans. Here the initial layout plan is first expanded, if neces

sary, so that symbol-to-symbol spacing is at least equal to the minimum

design-rule requirement. Tightly connected elements in the expanded layout

plan may be put into clusters via a partitioning process. Thus, the compac

tion of the overall layout majr.be. carried out at two levels: the global compac

tion involves the reduction of spacing among the clusters and the local com

paction performs the more elaborate compaction of the internal structure of

each cluster. At both levels the width of each compression ridge is deter

mined based on the spacing requirement of the individual clusters or sym

bols encountered by the extending compression ridge. The spacing require

ment is calculated using design-rule analysis techniques in a working window,

which is two maximum clearances higher than the present cluster or symbol

and spans across the entire layout in the direction perpendicular to the

present ridge. In addition, the trade-off between compactions in the x-

direction and the y-direction may be considered during the development of a

compression ridge for the local compaction.

A hierarchical layout scheme may be incorporated into the compression

ridge method by representing the lower-level cells as forbidden regions,
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where compression ridges are not allowed to enter.

The main drawback of the compression ridge method is in its inability to

determine the optimal location and ordering for introducing compression

ridges. Frequently, an incomplete compression ridge must be discarded

because all its possible shear lines have been exhausted. This triai-and-error

scheme is especially time-consuming when compression ridges are developed

based on elaborate design-rule checking techniques.

3.3.2. The Localized Placement Method

Instead of performing layout compaction by iteratively improving the

compactness of a large and loose layout, as with the compression ridge

method, the compaction problem may be treated as one in which each sym

bol is placed in sequence -to constructs compact- layout." With~this^latter

compaction method, the location of a symbol is determined based on the

locations of its neighbors which are connected to or may have potential

conflict with the symbol. For this reason, such a layout construction method

may be termed the localized placement method.

The localized placement method has been used in the program STICKS

[18]. As an example of the data manipulation scheme used in STICKS, Figure

3.5 shows a graph representation for the compaction of three horizontal bars

[33]. Each bar is assigned to a separate group represented by a node. (In

this method, a group generally contains a rigid piece of symbolic structure.)

Design-rule analyses are done for neighboring symbolic structures, which

may be in contact or have potential conflict with one another. Based on the

result of the design-rule analysis, a pair of forward-pointing and backward-

pointing branches is inserted between the affected nodes. The same design-
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rule analysis provides information on the required spacing, which are used as

branch weights. The construction of a compact layout begins with the place

ment of one of the nodes at the boundary of the layout, say node a in Figure

3.5. Since node a is connected to nodes b and c in this example, the location

of a affects those of b and c. Thus nodes b and c are considered next, not

necessarily in any particular order. Suppose that node c is considered next,

the branch (cb) causes the location of node b to be adjusted, which in turn

affects the location of node c through (be). Such adjustments are carried

out until all branches are considered.

Note that if parallel paths exist in such a graph, enly the longest of them

determines the final location of each node in the path. Thus the manipula

tion of any branch not in the longest path only degrades the efficiency of this

method. The longest path (or the critical path) principle is used to advan

tage by the compaction algorithms used in the program FLOSS [16] and the

CABBAGE system (described in this report).

3.3.3. The Critical Path Method

Cho et al. described a building-block layout compaction program,

FLOSS, in 1977 [16]. The use of the critical path principle in that program is
t

announced recently [34].

In FLOSS, the edges of elements (building blocks and interconnection

lines) are mapped into nodes and the size and spacing requirements are

mapped into branches, as shown in Figure 3.6(a). The critical path of the

resulting graph is then determined to give the locations of each of the ele

ment edges. An example of the critical path algorithm (also known as the

longest path algorithm) can be found in Section 4.4.2. of this report, as well



Rgure 3.5 The graph representation

used In the STICKS program.
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as textbooks on the subject of operations research [24].

The spacing requirements are generally lower-bound-type constraints of

the form

i - j >= d,

which indicates that location i must be at least a distance d beyond location

j. Such a constraint can be represented by a single branch with weight d

from the node at location j to that at location i, as those shown in dotted

lines in Figure 3.6(a). However, the element sizes are usually fixed and must

be represented with fixed constraints of the form

i-j = d.

Fixed constraints can be mapped into the graph as a pair of forward- and

backward-pointing branches having the same weight d, as those in solid line

in Figure 3.6(a). If over-constraining conditions exist due to input errors, as

shown in the example in Figure 3.6(b), the sum of branch weights around

some of the loops introduced by the branch pairs may become positive. (The

loop abcdefa in Figure 3.6(b) is such a positive cycle and indicates an over-

constrained situation.) The particular critical path method used in FLOSS

cannot detect this type of input error until the critical path is extended

beyond a predetermined limit by looping through positive cycles repeatedly.

In contrast, the graph representation used in the CABBAGE system does not

generate such cycles and allows over-constraining situations to be detected

easily. The graph representation and other techniques used in CABBAGE are

the subject of the next chapter.



Rgure 3.6(a) The graph representation used in

the FLOSS program,

(b) An over-constrained structure.
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CHAPTER 4

THE CABBAGE LAYOUT SYSTEM

4.1. Introduction

The CABBAGE layout system is a relative-grid symbolic layout system for

generating LSI circuit building-block layouts. It is developed with the follow

ing objectives:

a) High computation efficiency. The layout system must

generate a compact and correct geometric layout

from a symbolic input as fast as possible to keep the

designer actively in the design-loop. The" turn

around time should be on the order of a minute or

less so that the user can receive almost continuous

feedback on the layout topology he has chosen.

b) Good man-machine interaction. In this type of

computer-aided design environment, the user must

be able to obtain easily a layout whose configuration

is similar to what he has in mind. Thus, in addition

to giving the user continuous feedback, the design

system must provide the user with means to guide

the progress during the layout compaction process

and to influence the compaction result.

c) Hierarchical layout capability. The hierarchical imple

mentation of a layout not only works well with a

structured LSI circuit design strategy but also helps

40
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to maintain the short turn-around time that is

essential to a good interactive design environment.

In general, algorithms used in CABBAGE have an

order of complexity in the range between n log( n )

(for sorting) and n15 (for design-rule analysis),

where n is the total number of features (rectangles)

in the layout. As such, better computation time can

be achieved if larger building-blocks are made up

with devices and lower-level building-blocks, where

the representation of lower-level building-blocks is

greatly simplified.

In the following sections an overview of the CABBAGE system is

presented. The design considerations and algorithms for achieving the above

objectives are also described.

4.2. An Overview of the System

At the present time, the CABBAGE system consists of two programs: The

program GRLIC (Graphics Routines for Laying-out Integrated Circuits) is an

interactive graphics editor for generating the initial symbolic layout plan and

manipulating interim compaction results at the symbolic level. GRLIC allows

the user to perform most of the essential graphics editing functions, such as

adding, deleting, and copying symbols and files. It supports a set of layout

symbols whose size and orientation can be varied with commands issued by

the user. Thus, most of minimum size, overlap, and enclosure design-rules

are enforced by the input processor of GRLIC as default minimum values and

in the form of standard symbol structures. The second program, PRSLI
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(Packing a Relative-grid Symbolic Layout of an IC), is the layout compactor

that generates the correct geometric layout. It analyzes layout design-rule

requirements and constraining conditions for each symbol in the symbolic

layout plan and compacts the layout in horizontal and vertical directions as

much as is allowed by these requirements. The user can also request PRSLI

to put in jog points automatically after the initial compaction step and per

form the compaction operation once more to achieve a possibly more area-

efficient layout. The compaction and the automatic jog-point introduction

algorithms are described in detail in later sections.

There are other more drastic topological modifications, such as rotation

and mirroring of symbols or a complete reorganization of the layout plan,

which the user may wish to perform after seeing the initial compaction

result. Thus the two programs" are-designed to be used alternately to con

struct, compact, and modify the layout and its corresponding topological

plan until the user is satisfied with the result. The communication between

these programs is carried out through a simple disk file. This file contains

only the most basic information: a layout plan is stored as a collection of

symbols (devices, lines, constraints, etc.) represented by their individual

Symbol Description Blocks (SDB's). The layout symbols are described in the

SDB's by their individual symbol type, orientation, center location and size.

A precise data organization for the SDB is shown in Appendix 1.

The use of a common data representation for the symbols allows each

program to employ the best internal data structure for its particular func

tion. For example, GRLIC treats the layout plan as a set of properly located

individual symbols and keeps no information regarding their connectivity

and adjacency. Since the symbols do not interact with one another, the data
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structure used by GRLIC is one that can be grown or shrunk easily to maxim

ize the editing efficiency. In contrast, the layout compactor PRSLI must first

develop connectivity information so that symbols can be properly separated

or merged during the compaction operation. Here the connectivity informa

tion is in the form of electrical node numbers. (Note that input to circuit

simulation programs [35, 37, 36] may be derived easily from the node

number information and symbol type and size specifications.) In addition, for

purposes of geometric layout design-rule analysis and displaying the com

plete geometric layout, PRSLI interprets properly connected symbols as rec

tangular polygons. Thus, at any time during the layout process, the user can

view his layout in both the symbolic form with GRLIC, and the geometric lay

out form with PRSLI.

The separate program and simple common interface approach makes

the CABBAGE system easily extensible. Potential future additions to the CAB

BAGE system, such as electrical performance simulation, function-to-layout

consistency check, and mask pattern generator tape-making programs, can

be implemented as individual program modules that derive necessary infor

mation from the common disk file.

4.3. The Drawing Rules for the Layout Plan

Before describing the main body of the compaction procedure, it is use

ful to introduce two rules for drawing the symbolic layout plan that greatly

simplify the compaction procedure itself.

At the present, a symbolic layout plan used in CABBAGE is made up of

two types of elements: lines and point structures. The point structure is a

layout entity or a circuit device. For example, transistors and contacts are
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all considered point structures in the CABBAGE system. The line element is

the usual interconnection line between circuit elements.

In terms of layout compaction, the characteristics of the line element

differs from that of the point structure element in two aspects: The line ele

ment can be stretched and shrunk, while the size of a point structure ele

ment must stay fixed. Also, a point structure, such as a transistor, may

require more than one electrical node to describe its connectivity in the cir

cuit.

In order to simplify the implementation of the stretch and shrink capa

bilities of line elements, the CABBAGE system requires all lines in the sym

bolic layout plan be properly terminated. A line may be terminated by an

orthogonal line or a special point structure, called the terminal element, at

the boundary of the layout plan. In fact, in the absence of point structure

elements, the remaining layout plan still is a connected network as shown in

Figure 4.1. With such a connected network, the end points of any line ele

ment can be derived readily from the center location of connecting point

structures and orthogonal line elements. Thus, this rule on the proper ter

mination of line elements provides the essential mechanism for transmitting

changes made in one direction to the orthogonal direction.

In conjunction with this first drawing rule, the second rule requires that

all point structures be located at the intersections or end points of lines so

as to simplify the automatic assignment of node numbers. As such, the point

structure elements serve to identify the types of line intersections, both in

the data structure for the compaction operation and in the graphical sym

bolic layout plan. In addition, the actual sizes of point structure elements

are used in the symbolic layout plan as a visual aid to the user. This practice
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(c)

(b)

Figure 4.1(c) A symbolic layout plan of a T-flip flop.
(b) Lines remain connected when point structures

are removed from the layout.
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helps prevent the user from piling up elements and simplifies the logic in the

compactor for distinguishing the connectivity of the individual elements.

Abbreviated names are used in place of graphical symbols to display point

structures in symbolic layout plans in other layout compaction systems [17,

18].

4.4. The Layout Compaction Algorithm

There is usually a certain amount of unused space or dead area in a

"compact" layout. The dead areas exist because geometric structures sur

rounding them may be held apart by larger structures in other parts of the

layout. The compaction algorithm in PRSLI uses this fact to advantage; it

finds and improves only the limiting or the most-constraining symbolic struc

tures which directly affect the compactness of a layout. Other (non-

constraining) symbols are placed next based on the location of the constrain

ing symbols to generate a compact geometric layout.

A technique analogous to that used in polar graph-based building-block

placement can be used here to determine the most-constraining structures.

As described in Section 3.2.1. [8, 31], the building-block placement can be

optimized by manipulating the longest paths, which correspond to the most-

constraining building blocks, in the polar graphs describing the desired hor

izontal and vertical placement relations. In PRSLI, two similar, but simplified

graphs are used for the sole purpose of determining the longest paths or the

most-constraining structures in the horizontal and the vertical directions.
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4.4.1. The Graph Representation

A major difference between the relative-grid symbolic layout compac

tion problem and the building-block placement problem is the way the con

nectivity of a layout is treated. The connectivity of the symbolic layout plan

must be kept unchanged throughout the compaction operation. For simpli

city, this may be done by preserving the topology of the layout plan. In con

trast, the objective of performing building-block placement is to devise a

good topology whereby the blocks can be tightly packed. Since building

blocks usually are linked up in a separate routing phase, the connectivity

among blocks is not as strong a factor in determining the adjacency as in the

case of layout compaction.

As a result, a proper grouping of symbols into "building blocks" is essen

tial in order to map a symbolic layout plan to a polar graph-like representa

tion. If each symbolic element is considered as a block by itself, as in the

example in Figure 4.2(a), it is a relatively complicated matter to ensure that

connected elements do not fall apart as a result of the compaction opera

tion, as in the example in Figure 4.2(b). To prevent this unwanted splitting

from occurring. PRSLI considers all topologically connected elements shar

ing the same vertical or horizontal center line as belonging to a single block

and moves them as a group during the compaction operation. An example of

such a grouping of elements is shown in Figure 4.2(c). Note that elements

having different electrical potentials but the same horizontal or vertical loca

tion may be put in the same group.

