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ABSTRACT

Definitions of passivity and losslessness are presented which apply

to n-port networks which are not necessarily linear, time-invariant, or

lumped; in fact, these definitions apply to any n-port which has a

dynamical system representation. For lumped, nonlinear n-port networks

which can be mathematically represented by a finite-order dynamical

system, conditions for passivity and losslessness are formulated in terms

of properties of the state equation function, the output function, etc.

These conditions can be verified without solving the state equation, and

can be viewed as nonlinear generalizations of the well-known time-domain

and frequency-domain passivity and losslessness conditions for linear

time-invariant lumped n-port networks.
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I. Introduction

The energy-related concepts of passivity and losslessness play

important roles in the highly developed classical theory of linear time-

invariant lumped (LTIL) n-ports [l]-[3]. In the more recent and less

developed theory of nonlinear n-ports, there is no consensus as to how

these energy-related concepts should be defined; moreover, there are just

a few results (most of which apply only to narrow classes of nonlinear

n-ports) that can be-utilized to determine whether agiven nonlinear n-port is

passive or active, lossless or lossy (we define activity to be the

negation of passivity and lossyness to be the negation of losslessness).

The first goal of this research is to provide consistent definitions

of the concepts of passivity and losslessness which apply to any n-port

which has a dynamical system representation. By "consistent," we mean

that these definitions should have the following properties:

(i) For those classes of n-ports where definitions of these

concepts have already been established (e.g., LTIL n-ports), our

definitions should agree with* the established definitions. In cases

where a definition does not agree, there must be a good reason why

our definition should supplant the established definition.

'(ii) An n-port should be unambiguously classified as passive

or active, lossless or lossy.

Consistent definitions for the nonlinear time-invariant case have

already been presented in references [4] and [5]. The definition

of passivity presented in [41 has a straightforward generalization

to the nonlinear time-varying case, and we present that generaliza

tion in Subsection 4.1. The definition of losslessness presented in



[51 has no obvious generalization to the nonlinear time-varying

case; however, in Subsection 5.1 we succeed in devising a consistent

theory of losslessness which applies to both time-invariant and

time-varying nonlinear n-ports. We consider the material in Subsection

5.1 to be one of the significant contributions of this research.

A large class of lumped, nonlinear n-port networks can be

mathematically represented by a special type of dynamical system

which we call a "finite-order dynamical system": in essence, such

a dynamical system is one in which the state lies in an m-dimensional

Euclidean space and its evolution over time is governed by a so-

called "state equation" x = f(x,u,t), where x denotes the state,

u denotes the input, and t denotes time. The second goal of

this research is as follows: for n-ports which can be mathe

matically represented by a finite-order dynamical system, find

conditions for passivity and losslessness (in terms of properties

of the state equation function f(«,',«)i the output function

g(->-»')» etc.) which can be verified without solving the state

equation. Such results can £e viewed as nonlinear generalizations

of the well-known time-domain and frequency-domain passivity and

losslessness conditions for LTIL n-ports [1]. For some classes of

finite-order dynamical systems we shall find sufficient conditions

for passivity and/or losslessness, for other classes we shall find

necessary conditions, and for still others we shall find conditions

which are both necessary and sufficient.

Our results involving finite-order dynamical systems can be

viewed as contributions to the theory of optimal control. This is

especially true of our results dealing with passivity. As will be
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discussed in Subsection 4.1, the question of passivity for a time-

invariant dynamical system is essentially the following nonstandard

optimal control problem: find conditions for a certain optimal-

value function defined on the state space (the negative of the

"available energy") to be finite-valued at each point of its domain.

In the usual optimal-control problem, it is assumed a. priori that

the optimal-value function is finite-valued. This assumption fre

quently takes the form of a restriction on the class of allowable

cost-functional integrands, e.g., one might deal only with cost-

functional integrands which are nonnegative. In the theory of

passivity for dynamical systems, we cannot base our entire theory

on the assumption that the available energy function is finite-

valued; indeed, the question of whether the available energy function

is finite-valued is precisely the question we are trying to answer

in the theory.of passivity.

Summarizing the paper, Section II gives the basic definitions and

assumptions which will be used throughout this paper. Most of our

notation is also defined in Section II. Subsection 2.1 deals mostly

with dynamical systems, while Subsection 2.2 gives a precise definition

of the term "n-port"—one that is both useful and meaningful within the

framework of our theory.

Section III contains various technical lemmas. The

main result, Lemma 3.1.7 in Subsection 3.1, is a decidedly non-

trivial analytical result for finite-order time-invariant dynamical

systems which has applications in the studies of both passivity and

losslessness. For first-order dynamical systems, Lemma 3.1.7 can

be strengthened considerably: this stronger result is contained

in Subsection 3.2.
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Section IV is devoted to the concept of passivity. Subsection 4.1

is essentially the basic theory of passivity found in reference [4],

with straightforward generalizations to the time-varying case. One

noteworthy item in Subsection 4.1 is the condition (Suff. 4.1.4) con

tained in Lemma 4.1.4: this is an obvious sufficient algebraic pas

sivity condition for finite-order dynamical systems which is equi

valent to the existence of a C internal energy function. Another

noteworthy item in Subsection 4.1 is Lemma 4.1.8, which shows that

(unlike the time-invariant case) conditions more restrictive than

mere reachability must be imposed in order for the required energy

function to yield an internal energy function for a passive time-

varying dynamical system.

A conjecture is introduced in Subsection 4.2 which we call the

"Smoothness Conjecture." Roughly speaking, this conjecture says

that a passive, controllable C finite-order dynamical system

;ias at least one C internal energy function. On several occasions

the first author has heard the Smoothness Conjecture, or some

minor variation of it, in his discussions with optimal control

theorists. Also, the truth of the Smoothness Conjecture seems to

have been assumed in references [6 ] and [7 ]* although it was not

explicitly stated in either of those two references. If the Smooth

ness Conjecture were true, then (Suff. 4.1.4) would be a necessary

(as well as sufficient) algebraic passivity condition for the class

of controllable C°° finite-order dynamical systems. Unfortunately,

the Smoothness Conjecture is false: this is proved in Subsection 4.2

by producing a counterexample.
CO

Hence, even if we restrict ourselves to controllable C

finite-order dynamical systems, (Suff. 4.1.4) is not a necessary
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condition for passivity. Therefore it is of interest to obtain a

sufficient algebraic passivity condition for finite-order dynamical

systems which is not as restrictive as (Suff. 4.1.4). Such a con

dition can be obtained by applying Stalford's [8 ] results from

optimal control theory: this is done in Subsection 4.3.

In the following subsection, 4.4, the technical results

from Subsection 3.1 are applied to obtain some original sufficient

activity conditions for finite-order dynamical systems. Note that

the negations of these conditions are necessary conditions for

passivity.

The technical results from Subsection 3.2 are applied in Subsection

4.5 to obtain an easily-verifiable necessary and sufficient passi

vity condition for controllable first-order time-invariant dynamical

systems. This result was first published by the authors in reference [4],

We also present a new result which shows that a passive, controllable

first-order time-invariant dynamical system has an internal energy function

which possesses certain smoothness properties. Although first-order

dynamical systems are of little practical interest, they have been explicitly

analyzed in this paper because for this class of dynamical systems we are

able to obtain necessary and sufficient conditions for both passivity and

losslessness which can be verified without solving the state equation;

hence, they can be used to test the validity of various conjectures regarding

passivity and losslessness for finite-order dynamical systems. Indeed, the

insight gained by studying passive first-order dynamical systems enabled

the first author to devise the counterexample to the Smoothness Conjecture

presented in Subsection 4.2.
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Section V is devoted to the concept of losslessness. A thor

ough treatment of the general theory of losslessness for time-

invariant nonlinear n-ports is given in [5], but there is no obvious

extension of that theory to time-varying nonlinear n-ports. In

Subsection 5.1, we present a consistent theory of losslessness which

applies to time-varying as well as time-invariant nonlinear n-ports.

In our theory, the question of whether a time-varying nonlinear

n-port /Y is lossless reduces to the question of whether a certain

observable time-invariant dynamical system associated with hf \s

lossless. One notable consequence of our theory is that a linear

time-varying 1-port capacitor is not lossless: this is the same

classification that Penfield [9] has argued for.

The algebraic condition (Suff. 5.1.20) in Lemma 5.K20 of

Subsection 5.1 is an obvious sufficient losslessness condition for

finite-order time-invariant dynamical systems, but we do not know

whether (Suff> 5.1.20) is a necessary condition for losslessness.

Therefore it is of interest to obtain a sufficient algebraic

losslessness condition which is not as restrictive as (Suff. 5.1.20).

In Subsection 5.2 we.obtain such acondition by applying Stalford's [8]
results from optimal control theory.

The technical results from Subsection 3.1 are applied in Subsection

5.3 to obtain an original necessary losslessness condition for

finite-order time-invariant dynamical systems.

In the final subsection of this paper, 5.4, anecessary and suf

ficient algebraic losslessness condition for first-order time-invariant

dynamical systems is presented. The authors have also published this
material in reference [5].
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It should be noted that all the general nonlinear passivity and

losslessness conditions in this paper are valid for LTIL n-ports (we use

the adjective "nonlinear" to mean "not necessarily linear"); however, the

special properties of LTIL n-ports allow us to derive passivity and

losslessness conditions of a much more explicit nature. These conditions

are fairly standard, but (contrary to wide-spread belief) there does not

seem to be any treatment of this topic in the literature which is totally

satisfactory in terms of completeness and rigor. For this reason the

authors are writing a companion paper [10] which gives complete, rigorous

proofs of the passivity and losslessness conditions for LTIL n-ports.

II. Definitions, Assumptions, and the Mathematical

Representation of N-Ports

Our basic notation is standard, and is completely defined in

reference [11]. Some of our nonstandard notation is as follows.

The symbol 1R denotes the set of nonnegative real numbers, i.e.,

R =[0,«), while Re denotes the set of extended real numbers [12,p.34];

symbolically, this is approximately denoted as follows: JRe = {-«} u ]R u

{«}. Finally, IR+ denotes the subset of all (t^tg) e RxR such that

t^tgj symbolically, R^ £{(tj.tg) GR*R:̂ >tQ}.

2.1 Dynamical Systems

We are interested in the class of n-port1 networks which

can be mathematically represented by a "dynamical system" — a mathemat

ical abstraction which is defined as follows.

2.1.1 Definition. A dynamical system, denoted S, is a septuplet

{U,U,E,*(-,-,-,-),Y,g(-,-,-),w(-f.)},' where

A precise definition of the term "n-port" is given in Subsection 2.2.
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(i) U is a nonempty set called the set of admissible input values,

(ii) U is a set of functions mapping R into U called the set of

admissible inputs. The set U is assumed to be translation invariant,

i.e., if u(-) e a, then the function u : R-+-U defined by u (t) § u(t-t)

also belongs to U for every t € R. Moreover, U is assumed to be closed

under concatenation. This means that if u^-J^t*) e u» then the

,,2 • ** - U and u,2 : R-* U defined by

u-j(t) , if t<T ,

functions u-

u12r(t) «

012T(t)» 1

u~(t) , if t>t ,

U.j(t), if t<T,

u2(t), if t>T,

also belong to U. Finally, we assume that U contains all the constant

functions mapping IR to U, i.e., for every u^U, the function u:IR-" U

defined by u(t) - uQ belongs to U.

(iii) I is a nonempty set called the state space,

(iv) $: R+ x z x u +z is called the state transition function.

It obeys the following axioms.

(a) Consistency: <fr(t0>t0,x0fu(-)) =*0 for all tQeiR, xQ€E, and
u(-)eu".

(b) Determinism: (^(^ ,t0,xQ,u1 (•)) » <fr(tj ,tQ,x0>u2(-)) for all
2

(t1,t0,xQ)6lR+x Z and all u] (-),u2(-)<= a satisfying

u^t) =u2(t) for te[t0,t]].

(c) Semi-group: for all

(t2.t0>x0,u(-))€lR^ Zxu and all t1s[tQ,t2],
4>(t2,t0,x0,u(-)) =0(t2,tr 4>(t1,t0,x0,u(-)), u(-)).
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(v) Y is a nonempty set called the set of output values,

(vi) g: E x U x IR -»• Y is called the output function,

(vii) to: Ux Y -^ In x Cn is called the port variables read-out func

tion. It defines the port voltage read-out function V : Uxy -»- £n and

the port current read-out function I :UxY -»• <En by the following
equation:

(V(u,y), I(u,y)) % o)(u,y) . (2.1.1.1)

The class of n-port networks which can be mathematically

represented by a dynamical system is quite broad: it includes networks

with nonlinear time-varying distributed elements~a7 well aTn^tworks

with the familiar linear time-invariant lumped elements of classical

network theory (resistors, capacitors, inductors, etc.).

The only significant difference between our definition of adynami
cal system and most others which have appeared in the literature (e.g.,
reference [13]), is the inclusion of the port variables read-out function
*>(•>•). The equation (v,i) =o>(u,y) gives the values of the port
voltage and current vectors, vand i, respectively, as a function of

the instantaneous values of the input (independent) variable u and the

output (dependent) variable y. It may seem strange that we allow com

plex-valued port variables, i.e., that we allow w(.f.) to take values
in (E x1". 0f coursej 1f adynamical system 1s amathemat1cal repre.
sentation of a real, physical n-port, thenw(.f.) must take values in

IRn xRn c<rn x<tn; we will see in acompanion paper [10], however, that
dynamical systems with complex-valued port variables can be useful theoretical tools

2.1.2 Example. Regarding the port variables read-out function

>(•,•), the most common situation is where U=Rn, Y=IRn, and

u: R x]R h. Rn xiRn is alinear bijective function characterized
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by a nonsingular coordinate transformation matrix ft e R 2n x 2n as

follows:

v 1 nn ra b~i r~y~
= ft ^

-1J LuJ Lc dJ LuJ (2.1.2.D

where v stands for V(u,y), i stands for I(u,y), and ft is partitioned

into four n x n submatrices a, b, c, and d as shown on the right-hand

side of (2.1.2.1). The interesting special cases are as follows.

(i) The impedance representation. Here u=i and y=v; hence, a = I,

b = 0, c = 0, and d = I (note: I denotes the n x n identity matrix).

(ii) The admittance representation. Here u=v and y=i; hence, a = 0,

b = I, c = I, and d = 0.

(iii) The hybrid representation. In this case, one of the following

two conditions is satisfied for each ke{l,2,...,n} : either v.=y. and

ik = uk, or else v^ = uk and i*k = yk, where vk is the k-th component

of v, etc. Thus

'an ° bn °

a=d= b=c=

nn J nn J

where, for each k6(1,2,... ,n> , either akk=l and bkk=0, or else a..=0

andbkk=l.

(iv) For the scattering representation, the matrices a,b,c, and d

have the following form:
1

^ 0 1

a=b= , d= -c =

0 /T
n J
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where the real positive constants rk are called the port normalizing

numbers.

(v) For the transmission representation, n must be even and a, b,

c, and d have the following form:

a =

c =

0 0

I 0

0 0

0 -I

b =

d =

I 0

0 0

I

0

n v. nwhere I denotes the j x 1Jl identity matrix.

Before proceeding to the next definition, we must define some
n a n -

additional notation. If w,ze(r, then <w,z> £ z w.z. , where w.
j=l J J J

denotes the j-th component of w, etc., and w. denotes the complex

conjugate of vty, also, we define || w|| A /< w,w> . Finally, if sec,
then Re s and Im s denote the real and imaginary parts of s,

respectively.

2..1.3 Definition. Let S denote a dynamical system. Associated

with S is a function p: z x U x R + R , called the power input

function, which is defined- by

p(x,u,t) ^ Re^V(u,g(x,u,t)), I(u,g(x,u,t)) > . (2.1.3.1)

We will always use the associated reference directions for assign

ing the polarity of the port variables of an n-port [2, pp. 4-5]; hence,

if a dynamical system S is a mathematical representation for a real,

physical n-port W, then V(u,g(x,u,t)) and I(u,g(x,u,t)) have real-valued

components and p(x,u,t) gives the net power flowing into the ports of
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W when the state of S is x, the input value is u, and the time is t

(note that p(x,u,t) can be positive, negative, or zero).

2.1.4 Definitions. Let S denote a 'dynamical system, and let

(t0,xQ,u(-)) €R x e xa. Define x: [tQ,»h I by

x(t) = <f>(t,t0,x0,u(-)) • (2.1.4.1)

Then x(#)l C^n*00) 1S called the state trajectory of Swith x(tQ) = xQ

which is generated by u(»). Define y: [t0,°°) -* Y, v: [t0,°°) +tn, and

i: [tQ,«) -In by
y(t) = g(x(t), u(t), t) (2.1.4.2)

v(t) ^ V(u(t), y(t)) (2.1.4.3)

i(t) A I(u(t), y(t)) . (2.1.4.4)

Then y(-)|[t0,«) (resp., v(»)| [tQ,»); resp., i(*)| Ctg,00)) is called

the output (resp., port voltage; resp., port current) of S with initial

state xQ which is generated by u(«)'. Moreover, {u(-)>x(*))| CtQ,~)

(resp., {u(-)»y(*)}| [tg,00)) is called an input-trajectory (resp.,

input-output) pair of S with initial state xQ, while {vf-hitOJlCtg*09)

is called the voltage-current pair of S with initial state xQ which is

generated by u(»). Let t, e[tQ,»), and define x, = x(t,). Then

x(*)| [tQ,t,] is called the state trajectory of S from xQ to x-j which

is generated by u(»), and we say that u(«) "drives" or "steers" S from

xQ to x, over the time interval [tQ,t,]. Moreover, {u(*)»x(')}| [tg,t-j]

(resp., {u(«)» y(°))| [tg,t,]) is called an input-trajectory (resp.,

input-output) pair of S from xQ to x,, while { v(- )9i (•)} | C^q* '̂l^ 1S

The notation f(•)|A denotes the restriction of a function f(«) to a
subset A of its domain.
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called the voltage-current pair of S from xQ to x, which is generated

Before proceeding, we must define some additional notation and

terminology. Let Ac R be a Lebesgue measurable set, let W be a subset

of a normed vector space X (with the topology of W the relative topology

that it inherits from X), and let 0 < p < «. Then LP(A->W) denotes the

set of all Lebesgue measurable functions f: A->W such that

where

llf(t)llpdt<«,

l|f(t)||Pdt denotes the Lebesgue integral of the function
A

t-" ||f(t)||p over the set A. (If A is an interval [a,b], then we use the
f

.) The notation L? (A-Hrf) denotes thestandard notation

set of all Lebesgue measurable functions f: A-*W such that

to denote

A loc
Hf(t)||pdt<«

,B
for every compact Lebesgue measurable set B c A. Also, the notation

L (A-*W) denotes the set of all Lebesgue measurable functions f: A-4J for

which there exists a finite constant M(f(*)) > 0 (which depends on f(«))

such that ||f(t)||<M(f(-)) for a.a.t € A (the notation "a.a.t" stands for

"almost all t," it means for all t with the possible exception of some

t which form a set of Lebesgue measure zero). We use L? (A-*W) to denote

the set of all Lebesgue measurable functions f: A-*W which satisfy the

following condition: for every compact Lebesgue measurable set B c A,

there exists a finite constant M(f(«*),B) > 0 (which depends on f(-) and

B) such that ||f(t)||<M(f(-)tB) for a.a.t SB. For 0 < p < », we call

LP(A-»W) the set of Lp functions mapping A to W, and we call LP (A-*W)

the set of locally Lp functions mapping A to W. Finally, when we use

terminology such as "measurable set," "measurable function," and "inte

gral," it will always be understood that we mean "Lebesgue measurable

set," "Lebesgue measurable function," and "Lebesgue integral," respect

ively.
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2.1.5 Assumption. Let S denote a dynamical system, and let p(«,«,0

denote the power input function associated with S (Def. 2.1.3). It is

assumed that for every (tg,Xg,u(«)) e R xz x u, the mapping

t+p(x(t),u(t),t) belongs to L]oc([tg,~) +IR), where x(-)|[tg,«) is
the state trajectory of Swith x(tQ) =xQ which is generated by u(«).

2.1.6 Definition. Let S denote a dynamical system, and let

{u(')»x(-)}|[tg,«) denote an input-trajectory pair of S. For every

t,e[tg,»), the energy consumed by {u(*).x(-))|[tg.t1] is defined to be

the quantity J p(x(t),u(t),t)dt. (By Assumption 2.1.5,
z0

-14-

p(x(t),u(t),t)dt
'0

exists and is finite for every finite t1 >_ tQ; moreover, note that this in

tegral can be positive, negative, or zero.)

