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1. Introduction

The load flow or power flow equation is a system of nonlinear simul-
taneous equations expressing the equality between power demand and supply
at each node or bus of a transmission network in steady state synchronous
operation. Understanding of the power flow equation is essential since
it is responsible for the most significant nonlinearities encountered in
transient and dynamic stability analysis, economic dispatch studies, and
in security assessment and planning excercises.

Because of its central significance much effort has been devoted to
the development of numerical methods for solving the power flow equation
(see [10] for a review). By comparison scant attention has been given to
the analytical investigation of the power flow equation, the references
[2,4,6,11,12] and some additional work cited there include, we believe,
all reported studies. This low level of effort is unfortunate since, as
Galiana [4] has pointed out, analytical developments have sometimes suggest-
ed faster and more efficient algorithms, and can provide qualitative
insights which escape the more numerically oriented approaches.

In this paper we present the results of our. study of the power flow
equation. The study is limited to lossless transmission networks consisting
of PV buses only. Under this assumption, the power flow function f expresses
the vector p of net real power injections at the various buses in terms of

the vector 6 of bus voltage angles, giving the power flow equation
p = f(e).

The problem is to solve this equation for 6 when the value for p is specified,
in other words, we wish to "invert" the function f. This inversion is diffi-
cult since the nonlinear nature of f is such that for a given p either there

is no solution 6 of the power flow equation, or there exist several solutions.



If we attempt to understand these difficulties from a mathematical view-
point, then we are led to differentiate between the study of f in its

global and local aspects. The former are relevant to questions about the

size and shape of the range of f. The latter deal with the behavior of

f in a small neighborhood. As an example of a local property, suppose

f(eo) = Pys We know from the Inverse Function Theorem that if the Jacobian
Sf(eo)/ae is a nonsingular matrix, then as p varies continuously starting

at Po? there is a unique solution 8 = 6(p) which varies continuously
starting at 60. (Indeed the success of numerical methods depends upon this
fact.) Now if af(eo)/ae is singular, then the solution 8(p) may not exist,
or may not be unique. If one could tell in advance which of these different
behaviors occurs, then such information could be used to design better numer-
ical techniques.

The differentiation between local and global properties of the solutions
of the power flow equation stems from differences in mathematical techniques.
Consideration of -generator dynamics show that certain vectors 6 correspond
to stable voltage configurations and so we want to distinguish between stable
and unstable solutions. |

The results presented below are concerned with global and local pro-
perties of the stable solutions of the power flow equation. In section 2
we obtain a convenient representation of the function f and its derivatives,
define the region of stable solutions, and describe the global properties.
Also examples are given to ceunter what-seem to be plausible conjectures.
Section 3 examines local properties through a study of fold and cusp
bifurcations of the flow equation. Section 4 1ists some conjectures. In
a companion paper [15] the complete local and global behavior of a 3-node

network is given.



2. Global Properties

This section begins with a convenient representation of the power
flow function, then defines the stable region and obtains some global

properties.

2.1 The power flow function

Consider a transmission network consisting of n + 1 buses or nodes.
Taking the (n + 1)st bus voltage angle as reference, denote the voltage

phasor at bus i by

V; exp(jei), i=1,...,nt,

where, by definition,

6 = 0.

n+l

Then the real power injected into the network at bus i is given by (see

[2,3,11])

n+l
p; = jgl ViV;Y¥s; sin(e;-e,), i=1,...,n, (2.1)

where in = Y;. >0 is the admittance (susceptance) of the lossless

iJ
transmission 1ine joining buses i and j. Since the magnitudes Vi are

assumed fixed, without losing generality suppose that

V. = 1, i=1,...,n+1,

Finally, observe that in (2.1) at most n of the p; can be independently

assigned since Ppteee*Ppyy = 0. Using these facts we define the power

flow function f = (f],..., fn): R" » " by



n+i
p'l = fi(el,...,en) = jZ] Y.ij Sin(e.i"ej)s is= 130--:n (2'2)

where 6,47 = 0. Denote the vectors 6 = (61, cees en) and p = (p], cees pn).
The function f is periodic with period 27 i.e., if 6, ¢ are such that

0; - ¢; = 0(mod 2w) for amy i, then f(8) = f(¢). Henceforth we restrict
the domain of f to the set

™ = [-n,m]"

with 7 and -7 identified. In particular when we say the f(8) = p has a
certain number of solutions 6 we only consider 6 € .

It will be convenient to derive an alternative expression for f.
The graph of the transmission network consists of n + 1 nodes and there
is a branch joining nodes i and j if and only if Yij'> 0. Suppose there
are b branches indexed £=1, ..., b. Let A denote the n x b reduced
incidence matrix of the graphltaking node n + 1 as reference, and Y denote
the b x b diagonal matrix with the &th entry Yij if branch £ joins nodes
i and j. Then, as can be verified directly, an alternative expression

for the power flow function is

f(o) = AYs(ATe), (2.3)

b

where for y := ATe € Rb, s(y) € R° is defined as

s(yp) := (sinw],...,sinwb). (2.4)

It is assumed throughout that the network is connected so that A has
rank n.
Notation For y € R 1et S(v), respectively C(¢), denote the b x b

diagonal matrix whose fth entry is sinnqz,respectively cos ¥, .
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The usefulnes of this notation and the representation (2.3) comes

from the next result which is obtained by direct calculation.

Lemma 2.1 Fix 06 €T" and § € R". Let 6, := 6 + t&(mod 2r). The

directional derivatives fk(a) = akf(et)/atklt___o, k > 1, are given by

£1(5) = AY[C(ATo)]As,
£2(s) = -AY[S(ATe)](ATs)2
£3(8) = -AY[C(ATe)](ATs)3,

#4(8) = AY[s(ATe)I(ATe)?, etc.

