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ABSTRACT

Definitian(ﬁ'passivity and losslessness are presented which apply
to n-port networks which are notvnecessari]y linear, time-invariant, or
lumped; in fact, these definitions apply to any n-port which has a
dynamical system representation. For lumped, nonlinear n-port networks
which can be mathematically represented by a finite-order dynamical
system, conditions for passivity and losslessness are formulated in terms
of properties of the state equation function, the output function, etc.
These conditions can be verified without solving the state equation, and
can be viewed as nonlinear generalizations of the well-known time-domain
and frequency-domain passivity and losslessness conditions for linear

time-invariant lumped n-port networks.
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I. Introduction

The energy-related concepts of passivity and losslessness play
important roles in the highly developed classical theory of linear time-
invariant lumped (LTIL) n-ports [1]-[3]. In the more recent and less
developed theory of nonlinear n-ports, there is no consensus as to how
these energy-related concepts should be defined; moreover, there are just
a few results (most of which apply only to narrow classes of nonlinear
n-ports) that can be util ized to determinewhether a given nonlinear n-port is
passive or active, lossless or lossy (we define activity to be the
negation of passivity and lossyness to be the negation of losslessness).

The first goal of this research is to provide consistent definitions
of the concepts of passivity and losslessness which apply to any n-port
which has a dynamical system representation. By "consistent," we mean

~ that these definitions should have the following properties:

(i) For those classes of n-ports where definitions of these
concepts have already been established (e.g., LTIL n-ports), our
definitions should agree with the established definitions. In cases
where a definition does not agree, there must be a good reason why
our definition should supplant the established definition.

"(i1) An n-port should be unambiguously classified as passive

or active, lossless or lossy. -

Consistent definitions for the nonlinear time-invariant case have

already been presented in references [4] and [5]1. The definition
of passivity presented in [4] has a straightforward generalization
to the nonlinear time-varying case, and we present that generaliza-

tion in Subsection 4.1. The definition of losslessness presented in



[5] has no obvious generalization to tﬁe nonlinear time-varying
case; however, in Subsection 5.1 we succeed in devising a consistent
theory of loss1essness.which applies to both time-invariant and
time-varying nonlinear n-ports. We consider the material in Subsection q
5.1 to be one of the significant contributions of this research.

A large class of lumped, nonlinear ﬁ-port networks can be
mathematically represented by a special type of dynamical system
which we call a "finite-order dynamical system": in essence, such
a dynamical system is one in which the state lies in an m-dimensional
Euclidean space and its evolution over time is governed by a so-
called "state equation" x = f(x,u,t), where x denotes the state,
u denotes the input, and t denotes time. The second goal of
this research is as follows: for n-ports which can be mathe-
matically represented by a finite-order dynamféa] system, fiﬁa
conditions for passivity and losslessness (in terms of properties
o% the state equation function f(-,-,+), the output function
g(-,+,+), etc.) which can 'be verified without solving the state
equation. Such results can Be viewed as noﬁlinear generalizations
of the well-known time-domain and frequency-domain passiQity and
losslessness conditions for LTIL n-ports [1]. For some classes of
finite-order dynamical systems we shall find sufficient conditions
for passivity and/or losslessness, for other classes we shall find .

necessary conditions, and for still others we shall find conditions

Ly

which are both necessary and sufficient.
Our results involving finite-order dynamical systems can be
viewed as contributions to the theory of optimal control. This is

especially true of our results dealing with passivity. As will be
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discussed in Subsection 4.1, the question of passivity for a time-
invariant dynamical system is essentially the following nonstandard
optimal contrpl problem: find conditions for a certain optimal-
value function defined on the state space (the negative of the
"available energy") to be finite-valued ét each point of its domain.
In the usual optimal-control problem, it is assumed a priori that
the optimal-value function is finite-valued. This assumption fre-
quently takes the form of a restriction on the class of allowable
cost-functional integrands, e.g., one might deal only with cost-
functional iﬁtegrands which are nonnegative. In the theory of
passivity for dynamical systems, we cannot base our entire theory

on the assumption that the available energy function is finite-
valued; indeed, the questibn of whether the available énéggy function
is finite-valued is precisely the question we are trying to answer

in the theory of passivity.

éﬁmméffiihghihé paper, Section.iiAa%Végwthe bﬁégcvaéfinifidﬁgﬂandrw
assumptions which will be used throughout this paper. Most of our
notation is also defined in Sectioq II. Subsection 2.1 deals mostly
with dynamical systems, while Subsection 2.2 gives a precise definition

of the term "n-port"--one that is both useful and meaningful within the

framework of our theory.

Section III contains various technical lemmas. The | N
main re§q]t,_Lemma_3.1.7 in Subse;tion 3.1, is'a decidedly non-
trivial analytical result for finite-order time-invariant dynamical
systems which has applications in the studies of both passivity and
losslessness. For first-order dynamical systems, Lemma 3.1.7 can
be strengthened considerably: this stronger result is contained .

in Subsection 3.2.



Section IV is devoted to the concept of passivity. Subsection 4.1
is essentially the basic theory of passivity found in reference [4}],
with straightforward generalizations to the time-varying case. One
noteworthy item in Subsection 4.1 is the condition (Suff. 4.1.4) con-
tained in Lemma 4.1.4: this is an obvious sufficient algebraic pas-
sivity condition for finite-order dynamical systems which is equi-

1 internal energy function. Another

valent to the existence of a C
noteworthy item in Subsection 4.1 is Lemma 4.1.8, which shows that
(unlike the time-invariant case) conditions more restrictive than
mere reachability must be imposed in order for the required energy
fuhction to yield an internal energy function for a passive time-
varying dynamical system.
A conjecture is introduced in Subsection 4.2 which we call the
"Smoothness Conjecture." Roughly speaking, this conjecture says
that a passive, controllable C” finite-order dynamical system

1 internal energy function. On several occasions

nas at least one C
the first author has heard the Smoothness Conjecture, or some

minor variation of it, in his discussions with optimal control
theorists. Also, the truth of the Smoothness Conjecture seems to
have been assumed in references [6] and (7 ], although it was not
explicitly stated in either of those two references. If the Smooth-
ness Conjecture were true,.then (Suff. 4.1.4) would be a necessary
(as well as sufficient) algebraic passivity condition for the class
of controllable €~ finite-order dynamical systems. Unfortunately,
the Smoothness Conjecture is false: this is proved in Subsection 4.2
by producing a counterexample.

Hence, even if we restrict ourselves to controllable ¢

finite-order dynamical systems, (Suff. 4.1.4) is not a necessary

-4-
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condition for passivity. Therefore it is of interest to obtain a
sufficient algebraic passivity condition for finite-order dynamical
systems which is not as restrictive as (Suff. 4.1.4). Such a con-
dition can be obtained by applying Stalford's [8 ] results from

optimal control theory: this is done in Subsection 4.3.

In the following subsection, 4.4, the technical results
from Subsection 3.1 are applied to obtain some original sufficient
activity conditions for finite-ordef dynamical systems. Note that
the negations of these conditions are necessary conditions for
passivity.

The technical results from - Subsection 3.2 are applied in Subsection
4.5 to obtain an easily-verifiable necessary and sufficient passi-
vity condition for controllable first-order time-invariant dynamical

systems. This result was first published by the authors in reference [4].

We also present a new result which shows that a passive, controllable
first-order time-invariant dynamical system has an internal energy function
which possesses certain smoothness properties. Although first-order
dynamical systems are of little practical interest, they have been explicitly
analyzed in this paper because for this class of dynamical systems we are
able to obtain necessary and sufficient conditions for both passivity and
losslessness which can be verified without solving the state equation;

hence, they can be used to test the validity of various conjectures regarding
passivity and losslessness for finite-order dynamical systems. Indeed, the
insight gained by studying passive first-order dynamical systems enabled

the first author to devise the counterexample to the Smoothness Conjecture

presented in Subsection 4.2.
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Section V is devoted to the concept of losslessness. A thor-
ough treatment of the general theory of losslessness for time-
invariant nonlinear n-ports is given in [5], but there is no obvious '

extension of that theory to time-varying nonlinear n-ports. In

Subsection 5.1, we present a consistent theory of losslessness which
applies to time?varying as well as time-invariant nonlinear n-ports. -

In our theory, the question of whether a time-varying nonlinear

n-port /A/,is lossless reduces to the question of whether a certain

observable time-invariant dynamical system associated with /A/’is

loésless. One notable consequence of our theory is that a linear

time-varying l-port capacitor is not lossless: this is the same | -
classification that Penfield [ 9] has argued for.

The algebraic condition (Suff. 5.1.20) in Lemma 5.1.20 of
Subsection 5.1 is an obvious sufficient losslessness condition for
finite-order time-invariant dynamical systems, but we do not know
whether (Suff: 5.1.20) is a necessary condition for losslessness.
Therefore it is of interest to obtain a sufficient algebraic
1ossle§sness condition which is not as restrictive as (Suff. 5.1.20).

In Subsection 5.2 we obtain such a condition by applying Stalford's [8]
results from optimal control theory.

The technical results from Subsectioh 3.1 are applied in Subsection
5.3 to obtain an original necessary losslessness condition for

finite-order time-invariant dynamical systems.

In the final subsection of this paper, 5.4, a necessary and suf-
ficient algebraic losslessness condition for first-order time-invariant
dynamical systems is presented. The authors have also published this

material in reference [5].



It should be noted that all the general nonlinear passivity and
losslessness conditions in this paper are valid for LTIL n-ports (we use
the adjective "nonlinear" to mean "not necessarily linear"); however, the
special properties of LTIL n-ports allow us to derive passivity and
lTosslessness conditions of a much more explicit nature. These conditions
are fairly standard, but (contrary to wide-spread belief) there does not
seem to be any treatment of this topic in the literature which is totally
satisfactory in terms of completeness and rigor. For this reason the
authors are writing a companion paper [10] which gives complete, rigorous

proofs of the passivity and losslessness conditions for LTIL n-ports.

II. Definitions, Assumptions, and the Mathematical

Representation of N-Ports

Our basic notation is standard, and is completely defined in
reference [11]. Some of our nonstandard notation is as follows.
The symbol rR* denotes the set of nonnegative real numbers, i.e.,
R’ 4 [0,=), while R® denotes the set of extended real numbers (12,p.34];
symbolically, this is approximately denoted as follows: RS 4 {-»} URU
{co}.. Finally, IRE denotes the subset of all (t],to) € R x R such that
£> tg; symbolically, RZ % {(t;,t)) € RxR:t;>t:}.

2.1 Dynamical Systems

We are interested in the class of n-porﬁ networks which

can be mathematically represented by a "dynamical system" -- a mathemat-

ical abstraction which is defined as follows.

2.1.1 Definition. A dynamical system, denoted S, is a septuplet

{U,Uaz,‘#(',',',°),Y,g(',°,_'),w(-,°)}, where

]A precise>def1nition of the term "n-port" is given in Subsection 2.2.
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(i) U is a nonempty set called the set of admissible input values.

(i1) U is a set of functions mapping R into U called the set.of

admissible inputs. The set U is assumed to be translation invariant,

i.e., if u(+) € U, then the function u_: R+U defined by uT(t) 8 u(t-1)

also belongs to U for every t € R. Moreover, U is assumed to be closed

under concatenation. This means that if u.l(-),uz(-) € U, then the

functions Uy et R+ U and Uy R+U defined by

u](t) , if tgt ,

A
u,, (t)
12t uz(t) , if t>1
: u,(t), if t<r,
~ 4 1
u'lZT(t)

Uz(t) ’ if t_>_Ta

also belong to U. Finally, we assumé that U contains all the constant
functions mapping R to U, i.e., for every quU, the function u:R-+ U
defined by u(t) & u; belongs to U.

(ii1) £ is a nonempty set called the state space.

(iv) ¢: IRE x Ix U~ is called the state transition function.

[t obeys the following axioms.

(a) Consistency: ¢(t0,t0,x0,u(-)) = Xg for all tOEIR, xg€ I, and

u(«)e U.

(b) Determinism: ¢(t],t0,x0,u1(-)) = ¢(t],t0,x0,u2(-)) for all

(t],to,xo)GIREx £ and all u](-),uz(')eu satisfying
u](t) = uz(t) for te[to,t]].

(c) Semi-group: for all
2.
(tyrtgsxgsu(+)) €R ™ I x U and all t;€[t,,t,],

¢(t2’t0’x0’u(.)) = ¢(t2:t]: ¢(tPt0’x0’u(.))’ u(-)).

-8-
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(v) Y is a nonempty set called the set of output values.

(vi) g: Zx Ux IR =Y is called the output function.

(vii) ot Ux Y » t" x €7 is called the port variables read-out func-

tion. It defines the port voltage read-out function V:UxY + ¢" and

the port current read-out function I:UxY + € by the following

equation:
(V(u,y), I(u,y)) & w(uy) . (2.1.1.1)
The class of n-port networks which can be mathematically

represented by a dynamical system is quite broad: it includes networks

with nonlinear time-varying distributed elements as well as networks
with the familiar linear time-invariant lumped elements of classical
network theofy (resistors, capacitors, inductors, etc.).

The only significant difference between our definition of a dynami-
cal system and most others which have appeared in the literature (e.g.,
reference [13]), is the inclusion of the port variables read-out function
w(+,*). The equation (v,i) = w(u,y) gives the values of the port
voltage and current vectors, v and i, respectively, as a function of
the instantaneous values of the input (independent) variable u and the
output (dependent) variable y. It may seem strange that we allow com-
plex-valued port variables, i.e., that we allow w(+,+) to take values
in ¢" x ¢, of course, if a dynamical system is a mathematical repre-
sentation of a real, physical n-port, then u(+,) must take values in
R" x RM"c "« E"; we will see in a companion paper [10], however, that

dynamical systems with complex-valued port variables can be useful theoretical tools.

2.1.2 Example. Regarding the port Qariables read-out function
w(e,), the most common situation is where U=1Rn, Y=1Rn, and

w: R" xR R" « R" is a linear bijective function characterized

-9-



by a nonsingular coordinate transformation matrix € 322" x 2n as

G- CT0 e

where v stands for V(u,y), i stands for I(u,y), and Q is partitioned

follows:

into four n x n submatrices a, b, ¢, and d as shown on the right-hand
side of (2.1.2.1). The interesting special cases are as follows.

(i) The impedance representation. Here u=i and y=v; hence, a = I,

0, c=0, andd =1 (note: I denotes the n x n identity mdtrix).

o
1]

(ii) The admittance representation. Here u=v and y=i; hence, a = 0,

b=I1,c=1, and d = 0.

(ii1) The hybrid representation. In this case, one of the following

two conditions is satisfied for each k€{1,2,...,n} : either V=Y, and

ik = Uy, or else Vi = Y and ik = Yo where Vi is the k-th component
of v, etc. Thus
a]] 0 b]] 0
a=d= .'. , b:cz ." R
) 0 %n 0 bnn

where, for each ke€{1,2,...,n} , either akk=1 and'bkk=0, or else akk=0

and bkk=1.
(iv) For the scattering representation, the matrices a,b,c, and d
have the following form: - -
: - 1
B —-_—
/F; 0 Y r 0
a=b= , d:-c: ,
1
| 0 " Tn | 0 T ]

-10-



where the real positive constants r. are called the port normalizing

numbers.

(v) For the transmission representation, n must be even and a, b,

¢, and d have the following form:

0 0 | I 0
a= . b =
I 0 N 0 0
0 0 i 0 I
c = . d =
0 -I i 0 0

where I denotes the g-x %-identity matrix.

Before proceeding to the next definition, we must define some
additional notation. If w,zet", then‘< w,z) 4 2 szj s whére wj.
denotes the j-th component of w, etc., and W3 dengg;s the complex
conjugate of Wys also, we define lwll & /7wws~ . Finally, if s € ¢,
then Re s and Im s denoté the real and imaginary parts of s,

respectively.

2.1.3 Definition. Let S denote a dynamical system. Associated

with S is a function p: txUx R - R , called the power input

function, which is defined by
p(x,u,t) & Re { V(u,g(x,u,t)), I(u,g(x,u,t))) . (2.1.3.1)

We will always use the associated reference directions for assign-
ing the polarity of the port variables of an n-port [2, pp. 4-5]; hence,
if a dynamical system S is a mathematical répresentation for a reé],
physical n-port N, then V(u,g(x,u,t)) and I(u,g(x,u,t)) have real-valued

componenté and p(x,u,t) gives the net power flowing into the ports of

-11-



N when the state of S is x, the input value is u, and the time is t

(note that p(x,u,t) can be positive, negative, or zero).

2.1.4 Definitions. Let S denote a‘dynamical system, and let

(to,xo,u(-)) €R x I x U, Define x: [to,w)-» I by

x(t) g ¢(t,t0,x0,u(°)) . (2.1.4.1)

Then2 x(*)| [to,m) is called the state trajectory of S with x(to)’= Xg

which is generated by u(*). Define y: [to,w) +Y, v: [to,w) +~¢", and

i: [tg,®) +€" by

() & glx(t), u(t), t) (2.1.4.2)
v(t) & vu(t), y(t)) (2.1.4.3)
i(t) @ 1(u(t), y(t)) . (2.1.4.4)

Then y(-)l[to,w) (resp., v(°)] [to,m); resp., 1(+)] [to,w)) is called

the output (resp., port voltage; resp., port current) of S with initial

state x, which is generated by u(+). Moreover, {u(+),x(+)}| [to,w)

(resp., {u(+),y(+)}] [to,w)) is called an input-trajectory (resp.,

input-output) pair of S with initial state Xgs while {v(~),i(-)}|[t0,w)

is called the voltage-current pair of S with initial state Xq which is

generated by u(+). Let tle[to,w), and define X1 8 x(t]). Then

x(+)] [to,t]] is called the state trajectory of S from x, to x; which

is generated by u(-), and we say that u(-) "drives" or "steers" S from

Xy to xq over the time interval [to,t]]. Moreover, {u(+),x(-)}] [tO’tl]
(resp., {u(-), y()}| [tO’tll) is called an input-trajectory (resp.,

input-output) pair of S from x, to x,, while { v(-),i(-)}]| [t,,t ] is
0 ) 0’1

°The notation f(+)|A denotes the restriction of a function f(+) to a
subset A of its domain.
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called the voltage-current pair of S from Xg to X4 which is generated

by u(-).

Before proceeding, we must define some additional notation and

terminology. Let ACR be a Lebesgue measurable set, let W be a subset
of a normed vector space X (with the topology of W the relative topology
that it inherits from X), and let 0 < p < =. Then LP(A+W) denotes the
set of all Lebesgue measurable functions f: A»W such that IA [1£(£)lIPdt<e,

where | |If(t)||Pdt denotes the Lebesgue integral of the function -
A
t*llf(t”'p over the set A. (If A is an interval [a,b], then we use the

standard notation b to denote | .) The notation L?oc(A+w) denotes the

set of all Lebesgueameasurable fﬁnctions f: AW such that | [|f(t)||Pdt<e
for every compact Lebesgue measurable set B C A. Also, theBnotation
L“(A»W) denotes the set of all Lebesgue measurable fuﬁctions f: AW for
which there exists a finite constant M(f(+)) > 0 (which depends on f(-))
such that |[f(t)|l<M(f(-)) for a.a.t € A (the notation "a.a.t" stands for
"almost all t," it means for all t with the possible exception of some

t which form a set of Lebesgue measure zero). We use L _(A+W) to denote

loc
the set of all Lebesgue measurable functions f: A-W which satisfy the
following condition: for every compact Lebesgue measurable set B C A,
there exists a finite constant M(f(-),B8) > 0 (which depends on f(-) and

B) such that ||f(t)|kM(f(-),B) for a.a.t € B. For 0 < p < =, we call

LP(A+W) the set of LP functions mapping A to W, and we call L?OC(A+W)

the set of locally LP functions mapping A to W. Finally, when we use

terminology such as "measurable set," "measurable function," and "inte-
gral,” it will always be understood that we mean "Lebesque measurable
set," "Lebesque measurable function," and "Lebesgue integral," respect-

ively.
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2.1.5 Aésumption. Let S denote a dynamical system, and let p(.,-,.

denote the power input function associated with S (Def. 2.1.3). 1t is

assumed that for every (to,xo,u(-)) € R x ¥ x U, the mapping

t » p(x(t),u(t),t) belongs to Ly  ([ty,=) + R), where x(+)[[tg.=) is
the state trajectory of S with x(to) = Xg which is generated by u(-).