2.1.7 Definition. (Reachability) Let S denote a dynamical system.

We say that a state x, of S is reachable from a state x* of S if for each

t, e R, there exists (for some tgef-co,^]) an input-trajectory pair

{u(-).x(")>|[t0.t1] of S from x* to x]. We say that S is reachable from

x* if every state of S is reachable from x*.

2.1.8 Definition^ (Controllability) Let S denote a dynamical sys

tem. We say that S is controllable if for each (xg.x^t^) € z x ZxR,

there exists (for some tg€(-«>,t,]) an input-trajectory pair (u(*).x(-)}|
[tQ,t,] of S from Xg to x,. S is defined to be uncontrollable if it is

not controllable.

2.1.9 Definition. Let S and S' denote two (not necessarily distinct)

dynamical systems. State x of S and state x' of S' are defined to be

equivalent at t. e IR if the set of voltage-current pairs

(v(-)i UOJlCtg,08) of S with initial state x is the same as the set

of voltage-current pairs (v'(0» i'(•)) |[tn,°°) of S' with initial state x'.



2.1.10 Definition. (Equivalence) Two dynamical systems, S and

S', are defined to be equivalent if the following condition is satisfied

for each tQ eR: for every state x of S, there exists a state x' of S'

which is equivalent at tQ to the state x of S, and conversely, for

every state x' of S', there exists a state x of S which is equivalent

at tg to the state x* of S".

Note that two dynamical systems which are equivalent by Def. 2.1.10

have the same external behavior, i.e., they have the same behavior with

respect to the port voltage v and the port current i. For this reason,

we consider two dynamical systems to be (equally valid) mathematical

representations for the same n-port if and only if they are equivalent

according to Def. 2.1.10. More discussion on this matter, including

a precise definition of the term "n-port," is given in Subsection 2.2.

2.1.11 Definition. Let S denote a dynamical system. We say

that S is input-observable if the following condition holds for every

(t«|,tg,Xg) 6IR+ x z: if ua(«) and ub(*) are any two inputs such that

(va(t), ia(t)} = (vb(t), ib(t)} for all te[tQ,t1]; where

(va(-)> ia(-)}|[tg,») and (vb(-), i'b( •) }|[tg,~) are the voltage-

current pairs of S with common initial state xQ which are generated

by u (•) and ub(«)» respectively; then u (t) = ufa(t) for all te[tQ,t,].

We say that S is input-distinguishable if <*>(•,•) is injective (recall

from Def. 2.1.1 that w(»,») is the port variables read-out function for

s).

Note that if a dynamical system S has a port variables read-out

function of the class described in Example 2.1.2, then S is input-

distinguishable.
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The following lemma shows that the set of input-distinguishable

dynamical systems is a subset of the set of input-observable dynamical

systems.

2.1.12 Lemma. Let S denote a dynamical system. If S is input-

distinguishable, then S is input-observable.

The proof is given in the Appendix.

2.1.13 Definition. (Observability) A dynamical system S is
3

defined to be observable if both of the following conditions are sat

isfied:

(i) S is input-observable (Def. 2.1.11).

(ii) For each tQsR ,the equivalence at tQ of any two states x,

and x2 of S (Def. 2.1.9) implies that x1 = x«.

Next, we are going to briefly discuss linearity. A dynamical

system (Def. 2.1.1) is defined to be linear4 if all of the following
four conditions are satisfied:

(i) U,li,Z, and Y are linear vector spaces D4> p. 5] over the same

field F, where F = R or F = <t.

(ii) For every (t,tQ) €R+,<j>(t,tg,-,') is alinear map of Zxu
into Z.

(iii) For every teR, g(-,«,t) is a linear map of Z xU into Y.

(iv) u>(-,«) is a linear map of Ux Y into (En xin.

"This property is called "total observability" in [5].

4
This definition of linearity is more restrictive than some others in
the literature (e.g., reference [13]), which would require only that
S be externally linear.
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In our terminology, the adjective "nonlinear" will mean "not

necessarily linear." Hence, phrases such as "dynamical system" and

"nonlinear dynamical system" mean exactly the same thing: we will

choose the latter over the former only if we wish to emphasize that

the dynamical system under consideration need not be linear.

2.1.14 Definition. (Time-Invariant and Time-Varying Dynamical•

Systems) Let S denote a dynamical system. For each (u(«)>t)€U x R,

define uT: R -*• U by u (t) = u(t-x). S is defined to be time-invariant

if both of the following conditions are satisfied:

(i) For all te 1R and all (t, ,tg,Xg,u(»)) e IR+ x zx U,

^(t^T, tg+T, Xg, UT(«)) = <l>(t1,tg,XQ,U(-)).

(ii) g(x,u,t) does not depend on t (this being the case, we usually

write the output function value as g(x,u) rather than g(x,u,t)).

Moreover, S is defined to be time-varying if it is not time-invariant.

Note that for a time-invariant dynamical system, p(x,u,t) is in

dependent of t; this being the case, we usually write the function value

as p(x,u) instead.

Observe that the set IT of input-trajectory pairs of a time-invar

iant dynamical system has the following property: {u(«)»x(-)}|[tQ,°>)

belongs to U if and only if {u (0>x (Ol^tg+x,") belongs to I-r for

all t e IR. Similar comments apply to the sets of input-output and

voltage-current pairs of a time-invariant dynamical system.

2.1.15 Definition. (Canonical Time-Invariant Dynamical System)

Let S ={U,ti,Z,<j>(•,•»•,• ),Y, g(•,•»•)»«(•••)) denote a dynamical system

(Def. 2.1.1). The canonical time-invariant dynamical system associated

This definition of time-invariance is more restrictive than some others
in the literature (e.g., reference [13]), which would require only that
S be externally time-invariant.
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with S, denoted S* = {U*,U*,z*,<f>*(-, •, •, -),Y*,g*(-, •) ,w*(-,-)}, is defined

as follows.

(i) U* ^ U, 0* ^ U, Y* = Y, w*(-,.) £ co(-,«).
(ii) Z* = Z x jr.

(iii) <j>*: 1R^ xZ* xU+ Z* is defined by

4)*(t1,tQ,(xQ,a0),u(.))i WVV^O'VV1^ -t (,))* tl"t0 +a0)
(2.1.15.1)

(recall that for T e R, u (t) = u(t-x); thus, u . (t) = u(t+tn-an)).t a0-tg 0 0
It is straightforward to verify that $*(•,•,-,•) satisfies the consistency,

determinism, and semi-group axioms of Def. 2.1.1. Moreover, it is easy to

see that **(•,•,•,•) satisfies property (i) of Def. 2.1.14.

(iv) g*: Z*x u + Y is defined by

g*((x,a),u) = g(x,u,a). (2.1.15.2)

Also, the power input function for S*, p*: Z* x u -». r t is given by

P*((x,a),u) = p(x,u,a) (2.1.15.3)

where p(-,*,«) is the power input function for S (Def. 2.1.3).

2.1.16 Remarks. Roughly speaking, we obtain S* from S by letting

time be one of the state variables. Note the following:

(a) Regardless of whether or not S is controllable, S* is never

controllable. This is because the "time" state variable a(0 always

increases monotonically with t.

(b) If S is time-invariant, then S and S* are equivalent.

(c) If S is time-varying, then S and S* are not equivalent (i.e.,

they do not have the same external behavior). However, the external

behavior of S* subsumes that of Sin the following sense. Let tQ€R

be any initial time, let xQ be the state of Sat time tQ, and let
(Xg»a0) be the state of S* at time tQ. By the definition of adynami-
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cal system, we are free to let og take any value whatsoever. If we

happen to choose og = tg, then the set of voltage-current pairs

{v*(.),i*(-)}|[t0,oo) of S* with initial state (xg,a0) = (xg.tg) is

identical to the set of voltage-current pairs {v(«)fi(O}|[t0,») of

S with initial state Xg (similar comments can be made regarding the

sets of input-output and input-trajectory pairs of S and S*; of course,

in the latter case one must make obvious modifications necessitated by

the technical fact that S and S* have different state spaces).

The preceding remarks show how one can often reduce a problem

involving a time-varying dynamical system to a similar problem involv

ing a time-invariant dynamical system. This procedure is frequently

used in optimal control theory to allow one to state theoretical re

sults exclusively in terms of time-invariant dynamical systems, without

any loss of generality.

2.1.17 Definition. (Finite-Order Dynamical System) By defini

tion, a finite-order dynamical system is a dynamical system S (Def.

2.1.1) which satisfies the following additional conditions:

(i) There exists a positive integer m, called the order of S,

such that Z cRm.

(ii) U cRn, YcRn.

(iii) gt**'**) and <*>(•,•) are continuous, and (*>(•,•) takes values

in Rnx Rn (as opposed to <En x (£n).

(iv) The elements of U are measurable functions mapping IRto U.

(v) There exists a continuous function f: Zx u x R+Rm with

the following property: for each (tg,xQ,u('))e IR x Zx U, there is

a unique function x: [tQ,<»)->• Z with

"X(tg) = Xg (2.1.17.1)

-19-



which is absolutely continuous [12,p. 104] over [tQ,t,] for every

t,>tQ, satisfies

x(t) = f(x(t),u(t),t) for a.a.te[tg,»), (2.1.17.2)

and satisfies

x(t) = 4>(t,t0,x0,u(-)) for all te[tQ,«). (2.1.17.3)

2.1.18 Definition. Let S denote a finite-order dynamical system.

Then the equation

x(t) = f(x(t),u(t),t) (2.1.18.1)

is called the state equation of S, and the equation

y(t) = g(x(t),u(t),t) (2.1.18.2)

is called the output equation of S.

2.1.19 Remark. It is clear that a finite-order dynamical system

is time-invariant if and only if both f(x,u,t) and g(x,u,t) are inde

pendent of t; this being the case, we usually write these function

values as f(x,u) and g(x,u), respectively.

2.2 A Precise Definition for the Term "N-Port"

The term "n-port" is commonly used in electrical network theory

to denote any one of three distinct concepts. One concept is that of

a physical n-port, i.e., the actual "real-world" electrical network

under consideration. This electrical network has n ports (hence, the

term "n-port"), and from our point of view it interacts with the out

side world exclusively through its ports. Another concept is that of

a model of a physical n-port, which we shall call an n-port model.

\he n is used in the generic sense — we do not assume that every
such network has the same number of ports.
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This concept is an idealization of a physical n-port; it represents

an attempt to extract all the relevant physical effects. One usually

identifies an n-port model with a network graph drawn on a piece of

paper. The network graph consists of certain idealized elements inter

connected by lines which represent ideal interconnection wires. Fin

ally, the term "n-port" is sometimes used to denote a mathematical

representation of an n-port model.

In formulating a definition of the term "n-port" which is both

useful and meaningful within the framework of our theory, we have re

jected all three of the concepts mentioned in the preceding paragraph.

The last alternative mentioned above — that of defining an n-port to

be a mathematical representation of an n-port model — is the most

troublesome. It seems to ignore the fact that an n-port model usually

has an infinite number of equally-valid mathematical representations

(if it has any at all), and it often leads to inconsistencies in defin

ing the concepts of passivity and losslessness (see references [4] and

[5] for examples).

To motivate our definition of the term "n-port," first note that

our theory is limited to the mathematical representations of Def. 2.1.1

— the so-called "dynamical systems." Suppose that a given n-port

model, denoted bl * has a dynamical system representation S. If S' is
m

any dynamical system which is equivalent to S (Def. 2.1.10), then S

and S' have the same external behavior; hence, S' is an equally-valid

mathematical representation for W . Note that the equivalence rela

tion of Def. 2.1.10 is a true equivalence relation in the set-theore

tical sense [12, p. 22]; hence, it partitions the universe of all dyn

amical systems into equivalence classes. Recall that these equivalence

classes are disjoint subsets of dynamical systems which have the fol-
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lowing property: two dynamical systems are equivalent if and only if

they belong to the same equivalence class. Thus W can be identified

with the unique equivalence class of dynamical systems which contains

S. Note that there may exist an n-port model M', distinct from W ,
m m

which can also be identified with the equivalence class containing S;

but since W and W* have the same external (port) behavior, they are

indistinguishable for our purposes. These observations justify the

following definition of the term "n-port."

2.2.1 Definition. An n-port is an equivalence class [12,p. 22]

of dynamical systems, where the equivalence relation is given in

Def. 2.1.10.

2.2.2 A Note on Terminology. Let W denote an n-port, and let

S denote a dynamical system. We say that "S is a dynamical system

representation for W," or that "W has the dynamical system representa

tion S," if S is an element of the equivalence class W.

A linear n-port is one with a linear dynamical system representa

tion. The phrase "nonlinear n-port" means an n-port which is not nec

essarily linear.

2.2.3 Definitions. Let M denote an n-port. W is defined to be

time-invariant if it has a time-invariant dynamical system representa

tion. W is defined to be time-varying if it is not time-invariant.

We conclude this chapter with a mild technical assumption which

will play a role in our theory of losslessness.

2.2.4 Assumption. Let A denote the class of all n-ports which have

at least one input-distinguishable dynamical system representation

(Def. 2.1.11), and let ^.. denote the class of all time-invariant n-ports
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which have at least one input-distinguishable time-invariant dynamical

system representation. Our theory of n-ports will be restricted to

those n-ports which belong to A; moreover, our theory of time-invariant

n-ports will be restricted to those n-ports which belong to A...

III. Technical Lemmas

3.1 The Main Result

The purpose of this subsection is to present a new analytical result

for finite-order time-invariant dynamical systems. As will be demon

strated in the following two sections, this result has applications in

the studies of both passivity and losslessness.

3.1.1 Notation. Sm * (xeRm: Qxil =l}. P(U) will denote the

collection of all subsets of U CRn.

3.1.2 Definitions. For a finite-order time-invariant dynamical

system (Def. 2.1.17, Remark 2.1.19), define .0: Zx sm — P(U) by

U(x,a) ± {ueil: f(x,u)-allf(x,u)ll=0}

n {uSU: Ef(x,u)(l >0} (3.1.2.1)

and define h: Zx Sm -* Re by

h(x'a) " inf{Uflx!uiil: uG°(x'a)} • (3.1.2.2)
We follow the convention that the infimum over the empty set is «;

thus, h(x0,a0) =« if and only if 0(xg,ao) =0 (0 denotes the
empty set).

3.1.3 Definitions. Let Yg* ^ —•• E De a function which is

absolutely continuous on [0,TQ] for some TQ € R . Then
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Y-j: [°»T-j] —*• Z is defined to be a re-parametrization of YgMltO.Tg]

if Y^t) = Y0(a(t)) for all t e [0,^], where a: [0,^] — [0,TQ]

is an absolutely continuous function such that a(0) = 0, a(T,) = TQ,

and o(t) > 0 for a.a. t e [0,^]. The set of all re-parametrizations

of Y0(-)|[0,Tg] is denoted <R[y0(O |[0,TQ]]. Moreover, if Yg(-) is
a state trajectory of a finite-order time-invariant dynamical system S,

then any re-parametrization of y0(-)|[0,TQ] is called an admissible
curve of S.

3.1.4 Remarks. It follows that y-|(#) = (Yq°ct)(«) is absolutely

continuous, since y0(O and a(«) are absolutely continuous and

a(-) is increasing [15, p. 95, Theorem 1.4.42]. Also, note that every

state trajectory of S is an admissible curve of S, but the converse

is not true in general.

3.1.5 Integration Conventions. We are using Lebesgue integrals.

Let g: K—• Re be a function. Define g+: R —>- Re and g": R-* Re

by g+(t) ^ max{0,g(t)}, g"(t) =max{0,-g(t)}. Let ECR be a
(Lebesgue) measurable set. Then the function g(-) is defined to be

integrable in the extended sense over E if both of the following

conditions are satisfied: (a) g(.) is (Lebesgue) measurable, and

(b) either fg+(t)dt <« or [g"(t)dt <«. This being the case,
f JE JE
g(t)dt is assigned the value

JE

fg(t)dt ^[g+(t)dt -fg"(t)dt . (3.1.5.1)
JE JE >l

rT0
Now consider an integral of the form L(Yg(t),Yg(t))dt, where

Y0: ^,T0^ ~*" l 1S absolutely continuous. This integral is defined
rTn

t0 be parametrization independent provided that L(Yn(t),Yn(t)]dt
fTl , • "'" " J°=J lCy«j (t),Y«j (t)Jdt for every re-parametrization Y"j(O|[0,T,] of

Y0(-)|[0,Tg]. .24-



3.1.6 Lemma (Change of Variables). Let k: [tq,t,] —»• F be

absolutely continuous, £(t) >0 for a.a. te [tq,t,], and let

a(') € L ([k(Tg),k(T,)]—*• F); then the following statements are true:

(i) k(-) is a bijection of [tq,^] onto [k(Tg),k(x^)],

(ii) k (•) is absolutely continuous,

(iii) the function t—• a(k(T))fc(-c) belongs to L ([tq,t^] -*• F),
rk(x,) rT,

a(t)dt = ^(MOM-Odx.and (iv)
kUn)0' T0

The proof is given by Warga [15, p. 98, Theorem 1.4.43].

Remark #1. Instead of assuming that a(») 6L ([ktighk^ )] -*• F),

we can assume that the function t —*• a(k(x))k(x) belongs to

L^tTg,^] —F); it then follows that a(-) € L1 ([k(Tg),k(x1 )] —F).
To see this, let a(-) =k'V) (hence, a(t) = l/k(a(t)) >0 for

a.a. ts [k(Tg),k(T,)]). We know from statement (ii) that a(«) is

absolutely continuous; thus, we can apply statement (iii) with the

function t —♦■ a(k(x))^(T) taking the role of a(-) and a(0 taking

the role of k(-)» and we.conclude that t —»• a(k(a(t)))£(a(t))a(t)

=a(t) is an element of L1 ([k(x0),k(T1)] -* F).

Remark #2. Consider Def. 3.1.3 again. Lemma 3.1.6 shows that

Yi(')|[0,T,] is a re-parametrization of Yg(*)|[0,Tg] if and only if

Yg(')|[0,TQ] is a re-parametrization of y^(')ICO.T^].

3.1.7 Lemma. Let S denote a finite-order time-invariant

dynamical system with U a closed subset of Rn and U= L~ (R-»-U).

(a) Let an admissible curve y(0 of S and a real number

T > 0 be such that yU) t 0 for a.a. t € [0,T]. Then the integral

I hY(t),iiT^(|||llY(t)lldt exists in the extended sense, its value is
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either finite or -<», and it is parametrization independent.

(b) Let y0(#)|[0,Tq] be an admissible curve of S with

Yg(t) f 0 for a.a. te [0,TQ]. Then

fT
I

0

M'04Yo(t),^w)a;°tt)lldt (3,1'7*1)
where the expression on the left-hand side of (3.1.7.1) denotes the

fT
infimum of I p(x(t),u(t))dt over all input-trajectory pairs

Jo
{u(*hx(»)}|[0\T] of S, where T >_ 0 is not fixed, subject to the

restriction that x(•) |[0,T] is a re-parametrization of Yq(')|[0,Tg].

The proof is given in the Appendix.

3.2 Special Case: First-Order Dynamical Systems

In this subsection we consider first-order time-invariant dynamical

systems, i.e., those for which Z c F.

3.2.1 Definitions. Let Z C F, with the topology of Z the

relative topology that it inherits from F. A function <f>: Z —*- F

is defined to be upper semicontinuous if the set (x€Z: <J>(x)<a} is

open (in the topology of Z) for all a G F [16,pp. 38-39]. Likewise,

<j>(«) is defined to be lower semicontinuous if the set {x^Z: <f>(x)>a}

is open for all a £ F. Note that <{>(•) is upper semicontinuous if

and only if -<J>(°) is lower semicontinuous; also, $(•) is continuous

if and only if it is both upper and lower semicontinuous.

3.2.2 Lemma. The infimum of any collection of upper semicon

tinuous functions is upper semicontinuous. The supremum of any

collection of lower semicontinuous functions is lower semicontinuous.

The proof is given in the Appendix.
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3.2.3 Lenrna. Let <j>: Z+ Fe and let K be a compact subset of

Z. If #(•) is upper semicontinuous and <f>(x) f » for all xe K,

then $(•) is bounded above on K. If $(.) is lower semicontinuous

and <j>(x) f -« for all x e K, then ${•) is bounded below on K.

