

Copyright © 1980, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN ACCESS PATH MODEL

FOR PHYSICAL DATABASE DESIGN

by

R. H. Katz and E. Wong

Memorandum No. UCB/ERL M80/1

28 December 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering....
University of California, Berkeley

94720

Access Path Model Katz & Wong

An Access Path Model

for Physical Database Design

R. H. Katz and E. Wong
University of California, Berkeley

Berkeley, CA. 94720

ABSTRACT; Design and Access Path Data Models are presented
to form an integrated framework for logical and physical
database design in a heterogeneous database environment.
This paper focuses on the physical design process. First, a
physical design is specified in terms of general properties
of access paths, independent of implementation details.
Then, a physical design is realized by mapping the specifi
cation into the storage structures of a particular database
system. Algorithms for assigning the properties to logical
access paths and for realizing a CODASYL 78 DBTG schema are
given.

1. Introduction

As the trend towards distributed database systems continues

to gain in momentum, the problem of database design in a

heterogeneous environment is becoming crucial. We view a

distributed database system as being built on top of exist

ing systems available at the local sites of a computer net

work. If a distributed database is to evolve naturally,

there must be support for extending it to the underlying

heterogeneous systems.

Database design is complicated by the difficulty in

designing physical databases for a variety of storage struc

tures supported by the different underlying systems. We fol

low [CARD75] in partitioning the physical design process

Research supported by the U.S. Army Research Office Grant
DAAG-76-6-0245, the U.S. Air Force Office of Scientific
Research Grant 78-3596, the Honeywell Corporation, and an
I.B.M. Fellowship for the first author.

-1-

Access Path Model Katz & Wong

into its implementation-oriented and implementation-

dependent aspects. A physical design is specified in terms

of basic concepts of storage structure without making a com

mitment to an actual implementation. A physical design is

realized by mapping the system independent specification

into the storage structures available in a particular data

base system. Analytic methods, such as [CARD73, GOTL74,

CARD75, YA075, SILE76, DUHN78, SCHK78], can be used in the

latter step. Our contribution is to provide an integrated

framework for logical and physical design, and to provide

design tools with a high degree of independence from the

underlying data models and systems.

In this paper, we propose the concept of an access path

data model for physical design. The access path model has

grown out of the attempts to extend our work with the Design

Model [WONG78,WONG79] to problems of physical database

design. The term ""data model" is used in a generic sense to

mean a collection of data object types, such as attributes

and relations in the relational model. "Schema" is used to

mean a specific choice of data objects to represent a data

base, such as a specific choice of relations and associated

attributes.

The access path model can be viewed as an interface

between the logical view of data and the access methods and

storage structures chosen to support that view. In terms of

the language of the ANSI/X3/SPARC report [TSIC77] , it medi-

-2-

Access Path Model Katz & Wong

ates between the conceptual and internal schemas.

We are not the first to exploit the usefulness of an

access path model. The DIAM (Data Independent Access Model)

framework [SENK73] is structured into four levels consisting

of entity set, string, encoding, and physical device models.

The string model is most clearly associated with our notion

of access path model. Although the DIAM model is a signifi

cant contribution, we believe that our formulation of access

path is more natural and easy to understand. In addition,

the access path schema is oriented towards the problem of

physical design, rather than a general model of data manage

ment systems.

The paper is organized as follows. A semantic data

model is presented which is the basis for our approach to

database design. Logical access paths are represented by

functional interrelationships between objects. The access

path model is defined to capture those functions which can

be used to efficiently access objects in the physical reali

zation of the database. A methodology for specifying an

implementation-oriented physical design is given which is

based on assigning the highest level support for the most

frequently traversed access paths. A simple-minded approach

for mapping a design specification into the storage struc

tures of CODASYL DBTG systems is included. We conclude the

paper with a discussion on future directions.

2. The Design Model

-3-

Access Path Model Katz & Wong

The design model is the starting point for our approach

to database design. It has been formulated to capture the

kinds of integrity constraints supported by the relational

and DBTG models, yet remains independent of them. The model

is based on a variation of the entity-relationship model

[CHEN76] and has been influenced by the semantic data model

of [SCHM75]. A more complete discussion of the design model

and its application to logical design and schema conversion

can be found in [WONG79].