2.1.6 Definition. Let S denote a dynamical system, and let

{u(°),x(~)}l[t0,w) denote an input-trajectory pair of S. For every

t]e[to,m), thetenergy consumed by {u(~),x(-)}|[t0,t]] is de:ined to be

the quantity t; p(x(t),u(t),t)dt. (By Assumption 2.1.5, t:)p(x(t),u(t),t)dt
exists and is finite for every finite t, > t,; moreover, note that this in-
tegral can be positive, negative, or zero.)

2.1.7 Definition. (Reachability) Let S denote a dynamical system.

We say that a state X3 of S is reachable from a state x* of S if for each

t, € R, there exists (for some tOE(-m,t]}) an input-trajectory pair

{u('),x(-)}l[to,tl] of S from x* to x,. We say that S is reachable from
x* if every state of S is reachable from X*.

2.1.8 Definition. (Controllability) Let S denote a dynamical sys-

tem. We say that S is controllable if for each (xo,x],t1) €I x IxR,

there exists (for some tOG(-w,t]]) an input-trajectory pair {u(+),x(-)}|

[tO’t1] of S from Xq to Xy S is defined to be uncontrollable if it is

not controllable.

'2.1.9 Definition. Let S and S' denote two (not necessarily distinct)

dynamical systems. State x of S and state x' of §' are defined to be

equivalent at t, € R if the set of voltage-current pairs

0
{v(+), i(-)}lfto,w) of S with initial state x is the same as the set

of voltage-current pairs {v'(-), i'(-)}l[to,w) of S' with initial state x'.

-14-



2.1.10 Definition. (Equivalence) Two dynamical systems, S and

S', are defined to be eguivalent.if the following condition is satisfied
for each to €R: for every state x of S, there exists a state x' of S'
which is equivalent at tO to the state x of S, and conversely, for

every state x' of S', there exists a state x of S which is equivalent

at ty to the state x' of S'.

Note that two dynamical systems which are equivalent by Def. 2.1.10
have the same external behavior, i.e., they have the same behavior with
respect to the port voltage v and the port current i. For this reason,
we consider two dynamical systems to be (equally valid) mathematical
representations for the same n-po}t if and only if they are equivalent
according to Def. 2.1.10. More discussion on this matter, including

a precise definition of the term “n-port," is given in Subsection 2.2.

2.1.11 Definition. Let S denote a dynamical system. We say

that S is input-observable if the following condition holds for every

(t],to,xo)EIRE x Z: if u_(+) and ub(~) are any two inputs such that

a
{Va(t), ia(t)} ='{vb(t), ib(t)} for all tEE[to,t]]; where

{va('), ia(-)}l{to,m) and {vb(°), ib(')}l[to,w) are the voltage-
‘current pairs of S with common initial state Xq which are generated
by ua(-) and ub(-), respectively; then ua(t) = ub(t) for all tes[to,t]].

We say that S is input-distinquishable if w(-,+) is injective (recall

from Def. 2.1.1 that w(-,+) is the port variables read-out function for
s).

Note that if a dynamical system S has a port variables read-out
function of the class described in Example 2.1.2, then S is input-

distinguishable.
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The following lemma shows that the set of input-distinguishable

dynamical systems is a subset of the set of input-observable dynamical
systems.

2.1.12 Lemma. Let S denote a dynamical system. If S is input-

distinguishable, then S is input-observable.

The proof is given in the Appendix.

2.1.13 Definition. (Observability) A dynamical system S is

defined to be observable3 if both of the following conditions are sat-
isfied:

(i) S is input-observable (Def. 2.1.11).

(i1) For each tOER , the equivalence at tO of any two states Xy

and x, of S (Def. 2.1.9) implies that X7 = X,

Next, we are going to briefly discuss linearity. A dynamical
systém (Def. 2.1.1) is defined to be‘ljﬂégg? if all of the foIIow?ng
four conditions are satisfied:

(i) U,U,z, and Y are linear vector spaces [14,p. 5] over the same
field F, where F = R or F = (.

(ii) For every (t,to) EH!E, ¢(t,to,~,-) is a Tinear map of £ x U
into L.

(iii) For every te R, g(-,+,t) is a linear map of £ x U into Y.

(iv) w(+,+) is a linear map of Ux Y into C" x¢".

3This property is called "total observability" in [5].

4This definition of linearity is more restrictive than some others in
the literature (e.g., reference[13]), which would require only that

S be externally linear.

-16-



In our terminology, the adjective “nonlinear" will mean “"not
necessarily linear." Hence, phrases such as "dynamical system" and
“nonlinear dynamical system" mean exactly the same thing: we will
choose the latter over the former only if we wish to emphasize that

the dynamical system under consideration need not be linear.

2.1.14 Definition. (Time-Invariant and Time-Varying Dynamical:

Systems) Let S denote a dynamical system. For each (u(-),t)€U x R,

define u ;s R + U by uT(t) g u(t-t). S is defined to be time-invariant

if both of the following conditions are satisfied:
. 2
(i) For all t € R and all (t1,t0,x0,u(°))€ Ry x Lx U,
¢(t]+T) t0+T, xo’ uT(.)) = ¢(t]’t0’x0,u(‘))°
(ii) g(x,u,t) does not depend on t (this being the case, we usually
write the output function value as g(x,u) rather than g(x,u,t)).

Moreover, S is defined to be time-varying if it is not time-invariant.

Note that for a time-invariant dynamical system, p(x,u,t) is in-
dependent of t; this being the case, we usually write the function value
as p(x,u) instead.

Observe that the set IT of input-trajectory pairs of a time-invar-
iant dynamical system has the following property: {u(-),x(-)}l[to,w)
belongs to I if and only if {uT(-),xT(-)}l[to+r,m) belongs to I for
all t € R. Similar comments apply to the sets of input-output and

voltage-current pairs of a time-invariant dynamical system.

2.1.15 Definition. (Canonical Time-Invariant Dynamical System)

Let S ={U,U,Z,0(*y°,°,°),Y, g(-,°,°),w(+,-)} denote a dynamical system

(Def. 2.1.1). The canonical time-invariant dynamical system associated

5This definition of time-invariance is more restrictive than some others
in the literature (e.g., reference [13]), which would require only that
S be externally time-invariant.
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with S, denoted S* = {U*,U*,I*,¢*(+,+,+,°),Y*,9%(-,),w*(-,-)}, is defined

as follows.

(Y urfu, el v Ry, we(e,) 2 u(e,).
(1) =* 81 x R,
(111) ¢*: RZ x £% x U» £* is defined by
¢*(t],t0,('xo,co),u(-))-_4 (qb(t]-t0+oo,00,x0,uoo_t0(')), ty-tg * oo)
(2.1.15.1)
(recall that for Tt € R, uT(t) 4 u(t-t); thus, uoo_to(t) g u(t+t0-oo)).

It is straightforward to verify fhat ¢* *y*s°,°) satisfies the consistency,
determinism, and semi-group axioms of Def. 2.1.1. Moreover, it is easy to
see that ¢*(-,+,+,+) satisfies property (i) of Def. 2.1.14.
(iv) g*: Z*x U + Y is defined by
g*((x,0),u) £ g(x,u,0). (2.1.15.2)
Also, the power input function for S*, p*: I* x U -+ R, is given by

p*((x,0),u) 2 p(x,u,o) (2.1.15.3)

where p(+,-,*) is the power input function for S (Def. 2.1.3).

2.1.16 Remarks. Roughly speaking, we obtain S* from S by letting

time be one of the state variables. Note the following:

(a) Regardless of whether or not S is controllable, S* is never
controllable. This is because the “time" state variable o(+) always
increases monotonically with t.

(b) If S is time-invariant, then S and S* are equivalent.

(c) If S is time-varying, then S and S* are not equivalent (i.e.,
they do not have the same external behavior). However, the external
behavior of S* subsumes that of S in the following sense. Let toeR
be any initial time, let Xq be the state of S at time to, and let
(Xo,co) be the state of S* at time to. By the definition of a dynami-
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cal system, we are free to let g take any value whatsoever. If we
happen to choose oy = to, then the set of voltage-current pairs
{v*(+),i*(+)}|[tgs=) of S* with initial state (xgsag) = (xgstg) is
identical to the set of voltage-current pairs {v(-),i(o)}|[to,m) of

S with initial state Xg (similar comments can be made regarding the
sets of input-output and input-trajectory pairs of S and S*; of course,
in the latter case one must make obvious modifications necessitated by
the technical fact that S and S* have different state spaces).

The preceding remarks show how one can often reduce a problem
involving a time-varying dynamical system to a similar problem involv-
ing a time-invariant dynamical system. This procedure is frequently
used in optimal control theory to allow one to state theoretical re-

sults exclusively in terms of time-invariant dynamical systems, without

any loss of generality.

2.1.17 Definition. (Finite-Order Dynamical System) By defini-

tion, a finite-order dynamical system is a dynamical system S (Def.

2.1.1) which satisfies the following additional conditions:
(i) There e*ists a positive integer m, called the g[ggg of S,
such that £ cR™.
(ii) UcR", YcR".
(iii) g(-,+,+) and w(-,+) are continuous, and w(+,*) takes values
in R"x R" (as opposed to ¢" = ¢").
(iv) The elements of U are measurable functions mapping RRto U.
(v) There exists a continuous function f: £x U x R+R™ with

the following property: for each (to,x (*))E R x I x U, there is

o
a unique function x: [to,w)+ L with

Xg (2.1.17.1)



which is absolutely continuous [12,p. 104] over [to,t]] for every
t,2ty, satisfies

x(t) = f(x(t),u(t),t) for a.a.te[t,,s), (2.1.17.2)
and satisfies

x(t) = ¢(t,to,x0,u(-)) for all te[to,w). (2.1.17.3)

2.1.18 Definition. Let S denote a finite-order dynamical system.

Then the equation

x(t) = f(x(t),u(t),t) (2.1.18.1)

is called the state equation of S, and the equation

y(t) = g(x(t),u(t),t) (2.1.18.2)

is called the output equation of S.

2.1.19 Remark. It is clear that a finite-order dynamical system

is time-invariant if and only if both f(x,u,t) and g(X,u,t) are inde-
pendent of t; this being the case, we usually write these function

values as f(x,u) and g(x,u), respectively.

2.2 A Precise Definition for the Term “N-Port"

The term "n-port" is commonly used in electrical network theory
to denote any one of three distinct concepts. One concept is that of
a physical n-port, i.e., the actual “real-world" electrical network
under consideration. This electrical network has n ports6 (hence, the
term "n-port"), and from our point of view it interacts with the out-
side world exclusively through its ports. Another concept is that of

a model of a physical n-port, which we shall call an n-port model.

E;he n is used in the generic sense -- we do not assume that every
such network has the same number of ports.
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This concept is an idealization of a physical n-port; it represents

an attempt to extract all the relevant physical effects. One usually
identifies an n-port model with a network graph drawn on a piece of
paper. The network graph consists of certain idealized elements inter-
connected by lines which represent ideal interconnection wires. Fin-

ally, the term "n-port" is sometimes used to denote a mathematical

representation of an n-port model.

In formulating a definition of the term "n-port" which is both
useful and meaningful within the framework of our theory, we have re-
jected all three of the concepts mentioned in the preceding paragraph.
The last alternative mentioned above -- that of defining an n-port to
be a mathematical representation of an n-port model -- is the most
troublesome. It seems to ignore the fact that an n-port model usually
has an infinite number of equally-valid mathematical representations
(if it has any at all), and it often leads to inconsistencies in defin-
ing the concepts of passivity and losslessness (see references [4] and
[5] for examples).

To motivate our definition of the term "n-port,"” first note that
our theory is limited to the mathemafica] representations of Def. 2.1.1
-- the so-called "dynamical systems." Suppose thaﬁ a given n-port |
model, denoted Nm’ has a dynamical system representation S. If S' is
any dynamical system which is equivalent to S (Def. 2.1.10), then S

and S' have the same external behavior; hence, S' is an equally-valid

mathematical representation for N - Note that the equivalence rela-
tion of Def. 2.1.10 is a true equivalence relation in the set-theore-
tical sense [12, p. 22]; hence, it partitions the universe of all dyn-
amical systems into equivalence classes. Recall that these equivalence

classes are disjoint subsets of dynamical systems which have the fol-
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lowing property: two dynamical systems are equivalent if and only if
they belong to the same equivalence class. Thus Nm can be identified
with the unique equivalence class of dynamical systems which contains
S. Note that there may exist an n-port model Nﬁ’ distinct from Nm,
which can also be identified with the equivalence class containing S;
but sincé Nm and Né have the same external (port) behavior, they are
indistinguishable for our purposes. These observations justify the

following definition of the term “n-port."

2.2.1 Definition. An n-port is an equivalence class [12,p. 22]

of dynamical systems, where the equivalence relation is given in

Def. 2.1.10.

2.2.2 A Note on Terminology. Let N denote an n-port, and let

S denote a dynamical system. We say that "S is a dynamical system
representation for N," or that "N has the dynamical system representa-
tion S," if S is an element of the equivalence class N.

A linear n-port is one with a linear dynamical system representa-
tion. The phrase "nonlinear n-port" means an n-port which is not nec-

essarily linear.

2.2.3 Definitions. Let N denote an n-port. N is defined to be

time-invariant if it has a time-invariant dynamical system representa-

tion. N is defined to be time-varying if it is not time-invariant.

We conclude this chapter with a mild technical assumption which

will play a role in our theory of losslessness.

2.2.4 Assumption. Let A denote the class of all n-ports which have

at least one input-distinguishable dynamical system representation

(Def. 2.1.11), and let Ati denote the class of all time-invariant n-ports
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which have at least one input-distinguishable time-invariant dynamical

system representation. OQur theory of n-ports will be restricted to

those n-ports which belong to A; moreover, our theory of time-invariant

n-ports will be restricted to those n-ports which belong to Ati'

III. Technical Lemmas

3.1 The Main Result

The purpose of this subsection is to present a new analytical result
for finite-order time-invariant dynamical systems. As will be demon-
strated in the following two sections, this result has applications in

the studies of both passivity and losslessness.

3.1.1 Notation. S™ 2 {x€R™: Ixl=1}. P(U) will denote the

collection of all subsets of U cRr".

3.1.2 Definitions. For a finite-order time-invariant dynamical

system (Def. 2.1.17, Remark 2.1.19), define {: £xS"™ — P(U) by

G(x,a) & (yeu: f(x,u)-alf(x,u)ti =0}
N {ueU: If(x,u)l >0} (3.1.2.1)

and define h: £xS" —R® by

h(x,a) & inflgiemy: u€llx.a)} . (3.1.2.2)

We follow the convention that the infimum over the empty set is o
thus, h(xo,ao) = o if and only if ﬁ(xo,ao) =@ (P denotes the
empty set).

3.1.3 Definitions. Let vy, Rt — I be a function which is

absolutely continuous on [O,To] for some T0 eRr’. Then
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V¢ [O,T]] — L is defined to be a re-parametrization of yo(-)|[0,T0]

if v (t) = yo(olt)) forall t€[0,T,], where o: [0,T,] — [0,T,]

is an absolutely continuous function such that o(0) = 0, c(Tl) = Tps
and o(t) >0 for a.a. tE€ [0,7,]. The set of all re-parametrizations
of Y0(~)|[0,T0] is denoted ﬁ[yo(-)l[O,TO]]. Moreover, if Y0(°) is
a state trajectory of a finite-order time-invariant dynamical system S,
then any re-parametrization of YO(-)][O,TOJ is called an admissible

curve of S,

3.1.4 Remarks. It follows that Y](°) = (Yood)(') is absolutely
continuous, since YO(-) and o(+) are absolutely continuous and
o(+) is increasing [15, p. 95, Theorem I1.4.42]. Also, note that every
state trajectory of S 1is an admissible curve of S, but the converse

is not true in general.

3.1.5 Integration Conventions. We are using Lebesque integrals.

Let g: R — R® be a function. Define g+: R — R® and g :R— R®
by g'(t) % max{0,g(t)}, g (t) 2 max{0,-g(t)}. Let ECR be a
(Lebesgue) measurable set. Then the function g(+) 1is defined to be

integrable in the extended sense over E if both of the following

conditions are satisfied: (a) g(-) is (Lebesque) measurable, and
(b) either j g+(t)dt <o or J g (t)dt < w. This being the case,
E

E
J g(t)dt is assigned the value
E

f g(t)dt 2 f g+(t)dt - j g (t)dt . (3.1.5.1)
E E E

To .
Now consider an integral of the form [ L(Yo(t),yo(t))dt, where
0

Yo [O,To] —- L is absolutely continuous. This integral is defined

T

to be parametrization independent provided that I OL[YO(t),§o(t))dt
T - o |

= j ]L(Y](t),§](t)]dt for every re-parametrization Y](—)|£0,T ] of
0

Yo(')|£09T0]- -24-



3.1.6 Lemma (Change of Variables). Let k: [t 1]-—+ R be

0T
absolutely continuous, k{(t) >0 for a.a. tTE€ [1g>7], and Tet
a(+) € L]([k(ro)?k(r])]-ﬂ-R); then the following statements are true:
(i) k(<) 1is a bijection of [TO,T]] onto [k(ro),k(rl)],
(i1) k'](-) is absolutely continuous,

(iii) the function t — a(k(t))k(t) belongs to L]([ro,rl]—e-R),

k(tq) T .
and (iv) j a(t)dt = [ a(k(1))k(t)dr.
k(ro) T

The proof is given by Warga [15,p. 98, Theorem I.4.43].

Remark #1. Instead of assuming that a(:) € L]([k(ro),k(r1)]4-R),
we can assume that the function 1 — a(k(t))k(t) belongs to
L]([ro,r]]—»-R); it then follows that a(-) € L]([k(ro),k(rl)]—ﬂ'R).
To see this, let o) & k'](o) (hence, &(f) = 1/k(o(t)) > 0 for |
a.a. tE€ [k(ro),k(r])]). We know from statement (ii) that o(-) is
absolutely continuous; thus, we can apply statement (iii) with the
function t — a(k(t))k(t) taking the role of a(-) and o(-) faking
the role of k(+), and we.conclude that t — a(k(o(t)))k(a(t))a(t)
= a(t) 1is an element of L]([k(ro),k(r])] — R).

Remark #2. Consider Def. 3.1.3 again. Lemma 3.1.6 shows that

y](-)lCO,T]] is a re-parametrization of YO(-)[[O,To] if and only if

Yo(+)[[0,Ty] is a re-parametrization of v,(+)|[0,T,].

3.1.7 Lemma. Let S denote a finite-order time-invariant
dynamical system with U a closed subset of R" and U = LTOC(R-rU).
(a) Let an admissible curve y(-) of S and a real number
T >0 be such that y(t) # 0 for a.a. t € [0,T]. Then the integral

I:h[y(t),wé%%%“}ﬂ§(t)ﬂdt exists in the extended sense, its value is
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either finite or -», and it is parametrization independent.
(b) Let Yo(-)l[O,To] be an admissible curve of S with
§O(t) #0 fora.a. te([0,Ty]. Then

T
inf{I p(x(t),u(t))dt: x(-)[[0,T] € Qlyy(-)|[0,Ty]]}
0’0

T .
¢t 0y Yo(t) . : )
= | ot t)l]ﬂyo(t)ﬂdt | (3.1.7.1)

where the expression on the left-hand side of (3.1.7.1) denotes the

infimum of f;p(x(t),u(t))dt over all input-trajectory pairs

{u(+),x(+)}|[0,T] of S, where T >0 is not fixed, subject to the

restriction that x(-)|[0,T] is a re-parametrization of yo(-)I[O,To].
The proof is given in the Appendix.

3.2 Special Case: First-Order Dynamical Systems

In this subsection we consider first-order time-invariant dynamical

systems, i.e., those for which L C R.

3.2.1 Definitions. Let £ C R, with the topology of & the
relative topology that it inherits from R. A function ¢: £ — R®

is defined to be upper semicontinuous if the set {x€I: ¢(x)<a} is

open (in the topology of ) for all a € R [16,pp. 38-39]. Likewise,

¢(<) 1is defined to be lower semicontinuous if the set {x€ZI: ¢(x)>a}

is open for all « € R. Note that ¢(+) is upper semicontinuous if
and only if -¢(<) is lower semicontinuous; also, ¢(-) 1is continuous

if and only if it is both upper and lower semicontinuous.

3.2.2 Lemma. The infimum of any collection of upper semican-
tinuous functions is upper semicontinuous. The supremum of any
collection of lower semicontinuous functions is lower semicontinuous.

