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CHAPTER 1

INTRODUCTION

_K Introduction

!•!• Statement of the Problem

Database systems available today typically support .a

single model of data, either ' tabular (relational)

[CHAM76], graph structured (network) [TAYL76], or tree

structured (hierarchical) [TSIC76a]. Arguments have raged

about which model is "best," yet there is a growing reali

zation that no model is best under all conditions, and

that systems built in the future will have to support more

than one model "of data organization. These are called

heterogeneous database management systems. This thesis is

concerned with techniques for constructing heterogeneous

data management systems from existing homogeneous data

bases and systems.

Consider a hypothetical database system that supports
*

both relational and network databases. Such a system must

provide several services. First, the semantic content of

the database, i.e. its real world meaning, should be

specified independently of the models supported by the

system. It should provide tools for both logical and phy

sical database design that are largely independent of the



underlying models and systems. A single design methodology

can be used for a variety of different data models.

Second, the system should provide facilities for migration

. of data from one underlying model to another. This makes

it possible for data to remain independent of particular

data models. Finally, the system should provide facili

ties for program conversion. An existing application

should not become obsolete because -a database has been

rerepresented in terms of a new data model. Methods for

implementing these facilities are explored in this thesis.

J.«.2« Motivation

There are two primary motivations for our work. The

first is that distributed database research will stimulate

interest in the support for heterogeneous data models. The

second is that no existing model is appropriate for the

design and translation problems presented by such a sys
tem.

As the trend towards distributed database systems

continues to gain in momentum, the tasks of database

design and translation in a heterogeneous environment are

becoming pivotal. A distributed database system is built

on top of existing systems available at the local sites of

a computer network. It provides the ability for an appli

cations program to access databases stored at another

site. In addition, similar problems exist in a single



presented in this dissertation can be used as the basis

for an automated database design tool. The techniques for

data and program translation make it possible to migrate

data between different data models and systems without the

need to reprogram user applications. These methodologies

and techniques are needed to implement a heterogeneous

system on top of existing systems.
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Database Design and Translation for Multiple Data Models

Randy. Howard Katz

ABSTRACT

Database experts have debated over which model of

data organization is best under various criteria. We

believe that no model is clearly best and that future sys

tems must support more than one data model. This disserta

tion explores methods and techniques for constructing a

heterogeneous database management system from existing

database systems. Logical and physical database design is

studied in an environment which supports multiple data

models and systems. Techniques are formulated to translate

a database to an equivalent organization under a different

data- model and to convert the query portions of programs.

A data model is developed to capture . the semantic

interrelationships supported by a database. The purpose of

a logical design is to derive a schema which is well-

behaved under the update operations of a particular model.

A database specification in the semantic data model is'

mapped into the constructs of a target model, while

preserving design goals related to the desirable behavior

of a schema under update.

rw.?5;!efrch sP°nsored by Army Research Office, Contract
DAAG29-76-G-0245, and an I.B.M. Predoctoral Fellowship.



The semantic data model is augmented with logical

access paths to represent how semantic objects are inter

connected. Physical storage structures are characterized

by a small number of basic properties. The physical design

method proceeds in two phases. Properties are first

assigned to the logical access paths. Then, the logical

access paths are implemented by choosing storage struc

tures which support the assigned properties.

Data translation is accomplished by recognizing con

structs within the source database -that correspond to a

semantic object, and then mapping these into an equivalent

realization in the target model.

The logical access paths supported in the physical

database direct the program translation. A sequence of low

level operations are identified as a semantic access. A

composed sequence of these accesses is mapped into a sin

gle high level query specification. The inverse transla

tion is accomplished by mapping a high level specification

into a sequence of low level operations which take advan

tage of the access paths efficiently supported by the

database.

A semantic data model was used to integrate the

processes of database design and translation in an

environment which supports multiple data models. The

methodology for logical and physical database design



site heterogeneous database management system constructed

on top of existing data managers.

The underlying data models we have chosen to investi

gate are the Relational model of [CODD70] and the

CODASYL/DBTG model of [C0DA71, CODA73, CODA78J. The rela

tional model has been the focus of much recent research in

data management systems, while the CODASYL model has

received interest as a potential national standard. Both

models are likely to influence systems built in the near

future. Unfortunately, neither model is effective in

solving the problems of design and translation.

We briefly define each model in turn. The relational

model consists of domains and relations. A domain is a set

•of values of similar type. Let D1, D2, ... , Dn be n (n >
0) domains, that are not necessarily distinct. The Carte

sian product D1 X D2 X ... X Dn is the set of all n tuples

<tv t2, ... , tn> such that ti < Dt for all i. A relation

defined on these domains is a subset of the Cartesian pro

duct. We may associate with each tuple component a dis

tinct index, ..which is called its attribute. A relational

database is a time-varying collection of data organized as

a collection of tabular relations.

The CODASYL model consists of data items-, records,

and sets. A data item is the smallest unit of named data.

A record type is a named collection of data items. There



may exist an arbitrary number of occurrences for each

record type. A set is a named collection of 1 or more

record types, in which one record type is distinguished as

the owner and the others are the members. A set

occurrence consists of one owner record and zero or more

members. A CODASYL/DBTG database is a time-varying col

lection of data organized as record and set occurrences.

The underlying data models we. have chosen do not pro

vide appropriate •data object types for modelling aspects

of the real world. It is difficult, for example, to exam

ine a relational schema and determine what real world

objects and their interrelationships are being modelled.

A method of semantic specification is needed which is

independent of the underlying data models. The notion of

semantic equivalence', i.e. whether two schemas in dif

ferent data models represent the same facts about the real

world, is crucial in achieving schema conversion. The

semantic specification must be rich enough to make it pos

sible to identify equivalent constructs in different data

models. The proper form of the semantic specification is

an important consideration for supporting heterogeneous

data models.

An architecture for constructing a heterogeneous sys

tem on top of existing relational and CODASYL data

managers is given in figure 1.1. The schema translation
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component supports conversion between representations of

semantically equivalent databases organized under dif

ferent data models. If a program is written to access data

in a particular model, the program translation component

makes it possible for it to access data organized under

different data models. The program need not know how the

data is actually stored. Multiple manipulation language *

interfaces are supported by program translation.

In the following, we- briefly describe the design and

translation problems that must be solved in a heterogene

ous database system.



In the heterogeneous system proposed above, it is

desirable to provide design tools that are highly indepen

dent of the specific models and systems that are the tar

gets of our designs. Logical design is Independent of

specific system details because of its data model orienta

tion. This property has been called "data independence."

Nonetheless, a methodology for achieving logical designs

that are model independent is desirable in a heterogeneous

environment. Such a methodology would give precise rules

for constructing a logical design with desirable proper

ties for each model.

Physical database design, on the other hand, tends to

be more concerned with the details of a specific system.

In a heterogeneous environment, the task is difficult

because of the requirement to design for the variety of

storage structures supported by the underlying systems.

Physical design has been partitioned into two tasks

[CARD75]: implementation-oriented design, e.g. selection

of which logical access paths to support, and

implementation-dependent design, e.g. selection of imple

mentation structures for collections of data. As much of

the design process as possible should be implementation-

oriented. For example, a design can be specified in terms

of basic properties of storage structures without making a

commitment to an actual implementation. The



implementation-dependent aspects can be handled by spe

cialized tools keyed to a specific underlying system.

Logical and physical database design should be supported

by a single integrated tool.

Another motivation for heterogeneous databases is

that they allow the user to migrate towards new data

models and systems, while still supporting existing appli

cations programs. New programs and databases can be

developed while existing applications still function,

whether or not the original database is represented in

terms of the original data model. New applications should

be able to access databases represented in the original

model. Facilities should be provided to support several

data manipulation languages simultaneously. Providing

these facilities is difficult because the different data

manipulation languages may be at different levels of pro

cedurally, e.g. languages that support procedural, record

at a time access and those that support set oriented

access. Data and program conversion must be supported to

facilitate this migration.

J..3. Previous Work

In this section, we review the previous research in

database design and translation.
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Logical design is the process by which real world

objects and their interrelationships are represented in

terms of a data model, independent of physical structure.

This representation of the real world must be faithful.

The behavior of the schema under the update operations of

the model should reflect the semantics of the real world.

If it does not, the schema is said to suffer from update

anomalies.

For the relational model, the concept of normaliza

tion was introduced in [C0DD71] in an attempt to derive

relations which are free from update anomalies. The seman

tics of the relational model are insufficient in this

regard, and must be augmented with functional dependencies

[BERN76, C0DD70, C0DD71] and multivalued dependencies

[ZANI76, FAGI77a]. These additional semantic structures

make it possible to define normal forms for relations

which indicate the kinds of update anomalies present in

the relational schema (see section 3-3.2 for a discussion

of normal form theory).

Normal form theory has led to two techniques for

designing relational databases: decomposition and syn

thesis. Decomposition [C0DD71], which has been general

ized in [FAGI77b], starts with a collection of relations

in which all attribute values are atomic and a specifica

tion of the multivalued dependencies among these attri-

-.^



butes. Each relation is decomposed into smaller relations

until the resulting relations are in a form which is

well-behaved under update operations. Unfortunately, mul

tivalued dependencies represent complex concepts. These

must be defined within the context of a particular rela

tion, and require considerable effort on the part of the

database designer to specify completely. Further, the

approach is not constructive, i.e. primitive semantic

objects are not combined to design the schema.

Synthesis [BERN76] begins with a set of attributes

and a list of functional dependencies defined among them.

A relational schema is derived by grouping the attributes

together to form relations. The shortcomings of the

approach are detailed in [FAGI77b], but can be summarized

here. For synthesis to succeed, an artificial assumption

must be made about how attributes can be related, i.e.

only a single functional dependency can exist between any

two attributes. In addition, synthesized relations exhibit

update anomalies not found in decomposed relations, and

the latter can not be constructed using the synthesis pro

cedure.

A synthesis procedure based on functional dependen

cies and "static set dependencies" is proposed in

[MIJA76]. An entity oriented data model is introduced and

algorithms are given to design logical schemas for this
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model. The authors do not show how their procedures can be

applied to relational databases, although this does not

appear difficult. The approach suffers from the same

shortcomings as [BERN76].

Another approach to logical design is called abstrac

tion [SMIT77a, SMIT77b]. "Aggregation" turns a relation

ship between objects into an aggregate object, while "gen

eralization" turns a collection of objects of similar type

into a generic object. They discuss how to map these

abstract objects into relational and DBTG schemas. Again,

the design process is complicated by the introduction of

more complex semantic objects.

Methodologies specifically oriented towards CODASYL

logical design have received less interest. [GERR75]

describes a logical design aid that creates a CODASYL

schema to support a specified set of anticipated queries.

The problems of constructing a design that minimizes

update anomalies is not addressed. [ADIB76] proposes a

methodology for CODASYL logical design that maps a CODASYL

schema into a relational schema, converts the relational

schema into 3NF, and then maps the resulting schema back

into CODASYL. The problem here is how to specify the ori

ginal CODASYL schema in the first place. Another proposal

is to convert the problem of designing a database into a

mathematical programming problem to achieve an "optimal"
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solution [MIT075, BERE77]. These models are limited in

the number of aspects of logical design they can handle

and can become expensive to use for the large problems

encountered in real design efforts.

Another method, similar to the one explored in this

thesis, is the structural transformation method of

[CHEN76]. In this approach, information is specified in

terms of a design data model which is transformed into

either a relational or DBTG schema. These transformation

rules have been chosen in an ad-hoc manner. Our contribu

tion is to treat the mapping approach more formally by

introducing goals of design and specifying mapping rules

which preserve those goals.

Physical database design maps logical database struc

tures into the access methods and storage structures of a

particular database system. Surveys of physical design

techniques can be found in [CHEN77] and [SCHK78].

CSCHK78] divides physical database design into four

problem areas: file structuring, access path selection,

record segmentation and allocation, and reorganization.

File structuring is the problem of choosing an implementa

tion structure for a single collection of records that

satisfies a specified set of user requirements. Access

path selection is concerned with which of a variety of

access paths are chosen for efficient support. Record
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segmentation techniques are ways to partition records to

provide better access to the more heavily used "segments."

Reorganization algorithms determine when the storage

structures of a physical database should be reevaluated,

as records are inserted and deleted which may cause the

database's performance to deteriorate over time. This

thesis deals only with file structuring and access path

selection.

Two approaches have been proposed for selecting the

implementation structure of a file. The first evaluates a

preselected library of candidate implementations. It

accepts input parameters which describe: (1) the contents

of the records, (2) how the records are accessed and with

what frequency, (3) how the secondary storage is organized

and (4) how it performs under access requests. A variety

of different storage organizations are evaluated, and the

one that achieves minimum cost, under a preselected cost

formula, is chosen. Simulation [CARD73, CARD75, SILE76]

or analytic [G0TL74, DUHN78, TEOR78] techniques can be

used to evaluate the costs of alternative designs. This

method is hampered by restricting the selection to a

predefined set of possible structures, thus making the

methodology dependent on the details of a specific system.

The second approach is to formulate general models of file

structures which are parameterized to encompass a range of
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possible implementations [HSIA70, SEVE72, YAO 77]. By

varying the parameters, the designer can evaluate the

relative costs of his designs.

As reported in [SCHK78], little work has been done to

date on integrating logical and physical database design.

This is crucial when choosing access paths for a database.

Most approaches assume that the logical design has already

selected certain paths to support. One such approach is

[GAMB77], which describes a decision support system for

physical database design. It accepts as input a logical

access . path description of the database and information

about how frequently these access paths are used. The sys

tem determines location modes, record clustering, and set

implementations for the CODASYL model. Storage and access

costs are determined by a complex analytical model and are

reported to the designer. Certain parameters can be varied

by the designer to examine alternative designs. A similar

approach is taken in [BUBE76], except that only an

update-oriented and a retrieval-oriented design are

derived. Heuristic design techniques are used in the

latter to direct the design process. Our contribution is

to use an integrated framework for logical and physical

design and to propose a novel, implementation-oriented

methodology for physical design. Storage structure pro

perties are assigned to logical assign paths, and these
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are used to direct a system specific expert to choose

storage structures.

Next we review the recent research in schema conver

sion. Schema conversion is the process by which data

represented in one model is mapped into an organization

suitable for another model. [SHOS75] partitions the data

translation problem into three levels. The logical level

is concerned with mappings between groupings of data

fields. The storage level involves mappings between dif

ferent file organizations and access paths. The physical

level deals with mappings between record placement and

blocking strategies. Schema conversion is concerned

exclusively with data mappings at the logical level.

A common approach to data translation is to provide

the user with facilities to support the conversion pro

cess, while leaving it to him to explicitly specify the

data mapping. [SHU 77] describes a system which provides

high level languages for both defining data and for pro

gramming the restructuring transformations.

A second approach is based on performing the conver

sion by mapping a schema into a "semantically equivalent"

schema for a different data model. [ZANI79a, ZANI79b]

describe algorithms for mapping a CODASYL schema into an

equivalent relational schema. He does not address the

problem of mapping in the other direction, partially
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because he is only interested in providing multiple model

views on top of a CODASYL schema. The semantics-based

approach is further examined in this thesis. Algorithms

are formulated to map between target schema realizations

of the same semantic objects, identified by the semantic

specification used for the logical design.

Finally, we review the work in program conversion.

Program conversion is concerned with the changes that must

be made within an application program whenever a change is

made in the representation of the database which it

accesses. These changes can occur because a database is

either converted from one database system to another or

restructured within a single database system. This thesis

focuses on the changes in applications programs that are

caused by converting between database systems that support

a different level of procedurality in the data sub

language.

[H0US77] proposes a system wherein programs are con

verted by "decompiling" a source program into an abstract

specification. The specification can be reexpressed in

terms of the target data model and tailored to the target

database. It can then be recompiled into the host and

manipulation languages of the target system. However, it

is difficult to formulate ways to specify the reexpression

of the program in terms of the target data. The paper sug-
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The mapping of non-procedural queries into a sequence

of procedural operations is a classical problem in query

processing for relational systems. [SELI79] describes a

technique for enumerating all the likely processing stra

tegies and choosing the one with the expected minimum

cost. However, many possible strategies must be evaluated

before the best one can be found. [WONG76, YOUS79]

describe a collection of heuristic query processing tac

tics for reducing a query step by step into low level

operations. Their approach does not take advantage of

information about the physical structure of the database

at the early stages. Our point of departure is to make use

of information specified in the logical and physical

design to aid in the selection of a processing strategy.

1-H' Contributions and Outline of Thesis

Chapters 1 and 2 cover introductory material. This

chapter has provided an introduction to the need for

heterogeneous database management systems and the facili

ties that such a system must support, namely database

design and translation for multiple data models. Previous

research in the areas of logical and physical database

design, database translation, and program conversion was

discussed. The overall goal of this thesis is to propose

methodologies and techniques for supporting these facili

ties in a heterogeneous database environment.



18

In chapter 2, three interrelated data models are pro

posed as our framework for design and translation. The

design model forms the basis of our approach to logical

design and schema conversion. It is compared with other

proposals for semantic data models. The integrity model is

the basis of our approach to physical design, and intro

duces the concept of logical access paths. The access path

model supports our approach to program translation. It

consists of the physical access paths used by a program

when navigating through its data.

Chapters 3 and 4 describe our methodology for design.

Chapter 3 introduces the concept of design goals and shows

how design model schemas can be mapped into relational or

CODASYL schemas while preserving the design goals, which

represent desirable properties exhibited by the designed

schemas. The schemas that result from an application of

our rules are characterized. The relational schemas are

shown to be in fourth normal form, i.e. the relations are

well-behaved under update operations. The usefulness of

certain constructs in the CODASYL model are made clear by

characterizing them in terms of the concepts of the design

model.

Chapter 4 introduces our characterization of storage

structure and proposes an algorithm for implementation-

oriented physical design. The methodology is based on
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assigning storage structure properties to access paths in

the schema. Implementation algorithms are given which map

a physical design specification into the storage struc

tures of two specific database systems.

Chapters 5 and 6 describe our techniques for transla

tion. Chapter 5 describes schema conversion. The mapping

rules used in logical design can also be used to formulate

mapping rules between different target models. The rules

for mapping from CODASYL to relational and vice versa are

derived. Problems associated with semantic restructuring

of the database are also addressed.

Chapter 6 describes program conversions. Decompila

tion is the process by which a sequence of procedural

operations are mapped into a single set oriented query

specification. Algorithms are developed for analyzing a

program written for a CODASYL database, and converting it

to a program with a relational interface. Compilation is

the process of mapping a set oriented query into a

sequence of procedural, access path oriented operations.

An optimization procedure is developed to convert a rela

tional calculus query into an internal form which

describes how the query manipulates the access path

schema. An algorithm is given for compiling this internal

form into CODASYL data manipulation operations.
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Chapter 7 describes our conclusions and indicates

areas for future research.



2. Design Models

2.1. Introduction

CHAPTER 2

DESIGN MODELS

In this chapter we define a design data model as the

focus for our approach to logical design and schema

conversion. The model is based on a variation of the

Entity-Relationship Model [CHEN76] and has been influenced

by the semantic data model of [SCHM75]. Because we are

interested in dealing with databases supported by the

currently popular models, in particular the relational and

CODASYL approaches, the design model has been formulated

to capture the kinds of structural constraints supported

by these models, yet remains independent of them. It forms

a semantic bridge between the underlying models. An alter

native view of the design model, which emphasizes logical

access paths derived from constraints on the interrela

tionships of semantic objects, is the integrity model. It

closely resembles the functional data models of [SHIP80]

and [BUNE79]. It is the basis of our approach to physical

database design. Lastly, the decision of which access

paths are to be supported in the physical realization of a

database is reflected in the access path model. This

21
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information is crucial for understanding the semantics of

the procedural operations to accomplish decompilation, and

for representing the available access paths during compi

lation.

2.2. A Design Data Model

2.2.K Definitions

The term data model is used in a generic sense to

mean a collection of data object types, while a schema is

a specific choice of data objects to represent a database.

For example, The relational model consists of the data

object types domains and relations; a CODASYL data model

consists of data items, records, and sets. A relational or

CODASYL schema would consist of a specific collection of

such objects. The design model is a semantic data model

used to specify a design schema.

The design model is composed of entity sets, rela

tionships, and properties. For each instant of time t, let

E«j(t), E2(t), ... , En(t) be n distinct sets, which are

called entity sets. An entity set, usually referenced by

name, is a one parameter family of sets which change as

members are inserted and deleted.

A property of an entity set E(t) is a one parameter

family of functions ft, which at each time t maps E(t)

into some set V of values. A property is a total function:



23

for every e in E(t), ft(e) is single-valued (functional),

and at each time t, ffc is defined over each member of E(t)

(total).

An identifier is a distinguished property of an

entity set which maps 1-to-1 into a value set. The iden

tifier is actually a surrogate for the entity [C0DD79],

and as such, uniquely represents each entity with a value

that can not change over time. If an existing property can

not be adapted for use as an identifier, an artificial one

must be introduced.

Explicit provisions for value set definitions have

been omitted in our model. A domain definition subsystem

such as that proposed in [MCLE76] could be included. A

simpler approach is to use primitive data types, e.g.,

integer, char(10), etc. A given value set may appear in

the range of more than one property.

A relationship Rfc among the entity sets E^t), Ep(t),

••• » En^^ is a time-varying relation; i.e., R. is a sub

set of the Cartesian product E.(t) X E0(t) X ... X E (t)
1 & n

at time t. A relationship may optionally have a property

defined on it. It is assumed that relationships specified

in a design schema are both independent and indecompos

able; i.e., no relationship is derivable from other rela

tionships and no relationship can be decomposed into

subrelationships of smaller degree and then recombined to
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form the original relationship without loss of information

(no relationship is equal to the join of two of its pro

jections into subrelationships of smaller degree for all

time) .

A binary relationship Rfc on entity sets E-(t) and

E2(t) is single-valued in E«,(t) if each entity of E1
occurs in at most one instance of R . Intuitively, R. is a

& t

partial function with domain E-(t) and range E2(t). If

each entity in E^(t) occurs in exactly one instance of R. ,

then Rfc is called an association. Intuitively, R. is a

total function which maps each element of E-(t) into an

element of E2(t). Neither an association nor a single-

valued relationship may have a property defined on it. A

property of an association is necessarily a property of

the domain entity set; thus, the concept is superfluous.

The models under investigation do not provide constructs

for automatically supporting a single-valued relationship

when it has a property defined on it (see chapter 3).

The design model distinguishes among the following

semantic objects:

(a) entity set
(b) properties of entity sets
(c) associations
(d) single-valued relationships
(e) relationships
(f) properties of relationships
(g) value sets

A discussion of the allowable design model operations will
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be deferred until Chapter 3.

We close this section with two examples of schema

design using the design model. Consider the schema which

represents a simple employee database: employees work in

departments which have managers, employees are qualified

to hold certain jobs of which only one is the job they are

currently assigned, and job positions are allocated to

departments.

Which real world objects do we wish to describe in

our database? These are Employees, Departments, and Jobs,

and they constitute the entity sets. Next we determine how

these objects are interrelated. An employee Works-in a

department, an employee is Assigned a current job, an

employee is Qualified for several jobs, a department has a

Manager employee, and a department is Allocated job posi

tions. Works-in, Assigned, Qualified, Manager, and Allo

cated constitute the relationships.

Which of these relationships are functional? If the

semantics indicate that an employee can not be assigned

more than one job, or work in more than one department, or

that a department can not have more than one manager, then

these constitute the single-valued relationships. Quali

fied is a general relationship because an employee can be

qualified for multiple jobs, and many employees can be

qualified for a particular job. Allocated is a general
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relationship for similar reasons.

Which of these functional relationships are total? If

an employee must work in a department at all times, and he

must be assigned to some job at all times, then Works-in

and Assigned are associations. This imposes an existence

dependency on employees: no employee can exist unless he

works within a department or is assigned a job. Thus, to

maintain the totality of the function, the deletion of a

department or job must cause all the associated employees

to be deleted as well.

The only decisions left are what properties are

needed to describe the entity sets and general relation

ships. Employees are described by their names and year of

birth. An employee number is introduced as a unique iden

tifier. Departments have the properties of department name

and location. A department number is introduced to

uniquely represent a department. Jobs are described by a

title and an associated salary. A job-id is included as

the identifier. Of the general relationships, only Allo

cation has a property, i.e., the number of job positions

of a particular job allocated to a given department.

These constitute the properties. In summary, the design

schema for the employee database is shown in figure 2.1.