For each instance of time t, let E-ft), E2(t), ... ,

£n(t) be n distinct sets, which are called entity sets. A

property of an entity set E(t) is a one-parameter family of

functions ffc, mapping at each t E(t) into a set V of values.

Because ffc is defined for every element of the domain, it is

a total function. As an example, consider the following

entity sets and properties;

entity sets properties
emp ename,birthyr
dept dname,location
job title,status,salary

A relationship Rfc among entity sets E1(t), E2(t), ... ,

En(t) is a subset of the cartesian product E,(t) X E2(t) X

••• x En(fc) at each time t. Properties of relationships may

be defined in an analogous way to properties of entity sets.

Relationships are assumed to be independent, i.e. not deriv

able from other relationships, and indecomposible, i.e. not

equal to the join, of their projections into subrelation-

-4-

Access Path Model Katz & Wong

ships. For example, the following two relationships specify

the employees qualified to hold each job, and the job allo

cated to a given department. "Number allocated" may be

specified as a property of "allocation":

relationships properties
qualified(]ob,emp)
allocation(dept,job) number

We further distinguish the types of relationships

recognized by the design model. A binary relationship R on

entity sets E^t) and E2(t) is single-valued in E^t) if

each entity of E.(t) occurs in at most one instance of R .

Intuitively, we may think of R as representing a function

from E1(t) into E2(t), because each entity in E,(t) can be

related to no more than one entity in E2(t). If each entity

in E (t) occurs in exactly one instance of R. , R. is called
i t t

an association. We may think of R as representing a total

function. Single-valued relationships which are not associa

tions can be thought of as partial functions, because at a

given point in time, the function need not be defined over

all entities in E^t). Associations are used to model the

situation in which the domain object can exist only if it is

related to some range object. If an object in the range of

an association is deleted, then the objects in the domain no

longer occur in an instance of Rfc. They must be deleted to

maintain the totality of the function. Examples of associa

tions include:

works-in (emp,dept)

-5-

Access Path Model Katz & Wong

assignment (emp,job)

which represent the facts that an employee must work-in some

department at all times and must be assigned to some job at

all times. An example of a single-valued relationship which

is not an association is:

mgr (dept,emp)

which associates a managing employee with each department,

although a department can exist without a manager.

Explicit provisions for value set definitions have been

omitted in our model. A subsystem such as that proposed in

[MCLE76] could be included, but it is unlikely that existing

systems could support sophisticated domain definition. A

simpler approach is to use the primitive data types sup

ported by most systems for the domain definition (e.g.,

integer, char(10), etc.).

Our design model can be reformulated to represent logi

cal access paths in terms of total and partial functions

between objects. This is similar to the approach taken in

the functional data models of [SHIP79] and [BUNE79]. The

objects of the schema are the value sets, entity sets, and

relationships. Single-valued relationships are partial func

tions, while associations and properties are total func

tions. In addition, total functions can be defined to map a

relationship object into the entity set objects which parti

cipate.

-6-

Access Path Model Katz & Wong

The above example is reproduced here in terms of the

functional viewpoint (some abbreviation has taken place):

total functions

ename: emp —> char(20)
birthyr: emp —> integer
dname: dept —> char(10)
location: dept —> char (20)
qual-emp: qual —> emp
qual-job: qual —> job

partial functions
mgr: dept —> emp

title: job —> char(15)
salary: job —> integer
works-in: emp —> dept
assignment: emp —> job
alloc-dept: alloc —> dept
alloc-job: alloc —> job
number: alloc —> integer

A design schema can be represented graphically. Let I

= (V,E) be a directed graph with set V of vertices and set E

of edges. For each object in the schema, there is a vertex

in V. For each function from object, to objects, there is a

directed edge from the vertex for object., to the vertex for

object2. Value objects are represented by black vertices,

non-value objects by white. The graphical representation of

the example schema is:

QUAL lUlOC

-7-

Access Path Model Katz & Wong

3. The Access Path Model

The functions of the design model represent logical

access paths that can be used to navigate among the objects

of the schema. For example, WORKS-IN(ENAME-1("fred")) gives

us the department that Fred works in. The access path schema

is concerned with those functions and inverses that are

"supported" for efficient access by the underlying database

system. "Support" is used in an operational sense to mean

that the time to perform a supported access is less than the

time to perform an unsupported one.

