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ABSTRACT

We review using a simple example the mechanism for

a very general form of self-generated stochastic motion —

the Arnold diffusion -- which occurs in near-integrable

Hamiltonian systems with three or more degrees of freedom.

We consider the motion of a ball bouncing between a smooth

wall located at z=h and a periodically rippled wall located

at zO with ripples along x and y. The ball's diffusive

motion in phase space is calculated using a stochastic pump

model, and compared with simulations for over 107 collisions

of the ball with the rippled wall. The calculated diffusion

rates are in good agreement with the simulation results.

The results, which apply to the interaction of three

nonlinear resonances in the system, are contrasted with

recent calculations by others in the Nekhoroshev (many

resonance) diffusion regime.
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1. INTRODUCTION

We review, by means of a simple example, the

mechanism for a very general form of self-generated stochastic

motion — the Arnold diffusion — which occurs in near-

integrable Hamiltonian systems1 with three or more degrees
of freedom. Without loss of generality, we consider

autonomous systems, for which the Hamiltonian is explicitly

independent of time. Non-autonomous systems in N degrees

of freedom can be made antonomous in N+l degrees of freedom

by introducing an extended phase space1. "Near integrable"
Hamiltonians have the form H=HQ + eH± with HQ integrable,
H not integrable, and the perturbation strength e<< 1.

The generic behaviour of near-integrable systems

with two degrees of freedom is now reasonably well known2"4.

Such systems possess a finite fraction of trajectories which

are the integrable trajectories of KAM theory, with the

remaining fraction appearing to be stochastic. The

integrable trajectories depend discontinuously on initial

conditions. Stochastic and integrable trajectories are

intimately co-mingled, with some stochastic trajectory lying

arbitrarily close to every point in the four dimensional

phase space, and in the two dimensional surface of section.

The stochastic trajectories form in the neighbourhood of

resonances of the motion between the two degrees of freedom.

They appear as thin layers of stochasticity surrounding the

separatrices of the motion associated with these resonances.

The thickness of the layers increases with increasing

perturbation strength. For weak perturbation, stochastic
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layers associated with different resonances are isolated

from each other by KAM surfaces. The motion is stable,

either lying in a KAM surface, or within a thin stochastic

layer which is bounded by nearby KAM surfaces. As the

perturbation increases, the thickness of the layers expands,

leading to resonance overlap, the destruction of the last

KAM surface separating the layers. This signals the sudden

appearance of strong stochasticity in the motion, in which

the previously separated layers have merged, and the

trajectory freely moves across the layers.

The nature of the motion in systems with three or more

degrees of freedom is similar to the above in most respects.

Stochastic and integrable (KAM) trajectories are intimately

comingled in the 2N dimensional phase space. Stochastic

layers form near the separatrices associated with resonances

of the motion among the degrees of freedom. For strong

perturbation, resonance overlap leads to motion across the

layers and the presence of strong stochasticity. In the

limit of weak perturbation, however, resonance overlap does

not occur. A new physical behaviour5 of the motion then

makes its appearance: stochastic motion along the resonance

layers -- the so-called weak stochasticity or Arnold

diffusion. This motion is the consequence of a fundamental

geometric fact: For N > 3, the 2N-1 dimensional resonance

layers are not isolated from each other by the N dimensional

KAM surfaces. The situation is analogous to that illustrated

in Fig.1, where "KAM lines" isolate regions of a plane, but

do not separate a three dimensional volume into distinct

regions. As a result, al-1 stochastic layers are connected
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(a) KAM SURFACES

(b) KAM SURFACES

ZiSii Isolation of regions by KAM surfaces (lines). In
Co.), the plane is divided by lines into a set of closed

areas; in (b), the volume is not divided by lines into

a set of closed volumes.
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into single complex network — the Arnold web. The web

consists of an intricate system of "freeways, streets,

sidewalks, and cracks" that permeates the entire phase space,

intersecting or lying infinitesmally close to every point.

For an initial condition within the web, the subsequent

stochastic motion will eventually intersect every finite

region of the phase space, even the predominantly stable

regions where the fraction of stochastic initial conditions

is small, and even in the limit as the perturbation strength

e-*• 0. This motion is the Arnold diffusion.

The merging of stochastic trajectories into a single

web was proved by Arnold for a specific nonlinear Hamiltonian

A general proof of the existence of a single web has not been

given, but many computational examples are known. From a

practical point of view, there are two major questions

concerning Arnold diffusion in a particular system:

(1) what is the relative measure of stochastic trajectories

in the phase space region of interest? and

(2) for a given initial condition, how fast will the system

diffuse along the thin threads of the Arnold web.