In the second example, we shall discuss a design

schema specification for a university database. Students



entity sets properties
EmP eno,ename,birthyr
DePt dno,dname,location
Job jid,title,salary

associations

Works-in(Emp,Dept)
Assignment Emp,Job)

relationships type properties
Mgr(dept,emp) single-valued ^Z
Qualified(emp,job) general
Allocation(dept,job) general number

fig. 2.1 - Employee Database
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are enrolled in courses taught by professors who are

faculty of some departments. Courses have prerequisites,

and departments have chairmen. The objects of interest are

Students, Courses, Professors, and Departments. These may

be described by properties. Students are identified by

their registration number and described by their name and

class year. Professors are identified by their social

security number and described by their name and profes

sorial rank. A course is identifed by a course number and

is described by a title. Departments have names and loca

tions, and a department number must be introducted as a

unique identifier.

Students must Major in departments and departments

must have a Chairman. These are represented as associa

tions if we assume that every student must have some major
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(including the major "undeclared"), and a department can

not exist without a chairman. If professors can be on the

faculty of more than one department, then Faculty is

modelled as a general relationship. Similarly, a course

can be a Prerequisite of several courses and can itself

have several prerequisites.

Now consider the relationship Enrollment among Stu

dents and Courses. It is described by the property Grade.

Because a given course can be taught by more than one pro

fessor, the relationship should be defined over professor

as well. The relationship models reality if the database

recorded the enrollment of a student for a particular

semester. If Enrollment is to represent the transcript of

a student throughout his college career, then Enrollment

as formulated above is deficient, because it rules out the

possibility that a student repeats a course from the same

professor. To remedy this situation, an entity set Times

is introduced to represent the time at which courses may

be given (e.g. "Fall/1979/MWF10-11") and Enrollment is

defined over Professors, Courses, Times, and Students.

Times is described by properties for the term, year, and

time of week, and a timeid is included as a unique iden

tifier. The complete schema is shown in figure 2.2.



entity sets properties
Students regno,sname,classyr
Professors ssno ,pname,rank
Courses cno,title
Dept dno,dname,location
Times timeid,term,year,time

associations

Major(Student,Dept)
Chairman(Dept,Professor)

relationships type properties
Faculty(Professor,Dept) general ZZZ
Prereq(Course,Course) general
Enrollment Course,Professor, general grade

Times,Student)

fig. 2.2 - University Database

29

2.2.2. Comparisons with Other Models

Many data models have been proposed which model the

real world in terms of objects of interest (entities) and

how they are interrelated (relationships). In this sec

tion, our design model is compared with these other

models. Our purpose is not to argue that the design model

is "better," but rather to characterize it with respect to

the other proposals.

The work on a "conceptual schema" to model the real

world, by the ANSI/X3/SPARC committee on database archi

tecture [TSIC77], has led to an increased interest in

semantic data models. [KERS76] compares and classifies

twenty-three different data models, while [NIJS76] con-
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tains sixteen proposals for candidate models to represent

the conceptual schema. We restrict the following discus

sion primarily to entity oriented models.

The basic object types of the design model consist of

entity sets, relationships, properties, value sets, asso

ciations, and single-valued relationships. Several models

have been based on similar concepts, although they use

different terminology. Several limit all relationships to

be binary [DEHE77, BRAC76]. Others allow n-ary relation

ships, but require them to be irreducible or indecomposi-

ble CHALL76]. We have adopted this approach. The model

which most closely resembles the design model, in terms of

the object types supported, is the Entity-Relationship

Model of [CHEN76]. His model, however, does not require

that entities be members of distinct entity sets. [MOUL76]

argues that in order to provide unambiguous naming for

entities, it is necessary to have entity sets which are

disjoint. The entity sets of the design model are non-

overlapping.

We have extended the Entity-Relationship Model by

distinguishing functional binary relationships which may

be total (associations) or partial (single-valued rela

tionships). Few models make this distinction, with the

exception of the functional data model of [SIBL77] and the

CODASYL/DBTG model [NIJS75]. In the latter, the CODASYL
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set construct can be used to model either total or partial

functions between the member and owner record types.

We use associations to model the concept of existence

dependency, i.e. that an entity can only exist so long as

it is associated with some other entity. In [DEHE74],

entities can be declared as "obligatory" members of a

relationship. In [SCHM75], certain objects can only be

used to characterize other objects, and must be deleted if

the object they describe is deleted. [CHEN76] introduces

the concept of "weak entity" to describe entities which

are only of interest because they are related to some

other entity, e.g. children of employee.

Because the concept of an entity is abstract, how

does one determine whether an entity exists? Usually, an

identifier is introduced to represent the entity within

the data model. [HALL76, CODD79] require that an artifi

cial identifier, i.e. a "surrogate", be introduced. Other

models allow a property which is 1-to-1 to be selected as

an identifier, or require an artificial identifier to be

introduced if no such property exists [SENK73, SCHM75,

BENC76, CHEN76]. We have adopted the latter approach.

In summary, the design model is a data model based on

the concepts of disjoint entity sets and n-ary relation

ships. The model allows the functionality of binary rela

tionships to be specified. It also provides constructs to
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model existence dependencies. Identifiers are used to

unambiguously represent entities.

2.3. Integrity Model

2.3.J.- Definitions

The integrity model is so named because it

illuminates the structural integrity constraints that must

be enforced for the interrelationships of the design

model. Certain types of interrelationships have been

defined in terms of total functions (properties, associa

tions) and partial functions (single-valued relation

ships). The general relationship can be represented in

terms of functions as well. For each entity set that par

ticipates in a relationship, we can define a total func

tion that maps the relationship instance into the particu

lar entity that participates in that instance. These func

tions are called relationship associations. From the

standpoint of the integrity schema, the relationship

object is superflous. It can be modelled by an entity set

with associations that relate it to the entity sets over

which the relationship is defined. However for semantic

reasons, it is still desirable to distinguish between

entity sets and relationships.

The integrity model consists of objects and functions

between objects. We distinguish between value objects and
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non-value objects. Value objects can only appear in the

range of a function. Functions can be either total or par

tial. There is a strong resemblance between the integrity

model and the functional data models of [SHIP80] and

CBUNE793. However, those models do not distinguish between

total and partial functions and have been proposed as an

aid to data manipulation rather than database design.

The functional form of the interrelationships (i.e.

1:N) imposes a constraint which is simple to support and

which can be supported within the data models popular

today. The CODASYL set construct can be used to model 1:N

relationships between owner and member records [NIJS75].

Hierarchies are natural representations of 1:N integrity

constraints. Although not explicitly supported by the

relational model, 1:N relationships can be supported by

such underlying storage structures as links [TSIC75].

When the functional interrelationships are used as the

basis of a manipulation language, they can be used as log

ical access paths between semantic objects (see section

2.3.3).

The examples of the previous section are reproduced

in terms of the integrity model in figure 2.3.
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set V of vertices and set E of edges. There is a vertex in

V for each object in the integrity schema. For each func

tion from object1 into object^ there is a directed edge

from the vertex for object., to the vertex for object^
Identifier property edges are represented with a double

arrow.

The graphical representations of the example schemas

are given in figures 2.4 and 2.5.

i.'1'l- Integrity Model Manipulation Language

The functions of the integrity schema can be used as

a basis for navigating among the objects of the schema.

Employee Database

5# <$"

Qual

fig. 2.4 - Graphical Representation of
Employee Database



University Database

fig. 2.5 - Graphical Representation of
University Database
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This has led to the functional query language proposals of

[BUNE79] and [SHIP80]. When integrity functions are used

to access objects, we call them access mappings. The pur

pose of this manipulation language is not to provide a

full function query language. Rather, it is used to

specify a path from a starting set of objects to a desti

nation set upon which data manipulation operations (e.g.

retrieval, update, delete) will be performed. A similar

defintion of "query" can be found in [NATI78].

An access mapping can be defined for either an

integrity schema function or its inverse. We extend the
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definition to allow an access mapping to map from a set

into a set. This will facilitate the composition of access

mappings. More explicitly, if f: A —> B is an integrity

function defined over the integrity model objects A and B,

then F(«) = p where p = {f(a) J a < « and « c A} and

F" (p) = <* where <( = {a ', b= f(a) and b< p and p c B}
are access mappings over f. Note that integrity schema

functions are written in lower case, while access mappings

are written in upper case.

It is useful to define several more kinds of access

mappings. We extend the definition of inverse mapping to

allow, the subset of A to be accessed which is related to

the instances of p in some way other than equality, i.e.

<,<,>,>. The definitions become:

F>"](g) where <( = {a
F<"'(|B) where « = {a
F>2\ (p> where « - {a
F< '(.B) where <* = {a

b > f(a) and b < p and p c B}
b < f(a) and b < p and p o B}
b > f(a) and b < B and p c B}
b < f(a) and b < p and >B c B}

In addition, for each non-value object of the integrity

schema there is a constant inverse mapping whose value is

the set of all instances of the object, e.g. EMP"1 is the

set of employee entities.

Access mappings can be composed and intersected in

order to form access expressions. If f: A —> B and g: B

—> C, then f o g: A —> C and F o G can be defined as {c

! c < G({b}) and b < F(<0 and « c A). Similarly, if f: A
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—> C and g: B —> C, then f fi g: A X B —> C and F(«) fl

G(B) can be defined as {c |c < F(<<) and c < G(p)}. An

access expression is evaluated strictly from left to

right. Parenthesis may be used to clarify the order of

evaluation, but not to change it.

Although the manipulation language has no construct

for boolean predicates, the objects accessed through an

access expression can be qualified by intersecting them

with inverse property mappings. For example, intersecting

an access expression over employees with the inverse

BIRTHYR<" ({1950}) will restrict the employees to those

that were born before 1950.

A BNF description of the Integrity Model Manipulation

Language is:

<access query> ::= <access mapping> j
<access mapping> o <access query>
<access mapping> fj <access query>

<access mapping> ::= F i F"1 |
F" ({ <constant-list> }) S
( <access query> )

<constant-list> :: = constant |
constant <constant-list>

Examples:

1) find the department that Smith works in.

ENAME"1({"SMITH"}) o WORKS-IN

ENAME"1({"SMITH"}) results in the set of employees
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whose name is Smith. This is composed with WORKS-IN

to access their associated departments.

2) find the names of departments with accountants who

were born before 1950.

((TITLE"1({"ACCOUNTANT"}) o ASSIGNED"1)

H BIRTHYR<"1({1950})) o WORKS-IN o DNAME

TITLE"1({"ACCOUNTANT"}) accesses the job entity for
accountant. Applying ASSIGNED"1 to that gives us

all the employees who are currently working as

accountants. Intersecting that set with

BIRTHYR< ({1950}) restricts the accountants to those

that were born before 1950. WORKS-IN accesses their

departments, and DNAME accesses the names of those

departments.

2.4. Access Path Model

2.J*.J_. Definitions

The access path model is concerned with those logical

access paths that are supported by the storage structures

of the underlying database system to promote the efficient

access of data. The purpose of the access path model is to

form a bridge between the logical interconnections of the

integrity schema and the physical interconnections of the

stored data, without committing the schema to particular

implementation structures. Thus, the model is
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implementation-oriented rather than implementation-

dependent.

An access path schema consists of the objects of the

integrity schema plus a selected subset of the possible

access mappings described in the previous section. An

access mapping is supported in the storage structure if

the database system can efficiently perform the desired

access; i.e., the time to access a set of desired objects

is less via a supported access mapping than the time to

exhaustively scan the entire set. If an access mapping is

not supported, it is unsupported. Supported access map

ping is our terminology for the usual notion of physical

access path. The access mappings included in an access

path schema must all be supported.

To illustrate these concepts, consider the employee

database, and assume that the records which represent

employees are hashed on the property ename. Thus, there is

a fast path between ename values and the associated

employees. ENAME"1: char(20) —> emp would be supported by
the database system and would be represented in the access

path schema. ENAME>"1: char(20) —> emp may or may not be

supported, depending upon how the access method for hash

ing is implemented. Most implementations of hashing do

not support efficient access by range. If an indexed

sequential organization is used to support the first map-
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ping, then it is likely that the second would also be sup

ported. The access path schema specifies only those access

mappings that are supported. It does not matter which

implementation structure has been chosen to provide that

support. Different choices may well result in different

access path schemas.

The logical access paths of the integrity schema must

be maintained whether or not those functions are sup

ported. For example, WORKS-IN associates with each

employee a single department. If WORKS-IN is not sup

ported, we must still be able to access the associated

department, albeit not as efficiently as if it were sup

ported. This can be accomplished by making use of the

identifier of the range entity set. An unsupported access

mapping between employees and departments can be

represented instead as an access mapping between employees

and the identifier value set of department:

(supported) WORKS-IN: emp —> dept
(unsupported) WORKS-IN: emp —> id value set if dept

Without support, it is no longer possible to navigate

directly between employees and their departments. Instead,

we must (1) navigate along the property to access the

associated department identifier, (2) use an inverse iden

tifier mapping to access the department, if such a mapping

is supported, or, alternatively, exhaustively scan depart-
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ment entities for the one with the appropriate identifier

value.

The access path schema captures the effects of

storage structure support without committing the schema to

a particular implementation. Rather, a family of imple

mentations are possible, in which each of the access map

pings of the schema are supported. We are free to imple

ment an access mapping with a variety of different storage

structures. The logical access paths of the integrity

schema have not been sacrificed. They are still supported

by augmenting the schema with properties and identifiers

as outlined above.

2.JK2. Access Path Manipulation Language

In this section, we define a data access language for

access path schemas. The language is based on iterative

constructs for enumerating elements of sets formed from

intersections of access path mappings. Actually, the

access path manipulation language is a reformulation of

the Integrity Model Manipulation Language which emphasizes

the procedural aspects of set enumerations.

The host language, e.g. COBOL, is extended by state

ments for (1) assigning access mapping results to program

variables and (2) applying a block of statements to each

element of an enumerated set:
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<access assignment> ::= value-variable <-
<functional access mapping>

<access enumeration> ::= <for clause> range-variable
IN <set specification>
ST <mapping clause>
DO <statement list>

<for clause> ::= FOR EACH | FOR FIRST

<set specification> :: = <access mapping> j
<access mapping> ft

<set specification> |

<mapping clause> ::= <clause> j
<clause> AND <mapping clause> i

<clause> ::= <access mapping> <relational-op> <value> !
range-variable = range-variable

<access mapping> ::= F( <variable> ) |
F-1( <variable> )

<variable> ::= value-variable | range-variable

<value> ::= value-variable i constant

<relational-op> ::=_<j<J = J>|>

We restrict the range variables that appear in the mapping

clause to be the access enumeration range variable, except

when comparing the current range variable to a previous

one.

As an example, consider the query that requests the

location of John Smith's dept. Assume we have the access

path schema of the previous section, and that WORKS-IN"1

is not included in the access path schema.

FOR FIRST e in EMP"1() ST ENAME(e) = "John Smith" DO
w <- WORKS-IN(e)
FOR FIRST d in DEPT"1 ST DNO(e) = w DO

1 <- LOCATION(d)
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PRINT 1

The program scans the employee objects until it finds one

with employee name John Smith. W is set to the number of

Smith's department, and departments are scanned to find

the one with the matching dno. That department's location

is found and printed.

If an inverse mapping ENAME"1: char(20) —> EMP had

been available, then the first line of the program would

be:

FOR FIRST e in ENAME"1("John Smith") DO ...

If WORKS-IN is supported, then the assignment to w

can be omitted and the second FOR statement becomes:

FOR FIRST d in WORKS-IN"1(e) DO ...

The advantage of the APML is that it represents pro

cedural aspects of object enumerations without sacrificing

the advantages of using access mappings, which are based

on logical access paths.

2-.5« Conclusions

In this chapter we have laid the groundwork for the

rest of this thesis. A design model has been proposed to

facilitate logical design and schema conversion for

heterogeneous data models. It was shown how an integrity

model can be defined to represent the constraints on
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object interrelationships and to introduce logical access

paths. The integrity schema will be the input to our

methodology for physical database design. Finally, an

access path model was proposed to aid the process of pro

gram translation. The model consists of only those logical

access paths which are efficiently supported by the under

lying database. Manipulation languages for the latter two

models were defined.



CHAPTER 3

LOGICAL DESIGN

3. Logical Design

J._K Introduction

In this chapter, we address the problem of how to

design a logical schema for a specific data model. Our

methodology is to characterize the objects of the real

world by describing them in terms of the object types of

the design model. The design schema description is then

mapped into the object types of the underlying model.

Design goals are introduced to help formalize this map

ping. These specify the behavior expected of designed

schemas under the update operations of the particular

model. The mapping rules must preserve the design goals.

We present mapping rules for mapping a design schema

into both relational and CODASYL logical schemas. The

schemas derived from the mapping rules are also character

ized .

1*2. Design Goals

Logical database design is the process by which

information about the real world is transformed into

objects supported by a particular data model, without

46
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regard to how that information is actually encoded in

storage. The primary objectives of logical design are (1)

to adequately capture the semantics of the information

while (2) divorcing the specification from physical imple

mentation considerations. The data models available today

concentrate more on the latter objective than the former.

The relational model is a case in point. Although it does

a good job of isolating the schema from implementation

considerations, it is a non-trivial process to assign a

meaning to a given schema. In this section, goals for

logical design are formulated to achieve desirable seman

tics in the designed schema.

An important aspect of logical design is to minimize

the unexpected side effects of applying operations to the

logical structure of a database. For example, the process

of relational normalization has been formulated to remove

anomalies from updates to relational schemas. Update

anomalies take one of two forms. Atomic operations are

fragmented when a semantically atomic operation, e.g.

deleting an entity, can not be performed atomically within

the target schema. Update side effects are uncontrolled

when an update operation simultaneously affects more than

one independent object within the schema, e.g. deleting an

entity inadvertently causes entities related to it via

general relationships to be deleted as well. Some side
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effects are controlled. For example, all relationship

instances associated with a deleted entity should also be

deleted. The design model has been formulated in part to

clarify the issue of update anomalies and to control them.

For the design model, the following can be defined as

atomic update operations:

(1) inserting or deleting an entity

(2) inserting or deleting a relationship instance

(3) modifying the range value of a function with an

entity or relationship instance in the domain.

Note that it is not semantically meaningful to alter an

entity or relationship instance. To record a change of

information about such an object, it is necessary to

modify one of the functions, i.e. properties or associa

tions, that describe that object.

The application of an atomic update operation to a

design schema may leave the database in an inconsistent

state. For example, consider the employee database. If the

Toy department is deleted, then all the employees who work

in that department are no longer associated with an exist

ing department. For the maintenance of semantic con

sistency, additional update operations must be performed.

These induced updates are called side effects.
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associations must be disallowed. The associations

(including the relationship associations) impose a partial

ordering on the entity sets and relationships for the pur

poses of insertion, i.e. X < Y if X must be inserted

before Y. The insertion order for the employee database,

represented as a topological sort, is shown in figure 3.1.

Jobs and Departments must be inserted before Employee or

Allocation instances. Jobs and Employees must be inserted

before Qualified instances. In the university database

(see figure 3.2), Professors must be inserted before

Departments, Faculty instances, or Enrollments; Depart

ments before Students or Faculty instances; Students

before Enrollments; and Courses before Enrollments or

Prerequisite instances.

Our approach to logical database design is to (1)

specify a schema in terms of the design model and in so

doing, completely describe the requirements for the atomi-

fig. 3*1 - Insertion Order DAG for
Employee Database
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The advantage of the design model is that the side

effects are obvious and limited. The constructs of the

design model limit the kinds of updates that can cause

side effects to those that insert or delete an object in

the range of a total function, i.e. associations and rela

tionship associations:

(1) Deleting an entity e causes:

(a) the deletion of an instance of a relationship in

which e participates

(b) the deletion of any entity in the domain of an

association with e in the range

(2) Inserting an entity e (or relationship instance r)

requires any entity in the range of an association

(or relationship association), with e (or r) in the

domain, to already exist.

Case (1b) can cause updates to propagate further through

the schema, because the deletion of a single entity may

spawn additional deletion updates to associated entities.

Note that this is precisely the situation modelled by the

association. If propagated deletions are not desired, i.e.

the domain object can exist independently of the range,

then the relationship should be specified as single-

valued .

The insertion side effect (2) constrains the order in

which entities may be inserted. In particular, a cycle of
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COURSES

T
PREREQ

city and side effects of update operations, and (2) formu

late mapping rules to transform a design schema into

either a relational or CODASYL schema while preserving

both atomicity of update operations and controlled side

effects. The design goals are stated to stress the support
for these concepts:

(1) Preservation of Atomicity

An atomic update operation affects a single log

ical object in the target schema. In a relational

schema, this means that a single update affects a

single tuple, and in a CODASYL schema, a single

update affects a single record instance. Intuitively,

we desire a logical schema in which information about

a single object is stored in a single place, so that

operations that update the information need only

affect a single logical object within the target
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schema. This property can be described as "minimum

update", and leads to logical schemas with a minimum

amount of redundant information.

(2) Preservation of Side Effects

Any additional induced atomic operations are

exactly those described for the design model.

The CODASYL data model provides primitive constructs

to automatically support the design model's associations

and single-valued relationships. The latter can only be

supported when it is devoid of properties. To take advan

tage of this possibility, the mapping rules for CODASYL

should preserve the following design goal in addition to

the above:

(3) Automatic Integrity Support

The side effects of association and single-

valued relationship should be handled automatically.

This support can be provided by using the set-

membership options for removal and storage class in the

CODASYL data definition language.

3-^3. Relational Design

In this section, we describe a methodology for rela

tional database design. It is based on mapping a design

schema specification into a relational schema while
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preserving the design goals of the previous section.

3.3.K Mapping Rules

We would like to formulate rules for mapping that

preserve the atomicity of update operations and avoid

undesirable update side effects. We require that all

information about entities and relationship instances,

i.e. property and association values, be inserted and

deleted at the same time as the creation or destruction of

the object. Furthermore, this should be accomplished with

a single update operation within the relational model.

Similarly, a single relational update operation should be

sufficient to modify the representation of the value of a

property or association.

An identifier has already been defined as a 1-to-1

property of an entity set which is used to uniquely

represent the entities of the set. Similarly, a relation

ship instance can be identified by the identifiers of the

entities involved in the relationship. A primary function

is a property or an association specified in the design

schema. For relational design, we assume that associations

are represented as functions which map into the identifier

value set of the range object. This has no implication on

the structure of the physical schema. A primitive object

is either an entity set or relationship in its role as the

domain of a primary function. Intuitively, by grouping an
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object with its functionally related range values in a

single place, i.e. in a single tuple, the fragmentation of

operations can be avoided. Undesirable side-effects can be

avoided by insuring that independent objects of the design

schema are represented by independent constructs in the

relational schema, i.e. no more than one primitive object

is assigned to a single relation. The mapping rules are as

follows:

1) Each entity set has an explicit identifier which

represents it globally throughout the relational

schema.

2) The identifier(s) of a primitive object together with

the range values of its primary functions are grouped

within the same relation of the relational schema.

3) There is one and only one primitive object per rela

tion of the relational schema.

An entity or relationship instance is represented by

a single tuple in the relational schema. The object's pro

perty values and association values are represented as

attribute values in the tuple. The object is created by

inserting the tuple and destroyed by deleting it. Property

and association values are modified by updating the

appropriate attribute value. The atomicity of operations

has been preserved.
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Consider the third mapping rule. Suppose that more

than one primitive object is assigned to a relation. Then

it is the case that in deleting an instance of one of the

assigned objects, an instance of another assigned object

will be inadvertently deleted, because both objects share

the same tuple. By placing one primitive object per rela

tion, information about a primitive object can not be lost

by updating another object, except as the result of the

controlled side effect discussed in the previous section.

Uncontrolled side effects are avoided.

We should note that the relational model does not

provide logical constructs for automatically supporting

the integrity constraints implied by the design model.

There are no facilities to automatically support the dele

tion semantics of associations or the insertion semantics

of relationships, i.e. the entities participating in the

relationship must exist before the relationship instance

is created. In addition, no mechanism exists for automati

cally maintaining the functionality of a single-valued

relationship. The mapping rules treat a single-valued

relationship as though it were a general binary relation

ship. The kinds of mechanisms we need are those that

enforce: (1) the uniqueness of relational keys, (2) subset

constraints, i.e. values in the attribute of one relation

are a subset of the values in an attribute of another
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relation (foreign keys), and (3) functional interrelation

ships among the attributes of a relation.

An alternate set of mapping rules which are more

algorithmic in nature is:

1') Each entity set has an explicit identifier which

represents it globally throughout the relational

model.

2') For each entity set E, define a relation R(E). The

attributes of R(E) are made up by (i) a key attribute

for the identifier of E, (ii) value attributes for

the properties of E, and (iii) foreign key attributes

for the associations of E.

31) For each general relationship R over E.., E2, ... ,

En, define a relation R(R). The attributes of R(R)

are made up of foreign key attributes for the iden

tifiers of Er E2, ... , En and the value attributes

for the properties of R.

4') For each single-valued relationship S over E- and E2

(E<j is single-valued), define a relation R(S). The

attributes of R(S) are made up of foreign key attri

butes for the identifiers of E- and E2.