In the graph representation of the symbolic layout plan the groups are

mapped into nodes and the separation requirements between groups are

mapped into branches. In particular, the weight of each branch is equal to
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(o) (b)

group center lines

V

I

I

(c)

Rgure 4.2 An example of a compaction in the horizontal

direction. If each element (rectangle) is

treated as an individual entity, as in (a), the

compaction process may break apart connected

elements, as in (b). The grouping shown in (c)

holds elements together during the compaction.
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the maximum sum of a) the half-widths of any two directly adjacent elements

in the two groups separated by the branch and, b) the corresponding spacing

requirement between those elements. An example of this mapping is shown

in Figure 4.3. Note that this mapping is different from that used in the Tutte

rectangle dissection method but achieves the same effect as the said map

ping. In the rectangle dissection method, boundaries and individual areas of

constituent rectangles are mapped to nodes and branches, respectively, in a

polar graph. "With the Tutte-type mapping, rectangles can be made to share

a common boundary line if their corresponding branches are connected to

the same node. Similarly, with the mapping used in PRSLI, unoccupied

spaces are made to share a common group of symbolic elements, thereby

providing the necessary separation area around that group.

The horizontal and vertical structural relations of a symbolic layout plan

are represented with separate graphs in PRSLI. For simplicity in construct

ing the graphs, the horizontal groups are not included in the vertical graph,

and vice versa. The two graphs are no longer dual because of this

simplification of the grouping process.

4.4.2. Finding the Longest Path

The graphs obtained with the mapping described in the previous subsec

tion are planar, directed, and noncyclic graphs. Moreover, since branches

are put in with a top-down, left-to-right sequential design-rule analysis, the

predecessor-descendant relationship of each node can be obtained easily. A

detailed description of the design-rule analysis process is given in a Section

4.5.



Rgure 4.3 The graph representation of

the layout in the horizontal

direction.

\
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It is a simple matter to determine the longest path through such planar

directed graphs with known descendants for each node. (The determination

of the longest path through such a graph is known as the critical path

method for analyzing the project network in the field of operations research

[24].) Informally, the longest path to a given node is taken as the maximum

of

a) the present path length to the node, and

b) the sum of the weight of the branch between the

present node and one of its predecessor nodes, and

the longest path length to that predecessor node.

Aformal description of the longest path algorithm is shown below with a

self-explanatory programming language. (This language follows the general

direction of the Ratfor language [38]. The rules of the language are a) simple

operations are separated with a semicolon and a block of operations is

enclosed in a pair of braces, and b) the assignment of i to j is written as

j = i.) Before the presentation of the algorithm, however, a few functions and

arrays used in the algorithm must be defined. (Here the word "function" is

used loosely and should not be viewed rigidly as that used in some formal

computer programming languages.) Let the graph be described by three

functions nd(i), dnode(i,j), and bw(i,k). The function nd(i) gives 'the number

of descendant nodes of node i. The function dnode(i.j) gives the node name

or number of the j-th first-generation descendant of node i. (Note that the

descendants of a node need not be arranged in any particular order.) The

function bw(i.k) gives the weight of the branch between nodes i and k. In

addition, an array np and a first-in first-out queue is used to facilitate the

longest path calculation. The individual elements ofnp, np[k], are initialized
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to the number of predecessor nodes of node k. The longest path length to

node i, lp[i], is then obtained as follows:

initialize ip[i] to zero for all nodes;

put nodes with zero predecessor into a queue;

while the queue is not empty |

take the first node in the queue and call it n;

for each of its nd(n) descendants [

get the node name k = dnode(n.j) of a descendant;

lp[k] = max( lp[k], lp[n] + bw(n.k) );

np[k] = np[k] - 1;

if np[k] is equal to zero then

add node k to the end of the queue;

i

pop the queue (thus deleting node n from it);

\

The path length lp[i] to each node is used as the center location of

groups in the direction of compaction. As a result, locations of groups not in

the longest paths tend to be biased towards the first group. (Note that spe

cial topological properties devised by the user, such as the symmetry in the

placement of similar transistors, in a symbolic layout plan cannot be

preserved because of the bias applied by this compaction strategy. Further

research must be carried out to incorporate different compaction strategies

so that the user has more control over the compaction process.) In PRSLI. a

force-directed placement technique [26] is applied to these non-constraining

groups to pull them away from the first group and to put approximately
equal unoccupied space on their two sides. The same force-directed place-
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ment principle forms the basis for the automatic introduction of jog points.

4.4.3. The Automatic Introduction of Jog Points

Jog points are locations at which a line can be bent and then continued a

short distance away. Such a bending may result in a more area-efficient lay

out as shown by the example in Figure 4.4. (A higher area efficiency can not

be guaranteed unconditionally since the bent line must occupy some space

in the direction of the bend.)

Although jog points may be put into the symbolic layout plan manually

at any stage of the compaction operation, the longest path information

derived during the initial layout compaction operation may be used to deter

mine all possible jog points at once. Specifically, jog points may be included

in a group where the longest path goes into and comes out from two different

intervals of the group. In essence, the two segments of the longest path may

be viewed as force vectors which exert a torque on the group. The introduc

tion of a jog point allows the group to be torn apart by the torque.

In the actual implementation, the intervals over which the maximum

separation requirement exists between two groups are recorded during the

design-rule analysis and the record is accessible to the descendant group.

(Such intervals are shown in dark lines for the example in Figure 4.5) With

such a setup, the automatic jog point insertion algorithm can be described

formally below. In the description, the function sep( i, j ) gives the center-

to-center spacing between groups i and j after the compaction operation.

The function minsep( i, j ) gives the minimum required center-to-center

spacing between groups i and j. The function mxint( i, j ) facilitates the

inspection of the record containing the intervals over which the maximum
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spacing exists between the predecessor group i and the descendant group j.

Thus, two groups are in the longest path if sep( i, j ) equals minsep( i, j ).

for each group i in the direction of compaction j

for each of its descendant groups j j

if sep( i, j ) is equal to minsep( i, j ) then j

for each descendant group k of group j \

if sep( j, k ) is equal to minsep( j, k ) and

there are intervals in group j not covered by

either mxint( i, j ) or mxint( j, k ) and

the covered intervals above and below them

are from different groups, then

put a jog point in the uncovered interval

i

i

j

i

The inclusion of a jog point involves the splitting of the group into two parts

at the point of the jog and the addition of a line element at that point con

necting the new group to the original group. The actual jogs are brought out

with a subsequent compaction in the direction of interest. Thus, jogs may

not appear at all the potential jog points found with the above algorithm.

4.5. The Enforcement of Design Rules

Geometric layout design rules specify the permissible structural rela

tionship among elements used in a circuit layout. These rules are derived on

the bases of production tolerances and basic device physics limits to ensure
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Figure 4.5 The torque applied by neighboring groups,
as shown in (a), bends the middle group,
as shown in (b).
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the successful fabrication of a circuit.

Design rules are enforced by the CABBAGE system automatically to

ensure the efficient generation of a layout free of geometric errors. (A sum

mary of the typical types of design rules used in the industry and their

implementation in the CABBAGE system is included in Appendix 4.) For pur

poses of presentation in this section, most of the common design rules may

be categorized as follows:

a) the minimum element sizes, as in Figure 4.6(a). This

type of rule is used to make sure that, for example,

an element will not be eliminated even with severe

over-etching.

b) the minimum overlap and enclosure of geometric

features in an-element,-as* in Figure 4.6(b).- These •--—-•

rules are used to guarantee that, for example, even

with the worst misalignment of different mask

layers, features in an element will touch one another

as intended.

c) the minimum spacing between elements, as in Figure

4.6(c). These rules give the minimum required

clearance beyond which distinct elements will "not

touch even with the worst misalignment.

Most of the design rules in the first two categories are enforced by

GRLIC, at the time the symbolic layout plan is drawn, as the default minimum

size or the standard structure of an element. For example, when the user

requests a simple transistor symbol, a structure consisting of a section of

polysilicon intersecting a section of diffusion is automatically supplied by
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GRLIC. Moreover, the overlapping area of this structure (the active channel

area of the transistor) is constrained to be at least the minimum area

required by design rules.

Design rules that are functions of a given topology must be applied

dynamically by PRSLI during the compaction operation. These rules include

all the spacing rules, as well as a few rules governing the overlap require

ments of a contact area. These latter rules typically call for an increase in

contact coverage in the direction of the contacting line to ensure the proper

electrical connectivity, as in the example in Figure 4.6(d). Since the direc

tion of the contacting line can change as a result of the compaction opera

tion, such rules on extra overlap can be applied only at the end of each com

paction operation.

It is interesting-to- note that"the-minimum size-requirement described in

the first category above may be viewed as a minimum (internal) spacing

requirement between the two edges of an element. This viewpoint allows the

minimum size and spacing rules be treated in a unified manner. However,

PRSLI treats the two separately for two reasons. First, with the present

implementation, treating the size of an element as a spacing requirement

makes the size variable and increases the complexity of the force-directed

placement scheme described in Section 4.4.2. Second, it is often undesirable

to enlarge the size of an element above the minimum required value for such

enlargements may increase line capacitances and reduce the drive capabili

ties of transistors. Special constraints may be used to limit such enlarge

ments at the expense of increased program complexity. (The optimization of

the size and drive capability of a transistor with respect to the available

space is considered by Ivannikov and Sipchuk [20].)
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Spacing design-rules are analyzed between neighboring groups by PRSLI.
Specifically, PRSLI determines the enclosing neighboring groups above or to
the right of a given (primary) group, and proceeds to analyze the spacing
requirements between the primary group and its neighbors. For each consti
tuent element in the primary group, its edges facing the neighboring group
is determined and checked against those of the neighboring group mask by
mask, as shown in Figure 4.7. For neighboring but distinct groups, a branch
is inserted between the nodes representing the two groups. The maximum
sum of element half widths and the appropriate spacing design-rules between
the groups are used as the weight of the branch. For two groups that can be
merged, PRSLI inserts a branch with zero weight between the nodes

representing these groups. Although such a branch could be left out to allow

the mergeable groups more freedom of movement, it becomes quite involved
to redetermine the enclosing neighborhood for groups examined prior to the
current primary group in the event that the mergeable neighbor moves past
the primary group. For this reason, the zero-weight branch is used as a
compromise.

Because the spacing design-rule analysis is done at the lowest level of

mask shapes, proper diagonal-spacing requirements can be calculated easily.
With diagonal-spacing requirements included in the graph representation, a
symbolic layout may be compacted to meet all design-rule requirements, in

theory, in just one horizontal and one vertical compactions. However, the

application of extra overlap rules after the spacing-rule analysis makes it

necessary to carry out more than the minimum number of compaction

operations to obtain correct layouts in most cases. The potential design-rule

violations introduced by the extra overlaps may be eliminated with additional

compaction operations after a layout has been substantiaUy compacted and
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directions of contacting lines stablized. An example requiring this type of

iteration is given in Figure 4.8.

Iterations must be carried out until all design-rule requirements are

met. Thus the iterative process may be terminated as soon as the spacing

requirements calculated at the present iteration are not in conflict with the

center-to-center distances of the corresponding groups determined at the

previous iteration. Note that a more compact layout may be produced with

additional iterations if not all locations of groups remain the same during two

consecutive compactions in a given direction. Thus, in addition to reporting

the correctness of the solution of the previous compaction operation, PRSLI

reports the movement of the groups during the present compaction opera

tion to let the user determine if he would proceed further.

In order to perform the design-rule analysis, PRSLI must develop electri

cal connectivity information for all elements to determine mergeabiiity.

Further, it must convert the symbolic representation of groups into actual

mask shapes for the detailed design-rule analysis. The next two subsections

describes how this information is derived.

4.5.1. Determination of Electrical Connectivity

PRSLI represents electrical connections in the form of electrical node

numbers. Every element is assigned a node number (three in the case of a

transistor element) at the beginning of the compaction operation according

to its electrical connection. The global connectivity information provided by

the node numbers is used throughout the entire compaction process: the

node numbers are used to determine whether two elements may be merged

and the possible partial coverage (overlap) of an element by another element
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Figure 4.8 An example showing the need for iteration
for the directional enlargement of buried
contact windows.
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remotely connected to it. (Two elements are remotely connected if they are

connected through other elements sharing the same electric potential with

them, as in Figure 4.9.)

Node numbers may be assigned with a'path-finding type of algorithm

[39]. For simplicity, assume each element is tied to only one node. The node

numbering algorithm used in PRSLI begins by assigning a distinct, monotoni-

cally increasing temporary node number to each element sequentially. The

elements are then examined in the same order: the (temporary) node

number of the present element is compared with that of the element directly

connected to it. All elements with the larger (temporary) node number are

then assigned the smaller (temporary) node number. This node equivalenc-

ing operation terminates when all elements have been examined.

4.5.2. Conversion of Symbols into Actual Geometric Shapes

When a group of symbols is compared with its neighboring groups to

determine the necessary spacing requirements, the comparison must be

done at the detailed mask shape level to guarantee that the single branch

weight used to separate the two groups reflects the true spacing require

ment. PRSLI performs this comparison by converting the symbolic represen

tation of the two groups in question into edge segments placed at a half of an

element width away from the group centers. Figure 4.7 shows the edge seg

ments when the primary group on the left side is compared to one of its

enclosing neighbors to the right.

