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ABSTRACT

Customers arrive in a Poisson stream into a network consisting of two

M/M/l service stations in tandem. The service rate u € [0,a] at

station 1 is to be selected as a function of the state (x,^) where

x. is the number of customers at station i, so as to minimize the

expected total discounted or average cost corresponding to the

instantaneous cost c,x, + c^x^. The optimal policy is of the form

u=a or u =0 according as x-. < S^) or x, >^ S(X2) and s 1S a

switching function. For the case of discounted cost the optimal

process can be nonergodic, but is is ergodic for the case of average

cost.
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1. Introduction

The search for the optimal control policy in queuing control

problems can be simplified if it is known that the optimal policy has

a special structure e.g. 'bang-bang1 or 'switch-over'. Queuing models

consisting of a single service station with controllable service times

have been studied for various cost functions and shown to possess

switch-over optimal policies.

An extensive bibliography on queuing control models can be found

in Grabill et al_ (1977). The analysis of an M/M/l model by Lippman

(1973,1973a) extends earlier results of Grabill (1972). In his study

of an M/G/l model, Gallisch (1979) gives conditions on the cost

function and service time distribution which imply switch-over optimal

policies. He extends results obtained in Schassberger (1965) where

the service cost is linear and waiting time cost is not allowed, and in

Tijms (1975) where waiting time cost is linear. Formulas and properties

of the long run average cost under switch-over policies are derived in

Tijms et al_ (1978) and Weiss (1979). The former unifies several more

specific models for controlling service and arrival rates in an M/G/l

model. The formulas derived there for the cost may be used to obtain

operating characteristics of the system. Weiss considers batch service

and gives computable upper and lower bounds for the optimal switch

over policy and an algorithm for finding the optimal policy.

There does not seem to be any study of optimal policies when there

are two or more connected service stations. This paper analyzes the

smiplest such case where customers in a Poisson stream enter a network

consisting of two exponential servers in tandem. The service rate
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u € [0,a] at station 1 is to be selected as a function of the state

(x,,x«) where x. is the number of customers in station i. The

instantaneous cost is linear in the waiting times at the two stations,

clxl + C2X2' anc* we s^ow ^at tne policies which minimize the total

expected discounted or long run average cost are switch-over. That is,

the optimal policy is characterized by a switching curve S: u = a or

u=0 according as x, ^S(x2) or x, <S(x«). The optimal S can be

interpreted as the condition that x, = S(x«) iff in the state (x,,x2)

the marginal increase in the expected cost is the same whether a

marginal customer is added to the queue at 1 or at 2. This interpreta

tion also explains the fact that the optimal S is monotonically

increasing.

The analysis of the problem differs in two respects from the

previously mentioned studies of a single server. The first concerns

the convexity of the value function. In a single server model the

state space is one dimensional and showing convexity of the value

function using the optimality equations is usually sufficient for

proving switch-over of the optimal policy. In our case the state

space has dimension two, and the proof of convexity does not directly

follow from the optimality equations. Our proof is based upon con

structing an equivalent linear programming problem and deducing

convexity from duality theory. The second difference concerns the

analysis of the case of long run average cost. In single server

models, it is usually trivial to show ergodicity of the optimal process

for the discounted case. The average cost is then treated as a limit

of the discounted case as in Lippman (1973). In our problem the

optimal process for the discounted case can be nonergodic (in fact all
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states can be transient), and so the case of average cost cannot be

treated as the limit of the discounted case. Instead we follow the

unusual procedure of moving to the average cost from the finite horizon

problem.

The paper is organized as follows. In the next section the con

tinuous time problem is transformed into one with discrete time by

looking at an embedded Markov chain, and the optimality conditions are

written down. In section 3 the equivalent linear programming is

introduced to prove convexity of the value function. The optimality

conditions and convexity are used in section 4 to show that the optimal

policy is switch-over for the finite horizon and discounted problems.

The average cost case is treated in section 5 where a separate argument

is given to show ergodicity.

2. The equivalent discrete time problem

Customers arrive into station 1 in a Poisson stream with constant

rate X . The rate at time t of the exponential server in station 1 can

be selected to be any number u. in [0,a]. Upon completing service at 1

a customer joins the queue at station 2 which is served by another

exponential server with constant service rate y. Let x^t be the number

of customers at time t in station i, the customer in service included,

and let xt = tx-t,x2t) denote the state at t. u^ is to be selected

knowing x^.

The cost incurred per unit time in state x is c'x = c-jX^ + c2x2

where c, > 0, c2 >0 are fixed. Let a >_ 0 be the interest rate used

for discounting future cost i.e. the present value of cost c incurred

-atat time t is ce . Let V?(x) be the minimum acheivable cost when

the time horizon is t^ 0 and xQ = x.
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Dynamic programming considerations lead to the following optimality

conditions for V?.

V?+H*tx) =c'xdt +e'adt inf UdtV?(Ax) +udtVa(Dx) +
z aL 0<u<a x z

+udtV^(Tx) + [l-(X+y+u)dt]V^(x) +o(dt)} ,

=c'xdt +e~adtUdtV®(Ax) +ydtV^(Dx) +[1 -(X+y+u)dt]V^(x)}

+e"adt inf udt[V?(Tx) -V?(x)] + o(dt). . (2.1)
0<u<a z z

In (2.1), A,D,T are functions representing an arrival at station 1, a

departure from station 2 and a service completion at 1. That is,

A(xlsx2) = (x^Uxg); D(xrx2) =(x1 ,(x2-l)+);T(x1 ,x2) =(x^l.Xg+l)
or (x,,x2) according as x, >0 or x, = 0.