Examples of Relational Design

(1) Employee Database
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Emp, Dept, Alloc, Qual, and Mgr are each mapped into

a relation. ENO, DNO, JID are the identifiers of Emp,

Dept, and Job respectively. Hence (DNO, JID) and (ENO,

JID) are the identifiers of Alloc and Qual. The above

relational schema can be represented in terms of the data

definition language of the INGRES system [EPST79]:

create EMP (ENO = i2, ENAME = c20, BIRTHYR = i2,
WORKS-IN = 12, ASSIGNMENT = 12)

create DEPT (DNO = i2, DNAME = c10, LOCATION = c10)
create JOB (JID = i2, TITLE = c20, SALARY = i4)
create ALLOC (DNO = i2, JID = i2, NUMBER = i2)
create QUAL (ENO = i2, JID = i2)
create MGR (DNO = i2, ENO = i2)

Associations are represented by foreign key attributes,

which are defined over the same domain as the identifier

of the range entity set (e.g., WORKS-IN, ASSIGN).

(2) University Database

Students, Professor, Courses, Dept, Times, Faculty,

Prereq, and Enrollment are each mapped to a single rela

tion. REGNO, SSNO, CNO, and TIMEID are the identifiers of

Student, Professor, Courses, and Times. The relational

schema is:

create STUDENTS (REGNO = c10, SNAME = c20, CLASSYR = 12
MAJOR = i2)

create COURSES (CNO = i2, TITLE = c30)
create PROF (SSNO = c9, PNAME = c20, RANK = c2)
create DEPT (DNO = 12, DNAME = c10, LOCATION = c10.

CHAIRMAN = c9) •
create TIMES (TIMEID = i2, TERM = c3, YEAR = 12,

TIME = c10)
create FACULTY (SSNO = c9, DNO = i2)
create PREREQ (CNO = i2, PRECNO = i2)
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create ENROLL (CNO = i2, SSNO = c9, TIMEID = 12,
REGNO = c10, GRADE = c2)

Note that in certain cases, the naming of the relational

attributes can be ambiguous. This is the case whenever a

relationship involves the same entity set more than once,

e.g. Prereq(courses,courses). A meaningful renaming of

the attributes can be suggested by the database designer.

1«3.2. Characterization of Relational Schemas

In this section, we show that the schemas that result

from an application of the mapping rules are in 4NF. Thus,

the intuitive claim that a 4NF relational schema minimizes

undesirable side effects is shown to be justified.

Our discussion of normal form theory closely follows

that of [DATE77]. Relational normal form theory has

evolved in an attempt to achieve the design of relations

which are free from undesirable properties. Central to the

theory is the concept of functional dependence (within a

relation). Given a relation R, attribute Y of R is func

tionally dependent on attribute X of R if for all time, a

single Y value is associated with each X value; i.e.,

there is a function (which can change over time) that maps

X values into Y values. The definition can be extended to

the case where X and Y are composite. Suppose that X is

composite, i.e. consisting of more than one attribute.

Then Y is fully functionally dependent on X if it is
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functionally dependent on X but not functionally dependent

on any subset of X.

Consider the relation EMP-DEPT of figure 3.3, con

structed from information about employees and their jobs.

ENAME, BIRTHYR, and DNO are functionally dependent on ENO.

DNAME and LOCATION ARE functionally dependent on DNO, and

by transitivity, also on ENO. The sample relation exhibits

several update anomalies. If Paul is fired (deleted from

the relation), then information about department 002 is

inadvertantly lost as well (uncontrolled side effect).

Changing the TOY department's location from SAN JOSE to

BERKELEY affects more than one tuple in the database.

Information about the TOY department is redundantly stored

(fragmentation of atomic operations).

We are now ready to define the relational normal

forms. A relation R is in 1NF if and only if all of its

EMP-DEPT

ENO ENAME BIRTHYR DNO DNAME LOCATION

001 I JOHN | 1950 { 001 i TOY i SAN JOSE

002 j JEFF j 1951 I 001 1 TOY ! SAN JOSE

003 ! PAUL ! 1949 ! 002 SHOE i BERKELEY

fig. 3.3 - Sample Relation
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underlying domains contain atomic values only. In other

words, the domains can not consist of aggregated values,

such as sets. EMP-DEPT is in 1NF. A primary key is a col

lection of attributes whose values uniquely identify the

tuples of the relation for all time. ENO is the key of

EMP-DEPT. A relation R is in 2NF if it is in 1NF and every

non-key attribute is fully dependent on the primary key.

Since every attribute of EMP-DEPT is functionally related

to ENO, the relation is in 2NF. If Y is functionally

dependent on X and Z is functionally dependent on Y, then

by transitivity, Z is functionally dependent on X. Such

dependencies can lead to update anomalies. A relation R is

in 3NF if it is in 2NF and every non-key attribute is

non-transitively dependent on the primary key. EMP-DEPT is

not in 3NF because of the transitive dependencies of DNAME

and LOCATION on ENO through DNO.

Note that in the above we have assumed that no rela

tion has more than one candidate key. The definitions can

be relaxed to include this case.

Unfortunately, 3NF relations do not avoid all update

anomalies. 4NF has been defined to eliminate these.

[FAGI77a] introduces the concept of multivalued depen

dence, which intuitively means that although a given X

value is not associated with a single Y value, it is asso

ciated with a well defined set of Y values. Functional
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dependence is a special case of multivalued dependence. A

normalized relation R is in 4NF if and only if whenever

there exists a multivalued dependency in R, e.g. between

attributes A and B, then all the attributes of R are also

functionally dependent on A. [DATE77] give the following

intuitive definition of 4NF:

A relation R is said to be in 4NF if and only if,
for all time, each tuple of R consists of a pri
mary key value that identifies some entity, to
gether with a set of mutually independent attri
bute values that describe that entity in some way.

For example, relation EMP is in 4NF: each EMP tuple con

sists of an ENO value, which uniquely identifies a partic

ular employee, together with four pieces of information

which describe the employee - employee name, birthyear,

department worked in, and job assigned. Furthermore, each

of the descriptive items is independent of the others,

i.e. they are not functionally dependent on each other.

The identifiers of entity sets will always coincide with

the concept of primary key. The identifier of a relation

ship, however, may be a superset of the primary key. For

example, the primary key of the single-valued relationship

relation MGR(DNO,ENO) is DNO, not (DNO, ENO).

We can show that violations of mapping rule (3)

always lead to violations of some normal form. In what

follows, it is important to precisely define what is meant

by assigning more than one independent design schema
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object to-the same relation of a relational schema.

We say that an entity set and a relationship overlap

if and only if the relationship is defined over the entity

set. Two relationships overlap on an entity set E if and

only if the subset of E that participates in the first

relationship is the same as the subset that participates

in the second, for all time. The relation formed from the

join of the relationship relations, on the attribute that

represents the identifier of the overlapped entity set,

can be decomposed without loss of information into the

original relations.

The normal form violations can be classified as:

A. Putting two primitive objects together in the same

relation which are unrelated by functions in the

design schema. This results in a relation which is

not in 2NF.

Example: Consider what would happen if the entity sets Job

and Dept were assigned to the same relation, e.g.,

JOB-DEPT. This relation could be formed by taking the

Cartesian product of JOB and DEPT from the the exam

ple of the previous section. The key of JOB-DEPT is

(JID, DNO), but not all attributes are fully func

tionally determined by the composite attribute, e.g.

JID functionally determines TITLE. This is a viola

tion of 2NF.
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B. Putting an entity set and a relationship involving it

within the same relation, i.e. the entity set and the

relationship are overlapped. This too results in a

2NF violation.

Example: Consider what would happen if the entity set Job

and the relationship Qual were assigned to the same

relation, e.g. JOB-QUAL. This relation could be

formed by taking the join of JOB and QUAL on the

attribute JID. The key of JOB-QUAL is (JID, ENO), but

not every attribute is functionally determined by

these, e.g. JID functionally determines TITLE. This

is a violation of 2NF.

C. Putting two functionally related entity sets within

the same relation. This is a 3NF violation.

Example: Suppose that the entity sets Emp and Job are

assigned to the same relation, e.g. EMP-JOB. This is

formed by joining EMP on ASSIGN to JOB on JID. The

key of EMP-JOB is ENO. However ENO functionally

determines JID, through the Assign association, which

in turn functionally determines TITLE. Thus,

although ENO functionally determines TITLE, this

functional dependency is transitive. EMP-JOB is not

in 3NF.

D. Putting two relationships together which overlap on a

common participating entity set. This will result in
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a violation of 4NF.

Example: Suppose that the relationships Alloc and Qual

have been assigned to the same relation, e.g. ALLOC-

QUAL. This can be formed from the non-loss join of

ALLOC on JID with QUAL on JID. The key of ALLOC-QUAL

is (ENO, JID, DNO). ALLOC-QUAL is already not in 2NF

because of the partial dependence of NUMBER on (ENO,

JID, DNO), i.e., (JID, DNO) functionally determine

NUMBER. Assume that Alloc does not have the property

Number, i.e. consider the projection of ALLOC-QUAL

on (ENO, JID, DNO). This relation is in 3NF, because

it is "all key," but not in 4NF. ALLOC-QUAL contains

two multivalued dependencies which are not func

tional: "eno on jid" and "dno on jid."

In the above, we have assumed that relationships can

only be assigned to the same relation if they overlap.

Assume that Alloc and Qual have been assigned to the same

relation, but do not overlap, i.e. the allocated jobs need

not be the same as those assigned. Then the above example

will result in a relation which is in 4NF but which can

not have been derived from a design model schema. Thus,

schemas derived by our mapping rules are strictly con

tained within the class of all 4NF schemas. The results

of our characterization of update anomalies are summarized

in figure 3.4.

-"\
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ENTITY RELATIONSHIP

ENTITY
i non-overlapping = 2NF non-overlapping = 2NF

association = 3NF overlapping = 2NF !

I non-overlapping = 2NF
RELATION- |
SHIP j overlapping

non-overlapping = 2NF i

= 2NF overlapping = 4NF !

fig. 3.4 - Summary of Normal Form Violations

Intuitively, functional dependencies not only

represent integrity constraints, but also relationships

which are modelled within the schema. Therefore we can

define a correspondence between the constructs of the

design model and functional dependencies. Let ID- be the
E

attribute derived from the identifier of entity set E, and

Pv be the attribute derived from the property mapping P

which ranges over the value set V. Then the following

functional dependencies are implied:

Property

Association

P: E —> V ==> IDP —> p..
E V

A: E1 —> E0 ==> ID- —> ID-12 E1 E2

S.V. Relationship S: E- —> E0 ==> ID- —> ID„
12 E1 E2

R c E X ... X E
Property n P: R —> V ==> ID- , ... , ID- —> P,

1 n

No other dependencies are implied except for those above

and their logical consequences.
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Within the relations derived by the mapping rules, it

is possible to show that the above dependencies imply that

the schema is in 4NF.

Theorem: A relational schema derived from a design model

schema using the mapping rules is in 4NF.

Proof: Because all value sets are defined over atomic

values, and designed relations are defined over domains

derived from these value sets, the relational schema must

be in 1NF.

A relation is derived from an entity set by defining it

over attributes for the identifier, properties, and asso

ciations of the entity set. The only dependencies are of

the form ID£ —> Py or ID£ —> ID£ . There is no possibil

ity for transitive, partial, or multivalued dependencies

in such a relation. Thus the relation is in 4NF.

A relation is derived from a single-valued relationship by

creating a binary relation over the identifiers of the

entity sets involved. The only functional dependency that

can hold is ID- —> ID- . Again the relation is in 4NF.

A relation is derived from a general relationship by

defining it over attributes for the identifiers of the

entity sets over which it is defined, together with attri

butes for the properties of the relationship. The depen-
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dencies are then of the form ID- , ... , ID- —> Pu. No
L1 S v

functional dependencies can hold among the ID- , because a
Li

relationship is defined over the Cartesian product of the

entity sets, i.e. a relationship instance can not be

identified by any proper subset of the entities which take

part. ID , ... , ID- form a key of the relation, and
111 bn

every non-key attribute is a function of the key. Suppose

that contrary to the assertion of the theorem, the rela

tion is not in 4NF. Then it is equal to the join of two

subrelations [FAGI77a]. Either the identifiers making up

the key are split between these two relations or they are

not. If they are split, then the relationship must also be

decomposible, contradicting the assumption that each rela

tionship in the design schema is indecomposible. If the

key resides in one of the component relations, then attri

butes of the relation can not be functions of the key,

contradicting mapping rule (2). QED.

The relational schemas derived by our mapping rules

are in 4NF. Because our mapping rules have been formulated

to preserve the design goals, and thus to control update

anomalies, this correspondence can be viewed as a justifi

cation of why 4NF schemas are desirable. If a 4NF schema

has not been derived by the mapping rules, it can still

exhibit update anomalies.
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In this section we have shown that there is a

correspondence between our designed schemas and 4NF sche

mas. This indicates why 4NF schemas are often well-behaved

under the update operations of the relational model. The

importance of the "one object per relation" rule was

illustrated by showing that in violating this rule, normal

form violations will occur. This indicates that a schema

designed without this rule would suffer from undesirable

update anomalies.

3.4. CODASYL Design

In this section, rules are formulated for designing a

"logical" CODASYL schema that preserves the design goals.

The CODASYL/DBTG proposals [C0DA71, CODA73, C0DA78]

include many aspects of physical design within the schema

definition language. This makes it particularly difficult

to choose what is meant by a logical schema. For the pur

poses of this section, we shall assume that a logical

schema consists of the specification of record types, data

items, keys (identifying data items), set types, and set

membership options.

Another difficulty with the CODASYL model is that it

has evolved over time. The newest proposal [CODA78] has

eliminated many of the shortcomings of the previous ones.

However most of the working implementations are based on

these earlier proposals. We describe the mapping rules for
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the 1973 proposal and indicate how these should be modi

fied for the 1978 proposal.

3.4.K Mapping Rules

The same requirements that were placed on the rela

tional mapping rules are again needed here. Creation and

destruction cf entities and relationship instances must be

accomplished with a single CODASYL operation. Information

about a primitive object should be stored in one place to

avoid fragmentation of updates. In addition, the facili

ties of the CODASYL model should be used to provide

automatic support for the insertion and deletion semantics

of relationships and associations, and the functionality

constraint of single-valued relationships and associa

tions.

The mapping rules are as follows:

(1) Each entity set has an explicit identifier.

(2) For each entity set E define a record type r(E). The

data items of r(E) are made up of the identifier of E

and the properties of E.

(3) For an association or single-valued relationship

R^E1..' E2^ where Ei * E2' define a sefc type s(R) with
r(E2) as the owner record type and r(E-) as the

member record type.
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(4) For a single-valued relationship R(E,E), define a

record type r(R) having no data items, and a pair of

set types s^R) and s2(R) forming a cycle between

r(E) and r(R). The assignment is depicted below:

(5) For a general relationship R(EV E2, ... , En) define

a confluent hierarchy, consisting of a record type

r(R) with only the properties of R as its data items,

and n set types s^R), s2(R), ... , sn(R) as shown

below:

s^R)

Rule (4) is necessary because the [CODA73] proposal

forbids sets in which the same record type participates as

both member and owner. This restriction has been lifted

in the newest proposal, and Rule (4) is no longer neces

sary.
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All the object types of the design model have been

mapped into object types of the DBTG data model. Two kinds

of record types have resulted from the mapping: those

which contain an identifier data item, and those which do

not. The former are called self-identified record types,

and the latter link record types. Self-identified record

types always represent entity sets, while link record

types represent relationships and, in the case of the 1973

proposal, self single-valued relationships.

We introduce the concept of total and partial set

membership. A record is a total member of a set type if

every record occurrence is a member of a set occurrence. A

member that is not total is said to be partial. The

membership of a link record type in any set type should be

total. The membership of a self-identified record type is

total in any set which represents an association and par

tial in any set which represents a single-valued relation

ship.

Natural enforcement for total membership is provided

by specifying mandatory/automatic for the removal/storage

class of the member subentry (more will be said about this

in section 3.4.2). If a sequence of set types form a

cycle, then one set is required to have manual specified

for the storage class. A cycle of associations can not

exist because of the constraints on the order of inser-
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tion. In the case of self single-valued relationships,

the link record is a total member of s (R) while r(R) is a

partial member of s2(R) and therefore has a manual storage

class.

A final mapping rule for DBTG schemas applies to the

correct assignment of set membership specifications:

(6) The membership of a link record in any set type is

total. The membership of a self-identified record

type in any set that represents an association or

relationship association is total, but not otherwise.

All set memberships that are not total are

optional/manual. All total memberships are

mandatory/automatic.

By placing all the information about an entity in one

place (within a single record instance, its data items and

set memberships) , we insure that the atomic operations of

creating and destroying an entity or relationship instance

are supported by the DML operations STORE and ERASE. A

property of an entity can be atoraically changed by a

MODIFY operation. An association can be changed by using a

MODIFY operation with "ONLY association set name MEMBER

SHIP" specified. Similarly, all the information about a

relationship instance is encoded in its associated record,

data items, and set memberships.



73

The choice of set memberships is crucial in achieving

the controlled side effects of the design model. The

domain of an association is represented by a record type

that is a mandatory/automatic member of a set with the

owner record type representing the range. The mandatory

specification for removal guarantees that if the owner

(range) is erased, then the member (domain) will automati

cally be erased. These deletions can propagate. In addi

tion, the automatic specification for storage class

guarantees that a member record will be placed in the

appropriate association set when first created. Support

for total membership is insured by making it impossible

for a member record instance to exist unless it partici

pates in the association set. The total functionality of

associations is achieved. Because CODASYL sets already

model functions [NIJS75], the optional/manual specifica

tion for sets which represent single-valued relationships

insures that partial functionality is maintained.

A general relationship is represented by its link

record type, which is a mandatory/automatic member of sets

which link it to the record types for the participating

entity sets. Again, the record for a relationship instance

can not be created unless the records of the participating

entities already exist. Also, an instance can not exist

unless it is a member of all the relationship sets.
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Further, the mandatory specification guarantees that a

relationship record will automatically be deleted if any

of the entity records which own it are deleted.

In summary, the derived CODASYL schema will preserve

the atomicity of update operations, avoid undesirable

side-effects, and guarantee the functionality of associa

tions and single-valued relationships.

Examples of CODASYL Design

(1) Employee Database

Each entity set is mapped to a single self-identified

record type, e.g. DEPT, EMP, JOB. The data items

represent the identifier and properties of each entity

set. The 1978 DDL specification is:

RECORD NAME IS DEPT

KEY DEPT-KEY IS DNO DUPLICATES ARE NOT ALLOWED
01 DNO TYPE IS BINARY

01 DNAME TYPE IS CHARACTER 10
01 LOCATION TYPE IS CHARACTER 20

RECORD NAME IS EMP

KEY EMP-KEY IS ENO DUPLICATES ARE NOT ALLOWED
01 ENO TYPE IS BINARY

01 ENAME TYPE IS CHARACTER 20

01 BIRTHYR TYPE IS BINARY

RECORD NAME IS JOB

KEY JOB-KEY IS JID DUPLICATES ARE NOT ALLOWED
01 JID TYPE IS BINARY
01 TITLE TYPE IS CHARACTER 15
01 SALARY TYPE IS BINARY

Similarly, each relationship is mapped to a single link

record type, e.g. QUAL, ALLOC:
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RECORD NAME IS QUAL

RECORD NAME IS ALLOC
01 NUMBER TYPE IS BINARY

The record types are interrelated by sets which represent

associations, relationship associations, and single-valued

relationships. In the first two kinds, the membership is

total, in the latter, the membership is partial:

SET NAME IS WORKS-IN
OWNER IS DEPT

ORDER IS PERMANENT INSERTION IS SYSTEM DEFAULT
MEMBER IS EMP

INSERTION IS AUTOMATIC RETENTION IS MANDATORY
SET SELECTION IS THRU

WORKS-IN OWNER IDENTIFIED BY KEY DEPT-KEY

SET NAME IS MGR
OWNER IS EMP

ORDER IS PERMANENT INSERTION IS SYSTEM-DEFAULT
MEMBER IS DEPT

INSERTION IS OPTIONAL RETENTION IS MANUAL
SET SELECTION IS THRU

MGR OWNER IDENTIFIED BY KEY EMP-KEY

SET NAME IS QUAL-EMP
OWNER IS EMP

ORDER IS PERMANENT INSERTION IS SYSTEM-DEFAULT
MEMBER IS QUAL

INSERTION IS AUTOMATIC RETENTION IS MANDATORY
SET SELECTION IS THRU

QUAL-EMP OWNER IDENTIFIED BY KEY EMP-KEY

SET NAME IS QUAL-JOB
OWNER IS JOB

ORDER IS PERMANENT INSERTION IS SYSTEM-DEFAULT
MEMBER IS QUAL

INSERTION IS AUTOMATIC RETENTION IS MANDATORY
SET SELECTION IS THRU

QUAL-JOB OWNER IDENTIFIED BY KEY JOB-KEY

SET NAME IS ALLOC-JOB
(similar to QUAL-EMP, QUAL-JOB)

SET NAME IS ALLOC-DEPT
(similar to QUAL-EMP, QUAL-JOB)
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The schema is depicted in figure 3.5. Several DDL clauses

have been omitted in the above because they deal more with

physical than logical design.

(2) University Database

Here we will only show the graphical form of the

schema (see figure 3.6). It should be obvious from the

preceding example how to derive the DDL specifications.

As in the relational case, the sets that are used to form

the confluent hierarchy for the relationship Prereq would

normally be assigned the same name. The designer can aid

the design system by specifying more meaningful names for

these sets.

3.4.2. Characterization of Networks

The CODASYL model, in spite of its complexity,

enables the designer to exercise a considerable amount of

fig. 3-5 - Data Structure Diagram for
Employee Database
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TIMESf

fig. 3.6 - Data Structure Diagram for
University Database

COURSES

PREREQ

control in designing his schema. The utility of the often

confusing array of features of the model become clearer in

light of the design goals and the design model.

The CODASYL set construct is a natural mechanism for

supporting functional interrelationships among record

types. This enables CODASYL to support the functional

relationships, including relationship associations, of the

design model in a straight-forward way. Thus the design

goal of automatic integrity support for functional rela

tionships can be achieved.

The CODASYL retention and storage class specification

for set membership provides a mechanism to support the
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semantics of update side-effects. Mandatory retention

means that once a record becomes a member of a set, it can

not be removed from the set without being deleted. This is

a consequence of the existence dependency implied by asso

ciations within the design model. Further, support is pro

vided to delete all members of a set when the owner is

deleted. Thus the membership options can be used to sup

port deletion side-effects. Optional retention implies no

such dependency among the owner and the members, and hence

no deletion side-effects are needed.

Automatic storage class insures that when a record is

entered into the database, it is made a member of each set

for which its automatic membership is specified. This

mechanism supports our insertion semantics, because a

record can not be entered into the database until its own

ers are already entered. By simultaneously specifying

mandatory/automatic, a record can never exist outside of

its automatic set memberships. This is precisely the

semantics implied by the association. Optional/manual sup

ports the semantics of the single-valued relationship. The

semantic utility of mandatory/manual or optional/automatic

are not clear. Update side-effects can be supported

automatically with the constructs of the CODASYL model.

Atomicity of update is a consequence of CODASYL's

choice of the record instance as the atomic unit of
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update. This provides support for the concept of a "primi

tive object." Further, the model supports the uniqueness

of identifiers by allowing a data item to be specified

with the option "duplicates not allowed."

In summary, several constructs of the CODASYL model

are more easily understood in terms of the concepts of the

design model. CODASYL sets implement relationships and the

set membership options specify the update semantics for

these relationships.

.3.5. Conclusions

The purpose of the design model is to provide an

unambiguous specification and description of the primitive

objects of a database. In this chapter, we have proposed

a system independent methodology for logical database

design that maps this description into either a relational

or DBTG schema, while preserving desirable update proper

ties of the original schema. Note that there is nothing

about this approach that limits it to these models above.

In addition, the designed schemas have been charac

terized and were shown to be in a form that avoids

anomalous behavior under update operations. In the rela

tional case, the subset of 4NF schemas that correspond to

a schema designed by the design rules is well-behaved

under update, thus indicating why 4NF schemas are desir-
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able. In the CODASYL case, features of the model are

clarified in terms of their utility in supporting the con

cepts of the design model.



CHAPTER 4

PHYSICAL DESIGN

4. Physical Design

j*._l. Introduction

The access path schema provides a useful interface

between the user's logical view of the data and its physi

cal implementation. In this chapter, we will describe an

implementation-oriented physical design methodology which

is largely independent of the specific database system and

data model. The implementation-dependent aspects will be

discussed in section 4.4.

The approach is to specify the requirements of the

design in terms of the support assigned to each logical

access path in the physical schema. A specification for a

particular access path cannot be made if it would conflict

with the specifications for other paths of the schema;

i.e., certain requirements cannot be met simultaneously.