The extent of the web in phase space can be estimated by means

of resonance overlap conditions4. Overlap of resonances

gives rise to a resonance layer thickness, with stochastic

motion occuring across the layer as in systems with two

degrees of freedom'. The new feature of Arnold diffusion is

the presence of stochastic motion along the resonance layer,

produced as a result of the coupling of at least three

resonances, coupling at least three degrees of freedom.
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We illustrate the motion along a resonance layer in

Fig. 2. A projection of the motion onto the J-,-9-, action-

angle plane is shown, illustrating a resonance with the

stochastic layer surrounding its separatrix. At right

angles to this plane the action J2 associated with a second

degree of freedom is shown. The fast diffusive motion across

the layer, and the slow Arnold diffusion along the layer are

illustrated. Since J1 always lies within the thin resonant

layer, a large change in J2 is possible only if a third

degree of freedom is present. The action in this third

degree of freedom must also change, maintaining the energy

constant as diffusion along the layer proceeds.

Calculation of the diffusion rate along a layer has

been given by Chirikov and Tennyson et al6 for the important

case of three resonances, and will be considered here in some

detail. For coupling among many resonances, a rigorous

upper bound on the diffusion rate has been obtained by
7

Nekhoroshev , but this bound generally overestimates the rate

by many orders of magnitude. A statistical treatment of the

diffusion regime in which many resonances are important is

under development ' ' , and some recent results will be

described. Extensive numerical simulations of Arnold

diffusion have been carried out4, ,9~11 and are summarized

in the review article by Chirikov4.

II BILLIARDS PROBLEM

Simple examples of coupled systems can be constructed

to illustrate Arnold diffusion. One such system, which we
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J.

RESONANCE
LAYER

ARESONANCE , SEPARATRIX

Pig-2

0

LOW ARNOLD
IFFUSION

An illustration of Arnold diffusion. The resonance is

at the origin, with the separatrix surrounding it.

Stochastic motion across the layer, and the slow Arnold

diffusion along the layer, are shown.
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consider extensively here, is that of a ball bouncing back

and forth between a smooth wall at z=h and a fixed wall at z=0

which is rippled in two dimensions, x and y. The surface of

section is given in terms of the ball positions in the

xn and yn directions and the trajectory angles a = tan"1v /v
XX ^w £

and S^tan" vy/vz» just before the nth collision with the
rippled wall. The ball motion is shown schematically in

Fig.3, and the definitions of the variables in the x, z

plane shown in Fig.4. Assuming that the ripple is small, the

rippled wall may be replaced by a flat wall at z=0 whose

normal vector is a function of x and y, analogous to the idea

of a Fresnel mirror. The simplified difference equations

exhibit the general features of the exact equations and may

be written in explicit form

an+l 3 V 2 axkx sin kxx + ^Vc CD

xn+l = xn + 2 h tan an+l . C2)

Vl 3 6n " 2 ay ky sin V * UVc (3)

^n+l = yn + 2 h tan 3n+1 (4)

where yc = sin (kxx + k y), ax and a are the amplitudes of

the ripple in the x and y directions respectively, and u is

the amplitude of the diagonal ripple and represents the

coupling between the x and y motions. A similar set of

equations has been studied numerically by Froeschle10.
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SMOOTH WALL

RIPPLED WALL

Fj-g-5 The three dimensional billiards problem. A poist

particle bounces back and forth between a smooth and a

periodically rippled wall.

£i£_d

FIGURE 10.

The definitions of a and
n

SMOOTH WALL

RIPPLED WALL

X
n

Motion in two degrees of freedom, illustrating the

difinition of the angle of incidence (action) a ,and
the bounce position xn just before the n^l colli;
with the rippled wall.

sion
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If u-O, the system breaks into two uncoupled.parts

describing motion in x-z and y-z separately. Fig.5 shows

the motion in the a-x surface of section for the uncoupled

case. A number of different trajectories are shown, each

with different initial conditions. Each particle was run

for 1000 iterations. The plot displays the usual features of

a system with two degrees of freedom: (1) stable (KAM)

trajectories (2) resonance islands and (3) stochastic

trajectories. The islands are examples of "higher order"

integrable (KAM) trajectories. There are two major stochastic

trajectories visible in Fig.5. The thick stochastic layers

for |a|^ 0.6ir/2 are regions of strong stochasticity produced

by all overlapping resonances with one bounce period in z

equal to k periods along x, for kjl. The thin stochastic

layer has formed in the neighbourhood of the separatrix

associated with the central (k=0) resonance.

Ill STOCHASTIC PUMP DIFFUSION CALCULATION

We examine three of the Arnold diffusion processes

that characterize the system,(1)-(4). The first describes

the diffusion of a along the thick stochastic layer of the

8-y motion. The quantity a experiences diffusive fluctuations

that result from the small coupling to the random y motion.

The second process is similar to the first, except that a now

diffuses along the thin separatrix layer of the B-y motion.

The third process occurs near a coupling resonance between

the x and y motions, chosen so that the periods of oscillation
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+?

-ir
+-1T

Motion in the a-x surface of section for the uncoupled
billiards problem. The parameters are u=0, with
Ax:h:ax as 100:10:2; Xx =2^. Fifteen particles
are started at x=0 for various a's and allowed to run
for 1000 iterations each.
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around the central resonance for the x and y motions are

the same. Thick layer diffusion tends to be much faster

than thin layer diffusion due to the greater randomness of

the y motion in the former case. The coupling resonance

diffusion is very slow.