T

Here if ¢ := A'§, then (AT&)k = (xp']‘, cees ap’g).
From the Temma it follows that the Jacobian of f at 8 is the n x n

symmetric matrix

F(e) := 3 = avc(aTe)a’. (2.5)
From this expression we see that F(8) can be interpreted as the node

admittance matrix of a linear resistive network with conductance of branch ¢

connecting nodes i and j equal to Yij cos(ei - eJ.) (see [1]).

2.2 The stable region

We write F(8) > 0 or F(8) > 0, according as it is positive definite
or positive semi-definite. 6 € T" is said to be stable if F(8) > 0, and
let ®s denote the stable region. If o & @S we call it unstable. We
briefly indicate the reason for the term ‘stable'. Suppose to each bus
i=1, ..., nis attached a generator and suppose bus n + 1 is an infinite
bus. Then the motion of the generators is governed by the so-called

“swing" equations [29],



M].ei+01.e1. = pi-fi(e), i=1,...,n. (2.6)

Here Mi’ respectively Di’ is the moment of inertia, respectively damping
constant, of the ith generator; and P; is the mechanical power input to
the generator minus the electrical load at the ith bus. Evidently then,
the state (8,6) is an equilibrium if and only if & = 0 and f(6) = p. If
the equation (2.6) is linearized around an equilibrium (6 = 0,8), then

it can be directly verified that the eigenvalues of the linearized system
1ie in the open left-half plane (which implies that the equilibrium is
Lyapunov stable) if and only if F(8) > 0. A more delicate argument can
be used to arrive at the same conclusion even when some of the buses are

load buses (see [9]).

2.3 Geometric properties of GDS

The preceding remark-impiieﬁ that in the steady state the transmission
system must operate at a stable equilibrium, and so the shape of the stab]g
region is of interest. Certain "positive" properties of QDS are obtained
by comparing it with various polytopes of ™; the main “negative’ and possibly :

surprising conclusion is that GDS may be disconnected.

Definition (@, is the set of all 8 in " such that (i) |ei - ejl j»%(mod 2m)
whenever Yij > 0 and (ii) the set of all branches (i,j) such that Y{j > 0 and

|ei - ej| = %(mod 2m) do not form a cut set of the network graph.

The next re§u1t is known [11]. We give a different proof.

Lemma 2.2 ®, C GDS.
Proof F(8) = AYC(ATe)AT and if 8 € @, then the diagonal matrix YC(ATe)
has non-negative entries and so F(8) > 0. Hence F(8) > 0 if and only if

det F(8) > 0. Now F(8) is a node-admittance matrix of a linear network



and so by the Seshu-Reed result [1],

det F(8) =} @ Y.. cos(6:-6.)
T (i,§)e M v
where the sum is over all trees T of the graph. Since each conductance
is positive, det F(6) = 0 only if in each tree t there is a branch (i,j)
with cos(ei - eJ.) = 0, i.e. there is a cutset of branches with |61. - ej| =

;—(mod 2m). n

Lemma 2.3 Let 6 be stable and let ¢ = (¢], cees ¢n) # 0 be such that

for each i,6; = 0 or ¢; =w. Then (6 + ¢) is unstable.

Proof Suppose for some O < k < n, ¢; =m for i <k and ¢, = 0 for
k<i<n. Let x= (x1, cees xn) be such that x; =1 for i <k and x; =0

for k < i < n. From (2.5),

n+1

T 2
X F(8)x 1.,le(xi xJ.) Yij cos(ei eJ.)

k n+l

i1 gebn 13

since 6 is stable. (Here and below Xn+1 = 0, erg-l-'l = 0.) On the other hand,

Teerox =2 § (6,+1-6,) = -x'F(8)
X F(o+p)x = Y.. cos(B,+m-08.) = -x F(8)x < 0,
? izl j=E+1 1 v

SO 6+ ¢ is unstable.

Call 6 + ¢ a m-translate of 6 if the two vectors are related as in
the statement of the lemma. Each stable 6 has 2" - 1 distinct = - translates
so that we can say that ®s occupies approximately the fraction 1 of

on
the volume of Tn.



Definition [11] The principal polytope QDp is the subset of all 6 in
T
@, such that |ei - ejl < 7 whenever Yij > 0.

The power transmitted over a line is |Y1j sin(ei - ej)l and so its
maximum value is Yij' This value usually exceeds the thermal capacity
of the 1ine and so under normal operating conditions |sin(ei - ej)l <1.
In turn this usually implies lei - ejl < %-i.e. 8 € GDP. GDP is convex
by definition and stable by Lemma 2.2. Another attractive property is

that f is one-to-one on QDb. This is a corollary of the next result.

Lemma 2.4 [2] For 6Xe€T", k=1, 2 let v¥ = (wﬁ, e ) = AToK.

Suppose for each %, I"’I;,I < Izr-and wie (-m - wl, ™ - lP,]L)- Then
f(a') # £(6%) if o1 # 62,

Proof From (2.3),
(f(e)-F(6))T(87-02) = (Avs(v!)-Avs(v?))T(6"-02)

(Ys(v!)-vs(v2)) T (' -4?)
) Yo (sin wl-sin wi)(w}-wi).

Suppose |wll < %u Then sin wl < sin wi if wl < wi <T - WL, and
.2y 1 2
sin yo) (¥, - vy) >0

1 62, and the

sin wl > sin wi if wl > wi > - = wl; hence Z Yz(sin wl

unless w] = wz. 2

Since A has rank n, w] =~ implies ©

assertion follows. . H

Corollary 2.1 The power flow function f is one-to-one on GDp.