Observe that by writing the optimality conditions in this way we

are adopting the convention that an idle server (idle by choice or

because of lack of customers) is serving a dummy customer who incurs

no waiting cost and who never leaves the station. This is permissible

because of the memoryless nature of the exponential service time.

From (2.1) it follows that the policy given by u = 0 if

v!jf_s(Txs) >V^_s(xs) and ut =aif V^s(Txs) <v£_s(xs), is optimal.
Hence we can limit attention to policies which are 'bang-bang' i.e.

take values in {0,a}. To convert the problem into one in discrete

time we henceforth limit ourselves further to those bang-bang policies

which change values only at a transition epoch, including as transitions

those due to service completions for dummy customers. Call this class
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of policies P. For the infinite horizon problem this is an inessential

restriction since the optimal policy is stationary and hence it is in

P. For the finite horizon this is a restriction.

The transition epochs 0 = tQ < t-, < t2 .. < t .. are the same

for all policies in P. In fact the inter-epoch intervals are independent

and have the same distribution, Prob{t.+, - t. > t} = exp-t(A+y+a).

The cost incurred by a policy (in P) over the random interval [0,t ]

and with initial state x is

n-1 rVl +
e~aVx. dt

k
k K

t • , t
fn j. n-1 t

e~aVx+dt = Ev 7
0 t x 0 it

» Ey2{c'x. Ex tk
k+1 wvt 1 "atk "atk+le aLdt} = Ev E c'x. -^ E[e K-e K '].

x x>t- a

tk K (2.2)

"atk kSince the tk+1 - tk are i.i.d., therefore E e =3 where

-at,

3 = E e '

oo

'e^Wa^^^t -̂ (2.3)

Substituting we see that the cost (2.2) equals

^E„ "l 3k c'x. , (2.4)
a x k=0 zk

provided that 3 < 1» whereas if 3 = 1 then it equals E ic'x.. It

is convenient to ignore the constant factor and take as the cost

Ex I 3Vx. (2.5)
x k=0 h
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which is valid for 0<3<1. Writing xk =xt ,we see that the search
K

for the optimal policy in P over the random interval [0,t ] is

equivalent to finding the best policy over the horizon [0,n] for the

following discrete time Markov decision problem.

The state space is N2 where N={0,1,2,..}, the action space is
{0,1} and the one-step transition probabilities are

/-

p(xk+iK'zi,) = (

A if xk+1 = Axk,

U if xk+1 = Dxk,

a if xk+1 =Txk, zk = 1

Iaif xk+l =V zk =°

(2.5)

In (2.5) the (X,y,a) are proportional to the (X,y,a) in (2.1) and

normalized so that A+y+a= 1. zk = 1, respectively 0, corresponds

to ut =a, respectively 0, during the interval [tk,tk+1]. 1-zk can
be interpreted as the probability of recycling a customer as in

Figure 1.
n-1

The X. 3cost is given by Ex I 3c'x^ Let v"£ denote the minimum
achievable cost. It is characterized by these optimality conditions:

V^(x) =c'x and

Vn+l(x) =c'x +^AVn<Ax) +^v^Dx) +amin(V^(x),V^(Tx)} . (2.6)

Furthermore, when there are k steps to go and the current state is x,

the optimal action is z=0if v|(Tx) >VJ*(x) and z=1if
V^(Tx) <V?(x).

- ¥k'
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Since c'x :> 0, therefore Vjj(x) <_ V3,(x) and so this limit exists:

v£(x) =Hm V3(x) (2.7)

Lemma 2.1 V3 < <» for 3 < 1.
————— 00

Proof Let |x| = |x,|+ |x2| and |c| =max(c.j,c2). For any initial

state x and any policy, the state xk at time k must satisfy

|x- |£ |x| + k. Hence

n 1

Vg(x) < l 3k|c|(|x|+k) <MM +1$1&-. <« . (2.8)
n ~~ k=0 1-3 (1-er

It follows from Theorem 1 in Lippman (1973) that for 3 < 1 the

minimum cost for the infinite horizon,

V3(x) =min I Ec'x.
k=0 x K

is achieved by a stationary policy. Moreover V3 is the unique solution

to the optimality condition

V3(x) =c'x + 3(AV3(Ax) + yV3(Dx) +amin(V3(x), V3(Tx))} . (2.9)

From (2.6), (2.7) and the uniqueness of V3 it follows that

V3 = V3 . (2.10)
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3. V3(x) is convex
—n-—£

We have been unable to show that V3(x) is convex by using the

relation (2.6). Instead, we give a linear programming problem

equivalent to the Markov decision problem and then deduce convexity

by duality. This technique appears novel and may be useful in studying

other queuing problems.