In order to calculate the diffusion rates, we adopt

a simple model of the diffusion process. For both the "thin"

and "thick" layer processes, we assume that the y motion is

confined to the stochastic layer. It then acts as a

stochastic pump, transporting energy back and forth between

the x and z motions. Its own energy may not change except

for the small fluctuations necessary to effect the pumping

action. (Note that this is not strictly true. It is

possible for the y- motion to leave the main stochastic layer

along a thin "alleyway", but this turns out to be very unlikely).

For coupling resonance diffusion, a transformation to new •

generalized coordinates must be made to explicitly exhibit the

separatrix and its associated stochastic layer. The

calculation then proceeds as in thin layer diffusion.

The first step in the calculation is to find a

Hamiltonian that will generate the surface of section mappings,

(1) - (4). In deference to our original model in Fig.3 we

choose a "kicked" Hamiltonian

H(a,x,3,y,n) - 2h In seca + 2h Jin sec£ - 26., (n)C(x,y) (5)

where

C(x,y) =axcos kxx + ay cos k y-J^ cos (kxx + k y) (6)



- 13 -

and
+00

<S1(n) = E 6(n-m)

= 1 + 2 Z cos (2imq) . (7)
q=l

Equations (1) - (4) may be derived from (5) by a simple

integration of Hamilton's equations. Note that H in Eq.(5)

is a nonautonomous Hamiltonian in two degrees of freedom.

It is related to the net energy in the x and y motion, and is

not conserved.

IV THICK LAYER DIFFUSION

The initial conditions appropriate to thick layer

diffusion have 8 and y within the thick stochastic layer,with

a and x chosen to yield small amplitude libration near the

central resonance. In the absence of coupling u=0,the motion

in the a-x plane is confined to a smooth closed curve, like

those seen close to the center of Fig.5. For a finite

coupling, a and x diffuse slowly due to the small randomizing

influence of the stochastic 3-y motion. The diffusion is

shown in Fig.6 for 2,000, 10,000, and 30,000 iterations. The

motion eventually explores all of the a-x plane. The

corresponding motion in the 0-y plane is restricted to the

thick stochastic layer, at least until the a-x motion reaches

its own thick layer.

For the initial conditions appropriate to thick layer

diffusion, we decompose H = H +H , with
x y
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^ir
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(2000 iterations)

(CL1

-.4ir

- . 8 7T X + .8ir

Fig-6 Thick layer diffusion for the coupled billiards problem,

Initial conditions are close to the central resonance

in the a-x space and within the thick stochastic layer

(near |g| = tt/2) of the e-y space. Parameters are

u/h = .008 with X *h:a„ and V :h:a as 100:10:2.
a A y y
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H = 2 h Jin sec3 - 261(n)a cos<f> (8)

and

Hx= ha -2ax cose + ycos [e+<J>(n)] , (9)

where we have written 0= k x, <J>= k y, set Jin sec a = a '2

since a <<1, and where <J> in (9) is now considered to be

an explicit function of n. This decomposition is a whopping

big assumption, neglecting the coupling term in (8) and

"setting 6, = 1 in (9). By this means, we obtain two non-

autonomous Hamiltonians, each in one degree of freedom. We

solve first for the B-<t> motion, "the stochastic pump", and,

substituting this motion into (9), find the a-6 motion, whose

diffusive component is the Arnold diffusion.

The motion for <f>(n) generated by (8) is the well-

known strong stochasticity in the thick layer. To a good

approximation, <j> makes a sudden random jump to a new phase

12
whenever n is an integer . The Arnold diffusion coefficient

D^ for thick layer diffusion is calculated using this

assumption as follows:

The evolution of H , from (9), is:

dH 3H
x

dn~ 3IT =%n\ cos(e+cf>)]-U H sin [e+<D(n)] . (10)

The first term contributes only a small oscillation with no

net change over long periods of time. For slow, small

amplitude libration in the a-x plane, we have:

6 = 60cos(o3xn +X0), (11)
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where

K = 2*/Tv = 2 K (avh)2

Using this, we integrate the second term in (10) over the

"time"interval from m to m+1.

m+1

AHX / dn u8Q ojx sin[oixn + X0]sin re+<j> (n)J. (12)
m

For ojx << 1, this is

AHX =u 0o ujx sin^xm +xoJ sin[6+4>(m)J , (13)

We square this and average over both xQ and <J> to get

<AH->= iv\\Z (14)

where we have used the assumption that $ is randomized at

m=integer. The thick layer diffusion rate is then:

di mi«u£>-kv2*yx (is)

The parameters u and oj will remain fairly constant as H„
x

diffuses. The quantity 8 , however, increases with H ,

resulting in an increase in the diffusion rate as the x

oscillations grow.