The proof is given in the Appendix.
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3.2.3 Llemma. Let ¢: L -+ R® and let K be a compact subset of
L. If ¢(-) is upper semicontinuous and ¢(x) # » for all x € K,
then ¢(+) 1is bounded above on K. If ¢(-) is lower semicontinuous

and ¢(x) # -» for all x €K, then ¢(-) is bounded below on K.
The proof is given in the Appendix.
3.2.4 Definitions. Recall the mappings U: gxs™ — P(U) and

. m e . . .
h: £xS° — R in Def., 3.1.2. Consider a first-order time-invariant

dynamical system (i.e., m = 1). Define, for each x € z,

u: & {(x,1) = (u€U: f(x,u) >0} (3.2.4.1)
Uy = U(x~1) = (u€U: f(x,u)<0} (3.2.4.2)
R(x) 2 n(x,1) = 1‘m-'fﬂ(i’—‘1%1 ' (3.2.4.3)
’ ueu;[f(x,uj
h(x) & -h(x,-1) = sup{ ()’:'3)} . (3.2.4.4)

UEU;

3.2.5 Lemma. For a first-order time-invariant dynamical system, '

h(-) is upper semicontinuous and 'Q(-) is lower semicontinuous.

The proof is given in the Appendix.

The functions h(+) and h(+) are continuous in the special 6ése
when R(x) = h(x) for all x € L (this follows from Lemma 3.2.5 and
the comﬁents in Def. 3.2.1). In general, howevér, neither h(:) nor
h{-) will be continuous. The following example shows that these

functions can be quite bizarre.

o

3.2.6 Example. Let {r } be any enumeration of the rational

n'n=1
numbers. Consider the finite-order dynamical system with the state

equation
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x
n
c

and the power input function
p(x,u) = u’sgn(u) ] ]—nexp(-uz(x-rn)z) ,
n=1

where sgn(u) 2 u/ju] for u# 0, sgn(0) 2 0. Here Z=U=R and
u = L?OC(R-rR). It is straightforward to verify that

¢

_ 0 , if x is irrational
h(x) =1
= s ifx=l"
[ o n
0, if x is irrational
D(x)=+ 1 .
L-;ﬁ-,ﬁx—rn

Note that h(-) 1is upper semicoatinuous and h{(+) is lower semicon-
tinuous (in agreement with Lemma 3.2.5); however, both h(:) and

h(+) are discontinuous at each rational number.

3.2.7 Notation. For any dynamical system, let R(xo) denote the

set of states reachable from Xg € L (Def. 2.1.7). For a first-order

dynamical system, let R+(x0) 4 {xE€R(xy): x>x0} and R'(xo) 4
{xeR(xo): X <xq}. For any subset A of a Euclidean space, let

int A denote the set of interior points of A.

3.2.8 Lemma. Let S denote a first-order time-invariant dynami-
cal system with U a closed subset of R" and U= ETOC(R-»U). Let

Xq be any element of L.

(a) If X1 € int R+(x0), then there exists at least one state
trajectory x(+)|[0,T] from x, to x; with x(t) > 0 for a.a.
rX
t € [0,T]; moreover, Jx] R(x)dx exists in the extended sense, its
0]

value is either finite or -«=, and
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T Xy
inf {J’ p(x(t),u(t))dt} - j Rix)dx . (3.2.8.1)
xo-rx.I 0 Xg
%>0
T>0

The expression on the left-hand side of (3.2.8.1) denotes that the
infimum is taken over all input-trajectory pairs {u(-),x(+)}|[0,T] of
S +trom Xg to Xy where T > 0 is not fixed, subject to the
restriction that x(t) > 0 for a.a. t €& [0,T]. |

(b) If Xy € int R'(xo), then there exists at least one state
trajectory x(-)

[0,T] from Xy to X, with x(t) < 0 for a.a.

X

t € [0,T]; moreover, Ixz h(x)dx exists in the extended sense, its
0

value is either finite or -=, and

T X2
inf {J p(x(t),u(t))dt} = J h(x)dx . (3.2.8.2)
Xn+Xn V0 X
0 "2 0
x<0
T>0

The expression on the left-hand side of (3.2.8.2) denotes that the
infimum is taken over all input-trajectory pairs f{u(+),x(-)}{[0,T] of
S from xq to xo, where T > 0 is not fixed, subject to the

restriction that x(t) < 0 for a.a. t € [0,T].

The proof is given in the Appendix.

Remark. The integral on the right-hand side of (3.2.8.2) may be
rX2 . o
slightly confusing. Since X, < Xg» Jxog(x)dx will be negative if

h(+) is positive on the interval [XZ’X0]°
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IV. Passivity
4.1 General Theory

The basic theory of passivity for nonlinear time-invariant n-ports
has been exhaustively discussed in [4]. In this subsection we briefly
review the theory, and make straightforward generalizations to time-

varying n-ports.

4.1.1 Definition. Let S denote a dynamical system (Def. 2.1.1).

The available energy for S, EA :IZxR +1R+u {«=}, is defined by

t

1
-inf. “ p(X(t),U(t),t)dt$
X, >
t>t, °

= sup ;- f
X+

t>t, ‘o

np

EA('XO »to)
0

tl
P(X(t),u(t),t)dt§ (4.1.1.1)

where the notation xinf (resp., sup ) denotes that the infimum

0o X, ==
t>2t, t.>t,
(resp., supremum) is taken over all t, = t, and all input-trajectory

pairs  {u(:),x(-)}|[t,,=) of S with x(ty) =x,.

For a time-invariant dynamical system, the available energy EA(xo,to)

is independent of the time variable t, and will usually be written

EA(xo) instead.

4.1.2 Definition. A dynamical system is passive if EA(x,t) < @

for all (x,t) € Zx R, where EA(- » *) is the available energy for S.

An n-port is passive if it has a passive dynamical system representation.

Finally, a dynamical system or an n-port is active if it is not passive.

A complete justification of this definition, and a comparison of
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it with other passivity definitions which have appeared in the literature,
is given in [4].

Note that the infimum which arises in the definition of the available
energy (Def. 4.1.1) can be viewed as the "optimal value" function of an
optimal control problem; however, the type of optimal contro]lproblem
which arises in the theory of passivity for dynamical systems is not
conventional. In virtually all of optimal control theory, it is assumed
a‘griori that the optimal value function is finite-valued. This is
usually guaranteed by requiring the “cost functional integrand," which
in our case is the power input function p(:,-,:), to have some special
property; e.g., one might deal only with cost functional integrands which
are nonnegative. In the theory of passivity for dynamical systems, we
cannot base our entire theory on the assumption that EA(- , ») is finite-
valued; indeed, the question of whether EA(- , *) is finite-valued is
precisely the question of whether the given dynamical system is passive.

Note that the passivity of a dynamical systén S is equivalent to

the existence of a (finite-valued) function E:ZxR - R+ such that

t,
I p(x(t),u(t),t)dt + E(x(t,),ty) = 0O (4.1.2.1)

tO

for all (t,,t,) € B{i and all input-trajectory pairs {u(-),x(-)}|[t,,=)
of S. To see this, suppose first that EA(x,t) <= for all (x,t) € £xR.
Then (4.1.2.1) can be satisfied by choosing E( -, ) = EA( « 5+ ). Now
suppose that (4.1.2.1) is satisfied by a finite-valued function E( -, - ).

Then EA(x,t) < E(x,t) <= for all (x,t) € LxR.

4.1.3 Lemma. An n-port N is passive if and only if all dynamical
system representations for N are passive.

The proof is given in the Appendix.
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Lemma 4.1.3 shows that Def. 4.1.2 is truly consistent in the sense
that it is based solely on the behavior of N as viewed at its ports — it
does not depend upon which dynamical system one chooses to represent N.
Not all definitions of passivity have this desirable property (see [4]
for examples).

Before proceeding to the next lemma, we shall briefly discuss some
of our notation and terminology. Let A be a subset of RP, with the
topology of A the relative topology it inherits from RP. A function
w:A -+ RY is defined to be C° if it is continuous. Now suppose that
A is an open subset of RP, and let kbe a positive integer. Then w(:) is

k

defined to be C" if it has continuous partial derivatives of all orders

up to and including k; moreover, w(-) is defined to be ¢” if it is Ck
for every positive integer k. Now suppose A C RP x R". If we make the
natural identification of RPxR" with Rp+r’ then there should be no
confusion as to what is meant by statements such as "A is an open subset
of IRPXRr," or "w:A -+ RY is ¢ ," etc.

. The following is an obvious sufficient passivity condition for

finite-order dynamical systems.

4.1.4 Lemma (Sufficient Condition for Passivity). Let S denote a
finite-order dynamical system (Def. 2.1.17). Let (Suff. 4.1.4) denote
the following condition:

(Suff. 4.1.4) There exists an open subset G of R™"x R with

IxRCG and a (nonnegative) ¢! function Y:G ]R+ such that

p(x,ust) > (7,9(x,t), flx,u,t)) + Malt—tl (4.1.4.1)

for all (x,u,t) € TxUxR.

If S satisfies (Suff. 4.1.4), then S is passivé.
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The proof is given in the Appendix. The first inequality in (4.1.4.3)

of that proof motivates the following definition.

4,1.5 Definition. Let S denote a dynamical system. A function

EI: ILxR » R+ is an internal energy function for S if for all input-

trajectory pairs {u(-),x(+)}|[t,,t,] of S,
tl
[ pOx(erutentide > Eflx(t)ot,) - Eflx(t)ot,) . (41.5.0)
tO
If S is time-invariant and has an internal energy function EI(-,-),

we will always assume that EI(x,t) is independent of the time variable t,

and we will usually write the function value as EI(x) instead.

4.1.6 Lemma. Let S denote a dynamical system. Then S is passive
if and only if it has an internal energy function. Moreover, if S has
an internal energy function EI(-,-), then 0 < EA(' y t) S EI(- , ) and

the available energy EA(' , *) is itself an internal energy function for S.

The proof is given in the Appendix.

4.1.7 Definition. Let S denote a dynamical system. For each

x* € £, define the required energy (from x*), E

o xR + R%, by

R
tl
Epoe(x,,t,) & inf “ p(x(t),u(t),t)dt (4.1.7.1)
Rx**™12 ™M *
x-*-)(1 t
t0<tl 0

where the notation inf denotes that the infimum is taken over all
to<t.
input-trajectory pairs {u(-),x(-)}[[to,tl] of S from x* to x,, where
t,s t, is not fixed.
Note that ERX*(}(,t) < e for all (x,t) € £xR if and only if S

is reachable from x* (Def. 2.1.7).
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In the time-invariant case, ERx*(x’t) is independent of the time

variable t and is usually written ERx*(x) instead.

4.1.8 Lemma. Let S denote a passive dynamical system, and
suppose that there exists a state x*€ £ from which S 1is reachable

(Def. 2.1.7).

(a) Let EI(- , *) be any internal energy function for S, and define

'EI:XXR+R+u{w} by

EI(x,t) 2 sup EI(x,r) . (4.1.8.1)
TSt
Then,
E;(x,t) - EI(x*,t) < Epx(xst) (4.1.8.2)

for all (x,t) € Zx R,

(b) Define EK :L + RTU (=} by

E*(x) & sup E,(x,t) | (4.1.8.3)
A ter P

and define Ax* :ZxR + R® by

Aew(x,t) & Ep alx,t) + Ex(x*) . (4.1.8.4)
If EX(x*) < e, then Ax*(- , *) is an internal energy function for S.
The proof is given in the Appendix.

The following corollary, which applies in the special case when S

is time-invariant, is an immediate consequence of Lemma 4.1.8.

4.1.9 Corollary. Let S denote a passive, time-invariant dynamical

system. Suppose that there exists a state x* € £ from which S is

reachable.
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(a) Let 'EI(-) be any internal energy function for S. Then,
EI(X) - EI(X*) < ERX*(x) . (4.1.9.1)
(b) Define A,:Z-+R" by
Ax(x) 8 Epalx) + Ep(x*) . (4.1.9.2)
Then Ax*(-) is an internal energy function for S.

4.1.10 Definitions. Let A denote a (not necessarily open) subset

of R*, and let w:A+RY. IfAcBc R and if w:8 + RY is a

function which satisfies w(x) =w(x) for all x€A, then w(-) (along with

its domain B) is defined to be an thension of w(*) (to the domain B).

Let 1 < k <=, The function w(-) ’is defined to be differentiable

(resp., Qk) if there exists an open subset G of RP with ACG and a
different'iam;e (resp., Ck) extension of w(:) to the domain G; this
concept is sometimes expressed by saying that, "w(-) can be extended to
a differentiable (resp., Ck) function with domain G." Note that such an
extension, if it exists, if not necessarily um’qué; in fact, if w, ()
and w,(+) are differentiable extensions of w:A~RY, then it is not

necessarily true that Ow,(x) = Dw,(x) for x€A,

4.1.11 Lemma. Let S denote a (necessarily passive) finite-order
dynamical system with a differentiable internal energy function EI(- NEDR
Let ¢:G+R denote a differgntiab]e extension of EI(° , *) (thus G is an
open subset of R"xR, £txRC G, ¥(-, ) is differentiable, and
p(x,t) = EI(x,t) for all (x,t) € txR). Then

p(x,u,t) = (Vx\p(x,t), f(x,u,t,)) + Ma"—tﬂ (4.1.11.1)

for all (x,u,t) € L x U x R.

The proof is given in the Appendix.
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Remark. If §: G+ R is any other differentiable extension of

E((-, ), then the proof of Lemma 4.1.11 in the Appendix shows that the quantity
ot

3!%%;£l . This follows because for any (x,,u,,t,) € L x U x R, (4.1.11.2)

shows that both quantities are equal to 1lim a

EI(x(to),to)) at  (x,u,t) = (x,,u,,t,).

<Vx$(x;ﬂ,f(x,u,t)) » Alt) equals the quantity (wa(x,t),f(x,u,t)) +

(B (x(tg*at) torat) -

Note that Lemma 4.1.11 is not the converse of Lemma 4.1.4. Lemma

4.1.11 merely gives a necessary condition that a differentiable extension
of an internal energy function must satisfy. We do not know how to

identify the class of passive finite-order dynamical systems which

possess a differentiable internal energy function (cf. Subsection 4.2).

4.2 The Smoothness Conjecture and a Counterexample

In this subsection we will show that a common conjecture concérning
finite-order dynamica] systems is false. For simplicity, we will assume
that the dynamical systems under consideration are time-invariant.

Recall the definition of controllability, Def. 2.1.8. The follow-
ing additional controllability concepts will also be of interest (cf.
61, [171).

4.2.1 Definition (Local Controllability) Let S denote a finite-

order time-invariant dynamical system. S is locally controllable if the

following condition is satisfied: for each x; € Z, there exists
do(xo) > 0 such that if 0 S§ < Go(xo) and if ﬂ-x]-xoﬂ < §, then there
exists an input-trajectory pair {u(-),x(-)}lfo,t]] of S from x; to x,
with ﬂx(t)-x0ﬂ=< § for all t € [O,t]].

4.2.2 Definition (Local Continuous Controllability) Let S

denote a finite-order time-invariant dynamical system. S has the

-36-



property of local continuous controllability if the following condition

is satisfied: for each Xg €2 and each € > 0, there exists 60(x0,e) >0
such that if 0 €6 S do(xo,e) and if ﬂx]-xoﬂ-< 8§, then there exists an
input-trajectory pair {u(-),x(-)}lEO,t]] of S from x, to Xy with
ﬂx(t)-x0
Thus local continuous controllability is a special case of local

: t
" <6 for all t € [O,t]] and |f ]p(x(t),u(t))dt[ < g,
0

controllability.

4.2.3 Definition Let S denote a finite-order time-invariant
k

dynamical system. Suppose that f(.,-) and p(-,-) are C" functions

(Def. 4.1.10) for some 1 < k < =, Then S is called a CX finite-order

time-invariant dynamical system.

On more than one occasion the first author has come across the following
conjecture (or some minor variation of it) in discussions with optimal
control theorists. Also, the truth of the following conjecture seems
to have been assumed in references [6] and [7], although it was not
explicitly stated in either of those two references.

4.2.4 The Smoothness Conjecture Let S denote a ¢” finite-order

time-invariant dynamical system with the properties of controllability
and local continuous controllability. Suppose further that Z =

Rm, U= Rn, and U = L?OC(R -»]R") (for some unspecified integers m =2 1
and n 2 1). Under these conditions, if S is passive, then S has at

least one CI

internal energy function.

If the Smoothness Conjecture were true, then Lemma 4.1.11 would
show that (Suff. 4.1.4) is a necessary (as well as sufficient) passivity
condition for the class of C dynamical systems described in 4.2.4.

This would be a highly desirable result, since the dynamical systems

described in 4.2.4 form a broad class of interesting dynamical systems,
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and the question of passivity for such dynamical systems would then
reduce to the question of whether f(-,-) and p(-,-) satisfy the alge-
braic condition in (Suff. 4.1.4).

Let S denote a passive, controllable, time-invariant dynamical
system. Lemma 4.1.6 shows that EA(-) is always an internal energy
function for S, and Corollary 4.1.9 shows that for any x* € Z, the
function x + Ax*(x) 8 ERx*(x) + EA(x*) is also internal energy function
for S. Moreover, EA(-) and ERX*(-) are bounds on the set of all
possible internal energy functions in the following sense: If EI(~)

is any internal energy function for S, then

Ep(x) < Ep(x) < Ep a(x) + Ef(x*) (4.2.4.1)

for all x € Z. Note that -EA(') and ERX*(-) can be viewed as "optimum
value" functions for an optimal control problem (cf. Defs. 4.1.1 and
4.1.7); hence, it is not surprising that optimal control theorists

would have something to say about the properties of these functions.

The following variation of the Smoothness Conjecture is the version

that the first author has heard most often in his discussions with optimal
control theorists.

4.2.5 The Smoothneés Conjecture--Variation A Let S denote a Ck

finite-order time-invariant dynamical system with the properties of
controllability and local continuous controllability. Suppose further
that Z=R", U=R", and U = LTOC(R +R") (for some unspecified
integers m=>1 and n > 1). Under these conditions, if S is passive,
then the available energy and the required energy (from any state

k

x* € Z) are C" functions.

We shall introduce one more version of the Smoothness Conjecture,

as follows.
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4,2.6 Thg Smoothness Conjecture--Variation B Let S denote a

¢” finite-order timé-invariant dynamical system with the properties
of controllability and local continuous control]api]ity. Suppose
further that Z = R™, U =R", and U = LTBC(R +R") (for some unspecified
integers m =1 and n = 1). Under these conditions, if S is passive,
then S has at least one differentiable internal energy function.

The only difference between the Smoothness Conjecture 4.2.4 and
Variation B in 4.2.6 is the following: Variation B asserts merely that
S has a differentiable internal energy function, as opposed to a

continuously differentiable (C]) internal energy function. Thus

Variation B is weaker than (i.e., is implied by) the Smoothness Con-
jecture 4.2.4; moreover, it is clear that Variation 8 is weaker than
Variation A as well.

We will show that the Smoothness Conjecture and its two variations
are false. This will be done by producing a counterexample to Variation

B.

4.2.7 Proposition The Smoothness Conjecture 4.2.4, its Variation
A in 4.2.5, and its Variation B in 4.2.6, are all false.
Proof The proposition is proved by producing a counterexample

to Variation B. Let f:R -+ R be defined by

exp ( =1 2) , ifu>1l,
(u-1)

0, if 0sSus<sl,

(4.2.7.1)

ne>

£(u)
~-f(-u), if u < 0.

It is well-known [18,p. 7, problem 18] (and it can be shown in a

straightforward manner) that f(-) is ¢”. Define a:R x R +~ R by
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‘ -1\ [explux) \
- (]+X2) (:;g%ﬁi)ﬂ) (]+exp(ux)) , if u>0,

{
'ie_xeé:i&;_ . if u<0. (4.2.7.2)
T+exp (~ux

Clearly, a(-,*) is ¢® in {(x,u) ER xR : u # 0}; but it is apparently”

nes

al(x,u)

not differentiable along the line {(x,u) € R xR : u = 0}. Define
p:RxR=+R by

p(x,u) 2 alx,u)f(u). (4.2.7.3)

Then p(-,-) is C”, because f(u) is zero for u € [-1,1].
Let S denote a first-order time-invariant dynamical system with

the state equation
x = f(u) (4.2.7.4)

where f(+) is given in (4.2.7.1). Here Z = U =R and U=L?OC(R + R).
The power input function p(-,-) for S is given in (4.2.7.3). Thus S
is a € finite-order time-invariant dynamical system.