Proof If 6“ € ®p’ k =1, 2 then by definition |w§] _<_% and so the

lemma above applies.

For a specified power demand vector p therefore, the power flow

equation f(6) = p has at most one solution in GDP. It might be conjectured



that there is at most one solution in the entire stable region B 5. An
example due to Korsak [6] shows that to be false. We analyze this example

further to show that the stable region can be disconnected.

Example 2.1 Consider the 5-node loop network of Figure 1 in which all

Yij = 1. Then

[sin e]+sin(e]-92) A
f(e) = sin(02-61)+sin(62-93)

sin(e3—62)+sin(e3-e4)

Lsin(e4-e3)+sin 94 ]

F::os 0]+cos(e]-62) , --cos(61-ez) 0 0
F(8) =]  -cos(8;-6,) : c0s(8,-67 )+cos (8,-6,) -c0s (8,-6,) 0
0 -cos(62-63) cos(ez-e3)+co§(e3-e4) -cos(93-94)
| 0 0 -cos(e3-e4) cos(e3-e4)+cos 8,
Let 92 := 0 and e] = (%ﬂ, gﬁ, -%ﬂ3 -%ﬂ, 0). Direct verification shows

that f(e]) = f(ez) = 0 i.e. both solutions give zero net demand. However

0!

yields a “"circulating" power. Direct verification also shows that
F(e]) >0, F(ez) > 0 so that both solutions are stable.

Consider now any continuous curve 6(t), 0 < t < 1 such that 6(0) = o)
and 98(1) = 62 mod(2m). It will be shown that for some t,8(t) must be
unstable. The proof is based on the observation that if F(e) > 0 then
none of the angle differences |ei - ei+1| can equal w(mod 2w) (here 85 = 0),
because otherwise one of the diagonal éntries of F(8) will become zero or

negative. Since 6(0) = e], the observation implies that e(t) is stable for




all t only if

-T < e](t) <m, _ . (2.7a)
~T < ez(t)-e](t) <, (2.7b)

T < ez(t)-e3(t) < 3m, (2.7¢)
-7 < 93(t)‘94(t) < T, (2.7d)
=T < 8,(t) < m, | (2.7e)

for all t. Since 6(1) = 0(mod 2w), therefore, (2.7a), (2.7b) imply
6](1) = 92(1) = 0, and (2.Zd), (2.7e) imply 63(1) = 64(1) = 0, and so (2.7¢)
cannot be satisfied. It is thus impossible to control the system in such
a way as to eliminate the circulating power (corresponding to e]) without
going through the unstable region.

The example shows that in general the stable region is a union of
disjoint connected components. Under normal conditions 6 1ies in the

connected component containing the origin which following [11] we call the

principal component and denote it by QDC.

Evidently QDP C GDC. It has been conjectured [1i] thath(:is convex.

A partial result in this direction is given next. Define the polytope

" Moy o
@, := {8 €T7| |o5-65] < whenever Y;,>0}.

Lemma 2.5 Let o € (H)" N ®S. (the closure of ®s). Then for 0 < e < 1,
€0 € (H)S.

Proof From (2.5), for any vector x € R
T n+l 2
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where, as usual, x ., =0 and 6 ., = 0. Suppose x # 0. Since lei - ej| <,

n+l
therefore cos(e(ei_- ej)) > cos(ei -ej) for 0 <e <1 andso

xTF(ee)x > xTF(e)x >0
where the last inequality holds since 6 € GDS implies F(8) > 0. ﬂ

2.4 Topological properties of QDS

In this section the study of QDS is based on the derivatives of the
flow function. The main result shows the intuitive property that the
farther a stable 6 is from the boundary of GDS the larger its margin of
stability - the margin of stability being measured by the smallest
eigenvalue of F(9).

The next Temma is preliminary.

k.

Lemma 2.6 For 1< k<n let e := (0, ..., 1, 0, ...0)7 be the kth unit

vector. Let x, y in R" and 6 in T" be arbitrary. Consider the function
g (t) == yTF(e+tek)x.
Mgy .o 2% -
Suppose e (0) := 5t |t=0 = 0. Then
gk(t) = gk(0)+g(2)(0)cos t, for all t.

Moreover, kg]Agéz)(O) = -gk(0)= :yTF(e)x.

Proof Setting Xn+1 = Y41 = Opeq = 0 as usual, and using Lemma 2.1, we

obtain

n+1
gk(o) = 1’§=1(xi'xj)(yi-yj)yij COS(Gi-Bj),

-11 -



g|(<2r+1)(0) %J( -l)l’"ﬂ(x -X )(,Y y )(ek §)2H]Y1j s1n(61~93),

gt (0) = PAGIYCREIE -y;)(ef-e5)2r; s cos(e;-8,).

Y33

2r _ (ek _

. k ki2r+1 _ K k
Since (ei - ej) = ;

k k ky2
ei-ej,rio,and(ei-ei) ej),r_>_1,

the preceding expressions simplify as

0 = (-0"gB0), v,

9£2r+])(0) = (-1)rg£])(0) =0, by hypothesis,

and so

g (t) = g (0)+g, 2 (0)F LILE ;’,t = g(0)+g, (2 (0) cos t.

Finally, since

0k k2
) (ei-ej) =1, for all i,j except i = j,
k=1

therefore

% (2)(0) = - L (x; ~%3)(y;-y;)¥;; cos(8;-85) = -g, (0) n
k1 k- it Yiv; i7%) = -9 9.

The next 1lemma is key to the succeeding results.