In Fig.7, the theoretical value of D-, is compared

with measurements obtained from the direct iteration of the

difference equations. For each experiment, 100 particles
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lULl Thick layer diffusion. 'Comparison of The theoretical
diffusion with the results of simulation experiments.
In (a), the dispersion is plotted vs the coupling
amplitude p. In (b) the dispersion is plotted vs the

libration period Tx> In (c), the disperlion vs the
number of iterations n is shown. Parameters (except
for those varied) are »/h = .0002; n = 500; X :h:a

x x

as 10:10:1; and Ay:h:ay as 100:10:1.7. The
statistical spread of the 100 particles is within the
height of the triangles.
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Pig*11 Thin layer diffusion. Comparison of the.theoretical

diffusion with the results of simulation experiments.

..'.The three graphs show the variation with u, T and n.'
X

Parameters (except for those varied) are u/h = .0002;

n = 2000; x;:h:av as 100:10:1; and Xv:h:a as

100:10:1.8. The statistical spread of the 100

particles is within the height of the triangles.
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were started with identical initial conditions on a libration

curve of. the a-x plane, and with random initial conditions in

the thick stochastic layer of the $-y plane. The motion was

followed for 500 collisions, and the RMS value of the energy
2

h(a )rms was calculated and compared with the theory.

Figure 7a shows the variation with coupling strength u,

Fig.7b the variation with period T , and Fig.7c the variation
x

with the number of iterations n. The solid lines show the

theoretical predictions and the triangles the experimental

measurements. Each triangle represents the average of four

separate runs. The theoretical predictions, although

consistently a little high, are quite good. The discrepancy

probably reflects an expected small deviation from true

random phase.

V. THIN LAYER DIFFUSION

We turn now to the thin layer diffusion. Although

the initial conditions remain close to the central resonance

of the a-x space, they are now chosen inside the thin

stochastic layer surrounding the separatrix of the g-y space.

The diffusion of the a-x motion is again caused by the small

coupling to the stochastic y motion, but since thin layer

trajectories are considerably less "random" than thick layer

trajectories, the diffusion is significantly weaker.

.An example of thin layer diffusion is shown in Fig.8

where both the y and x motions are displayed on.the same plot.

The y motion is confined to its separatrix until the'x motion •

reaches its own separatrix. The successive stages of the
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to the central resonance in the a-x space and within

the separatrix stochastic layer in the B-y space.

Parameters are the same as Pig.6. For convenier.ee,

both the a-x and 8-y surface of sections are

superimposed on the same figure.
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diffusion of the a-x motion are shown in Fig.8a, b and c

respectively.

To calculate the Arnold diffusion rate, we again

decompose the Hamiltonian (5) into (8) and (9), where now,

in (8), only the q= 0 and q^l terms in 6,(n) need be kept.
2

We also put In sec 3-3/2 for the separatrix motion,

yielding, in place of (8),

2
H = hB -2a cos<J> - 4a cos 2irn cos$. (16)

In (16) , the first two terms exhibit the separatrix associated

with the central 3-y resonance, and the.third term generates

the thin stochastic layer surrounding the separatrix. The

procedure, as before, is to first solve (16), substitute the

solution for <j>(n) into (9), and'then find the energy change

AHX as <J> swings from <j>= -it to <j> - +tt. Starting with (10)

and again neglecting the first term we have

•&T s • w HE sin Le+ ♦to] " C17)de - [e+ *(n)] .
As before, 9(n) corresponds approximately to small

liberations, given by (11). But instead of randomizing

<j>(n) with each bounce, we now assume that it evolves very

much like the phase on a pendulum separatrix

<J>(n) = 4 tan A (e 7 )-tt, (18)

where cox and w are the frequencies of small oscillations

about the central fixed points of the a-x and B-y spaces,

respectively:

-tt-
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WX =2kX /~i? > wy =2ky •r^
A sketch of the separatrix phase motion and its derivative,

the frequency, is given in Fig.9. The maximum frequency is

2u)y and occurs at the midpoint of the separatrix trajectory

n=0. Defining:

s i uyi , r 5 (ux/ajy , Xq = rsQ +ir/2

then

+00

AHx = u9or f ds l^

where

I=cos |^r(s+s0) ^J sin (9Q sin £r(s+sQ)] +$}

Us ing 9 <<1
° o

I - cos £r(s+sQ) ]sin <j>.

Only the symmetric part contributes to the integral.

A«
m

sym I sin (rsQ) [cos (<f> + rs)- cos (<fr - rs)l

The integrals in (19), now of the form:

s lim
SV-H3B

2/
o

cos
m
T 4>(s) *• rs

(19)

(20)

(21)

(22)

(23)
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12 3 4

OSCILLATING
PART

2>S

iJUMP Am
5>S

Fig. 9 (a) The phase <J>(s) and (b) the frequency <j/(s) for

motion along the separatrix of a pendulum Hamiltonian;

(c) the definition of A (s,j showing the oscillating

part, and.the jump A , which is the Melnikov-Arnold

integral.
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where <f>(s) is the separatrix phase motion, are actually

improper; no limit exists. However, as shown in Fig.9c,

they are the sum of a rapidly oscillating part and a "jump"

The oscillating part may be large compared with the jump,

but produces only a bounded oscillation in H which is not

randomized on the timescale of the separatrix motion and

averages to zero. The jump in (23) is known as the

Melnikov-Arnold integral13, and physically gives the change

in Hx due t0 resonance between harmonics of the separatrix

motion of <J> and the libration motion o.f 9.