Two factors must be considered in developing the edge segments of a

group of symbols. First, since the interconnection configuration of elements

may change from one compaction operation to the next, the edge segments



remotely connected center lines

Figure 4.9 Remotely connected center lines may

merge into one polygon if they are

wide enough.
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must be developed for each compaction operation to reflect the most

current configuration. Consider, for example, the structures (connected

areas) in Figure 4.10(a). As shown in the figure, several of the lines in the

center structure must be extended so that they form smooth joints with

their connecting lines. It is clear from Figure 4.10(b) that, after a compac

tion operation in the horizontal direction, the extended segments in that

structure are no longer the same as the extended segments before the com

paction. Second, for the proper operation of the compaction process, it is

not sufficient simply to disregard or to remove hidden segments of the ele

ments. Hidden segments may reappear as a result of the compaction. Con

sider again the movement of the center structure during the horizontal com

paction of the example shown in Figure 4.10(a). It is necessary to remove

the hidden segments of the two vertical -lines,- as. shown in Figure 4.10(c), for

the vertical line on the top to move past the vertical line below it. At the

same time, however, the "removed" segment of the lower vertical line must

be examined against the left edge of rectangle R. Had rectangle R been

placed in a lower position, as shown in Figure 4.10(d). such an examination

would place a corner-to-corner spacing requirement between the rectangle

and the upper corner (the "removed" segment) of the lower vertical line.

(Similarly, the "removed" segment of the upper vertical line must be exam

ined against rectangle L.) Because of such a spacing constraint, the com

pacted result in Figure 4.10(d) is different from that inFigure 4.10(b) Thus it

is necessary to record the covering segment of a hidden segment. This

knowledge allows the compactor to discriminate the neighboring segments of

a hidden segment and to skip the examination of the covering segments.

In all, four types of designations of edge segments are needed to

describe the outline of a given group correctly. The normal and the gap
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segments are used to describe the presence and the absence, respectively,

of a line segment in the individual symbols. A temporarily covered segment

is one that may reappear as a result of the compaction, as described in the

previous paragraph. A fully covered segment, such as the verMcal edges of

the transistor in Figure 4.11, always stays hidden and needs not be examined

against any other edge. (Note that the design-rule analysis routine must

detect an initially fully covered group and anchor it to its neighboring groups

to prevent the corresponding node from floating in the graph representation.

An initially fully covered group may result when the length of a line is shrunk

to zero due to the merger of its connecting groups in the orthogonal direc

tion.)

The edge segment designations are used not only for design-rule

analysis purposes but also for plotting the compaction results in rectangular

polygon form. The normal edges from each of the four sides of a group are

drawn to form a complete outline of the group.

4.5.3. The Table of Spacing Design-Rules

Since design-rules governing the spacing between elements are used

repeatedly throughout the compaction process, PRSLI organizes these rules

in the form of a table to facilitate the determination of the spacing require

ments. The table used by PRSLI is shown in Table 4.1.

Note that the entries of the table contain not only the usual mask levels

but also some compound mask levels, such as the level containing the active

channel area of a transistor. The compound mask levels are included in the

edge segments, just as the regular mask levels, when PRSLI performs the

design-rule analysis. For example, when a transistor symbol is converted
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Figure 4.11 The vertical edges of the
transistor are covered fully
by the connecting diffusion

line.
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into its geometric equivalent, the corresponding edge segments contain a

drain-to-source diffusion edge, a polysilicon gate edge, and an active channel

edge. Thus, the rule for separating a neighboring diffusion line and the

active channel of the transistor can be applied readily.

The ability to use compound mask levels to simplify the design-rule

analysis is just one of the many advantages of the symbolic layout technique

over the conventional hand-drawn or interactive graphics-aided layout

schemes. In the latter schemes, the components of a circuit element, such

as the channel and the gate of a transistor, typically are stored separately as

components on different mask levels in the computer data base. With such a

separation, the design-rule check program must reconstruct the transistor

from components on different mask levels (by logic AND, OR and other opera

tions) in order to inspect the compoundmask levels.

At the present, the Table of Spacing Rules does not contain more

involved rules such as the one requiring extra spacing between two diffusion

lines if there are contact windows near the edge of each of the diffusion lines.

(An example of such a configuration is shown in Figure 4.12.) However, these

types of rules may be added easily by expanding the table to include addi

tional compound mask levels, such as a special diffusion-edge type with

nearby contact windows.

4.5.4. The Computation Complexity of the Design-Rule Analysis

PRSLI employs a computationally efficient design-rule analysis scheme

which examines only the enclosing neighbors to the right or above a given

group. Since all groups are sorted by their individual center locations before

each compaction operation, all groups can be covered properly as the
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design-rule analysis routine sweeps across the layout in the direction of the
compaction.

It is clear that, in the best case, the run-time would be linear for this

design-rule analysis technique. An example which gives the best run time is

shown in Figure 4.13(a). Assume that all bars are on the same mask level

and the minimum spacing between any two shapes on that level is greater

than zero. The run time for design-rule analysis in the horizontal direction is

linear since each bar can be enclosed by its immediate neighbor to the right.
However, the same type of configuration can be used to generate the worst

run time: Assume that all bars have the same electrical potential and are

mergeable. Since a.neighboring bar may be merged with the primary bar,

the neighbor's neighbor must be examined against the primary bar as well.

Further, since, the merger takes place only -after spacing requirements-for all-

bars are determined and included in the graph representing the structural

relationship of the bars, the design-rule analysis must be carried out for

each bar against the rest of the bars to its right. Thus, for arow of m bars,

(m-i ) bars must be examined for the i-th bar in the row. In all, (m2 -
m)/2 examinations are necessary and the run time is proportional to m2.
(Alternatively, the same conclusion may be reached by assuming that all
bars are on different mask levels and there is no spacing- requirement
between any two elements on different mask levels. Since the mask levels of

neighboring bars are not known a priori, and the design-rule analysis is car

ried out for all masks simultaneously, the compaction in the horizontal

direction requires the design-rule analysis routine to examine all bars to the

right ofeach given bar to ensure proper enclosure.)
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A stack of the parallel bars (Figure 4.13(b)) is generally a reasonable

model for most circuit layout configurations. In particular, assuming that

there are m rows of parallel bars with m bars in each row, and all bars in the

same row are on different mask levels or mergeable, the run time of the

design-rule analysis routine for horizontal compaction is proportional to

( 3m3- 5m2 + 2m )/2. (Briefly, for each bar all the neighbors to the right, in

the same row as well as one row above and below it, must be examined for

possible side and diagonal enclosure.) Letting the total number of groups

(bars) in the layout model be n, where n = m2, it is apparent that the

design-rule analysis technique has an order of complexity of n15 in the worst

case.

Statistics taken from PRSLI for real circuit layout examples show the

number of groups examined by the design-rule analysis routine increases

approximately as n12, where n is the total number of elements in the layout.

The exponent may be made somewhat lower if the construction of the enclos

ing fence is implemented more elaborately. Details of the program imple

mentation and the gathering of run-time statistics are presented in Chapters

5 and 6, respectively.

4.6. Handling Fixed Constraints

Thus far it has been assumed that all lines in a. layout plan behave like

rubber bands, whose lengths may be extended or shrunk to suit the design-

rule requirements. However, in many cases it is useful to be able to fix the

length of a line or the spacing between elements. For example, a maximum

length may be imposed on a line for circuit performance reasons. Similarly,

two elements may be set a fixed distance apart so that their relative topol-
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ogy does not change.

The most general form of a fixed constraint between two groups at loca
tions i and j (i >= j) may be written as

1<= i - j <= u,

where 1and u stand for the lower and the upper bound, respectively. Thus,

for example, a rigid fixed constraint can be specified by setting 1equal to u.

These constraints are included in the graph representation of the layout plan

as branch weights that force the distance between two nodes to meet the

constraining requirements.

Although the distance between two groups may be specified with a fixed

constraint, the design-rule requirements between them still must be deter

mined because the fixed constraint specified by the user may be in conflict

with other (design-rule-induced) constraints in the layout. Thus, the lower

bounds are used first with the longest path algorithm to determine the new

location for each group. After all new locations are determined, the upper

bounds are checked against the separations between the corresponding

groups. A conflict is detected if the separation between two groups is

greater than the corresponding upper bound. Such conflicts are reported to

the user for correction.

4.7. Macrocells and the Hierarchical Build-up of a Layout

Layouts are often generated hierarchically to save time and storage

requirements and to reduce organizational complexities. With a CABBAGE-

like layout system, the hierarchical layout process involves the build-up of

larger circuit layouts with previously compacted cells or user-defined black

boxes. For this application, it is sufficient to know only the peripheral struc-
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ture of a compacted cell, provided the user does not attempt to alter its

internal structure. Here, the proper peripheral representation of a com

pacted cell is termed a macrocell.

There are four factors that must be considered in generating a macro-

cell. First, the peripheral structure must fully enclose the rest of the macro-

cell to keep out neighboring elements. This requirement also implies that

the peripheral representation should reflect the edges of a macrocell accu

rately to let neighboring elements fit snugly around its border. The present

data structure used in CABBAGE makes it necessary to represent the peri
pheral structure with element symbols, which can be treated by the program

uniformly as any other element. Second, the macrocell must be fixed in size

and shape throughout the compaction process. Here, fixed constraints can

be used to set the required distances between peripheral elements. Third,

the macrocell must preserve electrical connectivity. Since the mergeability
of elements are determined based on electrical node numbers during the
compaction process, proper node numbers are essential to the area-

efficiency achievable by the compactor. Because macrocells are

represented as collections of peripheral symbolic elements, it becomes

necessary to retain internal contacts to preserve the proper electrical con

nectivity at the edge of the macrocell.

It should be noted that, with some changes to the data structure used in

the present implementation of CABBAGE, macrocells may be represented
more naturally as individual elements rather than collections of their consti

tuent elements. In particular, the point structures used in CABBAGE at the

present, such as transistors, are macrocells in reduced form; they are

macrocells with only one connection point at the element center. The indivi-
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dual element representation of a macrocell would reduce the storage and
computation requirements substantially to realize the full advantage of the
hierarchical layout approach.

The last factor of consideration concerns the use of macrocells in agen
eral hierarchical layout environment. Here it is a common practice to build
up larger building-blocks from macrocells directly. For such applications,
area-efficiency and chip organization considerations make it desirable to

match the connector locations of the connecting macrocells. The match
may be achieved by using fixed constraints to set the relative locations of

connectors based on estimates of the final connector locations of the con

necting cell. However, the compaction process for both macrocells often
must be carried out iteratively to finalize the connector location.

The use of stretchable macrocells for the purpose of direct hook-up has
been proposed by Johansen [40]. Here, certain elements of a compacted cell
(macrocell) are made to follow the movement of some specified connectors
of that cell. With such a scheme, an interactive graphics editor may be used
to split and to hook up compacted cells, forcing connectors in smaller cells

to stretch and to match the connectors of larger cells. The area-efficiency
lost in the individual stretched cells usually can be compensated by the
overall area reduction resulting from the more regular interconnection pat
tern among macrocells.

The use of stretchable macrocells amplifies the usefulness of the multi-

algorithm approach to computer-aided layout generation, as depicted previ
ously in Figure 1.1. The layout compactor is very efficient at packing each
macrocell into a small area and correcting all violations of design-rules. The

stretching of macrocells to uniform dimensions can be performed readily
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with an interactive graphics editor as a final touch-up.

4.8. Preferential Compaction

The problems of the direct hook-up of macrocells are not limited to

those of matching connector locations. The shape of each macrocell must be

optimized also to achieve the overall regularity and performance require

ments at the chip level. Since rectangles have been the most popular shape

for macrocells and building-blocks, the shape optimization is often reduced

to that of optimizing the aspect ratio of rectangles. In particular, the user of

a layout compaction system should have control over the length of at least

one dimension of the rectangular bounding box of the compacted cell. For

example, the user may want to specify an upper bound for that dimension so

as to be able to fit the resulting cell into a limited space left onthe chip.

The separate horizontal and vertical compaction operations used in

PRSLI (as well as in all other published work on the topic of layout compac

tion [16. 17, 18]) do not provide mechanisms for observing this type of aspect
ratio requirement. In PRSLI. however, it is possible to make compaction in

one direction more preferable than compaction in the other direction.

Specifically, since enclosing neighbors within one maximum spacing of the

two end points of a primary group are examined during the design-rule

analysis phase for possible corner-to-corner spacing requirements, a particu

lar direction may be made less preferable for compaction by extending the

safety zones at the two ends beyond one maximum spacing. In effect, the

extended safety zones prevent the premature movement by neighboring

groups into the (unused) areas protected by these extended zones. Thus, the

neighboring groups in the perpendicular direction can be given the priority
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for claiming the usage of these preserved areas to achieve a possibly higher

layout density in that direction.



CHAPTER 5

DESCRIPTION OF PROGRAM STRUCTURE

5.1. Introduction

The purpose of this chapter is to describe how the major algorithms

introduced in Chapter 4 are linked up in the CABBAGE system. All the algo

rithms presented in Chapter 4 are complete in principle and operational by

themselves. However, necessary links must be placed at appropriate loca

tions and sometimes compromises must be made for the algorithms to work

together efficiently in a computer program.