The user's expected access patterns are used to direct the

design process. A system specific mapping is then invoked

to implement the access path schema in terms of the

storage structures available in the target system.

81
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4.2. Algebraic Structure for Physical Design

4.2.U Storage Structure Properties and Constraints

For the purposes of implementation-oriented design,

we shall use the logical access paths of the design

schema. An access path schema will be used to represent

those paths actually chosen for support. Properties of an

access mapping can be formulated to capture the desirable

characteristics of traversing the mapping in either the

functional or inverse functional direction. Essentially,

we are concerned with how data should be placed and physi

cally interconnected in order to achieve fast access among

data objects. Consider the schema function f: A —> B.

The following properties of the mapping can be defined:

(1) Evaluated: given a in A, f(a) can be found without an

exhaustive scan of B, i.e. the cost to access f(a)

is less than the cost to access every element of B.

Example: The function WORKS-IN is "evaluated" if a

fast access path exists between EMP and DEPT, e.g. a

child to parent pointer from EMP to DEPT. The pro

perty mapping ENAME is "evaluated" if name values are

stored in a field within the record that represents

the individual employee.
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(2) Indexed: given b in B, f~1(b) can be found without an

exhaustive scan of A.

Example: WORKS-IN is "indexed" if a fast access path

exists between DEPT and EMP, e.g. a linked list of

EMP records within the same DEPT. ENAME is "indexed"

if the file of employees is inverted on the ENAME

field.

(3) Clustered: the elements of f"1(b) are in close prox

imity, i.e. the cost to access the elements in the

inverse is less than the cost to access an arbitrary

subset of the same cardinality.

Example: WORKS-IN is "clustered" if EMP records

within the same DEPT are placed together, e.g. EMP

sorted by the WORKS-IN attribute or WORKS-IN set

membership. ENAME is "clustered" if the file is

sorted on employee names.

(4) Well Placed: a and f(a) are stored in close proxim

ity, i.e. the cost to access both is less than the

cost to access each of them separately.

Example: WORKS-IN is "well placed" if EMP records

with the same DEPT are placed near the associated

DEPT record. ENAME is "well placed" if the file is

clustered on name, with common name values factored

out of the records, i.e. name values are removed by
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compression.

We assume that each object of the schema, be it a

value, an entity, or a relationship instance, is assigned

to a single stored record. Replication, e.g. the replica

tion of data item values to record instances, will be made

explicit by introducing new objects into the schema. The

usual concept of "record" can be represented as a concate

nation of the stored records of the values that make up

the fields of the record. Our approach does not preclude

the record segmentation and allocation techniques

described in [SCHK78]. Given this assumption, certain

implication rules can be formulated:

(i) well placed ==> evaluated

By placing f(a) near a, a fast way to get from the domain

to the range is automatically provided. It is no longer

necessary to scan the entire set of range objects to find

the desired one.

(ii) clustered s=> indexed

By placing the elements of f"1(b) together, an exhaustive

scan of all the domain objects of f is not necessary. Once

an object in the cluster has been found, the entire clus

ter has been found.

(iii) well placed ==> clustered
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Let b r f(a). Well placed means that a and b are stored

together. Since there is one record for each b instance,

all A objects with b in the range of f will be placed near

b and hence near each other. Thus clustering is achieved.

Evaluated need not imply indexed and vice versa. For

systems without index storage structures, it is possible

to have a mapping which is evaluated but not indexed. For

example, an employee's name may be stored in the same

record that represents the employee, with no storage

structures available to access the record via an employee

name. The opposite is possible too. Some inverted file

systems allow access to a record through a value associ

ated with the record that is not accessible from it. For

example, an employee's name may not be stored with the

record that represents the employee, but an index on

employee name is available.

The implication rules can be used to impose a partial

ordering among the properties (properties are denoted by

their first letter):

W > C > I

: W > E

A label is an assignment of properties to an edge of the

integrity schema. There are six distinct labels: W,

<C,E>, <I,E>, C, I, and E. We desire to generate schemas
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with the maximum possible support for each path. There

fore, we assume that at least each access path is

evaluated. The task then is to assign one of the first

three labels, denoted as "W", "C", and "I", to each access

path of the logical schema. This indicates the require

ments for data placement and interconnection to be real

ized within the physical schema.

A labelling is an assignment of a label to each edge

of the schema, denoted as an n-tuple (1 , 1 ... , 1 )

where n is the number of edges in the schema. The assign

ment is subject to constraints which are shown below. The

partial ordering among properties induces a partial order

ing among labels as well: "W" > "C" > "I". A partial ord

ering can be defined for labellings. Let L. and Lp be two

labellings over the same schema. We say that L- = Lp if

for each edge in the schema, L^s assigned label is the

same as L2's assigned label. We say that L- > L- if for

each edge in the schema, either L^s assigned label is the

same as L2's or L2's label > L^s, and L1 i Lg. Note that

under this definition, some labellings are incomparable,

e.g. L1 = ("W",»C") and L2 = ("C",»W"). A maximal label

ing is a labelling L for which there exists no labelling

L' such that L' > L.

An obvious approach to achieving a maximal labelling

is to assign "W", the label that represents the highest
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degree of support, to each edge. Unfortunately, certain

labellings represent a choice of properties which can not

be supported simultaneously within a schema. There are

four constraints which conflict-free labellings must meet:

(i) cluster constraint:

if pi? it ru

It is not possible to label more than one outedge of a

node with a "C" or "W". Clustering places together all

domain objects which share the same range object. It is

not possible to partition the domain on more than one

function and still achieve this advantageous placement.

Note that 1-to-1 properties do not cause a conflict

because a 1-to-1 function partitions the domain objects

into clusters of size one. This can always be supported

regardless of additional clustering.

(ii) placement constraint:

nunW' huhW'

It is not possible to label more than one inedge of a node

with "W". Well-placement places clusters of domain objects

with a common range object near that range object. It is



88

not possible to achieve this advantageous placement simul-

taneously for domain objects from more than one function.

(iii) path constraint:

W' tim

B

It is not possible to simultaneously label an inedge of a

node "W" while labelling an outedge "C". The placement of

B object clusters near their associated A objects destroys

the advantageous clustering of the A objects. 1-to-1 func

tions do not cause the constraint to be violated.

(iv) implied constraints:

"W"

iim ti m

Certain compositions of functions and their properties

result in the violation of one of the above constraints.

For example, this schema would cause a violation of an

implied cluster constraint.

4.2.2. Conflicts and Replication

A conflict is a violation of a cluster, placement, or

path constraint. A labelling algorithm is permitted to
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introduce conflicts into a labelled schema, but these must

eventually be resolved by replicating schema objects;

i.e., new objects are created which are copies of existing

schema objects. The degree of a schema is the number of

conflicts that an algorithm may introduce during label

ling. The expansion factor of a schema is the ratio of the

size of a replicated schema to the original schema size.

Replication can also be controlled by placing a limit on

the expansion factor.

A cluster conflict can be resolved by one of the fol

lowing methods:

(A) A "I" A' (B) A "W" C

In (A), a copy of the domain object is made, and both the

original and the copy are clustered on the appropriate

ranges. In (B), a copy of the range is made and placed in

1-to-1 correspondence with the original domain object.

Further, the domain and the copy are placed near each

other. To illustrate this, consider the entity set employ

ees and the value set integers, interrelated by the pro

perty function age. Schematically, the following situa

tion can arise:



90

employees

The effect of type (B) cluster resolution is to replicate

the age values so there is one age value per employee:

employees

A placement conflict is resolved analogously:

(A) A "I" A' (B) A "I" A'

"W" "W"

In addition, path conflicts can also be resolved via

replication:

urn

To simplify the labelling algorithms, we shall avoid path

resolution by enforcing all path constraints.

The labelling schemes for resolving conflicts have

been chosen to avoid implied constraints. A 1-to-1 edge
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can only appear as either an identifier property or as the

result of replication. Thus implied constraints are

guaranteed to be avoided.

A conflict can be resolved through replication. The

degree of a schema is therefore a measure of the amount of

replication we are willing to tolerate during the label

ling process. Replicated information introduces increased

costs for storage and update, while reducing retrieval

costs. For example, consider a resolved cluster conflict

among EMP, DEPT, and JOB:

Without replication:

works-in "W"

DEPT

With replication:

works-in "W"

DEPT

EMP

EMP "I" EMP'

"I" assigned

JOB

"W" assigned

JOB

Further, we assume that all property mappings of EMP are

replicated to EMP'. Access from JOB to EMP' to access

these properties is improved in the schema with replica

tion. Meanwhile, access from JOB to DEPT, or to any object

via a non-property edge, is not impaired and is at no

worse cost than in the original schema. However, updates

to properties of EMP, or the insertion or deletion of EMP

objects, must be propagated to all copies. This can result
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in a considerable update overhead. If the frequency of

retrieval from JOB to properties of EMP exceeds the fre

quency of updates of EMP, then replication is cost-

effective.

Certain types of replication incur only storage cost.

Replication of property values to domain objects can be

accomplished without incurring an additional update cost,

although there is an increase in storage requirements.

When modifying a property value, the relationship between

the domain and the value set is changed, rather than the

value itself. For example, if a department's location is

changed from "San Jose" to "Sunnyvale", then the name of

the location has not been recoded (San Jose has not been

renamed to Sunnyvale), but rather LOCATION now maps into a

different value. Thus updates need not be propagated to

replicated location values.

The choice of which type of replication to use is

based on update frequencies and object cardinalities. For

cluster resolution, the replicated objects are placed in

1-to-1 correspondence with the A objects. Because the same

number of objects are created in either method, the choice

then depends on which of A or C is updated most fre

quently. Further, under type (B) replication, each update

to Cmust be propagated to -j-jjAj replicates, where n(X) is
the number of X objects in the schema. If U. and U-. are
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the update frequency for objects A and C respectively,

then type (A) is chosen when U. * 1 < ur * ^t4t> and vice

versa for type (B). Type (B) is always chosen to resolve

conflicts involving property edges, because the update

cost in that case is zero.

It is never advantageous to choose type (B) replica

tion to resolve placement conflicts. A objects are placed

in 1-to-1 correspondence with C objects, and the func

tional relationship implies there are more C objects than

A objects. Thus more data must be replicated. Further,

since A objects are replicated in both types, the same

update frequencies apply. Thus type (B). will incur higher

update costs.

We envision replication being used incrementally.

First, a design is formulated with no replication, i.e.

degree = 0. Then the degree is increased, and the design

is recomputed. The designer must evaluate the increased

retrieval efficiency versus the increased update costs.

For highly retrieval oriented databases, replication is a

useful technique for improving performance. In general,

this may not be the case.

4^3. Labelling Algorithms

Because not all labellings are comparable, there may

be many maximal labellings for the same schema. Rather
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than generate all the possible maximal labellings for a

given schema, usage information can be use to restrict the

enumeration to those that best support the expected usage

patterns of the database. In this section, we present an

algorithm for generating a maximal labelling that speci

fies superior support for the access paths most heavily

travelled. Labelling can be formulated in terms of a pure

integer linear program which can be solved by standard

branch and bound methods [TAHA75]. Because of the poten

tially high computational costs associated with this

approach, a hill-climbing algorithm is presented which

procedurally assigns labels to edges. .The latter is subop-

timal in that only a local optimum is found. Throughout

this section, we shall limit our formulation so that path

conflicts are avoided.

4.3.2. Integer Programming Formulation

Labelling can be viewed as an assignment problem in

which we assign the labels "W", "C", or "I" to each edge

of the integrity schema subject to the constraints and the

allowable number of placement or cluster conflicts that

may be made during the label assignment, i.e. the degree

of replication. The latter must be resolved using the

techniques of the previous section.

The input to the algorithm is a graphical representa

tion G = (V,E) of the schema to be labelled, a ranking of
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the edges (access mappings) according to frequency of

traversal, and the degree of replication N. From this

information, an integer linear program can be formulated.

For each edge i, we introduce the decision variables

Wi and Ci which are restricted to be zero or one. If W. is

set to one, then the edge has been labelled "W": if C is
9 1

one, then the edge has been labelled "C". Otherwise, both

variables are zero, and the edge has been labelled "I".

The objective function maximizes a weighted sum of

the frequencies of the edges labelled "W" or "C". A viola

tion of a type (iii) constraint can be resolved in one of

two ways:

HUH UQH

(iii) o > o > o

nyit m j it

==> (a) y - ^

ii rn " C"

==> (b) o > - >

•c

•o

We must be able to quantify the tradeoff between labelling

an edge "W" or "C".

Let k^ and k2 be two constants which represent the

tradeoff between accessing an object via an edge labelled

"W" and one labelled "C". The advantage of a well placed

edge is that both the range and domain of the mapping

reside near each other in secondary memory. Thus in

accessing one, the other is accessed for "free." This
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savings in processing time is considerable because the

time to access a new object from secondary storage is

often tens of milliseconds, versus tens of microseconds to

k

2

time to process a page * gen

eral, k1 >> k2. In the following, we assume that k1 = 30
and kp = 1.

If f^ is the traversal frequency of edge i then the

objective function is:

Max k 2 f,W. + k5 2 f,C.
h<E 1 1 2j<E J J

Each of the labelling constraints can be reexpressed

in terms of linear constraints in M± and C.. The first set
insures that no edge may simultaneously be labelled "W"

and "C" :

for each i«E, M± + C. < 1

The cluster constraints can be represented by a set

of inequalities that make sure that at most one outedge of

a given node may be labelled "W" or "C":

for each j<V, 2 C. + W. < 1
i«outedge(j) x

The placement constraints can be represented as a set

of inequalities that makes sure that at most one inedge of

a given node may be labelled "W":

access data already in storage. The ratio —• is the same
2

as time to access a page + time to process a page
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for each j«V, 2 W. < 1
i«inedge(j)

The path constraints are represented by a set of ine

qualities that insures if an inedge is labelled "W", then

no outedge may be labelled "W" or "C":

for each j«V, 2 W. + 2 W.+C. < 1
Kinedge(j) x k«outedge(j) K K ~"

At first glance, the number of constraints appears to

be rather large, i.e. IE! + 3!V!. However constraints of

the second and third type are only required if the node

has more than one outedge or inedge respectively. Many

nodes do not, e.g. those that represent value objects. The

fourth type is only needed for nodes with both inedges and

outedges. Again, value nodes can be ignored. Further,

identifer edges can be ignored in the formulation, because

such edges can always be labelled "W".

Also, the fourth type of constraint is a linear com

bination of the second and third types. This is only

because we have not yet included the degree of replication

in the formulation. For each node j, we introduce the

decision variables X. 1̂, x.^t constrained to be non-
negative integers, and we modify the constraints as fol

lows :

for each j<-V, 2 (C. + W,) - X. '< 1
i«outedge(j) x x J»1 -
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for each j«V, 2 (W,) - X. 0 < 1
Kinedge(j) x J'* ~~

for each j < V,

2 (W.) + 2 (C. + W.) - X. . - X, 0 < 1
Kinedge(j) x Koutedge(j) x x Jj1 J'^ "*

The X. k variables are used to count the number of viola

tions of the cluster and placement constraints. An addi

tional constraint must now be added:

2 X. - + X. 0 < N
j«V 3f ' 3'd ~

where N is the degree of replication.

The complete formulation is reproduced here:

Max k 2 f,W. + k0 2 f.C.
'i«E 1 x dj<E J J

such that

for each i < V,

wi + ci £ 1
for each j < V st. |outedge(j)| > 1,

for each j « V,

2 (C, + W,) - X, , < 1
edge(j)

for each j < V st. |inedge(j)| > 1,

Koutedge(j) x x 3' l

2 (W.) - X, p < 1
Kinedge(j) 1 3fd "

2 (W.) + 2 (W. + C„) - X< - - X. - < 1
i«inedge(j) x k«outedge(j) K * 3'* J»^~



1 ± ci»wi > Of integer

2 X. + X < N
j«V 3*' 3>d
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Xj»1,Xj 2- °' inteSer
The optimal solution can be found by applying one of the

many branch and bound algorithms developed for solving

integer programming problems. However, further study may

discover an algorithm which is particularly well-suited to

solving the kinds of formulations found in practise.

The formulation requires only a minor change if path

conflicts are permitted. Type (ii) and (iii) constraints

are dropped, and X. ^ and Xj>2 are combined into a single
variable X^, constrained to be non-negative and integer.

Our approach can be illustrated with an example. Con

sider the following subschema of the Employee database:

Dfc?T

A ranking of edges and their frequencies is:



1) WORKS-IN, fr<equency = 30
2) ASSIGN, 21

3) TITLE, 15
4) ENAME, 10
5) DNAME, 8
6) LOCATION, 7
7) SALARY, 5
8) MGR, 5
9) BIRTHYR, 1
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This ranking could have been derived from a set of user

queries in conjunction with an indication of relative fre

quency, or simply specified by the designer. For a degree

of replication = 0, the formulation becomes:

Max 30 J 2 f,W, i + 2 f .C.
!i<E x 1! J«E J 3

St.

WW0RKS-IN + CW0RKS-IN £ 1

WASSIGN + CASSIGN - 1

WTITLE + CTITLE - 1

WENAME + CENAME £ 1

WDNAME + CDNAME £ 1

WL0CATI0N + CL0CATI0N - 1

WSALARY + CSALARY £ 1

WMGR + CMGR £ 1
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WBIRTHYR + CBIRTHYR £ 1

WENAME + CENAME + WBIRTHYR + CBIRTHYR + WWORKS-IN +

CWORKS-IN +WASSIGN +CASSIGN " XEMP,1 i 1

WDNAME + CDNAME +WLOCATION + CLOCATION + WMGR +

CMGR " XDEPT,1 £ 1

WTITLE +CTITLE +WSALARY +CSALARY "XJOB,1 <1

WWORKS-IN + WDNAME + CDNAME +WLOCATION +

CLOCATION +WMGR +CMGR " XDEPT,1 £ 1

WMGR +WENAME +CENAME +WBIRTHYR + CBIRTHYR +

WWORKS-IN +CWORKS-IN +WASSIGN +CASSIGN "XEMP,1 <1

WASSIGN + WTITLE + CTITLE + WSALARY +

CSALARY " XJOB,1 I1

XEMP,1 + XDEPT,1 + XJOB,1 i N
The program can easily be solved using Balas' algorithm

for zero-one integer programs [TAHA75]. The resulting
labelling is:

WW0RKS-IN = WTITLE = 1
all others 0
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WORKS-IN is the highest frequency edge. By labelling

it "W", the outedges of DEPT and the other outedges of EMP

are forced to be labelled "I". This allows the most fre

quently used outedge of JOB, i.e. TITLE, to be labelled

"W" .

If the degree is made 1, then the two highest fre

quency edges, WORKS-IN and ASSIGN, can both be labelled

"W", even though this introduces a cluster conflict. All

other edges are forced to be labelled "I" due to path and

cluster constraints.

4.3.2. Suboptimal Labelling Algorithm

In general, the integer programming formulation of

the previous subsection is a costly method for determining

an optimal labelling. In this section we present another

algorithm for labelling which is more procedural, but is

not guaranteed to find an optimal solution. It differs

from the previous algorithm mainly in that conflicts are

resolved as soon as they occur.

The input to the algorithm is: a schema G = (V,E) to

be labelled, a ranking of edges and their associated fre

quencies, update frequencies and object cardinalities for

conflict resolution, and a limit L on the expansion factor

to control replication. The algorithm has been formulated

to always enforce path constraints.
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The algorithm proceeds in two phases. The first phase

produces a conflict-free labelling. It ignores all iden

tifier edges, because these can always be labelled "W".

Initially, all edges are labelled "I". The edges are

visited in frequency order and are labelled "C" as long as

the labelling does not cause a cluster conflict. Edges

that are labelled "C" are again visited in frequency order

and are labelled "W" if no placement conflict would

result. At this point, the schema is free of placement and

cluster conflicts, but not path conflicts. These must be

eliminated.

A path is defined as the longest sequence of distinct

edges, adjacent in the functional direction, such that

each adjacent pair of edges causes a path conflict. To

derive a "good" final labelling, the entire path is exam

ined, rather than each pair of conflicting edges. In the

following, we show that paths can be resolved indepen

dently.

Lemma 4.1 - After phase 1, at most one path can pass

through a given node.

Proof: We must show that no node can appear as an internal

node on more than one path. After phase 1, the schema is

free of placement and cluster conflicts. Thus at most one

outedge of any node is labelled "W" or "C" and at most one

inedge is labelled "W". Then at most one path can pass
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through a node.

Theorem 4.I - Conflict-free labellings can be derived for

paths independently.

Proof: By lemma 4.1, it is not possible for two paths to

cross. In that case, the order in which the paths are

resolved can not affect the final labelling.

Lemma 4.1 does not exclude the case in which two paths

form a "T" intersection as follows:

o

A HUH

"W" "C"

o > o >

t
HUHW'

If the paths are relabelled independently, four final

labellings are possible:

(A)

"C" "C"

O > 0 > I)

o

i\ "C"

(B)

"C" "C"

o > o > 6

o

'< HJII

yv, huh



(C)

huh ii jH

0 > 0

o

A "un

a "C"

(D)

nyii njtr

0 > 0 > ()

o

A hjii

A nyii
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In the four situations above, the relabellings can take

place along each path independently. A conflict-free

labelling is guaranteed, and no edge can be improved

without introducing a new conflict. QED.

However, in one case the labelling may not be maxi

mal. Consider what labelling (B) would look like for a

path intersection which forms an "L":

»C" "C"

0 > O > 0

J\ HJII

o

A "W"

In this case the intersecting edge on the horizontal path

can be improved by relabelling it "W" without introducing

a new conflict. This situation can only happen for paths

which intersect at a value node:

Lemma 4.2 - After phase 1 labelling, every non-value node

has one outedge labelled at least "C" (i.e. the clustering
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outedge).

Proof: Every non-value node must have at least one non-

identifier outedge. Then the lemma is an obvious conse

quence of the cluster constraint. QED.

Thus, a path cannot terminate with a non-value node.

We can show that the above situation is the only one in

which edges can be improved without conflict after phase 1

and path resolution. The following lemmas are useful:

Lemma 4.3 - After phase 1 labelling and path resolution,

no outedge labelled "I" can be improved without causing a

new conflict.

Proof: By lemma 4.2, every node with outedges has one

outedge labelled at least "C". Every other outedge must be

labelled "I". Either a path passes through the node or it

does not. If not, then the clustering outedge can never be

relabelled "I". Thus no other outedge can be improved

without causing a cluster conflict.

Suppose that the node is on a path. Then some inedge must

be labelled "W" before path resolution. Afterwards, either

the clustering outedge is relabelled "I" or the "W" inedge

is relabelled "C". In the first case, an "I" outedge can

not be improved without causing a path conflict. The

second case is identical to the above. QED.
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Lemma 4.4 - After phase 1 labelling, and before path reso

lution, if an inedge of a node is labelled "C" then some

other inedge must be labelled "W".

Proof: The algorithm improves each "C" edge as long as the

placement constraint is not violated. If an edge can not

be improved, then there must be another inedge already

labelled "W". QED.

We are now ready to present the main result:

Theorem 4.2 - After phase 1 labelling and path resolution,

only the inedges of value nodes are candidates for

improvement without introducing a new conflict.

Proof: We consider the cases for non-value nodes. There

are three:

(1) A path passes through the node - By theorem 4.1, path

resolution for connected nodes on different paths can be

performed independently. Assume that these have been

resolved. By lemma 4.3, no edges labelled "I" before path

resolution can be improved. Because the node is on a path,

one inedge is labelled "W". After path resolution, if this

inedge is relabelled "C", then the clustering outedge is

still labelled at least "C". Therefore, no "C" inedges can

be can be improved without violating a path constraint. If

the inedge remains "W", then no "C" inedge can be rela

belled "W" without causing a placement conflict. Thus, no
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inedges or outedges can be improved.

(2) The node is the source of a path - The node can have

no inedge labelled "W». By lemma 4.4, it can have no

inedge labelled "C" either. Then by lemma 4.3, no inedges

or outedges can be improved, because all such edges,

except for the clustering outedge, are labelled "I".

(3) The node is not on a path - The $ame argument as in

case (2) applies. QED.

To resolve a path conflict, the path must first be

detected. Lemma 4.1 guarantees that at most one path

passes through any node. If a node is on a path, i.e. it

has an inedge labelled "W" and an outedge labelled "W" or

"C", then the path is extended in either direction until

the longest path of conflicting edges is found. Because an

edge can only appear on a single path, once an edge has

been associated with a path, it is excluded from further

consideration. Thus it is sufficient to visit each node in

the schema to unambiguously determine all paths.