Using (23) in (19),

where

AH = I \ier sin (rsj A2(-r)-A2(r) (24)

+r/2
A2(lr) = 47rre /sinh (irr) . (25)

We have finally

AHx = 4ttp9o r sin (rsQ) sinh (irr/2)/sinh (ttt) . (26)

If we assume that rsQ = x0 is randomized after every half

period of <j> (n), then we can average AH2 to get:

< AH2> = 8tt2u292 F(r) (27)

where

F(r) =r4 sinh2"(1rr/2)/sinh2 (irr). (28)

-fH-
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A plot of F(r) is shown in Fig.10. It is sharply peaked

close to r=l, suggesting that if the characteristic frequencies

of the separatrix and libration motion differ by as much as

a factor of four, the diffusion will be reduced by two orders

of magnitude.

To obtain the diffusion coefficient, we need to know

the mean half period of the motion in the thin stochastic

layer T . The half period of a true pendulum that follows

a trajectory very close to the separatrix is approximately«

Ty '3; *n lirl C29)
where

VHs
W = -£«-£ << 1

Hs

7 A
and Hg = oj /h is the separatrix energy. Chirikov has

shown that the average half period inside the stochastic

layer may be computed by simply integrating the half period

over the energy interval of the layer. The result is:

\ - h; ** |!fI (30)
where WQ is the relative energy at the edge of the layer

(it has approximately the same magnitude on both sides of the

separatrix) and e is the natural base. Chirikov has also

calculated the layer width W using the so-called "whisker

mapping". In our calculations, we have used actual measure

ments of WQ taken from computer generated plots of the

ws-
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-1 -*

log[F(r)]

Fi^lO.- Plot of F(r) for the dependence of thin layer

diffusion on r=co /cu .
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uncoupled motion. The separatrix width is not appreciably

affected by small couplings n << a .

Combining (27) and (30) we get the thin layer

diffusion coefficient:

<AH2>
D2 = _JL££ (31)

2Ty

or

47T2U292toy F(r)/An (32e/| WQ|) (32)

In Fig.11, the theoretical thin layer diffusion is

compared with experimental measurements. Each triangle

represents the final spread of 100 particles that have been

started with identical initial conditions in the a-x space

and slightly different initial conditions in the thin

stochastic layer of the 3-y space. The motion was followed

for 2000 iterations and the RMS spread was computed using

2 x 100 ~ i

°RMS= ^ ifl C° -"I" (33)

The theoretical curves were calculated from Eq.(32) with

W = .191. The variation of (a ) with coupling strength
RMS

is shown in Fig.11 a. Variations with T and n are shown in

Figs.lib and lie, respectively. Again, the theoretical

values fall slightly above the experimental, probably due to

the fact, that the y motion phase <J>(n) is not completely

-/6-
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randomized with each successive half period of the separatrix

motion. Phase correlations have been observed13 in a

similar mapping for the Fermi problem. Nevertheless, theory

and experiment agree surprisingly well, lending considerable

support to the validity of the "stochastic pump" model of

the Arnold diffusion.

4

VI COUPLING RESONANCE DIFFUSION

Returning now to the Hamiltonian (5), we investigate

the Arnold diffusion in the vicinity of the coupling resonance

ux = %* For simPlicity we choose k =k -k and a =a -a and
/ x y x y

consider the ordering y « a << h. The initial

conditions have both a, x and g, y near their central

resonances, yielding weakly nonlinear libration motion for

both x and y. To proceed we transform (5) to explicitly

exhibit the separatrix associated with the coupling resonance,

and the resonances which drive the stochasticity across and

along the separatrix layer. We first write H = H +e H,
o 1

where :

HQ =h(a2+62)- 2a(cos kx +cos kyj (34)

and, keeping only quadratic terms in eHx and putting 6. =1
in the coupling term:

eHj- -uk2xy -ak2(l-61)(x2+y2). •. (35).

H0.3'Hox;+-Hoy_ ^represents: the sum of two. identical,

independent' pendula.. Transforming to action-angle variables

-/?-
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Jx,Jy,9x,9 for these pendula, the new Hamiltonian has the

form H' = HI + e H'
o 1

where H^ = GQ(JX) + GQ(Jy) with

G0(J) -o>0J -| hk2J2 , (36)

and with w = 2k(ah)2 the frequency for small amplitude

librations. The frequency is:

u »dGQ/dJ =cu0- \hk2J (37)

The perturbed Hamiltonian e H1 is given by (35) with x
1

and y replaced by:

x = l VJx)sin mex
m

(38)

y = Z bmCJy)sin m9v'
m J 7

where the sum is over odd integers. The first coefficient

b^ (2J/R)2, where.R = k(a/h)2, gives the transformation to

action-angle variables for the harmonic oscillator. The

remaining coefficients express the nonlinearity of the finite

amplitude librations. The expansions in (36) and (38) can

be obtained directly from the elliptic functions which give

the pendulum motion, or from perturbation theory applied to

a harmonic oscillator with a weak nonlinearity. Using (38)

in (35.) yields
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'Uk2 J. VWJy)sin m9x silU8y

ak';(l-61) Z bm(Jx)bji(Jx)sin m6xsin *9
m, I

ak (1-5^ Z bm(J )bz(J )sin me sin IQ.
m,A

(39)