The organization of the GRLIC (interactive graphics editor) program is

quite straightforward. The GRLIC program is written primarily to fulfill the

needs for putting data into the PRSLI (layout compaction and generation)

program. For completeness, however, a brief description of the GRLIC pro

gram is included in Section 5.2 below. In contrast, the PRSLI program is

more involved and is described in detail in Section 5.3. The description of

the PRSLI program is partitioned based on the program overlays.

5.2. The GRLIC Program

The GRLIC program is an interactive graphics editor for generating and

modifying symbolic layout plans. It is driven by the commands issued by the

user. (A list of commands accepted by the GRLIC program is included in the

User's Guide to the CABBAGE System in Appendix 5.) If the command involves

graphics operations, such as drawing or erasing a symbol, the PRGRF (Pro

cess Graphics Commands) routine is used to receive the intended location of

81
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the symbol and to drive the pertinent routines containing the knowledge

about the shape and structure of the symbol. Commands involving no graph

ics operations are processed by the PRCMD (Process Command) routine,

which collects the necessary parameters and drives the appropriate routines

for performing the command. A listing of the routines used in the GRLIC pro

gram is in Appendix 8.

GRLIC treats a symbolic layout as a collection of symbols and keeps no

information regarding their interconnection and adjacency relationship.

Each symbol is kept in a Symbol Description Block (SDB) which is a copy of

the SDB for that symbol in the disk file. The SDB's in the program memory

are stored in a linear array (the LSG array) and are sorted by their center

locations for the ease of later references. The data structure used in GRLIC

is described in Appendix 2. (It is to be note that symbols for fixed con

straints and electrical elements, such as lines and transistors, are all stored

in the LSG array as SDB's in a uniform fashion.)

5.3. The PRSLI Program

The control flow of the PRSLI program can be divided into three phases.

The initial setup phase involves the determination of the interconnection

relationship of the elements. With the knowledge of the interconnection rela

tionship, the program enters the compaction phase to perform the design-

rule analysis and the group placement. Finally, the result of the compaction

is displayed in the output phase. Routines for the first and the last phases

are grouped into two separate program overlays. In order to match the

length of these two overlays, the routines used in the compaction phase are

divided according to their functions and are put into three overlays for
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design-rule analysis, element placement, and jog generation.

5.3.1. The Setup Overlay

The setup phase begins with the reading of Symbol Description Blocks

from the file containing the symbolic layout. The SDB's for electrical ele

ments are stored in a linear array (the LSG array in the data structure

described in Appendix 3). The SDB's for fixed constraints are read in and

stored temporarily in a separate array.

The connectivity of the elements in the LSG array is examined next. The

interconnection relationship of the elements is represented in PRSLI in the

form of electrical node numbers, which are appended to the SDB's of the

individual elements as described in Appendix 3.

The simplifications of drawings allowed by GRLIC that affects the connec

tivity of the elements must be removed at this stage for the determination of

the proper electrical connectivity. For example, for the ease of drawing,

GRLIC allows the user to draw a continuous diffusion line through the channel

area of a transistor symbol. However, the two ends of the channel of a

transistor usually are connected to different electrical potentials. As a

result, such a continuous diffusion line must be located and split into two

segments (as two new SDB's) at the center of the intersecting transistor.

Similarly, GRLIC allows the user to terminate any type of line with a terminal

element and hence the line type corresponding to the terminal element must

be determined also at this sta&e. (In fact, the same mechanisms for deter

mining the terminal type may be used to determine the type of the contact

necessary for connecting two intersecting lines or to detect illegal cross

overs of lines. Due to an oversight, however, such capabilities are not imple-
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mented in the CABBAGE system at the present time.)

As in the case of the GRLIC program, the SDB's are sorted by their

center locations and grouped together based on their topological connec

tivity. (Two symbols are topologically connected if they touch each other.

Further, they are put in the same group if they are topologically connected

and have the same center location in the x or the y direction.) The primary

purpose for grouping topologically connected symbols is to form clusters of

symbols that stay together during the compaction operation. But the group

ing is also useful as an approximation to the actual electrical connectivity.

After the preparatory work has been performed, the node-numbering routine

can proceed to assign electrical node numbers to each element. The node

number of each element is appended to its SDB and backpointers to SDB's

having the same node number are grouped and stored in the NLST array.

The topologically connected groups are represented by the LREF blocks

in the data structure. The LREF blocks have backpointers (through the LIST

array) to their constituent symbol description blocks and are sorted by the

center locations of the groups they represent. Further, since the topologi

cally connected groups are mapped into nodes in the longest path algorithm,

the precedence relationship of the nodes derived from the design-rule

analysis are recorded in the LREF blocks.

5.3.2. The Design-Rule Analysis Overlay

The first and the most time-consuming task to be performed in the com

paction phase is the design-rule analysis. The result generated by the

design-rule analysis is a graph describing the precedence relationship of

groups.
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The design-rule analysis overlay examines the sorted LREF blocks

sequentially, beginning with that representing the left-most or the lowest

group for the compaction in the horizontal or the vertical direction, respec

tively. Each primary group is examined against the neighboring groups to

the right or above it to determine the spacing requirements between them.

In order to perform an accurate spacing analysis, the edge structure of the

primary group viewed from the right or the top must be developed and

checked against the left or the bottom view of the edge structure of a neigh

boring group. The array for the edge structures contains detailed descrip

tions for each edge of the elements in a group. The descriptions are used

mainly by the subroutine SPACE to determine the spacing requirement and

the mergeability of two opposing edges and include the contributing element,

the edge type (described in Section 4.5.2), the electrical node number, the

distance from the center of the group, and the mask level of an edge. At the

present, the edge structures are developed whenever needed, with the sub

routine TRACE, to conserve memory at the expense of increased run time.

The fence within which the design-rule analysis must be carried out for a

primary group is built during the design-rule analysis and is recorded in the

edge structure array. In particular, the edge type is changed to "covered"

(defined in Section 4.5.2) once an edge of the primary group is covered fully

by a neighboring group. (The change of an edge type is shown graphically for

the simple example in Figure 5.1. The primary group on the left is gradually

covered by its neighbors to the right when the design-rule analysis is per

formed in the horizontal direction.) Since design-rule analysis is not needed

for a covered edge, the design-rule analysis for a primary group is ter

minated when all edges in that group become covered. This scheme for

building up a fence is somewhat crude but the fence is guaranteed to enclose
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all neighboring groups visible by the primary group. It is crude because the

fence may be too conservative: for lack of a more elaborate recording

scheme, each segment is covered starting with its two ends and any fence

covering only the middle portion of a segment therefore must be discarded,

as in the case of the left-most fence in Figure 5.1. The exclusion of the left

most fence leaves a small portion of the primary group uncovered even after

the fences from the other three neighbors have been considered. Thus, with

the present recording scheme, the difficulty of finding a suitable fence rises

with the length of the corresponding primary segment.

The precedence relationship and the spacing requirements among

groups developed by the design-rule analysis routine are used to construct a

graph representing the horizontal or the vertical structure of the layout

plan. The nodes of the graph are represented by the individual LREF blocks,

and the branches emitting from a node is stored in the LF (List of Followers)

array accessible by the corresponding LREF block.

5.3.3. The Group Placement Overlay

The longest path through the graph built by the design-rule analysis

overlay is determined with the algorithms described in Sections 4.4.2 and 4.6

to guide the placement of groups. For groups not on the longest path, the

unused space around them are distributed based on their predecessor-to-

descendent ratios. Here, such a ratio approximates the ratio of the attrac

tion forces on either side of the less-constrained group. In most cases, such

a force-directed distribution of space has the effect of keeping connected

groups from slipping away from each other, as shown in Figure 5.2, as a

result of the bias applied by the longest path algorithm. However, since the
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predecessor and descendant counts of a group also include groups uncon

nected to it, the predecessor-to-descendent ratio is only a simple approxima

tion and may not give the best placement.

The spacing requirements resulting from the longest path calculation is

compared with the compaction solution obtained in the previous iteration.

The compaction operation in the present direction may be terminated (by

the user) if the solution obtained in the previous iteration meets all design-

rule requirements and occupies the same amount of area as the present

solution. Otherwise the generation of the new solution must be continued:

the line elements not in the direction of compaction must be modified

(shrunk or expanded) to reflect the changes in geometry produced by the

compaction. In addition, groups that merged together as a result of the

compaction must be joint and represented by a single LREF block.

5.3.4. The Jog Generation Overlay

The jog generation overlay determines all intervals on both sides of a

group where the spacing between the group and its neighbors is equal to the

minimum required spacing. These intervals are collected and coalesced in a

temporary array (the MCST array). The current group is split at locations

not covered by these intervals, provided the intervals above and below the

selected locations are contributed by different sides of the group. The

groups resulting from this split are then linked up with lines that may be

stretched during the subsequent compaction operation to form bent lines or

jogs. Most of the routines used in the design-rule analysis overlay are used

here for the purpose of determining the minimum spacing intervals. Several

routines used in the setup overlay for adding new elements and forming new
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groups are used also for splitting groups and adding linking lines.

5.3.5. The Display Overlay

The result of the compaction is displayed in rectangular polygon form.

Here the routines for developing edge views are used again to supply the

edge segments of the four sides of a group. Thus the result displayed is

exactly what the design-rule analysis routine will see in the subsequent com

paction operation.



CHAPTER 6

THE PERFORMANCE OF THE CABBAGE SYSTEM

6.1. Introduction

The performance of the CABBAGE system may be evaluated from two

perspectives. First, the efficiency of the layout obtained from the CABBAGE

system must be compared with those obtained by other means, such as the

hand layout approach. Here the efficiency of a layout is evaluated mainly on

the basis of the overall size. Other performance and quality factors of a lay

out, such as the power-delay product, the long-term reliability of a particular

configuration, etc., either require more involved measurements or are less

well-defined. As such, these latter factors are not considered in this chapter

formally. Second, the computer resources required by the CABBAGE system

must be examined in terms of the run time and the memory usage.

For the purpose of evaluating the efficiency of the solution, hand-drawn

layouts of functional blocks used in microprocessor-type LSI circuits are

compared with their equivalent layouts obtained from the CABBAGE system.

Such comparisons show that, as the user of the CABBAGE system keeps

improving the layout topology, the final solution obtained from the CABBAGE

system is not only more regular but also smaller than that done by hand.

The details of the iterations this author went through with the CABBAGE sys

tem to layout a functional block used in a microprocessor circuit are

described in a separate section below. (The layout for that block is approxi

mately 2% smaller than the equivalent layout done by hand.)

91
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For the evaluation of computer resource requirements, statistics on run

time and memory usages are collected and compared with the predicted

trends. Detailed results included in separate sections show that, with the

present implementation, the compaction time increases approximately as

the 1.4 power and the memory usage increases linearly with the number of

elements in the layout.

6.2. An Example: The Latch-Driver Block

Figure 6.1(a) shows the circuit schematic diagram of a latch-driver

block used in a microprocessor. The corresponding hand-drawn layout used

in that microprocessor is shown in Figure 6.1(b). This layout is representa

tive of the dense and area-efficient layouts commonly used in the industry

and hence is a realistic example for examining the efficiency achievable with

the CABBAGE system.

A close look at the layout in Figure 6.1(b), however, reveals that it is

unstructured and its topology is less than optimum: The gate location and

interconnection diagram (Figure 6.1(c)) of this hand-drawn layout shows the

gates are placed randomly and the signal lines often wander deep into the

interior of the layout and occupy the intervening space unnecessarily. Thus,

a new and regular layout topology is developed to generate an equivalent lay

out with the CABBAGE system.

6.2.1. Strategies for Developing a Better Layout Topology

Because the topology of MOS transistors consists of simply the intersec

tion of a diffusion and a polysilicon line, signal lines are generally more

space-consuming than the devices they connect to in a layout of an MOS cir-
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cuit. Thus, the first priority in developing a better layout topology for the

circuit in Figure 6.1(a) would be to keep signal lines as short as possible. As

a direct result of this decision on routing, the placement of gates becomes

more or less determined: The two data latches (Latches A and B in Figure

6.1(a)) have the most connections to the outside and must be placed near

one edge of the layout. In particular, the IBUS and the CLK lines are the two

signal lines with the most connection to the latches and should be kept short

to save space and lower their loading capacitance. Similarly, the driver sec

tion (Gates 18, 19 and 20 in Figure 6.1(a)) must be located at the opposite

edge of the layout as most of its inputs are connected to internal nodes and

its outputs are directed outward. The pull-down logic (Gates 1, 13, 14, 15, 16

and 17 in Figure 6.1(a)) is thus placed in the middle as it has connection lines

from both edges and some interior nodes. The placement and interconnec

tion diagram of this new layout topology is shown in Figure 6.2(a).

6.2.2. The Construction of the Layout

The actual topological layout plan is developed and modified in three

stages to minimize the complexity of the layout problem. During each stage

of the construction, new elements are added on top of the existing layout and

some elements in the existing layout are adjusted in the hope to achieve a

snug fit. In addition, the area used in later layout stages are estimated and

reserved.

In the first stage the two latches and Gate 1 of the pull-down logic are

laid out, as shown in Figure 6.2(b). This part of the circuit is chosen as the

starting point because it has possibly the most complex topology and the

most connections to the outside.
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Because it is desired to generate a layout whose aspect ratio is compar

able to the hand-drawn layout in Figure 6.1(b), every effort has been made to

keep this first-stage layout short (in the vertical direction) to accommodate

future additions of signal lines to other parts of the layout. Typically, such

efforts involve the alteration of the directions of transistors and the

modification of interconnection configurations (introduction of jogs) in the

most constraining structures in the interim layout obtained from the PRSLI

program. (Compare, for example, the layout ofthe first stage in the final lay

out in Figure 6.2(d) with the original layout of the first stage in Figure

6.2(b).)