The proof is given in the Appendix.

3.2.4 Definitions. Recall the mappings 0: ZxSm-*P(U) and
m e

h: ZxS -*» F in Def. 3.1.2. Consider a"first-order time-invariant

dynamical system (i.e., m = 1). Define, for each xe z,

U* ± U(x,l) = (u€U: f(x,u)>0} (3.2.4.1)

U3 = 0(x,-l) = luetj: f(x,u)<0} (3.2.4.2)
x

B(x)*h(x.l)- W{f{SjHJ}" (3.2.4.3)
X

h(x)*-h(x,-l)- sup{#!$} . (3.2.4.4)
X

3.2.5 Lemma. For a first-order time-invariant dynamical system,

h(«) is upper semicontinuous and h(-) is lower semicontinuous.

The proof is given in the Appendix.

The functions h(«) and h(«) are continuous in the special case

when h(x) = h(x) for all xe z (this follows from Lemma 3.2.5 and

the comments in Def. 3.2.1). In general, however, neither fi(0 nor

h(-) will be continuous. The following example shows that these

functions can be quite bizarre.

3.2.6 Example. 'Let (r }°°=1 be any enumeration of the rational

numbers. Consider the finite-order dynamical system with the state

equation
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i-u3

and the power input function

p(x,u) =u3sgn(u) J -rexp(-u (x-r )),
n=l 2n n

where sgn(u) * u/|u| for u f 0, sgn(0) ± 0. Here Z = U = F and

U=L70C(R "***)• It: is straightforward to verify that

0 , if x is irrational
h(x) =J 1

I ,n •
2

r

h(x) - «

if x = rn

0 , if x is irrational

1
n • 1f x = rn

2

Note that h(«) is upper semicontinuous and h(«) is lower semicon

tinuous (in agreement with Lemma 3.2.5); however, both fi(«) and

h(») are discontinuous at each rational number.

3.2.7 Notation. For any dynamical system, let R(xg) denote the

set of states reachable from xQ e z (Def. 2.1.7). For a first-order

dynamical system, let R+(xQ) -(x€R(Xg): x>xQ) and R"(xQ) -
(x€R(xg): x<Xg). For any subset A of a Euclidean space, let

int A denote the set of interior points of A.

3.2.8 Lemma. Let S denote a first-order time-invariant dynami

cal system with U aclosed subset of Fn and U=l-70C(R ** u)• Let

Xg be any element of Z.

(a) If x, e int R+(xQ), then there exists at least one state
trajectory x(«)|[0,T] from xQ to x1 with x(t) >0 for a.a.

rxi
t 6 [0,T]; moreover, R(x)dx exists in the extended sense, its

Jxnk0

value is either finite or -«, and

-28-



nf (f p(x(t),u(t))dt] =
Vxl ° ' 'xo

x>0

T>0

The expression on the left-hand side of (3.2.8.1) denotes that the

infimum is taken over all input-trajectory pairs {u(-),x(-)>|[0,T] of

S trom Xg to x,, where T >0 is not fixed, subject to the

restriction that x(t) > 0 fur a.a. t e [0,T].

(b) If x« e int R"(xg), then there exists at least one state

trajectory x(-)|[0,T] from xQ to x2 with x(t) <0 for a.a.
'X«

t ^ [0,T]; moreover, h(x)dx exists in the extended sense, its
ix0 '

value is either finite or -«, and

xi
\ = h

,T > rX2

h(x)dx . (3.2.8.1)

nf i p(x(t),u(t))dtV = h(x)dx . (3.2.8.2)
Xg-X2

x<0

T>0

The expression on the left-hand side of (3.2.8.2) denotes that the

infimum is taken over all input-trajectory pairs {u(«),x(-)}|[0\T] of

S from xQ to x2, where T>0 is not fixed, subject to the

restriction that x(t) < 0 for a.a. t € [0,T].

The proof is given in the Appendix.

Remark. The integral on the right-hand side of (3.2.8.2) may be
fx2slightly confusing. Since x2 <xQ, J^Wdx will be negative if

h(«) is positive on the interval [x2,xQ].
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IV. Passivity

4.1 General Theory

The basic theory of passivity for nonlinear time-invariant n-ports

has been exhaustively discussed in [4]. In this subsection we briefly

review the theory, and make straightforward generalizations to time-

varying n-ports.

4.1.1 Definition. Let S denote a dynamical system (Def. 2.1.1).

The available energy for S, EA :Zx R ->.R+u {«}, is defined by

EA(x0,t0) S -inf. f p(x(t),u(t),t)dtj
xo^ Ut 1

sup J- j p(x(t),u(t),t)dt I (4.1.1.1)
ti>t0 to

where the notation inf (resp., sup ) denotes that the infimum
xo* x0-
*i>t0 tx>t0

(resp., supremum) is taken over all tx>t0 and all input-trajectory

pairs {u(-).x(-)}|[t0,-) of S with x(t0) =x0.

For a time-invariant dynamical system, the available energy E.(x ,t )

is independent of the time variable t0 and will usually be written

EA(x0) instead.

4.1.2 Definition. A dynamical system is passive if E,(x,t) <°°

for all (x,t) € ZxR, where EA(- , •) is the available energy for S.

An n-port is passive if it has a passive dynamical system representation.

Finally, a dynamical system or an n-port is active if it is not passive.

Acomplete justification of this definition, and a comparison of
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it with other passivity definitions which have appeared in the literature,

is given in [4],

Note that the infimum which arises in the definition of the available

energy (Def. 4.1.1) can be viewed as the "optimal value" function of an

optimal control problem; however, the type of optimal control problem

which arises in the theory of passivity for dynamical systems is not

conventional. In virtually all of optimal control theory, it is assumed

a priori that the optimal value function is finite-valued. This is

usually guaranteed by requiring the "cost functional integrand," which

in our case is the power input function p(•,-,•)> to have some special

property; e.g., one might deal only with cost functional integrands which

are nonnegative. In the theory of passivity for dynamical systems, we

cannot base our entire theory on the assumption that E«(- , •) is finite-

valued; indeed, the question of whether E-(- , •) is finite-valued is

precisely the question of whether the given dynamical system is passive.

Note that the passivity of a dynamical system S is equivalent to

the existence of a (finite-valued) function E:Zx]R + k such that

rtiI p(x(t),u(t),t)dt + E(x(t„),t0) > 0 (4.1.2.1)

for all Ctx,t0) e R+ and all input-trajectory pairs (u(«),x(«))|[t0,»)

of S. To see this, suppose first that E.(x,t) <® for all (x,t) 6 ZxR.

Then (4.1.2.1) can be satisfied by choosing E( • , • ) = E*( • , • ). Now

suppose that (4.1.2.1) is satisfied by a finite-valued function E( • , • ).

Then EA(x,t) < E(x,t) <« for all (x,t)ezxR.

4.1.3 Lemma. An n-port Wis passive if and only if alj_ dynamical

system representations for W are passive.

The proof is given in the Appendix.
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Lemma 4.1.3 shows that Def. 4.1.2 is truly consistent in the sense

that it is based solely on the behavior of M as viewed at its ports — it

does not depend upon which dynamical system one chooses to represen-t H.

Not all definitions of passivity have this desirable property (see [4]

for examples).

Before proceeding to the next lemma, we shall briefly discuss some

of our notation and terminology. Let A be a subset of Rp, with the

topology of A the relative topology it inherits from Rp. A function

w: A -*» Rq is defined to be C° if it is continuous. Now suppose that

A is an open subset of Fp, and let kbe a positive integer. Then w(-) is

defined to be C if it has continuous partial derivatives of all orders

up to and including k; moreover, w(-) is defined to be C if it is C

for every positive integer k. Now suppose A c Rp x Rr. If we make the

natural identification of FpxRr with Rp+r, then there should be no

confusion as to what is meant by statements such as "A is an open subset

of FpxrV or "w:A + Fq is Ck," etc.

The following is an obvious sufficient passivity condition for

finite-order dynamical systems.

4.1.4 Lemma (Sufficient Condition for Passivity). Let S denote a

finite-order dynamical system (Def. 2.1.17). Let (Suff. 4.1.4) denote

the following condition:

(Suff. 4.1.4) There exists an open subset G of Rm x R with

Zx R c G and a (nonnegative) C1 function i|i:G -*• R such that

p(x,u,t) > <Vx*(x,t), f(x,u,t)> +9^,<:) (4.1.4.1)
for all (x,u,t) e z xu x r.

If S satisfies (Suff. 4.1.4), then S is passive.
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The proof is given in the Appendix. The first inequality in (4.1.4.3)

of that proof motivates the following definition.

4.1.5 Definition. Let S denote a dynamical system. A function

+

Er : I x R -*• R is an internal energy function for S if for all input-

trajectory pairs {u(-)ix(-)>|[t0,t1] of S,

p(x(t),u(t),t)dt > EjCxCtJ.t^-EjCxUJ.tJ . (4.1.5.1)
to

If S is time-invariant and has an internal energy function Ej(•,•)»

we will always assume that Ej(x,t) is independent of the time variable t,

and we will usually write the function value as Ej(x) instead.

4.1.6 Lemma. Let S denote a dynamical system. Then S is passive

if and only if it has an internal energy function. Moreover, if S has

an internal energy function EJ- ,•)» then 0< EA(- ,•) < Ej(- ,♦) and

the available energy EA(* ,•) is itself an internal energy function for S.

The proof is given in the Appendix.

4.1.7 Definition. Let S denote a dynamical system. For. each

x* € z, define the required energy (from x*), ER *:t *R -»• R , by

E^tx^tJ » Inf if 1p(x(t),u(t),t)dt J (4.1.7.1)
t <tl °

where the notation inf denotes that the infimum is taken over all
x*-»-xl
t0<t1

input-trajectory pairs (u(-),x(•)}|[tQ,t ] of S from x* to xlf where

t0< tx is not fixed.

Note that ER *(x,t) <~ for all (x,t) e ZxR if and only if S

is reachable from x* (Def. 2.1.7).
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In the time-invariant case, ER *(x,t) is independent of the time

variable t and is usually written ER *(x) instead.

4.1.8 Lemma. Let S denote a passive dynamical system, and

suppose that there exists a state x*€ z from which S is reachable

(Def. 2.1.7).

(a) Let E,(- , •) be any internal energy function for S, and define

• Ej :ZxR f R+ u {»} by

ET(x,t) ft sup Er(x,x) . (4.1.8.1)
1 x<t L

Then,

EjCx.t) - Ej(x*,t) < ERx*(x,t) (4.1.8.2)

for all (x,t) 6 Zx R,

Cb) Define E* : Z •* F+u {«} by

Ejj(x) S sup EA(x,t) (4.1.8.3)
a teR A

and define A * : Zx R -*• Re by

Ax*(x,t) ft ERx*(x,t) +E*(x*) . (4.1.8.4)

If EA(x*) < °°, then A *(• ,•) is an internal energy function for S.

The proof is given in the Appendix.

The following corollary, which applies in the special case when S

is time-invariant, is an immediate consequence of Lemma 4.1.8.

4.1.9 Corollary. Let S denote a passive, time-invariant dynamical

system. Suppose that there exists a state x* e z from which S is

reachable.
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(a) Let Ej(-) be any internal energy function for S. Then,

Ej(x) - Er(x*) < ERx*(x) • (4.1.9.1)

(b) Define A* : Z •* R+ by

Ax*(x) ft ERx*(x) +EA(x*) . (4.1.9.2)

Then A *(•) is an internal energy function for S.

4.1.10 Definitions. Let A denote a (not necessarily open) subset

of R , and let w: A -»• Fq. If A c Bc Rp and if w: B -*• Rq is a

function which satisfies w(x)=w(x) for all xeA, then w( •) (along with

its domain B) is defined to be an Extension of w(•) (to the domain B).

Let 1 < k < °°. The function w(0 is defined to be differentiate

k o(resp., C ) if there exists an open subset G of r with AC G and a
i,

different!"able (resp., C ) extension of w(*) to the domain G; this

concept is sometimes expressed by saying that, "w(-) can be extended to

a differentiate (resp., C ) function with domain G." Note that such an

extension, if it exists, if not necessarily unique; in fact, if w^-)

and w2(-) are differentiate extensions of w: A-*Rq, then it is not

necessarily true that Dwjx) = Dw2(x) for x^A.

4.1.11 Lemma. Let S denote a (necessarily passive) finite-order

dynamical system .with a differentiate internal energy function Er(- , •)•

Let \\>: G-»-R denote a differentiate extension of Er(* , •) (thus G is an

open subset of RmxR, ZxRc G, ip(- , •) is differentiate, and

ij>(x,t) = Ej(x,t) for all (x,t) e ZxR). Then

p(x,u,t) > <Vx»(x,t), f(x,u,t,)> +^^.'^ (4.1.11.1)

for all (x,u,t) e z x u x R.

The proof is given in the Appendix.
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Remark. If $ :G -» R is any other differentiable extension of

ET(- ,•). then the proof of Lemma 4.1.11 in the Appendix shows that the quantity

<Vx$(x,t), f(x,u,t)> +^(X't) equals the quantity <V^x.t) ,f(x,u,t)) +
d'M*'11) . This follows because for any (x0,u0,t0) e ZxuxR, (4.1.11.2)

1shows that both quantities are equal to lim — (ET(x(t0+At),t0+At) -
At-*-0+ at

Ej(x(t0),tQ)) at (x,u,t) =(x0,u0,t0).

Note that Lemma 4.1.11 is not the converse of Lemma 4.1.4. Lemma

4.1.11 merely gives a necessary condition that a differentiable extension

of an internal energy function must satisfy. We do not know, how to

identify the class of passive finite-order dynamical systems which

possess a differentiable internal energy function (.cf. Subsection 4.2).

4.2 The Smoothness Conjecture and a Counterexample

In this subsection we will show that a common conjecture concerning

finite-order dynamical systems is false. For simplicity, we will assume

that the dynamical systems under consideration are time-invariant.

Recall the definition of controllability, Def. 2.1.8. The follow

ing additional controllability concepts will also be of interest (cf.

[6], [17]).

4.2.1 Definition (Local Controllability) Let S denote a finite-

order time-invariant dynamical system. S is locally controllable if the

following condition is satisfied: for each xQ <= 2, there exists

60(xQ) >0 such that if 0<6< <50(xQ) and if "x-j-XqH <6, then there
exists an input-trajectory pair (u(-) ,x(- )}| [0,^] of S from xQ to x-j

with Bx(t)-xQB < <5 for all t e [0,^].
4.2.2 Definition (Local Continuous Controllability) Let S

denote a finite-order time-invariant dynamical system. S has the
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property of local continuous controllability if the following condition

is satisfied: for each xQ € z and each e > 0, there exists 6Q(xQ,e) >0

such that if 0< 6< 6Q(xQ,e) and if Hx,-xJ < <5, then there exists an

input-trajectory pair {u(- ),x(*)}|[0,t,] of S from xQ to x, with

8x(t)-xJ <6for all te [0,t,] and |/ 1p(x(t),u(t))dt| <e.
u l 0

Thus local continuous controllability is a special case of local

controllability.

4.2.3 Definition Let S denote a finite-order time-invariant

dynamical system. Suppose that f(»,0 and p(«,-) are C functions

(Def. 4.1.10) for some 1 < k < °°. Then S is called a C finite-order

time-invariant dynamical system.

On more than one occasion the first author has come across the following

conjecture (or some minor variation of it) in discussions with optimal

control theorists. Also, the truth of the following conjecture seems

to have been assumed in references [6] and [7], although it was not

explicitly stated in either of those two references.

4.2.4 The Smoothness Conjecture Let S denote a C°° finite-order

time-invariant dynamical system with the properties of controllability

and local continuous controllability. Suppose further that 2 =

Rm, U=Fn, and U=L™0(.(F ->-Rn) (for some unspecified integers m>1
and n > 1). Under these conditions, if S is passive, then S has at

least one C internal energy function.

If the Smoothness Conjecture were true, then Lemma 4.1.11 would

show that (Suff. 4.1.4) is a necessary (as well as sufficient) passivity

condition for the class of C°° dynamical systems described in 4.2.4.

This would be a highly desirable result, since the dynamical systems

described in 4.2.4 form a broad class of interesting dynamical systems,
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and the question of passivity for such dynamical systems would then

reduce to the question of whether f(*,-) and p(-,-) satisfy the alge

braic condition in (Suff. 4.1.4).

Let S denote a passive, controllable, time-invariant dynamical

system. Lemma 4.1.6 shows that EA(-) is always an internal energy

function for S, and Corollary 4.1.9 shows that for any x* e 2, the

function x+ Ax*(x) = ERx*(x) + EA(x*) is also internal energy function

for S. Moreover, EA(-) and ERx*(*) are bounds on the set of all

possible internal energy functions in the following sense: If ET(-)

is any internal energy function for S, then

EA(x) <Ej(x) <ERx*(x) + Ej(x*) (4.2.4.1)

for all x€ 2. Note that -EA(-) and ERx*(-) can be viewed as "optimum

value" functions for an optimal control problem (cf. Defs. 4.1.1 and

4.1.7); hence, it is not surprising that optimal control theorists

would have something to say about the properties of these functions.

The following variation of the Smoothness Conjecture is the version

that the first author has heard most often in his discussions with optimal

control theorists.

4.2.5 The Smoothness Conjecture—Variation A Let S denote a C

finite-order time-invariant dynamical system with the properties of

controllability and local continuous controllability. Suppose further

that 2=Fm, U=Fn, and U=L~QC(F -Rn) (for some unspecified
integers m>l and n > 1). Under these conditions, if S is passive,

then the available energy and the required energy (from any state

x* € 2) are C functions.

We shall introduce one more version of the Smoothness Conjecture,

as follows.

-38-



4.2.6 The Smoothness Conjecture—Variation B Let S denote a

C°° finite-order time-invariant dynamical system with the properties

of controllability and local continuous controllability. Suppose

further that 2=Rm, U=Fn, and U=L~0C(F -r") (for some unspecified
integers m> 1 and n> 1). Under these conditions, if S is passive,

then S has at least one differentiable internal energy function.

The only difference between the Smoothness Conjecture 4.2.4 and

Variation B in 4.2.6 is the following: Variation B asserts merely that

S has a differentiable internal energy function, as opposed to a

continuously differentiable (C ) internal energy function. Thus

Variation B is weaker than (i.e., is implied by) the Smoothness Con

jecture 4.2.4; moreover, it is clear that Variation B is weaker than

Variation A as well.

We will show that the Smoothness Conjecture and its two variations

are false. This will be done by producing a counterexample to Variation

B.

4.2.7 Proposition The Smoothness Conjecture 4.2.4, its Variation

A in 4.2.5, and its Variation B in 4.2.6, are all false.

Proof The proposition is proved by producing a counterexample

to Variation B. Let f:R -*• F be defined by

exp ( o) , if u > 1,
\(u-1)2/

f(u) = ( ^ ^, (4.2.7.1)t{u} ) 0, if 0 <u < 1,

-f(-u), if u < 0.

It is well-known [18, p. 7, problem 18] (and it can be shown in a

straightforward manner) that f(-) is C°°. Define a:F xR -R by
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a(x,u) =

/ 1 \ /exp(ux)-1\ / exp(ux) \ if u >0,

-2exp(-ux| .f u <0> (4.2.7.2)
l+exp(-ux)

Clearly, a(-,-) is C°° in {(x,u) €R xR : u f 0); but it is apparently"

not differentiable along the line {(x,u) eR xR : u = Oh Define

p : R x R + R by

p(x,u) = a(x,u)f(u). (4.2.7.3)

Then p(-,-) is C°°, because f(u) is zero for u e [-1,1].

Let S denote a first-order time-invariant dynamical system with

the state equation

x = f(u) (4.2.7.4)

where f(-) is given in (4.2.7.1). Here 2=U=F and U=L*0C(F -*r).

The power input function p(»,-) for S is given in (4.2.7.3). Thus S

is a C°° finite-order time-invariant dynamical system.