The basic sample space for the Markov decision problem is denoted

ftn and it consists of all sequences wn = (w,,..,oj )where

u>k € {A,T,D}; oik = A, respectively T or D, according as the transition

at step k is an arrival, respectively a service completion at station

1 or 2, including service completion for dummy customers. Let p

denote the probability distribution on ftn. Under p the w. are i.i.d.

and a). = A, T or D with probability A, a or y. Let F. be the field

n k
on ft generated by co = (oj, ,.. ,av). A process is any sequence of

random variables f = (f-j 9«-»0 such that f. is adapted to £. . Hence

we can and will regard f. as a function on ft . Let

(1,0) if a) = A

(-1,1) if a) = T

(0,-1) if a) = D

5(») = {

k

and let £= (Ci,..,Cn) be the process given by £k(w )= £(wk)

A policy is any process z = (z,,..,z ) satisfying

r
= 1 if u>k = A

€ [0,1] if \sJ
e [0,1] if 03k = D

Uk) < (3.1)

Let Z be the set of all policies and Z, the subset of policies which

are integer-valued.
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queues under the policy z and Jn(z,x) is the n-step cost. (If x and u

are not integer-valued but if x > 0, then we can interpret x as the

evolution of the queuing system in which there are "fractional"customers.)

The value function for the Markov decision problem is also given by

V3(x) =Min{Jn(z,x)|zGZI, x>0} . (3.5)

Define

W3(x) =Min{Jn(z,x)|zGZ, x>0} . (3.6)

Theorem 3.1 an immediate consequence of Lemmas 3.1 and 3.2.

Theorem 3.1 V3(x) is convex for xGN ,i.e. x_> 0and integer-valued.

Lemma 3.1 W3(x) is aconvex function for x_> 0.

Lemma 3.2 V3(x) = W3(x) for xen2.

Proof of Lemma 3.1 For x >^ 0 let M(x) =wJL.lM - (n+l)c'x. From
(3.1), (3.3), (3.4) and (3.6) we get

M(x) =min I I Yk(o)k)zk(«k)
•x^ I Ix

0)

s.t. zk(wk) =1 if wk =A , (3.7)
0<zk(ojk) <1if wk =Tor D , (3.8)

x.(wk,z) := x +I z.(J)g.{J) >0, o)k eftk, k >1.k j=1 J J
(3.9)
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The trajectory corresponding to a policy z (and initial state x)

* 2
is the process x = (x,,..x ) with values in R , defined recursively by

x0 = x»

xk((ok) =x^^"1) +zk((uk)Ck(ajk), k>0 . (3.2)

The trajectory is said to nonnegative, and we write z >^ 0, if for all

o)k, xk(o)k) >0.
The cost incurred by policy z and initial state x is defined to be

-Wz'x> =Ex j/kc'xk •
From (3.2),

x.(ojk) =x + I z>jK.Uj), k >0 .. (3.3)

Using this we obtain after some manipulations

n kx. / k<In+1(z,x) = (n+l)c«x+ I I ykU )zk(w )
0)kGftk

where (Yi,--,Yn) is the process

n

Tk(«»k) "Jk {„ * „ p((oIC,(ok+1,..,<oi)}6kc,S(o)k) . (3.4)
k J~"K k+1'**' i

When x and z are integer-valued then so is the trajectory x; if,

moreover, x > 0, then it does describe the evolution of the two tandem
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This is a linear programming (LP) problem in the finite array of

k k kvariables z= {zk(w )|w eft ,1 <_ k <_ n}. Since x enters linearly in

the constraint equation, therefore M(x) is convex (see, e.g. Lemma 3,

p. 93 of Varaiya (1972)), and Lemma 3.1 is proved.

Proof of Lemma 3.2 By duality theory (Theorem 2, p. 98 of Varaiya

(1972)), z* is an optimal solution of the LP above if and only if there

exist dual variables Ak(ajk) eR2, A*(a)k) >0, cok eftk, k>1(and
corresponding to the nonnegativity constraints (3.9)) such that

conditions (i), (ii) and (iii) below hold.

(i) z is an optimal solution of this LP:

min I I Yk(o)k)z.(a)k) - \ xV) '[x + \ zAJ)IAJ)}
k=l k K k k=l j=l J J

O)

s.t. (3.7) and (3.8).

(ii) (Feasability) xk(wk,z*) >0, wk eftk, k>1
* k k *\(iii) (Complementary slackness) If Aki(co )> 0, then xki(a) ,z )= 0,

i = 1, 2, k > 1.

The cost function in (i) may be rewritten as

I I [YkUk) -(I X*(J)'UJ))]zk(a)k) +C,
k=l ,k K j=k J J

where C is a constant independent of z. Hence condition (i) can be

more conveniently rewritten as (i1).

(i') If wk =A, then z*(u)k) =1 ;
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if oj. = T or D, then

C=1 if ak := YkCo)k) -J A^JV^J) <0

z*(o)k) / =0 if ak >0

Vs.

[0,1] if ak =0

Henceforth suppose x^N. Let z , A satisfy (i'), (ii), (iii).

We will use z to construct an integer-valued policy z which also

satisfies these conditions.

Proposition A Let X=(z^T) +z2£(D)| -i<z.<pi =1,2}.

X + {z5(u>)|0 < z < 1} ex U {X + £(u))}, oj = T or D.

Then

(3.10)

Proof Simple verification.

k
Proposition B There is an integer-valued policy z={zkU )} such that

k * Vzk(aj )= zk(to )whenever the latter is integer-valued, and

Ak := txk(wk,z*) -xk(o>k,z)] exfor all u>k, k>1 .