Lemma 2.7 Let UC T" be an open set. Let M(8) [m(6)] denote the
maximum [minimum] eigenvalue of F(6). Suppose M(0)[m(6)] achieves a
maximum [minimum] value M [m] in U. Then M > 0 [m < 0].

Proof We only prove M > 0, the proof that m < 0 is similar. Lete € U be
such that M(8) = M, and let x # 0 be the corresponding eigenvector of
F(6). Then for t so small that (o + tek) e u,

-12 -



05 g ()2 := xFlorteX)xT x| 2,

0 = g,(0)-Mx|?,

where |x|2 = xTx. Therefore,gk(t) achieves a local maximum at t = 0, so
9,((”(0) =0

and
g{2(0) < 0

By Lemma 2.6

02 § 9700 = 5,(0) = -Hix[?,

which gives
M> 0.

Suppose, contrary to the assertion, that M = 0. Then gk(O) =0, géz)(o) = Q,
and so by Lemma 2.6 gk(t) = 0. Moreover M(8) < M= 0 implies F(8) is negative

semi-definite and so gk(t) = 0 implies

F(e+tek)x =0, for all k and t.

k
u

with-eﬁ replacing 6 leads to the conclusion that

Now consider any 9 := (o + uek) € U, Applying the same argument as above

F(65+tej)x =0, for all j and t

Proceeding in this way one finds
F(¢)x = 0

- 13 -



for all ¢ in a neighborhood of 8. Since F(¢)x is an analytic function of
¢ this implies F(¢)x = O for all ¢. But we know from Lemma 2.2 that
F(0) > 0 and, so F(0)x # 0. Hence M > 0 as asserted. n

If 6 is stable, it is reasonable to interpret the smallest eigenvalue

m(6) of F(6) as the marqin of stability at 6. As a corollary of Lemma 2.7

we have the following intuitive result.

Corollary 2.2 Let U C GDS be an open stable set, B its boundary and
U=UUB its closure. Then the minimum of m(6) as 6 varies over U is
achieved only on B.

Proof If the minimum is achieved at 6 € U, then by Lemma 2.7 m(6) < 0.

But 6 is stable and so m(e) > 0. X

The preceeding corollary would be more appealing if we know that GDS
is a 'solid' open set i.e. there are no lower dimensional unstable sets
'inside’ QDS. Mathematically this means that QDS equals the interior of
its closure. The proof of this needs an intermediate step. Let QDO denote
the collection of all 6 such that F(8) is positive semi-definite but not

positive definite.

2

Corollary 2.3 Every neighborhood of 6 € GDO contains 8! and 6% with

M(e]) > 0 and m(ez) < 0.

Proof Immediate from Lemma 2.7. n
Corollary 2.4 QDS is the interior of GDS.

Proof Observe that QDS C'(EDS LJQDO and then use Corollary 2.3. n

We close this section with a couple of results dealing with the

boundary of GDS. Call B, the boundary of the stable region. Evidently

-14 -



Bs CZQDO, and it is reasonable to conjecture equality. The next example

shows this to be false.

Example 2.2

Yij = 1. Then
[sin e]+sin(e]-62) ]
f(e) = sin(6,-6; )+sin(6,-6,)
_sin(e3-62)+sin 6, ]
[ cos 8,+cos(6,-6,) 'c°s(e1’62)
F(e) = -60569]-92) cos(e]-62)+cos(62-e3)
B 0 -c0s(6,-6)

Consider the 4-node Toop network of Figure 2 in which all

0

-cos(ez-e3)

cos(62-93)+cos 93

It can be verified directly that F(8) vanishes at 6 = ¢ := (%3 T, -%).

Hence ¢ € QDO. Then at 8 = ¢ + § one gets

-sin 6]+sin(6]-62) -sin(61-62)

F(¢+8) = -sin(61-62) sin(6]-62)+sin(52-63)

0

-sin(62-63)

If F(¢ + 8) > 0 then its diagonal entries must be positive.

sufficiently small, and consider two cases.

0
-sin(62-53)

s1n(62-63)+sin 8

Suppose § is

Case 1 8 > 0. Then -sin 8 + sin (6] - 62) > 0 requires 62 < 0. But

then sin (62 - 63) + sin 83 < 0 for all |63| < ]Gzl. Hence (¢ + &) is

unstable.

Case 2 67 < 0. Then -sin 6] + sin (6] - 62) > 0 also requires 8, < 0,

and so once again (¢ + &) is unstable.

- 15 -
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This proves that ¢ & BS.

This example shows that @0 may be strictly larger than Bs' This
suggests that it may not be possible to analytically describe the boundary
Bs. However, we can get a partial result as an immediate corollary of

Lemma 2.5.

Corollary 2.5 ®0 NP, = B, N ®,.

The next example shows that the boundary BS may have "corners".

Example 2.3 Consider the 3-node series network of Figure 3 in which the
_ . : - m

Yij = 1. It is straightforward to check that @ = (6] 187 - 85| <5

and [6,] < %}, and that

= = =T T - T = L

This boundary has four corners at 8, = 0, 6, = 112'- and 6; = 6, = ig-.

Observe that at each of these corner points F(6) vanishes i.e. F(6) has
more than one zero eigenvalue. The last result of this section clarifies

this further.

Lemma 2.8 Let g € @0 be such that F(e) has exactly one zero eigenvalue.
Then there is an open set U containing 6 such that U N ®0 is an analytic
set.

Proof Let d(8) := det F(9). We claim that there is an open set U
containing 6 such that ®0 NU-={8] d(e) = 0} NU. If this is false

then there is a sequence ek + 0 with ek ?@0 and d(ek) = 0. The eigen-
values of F(ek) can be arranged as A'{ < ... < J\t < xl:,H =0<... < x":

and r > 1 since ek & @0. As k - » we must have Al{ + 0 and so F(eo)

has at least r + 1 > 2 zero eigenvalues, contradicting the hypothesis.