The development of the gate placement and interconnection plan and

the actual topological layout plan for the first stage of the latch-driver exam

ple took the author an afternoon to complete. Once the first stage is com

pleted, the rest of the layout is appended relatively easily. Amajor portion

of the pull-down logic is added that evening in stage two of the layout. (The
interim result is shown in Figure 6.2(c).) The final layout in Figure 6.2(d) is

completed the following morning with the addition of the driver section. The
total layout time is on the order of eight hours, with nearly 90% of the time

spent on developing and improving the layout topology. (The compaction of
the final layout in Figure 6.2(d) takes less than three minutes, of computer

time on the H-P 1000 Series E minicomputer.)

6.2.3. A Comparison of Area-Efficiency

In order to make the comparison of the area-efficiency fair and realistic,

the layout done with the CABBAGE system follows most of the rules used in
the hand-drawn layout. In particular, the two layouts use the same family of
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geometric layout design rules and both have 20-micron wide power lines and

minimum-width polysilicon signal lines. The major differences of the ele

ments used in these two layouts are:

a) 6-micron-wide polysilicon lines are used in the layout

generated with CABBAGE in place of the minimum-

width 5-micron-wide polysilicon lines used in the

hand-drawn layout. CABBAGE uses 6 microns as the

minimum line width in the interest of keeping the

minimum line widths uniform among all line types.

b) The minimum channel length of driver transistors is 6

microns in the layout generated with CABBAGE

instead of 5 microns used in the hand-drawn layout.

It is assumed that, in converting a 8-micron channel

to a 5-micron channel, the area saving gained with

the shorter channel length would be sufficient to

compensate the 1-micron extra gate extension in the

perpendicular direction for minimizing the edge-

rounding effect on short-channel transistors. (The

edge-rounding effect is described in Appendix 4.)

c) Only transistors with straight channels are used in the

layout generated with the CABBAGE system. At the

present, CABBAGE does not have element models for

transistors with interdigitated or S-, L-, or U-shaped

channels.

d) The order of signal lines at both edges is different for

the two layouts. The order is assumed interchange-
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able since all signal lines are hooked to external bus

lines running in the vertical direction.

Even though both differences a) and c) above tend to degrade the compact

ness of the layout generated with the CABBAGE system, the resulting layout

is a little over 2% smaller than the hand-drawn layout in Figure 6.1(b). (The

size of the hand-drawn layout is 220 by 350 microns; The size of the layout

generated with the CABBAGE system is 215 by 350 microns, with a peripheral

margin comparable to that in the hand-drawn layout.) The quality of the lay

out generated with the CABBAGE system is comparable, if not superior, to

that of the hand-drawn layout; the channel area of a transistor is defined

better with a straight gate than with any other gate shapes. In addition, the

sizes of contacts in the layout generated with CABBAGE are similar to those

used in the hand-drawn layout. (Some of the contacts in the layout gen

erated with CABBAGE may be made even larger if there were a simpler way to

express off-center contacts in the topological layout plan.)

The area-efficiency realized with the CABBAGE system may be attributed

to two factors: First, as a result of the regularity of the layout topology dev

ised by the author, elements with similar sizes and shapes are located close

to each other and occupy contiguous, rectangular regions. Area savings may

be achieved more easily with butting rectangular regions than with more

complicated polygonal regions. Second, the almost immediate feedback

from the CABBAGE system makes it possible for the user to compare topolog

ical changes he has made. Moreover, the changes can be made with little

effort on the part of the user. Thus the user and the compactor work

together to improve the congested areas of a layout. It is felt that, in most

cases, such a cooperation makes use of the capabilities of both the human
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user and the computer to a fuller extend than what is possible with

automatic operations alone.

6.2.4. Comments on the Layout Time

Experienced layout designers typically spend several days to construct

by hand layouts of the complexity of the latch-driver block described in this

section. The designer typically builds up the layout based on just one topo

logical plan because modifications of a finished portion of the layout can be

quite time-consuming. In contrast, most of the time spent by a designer

working with the CABBAGE system is for the improvement of layout topolo

gies. In fact, reasonably good layout topologies typically can be found after

three to five major changes to the original topologies in approximately one

hour of intensive work with the CABBAGE system. Layouts 10% to 30% larger

than the hand-drawn layout can be generated with these modified or

improved topologies. The extra areas can be compacted out with further

minor modifications to the layout topology. These final touch-ups typically

involve moving an element around a neighboring element to trade the space

in the vertical direction with the space in the horizontal direction, and vice

versa. Clearly, the development of an elaborate preferential compaction

scheme that performs the trading of space for the user would improve the

layout time with the CABBAGE system appreciably.

Note that the layout generated by hand must be examined for design-

rule violations. The correction of such violations in a dense layout may take

as much time as that used in producing the original layout. Thus, additional

savings in layout time is likely as layouts generated with the CABBAGE sys

tem are guaranteed to be free of design-rule violations.
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6.3. The Use of Macrocells

The layout of the two latches (Figure 6.2(b)) generated in the previous

section is a useful entity for many applications. In this section, the latch-

driver block is laid out again in which the layout of the two latches is used as

a ready-made macrocell. Although the push-pull output driver consisting of

the two larger NOR gates and their signal inverter (Gates 18. 19 and 20) is

also useful for many applications, it is not made into a macrocell in this

example for considerations of the density of the layout. However, the two

large NOR gates are included in a separate stage when the layout of the rest

of the circuit is finalized and made into a new, larger macrocell.

In the conversion of the layout into a macrocell, the symbolic structures

near the periphery of the layout are preserved and their locations are fixed

with respect to one another by user-defined constraints. Figure 6.3(a) shows

the structure of the macrocell for the layout of the two latches. Since no

element is to be added to the left of the two latches in this particular exam

ple, the left edge of the macrocell may be represented simply by the border

of the overall layout.

The symbolic layout plan for the pull-down logic is done separately and

is added to the symbolic representation of the latch macrocell as shown in

Figure 6.3(b). The separate construction of the symbolic layout plan

prevents the creation of a crowded layout plan whose overall size is

influenced heavily by the size of the macrocells used in it. It is difficult to

obtain good compaction results with crowded layoutplans since the elements

in such plans have less freedom of movement. Conversely, large and sparse

layout plans can be hooked to smallmacrocells easilywith bent interconnec

tion lines. Note that the gates in the pull-down section are arranged in a
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Figure 6.3(a) The macrocell for the latch circuit In

Fig. 6.2(b). Fixed constraints are shown

in dash-dotted line.
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configuration differentfrom that used in the layout generated in the previous

section. The compacted layout consisting of the latches and the pull-down

logic is made into a second macrocell. The NOR gates at the output are

added to this second macrocell for the generation of the final layout, as

shown in Figure 6.3(c). The compacted final layout is 223 by 350 microns in

size or 4% larger than the equivalent layout generated with CABBAGE in the

previous section.

The total layout time for the pull-down logic and the output driver is of

the order of three hours. The maximum compaction run time is reduced to

approximately one quarter of the maximum compaction run time required

previously for the compaction of the entire latch-driver block and the

memory usage is reduced by one half. The significant reduction in computer

resource requirements and the acceptable area penalty indicate the useful

ness of the hierarchical construction approach for the symbolic layout

method.

6.4. Run Time and Memory Usage

The accumulative counts obtained from the program counter of the

computer provide a first order breakdown of the time spent by each routine

in the program. Such counts are taken and indicate that nearly 50% of the

time is spent for design-rule analysis. The design-rule analysis consists of

the two major tasks of (a) developing the combined edges for each group and

(b) determining the spacing between groups. The complexity of these two

tasks is observed experimentally with the compaction of the T-flip flop shown

in Figure 2.5. The T-flip flop is duplicated from two to five times in the hor

izontal direction. The compaction time, the number of groups for which the
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combined edges are developed and the number ofgroups spaced for the five

similar but increasingly complex circuits are summarized inFigure 6.4. The

top curve in that graph is proportional to the 1.5 power of the number ofele

ments in the circuit and represents the upper bound for the compaction

time. The actual time used for (a complete vertical and horizontal) compac
tion is shown by the curve below it and is proportional to the 1.4 power of the

number of elements in the circuit. The number of groups for which the com

bined edges are developed is shown by the triangles and increases as the 1.2

power of the number of elements in the layout. Finally, the number of

groups spaced is shown by the lowest curve and increases almost linearly

with the number of elements.

Note that the compaction time cited in the figure are those for a vertical

and a horizontal compaction operation. The number of iterations required

for making a layout free of design-rule violations depends heavily on the

topology of the circuit. For example, the T-flip flops require four iterations

(two horizontal and two vertical) to meet all design-rule requirements, while

the latch-driver block in Figure 6.2(a) requires six iterations.

The memory usage increases approximately linearly. The balk of the

memory is used for recording the elements and groups and is thus almost

directly proportional to the number of elements.
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CHAPTER 7

CONCLUSIONS

The complexity of LSI circuits makes it necessary to carry out the lay

out process hierarchically for the construction of compact, well-organized

and error-free layouts. The symbolic layout compaction method described in

this report is most useful for the efficient generation of the actual cells and

building-blocks at the lowest level of the hierarchy. The generation of actual

layouts from symbolic descriptions allows the user to direct his attention to

the development of good layout topologies that lead to geometrically

simpler, more structured and more compact layouts. The compaction pro

gram is used only as an aid to the user and performs the repetitive and tedi

ous tasks of determining and comparing geometric constraints among the

symbolic elements. It provides the user with an almost immediate feedback

in the form of a compact actual layout of the layout topology the user has

chosen. The power of such a man-computer cooperation is illustrated clearly

by the layout of the latch-driver example in Chapter 6.

The fundamental algorithm for layout compaction used in the layout

generation system described here is a rectangle compaction algorithm

related to the rectangle dissection method developed by Tutte et al. [27]. A

directed graph summarizing the adjacencies and constraints among ele

ments in the symbolic layout plan is used to provide the compaction algo

rithm with a global view of the topological structure of the layout plan in the

direction of the compaction operation. Based on this graph, the compaction

program can determine the most advantageous location for placing each ele-

112
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ment to construct a compact geometric layout. The compaction process is

carried out iteratively in the horizontal and the vertical directions until the

layout is free of violations of layout design-rules and the user is satisfied with

the overall size and organization of the layout. The relative rigidity of the

layout plan in the two directions of compaction may be altered to force the

desired aspect ratio for the building block generated by the compaction pro

gram. Further research must be carried out to incorporate methods for the

evaluation and adjustment of the interaction between the two directions of

compaction and for the preservation of the symmetry of a layout.

For algorithmic simplicity and in the interest of providing the user with

control over the compaction results, the compaction program does not

attempt to make drastic changes to the layout topology specified by the

user. The automatic jog introduction is the only topological modification

performed by the compaction program and is controlled by the outcome of

the previous layout compaction operations. The computer-aided generation

of good layout topologies is best implemented with a separate program that

tackles the problem with both rigorous mathematical methods, such as the

graph planarization methods [21, 22], and heuristic approaches to topology

planning such as the strategies described in Chapter 6.

At all stages during the layout generation and compaction process, the

user has access to the most recent layout topology with an interactive graph

ics editor. Thus, the user may guide the progress of the layout compaction

process by modifying the interim results and by restricting the movement of

certain elements with user-defined constraints. Further, the complete cir

cuit interconnection and composition information is available from the com

paction program throughout the compaction process. This information can
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be used to derive the necessary input for circuit simulation programs for the

examination of the electrical performance of the particular geometric layout

generated by the layout compaction program.

At the present time, the compaction program handles only the genera

tion of n-channel polysilicon-gate MOS transistor circuit layouts. This limita

tion arises from the lack of design-rule analysis capabilities for other

integrated circuit fabrication process families. (The design-rule analysis is

essential to the construction of the graph containing the adjacency and con

straint information.) The element-based design-rule analysis technique has

been found useful and general for the polysilicon-gate MOS process sup

ported by the compaction program. Preliminary results from experiments

indicate that this design-rule analysis technique can be applied to other MOS

process families. The application of this technique to bipolar junction

transistor processes must be determined. For all these families of design

rules, a translator must be developed to convert the rules specified by the

process developer into forms readily usable by an element-based rule

analyzer. The grouping of rules according to their level of importance and

complexity should be considered also for the more efficient hierarchical

analysis of design rules.

The generalization of the design-rule analyzer is only a part of the

overall generalization necessary to make the layout compaction and genera

tion system developed here more versatile. The present data structure and

supporting algorithms, especially those related to the extraction and con

struction of the composite edge of a group of symbols, must be improved to

accommodate general elements that have arbitrary shape and interconnec

tion points. The ability to incorporate such general elements allows the
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efficient construction of new elements by the user and the more natural han

dling of macrocells for the hierarchical construction of a layout.

Finally, it is significant that the entire layout generation system runs on

a minicomputer. The short computation time required and the moderate

circuit size handled by the layout generation system indicate the usefulness

of such a system as a dedicated designer's workbench. The small amount of

computation resources required by this system may be built into an intelli

gent terminal for the generation of LSI circuit building blocks. The hardware

and software needs for incorporating other layout tools, such as the

building-block placement and routing programs, in such a workbench should

be examined for the construction of an integral and powerful system for LSI

circuit layout generation.