When used, to access objects, logical access paths are

called access mappings. An access mapping may be defined

for either a function or its inverse. To make it possible to

compose access mappings, we extend the definition to allow

them to be defined over sets of domain objects. An access

mapping is supported in the storage structure if the data

base system can efficiently perform the desired access,

i.e., the time to access an object via a supported access

map is less than the time to scan the object set exhaus

tively for the desired object(s). If an access mapping is

not supported, it is an unsupported access mapping. Sup

ported access mapping is our terminology for the usual

notion of access path.

An access path schema consists of the objects of the

design schema and the supported access mappings. A graphical

representation similar to the one proposed in the previous

-8-

Access Path Model Katz & Wong

section can be used to represent an access path schema. The

functional interrelationships of the design schema must be

maintained whether or not those functions are supported. For

example, WORKS-IN associates with each employee a single

department. If WORKS-IN is not supported, we must still be

able to access the associated department, albeit not as

efficiently as if WORKS-IN had been supported. To accomplish

this, we introduce the concept of identifier. An identifier

is a 1-to-l property of an entity set which is used to

uniquely represent each entity in the set. An unsupported

access mapping between employees and departments can be

represented instead as an access mapping between employees

and the identifier value set of department.

(supported) WORKS-IN: emp —> dept
(unsupported) WORKS-IN: emp —> id value set of dept

The access path schema captures the effects of storage

structure support without committing the schema to a partic

ular implementation and without sacrificing any of the

interrelationships of the design schema. WORKS-IN can be

used to navigate directly between employees and departments

only if the mapping is supported by the underlying system.

It is immaterial whether this support is furnished by a phy

sical pointer between employee records and department

records, an index that maps employee identifiers into

department records, or some other technique.

4. Physical Database Design

-9-

Access Path Model Katz & Wong

The access path schema provides a useful interface

between the user's logical view of the data and its physical

implementation. In this section, we will describe an

implementation-oriented physical design methodology which is

largely independent of the specific database system and data

model. The implementation-dependent aspects will be dis

cussed in section 5.

The approach is to generate designs which provide the

best possible support for each access path without conflict

ing with the support for the other access paths of the

schema. The concept of maximal conflict-free schema is

introduced below. A specification of the user's expected

access patterns is used to direct the design process. A

system specific mapping is then invoked to implement the

access path schema in terms of the storage structures avail

able in the target system.

4.1 Algebraic Structure for Physical Design

For the purposes of implementation-oriented design, we

shall use the logical access paths of the design schema. An

access path schema may be used to represent those paths

actually chosen for support. Properties of an access map

ping can be formulated to capture desirable characteristics

of traversing the mapping in either the functional or

inverse functional direction. Consider the schema function

f: A —> B. The following properties of the mapping can be

defined:

-10-

Access Path Model Katz & Wong

(1) Evaluated: given a in A, f(a) can be found without an
exhaustive scan of B, i.e., the cost to access f(a) is
less than the cost to access each element of B.

(2) Indexed: given b in B, f" (b) can be found without an
exhaustive scan of A.

(3) Clustered: the elements of f~ (b) are in close proxim-
ity, i.e., the cost to access the elements in the
inverse is less than the cost to access an arbitrary
subset of the same cardinality.

(4) Well Placed: a and f(a) are stored in close proximity,
i.e., the cost to access both is less than the cost to
access them separately.

We make the critical assumption that each object of the

schema, be it a value, an entity, or a relationship

instance, is assigned to a single stored record. Replica

tion, e.g., the replication of data item values to record

instances, will be made explicit by introducing new objects

into the schema. The usual concept of "record" can be

represented as a concatenation of the stored records of the

values that make up the fields of the record. Our approach

does not preclude the record segmentation and allocation

techniques described in [SCHK78]. Given this assumption,

certain implication rules can be formulated:

(i) well placed ==> evaluated

Clearly it makes no sense to place a near its associated

range without knowing what f(a) is in the first place.

(ii) clustered ==> indexed

Similarly, it makes no sense to place the elements of f-1(b)

together unless f (b) can be found.