To exhibit the separatrix associated with the coupling

resonance, we introduce sum and difference variables:

— a,

Jx = J + J

9x = 1(6+9)

«. a.

jy = j - j

(40)
0»

9y = J(9-9)

^

and make the assumption that J << J. Expanding H to

second order in J yields the new zero order Hamiltonian K

K = 2w J - I hk2(J2 + J2) + ... (41)

In the perturbation eHj we put J^J'J in the b's, use (7)

for 61(n), and expand the sine and cosine products to obtain

e K,- Ju E A1" 2
£,m

im

+:1a Z A
• £,m,q,+ Jim

cos(i9 + j9)-cos(j9 + i9)

cos(j9 + j9 * 2Trqn).-cos(i9 + i9 + 2irqn)

(42)

-/<?-
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where 21 -*+mf 2} =£-m, liZm =k2b£(J)bm(J), and the sums
run over I and m odd integers, q a positive (non-zero)

integer, and all + terms indicated.

Equations (41) and (42) for the transformed

Hamiltonian K are the starting point for application of the

stochastic pump model to the coupling resonance, equivalent

to the direct use of (5) for H in the analysis of thin layer

diffusion. Writing K = K» + e K», we choose K' to be the
i o

integrable part of K, consisting of KQ and the first cosine

term in the first sum in c^, with &=1 and m=l:

Ko =2(0o J"ihk2(J2+ J2)+ 5uAucos 9. (43)

The separatrix associated with the coupling resonance is

apparent in (43). Assuming initial conditions on the

separatrix, the unperturbed motion is 7 = const, with

9 a wn + ?o (45)

9 = 4 tan-1(ea}n)- tt (46)

where a = 2aj, and u = Jk (huAn)2 is the frequency of small

amplitude librations in 9.

To apply the stochastic pump model we must choose the

two largest perturbation terms ineKj, with at least one
14

term coming from the second sum in (42). For u<< a

and a-x and 0-y libration motion not to near their central

resonances, the two most important terms in e K' both come

-2o-
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from the second sum in (42) with q=»l

e KJ « -1 a A± cos(i19+ i-^9 -2irn)

^

-J a A? cos(i99- i99 +2irn)
2 2 (47)

where i1 is the integer part of 27r/aj, i^i-^l, and Ax and A2
are the appropriate sums over the A- 's. Defining:

6u),= 2tt - i,a) (48)

<5o)2= i2oj - 2tt (49)

and assuming 6(D2 > Soj-,, we decompose the sum of (43) and

(47) into K' « K + K, with the larger of the perturbation

terms appearing in K:

2^2 0.

K = - Jhk\J* + I yAj-cose

J a A,cos i-^9 + i19(n)-2Trn (47)

and

K = u) J -ia A- cos i29(n)-i29 +2irn (48)

As before, we first solve (47) for 9 and substitute
••••

this solution into (48). The Arnold diffusion is found from

in •" 35 " *a A2Cl2 cE * 27r) sm(i28- i£9 * 27rn) * (49)

-2/-
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After integration by parts and use of (49),

d!C
35

*v

= - 1 aA 2 Hn cos(i29 - 6o)2n - i20o)

d9

+ 2 a A2*2 H5 s^C^9 " d2n-i2 V (SO)

The first term contributes only to a small oscillation with

no net change in K over long periods of time, and is ignored.

Using (45) in (50),

AK = Ja A-i-w / sin(i98 - 6ui~n - i-9 )dn
2wo

— ^
Putting s=om, r = 5o)2/qj, sq= i29Q/r, p= 2i2, P= w/w and

taking the symmetric part of the integrand,

AK = -J a A2i2P sin(s r)A (r)
o ' p

For r>> p,

p-1
4ir(2r)

A (r) *

P (p-1):
TTexp(- jx)

The Arnold diffusion coefficient is:

< Air>

D3 -
9

(51)

(52)

(S3)

(54)

where T^ is the mean half-period in the separatrix layer,
8 » <\,

biven by (30) with co replaced by o>.

-zz-
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The most important variation of D3 is the variation

with r =. 6w2/u). "According to (48) and (49), <5a)2 (defined

to be always greater than or equal to 601,) varies between

u>/2 and to, with the smallest Su- (largest diffusion rate)

when 2tt/uJ is a half-integer, and the largest 6u>2(smallest

rate) when 2tt/uJ is an integer. Since uj - 4k /ah and

r>> 1, the diffusion rate varies over many orders of magnitude

as k, a and h are varied to scan oj over the half-integer to

integer resonance with 2tt, the fundamental driving (bounce)

frequency. Choosing the half-integer resonance, we have:

00 a 2
r- *r =-9— (£) (55)

0) ox H

where 9QX = k xmax is the amplitude of the a-x libration

oscillation. This variation of r yields a steep dependence

of the diffusion rate on the oscillation amplitude and the

coupling.