If Xy > Xg € Z, then any constant input Ug > 1 will drive the
state of S in a strictly monotone manner from X0 to X, over some finite
time interval [to,t]]. The energy consumed by the input-trajectory
pair {uo,x(°)}|[t0,t]} of S from x, to x, is

Jt] Y
[ 7 p(x(t),ug)dt = [ 1 alx(t),ug)flugldt
t t
0 0

-

t] x.l
= [ 1 alx(t)ug)k(t)dt = [ ' alx,ug)dx . (4.2.7.5)
to xo

Note that the integral on the right-hand side of (4.2.7.5) approaches

Zero as Xy * Xg. Similar comments hold if Xy < Xgs the only difference
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being that we must choose a constant input value ug < -1 to drive the
state of S from Xg to Xy This shows that S has the properties of
controllability and local continuous controllability.

Before proceeding with the proof, we shall review the following
facts from analysis. Let B8 : R~ R be a function which is discontinuous
at a point Xg € R. Then B(*) is said to have a discontinuity of the

A
first kind at xj if B(x0+) = lim B(x

-, A
+ Ax) and B(x, ) = lim B(x.-AX)
ax0t 0 0 0

ax~0t
both exist. Otherwise, the discontinuity is said to be of the second

kind [19,p. 81]. Let ¢ : R +R be a function which is differentiable:

at every point x € R, and let y' : R ~ R denote the derivative of ¥(-).
Then ¢'(-) is not necessarily continuous, but ¢'(-) cannot have any
discontinuities of the first kind [19,p. 93, Corollary to Theorem 5.12].

It wi]] be shown shortly that S is passive; first, however, it
will be shown that S does not have any differentiable internal energy
functions. In particular, it will be shown that S cannot have an
internal energy function which is differentiable at x = 0.

From Lemma 4.1.11, we know that a differentiable internal energy
function y(-), if it exists, must satisfy ¢'(x)f(u)< a(x,u)f(u) for
all (x,u) €R x R. Hence, let us investigate the question of whether

there exists a function B : R + R which satisfies
B(x)f(u) <alx,u)f(u) | (4.2.7.6)

for all (x,u) € R x R. Inequality (4.2.7.6) is equivalent to the

following two inequalities taken together:
B8(x) < a(x,u) for all (x,u) €R x (1,=) , (4.2.7.7a)
8(x) > a(x,u) for all (x,u) € R x (-=,-1) . (4.2.7.7b)

Recall the functions h{:) and h(+) in Def. 3.2.4. In this case, these
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functions are given by

h(x) = inf a(x,u) (4.2.7.8a)
u>l

h(x) = sup a(x,u). (4.2.7.8b)
u<-1

It is easy to verify from (4.2.7.8) that

—217 ,if x>0,
n(x) = { 1¥¥ (4.2.7.9)

0, ifx<0.

-2exp (x .
m-%é;},'le)O,

h(x) = , (4.2.7.9b)
0, ifx<0.
Note that
h(x) <h(x) (4.2.7.10)

for all x € R. From (4.2.7.7), (4.2.7.8), and (4.2.7.10), it follows
that there exists a function B(:) which satisfies (4.2.7.6); moreover,

B(-) satisfies (4.2.7.6) if and only if
h(x) <B(x) <h(x) (4.2.7.11)

for all x €R.
From (4.2.7.9) and (4.2.7.11), it follows that 8(07) = -1 and
8(07) = 0; thus, any function B(-) which satisfies (4.2.7.6) must have
a discontinuity of the first kind at x = 0. It follows that B(*) cannot
be the derivative of a differentiable function w‘:lR -+ R.

To show that S is passive, define H : R ~ R by
-Arctan x, if x>0,

| ) |
A(x) 2 [, Blz)dz =" (4.2.7.12)
0, if x<0.
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Let {u(*), x(-)}l[to,ti] be any input-trajectory pair of S. Note that
R(x(t))x(t) = £ F(x(t)) for a.a.t € [tg.t,]. (4.2.7.13)
Since h(-) is bounded on R and x(:) is absolutely continuous on [to,t]],

jt follows that t ~ H(x(t)) is absolutely continuous on [to,t]][15, pp.
95-96, Theorem 1.4.42]. Hence
Y Y
fo Blx(e)x(t)dt = [, & [A(x(t))]dt
0 -0

= H(x(t;)) - A(x(ty)) . (4.2.7.14)

Since h(-) satisfies (4.2.7.6), we have
t] t]
Ito p(x(t),u(t))dt > fto R(x(t))x(t)dt

= A(x(t)) - Ax(ty))

>-%- Rlx(ty)) - (4.2.7.15)

It follows from (4.2.7.15) that EA(x) <% + H(x) < = for all x €R,

i.e., S is passive. _ Q.E.D.

4.3 A Less Restrictive Sufficient Condition
. In this subsection we present a sufficient passivity condition for
finite-order dynamical systems which is significantly less restrictive
than the condition (Suff. 4.1.4) in Lemma 4.1.4. The results presented
here follow along the lines of Stalford's work in optimal control
theory [8].
For simplicity, the results will be stated for the time-invariant

case. They can easily be extended to the time-varying case by using

-43-



the procedure of letting one state variable be the time (see Def.

2.1.15 and Remarks 2.1.16).
4.3.1 Definition Let W be open in R™. A function F : W+ RP is

defined to be locally Lipschitzian if for each x0 € W, there exists a

neighborhood of Xgs N(xo) C W, and a constant K(xo) 2 0 such that
HF(x') - F(x") Il < K(xo) I x'-x"l (4.3.1.1)

for all x', x" € N(xo).

Note: a neighborhood of x, € R" is a set N C R™ with xg € int N,

4.3.2 Definition Let ACR™. A function F : A + RP is defined

to be locally Lipschitzian (resp., locally Lipschitzian and differenti-

able) if there exists an open set W of R" with A C W such that F(-) can
be extended to a locally Lipschitzian (resp., locally Lipschitzian
and differentiable) function with domain W.

4.3.3 Definition (Decomposition of a State Space) A decomposi-

tion D of a set ZC R™ (which could be the state space of a finite-order
dynamical system) is defined to be a countab}e collection of subsets of

Z whose union is Z. This is written D = {23 : j € J}, where J is a
countable index set and each Zj is called a member of the decomposition D.

_ Note: it is not required that the members of D be pairwise disjoint.

4.3.4 Definition. Let ZC R™, and let D = {z5:j€J} bea
decomposition of . A function F:IL -+ RP is defined to be locally

Lipschitzian (resp., locally Lipschitzian and differentiable) with respect

to D if, for each j € J, F(-)Izj (i.e., the restriction of F(.) to Zj)

is locally Lipschitzian (resp., locally Lipschitzian and differentiable);

J

open set in Rr™ containing Zj, Fj :wj<+ RP is locally Lipschitzian

(resp., locally Lipschitzian and differentiable), and Fj(x) = F(x) for all

that is, there exists a collection {(wj,Fj(-)):j € J} such that W, is an
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X € Xj. The collection {(wj,Fj(-)) :j € J} (which is not necessarily

unique) is said to be associated with F(-) and D.

4.3.5 Remarks on Inteqration Theory. Consider a function
1

«:[a,b] » R. If a(-) is C', then the Fundamental Theorem of Calculus

shows that .
alt)-a(a) = [ g forall tefab]. (4.3.5.0)
a
More generally, in the Lebesgue theory of integration (4.3.5.1) holds if
and only if a(-) is absolutely continuous [16,p.178].

Suppose that a(:) is continuous and differentiable almost everywhere
with t - Q%%El jntegrable on [a,b]. Under these rather restrictive
assumptions, the reader may be surprised to learn that (4.3.5.i) does not
hold in ‘general. There exists a function af+) defined on [0,1] (the
"Cantor ternary function") which is continuous, monotone increasing with

a(0) =0, a(1) =1, and differentiable almost everywhere with gﬁﬁt =0

wherever it exists [16,p.179]. Such a function does not satisfy (4.3.5.1)
1
since fo dat) 4t = 0, yeta(1)-a(0) = 1.
It is hoped that the preceding remarks on integration theory will

help the reader appreciate the significance of the following lemma.

4.3.6 The Monotonicity Lemma. Let I C R", and let D = {zj :j € J}

be a (countable) decomposition of L. Lety :[to,t]] + L be absolutely
continuous and let h :[to,t]] + R be integrable. Let ¢y :Z +R be
continuous on I and locally Lipschitzian with respect to D. Let
{(wj,wj(-)) :j € J} be a collection which is associated with w(-) and D.
For jedJ, define Tj & (te [to,t]] cy(t) € ZJ.}. . Suppose that for each
jed,

-45-



h(t) - d—dt- (b5o7)(£) >0 for a.a.t€ Ty . (4.3.6.1)
Define B: [to,t]]~+ R by
t .
f h(t)dt - ¥(y(t)) . (4.3.6.2)

%

Then B(-) is monotone increasing (i.e., a<b implies g(a) < g(b)) and

ne-

B(t)

absolutely continuous.
The proof, which is quite involved, is given by Stalford (8, pp.56-59].
The fact that 'g% (wjoy)(t) exists for a.a.t € Tj is also shown by
Stalford in [8, p.55]. Note that the lemma is stated in terms of a
particular collection'{(wj,wj(-)) 1 j € J}‘ associated with ¢(-) and D.
The hypothesis (4.3.6.1) will also be satisfied by every other collection
{(ﬁj,ﬁj(-)) :j € J} associated with ¥(-) and D, because it is shown in
[8, p.55] that <& (¥;oY)(t) = 55 (Be¥)(t) for a.a.t € T,. Finally, if

the continuous function w(-) is locally Lipschitzian and differentiable

with respect to D, then (4.3.6.1) becomes
h(t) - (V\pj(y(t)), y(t)) > 0 for a.a.te€ TJ. . (4.3.6.1")

We are now ready to present the main result of this subsection.

4.3.7 Theorem (Sufficient Condition for Passivity). Let S denote
a finite-order time-invariant dynamical system. Let (Suff. 4.3.7) denote
the following condition:
(Suff. 4.3.7) There exists a continuous (nonnegative) function
p: L+ R along with a (countable) decomposition
D= {Zj : j € J} of T such that y(.) is locally Lipschitzian
and differentiable with respect to D, and a collection
(CRAOIERER), associated with ¥() and D such that

for each j € J,
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p(x,u) - <ij(x), f(x,u)) = 0 (4.3.7.1)

for all (x,u) € £j><U.

If S satisfies (Suff. 4.3.7), then S is passive.

Proof. Suppose that S satisfies (Suff. 4.3.7). Let
{u(-),x(-)}l[to,tl] be any input-trajectory pair of S. By Lemma 4.3.6,
t

1
J p(x(t),u(t))dt - wly(t,)) = -b(v(tg)) . (4.3.7.2)
tO

Since ¢(+) is nonnegative, (4.3.7.2) shows that ¢(.) is an internal

energy function for S. By Lemma 4.1.6, S is passive. Q.E.D.

4.3.8 Remark. Note that the counterexample presented in the proof

of Proposition 4.2.7 satisfies (Suff. 4.3.7). We can choose P(x) =
) X -
LI J h(x)dx and D = {(-=,01,(0,=)}. This provides another proof

2
0
of passivity for that counterexample.

4.4 Sufficient Conditions for Activity

In this subsection we apply the technical results from Section III
to obtain several sufficient conditions for activity (recall from Def.
4.1.2 that activity is the negation of passivity). A1l but the first
of these conditions are, to the authors' knowledge, entirely new to
the literature. It should be noted that one can obtain necessary
conditions for passivity by negating these sufficient conditions for
activity.

The results of this subsection are stated for finite-order time-
invariant dynamical systems; however, they can be extended to finite-

order time-varying dynamical systems by using the procedure of letting

one state variable be the time (see Def. 2.1.15 and Remarks 2.1.16).
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4.4.1 Theorem (Sufficient Conditions for Activity). Let S denote
a finite-order time-invariant dynamical system with U a closed subset of

R" and U = |. < (R > U). Recall the function h: £xS™ + R® in Def. 3.1.2.

(a) If p(x,,uy) <0 at some point (Xq,Ug) € LxU where f(xo,uo)
= 0, then S 1is active.

(b) Let y:[0,T] » L be a state trajectory of S with vy(t)#0
for a.a.t € [0,T]. If

T

[ h(Y(t),—,m:-)—> V()] dt = -= , (4.4.1.1)
0 “Y(t)“

then S is active.
(¢) Let v:[0,T] + £ be a state trajectory of S with y(t)#0

for a.a.t € [0,T]. If the mapping t +h (Y(t)’ u:zgzﬂ)
Y

is equal to -= over some subset of [0,T] with positive

measure, then S is active.

(d) Let (x,,u,) be an element of LxU such that f(x,,u,) # 0.
fx, . .
If the mapping x + h(g, i?%;_gl%i) is equal to -« in some
it
neighborhood N(x,)c L of xf7 then S is active.

Proof. (a) Suppose that p(xo,u ) < 0 at some point (x,,uy) € ExU

0
where f(x,,u,) = 0. Then {u,,%,}|[0,T] is a valid input-

trajectory pair of S for all T > 0. The energy consumed

by this input-trajectory pair is
T
J P(xy,u )dt = plxy,u )T + == as  Taw . (4.4.1.2)
0

Therefore EA(xo) =®, i.e., S is active.

7The phrase "some neighborhood N(x ) €L of x," 1s intended to mean that
N(x ) is some set whose interior relat1ve to the topology of &
contalns Xqs Where the topology of £ is the relative topology that
it inherits from RM,
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(b) If the hypotheses in (b) are satisfied, then it follows
immediately from assertion (b) of Lemma 3.1.7 that
EA(Y(O)) = o, j.e., S is active.

(¢) Let y:[0,T] I be a state trajectory of S with y(t) # 0
for a.a.t € [0,T]. Recall from assertion (a) of Lemma 3.1.7

that the integral
T

J h <Y(t), —1-(3)——> Iy (e dt (4.4.1.3)
0 Iy(t)l |

exists in the extended sense, its value being either finite
Y(t

ty (t)i
over some subset of [0,T] with positive measure, then the

or -», If the mapping t = h (Y(t), ) is equal to -«

integral (4.4.1.3) is equal to -=. By assertion (b) of the
present theorem, S is active.

(d) Suppose that the hypotheses in (d) are satisfied. Let
v,(-)[[0,=) denote the state trajectory of S with initial

state YO(O) = x, generated by the constant input u(t) = u,-

Since f(x,,u,) # 0, there exists T>0 such that ?o(t) £0

for all t € [0,T]. Since N(x,) is a neighborhood of x,,

there exists a time t,€(0,T] such that Yo(t) € N(xo) for
all te [O,tl]. Thus the mapping t - h(yo(t), i%ﬂ—§%f)

of
is equal to -= for all t € [0,t,]. By assertion (c) of the

present theorem, S is active. Q.E.D.

The following example illustrates the use of Theorem 4.4.1.

4.4.2 Example. Let S denote a second-order time-invariant

dynamical system with I = RZ, U=R, and U = L

.]OC(R'+ R). The state

equation for S is
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X X, u cos(x, +x, +u)
+ (4.4.2.1)

u sin(x, +x, +u)

bod
)
1]
-
—
>
=
~—
]

and the power input function for S is

p(x,u) & -(\/xf +x: + u)2 exp[-uz(x1 sin(x, +x, +u) - X, cos(x, +x, + u))z]
(4.4.2.2)
The problem of determining whether S is passive or active is nontrivial;
indeed, the authorsarenot aware of any results in the published literature
which could handle this problem. We are going to prove that S is active:
this will be done by applying Theorem 4.4.1.
It is well-known that the mapping z - [cos z,sinz]' from R to

2 is periodic with period 2r and maps R onto the unit circle in 1R2.

Thus for each fixed [xl,xz]' € IRZ, the equation

R

(\/W cos(x, +x, +u) -xl)2 + (\/W sin(x, +x, +u) - xz)z =0
(4.4.2.3)
has a solution u = u* € R (which depends on X, and xz); moreover,
u = u*+2kr is also a sol'ution of (4.4.2.3) for every integer k.
Now Tet x, & [x,,x,]' # [0,0]", and let u, be any positive

solution of (4.4.2.3). For each integer k > 2, define

np

u & ouy + k-, (4.4.2.4)

Since each uy s positive and a solution of (4.4.2.3), it follows that

f(xy,u,) f(x,,0)
_ = — (4.4.2.5)
llf(xo,uk)ll Ilf(xo,O)lI

for all k 2 1; therefore
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A f(x,,0)
€ U|x,, —— (4.4.2.6)
I

u
k (x,,0)1

for all k » 1 (cf. Def. 3.1.2). From the definition of h( -, ), we have

f(x,,0) p(x,,u.)
h<x°, _____o___) < inf _i_i_

IF(x,,0)1 k>1 0f(x,,u
z‘,xz
= inf 2 (since uy
k>1 \/xf+x2 tuy satisfies (4.4.2.3))
- : 2 2 o= -
= I:;f] --(x/x1 *x) ot uk) } . (4.4.2.7)

Since x, was an arbitrary nonzero element ofIRZ, we have shown that

h(x, M-)—) = -» for all X € Rz\{O}. By assertion (d) of
1f(x,0)4 -

Theorem 4.4.1, S 1is active.

4.5 First-Order Time-Invariant Dynamical Systems

In this subsection we will apply the technical results of Subsection 3.2
to obtain an easily verifiable necessary and sufficient passivity condition
for first-order time-invariant dynamical systems. This condition has
been previously published by the authors in [4]. We also present a new result
for first-order time-invariant dynamical systems which deals with the question
of the existence of an internal energy function with certain smoothness
properties.

For simplicity, the results in this subsection will deal only with a
first-order time-invariant dynaﬁical system S which satisfies the

following assumption.
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4.5.1 Assumption. S is controllable, with L an open interval in
R. (We allow the possibility of I being an unbounded open interval;
indeed, I could be R itself.) )

The more general case is treated in [4].

Assumption 4.5.1 greatly simplifies the proofs of the following

results, and most interesting examples will satisfy it. The following

observations deal with the question of verifying Assumption 4.5.1.

4.5.2 Observations. Let S denote a first-order time-invariant

dynamical system with state space I.
(a) If S is controllable, then £ is an interval in R and for
each x € intz, U; # ¢ and U; #o.
(b) If U; # ¢ and U; # ¢ for all x € £, then £ is open in R.
(c) 'If L is an interval in R with U; # ¢ and U; # ¢ for all

X € L, then I is an open interval in R and S is controllable.

Observations (a) and (b) are trivial. The assertion that S is
controllable in observation (c) can be proved by considering two arbitrary
states, x;,x, € I, and constructing a piecewise constant control, as in
the proof of Lemma 3.2.8, which drives the dynamical system from x, to

Xq-

4.5.3 Theorem. Let S denote a first-order time-invariant
dynamical system with U a closed subset of R" and U = LTOC(]R-» u);
moreover, suppose that S satisfie§ Assumption 4.5.1. Under these
conditions, S is passive if and only if all three of the following
conditions are satisfied:

(i) p(x,u) >0 for every (x,u) € £xU such that f(x,u)=0.

(i1) h(x) < E(x) for all x € L.
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. +
(iii) There exists a (finite-valued) function W:ZI +R" such that,

for each x, € L,

Xy

I h(x)dx + W(x,) >0 for every x, € (xo,w) ng,

Xo (4.5.3.1)
X2

J h(x)dx + W(x,) >0 for every x, € (~=yx) N T

X (4.5.3.2)

0

The proof is given in the Appendix.

4.5.4 Corollary. Under the hypotheses of Theorem 4.5.3, S is
passive if and only if there exists a measurable function a:Z -+ R
which is bounded on every compact subset of I and a (finite-valued)
function E: Z + R+ such that both of the following conditions are
satisfied:

(i) p(x,u) > a(x)f(x,u) for all (x,u) € £xU.
X

1
(ii) { a(x)dx + E(x,) =0 for all x,,x, € L.
0

The proof is given in the Appendix.

4.5.5 Corollary. Under the hypotheses of ‘Theorem 4.5.3, S is
passive if and only if it has an internal energy function EI(-) which
is differentiable almost everywhere in L and for which the mapping

X + dEI(x)/dx belongs to L]oc(z + R).

The proof is given in the Appendix.