The assertion follows since d(6) is an analytic function. "

-.16 -



2.5 Solutions of f(8) = p

It is shown first that the number of solutions to the power flow equa-

tion isusually even, and that the number of unstable solutions exceeds the
number of stable solutions. Then an example is given in which the equation
has no stable solution even when it does have an unstable solution.

For any power demand vector p, let @(p) be the set of solutions 6
in TV of the power flow equation f(6) = p. Say that p is regular if
det F(8) # 0 for all 6 in @(p). It is easy to see that if p is regular
then @(p) is finite and so we can define the degree of f

d(#5p) = ian (o).,
" i

where sign F(6) equals +1 or -1 according as det F(8) > 0 or<Q. It is
known [13] that for T" the degree is zero independently of f. This gives

the next result.

Lemma 2.9 If p is regular then @(p) contains an even number of solutions.
Also the number of unstable solutions is at least as large as the number

of stable solutions.

Proof The first assertion is immediate since d(f;p) = 0. The second

assertion follows from this and the fact that sign F(8) = +1 if 8 is stable.

Example 2.4 Consider the 6-node loop network of Figure 4 in which the

Yij = 1. Then f;(8) = sin (e, - 8i41) + sin (8; - 6, 1), 1 < i <5, where

69 = Bg = 0. Let
O _/m=m , = T
6" = (f: i) 0, ) %)

corresponding to which is the power demand vector

-17 -



p0 = f(eo) = (1+sin‘33 0, -lésin~53 1+sin 33 O)T.
a 4 g
- Observe that

8(e) = (z-¢, o 0, 3-c, )T

is in the principal polytope for 0 < ¢ < gu hence it is stable. It follows

that 90 is on the boundary of the stable region.

04 ¢(1,0,0,0,07. Itis shown in section 3.3 that

Let pt = p
there is a neighborhood Ne of 60 such that for t > 0 sufficiently small,
the only solution in Ng of f(e) = pt is unstable. Let tn > 0 be a sequence
decreasing to zero and let f(e") = pt". Suppose " converges to 6, and
suppose 6 1is stable. Then 6 # o0 (since 8" & Ng for all n), and f(8) = pO,
F(6) > 0. It can be shown by.a direct, but lengthy calculation which is

omitted here that this is impossible. We state this as a lemma.

Lemma 2.10 There exists T > 0 such that for 0 < t <, f(9) = pt has no
stable solution.

Thus there exist power demand vectors which can be met by unstable

solutions but by no stable solution.
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3. Local Properties

This section is devoted to a study of the qualitative changes in
the solution of the flow equation f(6) = p as the demand vector p is
varied. It is believed that this study will lead to better understanding
of the behavior of numerical algorithms for solving the flow equation.

These algorithms are often based on continuation methods in which one

seeks to obtain in a sequence of steps a solution & of f(8) = p starting

Vot (o) = p.

of f(e)

with a known solution o
i+1

At the ith step, i =1, 2, ...,
i+
p‘ 1

one finds a solution 6 starting with ei and using
a locally convergent algorithm such as Newton or Gauss-Seidel. To guar-
antee success of such a continuation method the "step size" Ipi+l - pil
must be small and, of course, (pi, ei) must converge to p, 6.

Let (o, p) satisfy f(8) - p = 0. Suppose F(8) is nonsingular. By
the Inverse Function Theorem there are neighborhoods Ne of 8 and Np of p

and a function g: N+ N such that f(8') - p' and (8', p') is in Ne x N

p
if and only if 6' = g(p'). In other words if F(8) is nonsingular, there

P

is locally a unique continuation starting at (6, p). Suppose however
that F(e) is singular. Then there may still be a unique continuation
so that the local behavior is similar to when F(8) is nonsingular; but
it is also possible that there is no continuation or that it is not
unique. In the latter case the qualitative behavior has changed - one
then says that p is a bifurcation point. It may be worth noting that
computationally, a bifurcation may reveal itself in numerical instability
as the surface det F(0) = 0 is approached.

It is clear that the study of bifurcations of the flow equation
requires a study of the second and higher derivatives of the flow function.
We begin by recalling from Hale [5] (see also [7]) the necessary results

from bifurcation theory, and then apply them to the flow function. The
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6-node network of Figure 4 is then examined as an illustration.

3.1 Some results about bifurcations

Let x, A denote vectors in R" and let g: R" > R" be twice differen-
tiable. Let G(x) := %g (x) denote the Jacobian of g. Consider the

equation
g{x)-x = 0, ‘ (3.1)

and suppose (xo, Ao) satisfies (3.1).
Suppose G(xo) is a singular matrix of rank n - 1. Then one can find

nonsingular n x n matrices [Piw] and [Q; z] with w and z in R" such that

QTG(xo)P is nonsingular,
zTG(xo) =0,

a(x%)w = 0.

Equation (3.1) can be "decomposed" as

Q'g(x)-Q'A = 0,  z'g(x)-z'A = 0. (3.2)
Define

pe=Qae ™, 0= gl

p := ZT)\ eErR , po = ZTA_O.

We also represent x in R by

X := Pytuw

n-1

where y € R" ', u € R. With this choice of coordinates (3.2) can be

rewritten as
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Q" g(Py+uw)-u = 0, (3.3)
zTg(Py+uw)-p = 0. (3.4)
0 0 . . 0o_,.0 0 .