Before turning to a simpler example, we emphasize

the remarkable character of the motion near this coupling

resonance in the billiards system. For the initial conditions

a=g=o, ky = -kx<< 1, the system is placed in the separatrix of

the coupling resonance, and thus within the Arnold web. The

billard motion initially appears "to be stable", consisting

of a fast bounce motion in z and slower, small amplitude

oscillations in x and y; in fact, it seems that the motion

"is adiabatically confined" to a small neighbourhood near

x=y=o. However, this is not the case. After a

sufficient time, the billiard will be found, with very high

-25-
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probability> in the "thick stochastic layer" for both its

x and y motions. The manner in which the diffusion

proceeds is illustrated in Fig.12, in the original angle-of-

incidence (action) space of the system. A point (a,8) in

this space is specified by the positive values of a "near"

x=o and 3 "near" y=o. The diffusion typically proceeds

first along the coupling resonance, than along the thin layer

in x or y, and finally along the corresponding thick layer.

With very high probability, the billiard motion will rarely

"become retrapped" in a concave ripple of the surface.

This follows because the overwhelming fraction of the

Arnold web is comprised of the "thick stochastic layers",

with a negligible fraction of the web in regions, such as

the coupling resonance, where the motion "appears to be

adiabatic".

For the initial conditions 0=6=0, ky = kx <<1, the

system is placed at the central fixed point of the coupling

resonance. For these initial conditions, "not on the

Arnold web", the motion is eternally confined to a small

neighbourhood near x=y=o.

VII MANY RESONANCES

The previous calculations of the Arnold diffusion

rate are analytically derived using only three resonances:

The "guiding" resonance, along whose separatrix the diffusion

takes place, and two "driving" resonances, the stronger

driving the stochastic motion "across" the separatrix layer,

the weaker driving the stochastic motion "along" the layer.

-z*-
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TT/2

P

0

0 oc TT/2

CZ3 THIN LAYER

FiS-12 Arnold diffusion in the three dimensional billiards

problem, in the angle of incidence space a-6. The

initial condition is chosen to be within the

.separatrix of motion associated with the coupling
resonance ^Uy. The initial motion with near

normal incidence diffuses towards motion with large
angles of incidence. A typical diffusive path is
sketched.
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These calculations seem to agree with numerical simulations

provided the perturbation is not too weak. However,, for

sufficiently weak perturbations, many resonances are

important, and the three wave theory predicts diffusion

rates which are much lower than those calculated from

numerical simulations. The many resonance regime is called

7 9
the Nekhoroshev region ' after the Soviet mathematician who

first derived a rigorous upper bound on the diffusion rate

there. However, Nekhoroshevfs upper bound is generally

many orders of magnitude larger than the actual diffusion

rate.

The many resonance regime has been examined

numerically, ' ' and some analytic estimates made4,8,9 for

a simpler model of a coupling resonance than that which we

have considered for the billiards problem. The Hamiltonian
q

studied was :

H*2(Pl +P^ +^xi +x^-ux^-e xxf(n) (56)

where the p's are the momenta, the x's are the positions, and

ffnl = cos fln
1-A cos Qn

-am

= £ — cos m Qn (57)
m

where a = (1-A2)2. This Hamiltonian differs from (34)
and (35) in three major respects:
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(1) The transformation to action-angle variables of H is

easily calculated. (2) The driving frequency ft is chosen

much less than the libration frequency u for the P-.-X-, and

P2-x2 motions. (3) As a consequence of (2), the

nonlinearity of the finite amplitude librations is

negligible. In place -of (38), we may use:

xx = b± sin e1 (58)

The frequency difference 6o>2, corresponding to (49) is:

<5o)2 = ICl -go (59)

The minimum value of <Soj2 is G/2, giving a maximum diffusion

coefficient of the form (54)

D * D exp (- irr) (60)

where:

r = 6uj2/ u (61)

with qj cc y2 the frequency for small amplitude librations

within the coupling resonance as previously, and D the non-
o

exponential part of the coefficient, weakly dependent on the

parameters. On the other.hand, Nekhoroshev's best estimate

for the upper bound on the diffusion rate is of the form:

1/Q
D * D^ exp(- irr ) (62)

where for this system, Chirikov et al9 give Nekhoroshev's
value as Q = 4.5. *

-24-
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Extensive numerical computations show that (60)

is roughly correct for r £ 3, with large deviations from this

dependence for r £ 3. Figure 13 shows a plot of log D/D

versus r taken from reference 9 which illustrates this point.

The dashed line gives the prediction of the three resonance

theory. The best fit to the numerical computations over the range

0.5 ^ t\ 11 seems to be for Q=2. This is illustrated in Fig. 14, taken

from reference 9, where the data of Fig.13 is replotted versus r2.

It is not known whether this result is generally applicable to

all systems, or even whether it applies to diffusion along

higher order resonances in the same system.