A1.1

APPENDIX 1

THE COMMON FILE

The data organization of the common disk file is shown in the attached

chart. The element an individual data block represents is specified by the

number stored in the element type entry. The numbers and their

corresponding elements can be found in the string substitution file of the

PRSLI program in Appendix 9. The element orientation equals 0ifit is placed

horizontally and equals 2 if it is placed vertically. The x center and y center

entries are used to store the center location of an element. The two entries

after each of the center location entries are used to store the distances from

the center location to the left (or bottom) and right (or top) edges. Finally,

the name entry is used to store a pointer to the name field. The element

name is not used at the present.



D
A

T
A

O
R

G
A

N
IZ

A
T

IO
N

U
S

E
D

IN
T

H
E

D
IS

K
F

IL
E

e
le

m
e
n

t
ty

p
e

o
r
ie

n
ta

ti
o

n

x
c
e
n

te
r

lo
c
a

ti
o

n

x
le

ft
(o

ff
se

t)

x
ri

g
h

t
(o

ff
se

t)

y
c
e
n

te
r

lo
c
a

ti
o

n

y
b

o
tt

o
m

(o
ff

se
t)

y
to

p
(o

ff
se

t)

n
a

m
e

(p
oi

nt
er

)

> to



A2.1

APPENDIX 2

THE DATA STRUCTURE OF GRLIC

The data structure used in the GRLIC program is shown in the attached

chart. The LSG array contains symbol description blocks (SDB's) which have

a similar organization as that used in the common file. Note that the x and y

center locations are now substituted by pointers to the LREF array. The

LREF array is used to store element center locations and pointers to the LIST

array in which backpointers to the SDB's are stored. The center locations in

the LREF array are sorted and the sorted pointers to these locations are

stored in the LXRF (for x center locations) and LYRF (for y center locations)

arrays.



LSG Array

elem. type

orientation

x group

x loft

x right

y group

y bottom

y top

elem. name

LREF Array

-^ y—location

ptr. to llsto-

x—location

ptr. to llsto-

x—location

ptr. to list

y—location

ptr. to list

x—location

<r

<•

<r

LIST Array

J^. (back potn—
tew to LSG)

(SORTED)
LXRF

(SORTED)
LYRF

The Data Structure of GRLIC
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APPENDIX 3

THE DATA STRUCTURE OF PRSLI

All the arrays used in the data structure of GRLIC are used in PRSLI. As

such, only the additional arrays and the augmented LREF array are shown in

the attached chart. The use of each entry in most of the arrays are docu

mented in the string substitution file for the PRSLI program in Appendix 9.

The LREF array is augmented to include information for design-rule

analysis (such as the high and low ends of the group) and for longest path

calculation (such as the new group location, the number of followers, etc.).

Three working arrays (NWST. NBST, ISTK) not shown in the chart are used for

the development of composite edges of the primary and the neighboring

groups. A fourth working array (MCST) is used to store the "forces" on the

primary group for the purpose of jog introduction.



LREF Array

original location

new location

list (pointer) o—j • UST Array

grp. lower bound
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no. of followers LF Array

list of followers
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fixed const, (pointer)

> LSG Array

X group

name

node #

node §

node §

v pointer to follower
LREF blocks

NAM (not Implemented)

LFXD Array

record of
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constraints

Data Structure of PRSLI (Partial)
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1. Introduction

APPENDIX 4

COMMON DESIGN RULES AND

THEIR IMPLEMENTATION IN CABBAGE

A4.1

A major portion of a set of geometric layout design rules for a

polysilicon-gate MOS circuit fabrication process commonly used in the indus

try is implemented in the CABBAGE system. The detailed derivation and

explanation for rules similar to those used in CABBAGE may be found in the

book by Alquist [41]. The purpose of this appendix is to indicate the actual

or possible implementation in CABBAGE of most of the rules in that design-
rule set.

2. Forms of Design Rules Suitable for CABBAGE

Because CABBAGE treats a layout as a collection of elements (intercon

nection lines, transistors, contacts, etc.) rather than rectangles on separate

mask levels, rules associated with elements can be implemented readily. In

addition, since elements are grouped together, rules affecting related ele

ments (either in the same group or in neighboring groups that are inspected
for mutual constraints during the design-rule analysis) can be included
easily.

It is indeed very natural and general to implement design rules at the

element level. Most design rules arise from considerations of the process

tolerances and physical limitations in the construction of elements, such as

contacts. Unfortunately, the rules in most design rule books are arranged

according to the mask levels they affect and thus separating a rule regarding

a single element into many parts. As a result, the rules stated in a typical
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design-rule book must be reorganized for the CABBAGE system. The follow

ing sections describe the rules used in CABBAGE based on their correspond

ing elements.

3. Rules Regarding Interconnection Lines

The minimum line widths and spacings are the most fundamental rules

for the interconnection lines (diffusion, polysilicon, and metal lines). The

minimum line widths are enforced at the time the lines are drawn. The

minimum line spacing rules are stored in the Table ofSpacing Rules and used

in the manner described in Chapter 4.

In some cases the minimum line spacing is increased in the presence of

an interfering geometry. The interfering geometry comes in two major

types. First, spacings between diffusion lines must be widened if ion-implant

or contact windows are located near the edges of the diffusion lines. (Figure

4.12 in the main text shows an example of this type of requirement.) This

type of exception arises mainly as a result of the widening of the diffusion

line by the extra processes associated with the interfering implant or con

tact area. This type of design rules are not implemented in CABBAGE at the

present time but can be included easily as rules for composite elements.

Since a contact or an implant area located near the edge of a diffusion line

normally is put in the same symbol group as the diffusion line, the presence

of such interfering geometry can be detected easily. The diffusion line with

such interfering geometry may be treated as a composite element and the

wider spacing requirement may be used as the minimum spacing require

ment between it and a regular diffusion line.
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The second type of exceptions to spacing rules involves the reflection of

light during the photolithographic process by the surface steps created by

previous processing operations. Since the reflection of light by the steps

causes an effective widening of the patterns on the mask, the separations

between mask patterns must be increased to compensate such reflection

effects. In the particular polysilicon-gate MOS circuit fabrication process

supported by CABBAGE, such reflection problems occur when either the

polysilicon or the metal mask is placed over a diffusion region. The rules

regarding the reflection effects for the polysilicon mask can be taken care of

very easily on an element basis, since an element (a transistor, a buried con

tact, etc.) is created whenever a polysilicon line crosses a diffusion region.

Unfortunately, since there is no spacing requirement between a metal region

and a diffusion region, the reflection rules for the metal mask cannot be

implemented efficiently with the data structure used in CABBAGE at the

present time. (The compactor of the CABBAGE system, PRSLI, allows merge

able regions or regions without mutual spacing requirements the freedom of

movement by not keeping track of their relative movement. Thus, it is

difficult for PRSLI to determine if a metal region is on top of a diffusion

region.)

4. Rules Regarding Contacts

Contacts are elements for joining regions or lines on different mask

layers. Thus a contact window must provide a sufficient contacting surface

and must be covered by the material it joins. Such coverage requirements

are implemented as the size of a contact element and are enforced at the

time the contact element is put in by the user. The size of a contact element

consists of the size of the contact window and the extra margin around the
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periphery of the contact window that must be covered by each of the two

materials coming into contact. (In the case of the buried contact joining the

diffusion and the polysilicon regions, the contact window is larger than the

lines it joins. Such a larger window is treated in the same manner by CAB

BAGE as the other types of windows.)

The size of a contact is increased directionally for two kinds of situa

tions. First, for a metal-to-diffusion or metal-to-polysilicon contact, the size

of the metal cover must be enlarged in the direction of the metal line for the

successful coverage of the surface step created when the contact window is

opened on the thick (0.3 to 1 micron) insulation material, as shown in Figure

A4.1(a). Second, for a polysilicon-to-diffusion buried contact, the size of the

contact window must be enlarged in the direction of the diffusion line to

avoid the creation of an unwanted transistor in the case of the worst possible

misalignment, as shown in Figure A4.1(b). Both of these directional enlarge

ments of the contact element are handled by a routine in PRSLI which figures

out the direction of the relevant lines joined by the contact at the moment

that contact element is referred to (displayed or analyzed against other ele

ments).

The spacing requirements associated with a contact element are stored

in the Table of Spacing Rules. In addition to the covering materials

(diffusion, polysilicon and metal), the contact windows are listed in the table

also for implementing rules concerning the spacing between it and other

components of an element
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5. Bules Regarding Transistors

A polysilicon-gate MOS transistor is defined by the intersection of a

diffusion line and a polysilicon line. As such, the minimum lengths of the

sides of the area of the intersection (transistor channel) and the margins of

diffusion and polysilicon lines on the sides of the intersection are important

parameters for defining a transistor. All these parameters are included as

the size of a transistor in the CABBAGE system and are enforced at the time

a transistor is specified by the user at the interactive editing phase. In addi

tion, for an ion-implanted transistor the ion-implant window is included as a

part of the transistor symbol.

The margin at the end of a polysilicon gate line is often increased as the

width of the polysilicon line (the length of the transistor channel) reduces.

Such an increase is needed to prevent the edge-rounding effect, as shown in

Figure A4.2, and can be handled easily by CABBAGE at the interactive editing
phase.

The spacing requirements associated with a transistor are stored in the

Table ofSpacing Rules and consist of rules governing the spacing of diffusion

and polysilicon lines as well as the active channel area. The integrity of the

active channel area is important to the performance of the transistor and

hence many elements must be placed a certain distance away from the

active channel. The ion-implant window is also included in the Table of Spac

ing Rules for ion-implanted transistors.

6. Rules Regarding the Combination of Regions

Elements or their components at the same electric potential and

located within a certain distance of each other often can be joined together.
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In a hand-layout environment, such conditions for combination are assumed

to be obvious to the layout designer and are not elaborated in design-rule

books. (In fact, the only combination rule listed in the design-rule book used

by CABBAGE is one that encourages the combination of ion-implant windows

located within 4 microns of each other.) At the present time, CABBAGE does

not attempt to combine elements unless the elements come into contact

with each other as a result of the compaction. The lack of the capability to

combine nearby elements is a direct result of the previously mentioned pol

icy of not keeping track of unconstrained elements. The nearby and distinct

contact windows in the upper left portion of the final layout generated with

CABBAGE in Figure 6.2(d) provide an example of this type of peculiarity of

the CABBAGE system. Fortunately, the combination of related regions may

be performed with a postprocessor as the action of combining the regions

normally do not cause design-rule violations in other parts of the layout. The

same postprocessor may be designed to smooth edges of a region by remov

ing small indents in the original output from the CABBAGE system.
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A5.1

1. introduction

The CABBAGE (Computer-Aided Building-Block Artwork Generator and

Editor) system is a symbolic layout system with automatic layout compac

tion capabilities. It is implemented on the H-P 1000 E-series 16-bit word min

icomputer, under the RTE-IVa operating system, and uses the H-P 264BA

graphics terminal as the primary user interface. The graphics output can be

plotted on the H-P 9872A plotter also.

CABBAGE consists of two programs: GRLIC (Graphics Routines for

Laying-out Integrated Circuits) is the interactive graphics editor. It is used

to draw symbolic layout plans or "stick diagrams". PRSLI (Packing a

Relative-grid Symbolic Layout of an IC) is the layout compactor that gen

erates correct and area-efficient geometric layouts from the symbolic layout

input. Note that PRSLI performs both compaction and expansion to generate

compact layouts meeting all design-rule requirements. Results obtained

from PRSLI may be modified with GRLIC at the symbolic level for further

compaction operations.
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2. System Limitations

CABBAGE is developed as a layout aid for designing (digital) LSI circuit

building-blocks. At present, it can be used to design n-channel poiysilicon-

gate MOS circuit layouts only. The element and layout design-rule types sup

ported by CABBAGE are similar to those used by the electronics industry in

1977, though the value of each design-rule can be changed with minor

modifications to a few routines of the system. Alist of elements and design-
rule types and their values is given in Appendix 1.

PRSLI does not attempt to perform drastic modifications, such as inter

changing elements, on the symbolic layout topology specified by the user.

Thus it is essential that the user specifies a reasonable topology as the start

ing point for PRSLI. (In other words, the user should not expect PRSLI to

rearrange, for example, a row of 100 connected transistors into an array of
10 by 10 transistors.)

Lines, point structures (transistors, contacts, etc.), and user-specified
fixed constraints are all stored as individual elements. The present version

of the CABBAGE system is capable of handling approximately 360 such ele
ments.

3. The GRLIC Program

GRLIC operates in two modes: Commands are accepted in the command

mode, which is indicated by the appearance of the prompt sign "GRLIC > ".

The use of a drawing command or a command for which the location of the

graphics cursor must be supplied transfers the system to the drawing mode.

In the drawing mode, the graphics cursor can be moved on a user-defined

grid with the ~ @, [, and : keys for the upward, left, right, and downward
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movement, respectively. (Note that these four keys are adjacent and and

are located at the upper right corner of the alphanumeric keyboard of the

H-P 2648A terminal.) The graphics cursor can also be moved with the local

cursor-move keys on the terminal keyboard. The systemreturns to the com

mand mode if any other key is depressed.