Let y°, u (necessarily unique) be such that x~ = Py" + u'w. Equation

(3.3) 1is well behaved, since by the Implicit Function Theorem there is

0 0)

a neighborhood N of (yo, u, u ) and a function y*(u, p) such that

¥ = (0,0,
Q'g(Py+uw)-u = 0 in N = y = y*(u,u) (3.5)

Next, rewrite (3.4) as

2" g(Py*(u,u)+uw)-p = 0.
Define

h(u,u) := 2! g(Py*(u,u)+un),

x*(u,u) = Py*(u,u)+uw;

x+(u) = x*(u,n0)

Then x*(uo, uo) = xo. Equation (3.4) is now written as

h(U,]J)‘D =0 (3~6)
Note that h(uo, uo) - po = 0. Also

Situsw) = 27600 () P2 (u ), (3.7)

and so
B0 =0,

since

o
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Further differentiation of (3.7) yields

2 . <
i-g-(u",u% = 2T 2160x4(u)] uo[p%lu-(u",uo)m] (3.8)

Next, from (3.5),

Q" g(Py*(u,u)+uw)- = 0,

so, differentiation with respect to u gives

Q" (ex(u.) P o} = .
Since G(xo) w =0 and QT G(xO) P is nonsingular, this implies

220,10 = 0. (3.9)
Using this in (3.8) gives

2
3h, 0 0y _ _Td *
—-—auz(u ) = 2 5-1G(x*(u))] uow. (3.10)

Denote

o= 202760 (u) 1)

1im -—J-ﬁ{zTe(x*(u))-zTG(x*(uo))]

u+u0 u-u

1im ——175 276(x*(u)),

u+u0 u-u

since

zTG(xo) = 0.
Write
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x*(u) = x0+(u-u0)x]+0(u-u0).
Then

¢T = lim zTG(x0+ux]). (3.11)
w0

Also, by definition

x*(u) = Py*(u,0)+uw
= x0+(u-u0){P%%;(uo,uo)+w}+o(u-u0).
Hence,
] = P 0,u0)+w = W, using (3.9).

Substituting this in (3.11), and the latter in (3.10), gives the desired

formula,

2
g_%(uo’uo) = lim{% zTG(xo+uw)y} (3.12)
ou w0

The preceding manipulation which is known as the Liapunov-Schmidt

procedure has accomplished the following. We start with a system of n
equations (3.1) in the n 'variables' x and n 'parameters' ). These
equations are decomposed into a system of (n - 1) equations (3.3) and a
single equation (3.4); the parameter A is correspondingly split into

u € R"'] and p € R; and the variables x into (n-1) variables y and a
single variable u. The equation (3.4) is well-behaved and we can 'solve'
for y as in (3.5), substitute it into (3.4) giving a §igglg_equation (3.6)
in a single variable u. Since both h and Eﬂ'-vamsh at (u s U ),

h is known as the bifurcation function. If we can evaluate QEQ

2’
which is given by (3.12), then considerable information can be ob-

tained as Theorem 3.1 indicates.
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Suppose

2

a 2 P49 # 0. ~ (3.13)
ou

Then in a sufficiently small neighborhood of (uo, uo) there is a unique

u*(u), with uO = u*(uo) such that —D(u, u)=0 at u = u*(p); that is h(u,p)

)
au
considered as a function of u has a maximum or minimum at u*(u) according

as the sign in (3.13) is negative or positive. Let

n () := h(u*(u).u)

and note that n(uo) - po = 0. (In the statement below it is assumed that

n(u) is the minimum value. If it is a maximum replacen -p by -n +p.)

Theorem 3.1[5] Suppose condition (3.13) is satisfied. Then there is

neighborhood N of (xo, Ao) ~ (xo, uo, po) and a continuously differentiable

function n(u), n(uo) - po

= 0, such that the following conclusions are
satisfied in N:

(i) Equation (3.1) has no solution ifn(u) -p > 0,

(i) Equation (3.1) has exactly one solution ifn(p) - p = 0,

(iii) Equation (3.1) has exactly two solutions if n(u) - p < O.

0 or the pair (xo, AO) where the equation (3.1)

The parameter vector )
behaves in the manner described above is called a fold bifurcation point.
The behavior of (3.1) in a heighborhood of a fold is illustrated in
Figure 5. For A < Ao, (3.1) gives two well-behaved solutions, which

coincide at )\ = xo 0

» and for X > X\~ there is no solution. Theorem 3.1
may be seen as a generalization to the vector case of the behavior of the
parabolic equation x2 - A = 0 near (0, 0).

Suppose now that
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2 3

g—-zh(uo,uo) =0 and 2—%(u0,u0) <0 (3.14)
ou au

Then %%—(u, p) has a unique maximum value, call it Yo(u), in a neighborhood

of (uo, uo). If~y0(u) > 0, then h(u, u) regarded as a function of u has

a unique local maximum, say Y](u), and a unique local minimum yz(u) in a

0y, Let Y(us p) := (yq(w) - p) (v,(u) - o). [With
obvious changes the.result below holds when 33h/au3(u0, uo) > 0.]

neighborhood of (uo, u

Theorem 3.2[5] --Suppose condition (3.14) is satisfied. Then there is a

neighborhood N of (xo, AO) ~ (xo, uo, po) and two continuously differen-
tiable functions yo(u), v(us p), Yo(uo) = y(uo, po) = 0, such that the
following conclusion is satisfied:
(i) 1If yo(u) < 0 there is a unique solution of equation (3.1),
(ii) If yo(u) > 0 then y(u, p) is defined and

(@) y(us p) > 0 implies one simple solution of equation (3.1),

(b) y(u, p) = 0 implies one simple and one double solution of

equation (3.1),
(c) y(us p) < 0 implies three simple solutions of (3.1).