If x, > xQ e 2, then any constant input uQ > 1 will drive the

state of S in a strictly monotone manner from xQ to x, over some finite

time interval [tQ,t,]. The energy consumed by the input-trajectory

pair {uQ.xf'HICtQ,^] of S from xQ to x-j is

t, t,

/'p(x(t),uQ)dt =/'a(x(t),u0)f(uQ)dt
t0 l0

=/] a(x(t),uQ)x(t)dt = /Xl a(x,uQ)dx . (4.2.7.5)
to xo

Note that the integral on the right-hand side of (4.2.7.5) approaches

zero as x, -»• xQ. Similar comments hold if x^ < xQ, the only difference
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being that we must choose a constant input value uQ < -1 to drive the

state of S from xQ to x,. This shows that S has the properties of

controllability and local continuous controllability.

Before proceeding with the proof, we shall review the following

facts from analysis. Let 8 : R -*• F be a function which is discontinuous

at a point xQ e R. Then B(*) is said to have a discontinuity of the

first kind at xn if 8(xn ) = lim B(xn + Ax) and 0(x ~) = lim 0(xn-Ax)
U U Ax-0+ U U Ax-0+ U

both exist. Otherwise, the discontinuity is said to be of the second

kind [19, p. 81]. Let ip : R -*• F be a function which is differentiable

at every point x e R, and let i|/' :R -»• R denote the derivative of ij>(* )•

Then t|/'(-) is not necessarily continuous, but t|/'(-) cannot have any

discontinuities of the first kind P9,p. 93, Corollary to Theorem 5.12].

It will be shown shortly that S is passive; first, however, it

will be shown that S does not have any differentiable internal energy

functions. In particular, it will be shown that S cannot have an

internal energy function which is differentiable at x = 0.

From Lemma 4.1.11, we know that a differentiable internal energy

function ij>(-)> if it exists, must satisfy ^'(x)f(u)< a(x,u)f(u) for

all (x,u) e R x R. Hence, let us investigate the question of whether

there exists a function 8 : F -»• F which satisfies

B(x)f(u) <o(x,u)f(u) (4.2.7.6)

for all (x,u) e F x R. Inequality (4.2.7.6) is equivalent to the

following two inequalities taken together:

8(x) <a(x,u) for all (x,u) €R x (i,«.) , (4.2.7.7a)

B(x)>a(x,u) for all (x,u) € R x (—,-i) . (4.2.7.7b)

Recall the functions h(-) and h(-) in Def. 3.2.4. In this case, these
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functions are given by

h(x) = inf o(x,u) (4.2.7.8a)
u>l

h(x) = sup o(x,u). (4.2.7.8b)
u<-l

It is easy to verify from (4.2.7.8) that

•^2 »if x>0,
h(x) =11+X (4.2.7.9a)

0, if x <0 .

h(x) = { (4.2.7.9b)
0 , if x < 0 .

Note that

h.(x) < h(x) (4.2.7.10)

for all x€R. From (4.2.7.7), (4.2.7.8), and (4.2.7.10), it follows

that there exists a function B(-) which satisfies (4.2.7.6); moreover,

B(-) satisfies (4.2.7.6) if and only if

h(x) <8(x) <h(x) (4.2.7.11)

for all x e R.

From (4.2.7.9) and (4.2.7.11), it follows that B(0+) =-1 and

8(0") = 0; thus, any function B(') which satisfies (4.2.7.6) must have

a discontinuity of the first kind at x = 0. It follows that B(') cannot

be the derivative of a differentiable function ^.: F -*F.

To show that S is passive, define Tf :F +F by

-Arctan x, if x > 0 ,

H(x)S /oh(z)d2='j (4.2.7.12)
0, if x < 0 .
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Let (u(-)» x(-)}|[t0,t,] be any input-trajectory pair of S. Note that

h(x(t))x(t) =-^H(x(t)) for a.a.t e[t^]. (4.2.7.13)

Since "h(-) is bounded on F and x(-) is absolutely continuous on [tg,^],

it follows that t+ H"(x(t)) is absolutely continuous on [t0,t|][15, pp.

95-96, Theorem 1.4.42]. Hence

L h(x(t))x(t)dt = / 4-[ff(x(t))]dt
t0 Z0 az

=Htxft,)) -H(x(tQ)) . (4.2.7.14)

Since h(-) satisfies (4.2.7.6), we have

L p(x(t),u(t))dt>L h(x(t))x(t)dt
t0 0

•H(x(t1)) - H(x(tQ))

>-\ -H(x(tQ)) . (4.2.7.15)

It follows from (4.2.7.15) that EA(x) <|+ H(x) <• for all xeF,

i.e., S is passive. Q.E.D.

4.3 A Less Restrictive Sufficient Condition

In this subsection we present a sufficient passivity condition for

finite-order dynamical systems which is significantly less restrictive

than the condition (Suff. 4.1.4) in Lemma 4.1.4. The results presented

here follow along the lines of Stalford's work in optimal control

theory [8].

For simplicity, the results will be stated for the time-invariant

case. They can easily be extended to the time-varying case by using
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the procedure of letting one state variable be the time (see Def.

2.1.15 and Remarks 2.1.16).

4.3.1 Definition Let W be open in Fm. A function F : W -• Fp is

defined to be locally Lipschitzian if for each xQ e W, there exists a

neighborhood of xQ, N(xQ) c w, and a constant K(xQ) > 0 such that

IIF(x') - F(x") II <K(xQ) II x'-xll (4.3.1.1)

for all x', x" e N(xQ).

Note: aneighborhood of xQ 6Fm is aset NcFm with xQ 6 int N.
4.3.2 Definition Let A c Fm. A function F : A - Fp is defined

to be locally Lipschitzian (resp., locally Lipschitzian and differenti

able) if there exists an open set W of Fm with Ac w such that F(-) can

be extended to a locally Lipschitzian (resp., locally Lipschitzian

and differentiable) function with domain W.

4.3.3 Definition (Decomposition of a State Space) A decomposi

tion D of a set 2cRm (which could be the state space of a finite-order

dynamical system) is defined to be a countable collection of subsets of

2 whose union is 2. This is written D = (2. : j 6 J}, where J is a
j

countable index set and each 2. is called a member of the decomposition D.

Note: it is not required that the members of D be pairwise disjoint.

4.3.4 Definition. Let Zc Rm, and let D = {Z.:jej} be a
j

decomposition of 2. A function F:I •+ Fp is defined to be locally

Lipschitzian (resp., locally Lipschitzian and differentiable) with respect

to D if, for each j e J, F(-)|Z. (i.e., the restriction of F(.) to Z.)
j j

is locally Lipschitzian (resp., locally Lipschitzian and differentiable);

that is, there exists a collection {(W.,F.(«))*J e J) such that W. is an
J w J

open set in Rm containing Z., F. :W. -*• Rp is locally Lipschitzian
j j j

(resp., locally Lipschitzian and differentiable), and F.(x) * F(x) for all
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x€ Z.. The collection {(W.,F.(-)) : j e J> (which is not necessarily
j j j

unique) is said to be associated with F(Q and D.

4.3.5 Remarks on Integration Theory. Consider a function

a: [a,b] + F. If a(-) is C , then the Fundamental Theorem of Calculus

shows that
t

a(t)-a(a) = ( ^^-dx for all t€[a,b]. (4.3.5.1)
J dx
a

More generally, in the Lebesgue theory of integration (4.3.5.1) holds if

and only if a(-) is absolutely continuous [16,p.178].

Suppose that a(-) is continuous and differentiable almost everywhere

witn t +̂ j^- integrable on [a,b]. Under these rather restrictive
assumptions, the reader may be surprised to learn that (4.3.5.1) does not

hold in general. There exists a function a(-) defined on [0,1] (the

"Cantor ternary function") which is continuous, monotone increasing with

a(0)=0, a(l) =l, and differentiable almost everywhere with ^ ' =0

wherever it exists [16,p.179]. Such a function does not satisfy (4.3.5.1)

since /^"dt =0, yet a(l) -a(0) =1.
It is hoped that the preceding remarks on integration theory will

help the reader appreciate the significance of the following lemma.

4.3.6 The Monotonicity Lemma. Let Z c R , and let D= {Z. : j e J}

be a (countable) decomposition of Z. Let y : [tg.^] -* Z be absolutely

continuous and let h : [tg,^] - F be integrable. Let i> :Z -»• R be

continuous on Z and locally Lipschitzian with respect to D. Let

{(W.,iM-)) : J s J} be a collection which is associated with i|>(-) and D.

For je J, define T. Mts C^,^] :y(t) e Z.}. . Suppose that for each

j e J,
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h(t) - -£: (iMY)lt) >0 for a.a.t ST.. (4.3.6.1)

Define B: [tQ,^] *F by
t

6(t) it J h(t)dT - #(Y(t)) . (4.3.6.2)
*o

Then &(•) is monotone increasing (i.e., a<b implies B(a) < B(b)) and

absolutely continuous.

The proof, which is quite involved, is given by Stalford [8, pp.56-59]

The fact that -~ {ty.°y){t) exists for a.a.t s T. is also shown by

Stalford in [8, p.55]. Note that the lemma is stated in terms of a

particular collection {(W.,if).(')) : j € J> associated with i|/(«) and D.
J w

The hypothesis (4.3.6.1) will also be satisfied by every other collection

{(W.,$.(•)) :j€ J} associated with ♦(•) and D, because it is shown in
J w

[8, p.55] that ^ (*jOY)(t) =•— ($j°Y)(t) for a.a.t s Ty Finally, if
the continuous function HO is locally Lipschitzian and differentiable

with respect to D, then (4.3.6.1) becomes

h(t) - <V<MY(t)), Y(t)> > 0 for a.a.t ST.. (4.3.6.T)

We are now ready to present the main result of this subsection.

4.3.7 Theorem (Sufficient Condition for Passivity). Let S denote

a finite-order time-invariant dynamical system. Let (Suff. 4.3.7) denote

the following condition:

(Suff. 4.3.7) There exists a continuous (nonnegative) function

\\> : Z -»• IR+ along with a (countable) decomposition

D = (Z. : j € J} of Z such that !(>(•) is locally Lipschitzian

and differentiable with respect to D, and a collection

{(W.,*.(-)) : j e J} associated with *(•) and D such that
j j

for each j 6 J,
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p(.x,u) - <V^(x), f(x,u)> > 0 (4.3.7.1)

for all (x,u) e z. xU.
J

If S satisfies (Suff. 4.3.7), then S is passive.

Proof. Suppose that S satisfies (Suff. 4.3.7). Let

{u(-)»x(-)}|[t0,t1] be any input-trajectory pair of S. By Lemma 4.3.6,

A

*»

P(x(t),u(t))dt -♦(Ytt,)) > -<KY(tQ)) . (4.3.7.2)

Since ${•) is nonnegative, (4.3.7.2) shows that i|/( •) is an internal

energy function for S. By Lemma 4.1.6, S is passive. Q.E.D.

4.3.8 Remark. Note that the counterexample presented in the proof

of Proposition 4.2.7 satisfies (Suff. 4.3.7). We can choose *(x) =

j + fX h(x)dx and D={(-«,0],(0,»)}. This provides another proof
2 J0
of passivity for that counterexample.

4.4 Sufficient Conditions for Activity

In this subsection we apply the technical results from Section III

to obtain several sufficient conditions for activity (recall from Def.

4.1.2 that activity is the negation of passivity). All but the first

of these conditions are, to the authors1 knowledge, entirely new to

the literature. It should be noted that one can obtain necessary

conditions for passivity by negating these sufficient conditions for

activity.

The results of this subsection are stated for finite-order time-

invariant dynamical systems; however, they can be extended to finite-

order time-varying dynamical systems by using the procedure of letting

one state variable be the time (see Def. 2.1.15 and Remarks 2.1.16).
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4.4.1 Theorem (Sufficient Conditions for Activity). Let S denote

a finite-order time-invariant dynamical system with U a closed subset of

Fn and U= L? (F + U). Recall the function h : Zx Sm - Fe in Def. 3.1.2
loc

(a) If p(x0,u0) <0 at some point (x0,u0) € ZxU where f(x0,u0)

= 0, then S is active.

(b) Let y:[0,T] -»• Z be a state trajectory of S with Y(t)f*0

for a.a.t € [0,T]. If

[ h(^Y(t),—ii^l.\ ||Y(t)||dt =-» , (4.4.1.1)
J0 \ |Y(t)I /

then S is active.

(c) Let Y:[0,T] •*• Z be a state trajectory of S with yU) ^0

for a.a.t €[0,T]. If the mapping t - h(yU), /^ )
is equal to -» over some subset of [0,T] with positive

measure, then S is active.

(d) Let (x0,u0) be an element of Zxu such that f(x0,u0) f 0.
/ f(x,u.) \

If the mapping x -»- hfx, — ^—\ is equal to -» in some

neighborhood N(xQ)c Z of xQ,7 then S is active.

Proof, (a) Suppose that p(.xQ,uo) <0 at some point (x0,u0) 6 ZxU

where f(x0,u0) = 0. Then (u0,x0}|[0,T] is a valid input-

trajectory pair of S for all T > 0. The energy consumed

by this input-trajectory pair is

T

p(x0,ufl)dt = p(xfl,u0)T * — <as T^« . (4.4.1.2)

0

Therefore EA(xQ) =», i.e., S is active.

The phrase "some neighborhood N(x0) c Z of xQ" is intended to mean that
N(x0) is some set whose interior relative to the topology of Z
contains x0, where the topology of Z is the relative topology that
it inherits from Rm.
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(b) If the hypotheses in (b) are satisfied, then it follows

immediately from assertion (b) of Lemma 3.1.7 that

Ea(y(0)) =m> i.e., S is active.

(c) Let y:[0,T] •*- Z be astate trajectory of Swith yU) r0

for a.a.t e [0,T]. Recall from assertion (a) of Lemma 3.1.7

that the integral

h^Y(t), -!&-) HY(t)ll dt (4.4.1.3)
J0 \ Ilt(t)||/

exists in the extended sense, its value being either finite

or -». If the mapping t - h(yU), j|[^jf) is ec*ual t0 —
over some subset of [0,T] with positive measure, then the

integral (.4.4.1.3) is equal to -«. By assertion (b) of the

present theorem, S is active.

(d) Suppose that the hypotheses in (d) are satisfied. Let

Y (-)|[0,») denote the state trajectory of S with initial

state y (0) =x0 generated by the constant input u(t) = uQ.

Since f(x0,u0) f 0, there exists T>0 such that yQ(t) i 0

for all te [0,T]. Since N(x0) is a neighborhood of x0,

there exists a time tx6(0,T] such that Y0(t) e N(xq) for

all t <s [O.t^. Thus the mapping t *h^r0(t), v-f\t^ )
is equal to -« for all te [0,tj. By assertion (c) of the

present theorem, S is active. Q.E.D

The following example illustrates the use of Theorem 4.4.1.

4.4.2 Example. Let S denote a second-order time-invariant

dynamical system with Z=F2, U-R, and U=L7oc^F^ R'' The State
equation for S is
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x =

t-X2

- f(x,u) *•
"xl~

+

.X2-

and the power input function for S is

u cos(x1 +x2 +u)

u sin(xx +x2 +u)
(4.4.2.1)

p(x,u) = -(vx* +x2 +u) exp[-u2(x1 sin(xL +x2 +u) - x2 cos(x1 +x2 +• u)) ]

(4.4.2.2)

The problem of determining whether S is passive or active is nontrivial;

indeed, the authors are not aware of any results in the published literature

which could handle this problem. We are going to prove that S is active:

this will be done by applying Theorem 4.4.1.

It is well-known that the mapping z -*• [cos z, sin z]' from R to

2 2
R is periodic with period 2ir and maps F onto the unit circle in F .

2
Thus for each fixed [xlfx2]' e R , the equation

(Vx* +x* cosfx^Xj +u) -xj2 +(Vxj +Xj sin(xl +x2+u) -x2)2 =0
(4.4.2.3)

has a solution u = u* € R (which depends on xx and x2); moreover,

u = u* + 2k-rr is also a solution of (4.4.2.3) for every integer k.

Now let x0 = [x^Xj]' f [0,0]', and let ux be any positive

solution of (4.4.2.3). For each integer k > 2, define

u. £ ux + 2(k-l)ir . (4.4.2.4)

Since each u. is positive and a solution of (4.4.2.3), it follows that

f(Vuk>
f(x0,uk)l

for all k > 1; therefore
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^eu V ! (4.4.2.6)
k \ ° |f(x,,0)i/

for all k > 1 (cf. Def. 3.1.2). From the definition of h( • , • ), we have

/ f(x,.0) \ . P(V"k)
h x , I < i nf

\ ° llf(x0,0)ll/ k>l Hf(.x0,uk)l!

inf

k>l

f-(v^T7f,,; d.

(since uk
>/x2 +x2 + u. ) satisfies (4.4.2.3))

inf -(7x2 +x2 +uk) i = -« . C4.4.2.7)
k>l

2Since x0 was an arbitrary nonzero element of F , we have shown that

n/x f[x'°M =-« for all x6 F2\{0}. By assertion (d) of
\ a fCx,o)a/ —

Theorem 4.4.1, S is active.

4.5 First-Order Time-Invariant Dynamical Systems

In this subsection we will apply the technical results of Subsection 3.2

to obtain an easily verifiable necessary and sufficient passivity condition

for first-order time-invariant dynamical systems. This condition has

been previously published by the authors in [4]. We also present a new result

for first-order time-invariant dynamical systems which deals with the question

of the existence of an internal energy function with certain smoothness

properties.

For simplicity, the results in this subsection will deal only with a

first-order time-invariant dynamical system S which satisfies the

following assumption.
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4.5.1 Assumption. S is controllable, with Z an open interval in

R. (We allow the possibility of Z being an unbounded open interval;

indeed, Z could be F itself.)

The more general case is treated in [4].

Assumption 4.5.1 greatly simplifies the proofs of the following

results, and most interesting examples will satisfy it. The following

observations deal with the question of verifying Assumption 4.5.1.

4.5.2 Observations. Let S denote a first-order time-invariant

dynamical- system with state space Z.

(a) If S is controllable, then Z is an interval in F and for

each x e intZ , Ux ^ <J> and U~ f <J>.

(b) If Ux f <J> and \t § for all x e Z, then Z is open in R.

(c) If Z is an interval in F with U* r* <J> and \)'x ? <J> for all
x e Z, then Z is an open interval in R and S is controllable.

Observations (a) and (b) are trivial. The assertion that S is

controllable in observation (c) can be proved by considering two arbitrary

states, x^Xj € z, and constructing a piecewise constant control, as in

the proof of Lemma 3.2.8, which drives the dynamical system from x0 to

4.5.3 Theorem. Let S denote a first-order time-invariant

dynamical system with U a closed subset of Fn and (i = L, (F+ U);

moreover, suppose that S satisfies Assumption 4.5.1. Under these

conditions, S is passive if and only if all three of the following

conditions are satisfied:

(i) p(x,u) > 0 for every (x,u) e ZxU such that f(x,u) =0.

(ii) h(x) < h(x) for all x e z.
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(iii) There exists a (finite-valued) function W: Z -*• F such that,

for each x0 6 z,

/>
h(x)dx +W(x0) > 0 for every xxe (xQ,») n z ,

(4.5.3.1)

X2

h(x)dx +W(x0) > 0 for every x2€ (-«,x0) n z .
x0 (4.5.3.2)

The proof is given in the Appendix.

4.5.4 Corollary. Under the hypotheses of Theorem 4.5.3, S is

passive if and only if there exists a measurable function a : Z •+ R

which is bounded on every compact subset of Z and a (finite-valued)

function E : Z -*• R such that both of the following conditions are

satisfied:

(i) p(x,u) > a(x)f(x,u) for all (x,u)eZxU.

r1(ii) J a(x)dx + E(x0) > 0 for all Xg.Xj e Z.
*o

The proof is given in the Appendix.

4.5.5 Corollary. Under the hypotheses of Theorem 4.5.3, S is

passive if and only if it has an internal energy function Ej(«) Which

is differentiable almost everywhere in Z and for which the mapping

x* dEj(x)/dx belongs to L*0C(E * R).

The proof is given in the Appendix.

Remark. The counterexample presented in the proof of Proposition

4.2.7 shows that we cannot strengthen the conclusion of Corollary 4.5.5 to

say that Ej(-) is differentiable everywhere. That counterexample is passive and

satisfies the hypotheses of Theorem 4.5.3, yet every internal energy

function for it fails to be differentiable at x = 0.
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V. Losslessness

5.1 General Theory

Reference [5] gives an exhaustive treatment of the general theory

of losslessness for time-invariant n-ports, but there was no obvious

extension of that theory to time-varying n-ports; indeed, it has been

suggested that the problem of devising a consistent theory of loss

lessness which applies to both time-invariant and time-varying n-ports
o

is quite formidable. These authors do not share that view. It will

be shown in this subsection that the general theory of losslessness for

time-invariant n-ports presented in [5] can be extended in a straight

forward manner to time-varying n-ports. The basic concepts required

for this extension are the canonical time-invariant dynamical system

(Def. 2.1.15) and the "canonical observable dynamical system," to be

defined shortly.