The next step is to generate all conflict-free label

lings for each path. The labelling that contributes the

most to the objective function is chosen as the final

labelling. These can be generated recursively, starting

with paths of two edges. The possible resolved labellings

are [W,I] and [C,W] (we assume that the path and its
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labelling are written from left to right). To extend these

to higher degree, the last label in each previously gen

erated labelling is examined. If the label is "I", the new

labelling becomes C..,I,W]. If it ends in "W", two new

labellings are added: [...,W,I] and [...,C,W]. Note that

it may be the case that the very last edge in a path is

labelled "C". Then the final new labelling would be

C...,C,C]. In this way, all path conflict-free labellings

of a given degree are derived. It is possible to generate

these beforehand for common path lengths.

The second phase introduces replication and relabels

those edges which can be improved without introducing new

conflicts. Each edge is visited in frequency order. If it

is labelled "I", it is temporarily relabelled "C". The

relabelling stands as long as (1) no new conflicts are

introduced, (2) a cluster conflict is introduced and the

expansion factor does not exceed the limit, or (3) a path

conflict has been introduced and this edge has not been

involved in a previous path conflict. The latter case is

included to insure that the labelling does not oscillate.

The cluster conflict is immediately resolved by choosing

one of the replication methods of the previous section,

given the update frequencies and object cardinalities.

Next, the edge is relabelled "W". This relabelling

holds as long as (1) no new conflict is introduced, (2) a
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placement-conflict is introduced and the limit has not

been exceeded, or (3) a path conflict has been caused and

this edge has not been involved with a path conflict

before. The placement conflict is immediately resolved by

introducing replication. The complete algorithm appears

in. figure 4.1.

By performing conflict and placement resolution "on

the fly," we guarantee that no node can appear on more

than one path during path resolution. Theorem 4.1 is still

valid after phase 2.

The algorithm will be illustrated with the example of

the previous subsection. It proceeds by first labelling

WORKS-IN with "C". ASSIGN, ENAME, and BIRTHYR are forced

to remain labelled "I" due to cluster constraints. TITLE

is labelled "C", causing SALARY to be labelled "I".

Finally, DNAME is labelled "C». All edges labelled "C" can

be relabelled "W" because the schema can not have a place

ment conflict. The schema before path resolution is:

H-r«
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LABELSCHEMA:

/* Phase 1 Labelling */
all edges are initially labelled "I"
FOR EACH edge in frequency order DO

IF no cluster conflict THEN label <- "C"
FOR EACH edge labelled "C" in frequency order DO

IF no placement conflict THEN label <- "W"

/* Path Resolution */
RESOLVEPATHS

/* Phase 2 Labelling */
FOR. EACH edge in freque

IF edge is labelled
"label <- "C"
IF path conflict

THEN label <-
ELSE

IF cluster

choose r

IF expan
THEN

ELSE
IF^edge is labelled

'"label <- "W"
IF path conflict

THEN label <-
ELSE

IF^placemen
"choose r
IF expan

THEN

ELSE

/*~Path Resolution */
RESOLVEPATHS

ncy order DO
"I" THEN

& edge appeared on resolved path
ii j ii

conflict THEN
eplication method
sion factor > L
label <- "I"

replicate to resolve conflict
"C" THEN

& edge appeared on resolved path
"C"

t conflict THEN
eplication method
sion factor > limit
label <- "C"

replicate to resolve conflict

RESOLVEPATHS:

/* Find the paths through the schema,
to eliminate path conflicts */

and relabel them

FOR EACH node n DO
T <- GETPATH(n)
IF L i 6 THEN

'GENLABELS(length(L), labels)
evaluate each 1 < labels
maxlabel <- maximum cost 1
^relabel the schema using maxlabel
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GETPATH(n,L):
/* Find the path thru node n and place its edges in L.

L is a sequence and ,'| is the concatenation operator.
Once an edge has been visited, it is removed from E. */

L <— ti>

"W" "W" "C"
IF^o—>—o—>—o THEN

i <- n

WHILE there is an outedge(i) < E labelled "W" DO
|L <- L !J (outedge(i)}
E <- E - {outedge(i)}

Li <- range(outedged))
IF there is an outedge(i) < E labelled "C" DO

|L <- L J{ (outedge(i)}
L.E <- E - {outedge(i)}

j <- n

WHILE there is an inedge(j) < E labelled "W" DO
L <- L j J {inedge(j)}
E <- E - {inedge(j)}
j <- domain(inedge(j))

L -

GENLABS(n,labels):
/* Generate all conflict-free path labellings of length n

and store in labels */
IF n = 2 THEN

labels <- {[W,I],[C,W]}
ELSE

l3ENLAB(n-1,labels')
FOR EACH 1 < labels DO

IF l[n-1] = "I" THEN
flCn] <- »W"
Ilabels' <- labels' U
,SE IF ltn-1] = "W" TH]ELSE IF ltn-1] = "W" THEN
l[n] <- "I"
labels' <- labels' U {1}
ltn-1] <- "C"
lCn] <- schema's original label of ntn edge
^labels' <- labels' U {1}

labels <- labels'

fig. 4.1 - Labelling a Schema

The path consisting of WORKS-IN and DNAME must be

resolved. The labelling [W,I] maximizes the objective

function and is chosen. The maximal, conflict-free schema



113

of degree 0 and expansion factor 1 is:

If the expansion factor limit is made greater than 1,

then the algorithm will attempt to label ASSIGN with a

"C", causing a cluster conflict with WORKS-IN. Assume that

UEMP = 50' UJOB = 10' n^EMp) = 1000, and n(JOB) = 100. The
type (A) is chosen because because u\,1Jf, < U * n(EMP)

EMP uJ0B n(JOB) *
The size of the schema has increased by n(EMP) *

CSIZE(ENO) + SIZE(ENAME) + SIZE(BIRTHYR)] where SIZE(X) is

the number of bytes needed to encode an object X. If the

expansion factor does not exceed the limit, the schema

becomes:



114

u^-h

ASSIGN can be immediately relabelled "W", causing a

path conflict with TITLE. For simplicity, we assume that

no further replication is possible without exceeding the

limit. Even though a path conflict is introduced, LOCATION

is relabelled "W" because it has not been previously

involved in a path conflict. The schema before final path

resolution is:
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The labelling [W,I] maximizes the objective function

for both paths. The final maximal, conflict-free label

ling of degree 1 is:

i*»it- Implementing a Schema

Up to this point, the design has been independent of

the actual data model and system. In this section we

briefly discuss the considerations involved in mapping a

labelled schema into either relational or DBTG storage

structures. We use the relational structures supported by

INGRES [STON76] and those supported by the Data Structure

Description Language of the 1978 CODASYL Journal of

Development [CODA78].

The quality of the mapping depends on the detail of

usage information specified. In the following, we assume

that information has been specified at the level of the
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previous section. All property mappings are at least

"evaluated" by first replicating property values and then

placing them together within the single record that

represents the domain object. In the relational case, we

are forced to assume that the schema is of degree 0

because of the difficulty in supporting replication in the

relational model. Support for schemas which involve non-

value node replication is illustrated in the CODASYL case.

4..4.JL Relational Implementation

INGRES provides three choices for the primary struc

ture of a relation. It can be stored sequentially but

unstructured (heap), stored sequentially and sorted and

indexed on an attribute (ISAM), or hashed on an attribute.

In the latter case, collisions are resolved by hashing to

buckets. Thus tuples with the same attribute values are

clustered. The secondary structure of a relation consists

of optional indexes on the attributes.

Physical access paths between relations are not sup

ported in INGRES. These are represented within the logi

cal schema by foreign key attributes, i.e. attributes

whose domain is the same as a key attribute of another

relation. Thus the frequency of traversing the identifier

mapping of an entity set must include the frequencies of

all association mappings with the entity set in the range.

This is represented by inedges in the integrity schema
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graph. Further, interrelational placement is not sup

ported. Tuples from different relations can not be placed

near each other. Thus "W" edges and "C" edges are treated

the same.

Due to the constraints of the labelling, at most one

non-identifier outedge of a node can be labelled "W" or

"C". Normally this edge should be chosen as the basis of

the relation's primary structure. However, if the sum of

the frequencies of all inedges (associations) plus the

frequency of the identifier edge exceed that of the edge

labelled "W" or "C", then the identifier is chosen. In any

case, the chosen edge will represent either an association

or a property. In the former case, it is represented

within the relational schema by a foreign key attribute;

in the latter, by a value attribute. We still must choose

whether to base the primary structure on ISAM, which sup

ports range access, or HASH, which supports only equality

access. Information on how the access path is used will

aid in making this determination. Identifier edges are

frequently used in equijoin clauses of relational queries,

thus HASH is the appropriate choice. Other property edges

are frequently used in range clauses, e.g. AGE > 30, thus

ISAM is the appropriate choice, although HASH should be

used if equality access predominates. In the absence of

such information, we always elect to choose ISAM struc-
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tures. Edges labelled "I" are supported by secondary

indices. Rules to determine a relation's structure are

given in figure 4.2.

Consider the maximal, conflict-free schema of degree

0 of the previous section. Applying the rules of figure

4.2 results in the following schema:

Algorithm RelationalPhysicalDesign
FOR EACH non-value node n < V DO

IF^ represents an entity set THEN
LET i r identifier outedge
LET j r other outedge labelled "W" or "C"
LET {k1? ... , kR} = inedge(n)

if 'i *K >̂
THEN hash the relation on identifier attribute
ELSE

IF j is a property edge
THEN isam the relation on value attribute

ELSE IF j is an association edge
THEN hash the relation on that foreign key

FOR EACH outedge labelled "I" DO
secondary index on that attribute

ELSE /* node represents relationship */
rFOR outedge labelled "W" or "C"

IF it is an association outedge
THEN hash relation on that foreign key
ELSE isam relation on the value attribute

FOR EACH outedge labelled "I" DO
secondary index on that attribute

fig. 4.2 - Relational Structure Choice



DEPT(DNO,DNAME,LOCATION)
* hashed on DNO
* indexed on DNAME, LOCATION

JOB(JNO,TITLE,SALARY)
* hashed on JID

* indexed on TITLE, SALARY

EMP(ENO,ENAME,BIRTHYR,WORKS-IN,ASSIGN)
* hashed on WORKS-IN
* indexed on ENO, ENAME, BIRTHYR, ASSIGN
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The above access path schema represents maximum support

for access mappings. Usage information may indicate that

certain paths are not worth the overhead of supporting

them.

INGRES does not provide mechanisms to support repli

cated data. Replication can be introduced by creating

relations which are not in 4NF. For example, an EMP tuple

can be extended with the attributes for the associated

DEPT. However, without automatic support, it is not pos

sible to conveniently propagate updates to the replicated

data. We have elected not to allow replication for rela

tional schemas, except for property value replication.
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4.4.2. CODASYL Implementation

In the new CODASYL proposal [CODA78], many aspects of

the physical database design have been removed from the

schema DDL and localized in data storage definition. The

DSDL provides facilities for the specification of the

pagination of the storage media, schema to storage record

mapping, record pointer implementation, set representa

tion, and storage record placement. We do not deal with

the specification of the storage media, and assume that

all sets are represented by chains with direct pointers.

Additional usage information could be used to make a more

sophisticated choice for these parameters.

The DSDL provides three choices for the record place

ment strategy. A record may be calc'd (hashed) on a key

specified in the DDL, clustered by set membership and

optionally placed near the owner, or stored in sequential

sorted order. Indexes can be specified separately for keys

specified in the DDL. Again, at most one non-identifier

outedge of a node may be labelled "W" or "C". This should

be selected as the edge to determine the record type's

primary structure, unless the traversal frequency of the

identifier outedge is greater than this edge's frequency.

In that case, the identifier outedge is selected. If the

selected outedge represents an identifier, the record type

is calc'd on the related key data item. If it represents a
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The DSDL specification for the degree 0 schema of the

previous section would be:

STORAGE RECORD NAME IS DEPT
PLACEMENT IS SEQUENTIAL ASCENDING DNO
SET WORKS-IN ALLOCATION IS STATIC

POINTER FOR FIRST, LAST RECORD EMP
IS TO EMP

SET MGR ALLOCATION IS STATIC
POINTER FOR NEXT, PRIOR
POINTER FOR OWNER

STORAGE RECORD NAME IS JOB
PLACEMENT IS SEQUENTIAL ASCENDING JID
SET ASSIGN ALLOCATION IS STATIC

POINTER FOR FIRST, LAST RECORD EMP
IS TO EMP

STORAGE RECORD NAME IS EMP
PLACEMENT IS CLUSTERED VIA SET WORKS-IN NEAR OWNER DEPT
SET WORKS-IN ALLOCATION IS STATIC

POINTER FOR NEXT, PRIOR
POINTER FOR OWNER

SET MGR ALLOCATION IS STATIC
POINTER FOR FIRST, LAST RECORD DEPT

IS TO DEPT

SET ASSIGN ALLOCATION IS STATIC
POINTER FOR NEXT, PRIOR
POINTER FOR OWNER

plus specification for INDEXES for each data item not

covered in the above. The access schema for the above is:

Again, all access mappings are maximally supported.
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Support for paths that are infrequently travelled may be

dropped at the choice of the designer.

Replication can be introduced by modifying the logi

cal schema. Mechanisms exist to support the automatic pro

pagation of update to all replicated objects. In each type

of replication, a new record type is introduced along with

new sets to implement the 1-to-1 edge. CODASYL allows the

data items of a member record to be inherited from its

owner. Thus the original record can own its replicate(s)

and provide it (them) with their data item values. Changes

can propagate from owners to members and vice versa.

Replication type (A) for cluster conflicts results in

the following schema modification:

A' is made a total member of set S1. If C is deleted, then

all associated A» are also deleted. A' is made a total

member of S2. If A is deleted then its A' is also

deleted. A is made a member of set F with A' as owner. A

is a total member only if F was derived from an associa

tion. Thus a deletion of A' through S1 propagates to A.

Because a cycle of associations is not allowed, the

membership of A within F must have manual specified rather
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than automatic. The following sequence is necessary to

insert A into the schema:

(1) STORE A [A is made a member of every set derived

from one of its associations except for F]

(2) STORE A' [A' is connected to C via S1 and A via S2

automatically]

(3) CONNECT A TO F [A is connected to A' manually]

If F is an association, then (2) and (3) must be executed

at the same time as (1). Otherwise they are executed when

A first participates in the single-valued relationship.

The schema conversion for type (B) is similar:

A C

S1

The set membership options and insertion sequence are as

before.

For type (A) placement resolution, the conversion is:

S2

/ S1 \ F
6 B c\

A' is a total member of SI. A is a total member of S2,
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although manual must be specified. If F is an association,

then the deletion of A will cause A' to be deleted via S1,

which in turn causes C to be deleted. A must be stored

first. Then A1 is stored and A is connected to A' through

S2.

In the replicated schema of the previous section,

type (B) cluster resolution was applied to EMP. The schema

becomes:

WORKS-IN

DEPT

Additions to the DDL for the employee database of section

3.^.1 are:

RECORD NAME IS EMP»

KEY IS EMP'-KEY IS ENO DUPLICATES ARE NOT ALLOWED
01 ENO TYPE IS BINARY

SOURCE IS ENO IN OWNER OF S2
01 ENAME TYPE IS CHARACTER 20

SOURCE IS ENAME OF OWNER IN S2
01 BIRTHYR TYPE IS BINARY

SOURCE IS BIRTHYR OF OWNER IN S2

SET NAME IS S1
OWNER IS JOB
MEMBER IS EMP'

INSERTION IS AUTOMATIC RETENTION IS MANDATORY
SET SELECTION IS THRU

JOB OWNER IDENTIFIED BY KEY JOB-KEY

SET NAME IS S2
OWNER IS EMP

MEMBER IS EMP'

INSERTION IS AUTOMATIC RETENTION IS MANDATORY
SET SELECTION IS THRU
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EMP OWNER IDENTIFIED BY KEY EMP-KEY

SET NAME IS ASSIGN
OWNER IS EMPf
MEMBER IS EMP

INSERTION IS MANUAL RETENTION IS MANDATORY
SET SELECTION IS THRU

EMP OWNER IDENTIFIED BY KEY EMP'-KEY

The placement and cluster attributes of the set S1 are

specified in the DSDL as given above for the degree 0

schema. EMP1 is clustered on its membership in set S1and

placed near the owner JOB record.

4.5. Conclusions

In this chapter we have presented a characterization

of storage structure in terms of implementation-

independent properties: "evaluated", "indexed",

"clustered", and "well-placed". We have used the charac

terization to specify an implementation-oriented physical

design by assigning these properties to the logical access

paths of the integrity schema. The implementation-oriented

design represents the kind of support we would like to

assign to each path.

Algorithms were presented to assign properties to

paths in a conflict-free way, subject to certain con

straints on the labelling. Replication was introduced

explicitly and can be controlled by the database designer.

It is used to achieve better retrieval time for access

paths at some cost in update and storage overhead.
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Finally, algorithms were given to realize an actual

implementation from the implementation-oriented design for

a specific database system.



CHAPTER 5

SCHEMA CONVERSION

5. Schema Conversion

5.1. Introduction

Schema conversion is a process of mapping a database

schema between representations in different data models

while preserving its semantic content. Conversion may also

become necessary because of a change in the semantics

modelled by the schema. The problems of constructing

actual programs to perform the conversion, i.e., to access

the data in one representation, manipulate it, and store

it in a different representation, are not addressed.

Schema conversion only tackles a subset of the total data

translation problem.

In this chapter, rules will be formulated for mapping

directly between database schemas that have been derived

from the same design schema. This way, the preservation

of semantics can be guaranteed. Further, the rules are

formulated so that the design goals of chapter 3 are

preserved. Rules are given for mapping between relational

and DBTG schemas. The problems of database redesign and

evolution are also addressed.

128
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5.2. Derivation of Mapping Rules

Our logical design methodology is based upon formu

lating mapping rules to derive a target schema from a

design model schema while preserving the design goals. If

the design mapping rules could be inverted, it would be

possible to map the target schema objects back into the

design schema objects from which they were derived. Once

these inverted mapping rules are determined, it is a sim

ple matter to compose them with the design rules for a

different target data model to arrive at rules to map

directly between the two target models. This is the

approach taken in this chapter, and is summarized in fig

ure 5. 1.

DESIGN

SCHEMA

inverted
mapping
rules

RELATIONAL
SCHEMA

«*\

CODASYL

SCHEMA

composed
mapping
rules

fig. 5.1 - Composed Mapping Rules
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The inversion of the mapping rules is difficult

because of the lack of semantic distinction in the rela

tional and DBTG models. For example, it is not possible to

determine, by simply looking at the relation as a collec

tion of attributes over domains, which real world object

is represented by the relation. .This information can only

be determined by enhancing the semantic content of the

target schemas with augmented information.

The information we need for augmenting relational

schemas is (1) which attributes are keys? (uniquely iden

tify the tuple) and (2) which attributes are foreign keys?

(values taken from the key domain of another relation).

The former are called key attributes and the latter ID

attributes. This information can be represented within

the schema by functional dependencies and subset con

straints. This approach was independently taken by

[KLUG79]. The other attributes of the relation are called

value attributes. The key of an entity set's relation is

the attribute derived from its identifier property. The

key of a relationship relation is the collection of

foreign key attributes associated with the relations that

represent the entity sets involved. The key of a single-

valued relationship is the foreign key attribute associ

ated with the single-valued entity set. Associated with

each foreign key is the relation of which it is a key.
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Given this semantic augmentation, how do we determine

whether a relation represents an entity set, a single-

valued relationship, or a general relationship? A general

relationship relation (R-relation) has no single key

attribute, only a collection of foreign key attributes and

value attributes. A single-valued relationship (S-

relation) consists of two foreign key attributes, one of

which is also a key. The latter is a subset of the key of

the single-valued entity set's relation. An entity set

relation (E-relation) consists of one key attribute, which

is not also a foreign key, and a collection of value

attributes and foreign key attributes. This is summarized

in figure 5.2.

The distinctions between objects in a DBTG schema

derived by our mapping rules are not as ambiguous as in

the relational case. However it is still desirable to

E-Relation

KEY VALUE ... VALUE ID • • • ID

R-Relation

ID • • • ID VALUE ... VALUE

S-Relation

KEY/ID ID

fig. 5.2 - Augmented Relation Types
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make the distinctions explicit. In chapter 3, the con

cepts of self-identified and link records were introduced

as well as total and partial set membership. These con

cepts can be used to identify design model constructs

within a DBTG schema. Self-identified record types are

derived from entity sets, and link record types from rela

tionships. Associations are represented by sets with total

members, and single-valued relationships by sets with par

tial members. The equivalences between objects in the

augmented relational and DBTG schemas and the design model

are summarized in figure 5.3.

Because of the 1-to-1 correspondence between the

objects of the target schemas and the objects of the

design schema, the mapping is straight-forward. The design

Design

Entity Set
Identifier
Property
Association

DBTG

Record Type(SI)
Data Item(ID)
Data Item

Set Type(Total)

S1V. Relationship Set Type(Partial)
MemberE- (S.V.)

E
112

Relationship
Property

^ i>Eoi ••• i E,

Owner

Record Type(L)
Data Item

+ Set Types(Total)
Owners

Relational

Relation(E)
Key Attribute
Attribute(value)
Attribute(ID)

Relation(S)

Key Attribute(ID)
Attribute(ID)

Relation(R)

Attribute(value)

Attributes(ID)

fig. 5.3 - Equivalent Constructs in the Models
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mapping rules for design schema objects are applied to the

equivalent target schema objects to form the composed map

ping rules.

Note that there is a strong resemblence between our

view of schema conversion and the problem of creating

relational views on top of CODASYL schemas [ZANI79a,

ZANI79b]. For each object type in the CODASYL schema,

there is an equivalent object type in a relational schema.

The mapping of update operations against a relational

schema into update operations against an underlying

CODASYL schema derived from the same design schema is

straight-forward:

Relational Operation CODASYL Operation
APPEND tuple STORE record—
DELETE tuple ERASE record
REPLACE value attribute MODIFY data item
REPLACE ID attribute MODIFY ONLY set MEMBERSHIP

Many more delete operations are needed for the relational

schema because of the automatic support for associations

in the CODASYL schema. Thus a sequence of DELETES may be

mapped into a single ERASE statement.

In general, the "view update problem" is much more

difficult. It is made easier in our case because of the

correspondence of object types and the augmentation of

schemas with semantic information to facilitate the iden

tification of the semantic objects.
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5.3. Relational to CODASYL Mapping

In this section we formulate the rules for mapping an

augmented relational schema to a DBTG schema. Associated

with each identifier attribute is the E-relation from

which its foreign key values are derived. The rules for

mapping are:

(1) For each E-relation R define a self-identified record

type r whose identifier is the key attribute of R.

Each value attribute of R is a data item of r. The

representation of the E-relations associated with the

identifier attributes of R are owners of sets in

which r is a total member.

(2) For each R-relation R define a link record type 1.

Each value attribute of R is a data item of 1. The

representation of the E-relations associated with the

identifier attributes of R are owners of sets in

which 1 is a total member.

(3) For each S-relation R, the representation of the E-

relation associated with the key attribute of R is

the partial member of a set owned by the representa

tion of the E-relation associated with the identifier

attribute of R.

Mapping rule (1) identifies an entity set, (2) a

relationship, and (3) a single-valued relationship. Again,
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the design goals are preserved: independent objects of the

relational schema are mapped into independent objects of

the DBTG schema, i.e. relations are mapped into record

types, and all information about an object, represented by

a single tuple, is mapped into a single record and its

associated sets.

The conversion process can be illustrated with the

relational schema of section 3-3.1. for the employee data

base. The augmented schema is:

E-Relations Key ID Attribute Value Attribute
EMP ENOTEMP) WORKS-IN(DEPT) ENAME,BIRTHYR

ASSIGN(JOB)
DEPT DNO(DEPT) DNAME,LOCATION
JOB JID(JOB) TITLE,SALARY

R-Relations ID Attribute Value Attribute
QUAL eno(empTTjTdTjob) -n
ALLOC DNO(DEPT),JID(JOB) NUMBER

S-Relations Key Foreign Key
MGR DNO(DEPT) EN0(EMP"5—

Rule (1) maps each E-Relation to a record type and a group

of set types. The record type's data items include the

value attributes and the key attributes of the E-relation.

The set types represent the associations in which the

entity set takes part as a domain. Graphically, the schema

after applying rule 1 is given in figure 5.4.

Rule (2) maps each R-relation into a link record type

and a group of set types. The link record contains data

items derived from the value attributes of the R-relation.
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works-in assign

DEPT JOB

fig. 5.4 - Schema After Rule (1)

The set types connect the link record type to the self-

identified records that represent the entity sets involved

in the relationship. The schema after applying (2) is

shown in figure 5.5.

Finally, rule (3) maps each each S-relation into a

set type that represents the single-valued relationship.

The resulting schema is shown in figure 5.6.