If yo(u) < 0 for all u near uO

0

» then by (i) above there is no

bifurcation. Otherwise A" is said to be a cusp bifurcation. The behavior

of (3.1) near a cusp is illustrated in Figure 6.

Observe that if yo(u) < 0 for u near uo

0).

then %%(u, u) < 0 for all
(us u) near (uo, u This gives the next result which will be used in

Section 3.3.

Corollary 3.1 Suppose condition (3.14) is satisfied and suppose there
are points (u, p) arbitrarily close to (uo, uo) where'%g(u, u) > 0. Then

AO is a cusp.
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Theorem 3.2 can be seen as a generalization to the vector case of

3

the behavior of the equation x” + ux + p = 0 near (x, u,p) = (0, 0, 0).

It is known [14] that the cubic equation has 3 simple real solutions if the

discriminant 4u3 2

a3 + 2702

+ 27p°~ < 0, one simple and one double real solution if
= 0, and one simple real solution if 4u3 + 27p2 > 0.

At the beginning of this discussion it was assumed that G(xo) has
rank n - 1 i.e. it has a single zero eigenvalue. If two or more eigen-
values vanish simultaneously, more complex bifurcations may occur. More
complex behavior also occurs even when the rank is n - 1 but where the
first non-vanishing derivative of the function h above is of order four
or larger. We do not pursue this further since we are unable as yet to
evaluate these derivatives for the power flow function.

In conclusion here it may be worth mentioning that since bifurcations
are "local" phenomena one may be tempted to ignore them considering "global"
behavior. This is not the case; as we see in [15], the global behavior
of the power flow equation is essentially structured by the bifurcations

which do occur.

3.2 Fold bifurcation of power f]ow'eqdation

Let 60, p0 satisfy

f(8)-p = 0, (3.15)

and suppose that F(eo) = %g (eo) has rank n - 1. Let w # 0 be such that

F(eo) w=0. Let P be a matrix such that [ P:w] is nonsingular and

ply = 0. Since F(eo) is symmetric, therefore W' F(eo)

0 also. Hence,

in terms of the notation of Section 3.1, we can take w

To study the behavior of (3.15) near eo, p0 introduce the coordinates

zand P = Q.

U» P» Y and u such that
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p = PTp, p = pr, 8 = Py+uw.

Then there is a neighborhood N of (yo, uo, uo) and y*(u, u) so that

PTf(Py+uw)-p = 0 = y = y*(u,u).
The bifurcation function is
h(u) = w F(Py*(u,u)+uw). (3.16)

Then h(u?, 1.9) = o0, %% (W, %) = 0, and from (3.12)

2
3 h, 0 O . 1 T
(u,p°) = 1im — w' F(e +uw)

S:E w0 Y

= -wTAY[S(ATeo)](ATw)z, by Lemma 2.1,
n+1
= Z (w s ) Y 3 sin(e?-eQ),
J
=: a(eo), say. (3.17)
Here, as usual, Woel = 0, 62+] 0. An application of Theorem 3.1 gives

the next result.

0

Lemma 3.1 Suppose a(eo) # 0. Then p° is a fold bifurcation i.e. there

0

is a neighborhood N = Ne X N R po) and a function

p Of (%, 8% ~ (e, u
n(u), n(uo) = po, such that the following conclusions hold in N: the
power flow equation has
(i). no solution if n(u) > p,
(ii) exactly one solution if n(u) =
(i11) exactly two solutions if n(n) < p.
Let SO, respectively S, S_, denote the set Np N {n(PTp) - pr =0,

respectively > 0, < q}. Then S0 is an (n - 1)-dimensional surface
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0

containing p~, while S, and S_ are open sets lying on opposite sides of

SO. Since n(n) is the maximum or minimum value of h(u, u), therefore the
eigenvector w is the normal to S0 at po.
We apply Lemma 3.1 to the practically significant case when uO is in

the boundary Bs of the stable region. Choose the neighborhood Ne so small
that for 6 in Ne, F(6) has at most one negative eigenvalue. Now if p € S;s
then by Lemma 3.1 (i) H(p) n Ne is empty, which implies [13] that the
local degree of f at p,

ign F(8) = 0
o

for all p in N_ sufficiently small. Hence if p € SO, and so by Lemma 3.1

P
(ii) there is exactly one 6 in @(p) N Ne, it must be that det F(6) = 0
i.e. 8 € Bg. Finally, if p € S_, then by Lemma 3.1 (iii) there are exactly

1 2, in @(p) N Ng. Since det F(e]) + det F(ez) =0
1

two solutions, say 0 and 6

we must have the determinant positive for one solution say 6', and negative

for the other. Since F(e]) and F(ez) have at most one negative eigenvalue,

1 2

therefore F(e]) must be positive definite i.e. ' is stable, and 6° must be

unstable. We summarize the conclusion as a corollary.

Corollary 3.2 Suppose 90

€ Bs' Then in the neighborhood Ne, the power
flow equation has

(i) no solution, if p € S,

(ii) exactly one solution which is in B, ifp eESO
(i11) exactly two solutions, one of which is stable and the other unstable,

ifpes._.