Proof Suppose that for some k^ 0, the z.UJ), j >_ k, have been

selected and A, ex. Now

^4.1 =K + zi,+i(w )5K+i) " zn.i(w ^K+l^ •\+1 ak *k+l

k+lx . ,

Jk+1' *k+l

k+1If zk+1(uK+l) is integer-valued, then take zk+1(u)K+l) =zk+1(w +)and
then certainly Ak+1 € X. Otherwise, by (3.10), either

k+K _[Ak +z (a> )C(wk+1)] is in Xand then take zk+1U )=0, or

lA^ +z*(ojk+1)^(wk+1)] €X+£(wk+1) and then take zk+1(u>k+1) =1. In
either case Ak+, € X and the proposition follows by induction.
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Lemma 3.2 follows from the next proposition.

Proposition C The integer-valued policy z constructed above satisfies

0'), (ii) and (iii).

Proof Since zk(w )= zk(u) )whenever the latter is integer valued,

condition (i1) is satisfied.
k

To prove (ii) it must be shown that y := xk(w ,z) ^ 0. Suppose to

the contrary that y £0. Since y is integer-valued, therefore for at

least one i= 1or 2, y. _< -1. Let y := xk(w ,z ). By Proposition B,

and recalling the definition of £(T) and £(D),

y* ey+ {z-jM.U +z2(o,-i)|- \< z. <!}

- {(y1-z1or2+zrz2)l"7<zii7} •

i *Now if y, <_ -1, then y, - z, < 0 if - j < z, and so y, < 0; and if
11 *y2 <-1, then y2 + z-j - z2 <0 if z, <^ and - jr < z2 and so y2 <0.

*

In either case if y £ 0, then y £ 0 which contradicts the hypothesis

that z satisfies (ii). Thus z satisfies (ii) as well.

Finally to prove (iii) it is evidently sufficient to show that

* . .
y. = 0 whenever y. = 0 where these are defined as above. By Proposition

B again,

ye {(y*+z1 ,y\-z^zz) |- \ <z. <1} .
* iiIf y-i =0 then y, e (- £, ^] and so being integer-valued y-j = 0; and

if y2 =0 then y2 € (-1,1) and so being integer-valued y2 = 0.
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Corollary 3.1 For 3<1, V3 =v£ is convex.

Proof Immediate from Theorem 3.1 and (2.7). a

4. The optimal switching function

In this section conditions (2.6), (2.9) and the convexity of V3 are

used to show that the optimal policy is switch-over. For the infinite

horizon problem only the discounted case, 3 < 1, is considered here.

Fix 3< 1. Let V = V3 From (2.6)
— n n

V^x) = c'x, (4.1)

V2(x) = (l+3)c'x + 3Ac - 3uc2 l(x2>0) + 3a(c2-c1)l(c2<p1 .x^O),

(4.2)

where !(•) denotes the indicator function. To evaluate VM for n > 2,
n — '

define

Un(x) =Vn(Tx) -Vn(x). . (4.3)

Observe, with the aid of (2.6), that when there are n steps to go the

optimal action is

r 0 if 0" (x) >0
n

z = <

1 if Un(x) <0 .
(4.4)

Also from (2.6),

Un+1(x) = (c2-Cl) + 3AUn(Ax) + 3y[Vn(DTx) - Vn(Dx)] + 3a <f>n(x)

(4.5)

where
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♦n(x) =Vn(Tx) AVn(T2x) -Vn(x) AVn(Tx) (4.6)

and f A g = min(f,g) for any two numbers f and g.

It is clear, and can be proved easily by an argument based on

stochastic dominance, that the total cost is an increasing function of

the initial state.

Lemma 4.1 V3(x,,x2) is non-decreasing in x., i=1, 2.
If c, >, c2, that is the waiting cost at station 2 is not greater

than at station 1, then evidently the optimum policy is zk = 1.

Lemma 4.2 If c, j> c2, then z. = 1 is an optimum policy

Henceforth it is assumed that c2 > c,.

Lemma 4.3 U (x,,x2) is increasing in x2 and decreasing in x,, for

x, >0, x2 >_ 0 (Increasing means non-decreasing, similarly for decreasing)

Proof From (4.1), (4.2), (4.3)

U-,(x) =c2 -c1 (4.7)

U2(x) =(1+3)(c^) - 3yc2l(x2=0) (4.8)

so the assertion is true for n = 1, 2. Suppose it is true for n. The

first two terms in the formula (4.5) clearly have the indicated property.

The third term is

( U(Dx) if x, > 0, x« > 0
n

3u[VnDTx) -Vn(Dx)] » '
Vn(xrl,0) -Vn(xr0) if x1 >0, x2 -0

(4.9)

By the induction hypothesis, u"n(Dx) has the indicated property for

x, >0, x2 >0. By Theorem 3.1 and Lemma 4.1 Vn(x.j,0) is an

-16-



increasing convex function of x,, and so V (x,-l,0) - V (x-i ,0) is

decreasing in x], for x1 > 0. It only remains to check that (4.9) is

larger for (x^l) than for (x^O) i.e. that

Un(D(xrl)) - Vn(xrl,l) -Vn(xr0) >Vn(xrl,0) -Yntxr0) .

But this inequality follows from Lemma 4.1. The last term in (4.5) can

be rewritten as

3a{[Vn(T2x) -Vn(Tx)] A0+[Vn(Tx) -Vn(x)JV0}

= 3a[Un(Tx) AO +Un(x)V 0],

and by the hypothesis this expression also has the indicated property.