-11-

Access Path Model Katz & Wong

(iii) well placed ==> clustered

Let b = f(a). Well placed means that a and b are stored

together. Since there is one record for each b instance,

all A objects with b in the range of f will be placed near b

and hence near each other. Thus clustering is achieved.

For systems without index storage structures, it is

possible to have a mapping which is evaluated but not

indexed. For example, an employee's name may be stored in

the same record that represents the employee, with no

storage structures available to access the record via an

employee name. The opposite is possible too. Some inverted

file systems allow access to a record through a value asso

ciated with the record that is not accessible from that

record. For example, an employee's name may not be stored

with the record that represents the employee, but an index

on employee name is available. Thus evaluated need not

imply indexed and vice versa.

The implication rules can be used to impose a partial

ordering among the properties:

A laDel is an assignment of properties to an edge of the

integrity schema. There are six distinct labels: W, <C,E>,

<I,E>, C, I, and E. Because we wish to generate schemas with

-12-

Access Path Model Katz & Wong

maximally supported access paths and because the evaluated

property is independent of clustered and indexed, we concern

ourselves only with the first three labels which are denoted

as "W", "C", and "I", i.e., we assume that an access path is

always evaluated. A labelling is an assignment of a label

to each edge of the schema, denoted as an n-tuple (1,, 12,

••• r 1) where n is the number of edges in the schema. The

assignment is subject to constraints which are shown below.

The partial ordering among properties induces a partial ord

ering among labels as well: "W" > "C" > "I". A partial ord

ering can be defined for labellings. Let L. and L~ be two

labellings over the same schema. We say that L.. = L2 if for

each edge in the schema, L 's assigned label is the same as

L2«s assigned label. We say that L2 > L, if for each edge in

the schema, either L^s assigned label is the same as L2's

or L2's label > L1's, and L1 ? L2. Note that under this

definition, some labellings are incomparable, e.g. L, =

("W","C") and L2 = ("C","W").

An obvious approach to achieving a maximal labelling is

to assign "W", the label that represents the highest degree

of support, to each edge. Unfortunately, certain labellings

represent a choice of properties which can not be supported

simultaneously within a schema. There are four constraints

which conflict-free labellings must meet:

(i) cluster constraint: it is not possible to label more

than one outedge of a node with a "C" or

-13-

V

Access Path Model Katz & Wong

»»#»»»

"W". Clustering places together all

domain objects which are mapped into the

same range object. It is not possible to partition the

domain on more than one function and still achieve this

advantageous placement. Note that 1-to-l properties do not

cause a conflict because a 1-to-l function partitions the

domain objects into clusters of size one. This can always be

supported regardless of additional clustering.

(ii) placement constraint: it is not possible to label more
y

/ f{ than one inedge of a node with "W".

99 Well-placement places clusters of domain

objects with a common range object near

that range object. It is not possible to achieve this advan

tageous placement simultaneously for domain objects from

more than one function.

(iii) placement-cluster constraint: it is not possible to

"*V0" •CJ* simultaneously label an inedge of a node

< y 2 "W" while labeling an outedge "C". The

placement of X object clusters near

their associated Y objects destroys the advantageous clus

tering of the Y objects. 1-to-l functions do not cause the

constraint to be violated.

(iv) implied constraints: Certain compositions of functions

and their properties result in the vio

lation of one of the above constraints.

-14-

Access Path Model Katz & Wong

For example, this schema would cause a

violation of an implied cluster constraint.

We need not enforce all the constraints if we allow

requirements to be specified which can not be realized. The

resulting schema will not be as well designed as one for

which all the constraints are met. For example, if (iii) is

not enforced, some of the desirable properties of clustering

for object Y will be lost.

The degree of a schema is the number of violations of

placement or cluster constraints that may be made during the

labelling process. Each of these violations can be resolved

if we allow replication of objects. Assume that the schema

is labelled as in (i). A conflict is a violation of a clus

ter or placement constraint. A cluster conflict can be

resolved by one of the following methods:

In (A), a copy of the domain object is made, and both the

original and the copy are clustered on the appropriate

ranges. In (B) , a copy of the range is made and placed in

one-to-one correspondence with the original domain object.