3.3 Cusp bifurcation of power flow equation

Starting with (3.16), some further manipulations lead to
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0

2
T{-—-F(e(u)) 225 (a(u))PIPTF(E0)PT TP —F(e(u))}

0
g_g'( u ,u
ou Bu

U

. 8(69)  say, (3.18)

where 6(u) := Py*(u, uo) + uw. Lemma 2.1 gives the following formulas

for the derivatives in (3.18),

;%"F(e(")) 0 = -AY[C(ATe0)IrATWI%AT, (3.19)
wT%*(e(u))w u° 1n§]](w W )* Vs cos(e?-eg), (3.20)
2F(0(u))w 0" ~AY[S(AT6) ILATWIAT, (3.21)
%ﬂuwwuo=4wuﬂmuﬂm? (3.22)

In (3.19) and (3.21), [ATw] is the diagonal matrix whose entries are the
components of the vector ATw.
Suppose a(eo) =0 in (3.17) and B(eo) < 0 in (3.18). Suppose more-

over that there are points (u, u) arbitrarily close to (uo, uo) where
B > 0. (3.23)

Then p0 is a cusp by Corollary 3.1. Let N = N X Np be the neighborhood in
Theorem 3.2. Let Np, respectively Np denaote the open set {p €N | yo(u)
yo(P p) < 0, respectively > 0}. N; is non-empty and p0 is in its boundary.

N can be further partitioned into three sets SO, S;» S_ defined by

+'U

p N {y(u, p) = Y(PTp, W p) 0, respectively > 0, < O}

Lemma 3.2 Under the conditions above, and in the neighborhood N, the
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power flow equation has
(j) a unique solution if p EN; (in fact if p ﬁN;),
(ii) (a) one simple solution if p €s,,
(b) one simple solution and one double solution if p € Sp»
(c) three simple solutions if p €S _.
We examine the remarkable implications of these results when 60 is in
the boundary B of the stable region. We assume again that Ng is so small
that F(8) has at most one negative eigenvalue. First observe using (3.16)

that

Busw) = W F(o*(u,1))PLPTF(8%(u, 1) P17 TPTF(8¥(u, 1) It F(6%(u, 1) Ju.
(3.24)

where 6*(u, p) := Py*(u, p) + uw. Since eo € B, therefore there exist

(u, p) arbitrarily close to (uo, uo) where F(6*(u, n)) > 0. By, Lemma 3.4

below, this implies g—ﬂ- (us u) > 0. Hence (3.23) holds and so the conditions

P
the unique solution to f(6) = p. Now since p € N;, therefore Yo(u) =

of Lemma 3.2 are satisfied. Second, suppose that p € N_ and let® € Ne be

yO(PTp) < 0, and since yo(u) is the maximum value of g—n (u, ), this implies

that g—g (u, u) < 0. Hence 6 must be unstable; and so the local degree of

fatp
d(f,p) := % sign F(s) = -1. (3.25)
0SB p)ﬁNe
0 0y _ 0 0.
Lemma 3.3 Suppose 6 € B, a(6”) = 0, 8(6”) < 0. Then p° is a cusp

bifurcation, and in the neighborhood N, the power flow equation has
(i) a unique unstable solution if p € N;,
(ii) (a) one simple unstable solution if p € S,

(b) one simple unstable solution and one double solution in Bs if
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p € SO’
(c) two simple unstable solutions and one simple stable solution
ifp€S_.
Proof (i) has already been proved, (ii) now follows from Lemma 3.2 and

(3.25). =

0

Observe that conclusion (i) implies that if a cusp occurs at p° with

e° in Bs’ then there is always a perturbation in the power demand which

can be met by a small change in bus angles only at unstable solutions.

We see this in more detail in the next example.

T

Lenma 3.4 Let F=F T

> 0, and let [P: w] be nonsingular with P'w = 0.

Then

WRW := w {F-FP[PTFPT 1P F}w > O.

Proof First observe that R = 1im RE, where
>0

R, = F-FR[PTFP+eI]™1pTF.
By a well-known matrix identity (see e.g. [8]), Re can be written as

R = [F+pTpy1 5 0.
€ €

Hence R > 0 and so W RW > 0. Therefore, WRW = 0 only if

0=Rw=Fw-FP[PTFPT 'P'Fw,

and since F is nonsingular, this implies

w=P[PTFP]~ 1P Fu.

So,
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wiw = wP[PTFPT™1PTF,

T T

which is a contradiction, since ww > 0 and w'P = 0. H

Example 2.4 (continued) Consider again the 6-node network of Figure 4

in which Yij = 1. Take e° 9 as in Section 2.5 where it was shown
that 80 B;. It can be verified directly that w := (1, 1, 1, 0, 0)7

and p

satisfies F(eo) w = 0. Substituting this w in the formulas (3.17) and

(3.18) - (3.22) we get a(eo) =0, e(eo) < 0. By Lemma 3.3,p0 is a

cusp. It can be directly verified that near.(eo,po)there is a unique

t._ 0

solution et of f(8) = pt where p° :=p~ + t(1, 0, 0, O, 0)T fort >0

small. By Lemma 3.3,6t must be unstable.
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4. Conclusions

The most interesting global properties of the power flow equation
concern the disconnectedness of the stable region, and the fact that F(e)
becomes "more" positive definite as one moves towards the interior of the
stable region. The interesting local properties are that in the boundary
of the stable region, a fold bifurcation occurs by the coming together of
a stable and an unstable solution, whereas a cusp occurs by the coming
together of two unstable and one stable solution.

The examples given in the paper have dispelled some conjectures which
had appeared in the literature, or which at first seemed plausible to us.
The most surprising discovery is the existence of power demands which
can only be met by unstable solutions.

Finally, our study has led us to formulate these conjectures:

(1) The number of components of the stable region is equal to the number
of stable solutions of f(8) = 0,

(ii) The principal component of the stable region is not generally convex,
(ii1) The flow function f(8) is one-one in each component of the stable
region,

(iv) If f(6) = p has a stable solution, then it has a stable solution in

the prihcipa] component.
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