We begin by discussing losslessness in the time-invariant case.

5.1.1 Definition. Let S denote a time-invariant dynamical sys

tem. Then S is lossless if the following condition is satisfied for

any two input-trajectory pairs of S, (u (•)» x (•))! [0, T ] and
da a

(ub(-), xb(.)}|[0, Tb] , for which xa(0) =xb(0) and xa(Ta) =xb(Tb):

Ta P(x.(t), ua(t))dt =
q <a a

T
b P(xb(t), ub(t))dt. (5.1.1.1)

S is lossy if it is not lossless.

** Suggested by Professor John Wyatt, senior author of reference [5],
in a private conversation.
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Equivalently, the time-invariant dynamical system S is lossless

if and only if the following condition is satisfied: if xQ and x1 are

any two states of S, then all input-trajectory pairs of S from xQ to

X-, (if there are any) consume the same energy (Def. 2.1.6).

5.1.2 Observation. Every time-invariant dynamical system

S = {U,U,Z,<j>(-,-,-,-),Y,g(-,-),oo(-,0} (Def. 2.1.1, Def. 2.1.14) is

equivalent (Def. 2.1.10) to a lossless time-invariant dynamical system

S' = {U,U, Z'.f (•,-,;,O.Y.g'KO.^-,-)}- To see this, let Z' -

ix IR and define <j>': IR^ x z* x (i •+ I* by

<j>' (t,t0,(x0,eQ),u(-))
a ft
- (<t>(t,t0,x0,u(-)), eQ +

-55-

p(x(T),u(x))dT), (5.1.2.1)

where x(t) = <fr(t,t0,x0,u(-)). Also, define g': V * U* Y by

g'((x,e),u) = g(x,u) . (5.1.2.2)

Clearly, S' is equivalent to S: S' is obtained from S simply by attach

ing an artificial state variable e(*) which is "unobservable" in the

sense that the value of e(*) does not affect the output. Note that

e(.) measures the change in the input energy; hence, it is obvious

that S' is lossless by Def. 5.1.1.

The point of Observation 5.1.2 is the following: Def. 5.1.1 is

merely a formal definition which says absolutely nothing about the

external behavior of S. It is only when we restrict ourselves to

observable dynamical systems that the concept of losslessness becomes

meaningful in terms of external behavior. This is the content of the

following two lemmas.



5.1.3 Lemma. Let S, and S« be equivalent time-invariant dynamical

systems, with S, observable (Def. 2.1.13) and S« input-observable (Def.

2.1.11). Under these conditions, if S, is lossless, then S~ is loss

less.

The proof, which is straightforward but rather lengthy, is given

in [5, Theorem 3.1].

5.1.4 Lemma. Let S, and S« be equivalent, observable, time-invar

iant dynamical systems. Under these conditions, S, is lossless if and

only if S2 is lossless.

The proof is immediate from Lemma 5.1.3. Lemma 5.1.4 motivates

the following definition.

5.1.5 Definition. A time-invariant n-port W is lossless if it

has a lossless, observable, time-invariant dynamical system representa

tion. W is lossy if it is not lossless.

A complete justification of this definition, and a comparison of

it with other losslessness definitions which have appeared in the liter

ature, is given in [5].

Let M denote a time-invariant n-port, and let S denote a given input-

distinguishable time-invariant dynamical system representation for W

(such an S exists by Assumption 2.2.4). Suppose that we know whether

S is lossless or lossy, observable or not observable. Then what can

we conclude about W? If S is lossless and observable, then W is loss

less: this is simply Def. 5.1.5. If S is lossy, then W is lossy

(regardless of whether S is observable): this is a consequence of

Def. 5.1.5 and Lemma 5.1.3. The one remaining possibility is that S

is lossless but not observable; in this case, no immediate conclusion

9Note that our terminology is slightly different from that in reference
[5].
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can be drawn. What our theory needs is a canonical method for reducing

the state space of a time-invariant dynamical system which eliminates

the "unobservable modes." Such a procedure could, in principle, be

applied to our problem in order to obtain a canonical observable time-

invariant dynamical system S which is equivalent to S. The question

of whether W is lossless would then reduce to the question of whether

S is lossless. The following lemma states that such a canonical ob

servable time-invariant dynamical system exists.

5.1.6 Lemma. Let S denote an input-distinguishable time-invari

ant dynamical system. Then there exists an observable time-invariant

dynamical system S which is equivalent to S.

The proof is given in the Appendix.

5.1.7 Definition. Let S denote an input-distinguishable time-

invariant dynamical system. Let S denote the observable time-invariant

dynamical system equivalent to S which is constructed in the proof of

Lemma 5.1.6 (see Appendix). Then SQ is called the canonical observable dynamical

system equivalent to S.

The theoretical results we have established so far allow us to

prove the following lemma, which is analogous to Lemma 4.1.3 in the

general theory of passivity. Note that such a lemma was not possible

in the framework of reference [5], because the theory in that reference

was restricted to finite-order dynamical systems (as opposed to the

abstract dynamical systems of Def. 2.1.1).

5.1.8 .Lemma. A time-invariant n-port W is lossless if and only

if all input-distinguishable time-invariant dynamical system representa

tions for W are lossless.

The proof is given in the Appendix.
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We are now ready to begin extending our theory of losslessness to

the time-varying case.

5.1.9 Definition. Let S denote a (possibly time-varying) dynami

cal system, and let S* denote the canonical time-invariant dynamical

system associated with S (Def. 2.1.15). Then S is wide-sense lossless

if S* is lossless (Def. 5.1.1).

Equivalently, S is wide-sense lossless if and only if the follow

ing condition is satisfied for any two input-trajectory pairs of S,

Cua(-).xa(-)}|[T0, J}] and {ub(- ),xb(-)}|[TQ, ^], for which xa(TQ) =

xb(TQ) and xa(T1) = xb(T]):

fT
p(x (t),u. (t),t)dt -

t a a

'o

fT

p(xK(t),uk(t),t)dt . (5.1.9.1)
t • bvw""b
'o

The concept of wide-sense losslessness is essentially the concept

of "losslessness" proposed in references [20] and [21] for certain classes

of time-varying dynamical systems. When applied to the class of time-

invariant dynamical systems, the only difference between Def. 5.1.1

and Def. 5.1.9 is that the time intervals associated with the two input-

trajectory pairs are the same in the latter case. Thus losslessness

implies wide-sense losslessness for time-invariant dynamical systems.

The following example shows, however, that the converse does not hold.

5.1.10 Example. Consider the first-order time-invariant dynamical

system S with the following state and output equations

x = ux (5.1.10.1)

y = x (5.1.10.2)

where Z»(0,~), U=F,and u* =l]0C(R-F) (note that the state tra
jectories of S are given by x(t) = x(tQ)exp( u(T)dx)). The port volt-

jto
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age and port current are given by

v = y

1=7

(5.1.10.3)

(5.1.10.4)

It is clear that S is wide-sense lossless, because the energy consumed

by an input-trajectory pair (u(.),x(.)}|[Tq, T-j] is

fT. fT.

v(t)i(t)dt = xW(xTtI dt =

fT.

JT0
dt =T] -TQ ; (5.1.10.5)

however, S is not lossless. To see this, let xQ e Z. Then (0,Xq}|[0,T]

is a valid input-trajectory pair of S from xQ to xQ for every T _> 0.

In particular, if T f T. ,then the energy consumed by {0,xQ}|[0,Ta]

is not equal to the energy consumed by {0,xn}|[0,T.].

Example 5.1.10 shows that a theory of time-varying losslessness

based on wide-sense losslessness alone would be inadequate, since the

time-varying theory must be consistent with the time-invariant theory.

For this reason we introduce the following more restrictive version of

time-varying losslessness.

5.1.11 Definitions. Let S denote an input-distinguishable (pos

sibly time-varying) dynamical system. Let S* denote the canonical

time-invariant dynamical system associated with S (Def. 2.1.15). Fin

ally, let S* denote the canonical observable dynamical system equiva

lent to S* (Def. 5.1.7). We shall call S* the canonical observable
o .

time-invariant dynamical system associated with S, and we shall say

that S is narrow-sense lossless if S* is lossless (Def. 5.1.1).
o

5.1.12 Lemma. Let S denote an input-distinguishable (possibly

time-varying) dynamical system. Let S* denote the canonical time-in

variant dynamical system associated with S (Def. 2.1.15).
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(a) Let S*Q denote any given dynamical system which is observable,

time-invariant, and equivalent to S*. Then S is narrow-sense

lossless if and only if S* is lossless.
oo

(b) Suppose that S* is observable. Under these conditions, S is

narrow-sense lossless if and only if S is wide-sense lossless.

The proof is given in the Appendix.

The point of assertion (a) is the following: suppose that by

one method or another we can obtain an observable time-invariant dyn

amical system S*Q which is equivalent to S*; then we need only check

whether S*Q is lossless in order to find out whether S is narrow-sense

lossless. In other words, it is not necessary to check the canonical

observable time-invariant dynamical system S*; indeed, it is enough

to check S* if S* happens to be observable.

Assertion (b) of Lemma 5.1.12 merely says that narrow-sense loss

lessness and wide-sense losslessness are equivalent concepts for that

class of dynamical systems for which S* is observable.

Now let S denote a lossy, time-invariant input-distinguishable

dynamical system. Let S' denote the lossless time-invariant dynamical

system equivalent to S which is constructed in Observation 5.1.2. By

construction, S' is lossless; but Lemma 5.1.3 and Def. 5.1.11 show

that S' is not narrow-sense lossless. This proves that losslessness

and narrow-sense losslessness are not equivalent concepts for time-

invariant dynamical systems. However, every time-invariant input-dis

tinguishable dynamical system which is narrow-sense lossless is loss

less as well. This assertion, and several others, is stated in the

following lemma.
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5.1.13 Lemma.

(a) For the class of (possibly time-varying) input-distinguishable dyn

arnica! systems, narrow-sense, losslessness =» wide-sense losslessness.

(b) For the class of time-invariant input-distinguishable dynamical

systems, narrow-sense losslessness - lossnessness -wide-sense

losslessness.

The proof is given in the Appendix.

5.1.,14 Lemma. A time-invariant n-port M is lossless (Def. 5.1.5)

if and only if it has an input-distinguishable time-invariant dynami

cal system representation which is narrow-sense lossless (Def. 5.1.11).

The proof is given in the Appendix.

Lemma 5.1.14 gives an alternative definition of losslessness

for time-invariant n-ports, and it has an immediate generalization

to time-varying n-ports. For this reason we have adopted the follow

ing definition.

5.1.15 Definition. A (possibly time-varying) n-port Nis loss

less if it has an input-distinguishable dynamical system representa

tion which is narrow-sense lossless (Def. 5.1.11). W is lossy if

it is not lossless.

Remarks. As shown by Lemma 5.1.14, Def. 5.1.15 is consistent with

Def. 5.1.5 when applied to time-invariant n-ports. Note that in the

time-varying theory, losslessness has been defined only for n-ports:

we have not assigned (and will not assign) any meaning to the term

"losslessness" as applied to time-varying dynamical systems.

In analogy with Lemmas 4.1.3 and 5.1.8, we have the following re

sult in the theory of time-varying losslessness.
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Define {i(t),q(t)} =A f 2tt

\ rrTo
cos ^rj i"V , sin

2tt
T -T <t'TQ)'l '0 u

for t € m. Then {i('),q(')>|[0,«) is a valid input-trajectory pair

of S —note that q(TQ) = q(T.j) = 0. The energy consumed by

(K-),q(-)}|[T0,T1] is

fT.
1
v(t)i(t)dt = K(t)q(t)q(t)dt

«*^ fiq2Ct) dt

= KtT,)
»

T

Iq2(T1) - «v T q2(Tn)

^q2(t)dKitidtji0.

lq2(t)^-dt

(5.1.18.2)

The fact that the last integral in (5.1.18.2) is nonzero follows since

q(-) is nonzero on (Tq,^) and t-• 4*1*2. is sign-definite on [Tq,^].
Thus {i(')>q(')}|[Tg,T.j] consumes a nonzero quantity of energy.

Now define (T(t),q(t)} A {0,0} for te'jR. Note that {?(.),

<^(*)}|[Tq,T1] is a valid input-trajectory pair of Swhich consumes

zero energy. Since q(TQ) =q(TQ) and q(^) =q(T]), it follows that

S is not wide-sense lossless.

What Example 5.1.18 shows is the following: a linear time-vary

ing 1-port capacitor is not lossless by our definition. It should

be noted that this classification of a linear time-varying 1-port

capacitor is the same classification that Penfield [9, p. 43] has

argued for.
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The next example is included simply to illustrate how one might

apply our theory in order to verify that a given time-varying n-port

is lossless.

Llill Example. Let W denote a time-varying n-port with a

first-order dynamical system representation Scharacterized by state

and output equations of the form

x(t) = x(t)(v(t) + t)v(t)

i(t) =x2(t)(v(t) + t)
(5.1.19.1)

(5.1.19.2)

where Z=(o,»), u=Y=IR, and U=L*oc(R- ]R) (note that the state
trajectories of (5.1.19.1) are given by x(t) =x(tQ)exp

v(x)dx

(v(t) +t)

. Let S* denote the canonical time-invariant dynamical system

associated with S (Def. 2.1.15). Then S* is characterized by state

and output equations of the form

(x,a) = (x(v +a)v, 1)
2

i = x (v +a)

(5.1.19.3)

(5.1.19.4)

where Z* = (0,») xR,U*=Y*=R ,and a* =L* (IR-F). Let (v(-),
loc

(x('). o(-))}|[0,T] denote an input-trajectory pair of S*, with i(-)l

[0,T] the corresponding current (output). Then

fT

v(t)i(t)dt =
0 0

fT

x^(t)(v(t) +a(t))v(t)dt

fT

x(t)x(t)dt = _d
dt

\ x2(t) dt

=Jx2(0) -lx2(T).
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Thus S* is lossless, which means that S is wide-sense lossless (Def.

5.1.9). We claim that S* is observable as well. To prove this claim,

consider two initial states (x, ,0l ),(x2>a2) e z* with (x^) f
(x2,a2) (i.e., either X] f x2, a] t d2» or both). If X] =x2,
then ai f a2 and we define v(t) =v for t> 0, where v is any con-

* a

stant. If X] f x2, define v(t) = v, for t>0, where v. f (x2o\, -
2 2 2

x1a1)/(x1 -x2). Let (x1(-),a'(•))l[0,~) (resp., (x"(-),a"(-))|[0,«))
denote the state trajectory of S* with (x1(0),a«(0)) =(x,,a]) (resp.,
(x"(0),a"(0)) = (x2,a2)) which is generated by v(«). From the defin

ition of v(0, it is easy to verify that

x'(0)2(v(0) +o'(0)) f x"(0)2(v(0) +a"(0)) ; (5.1.19.6)

in other words, the corresponding currents (outputs) are unequal at

t= 0. This shows that S* is observable. By Lemma 5.1.12, S is nar

row-sense lossless; hence, W is lossless (Def. 5.1.15).

To sum up the theory of time-varying losslessness, we have shown

that the question of whether a time-varying n-port W is lossless is

the question of whether any given input-distinguishable dynamical

system representation S for N is narrow-sense lossless. This in turn

reduces to the question of whether any given observable time-invariant

dynamical system equivalent to S* is lossless. Thus the question of

whether a time-varying n-port is lossless reduces to the question of

whether an associated time-invariant dynamical system is lossless; so

for most of the rest of this section, we shall deal with the

question of losslessness only for time-invariant dynamical systems.

The following is an obvious sufficient losslessness condition

for finite-order time-invariant dynamical systems.
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5.1.20 Lemma. (Sufficient Condition for Losslessness) Let S

denote a finite-order time-invariant dynamical system. Let (Suff.

5.1.20) denote the following condition:

(Suff. 5.1.20) There exists an open subset G of Rm with Z c g and

a C function <J>: G + ER such that

p(x,u) =<V(f>(x),f(x,u) ) (5.1.20.1)

for all (x,u) e z x U.

If S satisfies (Suff. 5.1.20), then S is lossless.

The proof is given in the Appendix.

An immediate corollary to Lemma 5.1.20 is the following: a fin

ite-order time-varying dynamical system is wide-sense lossless if

there exists an open subset G of IRm * IR with Z * IR c G and a

C function $: G •*• IR such that

p(x,u,t)=<Vx<Kx,t),f(x,u,t)>+ U{dl't] (5.1.20.3)

for all (x,u,t) e Z x U x m.

Eq. (5.1.20.2) in the Appendix motivates the following definition.

5.1.21 Definition. Let S denote a time-invariant dynamical sys

tem. A function $: Z+F is called a conservative potential energy

function for S if

T

p(x(t),u(t))dt = <j>(x(T)) - <f>(x(0)) (5.1.21.1)

0

for all input-trajectory pairs {u(-),x(«)}|[0,») of S and for all T > 0.

The following observation is trivial. A formal proof of the second

half is given in [5, Lemma 2.2].
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5.1.22 Observation. Let Sdenote a time-invariant dynamical sys

tem. If S has a conservative potential energy function, then S is loss

less. If S is lossless and reachable from some state x* s z (Def. 2.1.7),

then S has a conservative potential energy function.

Thus losslessness and the existence of a conservative potential

energy function are equivalent concepts for the class of reachable

time-invariant dynamical systems.

5.1.23 Lemma. Let S denote a (necessarily lossless) finite-order

time-invariant dynamical system with adifferentiable conservative po

tential energy function *(•). Let *: G+R denote a differentiable ex

tension of 4>C) (thus G is an open subset of IRm, Zc q, *(•) is dif

ferentiable, and <p(x) =4>(x) for x s z). .Then

p(x,u) =(7ip(x),f(x,u) > (5.1.23.1)

for all (x,u) 6 z x u.

The proof is given in the Appendix.

Note that Lemma 5.1.23 is not the converse of Lemma 5.1.20. Lemma

5.1.23 merely gives a necessary condition that a differentiable extension

of a conservative potential energy function must satisfy. We do not

claim that the existence of a differentiable conservative potential

energy function is a necessary condition for losslessness. Even if we

restrict ourselves to controllable (T finite-order dynamical systems,

the existence of a differentiable conservative potential energy function

is still not known to be a necessary condition for losslessness.
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5.2 A Less Restrictive Sufficient Condition

Let S denote a time-invariant finite-order dynamical system.

From Lemma 5.1.20, we know that (Suff. 5.1.20) is a sufficient loss

lessness condition for S;. as discussed in Subsection 5.1, however, we

do not know whether (Suff. 5.1.20) is a necessary condition for S

to be lossless. It is therefore of interest to obtain a sufficient

losslessness condition for S which is not as restrictive as

(Suff. 5.1.20). In this subsection we shall apply Stalford's [8] results

from optimal control theory to obtain such a condition (cf. Subsection

4.3).

The following result is a special case of the Monotonicity

Lemma 4.3.6.

5.2.1 Lemma. Let [c Rm, and let D = {Z,: j € J} be a

(countable) decomposition of Z. Let y: [tQ,t1] +E be absolutely

continuous and let h: [tg,^! -*• F be integrable. Let <J>: Z •+ F

be continuous and locally Lipschitzian with respect to D. Let

{(W.,$.(•)): j£ J} be a collection which is associated with <j>(-)
3 J Aand D. Define Tj = (t € [tQ.tj] : Y(t) € Ej> for j€ J. Sup

pose that for each j £ J,

h(t) -̂ UjoyMt) =0 for a.a.t €Tj. (5.2.1.1)

Define B: ItQ.tj]' - F by

B(t) - / h(x)dx - ♦(Y(t)). (5.2.1.2)
to

Then &(•) is constant, i.e., 0(t) = e(tQ) for all t€ [tQ.t^.

The proof is given in the Appendix.
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5.2.2 Theorem (Sufficient Condition for Losslessness). Let

S denote a finite-order time-invariant dynamical system. Let (Suff.