The drawing surface is 32.000 units high by 32,000 units wide. One draw

ing unit is equated to one micrometer (micron) in this version of the CAB

BAGE system. The graphics screen of the H-P 2648A is used as a window,

where the lower left hand corner of the screen is called the window origin.

The window can be positioned anywhere on the drawing surface by setting its
origin with the ORIG command. Also, the window can be shifted one half of a

frame automatically if the user moves the graphics cursor to the window

boundary and hits the proper cursor-move key twice. For example, if the

cursor is at the top of the screen and the - key is depressed twice, the win

dow will be moved up by half the screen height.

The GRLIC command processor accepts command input in free-field for

mat; items in a command usually are separated by one or more spaces. A

null command (one consisting of a single carriage return alone) repeats the

previous command. The action of any command can be aborted by hitting

the "DEL" key, and the system returns to the command mode immediately.

The UNDO command can be used to cancel the effect of certain commands

issued immediately before it.

The following is a summary of the commands recognized by GRLIC. Due

to space restrictions, this summary does not include all possible usages and

functions of the commands. Detailed descriptions of these commands are

presented in a later subsection.
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In the summary, anything inside a pair of brackets, [ and ], is optional.

A "Y" in the U-column indicates the command can be undone.



Summary of Commands

COMMAND

Q[UIT]

G[ET] namr
S[AVE] namr
MER[G] namr [x] [y]

GR[ID] [n]
0[R1G] [x] [y]
i[den;

PL[OT] [m] [LU] [t]

E[RAS] [name]
U[NDO]

D[IFF] [name] [w] [1] Y

PrOLYl [name] [wl [ll
M[ETAJ [name] [w] [1]
R[UNX] [name] [w] ?1]
F[DCD] [name] [w] [1]

T[RAN] [name] [w] [l] Y

L[OAD] [name] [wl [1]
C[ONT] [name] [w] [1]
TE[RM] [name] [w] [I]

U MEANING

Exit from GRLIC

Get file "namr" from disk
Save file "namr" on disk

Y Get file "namr" from disk and
merge it at (x,y)

Set grid spacing to n
Set window origin at (x,y)
Show the cursor location

Plot mask level m on display
device LU with line type t

Y Erase the name-ed element
Y Undo the last command

Draw diffusion line; set line
width to w. and length to 1

Y Draw polysilicon line
Y Draw metal line .
Y Draw line
Y Draw fixed constraint

Draw transistor symbol, with
channel width w and length 1

Y Draw implanted load symbol
Y Draw contact symbol
Y Draw terminal symbol

A5.5
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3.1. Description of Commands

QUIT: The QUIT command allows the user to exit from GRLIC, if the "last

change saved" flag is set to true. The "last change saved" flag is set to

false if the data is altered by the action of a command, such as adding

or deleting an element. The flag is set to true by a) the SAVE com

mand which saves the data on a disk file, b) the GET command which

reads in new data from the disk, or c) the QUIT command. Thus, two

consecutive QUITs force GRLIC to terminate unconditionally.

GET: The GET command retrieves a file from the disk if the "last change

saved" flag is set to true. It has the general form of

GET namr

The file name, namr, must follow the general rule for naming .RTE File

Manager files.

SAVE: The SAVE command saves a file onto the disk. It has the same general

form and follows the same naming rules as the GET command.

MERG: The MERG command merges a file into the current display. At the

present, the origin of a file is taken to be at x=0, and y=0. The MERG

command allows the user to place the file origin anywhere on the

drawing surface, so as to shift the content of the merged file to a new

location. The relocation of the file origin can be specified in two ways.

The command

MERG namr

transfers the program into the drawing mode to read the cursor loca-
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tion. This cursor location is then used as the relocation origin for

merging the file namr. The second way to specify the relocation origin
is to use the command

MERG namr x y

where the location of the file origin is specified by x and y. Signed x or

y specifies incremental relocation; that is, +x or -x means adding or

subtracting x from the current window origin (see the ORIG command)

and using the result as the x-location of the file origin. Similar opera

tions apply to +y or -y. The default values for x and y are 0.

GRID: The general form of this command is

GRIDn

It sets the grid spacing to the absolute value of the integer n. A uni

form grid spacing is used if n is a positive integer. If n is a negative

integer, a non-uniform grid that is snapped to the center locations of

elements is superimposed on the uniform grid. This latter grid system

is useful for editing symbolic representations of compacted layouts.

The minimum default value of n is 10 in the case of a uniform grid.

ORIG: This command is used to set the window origin. The window origin can

be set at the location of the graphics cursor with the command

ORIG

Note that this form of the command transfers the program into the

drawing mode to read the cursor location. The second form of the

command.

ORIGxy
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can be used to set the window origin at location (x,y). Again, signed x

or y is treated as an increment from the current window origin, as in

the case of the MERG command.

IDEN: This command prints out the cursor location and the window origin. It

transfers the program into the drawing mode and displays the infor

mation when the drawing mode is properly terminated.

PLOT: This command is used to plot the graphics data on the H-P 2648A or

the H-P 9872A. The complete command is

PLOT msk LU Ityp pnspd xshift yshift xmax ymax xmin ymin

where the parameters are all integers. The mask level to be plotted is

specified by the first parameter, msk. If msk equals 0 or is

unspecified, all mask levels are plotted on the H-P 2848A graphics ter

minal. The plot is made on the device whose logic unit number is LU.

In this version of the program. LU number 9 specifies the H-P 9872A

four-color plotter; all other LU numbers send the output to the H-P

2848A graphics terminal. The plot may be done with a particular line

type or pen color, as specified by the third parameter, ltyp. The

numbers associated with mask levels, default line types and plotter

pen numbers are listed in Appendix 2.

The rest of the parameters are used mainly to aid the generation of

pen-plots on the H-P 9872A plotter. The plotting speed in centimeters

per second is set by pnspd. The default value for pnspd is 5 centime

ters per second. The xshift and yshif^ parameter are multiplying fac

tors which can be used to shift the plot by integral multiples of the

plot window in the horizontal and the vertical directions, respectively.
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For example, two copies of a layout plan may be drawn side by side by

setting the xshift parameter to 0 for the first copy, and 1 for the

second copy. (The user must make sure that the actual plotting sur

face is wide enough to accommodate two copies of the layout plan in

the horizontal direction for this example.) The last four parameters,

xmax, ymax, xmin, and ymin, specifies the upper right and lower left

corners of the desired plot window. The default plot window is the

current display window.

ERAS: The erase command deletes an element from the current data. The

element to be erased may be specified by its name with the command

ERAS name

The element may be selected with the cursor also, by using the com

mand

ERAS

This second form of the command transfers the program into the

drawing mode and reads the cursor location when that mode is prop

erly terminated. The cursor must be placed on the center line of the

element to be erased. Although any key other than the cursor-move

keys may be used to terminate the ERAS command, the H and the V

keys may be used to specify the deletion of a horizontal and a vertical

element, respectively.

UNDO: This command undoes the last command, provided that command is

undoable. It is ignored if the last command cannot be undone.
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DIFF: This is the command for drawing a diffusion line. It has the form

DIFF name w 1

where name specifies the name of the element, w specifies its width,

and 1 its maximum length. All three parameters are optional. If the

line width w is not specified, the minimum diffusion line width required

by the layout design-rule is used as the default value. (See Appendix

1.) If the maximum line length 1 is not specified, the line length is

taken to be variable, and takes the difference of its two end points as

its initial length.

The location of a line is specified through digitization. The DIFF com

mand transfers the program into the drawing mode and allows the

user to put down end points continuously in that mode. The drawing

mode may be terminated by depressing any non-cursor-move key

twice.

POLY: This is the command for drawing polysilicon lines. All comments

about the DIFF command apply here.

META: This is the command for drawing metal lines. All comments about the

DIFF command apply here.

RUNX: This is the command for drawing general-purpose lines. All comments

about the DIFF command apply here. This line type is used by the

author to outline the border of a building-block.

FIXD: This command allows the user to put down fixed constraints in a lay

out plan to fix the distance between any two elements. The comments

about the DIFF command apply, with two exceptions: A fixed con-
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straint does not have a width. However, for uniformity in the com

mand format, an arbitrary width must be specified. In addition, the

length of such a constraint is always fixed. (The length is neither the

maximum length nor the initial length of a variable line.)

TRAN: This is the command for drawing a transistor symbol. It has the gen

eral form

TRAN name w 1

where name specifies the name of the transistor, w specifies its chan

nel width, and 1its channel length. Again, all parameters are optional.

If omitted, the channel width and length are defaulted to the

minimum values required by layout design^rules.

The center location of the transistor is specified by the cursor location

in the drawing mode. A vertical transistor (one whose channel is verti

cally oriented) can be specified by terminating the drawing mode with

the V key. Similarly, a horizontal transistor is obtained by terminat

ing with the H key.

LOAD: This is the command for drawing an implanted load device symbol. All

comments about the TRAN command apply.

CONT: This is the command for drawing contact symbols. The present ver

sion provides the user with three types of contact symbols: a) the

diffusion-to-metal contact, b) the polysilicon-to-metal contact, and c)

the diffusion-to-polysilicon buried contact. The size and name of all

three symbol types are specified with the command

CONT name w 1
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For diffusion or polysilicon to metal contacts, w and 1 are the width

and the height of the contact window. For the buried contact, w and 1

specify the width and the height of the area where the polysilicon

overlaps the diffusion. The type of a contact is specified at the termi

nation of the drawing mode for the contact command; A diffusion to

metal contact is drawn if the D key is depressed to terminate the

drawing mode. Similarly, the P or the B key may be used to draw a

polysilicon to metal or a buried contact respectively. Because con

tacts may be expanded in the direction of current flow, as required by

many LSI circuit layout design-rules, GRLIC always displays the max

imum possible contact size instead of the nominal size specified by

the user.

TERM: All line elements must be terminated for the proper operation of the

compactor. A line may be terminated by another line or by a "termi

nal" symbol, which is specified by the command

TERM name w 1

The terminal width and height are specified by w and 1, respectively.

For example, a terminal with w = 6 (microns) and 1= 20 (microns)

may be used to terminate a 20 (microns) wide horizontal line element.

Similarly, a 9 (microns) wide vertical line may be terminated by a ter

minal with w = 9 and 1=6.

3.2. Drawing Rules

A few rules must be observed in drawing a symbolic layout plan so that it

can be compacted properly by the compactor PRSLI:
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Rule 1: All line elements must be terminated. Aline may be terminated by

another perpendicular line or with a terminal symbol. In particular,

a line element should not be terminated by any other point struc

ture, such as a transistor, alone.

Rule 2: All point structures other than the terminal symbol must be placed

at the intersection of lines. The function of a point structure is to

indicate the type of the intersection where it is located.

Rule 3: The center locations ofany two point structures must not overlap. In

general, the user should save a reasonable amount of space around

each element in the initial symbolic input. This may save the user

from redoing the entire input when it is desired to modify a part of

the symbolic input to achieve a better compaction result. Any viola

tion of minimum spacing design-rules will be corrected by the com

pactor, provided the elements in question do not overlap each other.

Rule 4: A border must be drawn around the symbolic layout plan. The line

type RUNX may be used to draw the border. Aterminal symbol must

be placed at the intersection where a line terminates on the border.

4. The PRSLI Program

Symbolic layout plans drawn with GRLIC can be compacted and

expanded with PRSLI to generate area-efficient and correct geometric lay

outs.

A brief description of the internal operation of PRSLI is presented here

to give the user some insights into the way a particular compaction result is

obtained by the PRSLI program. PRSLI performs compaction in the horizon

tal and vertical directions separately. It takes a topologically connected
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column or row of elements as a group and proceeds to determine the max

imum spacing requirements between neighboring groups. The calculation of

spacing requirements is done in a manner similar to those used in modern

design-rule check programs. The maximum spacing requirements are subse

quently analyzed to derive a set of groups whose combined spacing require

ments gives the lower bound on the overall length of the layout in the direc

tion of compaction. These constraining groups are used as "seeds" to deter

mine the proper locations of non-constraining groups.

As a result of the compaction scheme used in PRSLI, connected ele

ments on the same center line location will remain connected, on the same

center line, after compaction. Diagonally adjacent elements will also observe

design-rule requirements properly.

In theory, a layout plan may be compacted to meet all design-rule

requirements after just two compactions; once in the horizontal direction,

and once in the vertical direction. However, the implementation of certain

design-rules, such as the enlargement of contact covers in the direction of

current flow, makes it necessary to carry out the compaction operation

repeatedly until the placement of groups in the layout plan meets all design-

rule requirements and user-defined constraints. When this occurs, the lay

out is said to be "legal" and the compactor would display a message to this

effect on the terminal. Since Groups still may move in a legal layout and

such movements may result in an even more compact layout, the user is

allow to let the compactor continue the compaction process for a legal lay-

out. The layout is said to have "converged" if all of its groups have converged

to their respective final locations and no more movement of groups is possi

ble. (The correctness of a layout cannot be guaranteed if it is not legal in
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both the horizontal and the vertical directions in consecutive compactions.)

Description of Commands

The command processor in PRSLI is very simple and honors only the

exact commands. The use of an abbreviated command may result in errone

ous operation.

QUIT: QUIT lets the user to exit from PRSLI.

GET namr: This command is used to get a file by the name namr from the

disk. The FMGRfile naming convention is used for namr.

SAV namr: This command is used to save a file by the name namr onto the

disk. The FMGR file naming convention is used for namr.

PL: This command is used for displaying the layout on the terminal or

the plotter. It has the same form as the PLOT command described

in Section 3.1.