To illustrate this, consider the entity set employees and

the value set integers, interrelated by the property func-

-15-

Access Path Model Katz & Wong

tion age. Schematically, the following situation can arise:

employees integers
2i

The effect of type (B) cluster resolution is to replicate

the age values so there is one age value per employee:

employees
<±

emp-ints

^-*-
-*^

n -fv

A placement conflict is resolved in an analogous way to

cluster conflicts:

(A) A "I" A' (B) A "W" AC

The degree of a schema is a measure of the amount of

replication we are willing to tolerate during the labelling

process. Replicated information introduces increased costs

for storage and update while reducing retrieval costs. A

degree of 0 insures that no replication will result, i.e.,

the cluster and placement constraints are never violated; a

degree of n > 0 will allow up to n replicated objects to be

created.

-16-

Access Path Model Katz & Wong

A maximal labelling is a labelling L for which there

exists no labelling L' such that L' > L. Because not all

labellings are comparable, it is possible to generate many

maximal labellings for the same schema. Rather than gen

erate all the possible maximal labellings for a given

schema, usage information can be use to restrict the

enumeration to those that best support the expected usage

patterns of the database.

4.2 A Labelling Algorithm

In this subsection, we present an algorithm for gen

erating a maximal labelling that specifies superior support

for the access paths most heavily travelled. Assume that the

degree of replication is n. This means that up to n place

ment or cluster conflicts will be tolerated while labelling

the schema. These conflicts will later be resolved using the

techniques of the previous subsection.

The input to the algorithm is a schema to be labelled

and a ranking of the edges (access mappings) according to

frequency of traversal. The algorithm only enforces cluster

and placement constraints. Initially all edges are labelled

"I". We begin by assigning the next most favorable label

("C") to the heaviest used edge. We continue assigning

labels in this manner until either n cluster conflicts have

been detected or all edges have been examined. Then we

assign the most favorable label ("W") to the most heavily

used edge that is already labelled "C". We continue until a

-17-

Access Path Model Katz & Wong

total of n cluster or placement conflicts are detected. The
+•hi

edge that causes the n+ltn conflict is not relabelled. The

algorithm to assign labels is:

tconflicts <- 0
for each edge do label edge "I"
for each edge (in frequency of access order) do

label edge "C"
if cluster conflict then

if #conflicts = n then relabel edge "I"
_ else #conflicts <- #conflicts + 1

for each edge labelled "C" (in frequency order) do
label edge "W"
if placement conflict then

if #conflicts = n then relabel edge "C"
else #conflicts <- #conflicts + 1

lor

[
or

[
When all edges have been assigned a label, resolution is

performed for each vertex which does not meet the placement

and cluster constraints. Type (A) placement resolution is

chosen for conflicts involving edges between non-value

objects (associations) and type (B) for conflicts involving

edges between non-value and value objects (properties).

The algorithm can be illustrated with an example. Con

sider the sample schema:

S(SNO,SNAME) *A
P(PNO,PNAME)
SP(S,P,QTY)

Consider the following ranking of access mappings, from most

to least heavily used.

1) S-SP
2) SNO
3) P-SP

-18-

Access Path Model Katz & Wong

4) QTY
5) PNO
6) PNAME
7) SNAME

This ranking could have been derived from a set of user

queries in conjunction with an indication of relative fre

quency, or simply specified by the designer. For a degree of

replication = 1, the algorithm proceeds as follows:

initial labelling: all edges labelled "I"

C-labelling:
STEP 1: label S-SP with "C"

STEP 2: label SNO with "C"

STEP 3: P-SP can not be labelled "C" without a conflict.
Label it "C". No additional conflicts are allowed.

STEP 4: QTY can not be labelled "C" without a conflict.

STEP 5: label PNO with "C"

STEP 6: label PNAME with "C" (does not conflict with PNO)

STEP 7: label SNAME with "C" (does not conflict with SNO)

W-labelling: all edges labelled "C" can be labelled "W"
without conflict.