5.2.2) denote the following condition:

(Suff. 5.2.2) There exists a continuous function (J>: Z -»• R along

with a (countable) decomposition D = (Z-: j € J} of

Z such that $(•) is locally Lipschitzian and dif

ferentiable with respect to D, and a collection

{(W., <*>.(•)): j € J} associated with $(.) and D

such that for every j € J,

p(x,u) -<V$j(x), f(x,u))= 0 (5.2.2.1)

for all (x,u) 6 L x U.
w

If S satisfies (Suff. 5.2.2), then S is lossless.

Proof. Suppose that S satisfies (Suff. 5.2.2). Let

(u(.)> x(-)}|[0, T] be any input-trajectory pair of S. By Lemma

5.2.1,

T

/ p(x(t),u(t))dt - <fr(x(T)) = - <j>(x(0)). (5.2.2.2)
0

This shows that <j>(.) is a conservative potential energy function for

S (Def. 5.1.21); hence, S is lossless (Observation 5.1.22). Q.E.D.

5.3 A Necessary Condition

In this subsection we apply the technical results from Section III

to obtain a necessary losslessness condition for finite-order time-

invariant dynamical systems. This condition is, to the authors' know

ledge, entirely new to the literature.

5.3.1 Theorem (Necessary Condition for Losslessness). Let S

denote a finite-order time-invariant dynamical system with U a
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closed subset of Rn and U = L* (R-*"U). Let (tiec. 5.3.1) denote

the following condition:

(Nee. 5.3.1) There exists a function, h: Z x sm -*• Fe with the

following property: for each u6 U, there exists

a dense subset Z.C Z (depending on u) such that

p(x*u) =T' FfehW-U>ll (5.3.1.1)

for all x£ Z,. (If (x,u) € Z x u is such that

f(x,u) = 0, then the right-hand side of (5.3.1.1)

is set equal to zero, and (5.3.1.1) holds at all such

(x,u).)

If S is lossless, then S satisfies (Nee. 5.3.1).

The proof is given in the Appendix.

5.3.2 Remark. Since (x,u) - p(x,u) and (x,u) - ||f(x,u)||

are continuous functions, it might be conjectured that (Nee. 5.3.1)

implies that (5.3.1.1) holds at every (x,u) £ Z x u. The authors have

not been able to prove this conjecture, because the function h(-,-)

in Def. 3.1.2 has no a priori continuity properties.

The following example illustrates the application of Theorem

5.3.1.

5.3.3 Example. Consider the second-order time-invariant dynami

cal system S in Example 4.4.2. The authors are not aware of any

results in the published literature which could be directly applied

to the problem of determining whether S is lossless or lossy; how

ever, we can prove that S is lossy by a simple application of

Theorem 5.3.1. Since it has been shown in Example 4.4.2 that

-70-



h*' IPTxtojlT ="°° for a11 x£ K2\(0>» S cannot satisfy
(Nee. 5.3.1); therefore, S is lossy.

5.4 First-Order Time-Invariant Dynamical Systems

In this subsection we will present an easily-verifiable necessary

and sufficient losslessness condition for first-order time-invariant

dynamical systems. This condition has also been published by the authors

in reference [5].

5.4.1 Definition. Let S denote a finite-order time-invariant

dynamical system. A state xQ is called a singular state (of S) if

f(xQ,u) =0 for all u£ U. A state which is not singular is called

a nonsingular state (of S).

Note that all states of S are nonsingular if S is controllable.

5.4.2 Theorem. Let S denote a first-order time-invariant

dynamical system. Suppose that U is a closed subset of Rn and

that U =LlQC (R + U). Under these conditions, S is lossless if

and only if there exists a function h: Z- F (which is necessarily

continuous at each nonsingular state) such that p(x,u) = h(x)f(x,u)

for all (x,u) € Z x U.

The proof is given in the Appendix.

Let S denote a first-order time-invariant dynamical system which

is lossless and controllable. In this case, Z will be an interval

in F (Observation 4.5.2). By Theorem 5.4.2, there exists a contin-

uous_ function h: Z - F such that p(x,u) = h(x)f(x,u) for all

(x,u) £ Z xu. Define 4>: Z+ F by <f>(x) = / h(x')dx\ where
X° i

xQ is any fixed point in Z. Then $(•) is a C1 function which
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satisfies pM=^f(x,u) for all (x,u) £Zxu. If the
interval Z is closed at either endpoint, then vx' at that end-

point is taken to be the appropriate one-sided derivative.

Obviously, if Z is not open, then <{>(•) can be extended to a C

function whose domain G is an open interval containing Z. Hence,

(Suff. 5.1.20) is both a necessary and sufficient losslessness condi

tion for controllable first-order time-invariant dynamical systems

(cf. the discussion at the end of Subsection 5.1).
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Appendix

Proof of Lemma 2.1.12

Let (ti,t0,x0) € IR+ x z, and let u (•) and u.(*) denote

any two inputs such that

(va(t), ia(t)} = (vb(t), ib(t)} for all te[tQ,t1], (2.1.12.1)

where (va(-), ia(-)>|Ct0.«>) and (vb(-), ib(#)}|[t0>«) are the voltage-

current pairs of S with common initial state xQ which are generated

by ufl(0 and ub(*)t respectively. Let yfi( •) |[tg,«0 and yb(*)l l^90)
denote the outputs of S with common initial state x« which are genera

ted by u (•) and ub(-)» respectively. Then (2.1.12.1) gives

w(ua(t), ya(t)) =oa(ub(t), yb(t)) for all te^^]. (2.1.12.2)

If w(.,.) is injective, then (2.1.12.2) shows that u(t) = u.(t) for
a o

all te [tg,^]. Q.E.D.

Proof of Lemma 3.1.7

Assertions (a) and (b) will be proved simultaneously.

Let {u0(«)>Yq(*)}|[0,T0] be an input-trajectory pair of S

with Y0(t) f 0 for a.a. te [0,TQ]. Let Jc [0,TQ] denote the

subset of all te [0,TQ] where y0U) exists, is nonzero, and satis

fies Y0(t) =f(Y0(t),uQ(t)); hence,10 [0,TQ]\J is aset of measure
zero. Define ctQ: J—>- Sm by

a0(t) * Y0(t)/ilY0(t)!l . (3.1.7.2)

(Note that aQ(') is measurable.)

Let KT C U be a compact set such that Yn(t) e f(Yn(t),KT )
0 u u Tn

TQ
For two sets A and B, the notation A\B denotes those elements of A (if
any)which are not in B.
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for a.a. te [OiTq] (the existence of such a compact set follows

since unH e u = C (F-U) and U is a closed subset of R ).

For each q > 0, define Bn - (u<=Fn: ilu!l£q}. Then since 1C is
"" M 0

compact, there exists an integer N > 1 such that KT C B for all
~ • '0 q

q >_ N. For each integer q >. N, define C : J —• P(U) by

CIt) * {uSBqnU: f(Y0(t),u)-a0(t)llf(Y0(t),u)ll=0}
n {u GB HU: llf(YQ(t),u)ll - IlY0(t){l/q >.0} . (3.1.7.3)

Note that C (t) is compact for all t e J because it is a

closed subset of the compact set B n U, and it is nonempty for all

t€j because uQ(t) 6 C (t) for all t e J. Also, note that

Cq(t) CCq+1(t) C... CU(Yo(t),a0(t)) (3.1.7.4)
and

U(Yn(t),ocn(t)) = UCn(t) 13.1.7.5)
q=N q

for all t e J.

For each q >. N, define h : J —*• F by

r p(Yn(t),u) ^

hq<*J &ml'n{»^Yo(t).u)il: UeCq(t)/ • (3-K7-6)

It follows from (3.1.7.4) and (3.1.7.5) that

hq(t) ihq+lU) - '" ~h^0(t).a0(t)) (3.1.7.7)
and

h(Y0(t),a0(t)) - lim h (t) . (3.1.7.8)
q-wo ^

for all tej. The next step is to show that h (•) is measurable.

It then follows from (3.1.7.8) that the function t—• h(Y0(t),a0(t))

is measurable as well, since the limit of a sequence of measurable

functions is measurable [12, p. 67, Theorem 20].



For any pair of integers q > N and i > 1, define G .: J—*P(U)

by

Gqi(t) ±{u€BqnU: ||(f(Y0(t),u)-a0(t)flf(Y0(t),u)ll)J<}}
n{ueBqnu: llf(Yn(t),u)il - ^Q(t)Q (1- J^ >0}. (3.1.7.9)

Note that G .(t) is open in the relative topology that B nu

inherits from Fn; also,

Gql(t) =>Gq2(t) 3 ••• =>Cq(t) (3.1.7.10)
and

oo

CQ(t) = nG (t) (3.1.7.11)
q i=1 qi

for all t e J.

For any u e Fn and any Ac Rn, define

d(u,A) * inf Uu-wQ . (3.1.7.12)
w£A

We have the following obvious inequalities:

d(uQ,A) <d(urA) + Uu^UqII

d(urA) <d(uQ,A) + IJu^UqD ;
therefore,

-IIu^UqII <d(urA)-d(uQ,A) < IIu^Uq!! . (3.1.7.13)

Inequality (3.1.7.13) shows that the mapping u -> d(u,A) is continuous.

We are going to prove that for every q :> N and every t G J,

sup{d(u,Cq(t)): uSG j(t)} — 0as i— ». (3.1.7.14)

To see this, suppose on the contrary that there exists 6Q > 0, qn >_ N,

and tQ G J with the following property: for every i> 1, there
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exists u. GGfl .(t) such that d(u..,C (tn)) > 6n. Since u. belongs1 qgl i qg u u i

to the compact set Bn nu for all i, there exists a subsequence,
q0

still denoted u., such that u. —*• u G B nu. From the continuity
1 1 q0

of f(-,-)» it follows that Jec (tn); thus, d(u,C (tn)) = 0.q0 u qQ u

But this contradicts the continuity of the mapping u —• d(u,C_ (tn));
q0

hence, (3.1.7.14) must hold for every q _> N and every t G J.

Next we are going to show that

r rp(Y0(t)»u) )"\
lim inf ]U{„ ,»\ ..\ii = Mt)i^luEG^tjl^^tT^TTJJ (3.1.7.15)

for all q >. N and all tej. First note that the quantity in the

square brackets on the left-hand side of (3.1.7.15) is monotone increas

ing as a function of i; hence, the limit as i -*- « exists in the

extended sense. Furthermore, the left-hand side of (3.1.7.15) is

a priori less than the right-hand side. Fix qQ _> N, t^ G J, and let

e > 0 be given. It remains to show that there exists an integer

k_> 1 (depending on qQ and tQ) such that

Cp(Y0(t),u) i

•0

inf Jf(Yn(Uu)ij ihq <V -£• (3.1.7.16)

^q/V

Let G rCtTT" denote the closure of G„ ,(tn) in Rn. Since
qQi o q0

G AtT) is a closed subset of the compact set B nu, the former is
V . q0 __^
compact as well. Moreover, f(Yn(t0),u) f 0 for uG G 1(tQ);

therefore, u —• r(u) - p{y^{t^) ,w)/\\f{yAt) ,u)H is a continuous

mapping when u is restricted to G ,(tQ). By continuity and

compactness, there exists a 6 > 0 such that if u, and u« are any

elements of G ,(tQ) such that Bu-j-u-i < 6, then |r(u-. )-r(u2)| < e
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By (3.1.7.14), we can choose k so large that

sup{d(u,C (tn)):uGGn .(tn)> < 6 . (3.1.7.17)qQ u qQK u

For such a choice of k, (3.1.7.16) will be satisfied.

Since B nu C Fn and Rn is a separable metric space, it

follows that B nu is a separable metric space in the topology that

it inherits from Rn [12, p. 138, Proposition 13], In other words,

there exists a countable dense subset {u.}<? , CB nu. Since G .(t)
J J=l q qi

is open in the relative topology of B nu, it follows that {u.} is

also dense in G .(t).
qi '

For each uk G (u.lT^, each q>N, and each i>_ 1, defi
hqi(-,uk): J-*Re by

r P(Y0(t),Uk)
Bf^Y0(t),uk)ll

hq1(t.uk)M

if UkGGqi(t)

if Uk*G (t)

Since {u.} is dense in G .(t), it fo11ows#that

ne

(3.T.7.18)

P(Y0(t),u) ^
inf (h .(t,uk)} = inf ]rrr-^_T—Tr (3.1.7.19)
kGfl qi K uGG .(t)lllf^Y0UJ,u}l,J

where h = {1,2,3,...}, the set of natural numbers. From (3.1.7.15)

and (3.1.7.19), we have

hQ(t) = Hm[inf h .(t.Q.)] .
q i-K» kGN qi K

(3.1.7.20)

If we can show that h .(-,uk): J-»• Fe is measurable, it then

follows from (3.1.7.20) that h (•) is measurable, since infimums and

limits of (countable) sequences of measurable functions are measurable
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[12,p. 67, Theorem 20]. Thus, let 3 G F. Then

(tGJ: hq.(t,Gk)<0}
- (t€J: |(f(Y0(t),uk)-a0(t)«f(Y0(t),uk)ll)J <1}

n (tGJ: ||f(Yo(t),uk)o-fl^t)B(I-X) >0}
n{tGJ: p(Y0(t),uk)-3flf(Y0(t),uk)il < 0} . (3.1.7.21)

Each of the sets on the right-hand side of (3.1.7.21) is a measurable

subset of J; hence, their intersection is a measurable subset of J.

Since 6 was an arbitrary element of F, it follows that hgjl'^)

is measurable [12,p. 66]; thus, h (•) is measurable.

For each q :> N, define D : J —*• P(U) by

p(Yn(t),u)Dq(t) MueCq(t): |f(T°(t)tU)|-hq(tJ> . (3.1.7.22)

It follows from the definition of h (t), (3.1.7.6), that D (t) .is

nonempty for all tGJ; moreover, D (t) is compact for all tGJ

because it is a closed subset of the compact set C (t). Let tGJ,

and choose u (t) G D (t) as follows: let u (t) be the element of
q q Q

D (t) with the smallest first component; if more than one such element

exists, choose the one among these with the smallest second component;

if more than one such element exists, choose the one among these with

the smallest third component, etc. The process eventually terminates,

since u (t) has only n components. In this way we define a unique

u (t) G D (t) for each tGJ. Note that the function u (•) satis-
qA # q * ' q

fies the relation

p(Yn(t),u (t))

Vt} =mY°u),u;(t))i (3J-7-23)
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for all tGJ. The next step is to show that u (•) is an admissible

input over the time interval [0,TQ]; i.e., u(•) G L°°([0,T0] —»-U).
The function u (•) obviously has the required boundedness

properties, since u (t) is an element of the compact set B nu for

all tGJ. It remains to show that u : J —• U is measurable (i.e.,

each component of u (•) is measurable). This will be shown by induc

tion. Let u£(-)i r= l,...,n, denote the r-th component of u (•)•

Assume that ur(«) is measurable for r = l,...,(s-l) (if s = 1 we

are assuming nothing at all). For each integer l >_ 1, let E£ be a

closed subset of J such that u*V)» r = l,...,(s-1), h (•)» and

Yq(') are continuous when restricted to I and

m(J\E£) <\ , (3.1.7.24)

where m is the Lebesgue measure restricted to JCR, The existence

of such a set is a general property of measurable functions [15, p. 70,

Theorem 1.4.19]. Let BG F. We claim that the set (tGE :us(t) <_0)
& q

is a closed (and therefore measurable) subset of E.. To prove this

claim, let (£•>., be a sequence in E. such that t. —»• t G E- and

"0(^)1^. Now u (tk) G B nu for all k. Since B nu is

compact, it follows that there exists a subsequence, still denoted L,

such that

u (tk) -* uG B nu . (3.1.7.25)

Since f(»,*) and Yn(') are continuous and Yq(') is continuous

when restricted to E., it follows that

QYnUJB _ ilY0(t)HBf(Y0(tk),uq(tk))l--^--k^Df(Yo(t),u)0--°T— (3.1.7.26)
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and

f(Y0(tk),uq(tk))-a0(tk)l)f(y0(tk),.uq(tk))a
nr^rf(Yo(t),G)-ao(t)llf(Yo(t),0)!l . • (3.1.7.27)

Since uQ(tk) G C (tk), it follows that the left-hand sides of

(3.1.7.26) and (3.1.7.27) are nonnegative and zero, respectively;

hence

Df(Y0(t),u)ll ^ >0 (3.1.7.28)

f(Y0(t),G)-a0(t)!lf(Yo(t),G)Q =0 , (3.1.7.29)

and therefore

G G c (t) . (3.1.7.30)

From (3.1.7.28), f(Y0(t),G) f 0; thus from the continuity of f(•,•)>

p(-,-)> and Y0('),

P(YQ(tk),uq(tk)) p(Y0(t),u)
Uf(Y0(tk),uqltkJ)ll W !lf(Y0U),u)il * (3.1.7.31)

By the given continuity on E.,

hq(tk) — hq(t) (3.1.7.32)

and

uq(tk) -* u^(t) =Gr , r=1,...,(s-l) . (3.1.7.33)

Combining (3.1.7.23), (3.1.7.31), and (3.1.7.32), we obtain

P(YQ(t),G)
V^ -lf(Y°U).0)l • (3.1.7.34)

Recall that u*Uk) <B. It follows that us <_ B. Now from (3.1.7.33),
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(3.1.7.34), and the definition of u (t), it follows that us(t) < Gs

<_ B. This shows that the set (tGE : u*(t) <B) is a closed subset of
x, q

E^. Hence u (•) is measurable on E.. By induction, u (•) is
oo

measurable on E-. It follows that u (•) is measurable on uE..

By (3.1.7.24), UE. differs from J (and hence [0,Tn]) by a set
Jl=l l °

of measure zero. Therefore u (•) is measurable on [0,TQ] (the

fact that u (•) has not been defined on [0,TQ]\J is not significant

because [0,TQ]\J is a set of measure zero). This completes the

proof that u (•) e L°°([0,T0]-*U).

The next step in the proof is to show that the functi on

t-+ h(t)lY0(t)B is an element of L1 ([O.Tq]-* F). Note that

|hq(t)lY0lt)l| -lp(YQ(t),Uq(t))|||f(YQ^^
<q|p(Y0(t),uq(t))| (3.1.7.35)

for all tGJ. The last inequality follows since u (t) G C (t), and
q q

hence, If(YQ(t),uq(t))il -Iy0(t)l/q >0 for all tGJ. Now

P(Y0(t),uq(t)) Gp(Y0([0,T0]),Bqnu) for all tGJ. Recall that

Bq nu is compact; and since y0(") is continuous, y0([0»Tq]) is

also compact. By Tychonoff's theorem [2, p. 166], or by more elementary

means, Y0([°>To]) x(Bq°u) is acompact subset of ZxU. Since
p(-,0 is continuous, p(yq([0,Tq]),B OJ) is compact. Hence the

function t-+ h(t)lY0lt)l is an element of L°°([0,T0] -+ F) C
^(CO.TqI-R).