Remark. The counterexample presented in the proof of Proposition
4.2.7 shows that we cannot strengthen fhe conclusion of Corollary 4.5.5 to
say that EI(') is differentiable everywhere. That counterexamp]el is passive ‘and
satisfies the hypotheses of Theorem 4.5.3, yet every internal energy

function for it fails to be differentiable at x=0.
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V. Losslessness

5.1 General Theory

" Reference [5] gives an exhaustive treatment of the general theory
of losslessness for time-invariant n-ports, but there was no obvious
extension of that theory to time-varying n-ports; indeed, it has been
suggested that the problem of devising a consistent theory of loss-
lessness which applies to both time-invariant and time-varying n-ports
is quite formidab]e.8 These authors do not share that view. It will
be shown in this subsection that the general theory of losslessness for
time-invariant n-ports presented in [5] can be extended in a straight-
forward manner to time-varying n-ports. The basic concepts required
for this extension are the canonical time-invariant dynamical system
(Def. 2.1.15) and the "canonical observable dynamical system," to be
defined shortly.

We begin by discussing losslessness in the time-invariant case.

5.1.1 Definition. Let S denote a time-invariant dynamical sys-

tem. Then S is lossless if the following condition is satisfied for
any two input-trajectory pairs of S, {ua('), xa(‘)}l (o, Ta] and

{ub(°), xb(°)}|[0, Tb] , for which xa(O) = xb(O) and xa(Ta) = xb(Tb):

Ta p(x (1), u (t))dt = T (x, (t)
0 a a o PUelt) u (t))dt. (5.1.1.1)

S is lossy if it is not lossless.

8§uggestgd by Professor John Wyatt, senior author of reference (5],
in a private conversation.
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Equivalently, the time-invariant dynamical system S is lossless
if and only if the following condition is satisfied; if Xq and X, are
any two states of S, then all input-trajectory pairs of S from Xq to

Xy (if there are any) consume the same energy (Def. 2.1.6).

5.1.2 Observation. Every time-invariant dynamical system

S = {U,U,X:‘b(‘,'.','),Y,g(‘.'),w(°,°)} (Def. 2.].], Def. 2.].]4) is
equivalent (Def. 2.1.10) to a lossless time-invariant dynamical system

S' = {Usu’ Z's¢'('9'afa')ayagl(°a°):w('s’)}- To see thiS, let 1! A

2

Ix R and define ¢': R,

x' xU~+1ZI'" by
¢.(tst0,(x0’e0)ou('))
t
B (alt,tgixgou(+)), eg + | p(x(1),u(r))dr),  (5.1.2.1)

to
where x(t) 4 ¢(t,t0,x0,u(-)). Also, define g': ' x U > Y by

g'((x,e),u) = g(x,u) . (5.1.2.2)

Clearly, S' is equivalent to S: S' is obtained from S simply by attach-
ing an artificial state variable e(-) which is "unobservable" in the
"sense that the value of e(+) does not affect the output. Note that
e(.) measures the change in the input energy; hence, if,is obvious
that S' is lossless by Def. 5.1.1.

The point of.Observation 5.1.2 is the following: Def. 5.1.1 is

merely a formal definition which says absolutely nothing about the

external behavior of S. It is only when we restrict ourselves to
observable dynamical systems that the concept of losslessness becomes
meaningful in terms of external behavior. This is the content of the

following two lemmas.
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5.1.3 Lemma. Let S] and 52 be equivalent time-invariant dynamical

systéms, with S] observable (Def. 2.1.13) and S2 input-observable (Def.
2.1.11). Undér these conditions, if S] is lossless, then S2 is loss-
lTess.

The proof, which is straightforward but rather lengthy, is given

in [5, Theorem 3.1].9

5.1.4 Lemma. Lét S] and 52 be equivalent, observable, time-invar-

iant dynamical systems. Under these conditions, S] is lossless if and
only if S2 is lossless.
The proof is immediate from Lemma 5.1.3. Lemma 5.1.4 motivates

the following definition.

5.1.5 Definition. A time-invariant n-port N is lossless if it

has a lossless, observable, time-invariant dynamical system representa-
tion. N is Jlossy if it is not lossless.

A complete justificatién of this definition, and a comparison of
it with other losslessness definitions which have appeared in the liter-
ature, is given in [5].

Let N denote a time-invariant n-port, and let S denote a given input-
distinguishable time-invariant dynamical system representation for N
(such an S exists by Assumption 2.2.4). Suppose that we know whether
S is lossless or lossy, observable or not observable. Then what can
we conclude about N? If S is lossless and observable, then N is loss-

less: this is simply Def. 5.1.5. If S is lossy, then N is lossy

(regardless of whether S is observable): this is a consequence of
Def. 5.1.5 and Lemma 5.1.3. The one remaining possibility is that S

is lossless but not observable; in this case, no immediate conclusion

9Note that our terminology is slightly different from that in reference

[5].
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can be drawn. What our theory needs is a canonical method for reducing
the state space of a time-invariant dynamical system which eliminates

’ the "unobservable modes."” Such a procedure could, in principle, be
applied to our problem in order to obtain a canonical observable time-
invariant dynamical system S0 which is equivalent to S. The question
of whether N is lossless would then reduce to the ‘question of whether
So is lossless. The following lemma states that suéh a canonical ob-

servable time-invariant dynamical system exists.

5.1.6 Lemma. Let S denote an input-distinguishable time-invari-

ant dynamical system. Then there exists an observable time-invariant

dynamical system So which is equivalent to S.
The proof is given in the Appendix.

5.1.7 Definition. Let S denote an input-distinguishable time-

invariant dynamical system. Let S0 denote the observable time-invariant

dynamical system equivalent to S which is constructed in the proof of

Lemma 5.1.6 (see Appendix). Then S0 is called the canonical observable dynamical

system equivalent to S.

The theoretical results we have established so far allow us to
prove the following lemma, which is analogous to Lemma 4.1.3 in the
general theory of passivity. Note that such a Temma was not possible
in the framework of reference [5], because the theory in that reference

was restricted to finite-order dynamical systems (as opposed to the

abstract dynamical systems of Def. 2.1.1).

5.1.8 Lemma. A time-invariant n-port N is lossless if and only

if all input-distinguishable time-invariant dynamical system representa-
tions for N are lossless.

The proof is given in the Appendix.

-57-




We are now ready to begin extending our theory of losslessness to

the time-varying case.

5.1.9 Definition. Let S denote a (possibly time-varying) dynami-

cal system, and let S* denote the canonical time-invariant dynamical

system associated with S (Def. 2.1.15). Then S is wide-sense lossless

if S* is lossless. (Def. 5.1.1).
Equivalently, S is wide-sense lossless if and only if the follow-
ing condition is satisfied for any two input-trajectory pairs of S,
uy (=)ax (IHITy, 747 and Cup (<)%, ()}][[T4, Ty1, for which x (T) =
xb(To) and xa(T]) = xb(T]):
Mo, € i
Top Xg ,ua(t),t)dt = Top(xb(t),ub(t),t)dt . (5.1.9.1)
The concept of wide-sense losslessness is essentially the concept
of "losslessness" proposed in references [20]and [21] for certain classes
of time-varying dynamical systems. When applied to the class of time-
invariant dynamical systems, the only difference between Def. 5.1.1
and Def. 5.1.9 is that the time intervals associated with the two input-
trajectory pairs are the same in the latter case. Thus losslessness
implies wide-sense losslessness for time-invariant dynamical systems.

The following example shows, however, that the converse does not hold.

5.1.10 Example. Consider the first-order time-invariant dynamical

system S with the following state and output equations

X = ux (5.1.10.1)

y = x (5.1.10.2)

where I = (0,»), U= R, and U= L}OC(IR-»R) (note that the state tra-
t

jectories of S are given by x(t) = x(to)exp( u(t)dt)). The port volt-

to
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age and port current are given by

"

vey (5.1.10.3)
1

(5.1.10.4)

i

<

It is clear that S is wide-sense lossless, because the energy consumed
by an input-trajectory pair (u(+),x(:)}|[Ty, T41 is

T] T ‘

v(t)i(t)dt = T, x(t)[i-(-t-y]dt = dt =T, - Ty 3 (5.1.70.5)
0

T
however, S is not lossless. To see this, 1e£ Xq € . Then {O,XO}I[O,T]
is a valid input-trajectory pair of S from Xg to Xq for every T.Z 0.
In particular, if T # T, , then the energy consumed by {O,XO}I[O,Ta]
is not equal to the energy consumed by {O,xo}l[O,Tb].

- Example 5.1.10 shows that a theory of time-varying losslessness
based on wide-sense losslessness alone would be inadequate, since the
time-varying theory must be consistent with the time-invariant theory.

For this reason we introduce the following more restrictive version of

time-varying losslessness.

5.1.11 Definitions. Let S denote an input-distinguishable (pos-

sibly time-varying) dynamical system. Let S* denote the canonical
time-invariant dynamical system associated with S (Def. 2.1.15). Fin-
ally, let S; denote the canonical observable dynamical system equiva-

lent to S* (Def. 5.1.7). We shall call Sg the canonical observable

time-invariant dynamical system associated with S, and we shall say

that S is narrow-sense lossless if S; is lossless (Def. 5.1.1).

5.1.12 Lemma. Let S denote an input-distinguishable (possibly

time-varying) dynamical system. Let S* denote the canonical time-in-

variant dynamical system associated with S (Def. 2.1.15).
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(a) Let Sgo denote any given dynamical system which is observable,
time-invariant, and equivalent to S*. Then S is narrow-sense
lossless if and only if S;o is lossless.

(b) Suppose that S* is observable. Under these conditions, S is
narrow-sense lossless if and only if S is wide-sense lossless.

The proof is given in the Appendix.

| The point of assertion (a) is the following: suppose that by
one method or another we can obtain an observable time-invariant dyn-
amical system Sgo which is equivalent to S*; then we need only check
_ whether Sgo is lossless in order to find out whether S is narrow-sense
Tossless. In other words, it is not necessary to check the canonical
observable time-invariant dynamical system SS; indeed, it is enough
to check S* ff S* happens to be observable.

Assertion (b) of Lemma 5.1.12 merely says that narrow-sense loss-
lessness and wide-sense losslessness are equiva]ent concepfs for that
class of dynamical systems for which S* is observable.

Now let S denote a lossy, time-invariant input-distinguishable
dynamical system. Let S' denote the lossless time-invariant dynamical
system equivalent to S which is constructed in Observation 5.1.2. By
construction, S' is lossless; but Lemma 5.1.3 and Def. 5.1.11 show
that S' is not narrow-sense lossless. This proves that losslessness
and narrow-sense losslessness are nbt equivalent concepts for time-
invariant dynamical systems. However, every time-invariant input-dis-
tinguishable dynamical system which is narrow-sense lossless is loss-
less as well. This assertion, and several others, is stated in the

following lemma.
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5.1.13 Lemma.

(a) For the class of (possibly time-varying) input-distinguishable dyn-
amical systems, narrow-sense. losslessness = wide-sense Tosslessness.
(b) For the class of time-invariant input-distinguishable dynamical

systems, narrow-sense losslessness = lossnessness = wide-sense

losslessness.

The proof is given in the Appendix.

5.1.14 Lemma. A time-invariant n-port N is lossless (Def. 5.1.5)

if and only if it has an input-distinguishable time-invariant dynami-

cal system representation which is narrow-sense lossless (Def. 5.1.11).

The proof is given in the Appendix.

Lemma 5.1.14 gives an alternative definition of losslessness
for time-invariant n-ports, and it has an immediate generalization
to time-varying n-ports. For this reason we haye adopted the follow-

ing definition.

5.1.15 Definition. A (possibly time-varying) n-port N is loss-
less if it has an input-distinguishable dynamical system representa-
tion which is narro@-sense lTossless (Def. 5.1.11). N is lossy if
it 1s not lossless.

Remarks. As shown by Lemma 5.1.14, Def. 5.1.15 is consistent with
Def. 5.1.5 when applied to time-invariant n-ports. Note that in the
time-varying theory, losslessness has been defined only for n-ports:

we have not assigned (and will not assign) any meaning to the term

"losslessness" as applied to time-varying dynamical systems.

In analogy with Lemmas 4.1.3 and 5.1.8, we have the following re-

sult in the theory of tfme-varying losslessness.
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2n . 2n
(t‘T ) ’ (t‘T )
COS[T Ty 0 ] . S‘"{r]-ro 0 }}

for t € R. Then (i(-),q(+)}{[0,=) is a valid input-trajectory pair

Define {i(t),q(t)} 1T]

of S -- note that q(TO) = q(T]) = 0. The energy consumed by
{i(+) }I[T T]] is

N 1
v{t)i(t)dt = | K(t)q(t)a(t)dt
T, T,
N
2
- | kg { q (t)]dt
To
N
- K(T])L% qZ(T])] - K(TO)[ %-qZ(TO)}- i 7 aZ(t) 9K 4
0
]
1
- | 5 ai(t) B gt 4 0 . (5.1.18.2)
0

The fact that the last integral in (5.1.18.2) is nonzero follows since
q(+) is nonzero on (TO’Tl) and t » Qﬁé%l is sign-definite on [TO,T]].
Thus {i(-),q(-)}][TO,T]] consumes a nonzero quantity of energy.

Now define {?(t),a(t)} 4 (0,0} for t€ R. Note that {?(.),
-)}I[TO,T]] is a valid input-trajectory pair of S which consumes
zero energy. Since a(To) = q(TO) and a(T]) = q(T]), it follows that

S is not wide-sense lossless. |

What Example 5.1.18 shows is the following: a linear time-vary-
ing l-port capacitor is not lossless by our definition. It should
be noted that this classification of a linear time-varying l-port
capacitor is the same classification that Penfield [9, p. 43] has
argued for.
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The next example is included simply to illustrate how one might
apply our theory in order to verify that a given time-varying n-port

is lossless.

5.1.19 Example. Let N denote a time-varying n-port with a

first-order dynamical system representation S characterized by state

and output equations of the form

x(t) = x(t)(v(t) + t)v(t) (5.1.19.1)
i(t) = x2(t)(v(t) + t) (5.1.19.2)
where I = (0,), U=Y=R, and U = L?oc(lR-* R) (note that the state
t :
trajectories of (5.1.19.1) are given by x(t) = x(to)exp (v(t) +1)°

t
0
v(T)dTJ). Let $* denote the canonical time-invariant dynamical system

associated with S (Def. 2.1.15). Then S* is characterized by state

and output equations of the form

(x(v +o)v, 1) (5.1.19.3)
x2(v +0) (5.1.19.4)

(x,0)

i
where I* = (0,®) x R, U*=Y*=R, and U* = Lfoc(m >R). Let {v(+),
(x(*), o(+))}|[0,T] denote an input-trajectory pair of S*, with i(-)]

[0,T] the corresponding current (output). Then

T [T
v(t)i(t)dt = | x2(t) (v(t) +o(t))v(t)dt
0 0
[T T
= x(t)x(t)dt = ) E% {% xz(t)}dt
0

C—

Z(T). (5.1.19.5)

% x2(0) - %-x
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Thus S* is lossless, which means that S is wide-sense lossless (Def.
5.1.9). We claim that S* is observable as well. To prove this claim,
consider two initial states (X],g]),(xz,oé) € 1* with (x1,o]) #

(x5505) (i.e., efther x; # x,, oy # dp» Or both). If x; = x,,

then g; # o, and we define v(t) v, for t > 0, where v, is any con-

2
vy for t > 0, where vy # (xzc2 -

stant. If Xy 7 X5, define v(t)
o/ < xB). Let (x'(+),0' (+))[0,%) (resp., (x"(*),0"(~))|[0,=))
denote the state trajectory of S* with (x'(0),0'(0)) = (x],c]) (resp.,
(x"(0),0"(0)) = (x2’°2)) which is generated by v(*). From the defin-

ition of v(+), it is easy to verify that
x' (0)2(v(0) + o' (0)) # x*(0)2(v(0) + " (0)) ; (5.1.19.6)

in other words, the corresponding currents (outputs) are unequal at
t = 0. This shows that S* is observable. By Lemma 5.1.12, S is nar-
row-sense lossless; hence, N is lossless (Def. 5.1.15).

To sum up the theory of time-varying losslessness, we have shown
that the question of whether a time-varying n-port N is lossless is
the question of whether any given input-distinguishable dynamical
system representation S for N is narrow-sense lossless. This in turn
reduces to the question of whether any given observable time-invariant
dynamical system equivalent to S* is lossless. Thus the question of
whether a time-varying n-port is lossless reduces to the question of
whether an associated time-invariant dynamical system is lossless; so

for most of the rest of this section, we shall deal with the

question of losslessness only for time-invariant dynamical systems.

The following is an obyvious sufficient losslessness condition

for finite-order time-invariant dynamical systems.

-65-



5.1.20 Lemma. (Sufficient Condition for Losslessness) Let S

'denote a finite-order time-invariant dynamical system. Let (Suff.

5.1.20) denote the following condition:

(Suff. 5.1.20) There exists an open subset G of R™ with L <€ G and
a C] function ¢: G + IR such that
p(x,u) =¢vp(x),f(x,u)? (5.1.20.1)
for all (x,u) e ¢ x U.

If S satisfies (Suff. 5.1.20), then S is Tossless.

The proof is given in the Appendix.

An immediate corollary to Lemma 5.1.20 is the following: a fin-
ite-order time-varying dynamical system is wide-sense lossless if
there exists an open subset G of R™x R with £ x R CGand a
C] function ¢: G - R such that

Pl t) = (T 8(x,t), Flx,u,tp + 2L (5.9 20.3)
for all (x,u,t) € £x U xR.
Eq. (5.1.20.2) in the Appendix motivates the following definition.

5.1.21 Definition. Let S denote a time-invariant dynamical sys-

tem. A function ¢: Z+R is called a conservative potential energy

function for S if

T
p(x(t),u(t))dt = ¢(x(T)) - ¢(x(0)) (5.1.21.1)
0

for all input-trajectory pairs {u(+),x(+)}|[0,») of S and for all T > O.

The following observation is trivial. A formal proof of the second

half is given in [5, Lemma 2.2].
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5.1.22 Observation. Let S denote a time-invariant dynamical sys-

tem. If S has a conservative potential energy function, then S is loss-
]ess. If S is lossless and reachable from some state x* € ¢ (Def. 2.1.7),
then S has a conservative potential energy function.

Thus losslessness and the existence of a conservative potential
energy function are equivalent concepts for the class of reachable

time-invariant dynamical systems.

5.1.23 Lemma. Let S denote a (necessarily lossless) finite-order

time-invariant dynamical system with a differentiable conservative po-
tential energy function ¢(*). Let ¥: G+R denote a differentiable ex-
tension of ¢(+) (thus G is an open subset of nzm, LCG, ¥() is dif-

ferentiable, and y(x) =¢(x) for x € L). Then
p(x,u) = (wp(x),f(x,u)) (5.1.23.1)

for all (x,u) € ¢ x U.

The proof is given in the Appendix.

Note that Lemma 5.1.23 is not the converse of Lemma 5.1.20. Lemma
5.1.23 merely gives a necessary condition that a-differentiab]e extension
of a conservative potential energy function must satisfy. We do not
claim that the existence of a differentiable conservative potential
energy function is a necessary condition for losslessness. Even if we
restrict ourselves to controllable ¢ finite-order dynamical systems,
the existence of a differentiable conservative potential energy function

is still not known to be a necessary condition for losslessness.
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5.2 A Less Restrictive Sufficient Condition

Let S denote a time-invariant finite-order dynamical system.
From Lemma 5.1.20, we know that (Suff. 5.1.20) is a sufficient loss-
lessness condition for S; . as discussed in Subsection 5.1, however, we
do not know whether (Suff. 5.1.20) is a necessary condition for S
to be lossless. It is therefore of interest to obtain a sufficient
losslessness condition for S which.is not as restrictive as
(Suff. 5.1.20). In this subsection we shall apply Stalford's [8] results
from optimal control theory to obtain such a condition (cf. Subsection
4.3).

The following result is a special case of the Monotonicity

Lemma 4.3.6.