The resulting labelling is:

Placement resolution must be performed for SP. The more fre

quently used edge will eminate from the original SP while

the less frequently used one will eminate from the repli

cated SP'. Type (A) resolution is used because the

-19-

Access Path Model Katz & Wong

conflicting edge, P-SP, involves non-value vertices:

We note that fully constrained labelling can be formu

lated in terms of an integer linear program whose objective

function seeks to maximize the sum of the frequencies of the

edges labelled "W" and "C". Further details can be found in

[KATZ80].

5. Implementing a Schema

Up to this point, the design has been independent of

the actual data model and system. In this section we

briefly discuss the considerations involved in mapping a

labelled schema into DBTG storage structures.

The quality of the mapping depends on the detail of

usage information specified. In the following, we assume

that information has been specified at the level of the pre

vious section. All property mappings are "evaluated" sup

ported by placing the range value in the record that

represents the entity or relationship instance.

In the new CODASYL proposal [CODA78], many aspects of

the physical database design have been removed from the

schema DDL and localized in data storage definition. The

DSDL provides facilities for the specification of the

-20-

Access Path Model Katz & Wong

pagination of the storage media, schema to storage record

mapping, record pointer implementation, set representation,

and storage record placement. We do not deal with the

specification of the storage media, and assume that all sets

are represented by chains with direct pointers. Additional

usage information could be used to make a more sophisticated

choice for these parameters.

The DSDL provides three choices for the record place

ment strategy. A record may be calc'd (hashed) on a key

specified in the DDL, clustered by set membership and

optionally placed near the owner, or stored in sequential

sorted order. Indexes can be specified separately for keys

specified in the DDL.

At most one non-l-to-1 outedge of a node can be

labelled "W" or "C". Because identifier outedges do not

exhibit useful clustering properties, they are ignored. The

other clustered or well placed outedge determines the record

type's primary storage structure. If the outedge represents

a property, then the record type is stored sequentially and

sorted and indexed on the appropriate data item. Calc'd

could be chosen, but more detailed usage information would

be needed to determine whether access is primarily on equal

ity rather than range. In the absence of such information we

always choose indexed structures. If the outedge represents

an association, then the record type is clustered on the

associated set, and if "W" is specified, the records are

-21-

Access Path Model Katz & Wong

placed near the owner. The following rules can be used to

determine the record type's structure:

for each record type (node):

(1) for each outedge labelled "W" or "C",

* if the outedge is a property, then structure the record
type on the indicated data item

* else the outedge is an association; then cluster the
record type on the indicated set and if labelled "W",
place near the owner

(2) for each outedge labelled "I" or an identifier
outedge,

* index the record type on the associated data item

The DSDL also provides facilities to allow a single

schema record to be represented by multiple stored records.

This corresponds closely to our formulation of replication.

Consider the following degree 1 labelling and its associated

CODASYL schema:

record types sets
S(SNO,SNAME) S-SP, Owner S, Member SP
P(PNO,PNAME) P-SP, Owner P, Member SP
SP(QTY)

The DSDL specification for the schema would be

MAPPING FOR S

STORAGE RECORD IS S

MAPPING FOR P

-22-

Access Path Model Katz & Wong

STORAGE RECORD IS P
«.

MAPPING FOR SP

STORAGE RECORDS ARE SP,SP'

STORAGE RECORD NAME IS S

PLACEMENT IS SEQUENTIAL ASCENDING SNAME
SET S-SP ALLOCATION IS STATIC

POINTER FOR FIRST, LAST RECORD SP
IS TO SP

STORAGE RECORD NAME IS P

PLACEMENT IS SEQUENTIAL ASCENDING PNAME
SET P-SP ALLOCATION IS STATIC

POINTER FOR FIRST, LAST RECORD SP
IS TO SP'

STORAGE RECORD NAME IS SP
LINK TO SP'

PLACEMENT IS CLUSTERED VIA SET S-SP NEAR OWNER S
SET S-SP ALLOCATION IS STATIC

POINTER FOR NEXT, PRIOR
POINTER FOR OWNER

STORAGE RECORD NAME IS SP'
LINK TO SP

PLACEMENT IS CLUSTERED VIA SET P-SP NEAR OWNER P
SET P-SP ALLOCATION IS STATIC

POINTER FOR NEXT, PRIOR
POINTER FOR OWNER

plus specification for INDEXES for each data item not

covered in the above. The access schema for the above is:

PWftfcC"1

All access mappings are maximally supported. Usage informa

tion may indicate that certain paths are not worth the over

head of supporting them.