5.4. CODASYL to Relational Mapping

In this section, rules will be proposed for mapping

an augmented DBTG schema into a relational schema. Even

though the semantics of the CODASYL schema are rich enough

works-in

[DEPTl ^ EM PK-

assign

fig. 5.5 - Schema After Rule (2)
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works-in assign

fig. 5.6 - Schema After Rule (3)

to allow us to determine from which design model objects a

particular construct has been derived, we will assume that

the schema has been augmented with the information.

For a self-identified record type, define its key to

be its identifier. For a link record type, define its key

to be the collection of the keys of the owners of all sets

in which the link record is a member. For a DBTG schema

obtained by using our mapping rules, link records can only

be owned by self-identified record types, so that the

definition of key is not circular. The rules for conver

sion are as follows:

(1) For each self-identified record type r define a rela

tion R(r). Each data item of r is a attribute of

R(r). The key of the owner of every set in which r is

a total member is also a attribute of R(r) .

(2) For each link record type 1 that is the member of two

or more set types, define a relation R(l). The attri-
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butes of R(l) consist of the data items of 1 plus the

keys of the owners of the sets in which 1 is a

member.

(3) For each set type s which has a partial member,

define a binary relation R(s). The attributes of R(s)

are the keys of the owner and the member of s.

In terms of the constructs of the design model, (1)

identifies an entity set, (2) a relationship, and (3) a

single-valued relationship. The design goals are

preserved by mapping the independent objects of the

CODASYL schema into independent objects in the relational

schema and by mapping all information about an object, as

represented in its record type and associated sets, into a

single tuple of the relational schema. Of course,

automatic support for the update semantics of associations

and relationships has been forfeited. These must be

enforced procedurally or through an integrity subsystem of

the relational system.

There is a slight difference in the way self single-

valued relationships are represented in the 1973 and 1978

CODASYL proposals. Rule (3) correctly handles schemas

represented in either proposal. For the 1978 proposal, the

rule is directly applied to a set with the same record

type as owner and member. For the 1973 proposal, the key

of the link record type is the same as the key of its
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owner (see definition of key in the above). That Si-record

type is a partial member of the set owned by the link

record. Thus the keys of the owner and the member records

are the same, as should be the case for a self single-

valued relationship.

The conversion process can be illustrated with the

CODASYL schema of section 3.3.2., for the employee data

base. The augmented schema is:

SI record types
EMP

DEPT

JOB

Keys
ENO

DNO

JID

Link record types Keys
QUAL EN0(EMP77JID(J0B)
ALLOC DNO(DEPT),JID(JOB)

Total sets member owner

WORKS-IN EMP DEPT
ALLOC-DEPT ALLOC DEPT
ALLOC-JOB ALLOC JOB
QUAL-EMP QUAL EMP
QUAL-DEPT QUAL DEPT

ASSIGN EMP JOB

Partial Set

MGR

member

DEPT

owner

EMP

Value Data Items

ENAME,BIRTHYR
DNAME,LOCATION
TITLE,SALARY

Value Data Items

NUMBER

Rule (1) maps the DBTG representation of an entity

set into its relational representation. Each Si-record

type is mapped into an E-relation whose attributes are

derived from the data items of the record type and the
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keys of the owners of sets in which the record type is a

total member. The schema after applying rule (1) is:

EMP(EN0, ENAME, BIRTHYR, WORKS-IN, ASSIGN)
DEPT(DN0, DNAME, LOCATION)
J0B(JID, TITLE, SALARY)

Rule (2) recognizes relationships and maps the link

record type into an R-relation with the appropriate ID

attributes to represent the E-relations involved. The

additions to the schema after applying rule (2) are:

QUAL(EN0, JID)
ALL0C(DN0, JID, NUMBER)

Rule (3) handles single-valued relationships, mapping

the partial set type into an S-relation. The final addi

tion to the schema is:

MGR(DN0, ENO)

5.5.. Schema Conversion Due to Database Changes

In this section, we discuss methods for handling the

case in which schema conversion is necessary because the

semantics of the real world have changed, e.g. a given

entity set is no longer of interest. First we present map

ping rules to convert an augmented relational or CODASYL

schema into the design schema from which they have been

derived. Then we discuss the admissible operations for

redesigning a schema. The design mapping rules of chapter
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3 can again be invoked to create a new schema for a target

data model.

5.5.K Mapping Into the Design Schema

First we give the rules for mapping from a relational

schema to a design schema. Attribute names become the

names of functions in the design schema, where the domain

of the function is the object we are mapping and the range

is the design model representation of the underlying

domain in the case of a value attributes, or a relation in

the case of an ID attribute. The rules are:

(1) For each E-relation R, define an entity set E whose

identifier is the key attribute of R. Each value

attribute of R becomes a property of E. The E-

relations associated with ID attributes of R become

the range of associations in which E is the domain.

(2) For each R-relation R, define a relationship RD# Each

value attribute of R becomes a property of RD. Rn is

defined over the entity sets derived from the E-

relations associated with the ID attributes of R.

(3) For each S-relation R, the entity set derived from

the E-relation associated with the attribute of R

that is both the key of R and an ID attribute,

becomes the domain of a single-valued relationship S.

The range is the entity set derived from the non-key
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ID attribute of R.

A similar set of rules can be derived for mapping an

augmented CODASYL schema into a design schema. Again, data

item and set names are used to derive the names of the

design schema objects. The rules are:

(1) For each self-identified record type r, define an

entity set E. Each data item of r becomes a property

of E. Associations which involve E in the domain are

derived from the sets in which r is a total member.

The range entity set is derived from the owner record

type of the set.

(2) For each link record type 1 that is a member of two

or more set types, define a relationship R. The pro

perties of R are derived from the data items of 1. R

is defined over the entity sets derived from the own

ers of sets in which 1 is a member.

(3) For each set type s which has a partial member,

define a single-valued relationship S. The entity set

derived from the member record type is the domain of

the relationship (the single-valued entity set). The

entity set derived from the owner record type (or its

owner if it is a link) is the range of the relation

ship.
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Again, in terms of the constructs of the design model,

rule (1) identifies entity sets within the target schema,

rule (2) relationships, and rule (3) single-valued rela

tionships.

5.5.2. Redesign Operations

As a database evolves over time, the semantics it

models may change as well. New real world objects and

their interrelationships with existing objects may become

of interest. In this subsection, we explore the kinds of

semantic redesign operations that are supported by the

design model.

We define a database redesign operation as the addi

tion or removal of one of the following semantic object

types:

(a) entity set
(b) property
(c) association
(d) single-valued relationship
(e) relationship

In addition, we define two evolution rules:

(a) association => single-valued relationship
(b) single-valued relationship => relationship

Each will be described in turn.

The addition of a new entity set to the schema causes

no significant problems. All properties and associations

with the new entity set in the domain must be specified at



144

the same, time it is added. The deletion of an existing

entity set is more complicated. All properties, associa

tions, and relationships which involve the removed entity

set must also be removed. The removal of an association

may spawn additional redesign operations which can pro

pagate through the schema.

A property which is not an identifier can be added or

removed without side effect. The value set is specified at

the time of property creation, and is removed with the

property if it does not appear in the range of any other

properties. An identifier can not be removed except

through the removal of its associated entity set.

An association may only be added to a schema if it

does not cause a violation of the insertion order. In par

ticular, an association can not be added if it causes a

cycle in the insertion order. To remove an association, we

must also remove the entity set in its domain, because of

the existance dependency that is modelled.

A single-valued relationship can be redesigned at any

time without side effect. The entity sets must exist at

the time of creation.

A general relationship can be added at any time, sub

ject to the constraint that the entity sets over which it

is defined must exist at the time of its creation. Simi

larly, it can be removed at any time, causing its
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associated properties to be removed at the same time.

In addition to the redesign operations, there are two

rules which deal with the evolution of relationships over

time. An association is the most constrained type of rela

tionship because it is required to be both functional and

total. A single-valued relationship is less constrained,

but still must meet the requirement of being functional.

The general relationship is the least constrained.

We allow a relationship to become less constrained

over time, but not vice versa. This is because of the

inclusion of associations within single-valued relation

ships, and single-valued relationships within general

binary relationships. The evolution can take place without

loss of information..

For example, if the semantics of the employee data

base change so that employees can now exist outside of

departments, then the association WORKS-IN can evolve into

a single-valued relationship. No information is lost when

performing this redesign, because at the point of applying

the rule, every employee is associated with one depart

ment. If employees can now be assigned to more than one

department, then WORKS-IN can evolve into a general rela

tionship. WORKS-IN can not be "devolved" back into a

functional relationship without the possibility of losing

information from the database. For example, suppose that
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an employee works in both the TOY and SHOE departments. To

make WORKS-IN a function again requires a choice to be

made for which department he currently works in. The

choice can not be made unambiguously.

Once a schema has been redesigned and its relation

ships evolved, the design mapping rules must be-reapplied

to create a schema for a particular data model. Note that

in the above, we have only been concerned with the struc

tural changes that must be made to the database. We have

not addressed the problem of how to construct programs to

perform the data conversion. This has been widely studied

elsewhere, e.g., [SHU 773.

5.^. Conclusions

In this chapter, we have shown how to derive schema

conversion rules to map between relational and DBTG data

base schemas. This has followed naturally from the mapping

rule approach to logical design explored in chapter 3.

Rules can be formulated to map between additional models

as long as the following assumptions hold: (1) each target

schema was derived from a design schema by a mapping that

preserves the design goals, and (2) the target schemas are

augmented with semantic information where necessary to

make it possible to determine which schema objects were

derived from what types of design model objects.
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We have also shown how to map target schemas into a

design schema for the purpose of database redesign and

evolution. The operations supported by the design model to

redesign a database were defined.



CHAPTER 6

PROGRAM CONVERSION

16. Program Conversion

£.K Introduction

In this chapter, we address the problem of how to

convert the query language statements, embedded within an

applications program, when the underlying database is

translated to an equivalent schema for a data model with a

different data sublanguage. We do not address the problem

of modifying the program when the schema is altered due to

database redesign and evolution. We concentrate on those

changes that must be made because of a disparity in the

level of procedurality of the source and target data sub

languages. The data manipulation language (DML) of the

CODASYL model [COB078] is "procedural" because a query is

specified by describing how to navigate through a network

of records, one record at a time. Non-procedural query

languages for relational systems describe the data to be

accessed in terms of a set-oriented specification (rela

tional calculus). The detailed procedure used to access

the data is not specified by the programmer, but is left

for the system to determine.

148
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In this chapter, algorithms are developed for mapping

between DML and relational calculus queries embedded

within a host language program. Decompilation maps

between the procedural DML and the non-procedural rela

tional calculus, while compilation maps in the other

direction. In addition, not every meaningful sequence of

DML operations can be converted into a relational calculus

specification. Those programs that can be "decompiled"

are characterized.

6.2. Query Specification

In this section, we briefly introduce the way queries

are specified in CODASYL DML and the relational calculus.

In the CODASYL model, a query is specified in terms of a

sequence of FIND statements which identify the "current

record of the database." In addition, that record can

optionally become the current record of its record type,

of its realm (logical partitioning of the database), and

of any set in which it participates. The current record of

the database can be deleted (ERASE), updated (MODIFY), or

retrieved (GET). The program communicates with the data

base system via a user work area (UWA), which contains a

record structure for each record type in the database

schema. The current record of a record type can be

transfered into the UWA by executing a GET. A new record

is entered into the database by storing values for its
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data items into the UWA and then executing a STORE opera

tion. Values of data items in the UWA or in current

records can be used as parameters in subsequent FIND

statements. The current state of the database consists of

all currency indicators (for each record type, set type,

and realm), and the values of data items in the UWA. DML

statements are embedded within the program as a syntactic

extension of the host language.

In the relational model, the data accessed or updated

is specified in terms of a predicate calculus-like qualif

ication over a Cartesian product of relations. The quali

fied tuples are then projected to obtain the desired

attributes. For a concrete syntax, we shall use the QUEL

sublanguage, but restrict it to be aggregate-free

[STON76]. For example, the query to find the department

that employee Fred works in can be written as:

RANGE OF E IS EMP
RANGE OF D IS DEPT
RETRIEVE (D.DNAME) WHERE E.ENAME = 'Fred'

AND E.WORKS-IN = D.DNO

E and D are called tuple variables and are shorthand names

for specific relations. The list of attributes within

parenthesis is called the "target list," and specifies the

attributes to retrieve. The qualification following WHERE

is called the "where clause." The Cartesian product EMP X

DEPT is restricted to those tuples for which the qualifi-
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cation is true. The qualified tuples are projected onto

the attribute DNAME.

A relational calculus query is embedded in a program

as follows. A query cursor is associated with each

RETRIEVE statement. When OPENed, the query's results are

computed. When SELECTed, the next tuple for processing is

made ready for transfer into the user work area. When

FETCHed, the data is actually transfered. Finally, the

cursor must be CLOSEd before it can be reopened and the

query reexecuted. A tuple id (TID) is associated with each

tuple within a relation to encode its location within

secondary storage. It is automatically set in the UWA as a

side-effect of the SELECT operation. The interface is

similar to the one defined for System-R [BLAS79], and

although the data to be accessed is specified non-

procedurally, the program still accesses a tuple at a time

for processing.

6.3. Decompilation

Decompilation is the inverse of compilation; it is

the process of grouping a sequence of procedural record at

a time statements, which represent a plan to process a

query, into a non-procedural set at a time specification.

We are interested in decompiling CODASYL DML programs into

relational calculus programs with a tuple a time inter

face.
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The complete analysis of the applications portion of

the program is an expensive and difficult process. Our

approach requires a minimum amount of information about

the host program: its control structure, the embedded sub

language statements, and the program's interaction with

the database system via the user work area.

Decompilation proceeds in two phases. The first is

analysis, during which the find operations of the program

are grouped together into parameterized atomic access

jjruts. These units consist of sequences of DML and host

language statements which correspond to a procedural

enumeration of the set of objects in the range of an

access mapping applied to a single argument, which is

described by the parameter. The program's control struc

ture is analyzed to determine which statements comprise a

unit and how these units interact. This information is

used to construct an access path expression graph which

describes the access requests of the program in terms of

composed access mappings. Two access mappings are composed

if each object in the range of one mapping, the outer map

ping, is an argument to the other, the inner mapping.

The second phase is embedding, in which the access

expression is mapped into a relational query and inter

faced with the original program. Two atomic access units

can be combined if they are nested, and their associated
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access mappings are composed. Further, no applications

program statements can reside between the units. Each

sequence of combined units corresponds to a sequence of

edges in the access graph, which in turn can be mapped

into a single relational query. A single access graph may

have to be partitioned into several subgraphs if the asso

ciated atomic access units cannot be combined.

£.^.K Analysis

k*l9l*l' Characterization of DML Operations

The difficult aspect of decompilation is determining

which FIND statements constitute an atomic access unit.

The object at a time FIND operations must be described in

terms of the set oriented mappings of the access path

schema. Cursors and object sets are introduced for this

purpose. An object set is the complete set of objects

potentially enumerated by a FIND operation, parameterized

by the state of the database at a given point in time. For

example, the object set associated with a FIND operation

that accesses the records within a particular CODASYL set

would consist of all member objects in the range of an

inverse access mapping applied to the current owner

object. The inverse mapping corresponds to the CODASYL set

in the access path schema. The concept of an object set

closely resembles the fan set of [DATE76]. A cursor is a
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pair consisting of an index and an ordering specification,

associated with a specific object set. The ordering

specification is used to induce a sequence from the object

set, and the index is the offset into this sequence. If

the index is ever "out of range," it will take on the

value zero. The cursor encodes the procedural aspects of

the DML statement as it enumerates the elements of the

object set. FIND operations that enumerate the same object

set are candidates for forming an access unit.

The object set definition forms the bridge between

the object oriented DML and the set oriented access map

pings of the access path schema. It is the basis of the

characterization of the CODASYL DML statements. Object set

definitions are written in terms of the operations of the

access path schema, and are parameterized by references to

the current database state, i.e., UWA variable values;

record, set, and realm currency indicators. An access

expression is built by composing together an access map

ping with the mapping that defines its parameters.

DML provides seven distinct ways of expressing a find

operation. A skeletal object set definition is defined for

six of these. Certain pieces of the definition are

extracted from the statement. Others represent parameters

which require further analysis before they can be deter

mined. These are underlined. The objects in the skeleton
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definitions are taken from the access path schema associ

ated with the CODASYL schema. Their names are derived from

the names of the corresponding records, data items, and

sets in the CODASYL schema.

The type 1 find statement enumerates the instances of

a record type which optionally match a specified UWA value

for a data item or group of data items:

{FIRST, NEXT} record-name [USING data item , ... ]

Object Set = { record-name < RECORD-NAME"1 () f! DATA

ITEM^1( current UWA variable )fi ... }

cursor =

FIRST => c = <1, record type ordering specification>

NEXT => c r <cindex + 1, record type ordering

specification>

Record-name and data iten^, ... are filled in from the

find statement itself. For example, "FIND FIRST EMP USING

BIRTHYR" requests that the current record become the

employee record with a value for birthyr that matches the

UWA. The object set definition is { emp < EMP"1() fl

BIRTHYR (emp.birthyr)}, i.e. the set of employee objects

in the access mapping BIRTHYR"1, parameterized by

emp.birthyr. The cursor definition is <1, ordering specif

ication^ where the specification is extracted from the

description of the CODASYL schema, e.g., "ASCENDING ON
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ENAME." The actual object accessed is the employee, born

in the specified year, who appears first among the employ

ees listed alphabetically.

In the definition of the NEXT cursor, c. . refers
' index

to the previous value of the cursor index. Thus the index

of a NEXT cursor is one more than its previous value.

The type 2 find statement enumerates the record

instances of a record type with a specified key data item

value. It is also possible to access a record with the

same key value as the one previously accessed:

{ANY, DUPLICATE} record-name USING key-name

Object set =

ANY => { record-name « KEY DATA ITEM"1( current UWA

variable)}

DUPLICATE => { record-name < KEY DATA ITEM"1( KEY

DATA ITEM( current record-name

RECORD))}

Cursor =

ANY s> c s <1, duplicate key ordering specification>

DUPLICATE => c = <cindex + 1, duplicate key ordering

specification>

A request to find a record with a duplicate key value,

results in a definition with a parameter for the key value

from the current record of the record type. This kind of
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information cannot be determined directly from the state

ment, but rather from how other statements interact with

this one in terms of the program's control flow. In par

ticular, we need to know the last statement executed which

could have accessed a record of the specified type. The

duplicate key ordering specification for the cursor defin

ition is found in the schema definition.

The type 3 find statement will access a record within

a set, that has the same selected data item values as the

current record of that set:

DUPLICATE WITHIN set-name USING {data item,, , ...}

Object set = { member record name < SET NAME"1( current

owner record ) fi DATA ITEM"1( DATA

ITEM.,( current member record ) )) ft

... }

Cursor =

c = <cindex + 1' set type orderin8 specification>

The two parameters for the type 3 object set definition

are for the current owner record of the set and the data

item values from the current member record of the set. The

set type ordering specification is extracted from the

schema definition. The object set describes all member

records of a set instance, identified by the current owner

record, that have the specified data item values that



158

match those of the current member record.

The type 4 find statement is used to iterate over the

members of a particular set instance:

{NEXT, PRIOR, FIRST, LAST, integer, variable} record-

name WITHIN {set-name, realm-name}

Object set =

set-name => {record-name « SET NAME"1( current owner

record)}

realm-name => {record-name < REALM NAME"1('realm

name')}

Cursor =

NEXT => c = <cindex + 1, set/realm ordering specifi-

cation>

PRIOR => c = <cincjex - 1, set/realm ordering specif-

ication>

FIRST => c = < 1, set/realm ordering specification>

LAST => c = <max index, set/realm ordering specifi-

cation>

integer => c = <cinHex + inte8er» set/realm ordering

specification>

variable => c r <cindex + variable, set/realm order

ing specification>

The object set definition describes all the records in the

current set instance or specified realm. The realm concept
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must be simulated within the relational schema by append

ing to each relation an attribute which is defined over

the domain of realm names. The ordering specifications

are found in the appropriate places in the schema defini

tion.

Type 5 find statements are not supported by decompi

lation. In this format, a record is accessed by providing

the system with a database key, which is an encoding of

the record's physical address. A database key is only

guaranteed to reference the same record across a single

execution of the program. This makes this type of state

ment unsuitable for the pre-execution analysis of the next

section.

The type 6 find accesses the owner record of the

current instance of a specified set:

OWNER WITHIN set-name

Object set = {owner record name < SET NAME( current

member record )}

Cursor = < 1, — >

The object set contains the single owner record of the

current member of the set instance. No ordering specifica

tion is needed for the cursor.

The type 7 find locates a record, within the current

set instance of a specified set, which has data item
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values that match those of the UWA:

record-name WITHIN set-name CURRENT [USING data item.. ,

... ]

Object set = { record-name < SET NAME"1( current owner

record ) fi DATA ITEM^1( current UWA
variable )"...}

Cursor = < 1, set type ordering specification>

The parameters are the current owner record and the

current values of UWA variables specified in the optional

USING clause. The first record in the set ordering that

simultaneously matches all the USING clause items is the

one found.

The object set definition becomes more complicated if

CURRENT is not specified. A SET SELECTION clause is

invoked to specify a path of set instances. These trace

through the schema to the record which is to become the

owner of the current set. The set selection can be

described in terms of access mappings, but because of its

subtle side effects to currency information, we exclude it

from consideration.

In the above, we have described the accessing opera

tions of CODASYL in terms of sets formed from the access

mappings of the associated access path schema. Some infor

mation cannot be filled in by simply examining the state-
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ment itself. Further analysis of the execution dynamics of

the program is required.

i'l'I'l* Flow of Currency Information Through a Program

In executing a find operation, a new record is made

the current of the database and its record type, set type,

and realm. Information about a current record may be used

in subsequent find operations. This information is

represented as parameters in the object set definitions

defined in the previous subsection. In addition, data

manipulation operations (MODIFY, GET, ERASE) operate on a

current record.

We must understand how FIND operations interact, in

terms of the execution dynamics of the program, to be able

to group FIND operations into access units and then to

compose the access units and their associated access map

pings. Global data flow analysis [AHO 77, HECH77] is a

technique used to determine the flow of information

through a program. It is a process of pre-execution

analysis which collects information about how "quantities"

in a program are modified, preserved, and used. The quan

tities we are interested in involve the use and definition

of currency information within the host language and data

sublanguage statements of the program.
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For analysis, we partition a program into blocks of

statements for which there is no way to enter except at

the first statement, and once entered, every statement

must be executed sequentially. Information is collected

for each block and then propagated to other blocks using

the control flow of the program, as represented by the

successor and predecessor blocks associated with each

block.

We are interested in "reaching definitions." A

currency is a currency indicator (one for the database,

and for each record type, set type, and realm) or a UWA

variable. A currency definition is a statement that can

modify a currency, e.g., a FIND operation or an assignment

statement to a variable in the UWA. A locally exposed

definition is the last definition of a particular currency

within a block. The set of all such definitions for a

block x is called GEN(x). A definition of a currency c is

killed by x if it reaches the top of block x and x con

tains a definition of c. The set of killed definitions is

KILL(x) .

The propagation of currency definitions through the

program are described by the following two equations:

For each block x, IN(x) = U OUT(y)
y«PRED(x)

For each block x, OUT(x) = [IN(x) - KILL(x)] U GEN(x)
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where IN(x), OUT(x) are the sets of definitions that reach

the tops and bottoms of block x respectively. Several

methods have been developed to find solutions to these

equations [AHO 77, HECH773.

Each FIND statement can create multiple definitions:

one for each of the possible currencies associated with

the found record. A GET operation will define a currency

for each data item transfered into the UWA. Assignments to

the UWA create a definition for those variables.

Besides the production of currencies, we are also

interested in their usages. A currency is used if is

referenced by a DML operation. For example, a type 1 find

uses the current definition of data item... These usages

are represented by underlined parameters within the object

set definitions. A locally exposed use of a currency c is

a use of c within x which is not preceded by a definition

of c within x. The set of these uses is USES(x). By con

sidering both IN(x), i.e., the definitions that reach a

block, and USES(x) together, we can establish which defin

itions in the program can potentially be used by a

specific operation.

These concepts can be illustrated in an example. Con

sider the "pseudo-COBOL" program which accesses the names

of qualified accountants, shown in figure 6.1.



(1) MOVE 'ACCOUNTANT' TO TITLE IN JOB.
(2) FIND FIRST JOB USING TITLE.
(3) FIND FIRST QUAL WITHIN QUAL-JOB.

L. IF END-OF-SET GO TO EXIT.
(4) FIND OWNER WITHIN QUAL-EMP.
(5) GET EMP.

...

(6) FIND NEXT QUAL WITHIN QUAL-JOB.
GO TO L.