The lemma follows by induction. n

Define the switching function Sn(x,) by

Sn(x1) =min{x2 >0|Un(x1,x2) >0}

= °° if U (xj,x2) <0 for all x2

It will be shown in Lemma 4.5 that S is always finite.

Corollary 4.1 Sn(x,) is increasing in x,. When there are n steps to go

the optimal action is z = 0 or 1 according as x0 > S„(x,) or x0 < S (x,),
z — n l Z n 1

Proof The first assertion follows from the fact that U (x,,x2) is

increasing in x2, and the second from (4.4) and the fact that U (x,,x2)

is decreasing in x,. n

Next we study the behavior of S as n increases,
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Lemma 4.4 For n ^ 1,

Un(x) <0=>Un+1(x) <Un(x), (4.10)

Vn(Ax) - Vn(x) < Vn+1(Ax) -Vn+1(x), (4.11)

Vn(x) - Vn(Dx) < Vn+1(x) - Vn+1(Dx) . (4.12)

Proof Consider n= 1. By (4.7), U,(x) = c2 - c, > 0, so (4.10) holds

trivally. By (4.1) and (4.2),

V^Ax) -V^x) = C] < (l+3)c1 = V2(Ax) - V2(x),

V^x) - VT(Dx) = c2l(x2>0)< (l+3)c2l(x2>0) - 3vc2l(x2=l) =V2(x)-V(Dx)

and so the assertion is true for n = 1. Suppose the assertion is true

for n - 1. Will prove it for n.

Consider (4.10), and suppose u"n(x) < 0. By (4.5)

Un(x) " Un+l(x) = **Cun-l(Ax) "un(Ax)] + M[Vn^(DTx) -V^Dx)]

-[Vn(DTx) -Vn(Dx)]} + 3a[(J)n-1(x) - <|>n(x)] . (4.13)

Now [U ,(Ax) - U (Ax)] > 0. To see this, note that U (x) < 0 implies
n-l n — n —

U«(Ax) < 0 since u\ is decreasing in x,. Therefore, if UM ,(Ax) > 0,
n — n 1 n-'

then certainly U ,(Ax) - U (Ax) > 0; whereas if Un ,(Ax) < 0, then the
n-1 n — n-1 —

same conclusion follows from the induction hypothesis. The coefficient

of 3u in (4.13) is also nonnegative. Indeed, if x2 > 0, then this

coefficient is [U -j(Dx) - Un(Dx)] and the same argument applies; whereas

if x2 = 0, this coefficient is [Vn_1(x1-1,0) -Vn-1(x1,0)]

- [Vn(x.j-1,0) - Vn(x.,,0)] and this is nonnegative by the induction

hypothesis. The coefficient of 3a in (4.13) can be rewritten as
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[Un-1(Tx) AO +Un-1(x) VO] -[Un(Tx) AO +Un(x) V 0]

= Un.-,(Tx) AO + Un-1(x)V 0-Un(Tx)A 0 , (4.14)

since U (x) £0. The induction hypothesis implies U-i(Tx) A 0^U (Tx)Ao,

and so the coefficient of 3a is nonnegative. Thus (4.10) is true for n.

Next consider (4.11). Using (2.6),

Vn+1(Ax) -Vn+1(x) =C] +3A[Vn(A2x) -Vn(Ax)] +3u[Vn(DAx) -Vn(Dx)]

+ 3a[Vn(Ax)AVn(TAx) -Vn(x)A Vn(Tx)] .

A similar expression is valid for V (Ax) - V (x). By the induction

hypothesis

Vn(A2x) -Vn(Ax) >Vn_.,(A2x) -Yn-1(Ax). ,

Vn(DAx} " Vn(Dx) lVn-l(DAx) •Vn-l(Dx)

Therefore to show (4.11), it only remains to show that

vn(x) > vn-1(x)

where vn(x) =Vn(Ax)A Vn(TAx) - Vn(x)A Vn(Tx). Since for real numbers

a,b,c,d we have aAb-cAd = a-d- (c-b) A 0, we may write

vn(x) =Vn(TAx) - Vn(x) - Un(Ax)V 0 - Un(x) A 0 .

Since x = DTAx, the induction hypothesis yields

Vn(TAx) -Vn(x) >Vn-1(TAx) -Vn(x) , (4.16)

Un(x)A 0 <Un-1(x)A 0 . (4.17)
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Now, if Un-1(Ax) £0 then by the induction hypothesis U (Ax) <0 also,

which together with (4.16), (4.17) gives (4.15); if U _-,(Ax) >0and

Un(Ax) <0then again we get (4.15); finally if UR-1(Ax) >0and
U (Ax) >0 then Un ,(x) >0 and Un(x) >0 (since U and U , are

11 •»-1 n n n-i

decreasing in x,), and so again

vn(x) =Vn(TAx) -Vn(x) -^(Ax) =Vn(Ax) -Vn(x) >V^Ax) -V^x) =Vl(x)

Finally consider (4.12). Using (2.6) it can be seen that (4.12)

holds if

wnM ±Vl(x) <4-18)

where wp(x) =Vn(x)A Vn(Tx) -Vn(Dx)A Vn(TDx). Now

wn(x) -Vn(x) -Vn(Dx) +[Vn(Tx) -Vn(x)]A o-[Vn(TDx) -Vn(Dx)]A o.

By the induction hypothesis,

Vn(x) - Vn(Dx) M^tx) - V^tDx) ,

[Vn(TDx) - Vn(Dx)]A o <[Vn-1(TDx) - V^fDxJjA 0 .