-23-

Access Path Model Katz & Wong

j>. Conclusions and Future Work

In this paper we have proposed an access path model for

physical database design as an extension of our original

work with a semantic model for logical database design and

schema conversion. The properties of access paths were dis

cussed and a methodology which generates maximally supported

schemas was proposed and illustrated with examples. We

believe that this approach to qualitative physical design is

new and unique.

We have briefly discussed the applications of our

methodology for designing CODASYL physical databases. More

work is required on usage specification in order to improve

the quality of the design.

The access path model also has applications to problems

of program translation. A generalized query processing algo

rithm can be formulated to "compile" non-procedural queries,

e.g., relational calculus, into the access paths supported

in the access schema. Primitive operations on the access

schema can be defined in a way that facilities implementing

these operations in terms of CODASYL DML. In addition, we

have been investigating how to reverse the process, i.e.,

"decompiling" programs that access data at the level of DML

into non-procedural queries, with the aid of the access

schema. These problems are further explored in [KATZ80].

-24-

Access Path Model Katz & Wong

7. References

[BUNE79] Buneman, P., Frankel, R. E., "FQL — A Functional
Query Language," Proc. A.CM. SIGMOD Conf., (May 79).

[CARD73] Cardenas, A. F., "Evaluation and Selection of File
Organization - A Model and a System," Comm. A.CM., V
16, N 9, (Sep 73) .

[CARD75] Cardenas, A. F., "Analysis and Performance of
Inverted Data Base Structures," Comm. A.CM., V 18, N
5, (May 75) .

[CHEN76] Chen, P. p., "The Entity-Relationship Model -
Toward a Unified View of Data," A.CM. Trans, on Data
Base Sys., V 1, N 1, (Mar 76).

[CODA78] CODASYL Data Description Language Committee Journal
of Development, 1978.

[DUHN78] Dunne, R. A., Severence, D. G., "Selection of an
Efficient Combination of Data Files for a Multiuser
Database," Proc. AFIPS Natl. Comp. Conf., 1978.

[GOTL74] Gotlieb, C C, Tompa, F. W., "Choosing a Storage
Schema," Acta Informatica, V 3, pp. 297 - 319, 1974.

[KATZ80] Katz, R. H., "Database Design and Translation for
Multiple Data Models," Univ. of California, Berkeley,
Ph.D. Thesis, in preparation.

[MCLE76] McLeod, D. J., "High Level Domain Definition in a
Relational Data Base System," 1976 A.CM. SIGMOD - SIG-
PLAN Conf. on Data, (Mar 76).

[SCHM75] Schmid, H. A., Swenson, J. R., "On the Semantics of
the Relational Data Model," Proc. A.CM. SIGMOD Conf.,
(May 75) .

[SCHK78] Schkolnick, M., "A Survey of Physical Database
Design Methodology and Techniques," Proc. of Conf. on
Very Large Data Bases, 1978.

[SENK73] Senko, M. E., et. al., "Data Structures and Access
ing in Data-Base Systems," IBM Systems Journal, V 12, N
1, 1973.

[SHIP79] Shipman, D. W., "The Functional Data Model and the
Data Language DAPLEX," to appear in A.CM. Trans, on
Database Systems, 1979.

[SILE76] Siler, K. F., "A Stochastic Model for Database

-25-

Access Path Model Katz & Wong

Organizations in Data Retrieval Systems," Comm. A.CM.,
V 19, N 2, (Feb 76).

[TSIC77] Tsichritzis, D., Klug, A., eds., "The ANSI/X3/SPARC
DBMS Framework - Report of the Study Group on Data Base
Management Systems," 1977.

[WONG79] Wong, E., Katz, R. H., "Logical Design and Schema
Conversion for Relational and DBTG Databases," Proc.
Intl. Conf. on Entity-Relationship Approach to Systems
Analysis and Design, (Dec 79).

[YAO 75] Yao, S. B., Merten, A., "Selection of File Organi
zation Using an Analytic Model," Proc. Intl. Conf. on
Very Large Data Bases, 1975.

-26-

	Copyright notice 1979
	ERL-80-1 - Copy