The enhancement in diffusion over that predicted by

the three resonance theory arises from the nonlinearity in

the finite amplitude librations, which were neglected in

the calculation of (60). Indeed if we write in place of (58)

then

x1 = Z bmsin m 8-t (63)
m

6o)2 = IQ - moi , (64)

which shows that there are -resonances with r-»-o, even though

their harmonic amplitudes, which depend on the b's, may be

very small. It is these resonances which.lead to the

increased diffusion rate. A similar situation applies to

the coupling resonance of the billiards problem, where the

q^l term was chosen in the expression (7) for S^n). If

all terms are kept, than (49) is replaced by:

-2?-
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Fig-15 Arnold diffusion coefficient Dversus r=6^2/l (after
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resonance theory (dashed line), and the best fit to the
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<Soj2 = i2oi - 2?rq (65)

again exhibiting the existence of resonances with r+o.

A theoretical method of calculating the diffusion rate in

the Nekhoroshev regime has yet to grow "from alchemy into

chemistry".
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12. The assumption of a random phase for <|> is not strictly

correct. Near the edge of the thick layer, phase

correlations are present due to KAM islands within the

layer and other effects. A correction for this

correlation can be made, but is not of great importance.

See reference 4 for details.

13. MELNIKOV, V.K. Dokl Akad.Nauk SSSR 144, 747 (1962);

148, 1257 (1963); Trudy Moskovskova Mat. Obschestra 12,

3 (1963). See also ref. 4 (Appendix) and ref.5.

14. The three resonances must "form the basis" of the

three degrees of freedom. It is easy to see that

the problem becomes essentially two dimensional if all

terms in the second sum of (42) are neglected.

Motion along the separatrix layers is forbidden in

this case.
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FIGURE CAPTIONS

Fig.l Isolation of regions by KAM surfaces (lines). In

(a), the plane is divided by lines into a set of closed

areas; in (b), the volume is not divided by lines into

a set of closed volumes.

Fig.2 An illustration of Arnold diffusion. The resonance is

at the origin, with the separatrix surrounding it.

Stochastic motion across the layer, and the slow Arnold

diffusion along the layer, are shown.

Fig.3 The three dimensional billiards problem. A point

particle bounces back and forth between a smooth and a

periodically rippled wall.

Fig.4 Motion in two degrees of freedom, illustrating the

difinition of the angle of incidence (action) a , and
n'

the bounce position xn just before the n— collision

with the rippled wall.

Fig* 5 Motion in the a-x surface of section for the uncoupled

billiards problem. The parameters are u=0, with

Xx:h:ax as 100:10:2; Xx = 2ir/kx. Fifteen particles

are started at x-0 for various a's and allowed to run

for 1000 iterations each.

Fig*6 Thick layer diffusion for the coupled billiards problem.

Initial conditions are close to the central resonance

in the a-x space and within the thick stochastic layer

(near |8| = tt/2) of the g-y space. Parameters are

y/h = .008 with X -h:av and A :h:a as 100:10:2. "
A •*• / y

Fig*7 Thick layer diffusion. Comparison of the theoretical

diffusion with the results of simulation experiments.

In (a), the dispersion is plotted vs the coupling

amplitude u. In (b) the dispersion is plotted vs the

a " -
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libration period T . In (c), the dispersion vs the

number of iterations n is shown. Parameters (except

for those varied) are y/h = .0002; n = 500; A :h:a
Jt x

as 10:10:1; and A :h:a as 100:10:1.7. The

statistical spread of the 100 particles is within the

height of the triangles.

Fig.8 Thin layer diffusion. Initial conditions are close

to the central resonance in the a-x space and within

the separatrix stochastic layer in the 0-y space.

Parameters are the same as Fig.6. For convenience,

both the a-x and $-y surface of sections are

superimposed on the same figure.

Fig.9 (a) The phase <|>(s) and (b) the frequency <$>' (s) for

motion along the separatrix of a pendulum Hamiltonian;

(a) the definition of A^s^ showing the oscillating

part, and the jump Am, which is the Melnikov-Arnold

integral.

Fig.10 Plot of F(r) for the dependence of thin layer

diffusion on r-tu /oj .
x' y

Fig.11 Thin layer diffusion. Comparison of the theoretical

diffusion with the results of simulation experiments.

The three graphs show the variation with y, T and n.

Parameters (except for those varied) are y/h = .0002;

n - 2000; ^x:h:ax as 100:10:1; and A :h:a as

100:10:1.8. The statistical spread of the 100

particles is within the height of the triangles.

Fig.12 Arnold diffusion in the three dimensional billiards

problem, in the angle of incidence space a-6. The

initial condition is chosen to be within the
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.separatrix of motion associated with the coupling

resonance o> =oj . The initial motion with near
x y

normal incidence diffuses towards motion with large

angles of incidence. A typical diffusive path is

sketched.

Fig.13 Arnold diffusion coefficient D versus r = <5co2/a> (after

reference 9), showing the deviation from the three

resonance theory (dashed line), and the best fit to the

data points (solid line) for Q=l.

Fig.14 Arnold diffusion coefficient D versus r2 (after

reference 9), showing best fit to the data points

(solid line) for Q-2.
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