From (3.1.7.7), (3.1.7.8), and the Monotone Convergence Theorem

[12, p. 84], it follows that
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JorTo Y0(t)"(YQ(t),||fU(t)n)llY0(t)»dt =lim j hq(t)ly0(t)ldt .
(3.1.7.36)

We have shown that the integral hq(t)llY0(t)!!dt exists and is

finite. Since h (t)flyn(t)il decreases monotonically to
Y0(t) q °

h(Y0(t),[|t (t)il)gYQ(t)ll as 9"" °°» ^z f°llows tnat tne integral on

the left-hand side of (3.1.7.36) exists in the extended sense, and its

value is either finite or -». Let a: [0,T,] —* [0,TQ] be an abso

lutely continuous function such that a(0) = 0, a(T-|) = Tq, and

o(t) >0 for a.a. tG [0,^]. Let y^-) 4 (Y0°o*)(-). Tnen

Y-j (•) ICO,^] is a re-parametrization of Yq(') I[0,TQ]. Note that

1 ^1(T) ,.-

Tl Y0(a(x))
0 - %

fT1 Y0(a(x)) .
=Jn h^0(a(T))^Yn(a(x))ll)%(a(T))"a(T)dT

= lim
q-x»

1

h (a(xj)lY0(a(T))la(T)dT

rT0
= lim h (t)iiYQ(t)[!dt

rJ0 Yn(t)
hM)-TOt7T),9o(tJldt

0

(3.1.7.37)

The penultimate step in (3.1.7.37) is an application of the Change of

Variables Lemma 3.1.6; this application is justified because it has

been shown that the function t—• h (t)HYgU)iI is an element of

L1([0,TQ]-^ F). The final step in (3.1.7.37) is arestatement of
(3.1.7.36). Thus the integral on the left of (3.1.7.36) is parametri-

zation independent. This completes the proof of assertion (a).
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Now we proceed to prove assertion (b). Let {u(*)»x(*))|[0,T]

be any input-trajectory pair of S such that x(«)|[0»T] is a

re-parametrization of YQ(*)I[0,TQ]. Then, from Def. 3.1.2,

J%(x(t),u(t))dt >|h(x(t),irj|||ir)«x(t)ldt . (3.1.7.38)

From assertion (a), the integral on the right-hand side of (3.1.7.38)

is parametrization independent; thus,

T
0 , Yn(t) .
h^Q(t)iy (t)a)S(t)"dt-(3'K7-39)P(x(t),u(t))dt >

0

It follows from (3.1.7.39) that in order to prove assertion (b), we

need only construct a sequence of input-trajectory pairs

(uq(-),xq(-)}|[0,Tq] of S such that x(-)|[0,T ] is are-parame
trization of Yg(-)|[0,T0] and

f q
lim p(x (t),G (t))dt
q-*» jo t M

'T° , Y0(t) ,.
=Jn h^o(t)'I^TtTF)«Y0(t)»dt . (3.1.7.40)

In order to do this, let q > N and define a : [0,TQ] -* R by

a (t) =
rt BY0(f )l
0llf(Y0(f),uq(f;)idt' <<*< (3.1.7.41)

The inequality aAt) < qt follows since u (f) G C (t1) for all

f G[0,t]nj. Note that t] < t2 implies that a (t}) <a (t2),
therefore aq(-) is a bijection of [0,TQ] onto [0,a (TQ)]. Le

kq: £°'aq(T0)] ~* £°'V be defl*ned by Mt) =a"](x). Then
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VT) =aq(<q(T))
Bf(Y0(kq(T)),uq(kq(x)))B

HVVT,JB
(3.1.7.42)

da„(t)
for a.a. x G [0,aQ(T0)] (the symbol tfQ(kQ(T)) means —jr-

evaluated at t = k (x); likewise for Yq(kq("0)). From (3.1.7.42)

it follows that

dvyT>>
dx

=;0(kq(x))kq(x)
Y0(kQ(T)J

^Yo(kqq(x))^f^O^q(^Uq(kq^)»
- f(-r0(kq(x)),uq(kq(x))) (3.1.7.43)

for a.a. xG [0,a (TQ)]. The last step in (3.1.7.43) follows since

Wt)) e VV^' and hence

YQ(kq(x)) _ f(YQ(kq(x)),uq(kq(x)))
QY0(kq(x))U " Qf(Y0(kq(x)),uq(kq(x)))ll

for a.a. xG [0,a (TQ)] (we are using the fact that a : [0,Tq] —*

[0,a (TQ)] maps sets of measure zero to sets of measure zero, see

[12, p. 108, problem 14]). Equation (3.1.7.43) shows that, for each

q1 N, ((uq°kq)(-),(Y0okq)(,)}|[0,aq(T0)] is an input-trajectory
pair of S for which the state trajectory is a re-parametrization of

Y0(-)|[0,T0]. It follows from (3.1.7.23) and (3.1.7.42) that

rW
p(Y0(k (x)),u (k (x)))dx

,W
hq(kq(x))Bf(Y0(kq(x)),uq(kq(x)))ffdx

0

hq(kq(x))il^0(kq(x))QKq(x)dx (3.1.7.44)
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Since t -+ h (t)OY0(t)B belongs to L1 ([0,Tq]-+ F), we can apply
the Change of Variables Lemma 3.1.6 to the right-hand side of (3.1.7.44)

to obtain

p(Y0(kq(x)),uq(kq(x)))dx

h (t)lY0(t)Idt .

Combining (3.1.7.36) with (3.1.7.45) gives

lim
q-*»

rW
p(Y0(kq(x)),uq(kq(x)))dx

Joh^o(t)'I^F^)aY0(t)lldt

(3.1.7.45)

(3.1.7.46)

Q.E.0.

Proof of Lemma 3.2.2

Let {<Ju(*): 8eB} be a collection of upper semicontinuous

functions, where the index set B may be finite, countable, or

uncountable. Let #(•) - inf{<f>g( •): 8GB}. Then {x: <j>(x)<a} =

u (x: <j)ft(x) <a}. Thus {x:<f>(x)<a} is open for all aGK, i.e.,

<£(•) is upper semicontinuous. The proof of the other assertion is

similar. Q.E.D.

Proof of Lemma 3.2.3

Let <j>: Z •*• F be upper semicontinuous, and let K C z

be compact. Suppose 4>(x) t °° for all x G K. For a G F, define

V = (x^E: <{>(x)<a}. Note that each set V is open, and the
a a

collection (V : aGK} covers K. Since K is compact, there exists

a finite subcover {V ,...,V }. Let M = max{a,,...,a }. Then
a-, a„ in

I n
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<{>(x) < M < °° for all x G K. The proof of the other assertion is

similar. Q.E.D.

Proof of Lemma 3.2.5.

We shall prove that fi(») is upper semicontinuous: the

proof of the other assertion is similar. For every u G (J, define

R : E + Ke by
u J

, ^4 , if UGU+ ,hu(x) * ^^ . x;
if u G U\Ux

It is clear that h(x) = inf{hu(x): uGU}. Let u GU and a G R be

fixed. Then

(xGE: fi (x) <a>

= {xGE: f(x,u) >0}n{XGE: p(x,u) - af(x,u) < 0} . (3.2.5.1)

From the continuity of the functions f(-,«) and p(«,«), both sets

on the right-hand side of (3.2.5.1) are open; thus, their intersection

is open. Hence h(«) is the infimum of a collection of upper semi-

continuous functions. It follows from Lemma 3.2.2 that h(«) is

upper semicontinuous. Q.E.D.

Proof of Lemma 3.2.8

We shall prove assertion (a) only: the proof of

(b) is similar. Let xQ G E, and suppose that x-j G int R (xQ). To

prove that there exists a state trajectory x(-)|[0\T] from xQ to

X-. with x(t) >0 for a.a. tG [0,T], let xG [xqjX^] and note

that (since f(«,«) is continuous and x, G int R (xQ)) there exists

an input value u^ and an interval 1^ C [xQ,x,] which contains x

and is open in the relative topology of [xq^,] such that
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f(x.u-) > 0 for all x G U . (3.2.8.3)

Observe that (I~: xG[xQ,x-|]} is an open covering of the compact

interval [xQ,x,]; hence, there exists a finite subcover

(I~ ,...,1- }. Without loss of generality, we may assume that
x1 xk

x1<x2<--*<xk and that I^4n^ ?$ if and only if |i-j|<.l.

For each i G {l,...,k-1}, choose x. e L riL . Suppose that the
1 xi xi+l

state of S at t =0 is x(0) = xQ. Construct a piecewise constant

input u(0 as follows: set u(t) = u^ for tG [0,Tj], where T^

is the unique time such that x(T,) = x,. Likewise, set u(t) = u~

for tG (T,,T2], where T~ is the unique time such that x(T«) = jL,

etc. Continuing in this manner, we construct a piecewise constant

input which drives S from xQ at t = 0 to x, at some finite

time T; moreover, the corresponding state trajectory x(«)|[0,T]

satisfies x(t) > 0 for a.a. t G [0,T].

Let TQ > 0, and define yq: [°>t0] — Cxo»xi^ b*

Y0(x) * xQ +^-(xrx0) . (3.2.8.4)

Then Yq(O|[0,Tq] is an admissible curve of S; in fact, it is a

re-parametrization of any state trajectory y, (•) |[0,T-,] of S from

xQ to x, with Yi(t) > 0 f°r a«a- t G [0,T-j], To see this, let

T0a(t) =x-^r^UJ-Xg) . (3.2.8.5)
Then clearly,

Y^t) = Y0(a(t)) (3.2.8.6)

for all t G [0,T]]; moreover, a(«) is absolutely continuous with
TQ

o(0) = 0, o(T1) = TQ, and o(t) = j~~ y} (t) > 0 for a.a.

t G [0,T, ]. Thus y-j (•) |[0,T,] is a re-parameterization of
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Y0(-)|[0,Tq] (Def. 3.1.3). Conversely, Lemma 3.1.6 and Remark #2

following it show that Y0(O|[0,TQ] is a re-parameterization of the

state trajectory Y] (•) IW,^]; hence, y0(-)|[0,Tq] is an admissible
curve of S (Def. 3.1.3). Thus

inf {( p(x(t),u(t))dt)
XgH-X^O i

£>0

T>0

=inf{| p(x(t),u(t))dt: x(.)|[0,T]G(R[Yo(.)|[0,T0]]j
T0

=fo fi(x0+^xrx0,)"T^dT (3.2.8.7)

where the last step follows from Lemma 3.1.7. By making the affine
11 Tchange of variables x = xQ +f~(x1-x0), the integral in (3.2.8.7)

can be rewritten

'q X -X 1

f R(x0+f"(xrX0^~T^"dT =[ R(x,dx * (3.2.8.8)J0 0 0 ''xq

Combining (3.2.8.7) and (3.2.8.8), we obtain (3.2.8.1). Q.E.D.

Proof of Lemma 4.1.3

The "if" part is immediate from Def. 4.1.2. To prove the

"only if" part, suppose that M is passive. Then, by Def. 4.1.2, W has a

passive dynamical system representation S . Let S2 be any other dynam

ical system representation for W (note that S2 is necessarily equivalent

(Def. 2.1.10) to Sx). Let (x2,t0) e E2x R. Then, by equivalence,

Note that it is always permissible to make an affine change of varia
bles in an integral. For other transformations, however, one must be
careful (cf. Lemma 3.1.6).
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there exists a state xx e Ex such that the set of voltage-current pairs

MOiUO^ICtQ.00) of Sx with initial state xx is identical to the set

of voltage-current pairs (v(»),i(-)}|[t0,«) of S2 with initial state x2

Hence, S2 is passive because Sx is. Q.E.D.

Proof of Lemma 4.1.4

Suppose that S satisfies (Suff. 4.1.4). If

{u(-) ,x(-)}| [t0,°°) is any input trajectory pair of S, then (4.1.4.1)

gives

p(x(t),u(t),t) > ± <J/(x(t),t) (4.1.4.2)

for a.a.t e [t0,«). Since i>( • , • ) is C1 and x( •) is absolutely contin

uous, the mapping t-»-^(x(t) ,t) is absolutely continuous over Ct0,tx] for

every tx>t0. Thus (4.1.4.2) can be integrated with the following result

j p(x(t),u(t),t)dt > iKxftjhtj) -tKx(t0),t0) > -Kx(t0),t0) .
fco (4.1.4.3)

The last step follows since ^( • , • ) is nonnegative. It is clear from

(4.1.4.3) that EA(x0,to) < *(xo>t0) <~ for all (x ,t ) e E*F. Q.E.D.

Proof of Lemma 4.1.6

Suppose that Ej(- ,•) is an internal energy function for S.
Then, since EA- ,•) is nonnegative, (4.1.5.1) gives

p(_x(t),u(t),t)dt > -EI(x(t0),t0) (4.1.6.1)

to

for all input-trajectory pairs (u( •) ,x(- )}| [t0 ,tj of S. It is clear

from C4.1.6.1) that EA(x,t) < Ej(x.t) < ~ for all (x,t) 6 E* F. This

shows that S is passive, and it also shows that E-(* , •) < Er(* , •)•
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Now suppose that S is passive. To prove that E,(- , •) is an

internal energy function for S, let (u(•),x(-)}|[t ,t ] be any input-

trajectory pair of S. Then we have the following obvious inequality:

sup

x(t,)-
t'>t.

*' I rtlp(x,tt),u'(t),t)dt > -J p(x(t),u(.t),t)dt
I- t.

+ sup

x(tx) +
t'^ti

p(x"(t),u"(t),t)dt

tl

Substituting the definition of EA- , •) into (4.1.6.2) gives
A'

E.(x(tJft) > - p(x(t),u(t),t)dt + EA(x(tl),tl) .

Proof of Lemma 4.1.8

(a) Define Erx* : ExIR* - F by

Ery*(x.,t.,t0) S inf If lp(x(t),u(t),t)dt
1 t,

(4.1.6.2)

(4.1.6.3)

Q.E.D.

(4.1.8.5)

where the expression on the right-hand side of (4.1.8.5) indicates that

the infimum is taken over all input-trajectory pairs {u(-)»x(")>|[t0,tl]

from x* to xx, where t0 and tx are fixed. Note that

W^'^ = inf Erx*(xi>ti'to) ' (4.1.8.6)
to<ti

Let (x^tj) g Ex]R be arbitrary, and let (u(-) ,x(- )}| [t0 ,tj be any
input-trajectory pair of S from x* to xr Then, since Ej(- , •) is an

internal energy function,
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Ejtx^tJ - Ejfx*,^) < J p(x(t),u(t),t)dt
z.°

This immediately gives

EjU^tJ-EJxVJ < E^x^tj.tJ .

(4.1.8.7)

(4.1.8.8)

Taking the infimum over t0 < tx on both sides of (4.1.8.8), we obtain

Ejtx^tJ - EjtxVj < E^x^tJ . (4.1.8.9)

(b) By reachability, ER *( • , •) < °°. Suppose that EA(x*) < °°;

then A *(• , •) < ~. Note that

A*(x,t) ft ERx*(x,t) + E*(x*)

> ERx*(x,t) + EA(x*,t)

> EA(x,t) (by assertion (a))

> 0 (4.1.8.10)

Thus 0 < A *(•,•)< °°» which is a necessary condition for A (• , •)
X A

to be an internal energy function.

Let {u(*)»x(*))|[t jtj] be any input-trajectory pair of S. Then we

have the following obvious inequality:

inf

x*-x(tj I J
t'<t l

rfti
p(x'(t),u'(t),t)dt> < inf

) x*-x(t0)
t"<t„

ti
p(x(t),u(t),t)dt

fZo
p(x"(t),u"(t),t)dt

(4.1.8.11)

Substituting the definition of ER *(• , •) into (4.1.8.11) gives

A-19



tl
ERx^(x(t1),t1) < ERx*(x(t0),tfl) +| p(x(t),u(t),t)dt . (4.1.8.12)

Thus,

Ax*(x(tl),t1)-AxJx(t0),t0) - ERxJx(t1),t1)-ERx*(x(t0),t0)

ti
< p(x(t),u(t),t)dt , (4.1.8.13)

which completes the proof that A A • , •) is an internal energy function.

Q.E.D

Proof of Lemma 4.1.11

Let (x0,u0,t0) g ExUx jR, and let x(-) |[t0,«) denote

the state trajectory of S with x(tQ)=x0 which is generated by

the constant input u(t) = u . We have

{<7x*(x,t)f f(x,u,t)>+ ^ff41}

dKxUht)
dt

t=t,

tx,u,t) =(xn,un,tj
0 ' 0 ' 0

lim

At + 0"

*(x(t +At),t +At) - *(x(tj,tfl)

lim

At + 0"

At

ET(x(t0+At),t0+At) -

At
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t0+At

< lim4. TT f P(x(t),u0,t)dt (by (4.1.5.1))
At-0+ At J

t0

= P(x0,u0,t0) . (4.1.11.2)

The last step in (4.1.11.2) is simply an application of the Fundamental

Theorem of Calculus, which is justified because p(- ,• ,•) is continuous

(Def. 2.1.17). Q.E.D.

Proof of Theorem 4.5.3

(Necessity). Suppose that S is passive. The necessity of

(i) follows immediately from assertion (a) of Theorem 4.4.1.

By Assumption 4.5.1, U^ t <f> and (J* ? <J> for all x e z. To prove

the necessity of (ii), suppose on the contrary that there exists an

xQG E such that

h(xj > h(xj .

Then there exists u.sy and u eU such that
xo xo

p(x0,u2) Ptx^uJ

f(x0,u2) f(x0,ul)

By continuity, there exists 6>0 such that

f(x,Uj) > 0 for every xG[xo,xQ+6]

f(x,u2) < 0 for every xG[x0,x0+6]

p(x,u2) p(x,Uj)
T( \>Tt T for every xg[x0,x0 +6]f(x,u2) f(x,ux)

Hence the constant input value ux will drive S from state x0 at time t =0

to state x0 +6 at some finite time tj>0, and the constant input value u2
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will drive S from state x0 + 6 at time tx to state x0 at some finite time

t2>tx. Define an input u(-)|[0,t2] as follows:

/ ux, for 0 < t < tj

u(t) S
( u2, for tx < t < t2 .

Let x(-)|[0,t ] denote the state trajectory with x(0) = x0 which is

generated by u(-). Note that x(t2) = x0; thus, x(-)|[0,t2] is a "loop"

from x0 to x0+6 and back again. We have

t +• tr2 f1p(x(t),u1) t r2p(x(t),u2) .
p(x(t),u(t))dt = —— x(t)dt + —— x(t)dt

J J f(x(t),u ) J f(x(t),u2)
0 0 tj

x„+<5 , » ^o
Pix,uj

dx
r p(x,u ) r p(x,u )

dx +
ftx.Uj) J f(x,u )

x0 x0+5

-pix.Uj) P(x,u2)

J Lf(x,ul
'0

) f(x,u,)J
X

dx < 0

The last inequality follows because the integrand is strictly negative

on the interval [x0,x0+6]. This shows that EA(x0) = «, because we can

drive the state repeatedly in the above mentioned loop between x0 and

x0+6 and thereby extract an unbounded amount of energy. But EA(x0) = °°

contradicts the assumption that S is passive; therefore, condition (ii)

must be satisfied.

Finally, if we choose W(-) = EA(-)» the available energy function,

then condition (iii) follows immediately from Lemma 3.2.8.

(Sufficiency). Suppose that conditions (i), (ii), and (iii) are

satisfied.
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By Assumption 4.5.1, ii(x) <« and h(x) > -« for all x e Z.

By Lemma 3.2.3, Lemma 3.2.5, and condition (ii), the functions h(-) and

h(-) are bounded on every compact subset of E. From conditions (i), (ii),

and Def. 3.2.4,

p(x,u) > h(x) f(x,u) (4.5.3.3a)

p(x,u) > h(x) f(x,u) (4.5.3.3b)

for all (x,u) g ExU.

Now choose xQ e E. We want to show that EA(x0) < ». For each

x G E, define

rx
(4.5.3.4a)H(x) g

H(x) S

Xo

x

h(z)dz

h(z)dz (4.5.3.4b)

From the boundedness properties of h(-) and h(-)I it follows that H(x)

and H(x) are well-defined and finite for all x e E. Let (u(•) ,x(•)}|[0,T]

be any input-trajectory pair of S with initial state x(0) = xQ. Note

that

(4.5.3.5a)h(x(t)) x(t) = ± H(x(t)) ,

h(x(t)) i(i) = ^ H(x(t)) ,
dt * .

(4.5.3.5b)

for a.a.t G [0,T], Since x(-) is continuous, it follows that x([0,T]) is

a compact subset of E. Since h(«) and h(-) are bounded on compact

subsets of E and x(-) is absolutely continuous, it follows that the

mappings t -»• H(x(t)) and t + H(x(t)) are absolutely continuous

[15, pp.95-96, Theorem 1.4.42]. Hence, from (4.5.3.4) and (4.5.3.5)

we obtain
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T

h(x(t)) x(t)dt = H(x(T))-H(xJ = H(x(T)) (4.5.3.6a)

h(x(t)) x(t)dt = H(x(T)) (4.5.3.6b)

0

Suppose that x(T) > x0. Then (4.5.3.3a), (4.5.3.6a), and condition (iii)

give

fT rT -
p(x(t),u(t))dt > h(x(t))x(t)dt

0 0

x(T)

• H(x(T)) =f h(z)dz
xo

> -W(x0) . (4.5.3.7)

On the other hand, if x(T)<xo, we have from (4.5.3.3b), (4.5.3.6b),

and condition (iii) that

T T

p(x(t),u(t))dt > h(x(t))x(t)dt

x(T)

= H(xtT)) h(z)dz

> -W(x0) (4.5.3.8)

Equations (4.5.3.7) and (4.5.3.8) show that Ea(xq) < W(xq)<». Q.E.D

Proof of Corollary 4.5.4

(Sufficiency). Condition (i) of Corollary 4.5.4 implies

condition (i) of Theorem 4.5.3. Also, condition (i) of Corollary 4.5.4

and Def. 3.2.4 imply that

h(x) < a(x) < h(x) (4.5.4.1)
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for all x e E. This gives condition (ii) of Theorem 4.5.3. Finally,

(4.5.4.1) along with condition (ii) of Corollary 4.5.4 gives condition

(iii) of Theorem 4.5.3, with W(xfl) = E(xQ). Therefore S is passive.