Hence (4.18) certainly holds if Un-1(x) <0or u"n(x) >0. Whereas if

Un-1(x) >0and Un(x) <0, then Un(Dx) <0(since Un is increasing in
x2), and so

wn(x) - Vn(x) - Vn(TDx) ,

Vl(x) =Vl(x) _Vl(Dx)AVn-l(TDx) *

Now if UR-1(Dx) <0, then
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VlW = Wx) " Vl(TDx> = Vl(Tx) "Vl^ " un-l<x>

1 Vl(Tx) - Vn-l(TDx)> s1nce VlW > °'

< V (x) - V (TDx), by induction hypothesis,
— n n

=wn(x);

and similarly, if U -j(Dx) >0, then

< V (x) - V (Dx), by induction hypothesis,

£ Vn(Tx) - Vn(TDx) =wn(x) .

The last inequality comes from the fact that Un(Dx) flljx) since u"n is

increasing in x«.

The lemma now follows by induction. n

Corollary 4.2 The switching curve S (x,) is increasing in n.

Proof If x2 <SR(x1), then ^(x^Xg) £0, and so Un+1(x15x2) £0 which

implies x2 < Sn+1(x-|). Hence Sfl(x1) <S^fcj) . n

Lemma 4.5 S (x-|) £ (n-2)V .0 for all Xj.

Proof Because of Corollary 4.1 we may limit ourselves to Xj > 1.

By Lemma 4.3 it is enough to show Up(x1,(n-2)V 0) >0. For n= 1,2

this follows from (4.7), (4.8). Suppose the assertion holds for some

n :> 2. Using (4.5),

Un+1(xrn-l) » c2 -c1 + 3AUn(x1+l,n-l) + 3y[Vn(x.,-l ,n-l) -Vn(xrn-2)]
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+ Ba^tx^n-1)

= c2 - c1 + 3AUn(x1+l,n-l) + 3AUn(xrn-2) + 3a(j>n(x1 ,n-l)

and so it is enough to prove that $ (x^n-2) >_ 0. By (4.6)

♦n(xlfn-l) »[Vn(T2x) -Vn(Tx)]A 0+Un(x)V 0

>[Vn(T2x) -Vn(Tx)]A 0+Un(x)V 0, with x=(xrn-l)

= Un(xrl,n)

which is positive by the induction hypothesis if x,-l\> 1, and also if

x, = 1, because U (0,n) =0. n
1 n

Since we wish to consider different discount factors we reintroduce

the superscript 3and use the notation V3, U3, S3. Because of Corollary

4.2 the following limit exists.

S3(Xl) =S3(Xl) =limS3(Xl) ,
n-*°°

and by Corollary 4.2 it is increasing in x,.

Theorem 4.1 An optimal policy for the infinite horizon discounted case,

3 < 1, is given by the stationary switch-over policy z(x) = 0 or 1

according as x2 ^S3(x,) or x2 <S3(x,).

Proof Since V3 -> V3, therefore U3(x) = lim U3(x). By (2.9) it is

enough to show that

x2 >S^) =*U3(x) >0 ,

x2 <S3(x1) =*U3(x) £0 .

Now if x2 >S3(x1) then x2 >S3(x )for all nand so U3(x) >0; hence
U3(x) >^ 0. Suppose x2 <Se(x,). Since the switching curves are integer-
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valued and S3(xT) =lim sjjCx-j), therefore x2 <S3(x.,) for large n; hence
U3(x) £0 for large nand so U3(x) £ 0. «

A surprising feature of the discounted case is that it is optimal

to provide no service at station 1 when the queue length at station 2

exceeds a threshold.

Theorem 4.2 If 3 < 1, then

Q . X? CP"C1S3(x1) £min{x2|3 <-~-L >

Proof Fix x with x, > 0. We claim that

x2An x2An
U3(x) =V3(Tx) - V3(x) >(c2-Cl) l^j c, 3 ^* - vn(x2)say.

(4.19)

To see this, and using the notation of Section 3, along a sample path

n ka) ,let xk(w ) be the trajectory corresponding to the optimal pel icy and
k

initial state xQ = Tx, and let z.{m ) be the optimal control policy. Let

yk(co ) be the trajectory along the same sample path and corresponding to

the same policy, but with initial condition yQ = x. Then

V3(Tx) =E I 3kc'xk and V3(x) £E 73kc'yk ,

and so to prove (4.19) it is enough to show that

E J3kc'xk -E I 3kc»yk >vn(x2) . (4.20)
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To do this define the stopping time

K=K(ujn) =min{k >0|xk2(oik) =0}A n .

Then xk2 > 0 for k£ K-1 and a comparison of the two trajectories gives

I 3Vxk - I 3kc'yk >(c2-Cl) I 3k - c, T3K .

Since xk2 can decrease by atmost one per step, therefore K >. x2 An,

and so

« i « i (x9An)-l n ,

I 3kC xk - I 3kc'yk >(c2-Cl) I 3k -c, I 3K
0 K 0 K~ c ' 0 'x2An

from which follows (4.20) by taking expectations. Hence (4.19) is true.
x c —c

But then if x2 >0is such that 32£ \ 1,then U3(x) >0and so

We have seen that if 3< 1, then the switching curves SJJ increase
6 8to S and are all uniformly bounded. (See Figure 2). Let xk, k= 0,1,..

be the Markov process corresponding to the optimal switching curve S3.