EXIT.

fig. 6.1 -Qualified Accountants
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First, the find statements of the program can be charac

terized by their object set definitions:

(2) {job « TITLE"1(JOB.TITLE)}

(3) {qual < QUAL-JOB"1( current JOB )}

(4) {emp « QUAL-EMP( current QUAL )}

(6) {qual < QUAL-JOB"1( current JOB )}

The program can be partitioned into four blocks. The sets

of currency information after solving the data flow equa

tions are shown in figure 6.2. The format <x,y> means that

currency x is defined at statement y. A summary of defini

tion and use information for each statement is:

(1) defines current TITLE
(2) defines current JOB; uses current TITLE
(3) defines current QUAL; uses current JOB
(4) defines current EMP; uses current QUAL
(5) defines current ENO,ENAME,BIRTHYR; uses current EMP
.(6) defines current QUAL; uses current JOB

For example, the current QUAL used by statement. (4) could
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(4)
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(6)
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165

IN(A) = 6

OUT(A) = {<TITLE,(1)>,<JOB,(2)>,<QUAL,(3)>

*cn d

IN(C) = {<TITLE,(1)>,<JOB,(2)>,
<QUAL,(3),(6)>,<EMP,(4)>,<ENO,(5)>,
<ENAME,(5)>,<BIRTHYR,(5)>}

OUT(C) = {<TITLE,(1)>,<JOB,(2)>,<QUAL,(6)>,
<EMP,(4)>,<ENO,(5)>,<ENAME,(5)>,
<BIRTHYR,(5)>}

fig. 6.2 - Currency Flow

have been define by either statement (3) or (6), because

those definitions of QUAL are found in IN(C), and no rede

finition of QUAL appears in C before (4) is executed.

We define the currency flow graph to be G = (V,E),

where V represents the statements of the program and E is

a set of directed edges. An edge with tail at v and head

at v2 is included in E if the statement represented by v1

defines a currency used by the statement represented by

V

An algorithm to construct the currency flow graph is

given in figure 6.3. Applying the above to the example

results in the flow graph of figure 6.4.
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Algorithm ConstructFlowGraph

FOR EACH Program Block x DO
"FOR EACH Statement j in x DO

'"IF^Staternent j uses currency c THEN
IF there is a local definition i of c that reaches j
rTHEN add edge (i,j) to E
ELSE

FOR EACH definition i of c in IN(x) DO
add edge (i,j) to E

fig. 6.3 - Construct Flow Graph

current TITLE

current JOB

current QUAL

current EMP

fig. 6.4 - Currency Flow Graph

In the next subsection, we examine how the currency

flow graph is used to identify atomic access units and to

construct an access path expression.
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£'i*l*2* Formation of Access Path Expression Graph

The currency flow information of the previous subsec

tion makes it possible to identify the object set parame

ters left unfilled. A difficulty is introduced whenever a

parameter is ambiguously defined. For example, in the sam

ple program, statements (3) and (6) provide the same

currency information, i.e., the current QUAL record, used

in statement (4). In general, an ambiguously defined

parameter will cause decompilation to fail — there is no

unambiguous way to form an access path description for the

query.

However, it is often the case that this ambiguity is

caused by the way in which access mappings must be speci

fied in DML. A pair of DML statements is needed to specify

the enumeration of the records within a CODASYL set, i.e.,

to specify an F" access mapping. Consequently, each

statement of the pair provides currency information for

nested statements, which results in an ambiguity even

though the pair corresponds to a single access operation.

The statement pairs must be identified, and the currency

flow graph modified, to eliminate the ambiguity. Three

generic classes of statement pairs can be found. Associ

ated with each class is a transformation to be applied to

the currency flow graph to group the statements of the

pair into a single node. If the transformation cannot be
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applied, then the statements do not enumerate the same

object set and cannot be used to form an atomic access

unit.

A group of DML statements and host language state

ments which implement an access mapping are called atomic

access units. The atomic access units for inverse and

functional maps are shown in figures 6.5 and 6.6 respec

tively. Each access unit is parameterized by state infor

mation, such as record and data item currencies, which

must be furnished by enclosing units. The contours drawn

around the access units are henceforth called C-diagrams.

Note that a functional access can often omit the NOT FOUND

test if the access mapping is known to be an association.

In that case the contour is drawn to the next enclosing

C-diagram, or the end of the program, whichever comes

first.

statement pair.. J
L. IF END OF SET THEN GO TO M.|

nested statements

M.

statement pair.
GO TO L.

fig. 6.5 - Inverse Mapping Atomic Access Unit



M.

DML statement
IF NOT FOUND THEN GO TO M.

nested statements

fig. 6.6 - Functional Mapping Atomic Access Unit
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The three classes of statement pairs are:

(1) FIND FIRST/NEXT

This class consists of the following three pairs of opera

tions:

* FIND {FIRST, NEXT} record-name WITHIN set-name

* FIND {FIRST, NEXT} record-name WITHIN realm-name

* FIND {FIRST, NEXT} record-name [USING data item.,

The statements comprise an atomic access unit, and their

nodes in the currency graph can be combined, if the fol

lowing conditions hold: (1) each statement uses the same

definition of an owner record currency (FIND WITHIN SET)

or UWA data item currency (FIND USING), and (2) defini

tions from both statements reach all subsequent uses of

this record currency. In other words, in terras of the flow

of currency information through the program, the state

ments are completely identical, and they enumerate the
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same object set. Schematically, the transformation can be

represented as:

II
definition of owner

current owner i
FIRST *p NEXT ==> o FIRST/NEXT

^^o^use of record o

("current owner" edge replaced by "current data item-
value" for the last statement pair) 1

A dashed edge represents a subsequent use of a currency

defined by the pair.

(2) FIND ANY/DUPLICATE

This class consists of the following find operation pair:

* FIND {ANY, DUPLICATE} record-name USING key-name

The statements form an access unit if: (1) the FIND ANY

statement defines the record currency used by the FIND

DUPLICATE statement (which also defines and uses its own

record currency), (2) the key name is the same for both

statements and the key data item definition that reaches

the second statement is defined by the first, and (3)

definitions from both statements reach all subsequent uses

of the record currency. The associated transformation is:
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0 definition of key

1 current key value

rANY

"bao use of record

record, x^DUPL

(3) FIND WITHIN/DUPLICATE

==> o ANY/DUPL

I
I

V
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i

This class consists of the single operation pair consist

ing of the following two statements:

* FIND record-name WITHIN CURRENT set-name USING data

item., ...

* FIND DUPLICATE WITHIN set-name USING data item

These statements can be combined if: (1) they use the same

definition of owner record, (2) the data items specified

are identical, and (3) definitions from both statements

reach all subsequent uses of the set's member record type.

The transformation is:

II
definition of

owner

definition of

data item

'V*mT
current I s current

owner / "rtf data item
oCwiTHIN

current**! %o use of record
data VY ^"^
item ^cT'DUPL
value \\

o WITHIN/DUPL

y
o
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The sequence of data items in the USING clause must be the

same for both statements.

The currency flow graph must be examined to determine

whether the ambiguous definitions have been caused by one

of the statement pairs. Ambiguous parameter definitions

are determined by grouping together inedges of the same

node which represent the same currency definition. Two

nodes are candidates for combination if both provide

identical currency information to subsequent nodes. In

addition, the statements must conform to the format of an

atomic access unit. Inedges that represent ambiguous

definitions are grouped together and placed into a parti

tion named by the nodes of which they are outedges. These

edges are represented by the dashed lines in the transfor

mations. If all the dashed edges do not appear in the same

partition, i.e. do not emanate from the same pair of

nodes, then the nodes cannot be combined and decompilation

cannot proceed. The algorithm is given in figure 6.7.

In the sample program, the partition <(3),(6)> con

tains the edges (3)—>(4) and (6)—>(4) labelled "current

QUAL." All other partitions are empty. Transformation T1

can be applied to nodes (3) and (6) to obtain the reduced

flow graph of figure 6.8. Further, (3) and (6) are in the

appropriate form for an inverse access unit.
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Algorithm ApplyTransformations
STEP 1: identify ambiguous parameters

FOR EACH node DO

IF inedges e^ e~ define the same currency THEN
add e-, ep to partition

<tiil(§ ),tail(e5)>
STEP 2: combine nodes *

FOR EACH partition <node.,node«> DO
IF partition is not em^ty THEN

IF class 1 THEN apply T1
ELSE IF class 2 THEN apply T2
ELSE IF class 3 THEN apply T3
ELSE halt decompilation — failure

fig. 6.7 - Apply Transformations

(D {job.title}

1 current TITLE

(2) {job < TITLE"1((1))}

I current JOB

(3)(6) {qual « QUAL-JOB"1((2))}

I current QUAL

(4) {emp < QUAL-EMP((3)(6))}

I current EMP

(5) {emp.eno,emp.ename,emp.birthyr}

fig. 6.8 - Reduced Flow Graph

Associated with each (composite) node of the flow

graph is an atomic access unit and a parameterized object

set definition. The associated access unit enumerates the
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elements of the object set definition and is parameterized

by state information provided by other nodes and their

access units. The access expression graph is constructed

from the nodes and edges of the currency flow graph. The

nodes are labelled with the object defined by the object

set definition of the corresponding node of the currency

flow graph. The edges are labelled with the access mapping

in the object set definition whose parameter is defined at

the tail of the edge. The graphical representation of the

query is shown in figure 6.9.

The access path expression graph represents a

description of the access mappings used to formulate a

query. By representing the access requirements of the

birthyr

fig. 6.9 - Access Path Expression Graph
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program in terms of the set at a time operations of the

access path schema, rather than the object at a time

operations of the DML, the translation into a relational

calculus representation is much simplified.

.6.2.2. Embedding

Once an access expression has been derived, it must

be mapped into a relational query and interfaced with the

host language program. If program instructions, including

those to retrieve data, are potentially executed between

nested access units, then the associated expression must

be partitioned into subexpressions. Each of these are

mapped into a relational query. In this subsection, algo

rithms are presented for determining where to "break" the

access path expressions, how to map them into a relational

calculus query, and how to embed a query into the original

program.

6.3.2.2- Procedural Break Analysis

The currency flow analysis of the previous section is

based solely on an examination of DML statements and the

way they interact with respect to the program's control

flow. An equivalent relational query makes all the data

collected over a path available at a single time. If the

CODASYL program accesses intermediate results, i.e., data

which is a result of applying a subexpression of the
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access expression, then this data must be made available

to the program at the places where it is needed. The

access expression must be partitioned to achieve this.

In addition, program instructions between accessing

operations may induce a procedural break. Consider the

following code skeleton.

FIND FIRST EMP WITHIN WORKS-IN.
A. IF END-OF-SET GO TO B.

-— application code- -—
FIND FIRST QUAL WITHIN QUAL-EMP.

C. IF END-OF-SET GO TO D.
application code5

FIND NEXT QUAL WITHIN QUAL-EMP.
GO TO C.

D. application code,
FIND NEXT EMP WITHINJWORKS-IN.
GO TO A.

B.

Code1 and code- are executed once for each employee, while

code2 is executed once for each employee by each qualified

job. If the access mappings are composed, there is no way

to combine their access units so that the code is executed

the correct number of times. If code., and code? are not

empty, then the expression must be partitioned.

As an example, consider the program that finds the

departments to which accountants born after 1950 are

assigned (see figure 6.10).

By following the steps of analysis given in the pre

vious section, the access path expression graph of figure

6.11 is derived. However, the expression cannot be mapped
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MOVE 'ACCOUNTANT' TO TITLE IN JOB.

(1) FIND FIRST JOB USING TITLE.
L. IF NOT-FOUND GO TO EXIT.

(2) FIND FIRST EMP WITHIN ASSIGN.
M. IF END-OF-SET GO TO 0.

GET EMP.

IF EMP.BIRTHYR <= 1950 GO TO N.
<other code that accesses emp in UWA>

(3) FIND OWNER WITHIN WORKS-IN.

GET DEPT.

...

N. FIND NEXT EMP WITHIN ASSIGN.
GO TO M.

0. FIND NEXT JOB USING TITLE.
GO TO L.

EXIT.

fig. 6.10 - "Young" Accountants
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fig. 6.11 - Access Path Expression Graph for 6.10

directly into a relational query, because the program

accesses emp data values for computation before the entire

access expression has been completed.

Two composed access mappings of the access expression

graph are adjacent if the access unit of the inner mapping

is nested within the access unit of the outer mapping, and

the only code that can intervene between these is associ

ated with other atomic access units. No applications

statements may appear. To map an access expression graph

into a single relational query, every access mapping must

be adjacent to its successor in the graph. If this is not

the case, then the graph must be partitioned along the

node that both edges share in common. A procedural break
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is caused.

In the sample program, C-diagram (1) is associated

with TITLE" , C-diagram (2) is associated with ASSIGN"1,

and C-diagram (3) is associated with WORKS-IN. TITLE"1 and

ASSIGN" are adjacent because their C-diagrams of their

access units are. However ASSIGN"1 and •WORKS-IN are not

because of the program statements, including a GET state

ment, between their units. The access expression is parti

tioned along EMP (see figure 6.12). The segment on the

left of the partitioning edge is called the predecessor

segment, because it is executed first. The right segment

is the successor.

•ACCOUNTANT'

t TITLE"1

o job

y ASSIGN"1

fig. 6.12 - Partitioned Access Path Expression
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6.JJ.2.2. Formation of Relational Queries

A program may contain several queries, each of which

is mapped into a possibly partitioned access path expres

sion. The next step in decompilation is to derive a rela

tional calculus query from each expression.

A linkage term is a clause of the relational qualifi

cation, i.e. the WHERE clause, that represents how

interobject relationships are implemented within the rela

tional schema. For example, the association WORKS-IN is

represented by a foreign key attribute WORKS-IN of the EMP

relation. The mapping is represented by including the

linkage term E.WORKS-IN = D.DNO. All edges of the access

path expression, except for those that represent property

functions, will be mapped into a linkage term.

The mapping between edges and linkage terms is:

(1) property inverse: If P: A —> B, then P"1(value) is

mapped into the linkage term "range variable..p =

value". For example, if J is the range variable for

JOB, then TITLE"1('ACCOUNTANT') is mapped into
J.TITLE = 'ACCOUNTANT'.

(2) association: If F: A —> B, then F"1(B) or F(A) is

mapped into the linkage term "range variable..F =

range variableg.IDB". For example, if E is the range

variable of EMP, then ASSIGN(E) or ASSIGN"1(J) is
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mapped into E.ASSIGN = J.JNO.

(3) relationship association: If F: R —> A, then F-1(A)

or F(R) is mapped into the linkage term "range

variableR.IDA = range variable^IDA". For example,

if Q is the range variable of QUAL, then QUAL-EMP(Q)

or QUAL-EMP"1(E) is mapped into Q.ENO = E.ENO.

(4) single-valued relationship: If S: A —> B, then

S" (B) or S(A) is mapped into the linkage term "range

variableB.IDB = range variable^IDB AND range

variableB.IDA = range variable^IDA". For example,

if M is the range variable for MGR, then MGR(E) or

MGR" (D) is mapped into E.ENO = M.ENO AND D.DNO =

M.DNO.

The algorithm for mapping an expression graph into a

relational query is:

Algorithm CreateRelationalQuery

For each partitioned segment, perform the following

mappings:

(1) Associate a range variable with each non-value vertex

of the graph.

(2) Value vertices with a property mapping inedge appear

in the target list as relational attributes derived

from the label of the inedge.
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(3) Property inverse edges or edges which are derived

from property mappings become linkage terms in the

qualification, depending upon the type of interrela

tionship represented.

(4) For a partitioned edge, append the following clause

to the qualification of the successor query: "range

variableL£AF.TID = leaf record.TID", i.e., use the

TID to reaccess the previous tuple.

Examples:

Access Path Expression of figure 6.9:

RANGE OF J IS JOB
RANGE OF Q IS QUAL
RANGE OF E IS EMP

RETRIEVE (E.ENO, E.ENAME, E.BIRTHYR)
WHERE J.TITLE = job.title
AND Q.JID = J.JID
AND Q.ENO = E.ENO

Access Path Expression of figure 6.12:

RANGE OF J IS JOB
RANGE OF E IS EMP,

RETRIEVE (E.ENO, E.ENAME, E.BIRTHYR)
WHERE J.TITLE = job.title
AND E.ASSIGN = J.JID

RANGE OF E IS EMP
RANGE OF D IS DEPT

RETRIEVE (D.DNO, D.DNAME, D.LOCATION)
WHERE E.TID = emp.tid
AND E.WORKS-IN s D.DNO
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£#2'2-3. Query Embedding

The final step of decompilation is to interface the

relational query with the original host program. An impor

tant objective of embedding is to determine which DML

statements and their associated control structures, e.g.,

tests for NOT FOUND or END OF SET, have been rendered

superfluous by decompilation. The approach is based on

collapsing together the access operations of the program,

as represented by the access path expression graphs and

their access units, by starting with the innermost nested

operations and working outwards. In terms of the access

path expression, this means starting with the root and

working towards the leaves.

We present four program transformations for the cases

(1) f1 o f2, (2) f^1 o f"2\ (3) f1 of"1, and (4) f"1 o
f2. The transformations are repeatedly applied until there

are no more operations to compose.

The first case involves the composition of two func

tional mappings. Note that an inverse function that is not

implemented by a DML statement pair is considered to be a

function for the purposes of embedding. Statements which

appear on the left of the transformation, but not on the

right, are considered to be deleted from the program. The

transformation is given in figure 6.13. Note that the

composed mapping can be treated as a functional access in



(rn f1 o f2

IF not found
THEN GOTO L.

L.

IF not found
THEN GOTO M.

M.

...

frf
o f2
not found

THEN GOTO L.

L.

...

fig. 6.13 - Transformation T1
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subsequent applications of transformations.

The second case deals with the composition of two

inverse mappings. The transformation is shown in figure

6.14. The resulting flow chart can be treated as an

inverse mapping for subsequent transformations.

The third case handles the composition of a function

and an inverse function and is given in figure 6.15. The

result can subsequently be treated as an inverse mapping.

The final case is the inverse of the above: composi

tion of an inverse mapping and a functional mapping. The

transform is shown in figure 6.16.

Once the access units have been combined as much as

possible for a single expression graph, it is a simple



(T2) f^1 o f"1

fT1
L. IF end of set

THEN GOTO M.

M.

.-1

N. IF end of set
THEN GOTO 0.

.-1

0.
G<§TO N.

.-1

G&TO L.

f"1 o f1
L. IF end if set

THEN GOTO M.

M.

f"1 o f"1
g6to L.2

fig. 6.14 - Transformation T2

(T3) f1 o f^1

|m.

IF not found

THEN GOTO M

f"1
N. IF end of set

THEN GOTO 0

0.

f"1
g8to n.

N. IF end^of set
THEN GOTO 0.

0.

fA ° f21
GOTO NT

fig. 6.15 - Transformation T3
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(T4) f"1 o f2

L. IF not found

THEN GOTO M.

IF not found

THEN GOTO 0.

0.

...

M.

fA_1GOTO L.

fT1 o f
L. IF not found

THEN GOTO M.

g6to L.2
M.

fig. 6.16 - Transformation T4
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matter to locate where to embed the open and close state

ments (see figure 6.17). OPEN is embedded just before the

first access of the expression and CLOSE is embedded just

upon exit. Data accesses become SELECT statements, and get

statements are replaced by FETCHes. In the latter, all

GETs for data collected over the access expression must be

clustered together so they can be replaced by a single

FETCH statement.

The algorithm for embedding proceeds in three steps:
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(1)

f

IF not found
THEN GOTO M.

...

M.

(2)

f-1
L. IF end of set

THEN GOTO M

M.

f"1
GOTO L.

1

OPEN

f

IF not found
THEN GOTO M.

• • ♦

M. CLOSE

OPEN

f"T
L. IF end of set

THEN GOTO M.

f"1
GOTO L.

M. CLOSE

fig. 6.17 - Open/Close Embeddings

Algorithm Embed

Step 1: Create flow chart

Step 2: FOR EACH access path expression graph DO
FOR EACH mapping pair, starting with the

root's inedge DO apply transform
apply OPEN/CLOSE embedding transform

Step 3: Embed the interface statements into the host program

We will illustrate the concepts of embedding with the

program of section 6.3.2.1. The program is initially

represented as in figure 6.18. DML find statements have

been replaced by the name of their associated access map-
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pings. For the predecessor segment's query, transforma

tion 2 is applied to TITLE"1 o ASSIGN"1, and OPEN and

CLOSE are embedded (see figure 6.19). For the successor

segment's query, no transformation need be applied. OPEN

and CLOSE statements are embedded (see figure 6.20). The

embedded program becomes:

MOVE 'ACCOUNTANT' TO TITLE IN JOB.

TITLE"1
L. IF end of set THEN GOTO EXIT.

ASSIGN"1
M. IF end of set THEN GOTO 0.

0.

EXIT.

WORKS-IN

ASSIGN

GOTO M.

TITLE"1
GOTO L.

-1

fig. 6.18 - Example C-Diagrams



MOVE 'ACCOUNTANT' TO TITLE IN JOB

OPEN

TITLE"1 o ASSIGN"1
L. IF end of set THEN GOTO EXIT.

WORKS-IN

TITLE"1 o ASSIGN"1
GOTO L.

EXIT. CLOSE

fig. 6.19 - Compose Predecessor Query

OPEN

TITLE"1 o ASSIGN'1
L. IF end of set THEN GOTO EXIT

OPEN

WORKS-IN

CLOSE

TITLE"1 o ASSIGN"1
GOTO L.

EXIT. CLOSE

fig. 6.20 - Final Flow Chart

LET C1 BE <predecessor query>
LET C2 BE <successor query>
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MOVE 'ACCOUNTANT' TO TITLE IN JOB.

L.

OPEN C1.

SELECT C1.

M. IF end of set GO TO EXIT.
FETCH C1.

IF EMP.BIRTHYR <= 1950 GO TO N.
... other code ...

OPEN C2.
SELECT C2.

FETCH C2.
• • •

CLOSE C2.
N. SELECT C1.

GO TO L.

EXIT. CLOSE C1.
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§.'!'!' The Class of Decompilable Programs

Not every CODASYL DML program can be decomposed into

one with a relational access specification. Intuitively,

if the data accessed by the program can be generated by a

collection of parameterized non-procedural relational

queries, then the program is decompilable.

Several properties of a program are necessary for its

decompilablity. First, orderings among objects must be

logical rather than physical. For example, it is possible

to insert a new member record into a set instance after

all previously inserted members. This is tantamount to

sorting the members by time of insertion. Decompilation

will successfully preserve the semantics of the program

only if such orderings are supported logically, e.g., by

specifying a set order of ascending insertion date, with
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date included as a data item in each record. Physical ord

erings are not guaranteed to be maintained should the

underlying database be converted to a different data

model. In practise, this causes difficulties because

existing programs often take advantage of physical order

ings. In these cases, human intervention may be required

to direct the translation.

Second, the decompilation algorithm is based on the

assumption that data access is requested via atomic access

units consisting of standard code sequences. These have

been selected because of their semantic relationship to

access path operations. Other combinations are possible,

but they cannot be decompiled. For example, consider the

pair

(1) FIND EMP WITHIN CURRENT WORKS-IN USING BIRTHYR.

(2) FIND DUPLICATE WITHIN WORKS-IN USING SALARY.

The above pair requests all employees in the current

department who make the same salary as the first employee

born in a specified year. The object set associated with

(1) consists of all employees within the current depart

ment born in the specified year, while associated with (2)

is an object set that consists of all employees within the

current department who make the same salary as the previ

ously accessed employee. Because the object sets are not

the same, the statements cannot be combined.
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Lastly, a canonical form exists for a decompilable

program. The program can be represented as a sequence of

composite C-diagrams. Each composite C-diagram consists

of nested C-diagrams of adjacent access units. Each compo

site diagram can be mapped into a single relational query.

If .the program cannot be placed into this form, either

because of misused statement pairs or poorly- structured

access, then it is not decompilable.

A program can be written, or transformed, so as to

minimize the number of decompiled relational queries.

First, all initializations of variables in the UWA should

be performed as early as possible., i.e., before the

sequence of FIND statements of the query are executed.

Second, GET statements should be deferred as long as pos

sible to insure they will not cause a premature procedural

break. Applications code should be moved to the innermost

loop feasible. Determining when such transformations do

not alter the semantics of the program is beyond the scope
of this thesis.

Decompilation is most successful for queries which

involve long paths, i.e., few or no intersections, and for

which the facilities of the DML are sufficient for

expressing the query. Any necessity to perform computation

outside of the DML, e.g., data item tests which are not

based on equality or intersections of paths, will result
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in a break and thus a less complete decompilation. Note

that the DML does not support the intersection of a func

tional access mapping with property inverse mappings, even

when the latter involve equality. This will always lead to

a break.

We have characterized the class of programs that can

be decompiled by the algorithm of this chapter. Not every

"decompilable" DML program is successfully handled.