HO: This command initiates a compaction operation in the horizontal

direction.

VE: This command initiates a compaction operation in the vertical

direction.

GO: This command allows the placement operation to continue for a

legal but not converged layout.

JO: This command is used for the automatic introduction of jog points

in the direction of the last compaction operation.
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Appendix 1

Elements and Their Design-Rules

1. Elements and Their Minimum Sizes

GRLIC PRSLI

I

D D

© 0 © 0
1 1 '

1 '11 11

•1
rrr r?

J
i1 •

1 1

El
>c

• •

DIFFUSION - 6

POLYSILICON = 6

METAL - 6

RUNX

TRANSISTOR « 6/6

LOAD « 6/6

D-M CONTACT = 6X6

P-M CONTACT = 6X6

BUR. CONT - 6X6

TERMINAL
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2. Table of Spacing Design-Rules

Spacing rules are stored in an upper triangular matrix (including the

diagonal) as follows: (An X indicates that the two mask layers do not have a

mutual spacing requirement.)

DIF PLY MET RNX ACT CNT BUR IMP TRM
2 X 5 X 6 4 X X
5 X 5 X 6 4 X X

6 X X X X X X
5 5 5 5 5 5

5 6 4 4 X

10 2

4

X
X

X

X

X

X

X

3. Other Design-Rules

The metal cover on a diffusion-to-metal or a polysilicon-to-metal contact

is enlarged in the direction of the metal line. The buried contact mask is

enlarged in the direction of the diffusion line covered by it. These enlarge

ments are shown in the following examples.

——i

|t UJ~
"^

a
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Table of Mask Representations

Mask Level Line Type

1: diffusion solid

2: polysilicon dotted

3: metal dash-dot

4: a reserved line dashed
5: active area solid

6: contact window solid

7: buried contact solid

8: implant area dashed

9: an additional mask solid

Pen No.

pen 1
pen 2
pen 3
pen 4
pen 4
pen 4
pen 4
pen 4
pen 4

A5.18

NOTES:

(a) For design-rule analysis purposes, nonphysical mask layers, such as the

layer containing active areas of transistors, are included in the Table also.

(b) The different line types are used on the H-P 264BA graphics terminal only.

The different pen numbers refer to the pen used for plotting the layout on

the H-P 9B72A four-color plotter.
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COMPUTER-AIDED LAYOUT OF

LSI CIRCUIT BUILDING-BLOCKS

A reprint of the first publication on the CABBAGE system.
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irfimoou
Computer-Aided Layout

of LSI Circuit Building-Blocksf

Min-Yu Hsueh and Donald O. Pederson

Dept. of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Abstract

This piper describe* the organization of and the compaction
algorithm used in the program CABBAGE. CABBAGE can Ken-
crate a compact actual layout from layout schematics, which are
similar to circuit schematic diagrams, but with improved topology
for layout purposes. The compacted layout can be used in the
hierarchical build-up of a complete LSI circuit layout. The compac
tion operation is based on finding the longest path through a graph
which represents the size and spacing requirements of the features
in the layout schematic diagram. The program is written in FOR
TRAN and is tmpJcmcmed on a minicomputer. Circuits of the
complexity of a T flip-flop require approximately 6 seconds to com
pact. The maximum circuit size that can be bandied by the program
is thnited only by the data storage available on the computer.

Building-blacks of an LSI digital circuit are logical partitions of
an overall chip function; they can vary in size and complexity from
that of a major function, such as a complete control section, down
to a logic element level, such as gates. At present most of the
building-blocks implemented in random logic form are laid-out
manually or with interactive graphics tools, such as commercially-
available graphics processing systems. With either of these layout
methods, most layout designers find it advantageous to convert the
errant schematic diagram into a layout schematic diagram which has
an improved placement of elements and interconnection lines and a
reduced number of crossovers before generating a compact actual
layout meeting all design-rule specifications. An example of a layout
schematic diagram is shown in Fig. I. In other words, the layout
operation is carried out in two steps: the tocology of the layout it
optimized before the exact ttomttftcoi requirements are imposed.

While most designers can generate with ease efficient layout
schematics, the actual layout process is a tedious and error-prone
task that few enjoy. This paper describes the organization and the
compaction algorithm of the computer program CABBAGE *
(Computer-Aided Building-Block Artwork GEnerator). which gen
erates correct and compact layout drawings from layout schematic
diagrams input by the user.

2. An Ovenrlew ofCABBAGE

CABBAGE consists of an interactive graphics input processor
and a compactor. The graphics input processor allows the user to
dnw layout tchematia interactively on a refresh CRT terminal It
supports a set of bask elements, such as different line types, transis
tors, contacts, etc., as well as the capability to merge into the exist
ing dnwins predefined library building-block* files. Since the user

tlMt«wk»i itaawitr Co.MaAltt.CA.

must either specify the size (width and/or lengths of bask elements
or use their default values, design-rules specifying minimum size
requirements are enforced at this input phase.

The compactor operates on the user input to determine the
exact location of each of the elements, based on the elements' size
and spacing requirements. Since the particular compaction algorithm
used here delects the most congested areas in the layout schematic
diagram before calculating element locations, further improvement
on the resulting layout is carried out only in these congestion cress
to achieve computation efficiency. The compacted layout also can be
converted back to the schematic form so that the user eta make
manual improvements on the intermediate result

At the present time, CABBAGE is written specifically for the
silicon gate N-MOS logic family. However, the compaction algo
rithm used in it is quite general, as the algorithm is concerned with
only trie compaction of rectangles.

t
HI*

♦.

— *

•5*#

-mo

Fit. I Layout schematic diagram and lis corresponding circuit
schematic diagram (too drawing) ofaD-type latch.
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A number of layout schematic diagram compaction methods
have been developed and implemented recently 11,2.31. The detail
of the compaction algorithm used in the program described in |I]
has not been published. The other programs use eitheran exhaus
tive search method or a localized irial-and-error approach by
confining the compaction process to a small portion of the overall
layout. Such methods are meflfcient and require approximately n2
operations, where a is the number of features (elements and line
segments) to be compacted (3|.

In contrast, the compaction method described in this paper is
based on the most-constraining structure principle. The most-
constraining structure in a layout is a groupof features which ulti
mately limits the size of the layout in a given dimension. Thus,
modification (reducing the length) of such a structure b most likely
to improve the compactness of a layout rapidly. The most-
constraining structure can be found if the user's layout schematic
diagram is converted into a directed graph to determine its longest
path in a givendimension. The use of the longest path principle in
layoutautomation is not new. amongother applications it has been
toed to determine the placement and routing of building-block-
based integrated circuits [4, 51 and the placement of hybrid circuit
eJemcnts [6i«

In the following the computer-based compaction process is
described with the aid of the T flip-flop example shownin Rg. 2a.
One of the N-MOS circuit implementations of this T flip-flop is
shown in the layoutschematic diagram form in Fig. 2b. This layout
schematic describes the desired relative placement and the actual
mtercorncction of transistorsand line segments.

r^2sOrcuJtaobemaucdiaa?wnofaT-tyi«ffipJlop.

Step ft Layout features in the user input are sorted according to
their minimum X and Y values. Node numbers (or path
names) are assigned to featuresto indicate their electrical con
nections. These operations aw done primarily m preparation
for an efficient design-rule checking in the following steps.
Note, however, a side benefit of being able to generate node
numbers is that the same schematic input can be used to
describe circuit connectivity to existing circuit and timing

—¥
*—8-

El

* *
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V

V
r* i) fe-tl

•ft

•k—- *r
N

Fig. 2b Layoutschematic diagram of the circuit shownin Fig. 2a.

Step 1: The layout schematic diagram is separated into horizontal
and vertical portions. The resulting horizontal portion contains
all vertically-connected features since these features are to be
compacted horizontally. Similarly, the vertical portion contains
all horizontally-connected features. This operation decouples
movements of the features due to the horizontal compaction
from those due to the vertical compaction, and vice versa. It
significantly simplifies the required data structure and compu
tational effort at the expense of the ability to compact in a gen
eral direction, such as diagonal compaction.

Step 2: For each portion obtained in Step I. features connected on
the same center line are grouped together. Such a grouping
operation prevents connected features from drifting apart dur
ing the compaction. For example, in Fig. 2b. inverters 1, and
It and their associated vertical line segments and contacts are
all considered to be in the same group.

Step 3: Spacing design-rule requirements are now added to the por
tion under consideration. This is done using techniques similar
to those employed in traditional design-rule checking programs
|7|. Consider, for example, the 4>( polysilicon line (the left
most feature) in the horizontal portion of Fig. 2b. Spacing
design-rules are applied to calculate the required separation
between group center-lines of the 4>t line and the groups bord
ering it on the right: these bordering groups being a) the we
line, b) the transistors forming the inverter Ia. and c) the
transfer transistor M» and its connection line. Stnce spacing is
measured from center line to center (me. Kne widths and ele
ment sizes are automatically included in the above calculation.
Line lengths are assumed to be variable, unless specified oth
erwise. At the end of the calculation, only the largest required
separation is retained for each pairof groups.
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Fig. 3 Graph representation of the relation among the feature
groups of the horizontal portion of the layout schematic
diagram in Fig. 2b.

Step 4: After the design-rule requiremenuareadded, a graph canbe
generated to represent the relations among the individual
groups. Fig. 3 shows such a graph for the horizontal portion
of the example in Fig. 2b. The nodes of the graph represent
the individual groups and the branches the separation require
ments between groups. The maximum separationrequirements
calculated in Step 3 are used as branchweights.

Step 5: The longest path is determined through the graph obtained
in the last step. Fig. 4 shows the data structure used to calcu
late the longest path through the horizontal graph of the
present example. The path length to a node is the maximum
of

a) the existingpathlengthand
b) the path length from its predecessor currently undercon

sideration.

After each path lengthcalculation the numberof unpro
cessed predecessors of a given node is reduced by one. The
longest path search operation completes when all nodes have
zero unprocesieu predecessor.

node

number of

unprocessed
predecessors

link

fist of

followers

a 0 — b,ce

b 1 — c

c 2 — d.cf

d 1 — e,f

e 3 — f.g. h

r 3 — 1

i 2 — M
h 2 — i

i 2 — SS

Ra, 4 Data structure used for cakulating the longest path through
the graph in Fig. 3.

A6.4

Step 6: The path length to each node indicates the exact location of
the associated features. The resulting movement in the com
paction direction necessitates a new spacing design-rule calcula
tion in the perpendicular direction. Compaction is carried out
in this perpendicular direction next. Thus the compaction pro
cess iterates until no new design-rule requirement calculation
is necessary.

Fig. Sa shows the result obtained after the user input b
compacted in the horizontal direction. Ftg. Sb shows the result
of a vertical compaction performed on Fig. 5a.

The layout generated with (he above procedure b correct but
not necessarily the most compact. The size of the layout can be
reduced further by modifying the composition of the longest petit
In fact, break points in the longest path are good places to generate
jogs. Since a break point occurs in a group when the feature limited
by a previous group differs from the feature limiting a following
group, the latter feature can be moved closer to the previous group
in order to move in the following group. Ftg. Sc shows the result
after jog generation has been performed on Fig. 5b. Other layout
improvement methods such as rotating and mirroring features are
being developed. All such methods use information derived from
the longest path to achieve compulation efficiency.

4. Pragrem Pcrfacwtaane

CABBAGE b implemented on an HP-1000 Series E 16-bit
' word minicomputerwith an HP-264BA graphics terminalas the pri
mary user interface. The code sections for the interactive input pro
cessor and the compactor are both written in FORTRAN, and each
of them b approximately 24K words long when compiled. The data
area required to store the T flip-flop (Fig. 2) b approximately 2K
words long. (The maximum main memory available for data b 4K
words. In addition, there are a 32K-word block-transfer type fast
memory and a SO-megabyie disk available for data storage.) The
computation time for the same T Rip-flop b approximately 1J
seconds per compaction or jog generation. The major portion of the
computation time b spent in design-rule checking to determine
separation between groups. Since modern design-rule checking tech
niquestypically havea complexityof mli, wheren b the numberof
features in the layout, the performance of the compactor will
degrade slightly for larger circuits.

An algorithm b described in thb paper which can be used to
generate compact LSI circuit building-block layout from the user's
layout schematic diagrams. The use of the layout schematic input
allows the user to provide the computer program with a good head-
start The tedious layout work b performed by the program which
also ensures the correctness of the resulting layout Further
improvements of the layout are carried out automatically or through
manual modifications. In both cases, the most-constraining struc
ture derived by the program are used as a guideline.

With the approach used in the program CABBAGE, the tradi
tional, 'after-the-fact* design rule checking, circuit connectivity
extraction, and capacitance calculation are all integrated in a forward
path. Thb path starts with the layout or circuit schematic diagram
input, and terminates with a complete layout and a set of input
ready for use in circuit and timing simulation programs. High-
density LSI circuits thus can be built up efficiently from bwUtag-
hwnts of increasing complexity.
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APPENDIX 7

MASKS FOR THE LATCH-DRIVER BLOCK

A7.1

The following is a set of six mask layers for the latch-driver example

shown in Figure 6.2(d) in the main text.
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APPENDEXES 8 and 9.

PROGRAM LISTINGS '

Updated versions of the CABBAGE (GRLIC and PRSLI) program

may be obtained from Doris R. Simpson, ERL Publications Office,

433 Cory Hall, University of California, Berkeley, CA 94720.
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