5.2.1 Lemma. Let I cC Rm, and let D= {X.: je€edJ} be a

J
(countable) decomposition of I. Let «v: [to,tll + L be absolutely
continuous and let h: [to,tl} + R be integrable. Let é: I+ R
be continuous and locally Lipschitzian with respect to D. Let
{(wj,¢j(-)): j € J} be a collection which is associated with ¢(-)
and D. Define Tjé{te_[to,tllz v(t) € Zj} for j € J. Sup-

pose that for each j € J,

d -
h(t) - ET(¢j°Y)(t) =0 for a.a.té€ Tj. (5.2.1.1)

Define B8: [to,tll + R by

t
£ h{t)dt - o(y(t)). (5.2.1.2)

to
Then B8(-) 1is constant, i.e., B(t) = B(to) for all te [to,tll.

i

B(t)

The proof is given in the Appendix.
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5.2.2 Theorem (Sufficient Condition for Losslessnegs). Let

S denote a finite-order time-invariant dynamical system. Let (Suff.

5.2.2) denote the following condition:

(Suff. 5.2.2) There exists a continuous function ¢: I + R along
with a (countable) decomposition D = {Zj: je Jd} of
£ such that ¢(-) is locally Lipschitzian and dif-
ferentiable with respect to D, and a collection

{(Nj, ¢j(~)): Jj € J} associated with ¢(-) and D

such that for every j e J,
p(x,u) = {98;5(x), F(x,u)) = 0 (5.2.2.1)

for all (x,u) € Zj x U.

If S satisfies (Suff. 5.2.2), then S is lossless.

Proof. Suppose that S satisfies (Suff. 5.2.2). Let
{u(+), x(+)}|[0, T] be any input-trajectory pair of S. By Lemma
5.2.1,
T
ép(X(t),U(t))dt - ¢(x(T)) = - ¢(x(0)). (5.2.2.2)
This shows that ¢(-) is a conservative potential energy function for

S (Def. 5.1.21); hence, S 1is lossless (Observation 5.1.22). Q.E.D.

5.3 A Necessary Condition

In this subsection we apply the technical results from Section ITI
to obtain a necessary losslessness condition for finite-order time-
invariant dynamical systems. This condition is, to the authors' know-

ledge, entirely new to the literature.

5.3.1 Theorem (Necessary Condition for Losslessness). Let §

denote a finite-order time-invariant dynamical system with U a
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‘closed subset of R" and U-= LTOC(R + U). Let (Nec. 5.3.1) denote

the following condition:

(Nec. 5.3.1) There exists a function h: I x s™ + R® with the
following property: for each ué€ U, " there exists

a dense subset I, C I (depending on u) such that

p(x,u) = hlx, V}}i—ﬁg—” F )| (5.3.1.1)

for all x ¢ 24 (If (x,u) e £ xU 1is such that
f(x,u) = 0, then the right-hand side of (5.3.1.1)
is set equal to zero, and (5.3.1.1) holds at all such

(x,u).)
If S 1is lossless, then S satisfies (Nec. 5.3.1).

The proof is given in the Appendix.

5.3.2 Remark. Since (x,u) -~ p(x,u) and (x,u) =+ Jif(x,u)]|
are continuous functions, it might be conjectured that (Nec. 5.3.1)
implies that (5.3.1.1) holds at every (x,u) € £ x U. The authors have
not been able to prove this conjecture, because the function h(-,-)
in Def. 3.1.2 has no a priori continuity properties.

The following example illustrates the application of Theorem

5.3.1.

5.3.3 Example. Consider the second-order time-invariant dynami-
cal system S 1in Example 4.4.2. The authors are not aware of any'
results in the published literature wggﬁh could be directly applied
to the problem of determining whether S is lossless or lossy; how-
ever, we can prove that S is lossy by a simple application of

Theorem 5.3.1. Since it has been shown in Example 4.4.2 that
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h(x, T%éi—’gg-'-l-) = -o for all xe€ RZ\{O}, S cannot satisfy

(Nec. 5.3.1); therefore, S is lossy.

5.4 First-Order Time-Invariant Oynamical Systems

In this subsection we will present an easily-verifiable necessary

and sufficient losslessness condition for first-order time-invariant

dynamical systems. This condition has also been published by the authors

in reference [5].

5.4.1 Definition. Let S denote a finite-order time-invariant

dynamical system. A state X0 is called a sinqular state (of S) if
f(xo,u) =0 for all ue U. A state which is not singular is called

a nonsingular state (of §S).

Note that all states of S are nonsingular if S ijs controllable.

5.4.2 Theorem. Llet S denote a first-order time-invariant
dynamical system. Suppose that U is a closed subset of R" and
that U = LToc (R +U). \Under these conditions, S s lossless if
and only if there exists a function h: f - R (which is necessarily
continuous at each nonsingular state) such that p(x,u) = h(x)f(x,u)

for all (x,u) € £ x U.

The proof is given in the Appendix.

Let S denote a first-order time-invariant dynamical system which
is lossless and controllable. In this case, £ will be an interval
in R (Observation 4.5.2). By Theorem 5.4.2, there exists a contin-

h(x)f(x,u) for all
X

uous function h: I + R such that p(x,u)

ne

(x,u) € £ xU. Define ¢: £ - R by ¢(x) {6 h(x')dx', where

) is any fixed point in Z. Then () is a C1 function which
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satisfies p(x,u) = 9%%§l f(x,u) for all (x,u) € £ xU. If the
interval I 1is closed at either endpoint, then g%%?l at that end-

point is  taken to be the appropriate one-sided derivative.

Obviously, if I 1is not open, then ¢(:) can be extended to a C1

function whose domain G 1is an open interval containing I. Hence,
(Suff. 5.1.20) is both a necessary and sufficient losslessness condi-
tion for controllable first-order time-invariant dynamical systems

(cf. the discussion at the end of Subsection 5.1).
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Appendix

Proof of Lemma 2.1.12

Let (tl’tO’XO) € BQE x £, and let ua(°) and ub(') denote
any two inputs such that

{va(t), ia(t)} = {vb(t), ib(t)} for all tGE[tO,t]], (2.1.12.1)

where {va(o), ia(-)}|[t0,m) and {vb(-), ib(-)}l[to,w) are the voltage-

current pairs of S with common initial state X0 which are generated

by qa(-) and ub('), respectively. Let ya(~) [to,w) and yb(°)[ [to,w)

denote the outputs of S with common initial state Xq which are genera-

ted by ua(-) and ub(-), respectively. Then (2.1.12.1) gives
w(ua(t), ya(t)) = m(ub(t), yb(t)) for all t e[to,t]]. (2.1.12.2)

If w(-,+) is injective, then (2.1.12.2) shows that ua(t) = ub(t) for

all te [to,t]]. Q.E.D.

Proof of Lemma 3.1.7

Assertions (a) and (b) will be proved simultaneously.

Let {uo(-),yo(°)}|[O,T0] be an input-trajectory pair of §
with yy(t) # 0 for a.a. te€ [0,Tg]. Let Jc(0,T)] denote the
subset of all t € [O,To] where Qo(t) exists, is nonzero, and satis-
fies ?O(t) = f(yo(t),uo(t)); hence,]0 [O,TO]\J is a set of measure

zero. Define ag: J = M by

aglt) = ?O(t)/ﬂ§0(t)ﬂ'. (3.1.7.2)

(Note that ao(-) is measurable.)

Let K. CU be a compact set such that vy,(t) € f(ya(t),K; )
T 0 0 TO

0

10
For twq sets A and B, the notation A\B denotes those elements of A (if
any) which are not in B.
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for a.a. tE€ [O,TO] (the existence of such a compact set follows

since UO(°) eu-= LTOC(R-+U) and U 1is a closed subset of Rn).

For each q > 0, define Bq s (yer": lul <q}. Then since K; is
0

compact, there exists an integer N > 1 such that KT - Bq for all
0

q > N. For each integer q > N, define Cq: J — P(U) by

Cq(t) 4 {ye€ BqﬂU: f(yo(t),u) -ao(t)ilf(yo(t),u)ﬂ =0}

N {u € B NU: 1 (g (t),udl - yy(t)1/q 20} . (3.1.7.3)

Note that Cq(t) is compact for all t € J because it is a
closed subset of the compact set Bq NU, and it is nonempty for all

t €J because uo(t) € Cq(t) for all t € J. Also, note that

Cqlt) CCqpqlt) € oo © Ulyg(t)soy(t)) (3.1.7.4)

and

«©

Ulya(t),an(t)) = UC (t) (3.1.7.5)
0 0 q=N q
for all t € 4.

For each q > N, define hq: J— R by

o[ Plyplt)hu)
hq(t) 2 m‘"{ﬂfﬁo(t),u)w uEqu(t)} . (3.1.7.6)

It follows from (3.1.7.4) and (3.1.7.5) that

hq(t) > hq+](t) > e > h(yo(t),ao(t)) (3.1.7.7)
and

for all t € J. The next step is to show that hq(-) is measurable.
It then follows from (3.1.7.8) that the function t — h(yo(t),ao(t))
is measurable as well, since the limit of a sequence of measurable

functions is measurable [12, p. 67, Theorem 20].



For any pair of integers q >N and i > 1, define qu: J—P(U)

by
Gyi(t) * (WEBy0U: [((rglt).) - oD FCry(8) )] <
N (uEB N ﬂf(yo(t),u)n-u{(o(t)n(;--q—lT >0}. (3.1.7.9)

Note that qu(t) is open in the relative topology that qu\U

. . n
inherits from R'; also,

Gq](t) D qu(t) D+ D cq(t) (3.1.7.10)

and

-]

Cq(t) = 1.:\]qu(t) (3.1.7.11)

for all t € J.

For any u € R"  and any AC Rn, define

d(u,A) 2 inf lu-wl . : (3.1.7.12)
weEA

We have the following obvious inequalities:

d(uO,A) g_d(u],A) + ﬂu]-uoﬂ
therefore,

-Tup=ugl < d(up,A) - d(ug,A) < lup-ugl . (3.1.7.13)

Inequality (3.1.7.13) shows that the mapping u -+ d(u,A) 1is continuous.

We are going to prove that for every q >N and every t e J,

Sup{d(u,Cq(t)):lJEG 1.(t)} —+0as i — = . (3.1.7.14)

q

To see this, suppose on the contrary that there exists 60 > 0, 9 > N,

and t0 € J with the following property: for every i > 1, there
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exists u; € G. .(t) such that d(ui,c (t.)) > 84. Since u., belongs
qO 0 0 1

i qni
to the compact get BquWU for all 1, there exists a subsequence,
still denoted Uss such that u; —u € quf\U. From the continuity
of f(-,*), it follows that u € qu(to); thus, d(G,CqO(tO)) = 0.
But this contradicts the continuity of the mapping u — d(u,qu(tO));
hence, (3.1.7.14) must hold for every q > N and every t € J.
Next we are going to show that
Vim[ inf [p(yo(t)'u) ]] = h (t) (3.1.7.15)
fam gy () TTOQUET- T ™ g

for all q >N and all t €J. First note that the quantity in the
square brackets on the left-hand side of (3.1.7.15) is monotone increas-
ing as a function of 1i; hence, the limit as i -« exists in the
extended sense. Furthermore, the left-hand side of (3.1.7.15) is

a priori less than the right-hand side. Fix q5 > N, t5 € J, and let
e >0 be given. It remains to show that there exists an integer

k >1 (depending on 9 and to) such that

inf [ AL IR (3.1.7.16)
in > th)-¢ . I I
EG k(t ) nf(Yo(Tto)’U)"J - qO 0

Rfy) 0

Let G .(t.) denote the closure of G_ ,(t,) in R". Since

qO] 0 q0] 0
G ](to) is a closed subset of the compact set B_ MU, the former is
R0) 9

compact as well. Moreover, f(Yo(tO),u) #0 for u€ E;;;TE_T;
therefore, u — r(u) # p(yo(to),u)/ﬂf(yo(t),u)ﬂ is a continuous
mapping when u is restricted to E;;;TEST. By continuity and
compactness, there exists a & >0 such that if u; and u, are any

elements of G_ ,(t,) such that fuy-u,l <&, then |r(uy)-r(u,)| < €.
qol 0 172 1 2

A-4



By (3.1.7.14), we can choose k so large that
sup{d(u,CqO(tO»: uEEGqu(tO)} <6 . (3.1.7.17)

For such a choice of k, (3.1.7.16) will be satisfied.

Since qu\U c R" and R" s a separable metric space, it
follows that qu\U is a separable metric space in the topology that
it inherits from R" (12, p. 138, Proposition 13]. In other words,
there exists a countable dense subset {Gj}?=] c qu\U. Since qu(t)
is open in the relative topology of quwu, it follows that {Gj} is
also dense in qu(t).

For each k € (U, }J =1 each g >N, and each i > 1, define

h (-0

qi : J —R® by

k)'

(t) b}
hgi (Es0,) & , (3.7.7.18)
. , if Gk ¢ 6qi ()

Since {Gj} is dense in qu(t), it follows_ that

(3.1.7.19)

' p(Yo( ),u) ]
ol

;ggl{hqi(t,uk)} = ma;nf TF{y, (€], )T
q1

1

where N = {1,2,3,...}, the set of natural numbers. From (3.1.7.15)

and (3.1.7.19), we have

hg(t) = TinCinf ho(£.,)] . (3.1.7.20)

If we can show that hq1( , k): J— R® s measurable, it then
follows from (3.1.7.20) that hq(-) is measurable, since infimums and

limits of (countable) sequences of measurable functions are measurable
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(12,p. 67, Theorem 20]. Thus, let B € R. Then

{tey: hqi(t,ﬁk)f_ﬂ}
= (t€a: [(Flyg(t),0) - ag(t)IF(vg(t), 6N ] < P
N {t€d: B (yy(t),0 )0 - n{ro(t)ﬁ(;:--a}-;) > 0}
N {t€d: plyy(t),hy) - BIF(yy(t), 0 )0 < 0} . (3.1.7.21)

Each of the sets on the right-hand side of (3.1.7.21) is a measurable
subset of J; hence, their intersection is a measurable subset of J.
Since B was an arbitrary element of R, it follows that hqi("ak)
is measurable [12,p. 66]; thus, h_(+) is measurable.

q
For each q > N, define Dq: J — P(U) by

plyg(t),u) )

Dq(t) & {uEECq(t): H?(Qoft),u)ﬂ"hq(t)} (3.1.7.22)

It follows from the definition of hq(t), (3.1.7.6), that Dq(t) is
nonempty for all t € J; moreover, Dq(t) is compact for all te€J
because it is a closed subset of the compact set Cq(t). Let t €J,
and choose uq(t) € Dq(t) as follows: let uq(t) be the element of
Dq(t) with the smallest first component; if more than one such element
exists, choose the one amoﬁé these with the smallest second component;
if more than one such element exists, choose the one among these with
the smallest third component, etc. The process eventually terminates,
since uq(t) has only n components. In this way we define a unique
uq(t) € Dq(t) for each t € J. Note that the function uq(-) satis-

fies the relation

P(Yo(t),uq(t))

"(t) 7 Ty (e 0, (ETT (3.1.7.23)




for all t € J. The next step is to show that uq(-) is an admissible
input over the time interval [O,TO]; i.e., uq(-) € L“([O,To]-—ru).
The function uq(~) obviously has the required boundedness |
properties, since uq(t) is an element of the compact set qu\U for
all t €J. It remains to show that uq: J — U is measurable (i.e.,
each component of uq(-) is measurable). This will be shown by induc-
r=1,...,n, denote the r-th component of wu (-).

. r
t . Let )
ion e uq( ) q
=1

Assume that u;(-) is measurable for r =1,...,(s-1) (if s we
are assuming nothing at all). For each integer & > 1, let E, bea
closed subset of J such that u;(-), r=1,...,(s-1), hq(-), and

?0(-) are continuous when restricted to Ez and

n(I\E,) < 4 (3.1.7.24)

22.
where m 1is the Lebesgue measure restricted to J C R. The existence
of such a set is a general property of measurable functions [15,p.'70,
Theorem 1.4.19]. Let B € R. We claim that the set {t€E : u;(t)iB}
is a closed (and therefore measurable) subset of El. To prove this
claim, let {tk}:=] be a sequence in E, such that t — te E, and
u:(tk) < B. Now uq(tk) € quWU for all k. Since quWU is
compact, it follows that there exists a subsequence, still denoted tk,
such that

uq(tk) — u € qu\U . (3.1.7.25)

Since f(-,-) and YO(-) are continuous and ?0(-) is continuous

when restricted to EZ’ it follows that

1Yoty )1 I YN AL
ﬂf(YO(tk)’uq(tk))ﬂ = q k_m; Uf(Yo(t)au)u T a
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and

flvglte)suglty)) - ag(t0f (vo (e, ) sug (£,))0
T Frg(8).0) - og(B)F (v, (R).0)0 . C - (3.1.7.27)

Since uq(tk) S Cq(tk), it follows that the left-hand sides of

(3.1.7.26) and (3.1.7.27) are nonnegative and zero, respectively;

hence .o
o Iyg ()1
ﬂf(yo(t),u)ﬂ- >0 (3.1.7.28)
flyg(2),0) - ag(D)IF(yy (D), D)1 = 0, (3.1.7.29)
and therefore
u€c (t). (3.1.7.30)

q

From (3.1.7.28), f(yo(i),ﬁ) # 0; thus from the continuity of f(-,-),

p(+»+), and yu(+),

JACRERTR) plrg(£),0)
Iy (8, 0 (5T = Ty (8T (3.1.7.31)
To'\*k/» q'“k Yo s
By the given continuity on El,
hq(tk) — hq(t) (3.1.7.32)
and
r ryzy _ =r _
uq(tk) — uq(t) =u , r=1,...,(s-1) . (3.1.7.33)
Combining (3.1.7.23), (3.1.7.31), and (3.1.7.32), we obtain
n (E) - p(vg(E),u) —
q ) = H?T;arfjjﬁTT . (3.1.7.34)

S < 8. Now from (3.1.7.33),

Recall that u:(tk) < B. It follows that u
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(3.1.7.34), and the definition of u (E), it follows that u:(t';) <a
< B. This shows that the set (tGEg‘: uZ(t)f_B} is a closed subset of

E,. Hence u:(-) is measurable on Ez’ By induction, uq(-) is

measurable on El’ It follows that uq(-) is measurable on 8 Ez'
- 2=1

By (3.1.7.24), U E2 differs from J (and hence [O,TO]) by a set
2=1

of measure zero. Therefore uq(‘) is measurable on [O,TO] (the

fact that uq(o) has not been defined on [O,Tb]\d is not significant
because [O,TO]\J is a set of measure zero). This completes the
proof that uq(~) € Lm([O,To]-—»U).
The next step in the proof is to show that the function
t — ho(t)IYg(t)1 is an element of L'([0,T,]—R). HNote that
. Iyg ()1
Ihq(t)uYo\t)ul = lp(YO(t)’uq(t))Iﬂf(YO(t),uq(t))ﬂ
< alplyglt),ug(t))] (3.1.7.35)

for all t €J. The last inequality follows sinbe uq(t) € Cq(t), and
hence, Uf(yo(t),uq(t))ﬂ- H%O(t)ﬂ/q.3 0 for all t€J. Now
p(yo(t),uq(t)) € p(yo([O,TO]),qu\U) for all t € J. Recall that
Bq NU 1is compact; and since YO(-) is continuous, YO([O,To]) is
also compact. By Tychonoff's theorem [2, p. 166], or by more elementary
means, YO([O,TO])X (quWU) is a compact subset of £xU. Since
p(-,+) 1is continuous, p(YO([O,To]),BqPU) is compact. Hence the
function t — hq(t)ﬂ§0(t)ﬂ is an element of Lm([O,TO]—+-R) C
L ({0,741 R).