(Necessity). Suppose that S is passive. Then S satisfies the

three conditions of Theorem 4.5.3. From the sufficiency portion of the

proof of Theorem 4.5.3, we know that h(-) and h(-) are bounded on compact

subsets of E and satisfy (4.5.3.3). Choose z0 e E and define a :E •+ ]R

by

h(x) , for x > zn ,

o(x) S (4.5.4.2)

h(x) , for x < zn .

Clearly, a(-) is bounded on compact subsets of E and satisfies p(x,u) >

a(x)f(x,u) for all (x,u) e ExU. Since h(-) and h(-) are semicontinuous

(Lemma 3.2.5), they are measurable; hence, a(-) is measurable as well.

Now define A : E •* F by

xft

sup h(x)dx : z e [z0,xj > , if x0 > zn,
0 '"0 0 "0

ACxJ *

-inf
0 ' 0

h(x)dx : z G [xn,zj } , if xft < zn,
0 ^0

and define E : E -»• R by

Hx) * W(x0) + W(zJ + A(xJ , (4.5.4.3)
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where W(-) is the function appearing in Theorem 4.5.3. It is straight

forward to verify thatct(«) and £(•)» as defined in (4.5.4.2) and

(4.5.4.3), satisfy condition (ii) of Corollary 4.5.4. Q.E.D.

Proof of Corollary 4.5.5

Sufficiency is just a special case of Lemma

4.1.6. To prove necessity, suppose that S is passive. Leto(-) and

E(-) be the functions in Corollary 4.5.4. Choose zqge, and define

Ej :E+ IR+ by

Ex(x) $ a(z)dz + E(zJ (4.5.5.1)

(Note that EA') is nonnegative by condition (ii) of Corollary 4.5.4.)

From (4.5.5.1), Ej(*) is differentiable at almost every x e E, and

dEr(x)

dx
= a(x) for a.a.x g e (4.5.5.2)

Since a(») is bounded on compact subsets of E, it follows that the

mapping x-* dEj(x)/dx belongs to l"qc(E -»• IR).

Now let (u(.),x(.)}|[t0,tl] be any input-trajectory pair of S.

Note that

a(x(t))x(t) =
dEt(x(t))

dt
(4.5.5.3)

moreover, since ct(-) is bounded on compact subsets of E and x(-) is

absolutely continuous on [t^tj, it follows that t + Ej(x(t)) is

absolutely continuous on [t0,tj [15, pp.95-96, Theorem 1.4.42]: thus

a(x(t))x(t)dt - EjCxft^) - Ej(x(t0)) . (4.5.5.4)
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From condition (i) of Corollary 4.5.4 and (4.5.5.4), we obtain

zi *i
t

p(x(t),u(t))dt > a(x(t))x(t)dt
)

to

= EI(x(t1))-EI(x(t0)) . (4.5.5.5)

Hence, Ej(-) is an internal energy function for S. Q.E.D.

Proof of Lemma 5.1.6

Let S = •jU,u,E,4>(-,-,-,-),Y,g(.,.),w(-,-)} denote an in

put-distinguishable time-invariant dynamical system. Since w(-,«) is

injective (Def. 2.1.11), it follows that two states x1 and x" of S are

equivalent if and only if the set of input-output pairs {u*(.),y'(.)}|

[0,«) of S with initial state x' is the same as the set of input-output

pairs {u"(-),y"(-)}|[0,co) of S with initial state x" (cf. Def. 2.1.9).

Let E: Z -*• ?(z) denote the map which takes each xez to the equivalence

class of x which is defined by the equivalence relation of Def. 2.1.9

(thus for each xe Zf E(x) is the set of all states equivalent to x).

The collection of all such equivalence classes is denoted E^. Define
o

4>A K? x E x u - £ by
O + O 0

4>o(t,t0,x0,u(O) = E(*(t,t0,x\u(.))) , (5.1.6.1)

where x' is any element of E'̂ Xq). Note that the definition of <J> (t,
t0,x0,u(-)) is independent of the choice of x'g E'^xJ. This is because
if xa(-) and xb(-) are any two state trajectories of S generated by u(-)

with E(xa(0)) = E(xb(0)), then a simple contradiction argument shows

that E(xa(t)) = E(xb(t)) for all t > 0. Now define g : E x(j -* Y by

9o(x0,u) ^ g(x',u) (5.1.6.2)

where x' is any element of E~ (xQ). Once again, a simple contradiction
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argument shows that g(x',u) = g(x",u) for all x',x" e E~ (xQ) and all

uGU; so the definition of g(xn,u) is independent of the choice of

x' g E~HxQ).
It is straightforward to verify that S = {U,U,E ,4> (•,'>'.'M,

90(* j')«<*)(*»•)} is a valid time-invariant dynamical system; by

construction, S is observable. Q.E.D

Proof of Lemma 5.1.8

If hi is lossless, then Def. 5.1.5 and Lemma 5.1.3 show

that all input-distinguishable time-invariant dynamical system repre

sentations for W are lossless. To prove the converse, first note that

the set I of all input-distinguishable time-invariant dynamical system

representations for A/ is nonempty by Assumption 2.2.4. Suppose that

every element of I is lossless, and let S g I. Let S denote the can-
o

onical observable dynamical system equivalent to S (Def. 5.1.7). Then

SQ G I; hence, SQ is lossless by assumption. It follows that A/ is loss

less (Def. 5.1.5). Q.E.D.

Proof of Lemma 5.1.12

Assertion (a) follows immediately from Def. 5.1.11 and

Lemma 5.1,4. To prove assertion (b), suppose that S* is observable.

Then from assertion (a), S is narrow-sense lossless if and only if S*

is lossless; but this is the condition for wide-sense losslessness

given in Def. 5.1.9. Q.E.D.

Proof of Lemma 5.1.13

(a) If S* is lossless, then S* is lossless by Lemma

5.1.3.

(b) If S is time-invariant, then S is equivalent to S*. If S*

is lossless, then S is lossless by Lemma 5.1.3. This shows that nar-
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row-sense losslessness implies losslessness. The fact that lossless

ness implies wide-sense losslessness is obvious and has been

remarked upon in the text. Q.E.D.

Proof of Lemma 5.1.14

(Necessity) Suppose that W is lossless. Let S denote an

input-distinguishable time-invariant dynamical system representation

for M(at least one such S exists by Assumption 2.2.4). By Lemma

5.1.8, S* is lossless; thus S is narrow-sense lossless.

(Sufficiency) Suppose that W has an input-distinguishable time-

invariant dynamical system representation S which is narrow-sense

lossless. Since S is time-invariant, it is equivalent to S*. Thus

S* is a lossless, observable, time-invariant dynamical system repre

sentation for W; by definition, W is lossless. Q.E.D.

Proof of Lemma 5.1.16

First note that the set of all input-distinguishable dyn

amical system representations for W is nonempty by Assumption 2.2.4.

The "if" part then follows immediately from Def. 5.1.15. To prove the

"only if" part, suppose that W is lossless. Let S denote an input-

distinguishable narrow-sense lossless dynamical system representation

for H (such an S exists by Def. 5.1.15), and let S denote any other

input-distinguishable dynamical system representation for W. Note that

S* is equivalent to S*, S* is equivalent to S*, and S* is equivalent

to S*; hence, S* is equivalent to S*. By assumption, S* is lossless:
O O O 0

it follows from Lemma 5.1.4 that S* is lossless, i.e., S* is narrow-

sense lossless (Def. 5.1.11). Q.E.D.
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Proof of Lemma 5.1.20

Suppose that S satisfies (Suff. 5.1.20). If Cu(-), x(-)>l

[0,T] is any input-trajectory pair of S, then in analogy with the

proof of Lemma 4.1.4 we obtain

p(x(t),u(t))dt =
0

fT

0

,T

<V<fr(x(t)),f(x(t),u(t))>dt

gf U(x(t)))dt

= 4>(x(T)) - 4>(x(0)) .

Therefore S is lossless.

Proof of Lemma 5.1.23

(5.1.20.2)

Q.E.D.

Let (xq,uq) g exU, and let x(«)|[0,«) denote the state
trajectory of S with x(0) = xQ which is generated by the constant in

put u(t) = u„. We have

<V*(x0).f(x0,u0)> '^SP
t=0

lim »(x(t))-»(x(0))
tn-0+ t

lim <fr(x(t))-*(x(0))
t+0+ z

= lim 1
t-*0+ t

p(x(t),u0)c!t

p(x0,uQ) . (5.1.23.2)

The last step in (5.1.23.2) is simply an application of the Fundamental

Theorem of Calculus, which is justified because the integrand is contin

uous. Q.E.D.
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Proof of Lemma 5.2.1

The Monotonicity Lemma 4.3.6 shows that the mapping
t

t -»• / h(x)dT - 4>(Y(t)) is monotone increasing; but it also shows
to t

that t -*- - [ / h(T)dx - <J)(y(t))l is monotone increasing. Therefore
to

e(«) is both monotone increasing and monotone decreasing, i.e., £(•)

is constant. Q.E.D.

Proof of Theorem 5.3.1

Assume that S is lossless. Let h(-,«) be the function

in Def. 3.1.2, and let (x0>u0) € Exu.

Suppose first that f(xQ,u0) = 0. Define (u(t), x(t)} =

{u0,xQ} for t € R. Then for all T > 0, {u(.), x(•)}|[0, T] is a

valid input-trajectory pair of S from xQ to xQ. The energy con

sumed by this input-trajectory pair is

/ p(x(t),u(t))dt = / p(xQ,u0)dt = p(xQ,u0)T ;

but this quantity must be independent of T, since S is lossless.

Thus p(xQ,uQ) = 0. This proves that (5.3.1.1) holds for all (x0,u0)£

ExU such that f(xQ,uQ) = 0.

Now suppose that f(xQ,uQ) f 0. Let Y0(*) denote the state

trajectory of S with Yo(0) = xQ which is generated by the constant

input u(t) = un. Choose TA > 0 such that Yg(t) i 0 for all

t£ [0, T'1, and let TQ e [0, T^] . Refer now to Lemma 3.1.7. Let

{u(-)» x(-))|[0, T] be any input-trajectory pair of S with

x(-)|(0, T] e <R[yq(-)|(0, Tq]] . Then, since S is lossless,

T T0
/ p(x(t),u(t))dt = / p(Yn(t),un)dt.
0 0 u u

This shows that
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T

inf {/ p(x(t),u(t))dt: x( •) |[0, T] £ <R[Yn(-)|[0, Tn] ]}
T>0 0 * u u

T0= / p(Y0(t),uQ)dt. (5.3.1.2)

From (5.3.1.2) and assertion (b) of Lemma 3.1.7, we have

/ P(Y0(t),u0)dt - / hLtt), 0J||t (t)||dt. (5.3.1.3)

Noting that yAt) = f(yn(t),un) for all t€ R+, (5.3.1.3) can be
0VV/ ,W0VW,U0

rewritten

To ,, ,x , / ,% f(Y0(t)'u0> \/Ip(Y0(t).u0) -hYo(t), ||f(Yo°(t),UQ)ll llf(Y0(t),uQ)l|]dt -0.
' (5.3.1.4)

Since (5.3.1.4) holds for all TQ £ (0, T^] , we conclude that

P(Y0(t),u0> "h|Yo(t). l|r(^(o\'ug)l|)l^^Q^)^Q)ll -0
for a.a.t e [0, T£] . (5.3.1.5)

Now let e >0, and choose 6 >0 such that ||y0(t) - xQ\\ <E for
all t€ [0, 6). Since (5.3.1.5) holds almost everywhere on [0, TAJ,

there exists ^ £ (0, 6] such that (5.3.1.5) holds at t = t,.

Define Xj =Yo^). Then by the choice of tj,

p(x1,uQ) =hfxT, .f(xl>u0) )„w
,)||. (5.3.1.6)

Thus we have shown that given (xQ,u0) € ExU and given e>0,

there exists Xj £ E such that ||x0 -xj| <e and (5.3.1.1) holds
at (x,u) = (xj.Uq). q.e#d.
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Proof of Theorem 5.4.2

Before proving necessity and sufficiency, we shall prove

that a function h:" E -»• ]R which satisfies p(x,u) = h(x)f(x,u) for

all (x,u) £ E x U is continuous at each nonsingular state. If a

state Xq is nonsingular, then there exists an input value un and

(by continuity) aneighborhood N(xQ) of xQ such that f(x,uQ) i 0

for all xg N(xQ). Thus h(x) =p(x,uQ)/f(x,u0) for all xG N(xQ),

which shows that h(-) is continuous at xn.

(Necessity). Suppose that S is lossless. Define D = {(x,u) e

ExU: f(x,u) f 0}, and define h: D + IR by

«x.u)*$(f#. (5.4.2.1)

We begin by proving that h(x,u) depends only on the first variable x

To obtain a contradiction, suppose that there exist (x0,u,),

(xQ,u2) £ D such that h(xQ,u1)i fi(x0>u2). Then two cases arise.

Case 1: f(xQ,u1) and f(xQ,u2) have the same sign. Assume that

ffxQjUj) >0 and f(xg,u2) >0 (similar arguments apply in the other

situation). By continuity, there exists 6>0 such that

f(x,u1) >0 for all x£ [xQ, xQ + 61 (5.4.2.2)

f(x,u2) >0 for all x£ [xQ, xQ + 6] (5.4.2.3)

fiU.Uj) 1 fi(x,u2) for all x£ [xQ, xQ + 6] . (5.4.2.4)

By (5.4.2.2), the constant input u(t) = u, will generate (for some

finite Tj > 0) a state trajectory x,(-)|[0, TJ of S from xQ to

xQ + 6. Now
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Tj pfXjftJ.U^ ./ pfx^tj.u^dt-/ T(jlm-U^x1(t)dt
Tl . xn+(S

= / RfxJtl^JxJtJdt = fv fi(x,u.)dx. (5.4.2.5)
0 xu xQ

The use of the Change of Variables formula in the last step of (5.4.2.5)

is justified because x.: (0, TJ + IR is C and the mapping

x -*. fi(x,u.) is defined and continuous on x,([0, T.])(22,p. 234,

Theorem 30.12]. Similarly, (5.4.2.3) shows that the constant input

u(t) = u2 will generate (for some finite T« > 0) a state trajectory

x2(-)|[0, TJ of S from xQ to xQ + 6; moreover,

T2 x0+<5~
/ P(x2(t),u2)dt = r h(x,u2)dx. (5.4.2.6)
0 x0

Since the integrands of the integrals on the right-hand sides of

(5.4.2.5) and (5.4.2.6) are continuous and unequal at each point of

the interval (Xq,Xq+6], it follows that the integrals themselves are

not equal. This contradicts the assumption of losslessness.

Case_2: fix^Uj) and f(xQ,u2) have opposite signs. For defi-

niteness, assume that fCxg,^) >0 and f(xQ,u2) <0. By continuity,
there exists 6 > 0 such that

f(x,u2) >0 for all x€ [xQ, xQ + 6] (5.4.2.7)

f(x,u2) <0 for all x£ [xQ, xQ + 6] (5.4.2.8)

h(x,uj) i fi(x,u2) for all xG[xQ, xQ +6] . (5.4.2.9)

Eqs. (5.4.2.7) and (5.4.2.8) show that there exists afinite T2 >0

and an input-trajectory pair {u(-).x(•)}|[0, T2] of S from xQ

to xQ with the following property: there exists T, € (0, T2) such
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that u(t) =u2 for t£ [0, Tj] ,u(t) =u2 for t£ (Tr T2] ,and
x(Tj) = xQ + 6. Thus

T? T, To
/ p(x(t),u(t))dt = / p(x(t),uJdt + / p(x(t),u9)dt
0 0 l 1 l

x0+6~, xn ~
= J h(x,u,)dx + / . h(x,u9)dxXq i xQ+(b ^

Xq+6
- f lfi(x,u.) -(?(x,u2)]dx. (5.4.2.10)

x0

Since the integrand of the integral on the right-hand side of

(5.4.2.10) is continuous and nonzero at every point of the interval

[Xq, Xq + 6], it follows that the integral itself is nonzero. This

contradicts the assumption of losslessness, since (u(-),x(-)}|[ 0, OJ

is a valid input-trajectory pair of S from 'xQ to xQ which

(unlike {u(•),x(-)}|[ 0, T2] )consumes zero energy.

Thus h(x,u) depends only on x. If pr_(D) denotes the pro

jection of D onto E (i.e., pr_(D) = {x £ E: 3u€ U such that

f(x,u) i 0}), then there exists a function h: pr„(D) -»• R such

that

h(x) =h(x,u) =|||^| for all (x,u) £D. (5.4.2.11)

Note that pr (D) is precisely the set of all nonsingular states of S.

We shall define h(-) arbitrarily at singular states. From Theorem

5.3.1, we know that p(x,u) = 0 at all points (x,u) £ E x U such

that f(x,u) = 0; hence, p(x,u) = h(x)f(x,u) at all (x,u)£ ExU.

(Sufficiency) Suppose that there exists a function h: E •*• P

such that p(x,u) = h(x)f(x,u) for all (x,u) G E x U. Let

{u1(-)Jx1(.)}|[0, T^ and {u2( •) ,x2( •)} |[ 0, T21 be any input-

trajectory pairs of S for which x,(0) = x2(0) = a and x^T^) =
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x2(T2) = b. We will show that S is lossless by showing that the

energy consumed by (u^-) ,Xj( •)} |[ 0, T^ equals the energy consumed

by {u2(-)»x2(-))|[0, T2]. There are three cases which arise.

Case 1: a is singular. Then a = b and both state trajectories

are constant. We have

Tl Tl
/ p(x1(t),u1(t))dt= / h(a)x,(t)dt = 0 (5.4.2.12)
0 L 0 l

and

T2 T2
/ P(Xo(t),u0(t))dt= / h(a)x9(t)dt = 0, (5.4.2.13)
0 L c 0 L

since xAt) = x2(t) = 0.

Cas e 2: a and b are nonsingular. It follows that x,(t) is

nonsingular for all t£ [0, T^ (otherwise, the condition xJT^ = b

would be impossible). Thus

Tl h
f p{xAt),uAt))6t = / hfxJtJWtJdt
0 l 0 A

b

= / h(x)dx. (5.4.2.14)
a

The use of the Change of Variables formula in (5.4.2.14) is justified

because xA') is absolutely continuous and h(-) is continuous on

x^tO, TjlHlS.pp. 95-96, Theorem 1.4.42]. Likewise,

To b

r p(x9(t),u9(t))dt = / h(x)dx. (5.4.2.15)
0 c L a

Case 3:, a is nonsingular but' b is singular. Assume that

b > a (similar arguments apply when b < a). Define T* =

inf(t € [0, T^ : x,(t) = b). Since b is singular and x,(-) is

continuous, x^[t) = b for t£ [T*, TJ ; moreover, xJt) < b

for t € [0, T*). Now
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Tl Tl
/ pfxWtJ.uJtJJdt = / hUJt^xJOdt
0 i 0 L x

T*

= / h(x,(t))x1(t)dt
0 l l

T

= lim / hfxJtJJxJtJdt
T+T* 0 x A
T<T*

xi(T)
= lim / h(x)dx

T+T* a

T<T*

z

lim / h(x)dx.
z+b a

z<b (5.4.2.16)

The second step in (5.4.2.16) follows since x,(t) = 0 for t£

(T*, TJ, and the third step is justified because the integrand is

bounded on [0, T*J. The fourth step is a consequence of Case 2,

which applies because x,(T) is nonsingular for T£ [0, T*), while

the final step follows since x.(T) •+ b as T -• T*. Similarly,

T2 z
/ p(x9(t),Up(t))dt = lim / h(x)dx. (5.4.2.17)
0 L L z-b a

z<b

In all three cases we have shown that

Tl T2
/ p(x1(t),u1(t))dt = / p(x9(t),Uo(t))dt; (5.4.2.18)
0 i A 0

therefore, S is lossless. Q.E.D.
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