Since the service rate at station 1is nonzero only when x2 <S3(x^),
therefore all states in {x|x2 ;> S3(x,) +1} are transient. The process
{xk3 maybe ergodic nonetheless. But observe from Theorem 4.2 that the

service at station 1stops whenever x32 >_ s where s>» is independent
of A, y. It is not difficult to see that then there always exists u

sufficiently small, but with y > A, such that the queue length in

station 1 xP -* » with probability one. Thus in the discounted case,
1

the optimal process may be non-ergodic, in fact all states may be transient!
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The surprising result also suggests that the case of long run average

cost, whose study requires ergodicity, cannot be approached by the

standard approach of taking limits as 3 increases to 1.

5. Long run average cost

Throughout this section we consider the undiscounted case 3 = 1,

and so we write Vn, Un> Sn instead of Vn> u"n, S^. The next result con
trasts sharply with Theorem 4.2.

Lemma 5.1 For every x2> Sn(x,) > x2 for all (x,,n) sufficiently large.

Proof Suppose in contradiction that S (x,) < b for all x,,n. We use the

notation of Section 3. Fix the horizon n and an initial state x. Let

zk((u ) be the optimal control policy and xk(w )the corresponding
k

trajectory. Also let y.(u ) be the trajectory corresponding to the same

policy but with initial state Tx. Then

n-1 n-1
E I c'x. =Vn(x),E I c'y. >Vn(Tx) . (5.1)

0 K " 0 "~

We vnsh to compare the two trajectories {xk} and {yk}. Let K. be the

first time that queue i is empty,

K.(con) =min{k|x. (wk) =0} An .l Ki

If K, £ Kg, one can verify that

Txk , k= 0,..,^-!

yk = ,K ' xk , k>^

and therefore
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n-1 n-1
I c'yk - I c'xk =tcg-^)^

whereas if K, > K2, then

r Txk , k =0,..,K2-1

<• ^xkl,xk2"^ or Vk - Kl

and therefore

n-1 n-1
I c'yk - I c'xk £ (Cg-c^Kg - c^ICj-Kg)

Combining these two estimates gives

n-1 n-1
E Ic'yk -E I c'xk £c2 Et^AKg) -c, EK, =6say. (5.2)

We want to show that 6 < 0 for some (x,,n). It will be first shown

that E(KJ <K2 for some constant K2 and for all initial states x=(x^b),

and n. To see this observe that, by assumption, there are no arrivals

into station 2whenever xk2 >_ b; and when there are arrivals these occur

in a Poisson stream with rate a. Hence the process xk2, k= 0,1,.. is

stochastically dominated by the queue size process of a M/M/l/b queue

with arrival rate a and service rate y. Let K2 be the expected time

(measured in number of transitions) to empty this queue if it initially

starts with b customers. Clearly E(K2) < K2. On the other hand since

xk, can decrease by at most one per step, therefore E K-j >_ x1 A n.
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Hence 5£ c2K2 - c,(x. An.) <0 for x,, n large. From (5.1), (5.2) we

conclude that

Vn(Tx) - Vn(x) = Un(x) <0 (5.3)

for x = (x, ,b) and x, ,n large. But if (.5.3) holds then S (x,) > b

contradicting the assumption. n

Let P denote the set of all policies over the infinite horizon. For

it G P let

n-1
Vn(ir,x) =Ex I c'x£ , (5.4)

i 0

where x£, k=0,1,.. is the state process corresponding to it and x is

the initial state. Then

Vn(x) = min Vm(tt,x) . (5.5)

Let

P n

V(tt,x) =TTilvn(7r,x) , (5.6)
n

V(x) = inf ?(tt,x) . (5.7)
P

From (5.5) and (5.6), V(ir,x) >^ Tim - VR(x) and so

V(x) >Tiilvn(x) . (5.8)

Recall that the switching curves S (x,) are increasing in n and so the

following limit exists.

S(x]) = lim Sn(x1) .
n
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Abusing notation slightly, let S denote the stationary policy defined by the

switching curve S. Our objective is to show that (i) under S the Markov
c _

process {xj~} is ergodic and so V(S,x) = V(S) is independent of x and

(ii) V(S) = Tim — V (x) so that S minimizes the long run average cost.

It is assumed henceforth that A < min(a,y).

Letadenote the stationary policy under which z. = 1. In this case

the network consists of two M/M/l queues in tandem with arrival x and

service rates a and y in station 1 and 2 respectively. Since x < aA y,

therefore {*?} is ergodic and ¥(a,x) = V(a) < « is independent of x.

From (5.7) and (5.8) we get

1lim ^Vn(x) <V(a) . (5.9)

Lemma 5.2 The Markov process {xk} is ergodic.

Proof Let |x| = x, + x2 denote total number of customers in the system.

Let e > 0. By (5.9), for all n sufficiently large,

where an is the policy which achieves the minimum in (5.5). Since

0 <c, £C2, (5.10) implies

The policy an is defined by the switching curve Sk when there are k
- n

steps to go, and Sk £ S. Hence, if xk =x? for some k, then the

service rate at station 1 under S is always greater than under an.
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Considerations based on stochastic dominance then lead to

Ex|xS|<Ex|xf| , •

and so

Hence

which clearly implies ergodicity. a

The following consequence of (5.11) will be useful later.

o

Corollary 5.1 For any e > 0 there is a finite set of states A c N such

that

Til 1 I c'xj^ l(xj^A) £e . (5.12)

Corollary 5.2 For (m,,m2) € N define

A(m, ,m2) = {x|x-j £ m^ -1and x2 £S(x1)A (m2-l)}

Then for any e >0, there exists (m,,m2) such that A(m1,m2) satisfies

(5.12).