From (3.1.7.7), (3.1.7.8), and the Monotone Convergence Theorem

(12, p. 84], it follows that



T . T

0 .
J h(vq t),—-—T-7H)ﬂy0 t)ldt = 112 Io hq(t)ﬂyo(t)ﬂdt .
q (3.1.7.36)

T
0. .
We have shown that the integral J hq(t)ﬂyo(t)ﬂdt exists and is
0

finite. Si?ce hq(t)ﬂ§0(t)ﬂ decreases monotonically to
Tolt) | . . .
h(YO(t)’I$6T?THJuYO(t)“ as q -+, it follows that the integral on
the left-hand side of (3.1.7.36) exists in the extended sense, and its
value is either finite or -». Let ao: [0,T1] — [O,TO] be an abso-
Jutely continuous function such that o(0) = 0, o(T]) 0, and
o(t) >0 fora.a. t€[0,T,]. Let y(+) = (ygeo)(+). Then
Yl(°)|[0,T]] is a re-parametrization of YO(-)I[O,TO]. Note that
T]h Q](T) 0"

JO (Y](T)’H§;T¥7ﬁa Yl(T)UdT
rT1 Y (a(1))
JO h(YO a(t) ),-7—151;77“JHY0 (o(t))la(t)dT

Tl
lim J (o (T))RYO(G( ))lo(t)dr

o 9

q—)d)

T
0 .
1im Jo hq(t)ﬂyo(t)ﬂdt

q—)@

T
0
= Jo (yo(t),———%ij—)ﬂyo( ldt . (3.1.7.37)

The penultimate step in (3.1.7.37) is an application of the Change of
Variables Lemma 3.1.6; this application is justified because it has
been shown that the function t — hq(t)ﬂ§0(t)ﬂ is an element of
L]([O,To]—a-R). The final step in (3.1.7.37) is a restatement of
(3.1.7.36). Thus the integral on the left of (3.1.7.36) is parametri-

zation independent. This completes the proof of assertion (a).
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Now we proceed to prove assertion (b). Let {u(-),x(-)}|[0,T]

be any input-trajectory pair of S such that x(-)[[O,T] is a

re-parametrization of YO (+) Then, from Def. 3.1.2,

er(x(t) u(t))dt > JTh(x(t) x(t) )ﬂx t)ldt . (3.1.7.38)
Jo ’ = o "TX(E)T-

From assertion (a), the integral on the right-hand side of (3.1.7.38)

is parametrization independent; thus,

JT (x(t),u(t))dt JTOh( (t), Yo(t ) Iy, (t)hdt. (3.1.7.39)
X U >
o 2 Jo Mot T e Mo

It follows from (3.1.7.39) that in order to prove assertion (b), we
need only construct a sequence of input-trajectory pairs
{Gq(~),§q(-)}l[O,Tq] of S such that ﬁq(-)l[O,Tq] is a re-parame-

trization of yo(-)I[O,TOJ and

T
r 9

;lg Jo p(xq(t),uq(t))dt
4o () Tole)
= Jo h(vy t),m) Yo(t)idt . (3.1.7.40)

In order to do this, let q > N and define % : [o,T ]<—+ R by

ot Ivg(t')
Oq(t) = Joﬂf(Yo(t.)’uq(t‘))—ﬂdt < qt < o , (31.74])

The inequality oq(t) < qt follows since uq(t‘) € Cq(t') for all

t' € [0,t]NJ. Note that t; < t, implies that cq(tl) < o (t.

q{t2)s
therefore cq(-) is a bijection of (O,To] onto [O,oq(TO)]. Let

; . s =]
kq. [O,Oq(TO)] — [O,TOJ be defined by kq(T) = 9 (t). Then
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B (v, (k () )su_ (k_(T)))1
: - ] - 0'q q 9

k ( ) = % = V

SR A ) LA

(3.1.7.42)

. do_(t)
for a.a. T € [O,Cd(To)] (the symbol oq(kq(r)) means T

evaluated at t = kq(r); likewise for §O(kq(r))). From (3.1.7.42),
it follows that

dya(k (1)) .
-—EL;ﬁ}———-= Yolkq{T))ky (1)
 plky (1))
" FgUR 1T (Yol (Tlbug kg (1)1
= Flrglkg(1))ug(k (2))) (3.1.7.43)

for a.a. T € [O,oq(Td)]. The last step in (3.1.7.43) follows since

uq(kq(r)) € Cq(kq(r)), and hence

Tolkg(T)) Flyglk (), (k (1))
1Yo lkg(x)l ) Tt {yg kg (rd)ug (kg (1)

for a.a. Tt € [O,Uq(TO)] (we are using the fact that oy [O,TO] —
[O,GQ(TO)] maps sets of measure zero to sets of measure zero, see
fi2, p. 108, problem 14]). Equation (3.1.7.43) shows that, for each
g > N, {(uqokq)(.),(Yookq)(-)}l[o,oq(TO)] is an input-trajectory
pair of S for which the state trajectory is a re-parametrization of

YO(-)[[O,TOJ. It follows from (3.1.7.23) and (3.1.7.42) that

o4(Tg)
Plrgkg(T))sug (ky(1)))de
oq(TO)
= JO hq(kq(r))Wf(YO(kq(r)),uq(kq(T)))HdT
a(Tg)

= Jo hq(kq(r))ﬂ}o(kq(r))mﬁq(r)dT . (3.1.7.44)
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Since t — h.(£)19g(t)1 belongs to L1([0,71—R), we can apply
the Change of Variables Lemma 3.1.6 to the right-hand side of (3.1.7.44)

fo obtain
oq(TO)
. P(Yo(kq(r)),uq(kq(r)))dr
T0 ‘
= f h (t)ﬂ&o(t)ndt . (3.1.7.45)
0 q

Combining (3.1.7.36) with (3.1.7.45) gives

. Oq(To)
tin [ Pty etk
;

A Yo(t) i
- Jo h(yo(t),g§613719 Yolt)ldt . é3é167.46)

Proof of Lemma 3.2.2

Let {¢B(~): BEB} be a collection of upper semicontinuous
functions, where the index set B may be finite, countable, or
uncountable. Let ¢(-) & inf{ch(-): BE€B}. Then {x: ¢(x)<a} =
U {x: ¢B(x)<a}. Thus {x: ¢(x)<a} is open for all o« € R, i.e.,
gfg) is upper semicontinuous. The proof of the other assertion is

similar. Q.E.D.

Proof of Lemma 3.2.3

Let ¢: L » R®  be upper semicontinuous, and let K CZE

be compact. Suppose ¢(x) # = for all x € K. For o € R, define
Va = {(x€z: ¢(x)<a}. Note that each set VCJL is open, and the
collection {Va: a€R} covers K. Since K 1is compact, there exists

a finite subcover {V_,...,V_}. Let M = max{ay,...,a_}. Then
a] o 1 n
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$(x) <M <= for all x € K. The proof of the other assertion is

similar. Q.E.D.

Proof of Lemma 3.2.5.

We shall prove that h(-) is upper semicontinuous: the

proof of the other assertion is similar. For every u € U, define

(x,u) +
a(x)e_.{%ﬁn—uf’ rusy
u

. +
© , ifue U\Ux .

It is clear that h(x) = inf{ﬁu(x): u€U}. Let u€U and a € R be
fixed. Then

{xE€z: ﬁu(x) <a}

= {x€g5: f(x,u)>0}N{x€L: p(x,u)-af(x,u)<0} . (3.2.5.1)

From the continuity of the functions f(-,+) and p(+,+), both sets
on the right-hand side of (3.2.5.1) are open; thus, their intersection
is opedl Hence h(+) 1is the infimum of a collection of upper semi-
continuous functions. It follows from Lemma 3.2.2 that h(-) is

upper semicontinuous. Q.E.D.

Proof of Lemma 3.2.8

We shall prove assertion (a) only: the proof of

(b) is similar. Let Xg € L, and suppose that x; € int R+(x0). To
prove that there exists a state trajectory x(-)[[0,T] from Xg to
X1 with x(t) >0 for a.a. t € [0,T], let K € [xo,x]] and note
that (since f(.,) 1is continuous and Xy € int R+(x0)) there exists
an input value ug and an interval I C [xo,x]] which contains X

and is open in the relative topology of [xo,x]] such that
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f(x,ui) >0 for all x € 12 . (3.2.8.3)

Observe that (IQ: iés[xo,x]]} is an open covering of the compact
interval [xo,x]]; hence, there exists a finite subcover
{Ii ,...,IQ }. Without loss of generality, we may assume that

~

x]<§2<~~<§k and that Iiiﬂlﬁjffb if and only if [i-j| < 1.
For each i € {1,...,k-1}, choose ii € I£1111£i+]. Suppose that the
state of S at t =0 is x(0) = Xg- Construct a piecewise constant
input u{-) as follows: set u(t) = uQ] for t € [O,T]], where T,
is the unique time such that x(T]) = i]. Likewise, set u(t) = u22
for t € (T],Tz], where T, is the unique time such that x(Tz) = ;2’
etc. Continuing in this manner, we construct a piecewise constant
input which drives S from Xg at t=0 to Xy at some finite
time T; moreover, the corresponding state trajectory x(-)|[0,T]
satisfies %(t) >0 for a.a. t € [0,T].
Let T0 > 0, and define Yo' [O,To] — [xo,x]] by
Yo(t) & %o * %%(x]-xo) : (3.2.8.4)

Then YO(-)][O,TO] is an admissible curve of S; 1in fact, it is a
re-parametrization of any state trajectory Y](-)[[O,T]] of S from
Xg to x; with }l(t) >0 fora.a. te€[0,T;]. To see this, let

T
*17%0

a(t) = (Y](t)-xo) . (3.2.8.5)

Then clearly,
71(t) = ygla(t)) (3.2.8.6)
for all t € [0,T1]; moreover, o(+) is absolutely continuous with
To
X]-XO

0'(0) =0, O(T]) = TO’ and a(t) = §1(t) >0 for a.a.

t € [0,T1]. Thus y](-) [O,T]] is a re-parameterization of
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YO(-)I[O,TO] (Def. 3.1.3). Conversely, Lemma 3.1.6 and Remark #2
following it show that YO(-)I[O,TOJ is a re-parameterization of the
state trajectory Y](-)I[O,T]]; hence, YO(-)I[O,To] is an admissible
curve of S (Def. 3.1.3). Thus

T
inf {I p(x(t),u(t))dt}

X0 0
x>0
T>0
T
- ;r}rg{jop(x(w,u(t))dt: 1)1 00,TI€ALyg(-)]00,T,1]]
(TO T X-I-XO
= JO ﬁ(xo'i'.r—o-(x-l-xo))"‘—‘—TO dt (3-2'8'7)

where the last step follows from Lemma 3.1.7. By making the affine

change of variab1egl X = x0-++5(x]-x0), the integral in (3.2.8.7)

0
can be rewritten
T X
0 Xq=X 1
170
0 0 0 X9

Combining (3.2.8.7) and (3.2.8.8), we obtain (3.2.8.1). Q.E.D.

Proof of Lemma 4.1.3

The "if" part is immediate from Def. 4.1.2. To prove the

“only if" part, suppose that N is passive. Then, by Def. 4.1.2, N has a
passive dynamical system representation S,. Lets, be any other dynam-
ical system representation for N (note that S2 is necessarily equivalent

(Def. 2.1.10) to S,). Let (x,,t;}) € £,xR. Then, by equivalence,

]]Note that it is always permissible to make an affine change of varia-
bles in an integral. For other transformations, however, one must be
careful (cf. Lemma 3.1.6). '



there exists a state x € L, such that the set of voltage-current pairs
{v(+),1(*)¥|[ty,=) of S, with initial state x, is identical to the set
of voltage-current pairs {v(-),i(+)}|[t,,») of S, with initial state x,.

Hence, S, is passive because §, is. Q.E.D.

Proof of Lemma 4.1.4

Suppose that S satisfies (Suff. 4.1.4). If
{u(+),x(-)}|[t,,=) is any input trajectory pair of S, then (4.1.4.1)
gives

p(x(t),u(t),t) > & w(x(t),t) (4.1.4.2)

for a.a.t € [t,,=). Since y( -, ) is c' and x(-) is absolutely contin-
uous, the mapping t+y(x(t),t) is absolutely continuous over [t .t ] for

every t,>t,. Thus (4.1.4.2) can be integrated with the following result:

t
[ pxtehu(e,ede > wlx(e,),) - w(x(t,).8) > -blx(t,).8,) -

t (4.1.4.3)
The last step follows since ¥( -, -} is nonnegative. It is clear from

(§.1.4.3) that EA(xo,to) <’¢(xo,t0)<°=for all (xo,to) € L xR. Q.E.D.

Proof of Lemma 4.1.6

Suppose that EI(' » *) 1s an internal energy function for S.
Then, since EI(- , *) is nonnegative, (4.1.5.1) gives

t
IIP(X(t),U(t),t)dt > -E[(x(t,),t,) (4.1.6.1)
tl)

for all input-trajectory pairs {u(-),x(-)}|[t,,t,] of S. It is clear

from (4.1.6.1) that E,(x,t) < EI(x,t) < for all (x,t) € £xR. This

A
shows that S 1is passive, and it also shows that EA(- , *) S EI(- s ).
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Now suppose that S is passive. To prove that EA(~ , +) is an
internal energy function for S, let {u(-),x(-)}[[t,,t ] be any input-

trajectory pair of S. Then we have the following obvious inequality:

t' t,
sup %-jp(x'u),u'm,t)dt > - [ et ue) e
x(£)> t t :
t'>to 0 0
t"
+ sup %- J p(x"(t),u"(t),t)dt% . (4.1.6.2)
x(t,)~> ¢
>t 1

Substituting the definition of EA(- , ) into (4.1.6.2) gives

t
Ep(x(ty)st)) = - f 1p(x(t),u(t),t)dt + B (x(t,)st) . (4.1.6.3)

¢ Q.E.D.

Proof of Lemma 4.1.8

’ . 2
(a) ' Define Erx* :IxR_+ R by

t

Erx*(xl,tl,to) g 1nf %J p(x(t),u(t),t)dt (4.1.8.5)
X*+X | t,

where the expression on the right-hand side of (4.1.8.5) indicates that
the infimum is taken over all input-trajectory pairs {u(+),x(-)}|Ct,,t,]

from x* to Xy where t, and t, are fixed. Note that

Equx(X,5ty) = inf E

(x.,t.,t ) . (4.1.8.6)
t,<t, e

rx*

Let (xl,tl) € xR be arbitrary, and let {u(+),x(+)}|[t,,t,] be any
input-trajectory pair of S from x* to x,. Then, since EI(° , ) is an

internal energy function,
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tl
£ (x,at,) - B (x5,t,) < f p(x(t),u(t),t)dt . (4.1.8.7)
tO

This immediately gives

(x,5t,,t,) . (4.1.8.8)

EI(Xl’tl)-E[(x*’to) < Erx*

Taking the infimum over t,<t, on both sides of (4.1.8.8), we obtain

Ep(x,ty) - EL(xX,t) < Epalxnt) . (4.1.8.9)

(b) By reachability, Ep «(+» ) <=. Suppose that E;(x*) < =

then Ax*(- , *) <=, Note that

Aox(xt) & Epalx,t) + Ex(x¥)

o
> Epalxst) + Ey(x*,t)
> EA(x,t) (by assertion (a))
= 0 . ' (4.1.8.10)

Thus 0 < Ax*(° , *) <, which is a necessary condition for Ax*(' 7))
to be an internal energy function.
Let {u(-),x(-)}l[to,tl] be any input-trajectory pair of S. Then we

have the following obvious inequality:

t, t,
inf % f p(x'(t),u'(t),t)dt < inf % f p(x"(t),u"(t),t)dt
x* +x(t,) ¢ x* > x(t,) g
t'<t, t"<t,
t)
+ f p(x(t),u(t),t)dt . (4.1.8.11)
t

0

Substituting the definition of ERx*(' ,+) into (4.1.8.11) gives



tl
o (X(8,058,) € Balx(t)ity) + [ p(x(t).u(t), 00t . (4.1.8.12)
' t

0

Thus,

Alx(t)aty) = A (x(tg) tg) = Epoa(x(ty)it)) - Ep a(x(t),tg)

t
< f p(x(t),u(t),t)dt , (4.1.8.13)

t

which completes the proof that Ax*(' , *) is an internal energy function.
Q.t.D.

Proof of Lemma 4.1.11

Let (x,,u,,t,) € IxUxR, and let x(-)|(t,,=) denote

the state trajectory of S with x(to) =X, which is generated by

the constant input u(t) = u,. We have

{(wa(x,t), Flx,u,t)) + gﬂigéil}

(x,u,t) = (x,,u,,t,)

dp(x{t),t) l
dt
t=t,

‘p(X(to +At) :to +At) - ‘P(X(to) ato)

1im

at~0* At
EI(x(t0-+At),t°-+At) - EI(x(to),to)
) AQE%+ at
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tytAt

. ]
< At:]lm0+ A% J{ p(x(,t),uo,t)dt (by (4.1.5.1))
tO

= p(xosuosto) . (4-].]].2)

The last step in (4.1.11.2) is simply an application of the Fundamental
Theorem of Calculus, which is justified because p(*,*,*) is continuous

(Def. 2.1.17). Q.E.D.

Proof of Theorem 4.5.3

(Necessity). Suppose that S is passive. The necessity of
(i) follows immediately from assertion (a) of Theorem 4.4.1.
By Assumption 4.5.1, Uy #¢ and Uy # ¢ for all x € . To prove

the necessity of (ii), suppose on the contrary that there exists an

X, €L such that
h(x,) > h(x,)

. + -
Then there exists ule Ux and u,€ Ux such that
0 0

p(x,,u,) P(x,,u,)
0 2 S 0 1

f(x,,u,) fx,,u,)

By continuity, there exists 8§ >0 such that
f(x,u ) >0 for every x € [xo,x0 +8]
f(x,u,) <0 for every x € [x,,x,+8] ,

p(x,u,) S p(x,u,)
f(x,u,)  fx,u;)

for every x € [x,,x,+6]

Hence the constant input value u, will drive S from state X, at time t=0

to state x +d at some finite time t, >0, and the constant input value u,
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will drive S from state x, +¢6 at time t, to state x, at some finite time

t,>t Define an input wu(-)|[0,t,] as follows:

2 1°

T for 0<t<t, ,
u(t) 2

Uy s for t, <t<t,

Let x(-)|[0,t,] denote the state trajectory with x(0) = x, which is

generated by u(-). Note that x(t,) = x,; thus, x(-)[[0,t,] is a "loop"

0;

from x, to x,+& and back again. We have

tz tl t2
(t),u(t))dt = -ngilegiz- x(t)dt + —Effgfligig x(t)dt
fp(x ’ F(x(t),u,) F(x(t),u,)
0 0 t,
X°+<5 Xo
STy
5, (x,u,) 2+ X,u,
i x°+fp(x,u1) p(X.uz)] “ < o
i ,[ flx,u,)  fx,u,) ”

The last inequality follows because the integrand is strictly negative
on the interval [x,,x,+8]. This shows that EA(xo) = =, because we can
drive the state repeatedly in the above mentioned loop between x, and
X,*8 and thereby extract an unbounded amount of energy. But EA(xo) = ®
contradicts the assumption that S 1is passive; therefore, condition (ii)
must be satisfied.

Finally, if we choose W(*) = EA(-), thg available energy function,

then condition (iii) follows immediately from Lemma 3.2.8.

(Sufficiency). Suppose that conditions (i), (ii), and (iii) are
satisfied.
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By Assumption 4.5.1, h(x) < = and h(x) > -= for all x € E.
By Lemma 3.2.3, Lemma 3.2.5, and condition (ii), the functions h(-) and
Q(-) are bounded on every compact subset of £. From conditions (i), (ii),
and Def. 3.2.4,
p(x,u) > h(x) f(x,u) (4.5.3.3a)

p(x,u) > h(x) f(x,u) (4.5.3.3b)
for all (x,u) € ZxU.

Now choose X, € L. We want to show that EA(xo) < =, For each

x € L, define

- X-
A(x) ¢ [ hz)dz (4.5.3.4)
X
X
ﬂ(x) & h(z)dz . (4.5.3.4b)
X

0

From the boundedness properties of ﬂ(-) and h(-), it follows that H(x)

and H(x) are well-defined and finite for all x € L. Let {u(-),x(-)}|(0,T]

be any input-trajectory pair of S with initial state x(0) = X,. MNote
that
A(x(t)) k(t) = == H(x(t) (4.5.3.5a)
h(x(t)) x(t) = gdg H(x(E)) (4.5.3.5b)

for a.a.t € [0,T]. Since x(-) is continuous, it follows that x([0,T]) is
a compact subset of L. Since h(-) and h(-) are bounded on compact
subsets of £ and x{-) is absolutely continuous, it follows that the
mappings t - Q(x(t)) and t + H(x(t)) are absoiute]y continuous

(15, pp.95-96, Theorem 1.4.42]. Hence, from (4.5.3.4) and (4.5.3.5)

we obtain
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.
h(x(t)) x(t)dt = H(x(T))-H(x,) = H(x(T)) (4.5.3.6a)

.
h(x(t)) x(t)dt

H(x(T)) . (4.5.3.6b)

OV O+

Suppose that x(T) = x Then (4.5.3.3a), (4.5.3.6a), and condition (iii)

0°

give
T T _
[ ptx(t)u(enee > [ hexceniceee
0 0
x(T)
= H(x(T)) = f h(z)dz
Xg
> W(x,) - (4.5.3.7)

On the other hand, if x(T)«<x°, we have from (4.5.3.3b), (4.5.3.6b),

and condition (iii) that

T T
[ ptxtoruende > [ nextenicna
0 0 ,
x(T)
- M) = | h(z)dz
XO
> -W(x,) . (4.5.3.8)

Equations (4.5.3.7) and (4.5.3.8) show that EA(x0)=< w(x°)< ®, Q.E.D.

