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Abstract

This paper shows how the design of feedback controllers for non

linear systems may be formulated as an optimization problem with infinite

dimensional constraints for which known algorithms may be employed. An

important aspect is a method for reducing the time interval, required to

insure stability, to a finite value.
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1. Introduction

It has been shown (for example in [1-3]) that many (computer aided)

design problems may be formulated as determining a point which satisfies

infinite dimensional, as well as conventional, inequalities or as

optimizing some criterion function subject to these inequalities.

The specific forms which these inequalities may have are as follows:

max <r(z,y) <_ 0, j = 1,2,...,m,

J 3

where $ :H x JR -*- H is continuous and Y. is a compact subset of Hm .

Thus, we can express in this form constraints such as

max <J>j(z,xn,a,t), j=l,2,..,m
x0€X °
t^T

where z is the design parameter, <fr is the time (or frequence) response to

an input characterized by the parameter a, and xQ is an initial state.

A variety of algorithms [4,5,6,7,8,9] have been developed to solve such

problems. In this paper we examine some of the less obvious implications

of these algorithms to control system design. In particular, we show

how the problem of designing feedback controllers for non-linear systems

may be formulated as a design problem with infinite dimensional constraints.

We shall consider constraints which ensure closed loop system stability

andsatisfactDry responses to a class of polynomial inputs. These constraints

are,basically,inequalities which must be satisfied for all initial states

lying in a compact subset X of 31 and, possibly for all times in the

infinite interval [0,»); stability constraints, for example, have this

structure. Normally, satisfaction of such a constraint is assessed by
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examining the trajectory x(t;xn,r) of the closed loop system for all initial

states xQ in X, for all inputs r in the class R and all t in [0,«).

Since simulation of non-linear systems is computationally expensive,

every effort must be made to reduce it. The number of initial states

and inputs r for which the responses must be examined depends on the

global optimization algorithm [10,11] that one must use, on the-

structure of the nonlinearity and on whether certain Lipschitz constant

estimates are available or not. Hence we have only a qualitative control

over this aspect of the computational work. However (and this is one of

the main contributions of this paper), it is possible to reduce the

duration of simulation from the infinite interval from [0,») to a

finite one [0,T],where T may be quite small. This results in a con

siderable reduction in computation.

2. The Stability Constraint

The single most important constraint in control system design is

that which ensures stability. Since the Lyapunov approach is generally

Impractical, stability of a non-linear system is usually assessed in

practice by repeated simulations. We shall formalize this approach and

show how the associated computation can be substantially reduced.

Suppose that the system to be controlled is described by:

xCt) - f(x(t),u(t)) (1)

where f : 31 x R + 31 is continuously differentiable. Suppose that

the set of initial states of interest is a compact subset X of B.n. We

will assume that the origin is the desired (equilibrium) state,.i.e.,that f(0,0) = 0,

We assume further that a feedback control structure has been chosen,

so that u(t) in (1) is replaced by h(x(t),z), where the controller
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parameter z has to be chosen. The function h : Rn x 3RP •* mm is

assumed to be continuously differentiable. With this control structure

(1) may be replaced by:

xCt) = f(x(t),z)

where f : ]Rn x 3RP -*• ]Rn is defined by:

(2)

f(x,z) = f(x,h(x,z)) (^3)

and is continuously differentiable.

Let V : E. +1 bea continuous function with the following

properties:

(i) V(x) > 0 for all x e ]Rn;

(ii) V(ax) =» aV(x) for all a G [0,~), all x € &n ;

(iii) VCx) » 0«x = 0 .

An example of suchafunction is x,—•(xTQx)1/2 where Qis positive definite.

For all x in ]Rn let the set B(x) be defined by:

B(x) = {x^^lvfr1) <V(x)} (4)

We obtain immediately that:

V(x') 1 VCx) => BCx1) C BCx) , (5)

and:

BCBx) C B(x) C6)

for all gS (0,1). Also

BCO) « {0} .
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It can be shown that B(x) is compact for all x £ Hn. This property is

possessed by the above example.

Choose x,and V = V(x), so that X C B(x). For any initial state x_at

t = 0 let x(t,x_,z) denote the solution of (2) at time t. If z can be

2
chosen so that V(x)(or V(x) ) strictly decreases.along all solutions of

(2) (i.e. [V(x(t,x0,z)2] f(x(t,XQ,z),z) <0for all te [0,«) all xQ in
B(x) excluding the origin) then the (closed-loop) system (2) is

asymptotically stable and B(x) is a domain of attraction. However such

a z does not usually exist (except, perhaps, if B(x) is small). Hence we

adopt another approach in which V(x) is permitted to increase for a finite

period T along solutions of (2).

We need the following property of BCx):

Proposition 1.

For all a £ CO,00), all x:

BCox) » ctB(x) (7)

Proof:

BCox) » {x* |vCxf) <_ vCox)}

™ {x1 |vCxf) <_ avCx)}

- {xf|vC:r) < v(x)}

=• {ax"|v(x") < v(x)}

« aB(x) a

We can now state a stability theorem which permits VCx) to increase, along

solutions of (2),for a limited time T:

Theorem 1.