Ideally, the goal of decompilation is to replace as much

of a procedural program by non-procedural operations as

possible. This can be achieved if the relational inter

face supports some, if not most, of the enumeration capa

bilities of the DML. The formulation of the appropriate

interface is still an open question. A possible candidate

is the link and selector language of [TSIC76b]. It com

bines aspects of DML enumeration with a non-procedural

query specification.

Even for portions of a program that cannot be

represented non-procedurally, it may still be possible to

use non-procedural operations to severely limit the set of

records over which the record-at-a-time operations are

applied. In short, the goal is to do as much non-

procedurally as possible. This objective is not completely

obtained with our algorithm.
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Our algorithm succeeds when the currency flow graph

can be reduced, because the conditions for applying the

graph transformations are met. A failure is caused by a

malformed atomic access unit, as indicated by nodes of the

flow graph that should be combined but cannot. A malformed

access unit can often be supported procedurally as out

lined above. However, we have not investigated methods for

finding the covering non-procedural operations. Note that

procedural enumeration operations will cause breaks analo

gous to those encountered during embedding. Thus a query

which contains several procedural access units may be bro

ken into several subqueries.

6.4. Compilation

The compilation process consists of two stages. The

first stage takes a relational calculus query, written for

a particular relational schema, and maps it into an inter

nal form called the iterative query language (IQL). The

cost of the query, in terms of number of pages accessed,

is sensitive to the order in which relations are iterated

in the IQL. Information in the associated access path

schema is used to find an "optimal" iteration order. The

second stage maps the IQL query into a CODASYL DML routine

to access data from a semantically equivalent CODASYL

schema.
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We assume that the relational interface described in

the previous section is being used here. A compiled rela

tional program will have a CODASYL DML coroutine associ

ated with each query. These coroutines communicate with

the user program through a program UWA, and with the data

base system through their own UWA. An OPEN statement has

the effect of copying the values from the program's UWA

into the coroutines' UWA. SELECT passes control from the

user program to the DML coroutine to actually access the

data. A FETCH will cause data in the UWA to be copied into

the program UWA.

§.'H»J.. Iterative Query Language

In this section, we define an intermediate form for

compilation. The IQL is a semi-procedural relational

query language. It is procedural in that an order of

iteration is imposed on the enumeration of tuples to

answer a query. It is non-procedural in that access paths

are represented by boolean connectives rather than access

mappings. The access paths used to access an object are

not explicitly specified.

An IQL query consists of a nested sequence of FOR

EACH statements. The format of the itn statement in the

nesting is:

FOR EACH v < R ST B(Vl,...,v.
DO <statSment1block> ' 1
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RjL is a relation. Vi is a range variable, which is used to

represent the current tuple in the enumeration of R.. B is

a boolean condition which is applied to v. and its prede

cessor range variables in outer nested FOR EACH state

ments. The statement block is only executed if B is true

for the current tuples represented by v ... , v.. The

semantics of the FOR EACH can be described as:

v. <- first tuple of R.
fc'1: IF v, = 6 THEN GO TO &

IF B(v1,...,v.) THEN statement block>
v. <- next tuple of R.
g5 to M 1

As an example, consider the query, that requests the

location of John Smith's department. Assume we have the

schema of the previous section. The query might be

expressed as:

FOR EACH E < EMP ST E.ENAME = "John Smith" DO
FOR EACH D « DEPT ST D.DNO = E.WORKS-IN DO

PRINT D.LOCATION

The program scans the employee relation until it finds a

tuple with the employee name of John Smith. E.WORKS-IN is

the department number of his associated department. The

department relation is scanned to find a tuple with the

matching department number. This access can be efficiently

implemented if the WORKS-IN access path is supported in

the access path schema. Once found, the department's loca

tion is printed.
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Once an order has been determined, it is straight

forward to map a relational calculus query into an IQL

query. In order to make maximum use of logical access

paths, some clauses are expanded by introducing transi

tivities. For example, if Q ranges over QUAL and A over

ALLOC, then "Q.JID s A.JID" does not correspond to a logi

cal access path. However if the clause is replaced by

"Q.JID = J.JID AND J.JID = A.JID," then each clause

represents a logical access path. This transformation can

be applied to equality clauses between matching identif

iers of relationship relations. Next, we associate a FOR

EACH statement with each range variable of the relational

calculus query. One-variable clauses or clauses which

involve the range variable and previously iterated vari

ables are associated with the FOR EACH. The above query

would have been derived from the relational calculus

query:

RANGE OF E IS EMP
RANGE OF D IS DEPT

RETRIEVE (D.LOCATION) WHERE E.ENAME = 'John Smith'
AND E.WORKS-IN = D.DNO

6.4.2. Cost Model for IQL Queries

The objective of optimization is to determine an

iteration order which minimizes the number of pages

accessed to solve a query. Suppose that a query involves

the relations Rp ... , Rn. Let an ordering i = (i , ... ,
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in) be a permutation of 1, ... , n. For a given jL, let

q.(i) = Average number of R. tuples selected for each

assignment of tuples to (v. , ... , v. )
*1 xj-1

p.(j.) = Average number of R. pages accessed to deter-
J Xj

mine the qualified tuples

NnU) = total number of pages of R. , ... , R. accessed
x1 1n

n j-1
Then N (i) = 2 pAi) II qu(i).

j=1 J ~ k=1 k "

The qjQ) and pA±) can be determined from the access

path schema associated with the relational schema. In

section 6.3.2.2 an algorithm was described to map access

path expression graphs into relational linkage terms. Here

we must invert that process: we wish to recognize the

underlying access paths represented by the clauses of the

FOR EACH statement. The mapping between linkage terms and

access paths is as follows:

(1) "range variableA.p = value" can be mapped into the

property P: A —> Value Set. For example, J.TITLE =

'ACCOUNTANT' is mapped into the property TITLE: JOB

—> CHAR(20).

(2) "range variableA.F = range variableg.IDg" is mapped
into the association F: A —> B. For example,

E.ASSIGN = J.JID is mapped into the association

ASSIGN: EMP —> JOB.
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(3) "range variableR.IDA = range variable^ID" is mapped

into the relationship association R-A: R —> A. For

example, Q.ENO = E.ENO, with Q ranging over QUAL and

E ranging over EMP, is mapped into the association

QUAL-EMP: QUAL —> EMP.

PjU) and Qj(^) depend on information about the

objects in the schema, and the functionality and label of

the access path. For a schema object A, let p-(A) be the

expected number of pages accessed to find the desired sub

set of A via path F. Let n(A) be the number of pages on

which elements of A can be found, and n(A) be the cardi

nality of A. Then pp(A) is defined as follows:

F"1: B —> A
Label is "W" then pr(A) = 0

F

"C" then pF(A) =£{|j
"I" then pp(A) =2^

F: A —> B

Label is "W" then pp(A) = 0

else pF(A) = 1

In the above, we have assumed that objects in the

domain of a mapping are uniformly distributed among the

objects in the range. This assumption is often not true in

practise. In addition, it is difficult to maintain accu

rate counts of object cardinalities in real databases.

Therefore the page costs should be considered as estimates

at best. The Pj(.i) is determined by evaluating all
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candidate access paths, and choosing F with the minilmum

value for PF(Ri#). The access path F is called the minimum

access path (MAP).

Consider the WORKS-IN association of the employee

database. Let n(EMP) = 100 and n(DEPT) = 10. The average

number of employees per department is 10, or restated, ^L
of the employees are in a given department. The fraction

jq is called the selectivity of WORKS-IN, denoted by

^WORKS-IN* ^e numDer of departments per employee is 1,

which is 10 * y^. Thus the expected fraction of objects

accessed is given by n(Ran ^. This observation holds

only for mappings derived from equality clauses. The value

of fp for mappings derived from inequality clauses is

arbitrarily approximated by I, i.e., one third of the

accessed objects are expected to meet the range qualifica

tion. The selectivity of intersected mappings, derived

from conjunctive clauses, is the product of the selectivi-

ties of each mapping. Thus q (i) = n(R. ) * TL tY, where S
J xj K«S *

is the set of paths derived from the clauses of the jth

FOR EACH statement.

6.4.3. Determining Iteration Order

The operations of CODASYL DML facilitate the expres

sion of queries that trace a path through the schema. How

ever, the intersection of paths is not adequately
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supported, except for the trivial case of the intersection

of an inverse mapping (owner to member access) with pro

perty inverses (USING clause). An intersection over two

paths can be formed by enumerating all elements on one

path for each element on the other. To determine if the

same element appears on both paths, we must escape to the

host language and procedurally compare their database

keys. Therefore the concept of a path query appears basic

in the CODASYL environment. In addition, in the previous

section we saw that queries which are intersection-free,

except for property mapping intersections, are the basic

unit of decompilation. If we desire our compilations to be

reversible, we must limit ourselves to queries which can

be expressed without intersections. Path queries are a

class for which all the intersection-free orderings can be

easily found.

Let Q be a query expressed in the relational calculus

with qualification q in conjunctive normal form. Define

its associated query graph GQ(VQ,E0) as:

Vq = set of relations mentioned in the range statements of

Q.

eq = Hi»j) ! i i j and some clause of q references both

Rt and R.}.

A path query is one in which (1) all clauses are at most

two variable and based on equality comparison (equi-join)
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and are supported by the underlying access path schema,

and (2) its associated query graph is acyclic, and no node

is connected to more than two other nodes.

An intersection-free order is one in which the nodes

are arranged in a sequence so that no node has been pre-

ceeded in the sequence by more than one connected node.

For example, the path:

ABC
ooo

has four intersection-free orderings:

ABC

0 -0 o

B A C

^—• /
B C A

s—• /
C B A
0 0 0

In general, there are N! ways to arrange N nodes. However,
M 1

there are only 2 " intersection-free orderings of a path

with N nodes. This represents a considerable reduction in

the number of orders that must be evaluated:



N
2N-1

N!
1 1 1

2 2 2

3 4 6
4 8 24

5 16 120
6 32 720
7 64 5040
8 128 40320
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An algorithm to generate all intersection-free orders

in figure 6.21. A node in the path is chosen as the first

node in the iteration, partitioning the nodes to its left

and right in the path. All nodes to the left must be

visited in inverse order to avoid an intersection:

1 2 P-1 p
o

==> P P-1 1 P+1 P+2
0 O—. . . —*) Q •

For example, if P-2 is visited before P-1, an intersection

is caused among the edges from P and P-2. Each partition

is partially ordered by this restriction. The problem then

becomes one of shuffling two sequences together in all

ways which preserve the order of each individual sequence.

The algorithm does this by selecting the first element of

one sequence as the node to visit next, and recursing on

the remaining sequences. The process is repeated with the

first node of the other sequence.

Another class of queries are those whose query graphs

form an acyclic graph. A tree query is a query in which
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GenerateOrders

/* algorithm chooses the itn node for the pivot.
Path order is represented by the array ORDER. The
pivot partitions it into 0RDER[1:i-1] and 0RDER[i+1:n] */

FOR i <- 1 TO N DO
RECURSE(1,i-1,i+1,n,{i})

/* parameters are index of start of left partition, end of
left partition, start of right partition, end of right
partition, and result, is a sequence of nodes (|j is
sequence concentration operator) */

RECOURSE(leftstart,leftend, rightstart ,rightend ,result)

IF ORDER[leftstart:leftend] = eJ THEN
[result <- result || ORDER[rightstart:rightend]
PRINT result

ELSE

IF ORDER[rightstart:rightend] r rf THEN
[result <- result jj ORDERCleftstart:leftend]
PRINT result

ELSE

"result' <- result |j ORDERCrightstart]
RECURSE(leftstart,leftend,rightstart+1,rightend,result')

result' <- result j| ORDERCleftstart]
RECURSE(leftstart+1,leftend,rightstart,rightend,result')

fig. 6.21 - Intersection-free Order Generation

(1) all clauses are at most two variable and based on

equality and are supported by the underlying access path

schema, and (2) its associated query graph is acyclic and

connected. Any preorder traversal of a tree query's graph

will result in an intersection-free order. However,

because a query graph for a tree query has a more complex

structure, there does not appear to be a straight-forward

algorithm to enumerate all intersection-free query orders.
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6.4.4. Compilation into CODASYL DML

A query written in IQL imposes an iteration order for

processing the query. Given this information, the query

can be mapped into the accessing operations supported by

CODASYL DML. The approach is to choose an access path to

access the object, and to use the primitives of DML to

take advantage of the selected access path.

Certain restrictions are imposed on the query to sim

plify the algorithm. The boolean clause associated with

each FOR EACH statement is assumed to be in conjunctive

normal form. Further, each conjunct involves at most two

variables, and an OR clause can only be specified for

alternative values of a value attribute (e.g. J.SALARY <

10K OR J.SALARY > 15K), not a key attribute.

§.'!'!'!' Algorithm for Compilation

In this section, we present a recursive decent algo

rithm for generating a CODASYL DML program from an IQL

query. The algorithm proceeds from the outermost loop

towards the innermost loop. It is invoked by calling C0DE-

GEN(1). The algorithm is given in figure 6.22.

For the i nested FOR EACH statement, CODEGEN deter

mines whether any clause can be supported by a set access.

If none can, it attempts to find a one-variable equality

clause on which to base the access. The cases are: (1) the
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Algorithm GenerateDML

procedure CODEGEN(i)
IF i > number of FOR EACH statements THEN

fgenerate code to interface results with user program
Lreturn

LET B(v1,...,v.) = C1(Vl,...,v.) AND C2(v-,...,v,)
AND

4 , • . . , V • ) ftllL/ \jC.\

C3(v.) AND C4(v,)
WHERE

C1(v
C2(v

,vi) = supported 2-var equality clauses
,vi) = 2-var clauses not in C1

C3(vi) = 1-var equality clauses
C4(v.) = 1-var clauses not in C3

NOTE: Clauses in C2 are treated as 1-var by substitut
ing values from the current r..,...^

i-1

IF C1 = 6 THEN /* access by equality_ clause */
rLET C3(v.) = C3Kv.) AND C32(v.) AND C33(v.)

WHEREill i
C3Kvi) = indexed key attribute clause
C32(vi) = indexed non-key attribute clauses
C33(vi) s non-indexed attribute clauses

I C31 i <t> THEN /* access by identifier */
K <- key name of identifier data item
generate

" MOVE value TO r..identifier data item.
FIND ANY r. USING K.
IF NOT FOUND THEN GO TO *i.

GET r..
IF NOT (C2 AND C32 AND C33 AND C4)

THEN GO TO Ai."
CODEGENU+1)
generate

"Xi: "

ELSE IF C32 i 6 THEN /* access by indexed property */
"MAP <- minimum cost property mapping
K <-key name of MAP
C32' <- C32 - MAP clause
generate

" MOVE value TO r. .value data item.
FIND ANY r. USING K.

*i+2: IF NOT FOUND THEN GO TO *i.
GET r..

IF NO* (C2 AND C32' AND C33 AND C4)
THEN GO TO fci+1."

CODEGEN(i+1)



generate
"M+1 :

hi: "

FIND DUPLICATE r, USING K.
GO TO *i+2. 1

ELSE /* complete record enumeration */
data item names derived from C33 clauses
FOR EACH clause j in C33 DO

generate

" MOVE value TO r. .data item.."
generate 1 J

FIND FIRST r. USING data item,,...
M+2: IF NOT FOUND^THEN GO TO *i.

GET r..

IF NOT (C2 AND C4) THEN GO TO fci+1.11
C0DEGEN(i+1)
generate
"M+1:

*i: "

FIND NEXT r, USING data item,,...
GO TO Ai+2.1 1

ELSE /* supported 2-var clauses */
MAP <- association mapping
S <- set name of MAP

IF MAP is functional THEN
generate

" FIND OWNER WITHIN S.
IF NOT FOUND THEN GO TO *i.

GET r..

IF NO* (C2 AND C3 AND C4)
THEN GO TO *i.»

CODEGENU+1)
generate

"U: "

ELSE /* MAP is inverse */
IF C3 i 6 THEN /* use USING clause FIND */
data item names derived from C3 clauses
FOR EACH clause j in C3 DO

generate

" MOVE value TO r..data item.."
generate 1 J
" FIND r. WITHIN S CURRENT

USIN6 data item., ...
M+2: IF NOT FOUND THE^GO TO *i.

GET r..

IF NOT (C2 AND C4)
THEN GO TO fci+1."

CODEGENU+1)
generate
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"fci+1: FIND DUPLICATE WITHIN S

*i:

USING data item

GO TO M+2.
1

ELSE /* USING clause does not apply */
^generate
" FIND FIRST r. WITHIN S.
*i+2: IF NOT FOUND^HEN GO TO *i.

GET r..

IF NOT (C2 AND C4)
THEN GO TO M+1."

CODEGEN(i+1)
generate

"*i+1: FIND NEXT r. WITHIN S.
GO TO M+2.

*i: "

fig. 6.22 - Compiling into DML
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key attribute of the relation appears in a one-variable

equality clause, (2) indexed attributes appear in one-

variable equality clauses, or (3) value attributes appear

in equality clauses. In case (1), code is generated to

access the CODASYL record by its key data item. In (2), an

indexed minimum cost access path is found and used to

access the record. In (3), a FIND USING statement is

employed to access the record, automatically implementing

the equality tests for the value data items.

Otherwise, at most one clause is supported by set

access because the ordering is intersection-free. The

underlying access mapping is selected to access the

records. If the access mapping is functional, then a FIND

OWNER statement is used. If it is an inverse mapping, and
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there are one-variable equality clauses in the condition,

then the FIND CURRENT / FIND DUPLICATE statement pair is

used. This is to take advantage of the USING clause to

implement the value data item equality tests. Otherwise a

FIND FIRST/NEXT WITHIN SET operation pair is generated.

The complete details can be found in the algorithm.

6.jt.4.2. Some Peep-hole Optimizations

In the compilation algorithm, not much consideration

has been given to optimizing the program produced, outside

of selecting the most appropriate DML primitives to imple

ment a given access. Several improvements can be made:

(1) If the clauses involved in the predicate test are all

null, then the IF statement can be removed.

(2) The entire record need not be transfered into the

UWA. Only those data items which are subsequently

used within the iteration need be accessed by the GET

statement. If no data item values are subsequently

used, then the GET statement can be deleted.

(3) If a functional MAP is known to be an association,

then the test for NOT FOUND can be dropped, because

the range must exist under the definition of an asso

ciation.

(4) If a record type must be completely enumerated, and

no equality clauses can be used to restrict the
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enumeration, then the USING clause in the FIND

FIRST/NEXT record operation can be dropped.

k'1'1'1' Example Compilation

Consider the relational query to find the names of

all departments which employ accountants born after 1950.

The APML query might look like the following:

FOR EACH J « JOB ST J.TITLE = 'Accountant' DO
FOR EACH E « EMP ST E.ASSIGN = J.JID

AND E.BIRTHYR > 1950 DO
FOR EACH D « ST D.DNO = E.WORKS-IN DO

• • •

The relevant portion of the employee access path schema

is:

"E"^ BIRTHYR

EMP
WORKS-IN

ASSIGN

"E" >* DNAME

I DEPT

The first FOR EACH involves an indexed one-variable

clause, i.e. J.TITLE = 'Accountant*. The code generated

is:
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MOVE 'ACCOUNTANT' TO JOB.TITLE.
FIND FIRST JOB USING TITLE.

A2: IF NOT FOUND THEN GO TO fc1.

FIND NEXT JOB USING TITLE.
GO TO h2.

Note that the data items of JOB are not needed by the rest

of the query, so there is no need to actually move the JOB

records into the UWA.

The second FOR EACH involves a two-variable clause

which is implemented by a set, i.e. E.ASSIGN = J.JID. The

other clause, E.BIRTHYR > 1950, is one-variable but not

equality, and thus cannot be used within the DML. The code

generated is:

FIND FIRST EMP WITHIN ASSIGN.
*5: IF NOT FOUND THEN GO TO *3.

GET EMP; BIRTHYR.
IF NOT (EMP.BIRTHYR > 1950) THEN GO TO M.

M: FIND NEXT EMP WITHIN ASSIGN.
GO TO fc5.

This section of code is nested within the previous one.

The last FOR EACH involves a single clause supported

by a set, i.e. D.DNO = E.WORKS-IN. Because the access is

functional, the FIND OWNER operation is used. Because the

mapping is an association, the test for NOT FOUND can be

omitted :

FIND OWNER WITHIN WORKS-IN.
GET DEPT; DNAME.
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This is n-ested within the above. At the very innermost

level of nesting, code is incorporated to return results

to the user program upon request. The compiled program is

the same as that of figure 6.10 in section 6.3.2.1.

.6-5. Conclusions

In this chapter, we have presented detailed algo

rithms for translating programs whose associated databases

have themselves been translated. The algorithms make

extensive use of the information contained in the

database's access path schema.

A decompilation algorithm to map CODASYL DML opera

tions into a relational query was presented. The program

is analyzed to determine which code sequences correspond

to set-oriented mappings of the access path schema. The

composed mappings can be translated into a relational

query. The algorithm is most successful, i.e. combines

together the longest sequences of DML operations, when the

associated iteration order is intersection-free.

An algorithm to compile relational queries into DML

was also presented. Again, the algorithm is limited to

those iteration orders which are intersection-free. Infor

mation in the access path schema is used to help estimate

the costs of access and to take advantage of supported

access paths.



CHAPTER 7

CONCLUSIONS

7. Conclusions

In this final chapter we briefly review the contribu

tions of this dissertation and point to areas for future

work.

7.J.. Contributions

The major thrust of this thesis has been to apply a

semantic database specification to several related prob

lems in database design and translation. Its contributions

can be classified into the four categories of: (1) logical

design methodology, (2) physical design methodology, (3)

schema conversion, and (4) program conversion. Each will

be treated in turn.

A logical design methodology was developed which maps

a semantic database specification of what is to be

modelled into a logical schema for a particular data

model. Design goals were formulated to aid in the deriva

tion of the mapping rules. These represent requirements

on how the logical schema is to behave under the update

operations of the model. The methodology was shown to

yield schemas which are well-behaved under update opera-
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tions.

A physical design is integrated with the logical

design by choosing implementation structures which support

the logical access paths implied by the semantic specifi

cation. The storage structures and access methods of

database systems were characterized by four implementation

independent properties of a physical access path:

"Evaluated", "Indexed", "Clustered", and "Well Placed."

Methods of assigning these properties in a conflict-free

manner to the access paths of a schema were presented. The

schema, with assigned properties, is then used as a

requirements specification for choosing actual implementa

tion structures from among those supported by a specific

system. The methodology partitions the physical design

process into access path specification and implementation

choice.

Methods were presented to augment target schemas with

semantic information to facilitate the automatic transla

tion of logical schemas between different data models.

Translation algorithms for the CODASYL and Relational data

models were derived. Redesign operations and evolution

rules were defined for modifying the semantic content of a

database schema.

An algorithmic approach to decompiling programs writ

ten with low level procedural manipulation operations into
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a high level non-procedural query specification was

presented. The class of "decompilable" programs was

characterized. Methods for compiling non-procedural

queries into low level operations were also explored.

7.2. Future Work

The original motivation for this work was to explore

techniques for constructing a heterogeneous database

management system on top of existing database managers.

The methodologies for logical and physical database design

and the techniques for schema and program conversion are a

step toward achieving this goal. More work is needed to

actually achieve it.

In the realm of physical database design, several

problems are still unsolved. The integer linear program

ming formulation for assigning properties to access paths

is computationally expensive to use. Does a special pur

pose branch and bound or dynamic programming algorithm

exist for its efficient solution? Further, the algorithms

for implementing a schema given the requirements specifi

cation require a minimum amount of information from the

user. Is it possible to propose a family of algorithms,

that when given more detailed usage information, will gen

erate better physical designs? More work is .needed on

choosing optimal structures to support access paths.
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For schema conversion, methods are needed for con

structing programs to actually perform the translation

between different data models. These methods should be

implemented in order to answer questions of efficiency.

Can the translation be done in real time? Then it might be

possible to support multiple manipulation languages by

translating the data into the data model upon which the

query language is defined. How can the access path specif

ication be used to aid in the translation of a schema at

the physical level? The specification could be used to

choose new storage structures for the translated data

within the target database system.

The techniques developed here for program conversion

should be extended to a larger class of programs. A more

extensive analysis of the program, involving special cases

and general program transformations, is a fruitful, albeit

difficult, area for future research.

Much works remains in formulating efficient query

processing techniques which compile non-procedural queries

into procedural access path operations. Heuristics should

be developed for selecting a "good" order in which to

visit the objects mentioned in a query.

Finally, an attempt should be made to actually imple

ment a heterogeneous database management system on top of

existing relational and CODASYL systems. Such a system
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should also be extended to a distributed environment.

Several research projects are already pursuing this direc

tion [CCA 79, KIMB793. Perhaps a distributed design model

could be formulated to aid in designing databases in this

environment. Of particular interest is the use of the

design model to help integrate existing databases. Work in

this direction is reported in [ELMA79].
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