Proof of Corollary 4.5.4

(Sufficiency). Condition (i) of Corollary 4.5.4 implies
condition (i) of Theorem 4.5.3. Also, condition (i) of Corollary 4.5.4
and Def. 3.2.4 imply that

h(x) < a(x) < h(x) (4.5.4.1)
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for all x € £. This gives condition (ii) of Theorem 4.5.3. Finally,
(4.5.4.1) along with condition (ii) of Corollary 4.5.4 gives condition

(ii1) of Theorem 4.5.3, with w(xo) = E(xo). Therefore S 1is passive.

(Necessity). Suppose that S is passive. Then S satisfies the
three conditions of Theorem 4.5.3. From the sufficiency portion of the
proof of Theorem 4.5.3, we know that h(-) and h(-) are bounded on compact

subsets of I and satisfy (4.5.3.3). Choose z, € £ and define a:LZ +» R

by

h(x) for x>z, ,

ne

a(x) (4.5.4.2)

h(x) for x<z, .

Clearly, a(-) is bounded on compact subsets of I and satisfies p(x,u) =

a(x)f(x,u) for all (x,u) € £xU. Since h(-) and h(-) are semicontinuous

(Lemma 3.2.5), they are measurable; hence, a(+) is measurable as well.
Now define A: L + R’ by

X
0
sup ; J h(x)dx : z € [zo,x°]§ , if xy 2 z,

up
N

A(x,)

z
-inf g J h(x)dx : z € [xo,zo]$ , if x, <z,
xO

and define E:Z - R by

m
)
x
g
up>

W(x,) + W(z,) + Alx,) (4.5.4.3)
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where W(-) is the function appearing in Theorem 4.5.3. It is straight-
forward to verify that a(.) and E(-), as defined in (4.5.4.2) and
(4.5.4.3), satisfy condition (ii) of Corollary 4.5.4. Q.E.b.

Proof of Corollary 4.5.5

Sufficiency is just a special case of Lemma

4.1.6. To prove necessity, suppose that S is passive. Let af-) and
E(-) be the functions in Corollary 4.5.4. Choose z,€L, and define

E.:Z+ R by

[
X

[ sz ey (4.5.5.1)
Z

up

Ep(x)

(Note that EI(-) is nonnegative by condition (ii) of Corollary 4.5.4.)

From (4.5.5.1), EI(-) is differentiable at almost every x € ¥, and

= a(x) for a.a.x € . (4.5.5.2)

Since af-) is bounded on compact subsets of L, it follows that the

mapping x + dE (x)/dx belongs to L (L + R).
I loc

Now let {u('),x(-)}][to,tl] be any input-trajectory pair of S.
Npte that
dE; (x(t))

a(x(t))x(t) = — 5 (4.5.5.3)

moreover, since a(-) is bounded on compact subsets of L and x(-) is
absolutely continuous on [ty,t,], it follows that t‘+_EI(x(t)) is
absolutely continuous on [t,,t,] [15, pp.95-96, Theorem 1.4.42]: thus

tl
[ateenitene = gtxle) - £jxit,) (4.5.5.4)

t
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From condition (i) of Corollary 4.5.4 and (4.5.5.4), we obtain

t t,

1
[ pxterutede > [ alxenxiet
t, t,
= EI(x(tl))- EI(x(to)) . (4.5.5.5)
Hence, EI(-) is an internal energ& function for S. Q.E.D.

Proof of Lemma 5.1.6
Let S = {U,u,z,¢(~,-,-,~),Y,g(-,-),w(-,~)} denote an in-

put-distinguishable time-invariant dynamical system. Sincew(-,-) is
injective (Def. 2.1.11), it follows that two states x' and x" of S are

equivalent if and only if the set of input-output pairs {u'(.),y'(.)}]

[0,=) of S with initial state x' is the same as the set of input-output

pairs {u"(+),y"(+)}|[0,») of S with initial state x" (cf. Def. 2.1.9).
Let E: £ -+ P(Z) denote the map which takes each x€gs to the equivalence
class of x which is defined by the equivalence relation of Def. 2.1.9
(thus for each x€ £, E(x) is the set of all states equivalent to x).
The collection of all such equivalence classes is denoted Lo Define
IREXZOXU-»ZO by

$q°

8o tatgixgsu(-)) 2 E(o(t,ty,x",u(-))) (5.1.6.1)
where x' is any element of E'](xo). Note that the definition of ¢o(t,
to,xo,u(-)) is indepéndent of the choice of x'e E"](xo). This is because

if xa(-) and xb(-) are any two state trajectories of S generated by u(-)

with E(xa(O)) E(xb(O)), then a simple contradiction argument shows

that E(xa(t)) = E(xb(t)) for all t > 0. Now define 9y ° ZO=<U + Y by
9 (xg.u) & g(x',u) (5.1.6.2)
where x' is any element of E'](xo). Once again, a simple contradiction
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argument shows that g(x',u) = g{(x",u) for all x',x" e E'](xo) and all

u € U; so the definition of g(xo,u) is independent of the choice of
x' e E-](xo).
It is straightforward to verify that S 2 UULE e (s 0)sY,

90(',°),w(',~)} is a valid time-invariant dynamical system; by

construction, So is observable. Q.E.D.

Proof qf Lemma 5.1.8
If N is lossless, then Def. 5.1.5 and Lemma 5.1.3 show

that all input-distinguishable time-invariant dynamical system repre-
sentations for N are lossless. To prove the converse, first note that
the set T of all input-distinguishable time-invariant dynamical system
representations for N is nonempty by Assumption 2.2.4. Suppose that
every element of T is lossless, and Tet Se I. Let S0 denote the can-
onical observable dynamical system equivalent to S (Def. 5.1.7). Then
So € T; hence, S0 is lossless by assumption. It follows that N is loss-

less (Def. 5.1.5). Q.E.D.

Proof of Lemma 5.1.12

Assertion (a) follows immediately from Def. 5.1.11 and

Lemma 5.1.4. To prove assertion (b), suppose that S* is observable.
Then from assertion (a), S is narrow-sense lossless if and only if S*
is lossless; but this is the condition for wide-sense losslessness

given in Def. 5.1.9. Q.E.D.

Proof of Lemma 5.1.13
(a) If S; is Tossless, then S* is lossless by Lemma

5.1.3.

(b) If S is time-invariant, then S is equivalent to S;. If S;

is lossless, then S is lossless by Lemma 5.1.3. This shows that nar-
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row-sense losslessness implies losslessness. The fact that lossless-
ness implies wide-sense losslessness is obvious and has been

remarked upon in the text. Q.E.D.

Proof of Lemma 5.1.14

(Necessity) Suppose that N is lossless. Let S denote an
input-distinguishable time-invariant dynamical system representation
for N (at least one such S exists by Assumption 2.2.4). By Lemma
5.1.8, S; is lossless; thus S is narrow-sense lossless.

(Sufficiency) Suppose that N has an input-distinguishable time-
invariant dynamical system representation S which is narrow-sense
lossless. Since S is time-invariant, it is equivalent to S;. Thus
S; is a lossless, observable, time-invariant dynamical system repre-

sentation for N; by definition, N is lossless. Q.E.D.

Proof of Lemma 5.1.16

First note that the set of all input-distinguishable dyn-

amical system representations for N is nonempty by Assumption 2.2.4.
The "if" part then follows immediately from Def. 5.1.15. To prove the
"only if" part, suppose that N is lossless. Let S denote an input-
distinguishabie narrow-sense lossless dynamical system representation
for N (such an S exists by Def. 5.1.15), and let S denote any other
input-distinguishable dynamical system representation for N. Note that
53 is equivalent to S*, S* is equivalent to S*, and S* is equivalent

to Sg; hence, §g is equivalent to Sg. By assumption, Sg is lossless:
it follows from Lemma 5.1.4 that 33 is lossless, i.e., S is narrow-

sense lossless (Def. 5.1.11). Q.E.D.
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Proof of Lemma 5.1.20
Suppose that S satisfies (Suff. 5.1.20). If {u(-), x(-)}|

[0,T] is any input-trajectory pair of S, then in analogy with the

proof of Lemma 4.1.4 we obtain

T (T
p(x(t),ult))dt = | (wp(x(t)),fx(t),ult)) dt
0 J0
T
- 5 (a(x(t))at
= ¢(x(T)) - o(x(0)) . ' (5.1.20.2)
Therefore S is lossless. Q.E.D.

Proof of Lemma 5.1.23

[0,=) denote the state

Let (xo,uo) € L xU, and let x(.)

trajectory of S with x(0) = Xg which is generated by the constant in-

put u(t) = ug- We have

CTu(xg)Fxgaug) » ='dw(§£t)) »

Jim L)) -(x(0))

"

t+0* t
= 1im a{x(t))-6(x(0))
0" t
t
S lim g px(e)ug)ee
0
= p(xo,uo) . (5.1.23.2)

The last step in (5.1.23.2) is simply an application of the Fundamental
Theorem of Calculus, which is justified because the integrand is contin-

uous. Q.E.D.
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Proof of Lemma 5.2.1

The Monotonicity Lemma 4.3.6 shows that the mapping

t
t + f h(t)dt - ¢(y(t)) 1is monotone increasing; but it also shows
to t
that t + - [ J h(t)dt - ¢(y(t))] is monotone increasing. Therefore
tg
B(-) is both monotone increasing and monotone decreasing, i.e., B8(-)

is constant. Q.E.D.

Proof of Theorem 5.3.1

Assume that S is lossless. Let h(-,-) be the function

in Def. 3.1.2, and let (xo,uo)e z x U.

up

Suppose first that f(xo,uo) = 0. Define {u(t), Xx(t)}
{ug>xg} for t € R. Then for all T2>0, {a(-), x(-)¥o, 7] is a

valid input-trajectory pair of S from x. to Xg* The energy con-

0
sumed by this input-trajectory pair is

T . T
g p(x(t),u(t))dt = ! P(xgsugldt = pxq,ug)T 3

but this quantity must be independent of T, since S 1is lossless.
Thus p(xo,uo) = 0. This proves that (5.3.1.1) holds for all (xo,uo)e

£ x U such that f(x = 0.

0°Yg)

Now suppose that f(xo,uo) # 0. Llet YO(-) denote the state
trajectory of S with YO(O) = Xg which is generated by the constant
input u(t) = ug- Choose To > 0 such that Vo(t) # 0 for all
te [0, Té], and let nje (0, Té]. Refer now to Lemma 3.1.7. Let
{u(-), x(-)}|[0, T] be any input-trajectory pair of S with
x(+)|(0, T] € R[YO(o)[[O, TO]]. Then, since S 1is lossless,

T ) TO

s op(x(t),ult))dt = s p(ypy(t),ug)dt.
0 0

This shows that
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T
>0 0

= 60 p(YO(t)’UO)dt' (5.3.1.2)

From (5.3.1.2) and assertion (b) of Lemma 3.1.7, we have

e it = 0 o't | d 5.3.1.3
({P(Yo(t)’“o)“ = [ Yolt)s Wllvo(t)ll t. (5.3.1.3)

Noting that ?O(t) = f(yo(t),uo) for all t € }fF, (5.3.1.3) can be

rewritten

T flvg(t),u,)
60 [plyg(t)sup) - h(Yo(t)» ||f(Yg(t),ug)”)llf(Yo(t),uo)[[]dt = 0.

(5.3.1.4)

Since (5.3.1.4) holds for all Tp€ (0, Té], we conclude that

flyg(t),ug)
)

P (Yo(t)suo) - h(YO(t)a “f(YO(t)’uO IT)”f(YO(t)aUO)” =0

for a.a.t € [0, Té]. (5.3.1.5)

Now let e > 0, and choose & > 0 such that llvp(t) - Xgll < € for
all te [0, 8]. Since (5.3.1.5) holds almost everywhere on [0, Té],
there exists t; € [0, 8 such that (5.3.1.5) holds at t = t;.
Define x; £ yo(t;). Then by the choice of t),

- f(x,,u,)
p(x},up) = h (xp Tmﬁn-)”f(xl,uo)u. (5.3.1.6)

Thus we have shown that given (xo,uo) € L xU and given ¢ > 0,
there exists x; € L such that lixg - xjll <€ and (5.3.1.1) holds
at (x,u) = (xl,uo). Q.E.D.
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Proof of Theorem 5.4.2

Before proving necessity and sufficiency, we shall prove

that a function h: £ + R which satisfies p(x,u) = n(x)f(x,u) for
all (x,u) € £ x U 1is continuous at each nonsingular state. If a
state X0 is nonsingular, then there exists an input value Ug and
(by continuity) a neighborhood N(xo) of xy such that f(x,uo) 0
for all x € N(xo). Thus h(x) = p(x,uo)/f(x,uo) for all x € N(xo),
which shows that h(:) is continuous at Xq-

(Necessity). Suppose that S is lossless. Define D € {(x,u) €

£xU: f(x,u) # 0}, and define h: D - R by

f(;‘:ﬁ . (5.4.2.1)

ne

A(x,u)

We begin by proving that ﬁ(x,u) depends only on the first variable «x.
To obtain a contradiction, suppose that there exist (XO’“l)’

(XO’UZ) € D such that H(xo,ul)# ﬁ(xo,uz). Then two cases arise.

Case 1: f(xo,ul) and f(xo,uz) have the same sign. Assume that
f(xo.ul) >0 and f(xo,uz) > 0 (similar arguments apply in the other

situation). By continuity, there exists &6>0 such that

f(x,ul) >0 for all x€ [xO, Xg + 5] (5.4.2.2)
f(x,uz) >0 for all xeg¢ [xo, Xg * i (5.4.2.3)
ﬁ(x,ul) 7 ﬁ(x,uz) for all x € [xg, xg + 6]. (5.4.2.4)

By (5.4.2.2), the constant input wu(t) = Uy will generate (for some
finite T1 > 0) a state trajectory xl(-)l[O, T1] of S from Xg to

x0 + 6. Now
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}1 (x,(t),u,)dt }1 p(xi(t)’ul) X, (t)dt
p(x ,u = X
0 1 1 0 fixllti,uli 1

T . XO+5
= f ﬁ(xl(t),ul)xl(t)dt = f ﬁ(x,ul)dx. (5.4.2.5)
0 X
0

The use of the Change of Variables formula in the last step of (5.4.2.5)
is justified because Xy (0, T1]-+ R 1is C1 and the mapping

X -+ ﬁ(x,ul) is defined and continuous on x,([0, T,1)[22, p. 234,
Theorem 30.12]). Similarly, (5.4.2.3) shows that the constant input

u(t) = Uy will generate (for some finite T2 > 0) a state trajectqu

x2(-)}[0, T2] of S from Xg to Xg * §; moreover,

T2 x0+6A
s p(xz(t),uz)dt = f h(x,uz)dx. (5.4.2.6)
0 X

0

Since the integrands of the integrals on the right-hand sides of
(5.4.2.5) and (5.4.2.6) are continuous and unequal at each point of
the interval [xo,x0+6]. it follows that the integrals themselves are

not equal. This contradicts the assumption of losslessness.

Case 2: f(xO,ul) and f(XO’UZ) have opposite signs. For defi-
niteness, assume that f(xo,ul) >0 and f(xo,uz) < 0. By continuity,

there exists &6 > 0 such that

f(x,ul) >0 for all xe€ [xo, xq * 6] (5.4.2.7)
f(x,uz) <0 for all x¢€ [xo, Xg * 5] (5.4.2.8)
ﬁ(x,u}) # ﬁ(x,uz) for all x € [xo, Xg ¥ 8] . (5.4.2.9)

Egs. (5.4.2.7) and (5.4.2.8) show that there exists a finite T, >0
and an input-trajectory pair {u(-),x(-)}](0, T,] of S from Xg

to X0 with the following property: there exists T&_G (0, T2) such
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that wu(t) = u, for te [0, Tl u(t) = u, for te (Tl. T,], and
x(Tl) = xg * 6. Thus

T 15} T,
6’ p(x(t),u(t))dt = s p(x(t),u;)dt + s p(x(t),u,)dt
0 T
x0+6,\ XO A 1
= xé h(x,ul)dx +xé+6 h(x,uz)dx
x0+6
= f [ﬁ(x,ul) - f(x,u,)Tdx. (5.4.2.10)
X
0

Since the integraﬁd of the integral on the right-hand side of
(5.4.2.10) is continuous and nonzero at every point of the interval
[xo, Xg * 8], it follows that the integrai itself is nonzero. This
contradicts the assumption of losslessness, since {u(-),x(-)}|[0, 0]
is a valid input-trajectory pair of S from 'x0 to Xg which
(unlike {u(-),x(-)}|{0O, TZ]) consumes zero energy.

Thus h(x,u) depends only on x. If prZ(D) denotes the pro-
jection of D onto I (i.e., prg(D) = {x€ I: Jue U such that
f(x,u) # 0}), then there exists a function h: prZ(D)-+ R such
that

h(x) = h(x,u) = BZ2L for all (x,u) € D. (5.4.2.11)

Note that prZ(D) is precisely the set of all nonsingular states of S.

We shall define h(-) arbitrarily at singular states. From Theorem

5.3.1, we know that p(x,u) = 0 at all points (x,u) € £ x U such

that f(x,u) = 0; hence, p(x,u) = h(x)f(x,u) at all (x,u)€ L x U.
(Sufficiency) Suppose that there exists a function h: £ + R

such that p(x,u) = h(x)f(x,u) for all (x,u)€ I x U. Let

{ug(+)sx ()10, T3 and {up(-),xp(+)}|(0, T;1 be any input-

trajectory pairs of S for which xl(O) = x2(0) £a and xl(Tl) =
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A
x2(T2) = b. We will show that S 1is lossless by showing that the
energy consumed by {u;(-),x;(-)}[[0, T;] equals the energy consumed

by {UZ(')’XZ(°)}I[0’ T,]. There are three cases which arise.

Case 1: a is singular. Then a = b and both state trajectories

are constant. We have

T T )

é p(xl(t),ul(t))dt= 6 h(a)xl(t)dt =0 (5.4.2.12)
and

T2 To

/ p(xz(t),uz(t))dt= / h(a)xz(t)dt = 0, (5.4.2.13)

0 0

since xl(t) = xz(t) = 0.

Case 2: a and b are nonsingular. It follows that xl(t) is
nonsingular for all t € [0, T )(otherwise, the condition x,(T;) = b

would be impossible). Thus

N T :
S0 p(xg(t),uq(t))dt = /7 hix (t)x(t)dt
0 0
bv
= [ h(x)dx. (5.4.2.14)
a
The use of the Change of Variables formula in (5.4.2.14) is justified
because xl(-) is absolutely continuous and h(-) is continuous on
xl([O, TI])[15,pp. 95-96, Theorem 1.4.42]. Likewise,
T b
7 plxy(t),uy(t))dt = £ h(x)dx. (5.4.2.15)
0 a

Case 3:. a is nonsingular but' b 1is singular. Assume that

b >a (similar arguments apply when b < a). Define T*
inf{te [0, T1]: xl(t) = b}. Since b 1is singular and xl(-) is
continuous, xl(t) =b for te€ [T*, T1]; moreover, xl(t) <b

for te€ [0, T*). Now
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T . '
= 6 h(xl(t))xl(t)dt

T*
= 6 h(xl(t))il(t)dt

T .
= lim h(xl(t))xl(t)dt
T>T* 0
T<T*

x1(T)
= lim [ h(x)dx
T+T* a
T<T*

ya
= 1im / h(x)dx.
2+b a

z<b (5.4.2.16)
The second step in (5.4.2.16) follows since il(t) =0 for te€

(T*, Tl)’ and the third step is justified because the integrand is
bounded on [0, T*}. The fourth step is a consequence of Case 2,

which applies because xl(T) is nonsingular for T € [0, T*), while

the final step follows since xl(T) +b as T+ T*. Similarly,

T2 Z
s p(xz(t),uz(t))dt = 1im / h(x)dx. (5.4.2.17)
0 z+b a
z<b
In all three cases we have shown that
T1 Tr
6 p(x,(t),u (t))dt = é P(xo(t),uy(t))dt; (5.4.2.18)

therefore, S 1is lossless. Q.E.D.
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