Let 3 S C0,1), y e Cl,«) and BCx) 3 X be given. If there exists
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az£lp and a T ^ (o,«) such that:

(i) x(t,x,z)€Y b(xq) for all xQ € B(x) and all t€ [0,T],

(ii) x(T,xQ,z) S 3b(xq) for all xQ<= B(x),

then

(a) xCt,xQ,z) S Y B(x) for all xQ € b(x), all tS [0,«),

(b) x(t,xQ,z) -»• 0 as t -»- «, for all xQ S B(x).

Proof:

If xQe &k b(x) »B(6k x),then B(X(J) CB(3kx) so that, from (ii),
x(T,xQ,z) €3b(3 x) - 3k+1 B(x). Since fis time invariant it follows

k - -that x(kT,xQ,z) S 3 b(x) for all XqS b(x). It follows from (i) that
k -x(t,xQ,z) E Y3 B(x) for all tS [kT,(k+l)T] and, hence, that

(i) x(t,xQ,z) S YB(x) for all x€ B(x), all tS [0,-),

(ii) xCt,xQ,z) -»• 0 as t -»• «, for all x € BCx). n

The consequence of this theorem is that asymptotic stability, with

a domain of attraction BCx), is assured if the infinite dimensional

inequalities in hypothesis CO and Cii) of Theorem 1 are satisfied. The

inequalities require all initial states in B(x) to be investigated via a

global optimization algorithm - this appears inevitable in non-linear

system design - but requires the solution of the differential equation

(2) for the period [0,T] only, where T may be quite small. The theorem

is a Lyapunov type result, in that V(x(k+l)T,x0,z)) < V(x(kT,xQ,z)) for

all k = 0,1,2,... even though V(x(t,xQ,z)) is not necessarily less than

V(x(kT,xQ,z)) in the interval [kT, (k+l)T).

3. Choice of Performance Constraints for Regulators

In the case of a regulator, the most obvious performance criteria is

rapidity of response - this corresponds to the speed at which the initial
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state xQ is steered to the origin. Since in a regulator satisfying (i)

and (ii) of Theorem 1, x(kT,xQ,z) 6 B1(J), this speed is clearly

controlled by the choice of 3 ^ (0,1) and T € (0,»). For computational

reasons it is desirable to choose T as small as possible (but large

enough to ensure that the feasible set - i.e. the set of z satisfying

inequalities (i) and (ii) in Theorem 1 - is not empty). Hence speed of

response can be increased by reducing 3 - the control design problem

could, for example, be expressed as minimizing 3 subject to the in

equalities specified in hypotheses (i) and (ii) of Theorem 1.

The exponential type of response (x(kT) S 3nB(x)), while appropriate

for linear systems, may not be suitable for certain non-linear systems: a

value of 3 feasible for states far from the origin may be unnecessarily

large Corresponding to a slow response) for states close to the origin.

In such cases it may be desirable to replace the constant 3 by a

continuous function 3:]Rn -»• [<$,, <52], where 6-, 62 € C0,1), 5« >6 and

3 has the property: V(xf) > V(x) => 3(x?) > 3(x).

The following result shows that replacing 3 by 3 does not destroy

stability.

Theorem 2.

Let y e Cl,°°) and BCx) 3 X be given. Let 3 map BCx) into [6 , 6 ]

where 5 , <$2 € (0,1). If there exists az6lp and aT£ (0,») such

that:

Ci) xCt,xQ,z) S Y B(xQ) for all xQ e B(x) and all tS [0,T]

Cii) xCT,xQ,z) € 3(Xq) b(xq) for all xQ € B(x) then, if x(0) <= B(x) ;
.k

>2
x(iT,xn,z), i * 0,...,k, for all k = 0,1,2,... .

x(kT) e 3(xC0)) 3(x(T))...3(x(Ck-l)T) B(x) C 6k B(x) where x(iT) denotes
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Proof:

Let 3± denote 3(x(iT)), i =• 0,1,2,... . Suppose x(iT) € 3Q, g ...3

B(x) = B(30,31...3±_1 x). From (ii), x((i+l)T) S 3± B(30,3r. .3±_1 x)

= 30,31...3±B(x). Since xQ £ b(x), by induction x(kT) 6 3Q,31...Bk B(x)

for all k a 0,1,2,... thus proving the theorem. a

The conditions on 3 and 3 in Theorems 1 and 2 are not the only ones

which lead to asymptotic stability. For example, let 3 : B(x) -»• [0,1]

be such that 3(x) £ max {a, 1-V(x)/V(x)} with a S (0,1). Then we see

that 3(x) -^las V(x) •»• 0. It is easy to see that for this function, too,

the conclusions of Theorem 2 hold. For suppose V(x(iT)) /+ 0 as i + •.

Let 3(x) = max {a, 1-V(x)/V(x)}. Then there exists an infinite subsequence,

with i€ K,and a constant b€ (0,1), such that vfrW) > b for all
V(x) . —

i€ K-,and hence 3(x(iT))< 3(x(iT)) <. max {a,l-b} = 3* < 1 for all i€ k.