Proof This follows from Corollary (5. 1 ) and the fact that the set

{x|x, >_ S(x2) +1} is transient under the policy S. n
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By Lemma 5.2 V(S,x) = V(S) is independent of x. To show

V(S) =Tim 1Vn(x) we compare Vn(S,x) and Vfi(x) =Vn(an,x). The next
lemma will be used in estimating |Vn(S,x) -Vn(an,x)|.

Lemma 5.3 Let Vk(*), k=0,1,.. be a sequence of functions and xk,
2

k = 0,1,.. a process with values in N such that

E{W-WW'xk = x} = c'x •

Let Kbe astopping time of the process {*.} and let YK be a e£ -
measurable variable such that VK(YK) £ VK(xK) a.s. Let {yk} be another

process such that

y^= V k - K" }

*K = YK •

E{W " WW^"*' k>K> =c'y .

Then

n-1 n-1
Ev 7 c'x. > E„ 7 c'y,

x L k — x L JY.

(Here Ek is the cr-field generated by xQ,..,xk).
n 1 Y 1 K-1

^°2i Ex I c'h - Ex{ I c"yk ♦ V.CY,)} - £,{ j c'xk ♦ VK(YK)}

<Exac'xk +VK(xK)} =Exni1c-xk.

Lemma 5.4 V(S) =Tfinivn(x).
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Proof Fix an initial state x. Fix e >0 and select A = A(m,,m2) as in

Corollary 5.2. Since the switching curves are integer-valued, there

exists m such that (see Fig. 3)

Sn(x1) A m2 = S(x1) A m2, for x1 £ m1 and n>

Select n > m such that

i n~1 s
4-E- I c'x* <e ,
n x

n-m+1

K"?0'^1***^ <e •

m

Define the return times to A by KQ =0,

Kf =min{k >K^ |x£ <S A, xk-1 M}An, r >1

For r > 1, let

*E-
xk' k 1 Kr-1

<|>(K»,k;X|, ), k >K

where $(k, ,k2,x) is the state process at time k2 if the state at ti
.n .k, is x and policy a is used i.e. <j)(k«,k-,,x) = x° gi

1 n L ' k2
that x? = x.

1 o nFor r =0, let wk =x? and for r >_! let

<"

w^1 , k£ Kr - 1

*(Kr,k;x^ ), k >Kr
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We claim first of all that

n-m n-m ,

Ex I c'wk±Ex I c'wk • (5'15)
x 0 0

Indeed, observe that on {K £ n - m},

4j iK^Iand xKr2 1WK~2

This implies that

s
since x» lies 'below' the switching curve SM „ , and since in this region\ n-Nr

c

Vn-K -XK + (At-A) + (A',0)) is increasing in %and V. Use of (5.16) in
r r

Lemma 5.3 gives (5.15).

Second, by definition of yf,

n-m n-m Kr c Q
°iEx J C'̂ k-Ex J c,«klEx5 CxSl(x^A) ;

and so, using (5.15),

V

n-m _ n-m n rIt III M-lll « ' C C

Ex I c'^±Ex I C'wk +U CxSkl(xSkfEA)

.0 _ w<j

lVn(x)+ne (5.17)

n

since w£ =x£ and by (5.14).

Finally, since y£ -+ xk as r-* », (5.17) implies
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n-m qEx J CxS<Vn(x)+nS ,

which, together with (5.13) gives

V(S) <11ml Vn(x) +2e

Lemmas 5.2, 5.4 give the main result.

Theorem 5.1 The stationary policy defined by the switching curve S

minimizes the long run average cost. Moreover the resulting Markov

process is ergodic.

6. Conclusions

We have shown that the optimal policy which minimizes the cost over

the infinite horizon is 'bang-bang' and characterized by a monotonically

increasing switching curve x2 =S6(x,) where 3£1is the discount factor.
The result is intuitively obvious: the 'bang-bang' nature is a consequence

of the fact that there is no service cost, and the monotonicity of the

switching curve can be anticipated once it is surmised that the difference

in the total cost incurred by adding a marginal customer to the second

queue rather than adding him to the first queue must increase with the

number of customers in the second queue. This intuition also suggests

the form of the optimal policy in more general networks. However, sub

stantiation of this intuition even in the simple case treated here is a

non-trivial exercise and differs from the case of a single queue in two

important respects. First, the optimal processes for the discounted

problem $ < 1 may not be ergodic so that the average cost case cannot be
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studied by taking a limit as 3 -* 1. Second, the convexity of the value

function, which is critical for further analysis and which is implicit

in the intuitive argument given above, is difficult to establish. The

argument for convexity put forward here extends to more complex networks
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Figure Captions

Fig. 1. The Markov decision problem.

Fig. 2. Switching curves, 3 < 1.

Fig. 3. Illustration for Lemma 5.4.



kl k2

O—s-^O
z.=o



*2 S*

z=0,u*>0
^l,u'<0/^




	Copyright notice 1980
	ERL-80-42