Since 3(x(iT)) € [0,1] for all i, V(x((i+1)T) < V(x(iT)) for all i and since

V(x(i+1)T) £ 3 V(x(iT) for all i €K, we conclude that V(x(iT)) -»• 0. We

see that we have just constructed a contradiction,and hence our claim,

that any function 3 : B(x) •• [0,1], such that 3(x) < 3(x), can be used in

Theorem 2, must be correct.

Accuracy in following a reference, y say, is sometimes a requirement.

In such problems the feedback term is x —*- h(x,yr ,z) and (2) is replaced by:

xCt) = fCxCt),yr,z) (8)

The equilibrium state xfi(y_) now depends on yr and is the solution of

0 « f(x,yr,z) (9)

If the output of the system is g(x) then a performance criteria of the

form Hg(xe(yr)) - yrll £ e!lyril can be imposed, for selected values of yr or

a whole set.
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Another performance requirement is robustness, for example maintenance

of stability as a plant parameter p ranges over a set P. The trajectory

is now a function of (t,xQ,ZiP) and the stability constraints become:

(i) x(t,x,z,p) e Y B(xQ) for all xQ S B(x) all tG [0,T] and all

(ii) x(T,xQ,z,p) € 3B(xQ) for all XqS b(x), all p€ p.

Other performance criteria can be similarly formulated.

4. The Response Function V

The procedures outlined above depend on the choice of the function V

and associated set valued function B;a wise choice will permit a small

value for T. The following choice should be suitable for many applications.

Linearize the system (1) about the equilibrium point yielding:

zCt) = A z(t) + B u(t) (10)

where A = fxC0,0) and B 4 fuC0,0) if the equilibrium point is the origin.
In addition the linearized output equation is:

yCt) - CzCt) (U)

where C = SxC0) if the equilibrium point is the origin. Design a linear

controller:

uCt) - -KzCt) + v(t) (12)

so that the closed loop system:

zCt) = CA-BK) zCt) + BvCt) (13)

satisfies the various stability and performance constraints. Clf the
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controller is dynamic its states should be included in Cl) and (10)).

For some Q > 0 compute the positive definite solution P of the Lyapunov

equation

(A-BK)T P+ P(A-BK) = -Q (14)

The response function is then defined by:

V(x) « (x^x)17.2 (15)

V is a Lyapunov function for C13). It will also be one for the non-linear

system C2) (with the same linear controller) in some neighborhood of the

origin. In this neighborhood T a o will suffice. It is therefore plausible

that this choice of V will permit a relatively small value of T to be

chosen for the non-linear design problem.

5. Polynomial Inputs

We shall now show that constraints on the response to a polynomial

input can also be cast into a form compatible with the new algorithms.

Suppose, without loss of generality, that the input u(«) of Ci) is scalar

valued and that an input rC*) is to be applied to the closed loop system,

characterized by the closed loop structural law u(t) « h(x(t), z,r(t))

where, as before, z is a finite dimensional parameter to be chosen. This*

leads to the following obvious extension of (2):

xCt) - f(xCt),z,rCt)) (16)

where f : Enx Epx I -* ]Rn is defined by

f(x,z,r) = f(x,h(x,z,r)) 0-7)
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Now, suppose that we are concerned with the class of inputs r(-) defined

by:

r(-) €(p(-)|p(t) =aQ +c^t +a2t2 +... +aktk, aGA} (18)

AT kwhere a = (a0,...,a.) and A is a compact subset of IR . In this case

r(') has a finite parametric representation:

r(t) a <a, p(t)> (19)

"A 2 k T
where p(t) = (l,t,t ,..,t ) . Thus, the differential equation (16) can be

rewritten as

x(t) = f(x(t),z,a,t) . (20)

Now suppose again that the system output is given by

y(t) « g(x(t)). (21)

The instantaneous tracking error can be defined as

e(t,xQ,a,z) =[gCxCt,xQ,a) -g(xQ) -<a,p(t)>]2 (22)

Hence, given a compact set B(x),as in the earlier sections,and assuming that

the functions f,g and h satisfy the usual differentiability assumptions

we can employ the new algorithms either to solve minimization problems

with a cost function c(z), of the form

cCz) « max e(t,xn,a) (23)
xoex °
a€A

t€T

where T a [Ojt1] is an interval of interest, or they can be used to solve

minimization problems or systems of inequalities which include an
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inequality, in z, of the form

max e(t,xQ,a,z) - eQ <_ 0 (24)
xoGx
aSA

6. Conclusion

We have explored some of the less obvious applications of a new family

of optimization and inequality solving algorithms to nonlinear control

system design. The measure of confidence that one can derive from such

a design procedure depends greatly on the success one has in solving

global optimization problems of the form max <J>(z,v), with N a compact

set, which must be solved reasonably accurately, at least towards the

end of the computation, as a subprocess of the algorithms in [5,7].

Thus; "we see that we are largely dependent on the state of the art of

global optimization techniques. Currently, some of the better global

optimization techniques use a mixture of random initialization of

deterministic maximization algorithms. We expect that in many design

situations these techniques will be economically feasible design tools.
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