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ABSTRACT

With particular reference to circuits we study the jump behavior,

that is, the seemingly discontinuous change in state of systems driven

by constrained (or implicitly defined) dynamics; i.e. x = f(x,y),

0 = g(x,y). To be specific, dynamics of a circuit are defined implicitly

by specifying the velocities (time-derivatives) of capacitor voltages

and inductor currents as well as the non-linear resistive and Kirchhoff

constraints that the branch voltages and currents must satisfy. These

constraints represent a constraint manifold over the base space of

capacitor voltages and inductor currents. The process of integrating

the circuit dynamics to obtain the transient response of the circuit

consists of "lifting" the specified velocities to a vector field on the

constraint manifold ("lifting" is the inverse operation of projecting).

Lifting may not, however, be possible at points of singularity of the

projection map, from the constraint manifold to the base space. We

propose a way of resolving these singularities, consistent with the

interpretation that the constraint manifold is a degeneration of very

fast or singularly-perturbed dynamics. The physical meaning of this

degeneration is the neglect of certain parasitic elements in the

course of modelling. To resolve the singularities, we augment the

base space as well as the configuration manifold by introducing

sufficiently many additional e-linear positive inductors and capacitors

so that the projection map from the augmented constraint manifold to

the augmented base space has no singularities. To obtain a notion of the

qualitative behavior of the circuit, we take the (degenerate) limits

as e^O of the trajectories of the augmented system (provided they exist).

The limit trajectories may be discontinuous and these discontinuities

are referred to as jump behavior. The detailed development is as

fol1ows:



(i) We propose a (discontinuous) solution concept for constrained

differential equations consistent with the physical interpretation of

the constraints. The mathematical tools used here to characterize jump

behavior, precisely, are some recently developed bifurcation and

geometric singular perturbation theory.

(ii) We apply the machinery of (i) to the study of time-invariant,

non-linear circuit equations in two ways — first viewing the resistive

sub-network from the extrinsic (or port) viewpoint and second viewing

it from the intrinsic (or circuit-topological) viewpoint. We give circuit-

theoretic interpretation to the perturbations and assumptions introduced

in (i) using suitably defined notions of resistive dissipativeness as

a mechanism for energy loss in the circuit.

(iii) We study critical elements of constrained differential equations

with particular reference to persistent relaxation oscillations. Existence

of relaxation oscillations in the plane for Lilnard-type systems is

proven.

Finally, we give two simple examples of the application of our ideas

to circuits, and indicate several important directions in which our

work may be extended.

Key words: jump behavior, singularities, bifurcation, singular
perturbation, non-linear circuit dynamics, dissipativeness,
relaxation oscillations.
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Chapter I. INTRODUCTION

We study the jump behavior,that is, the seemingly discontinuous

changes in state of systems driven by constrained (or implicitly defined)

dynamics, with particular reference to circuits. To be precise,

dynamics of a circuit are specified implicitly by specifying the

"velocities" (time derivatives) of capacitor voltages and inductor

currents, as well as the non-linear resistive and Kirchhoff constraints

that the branch voltages and currents must satisfy. These constraints

represent a constraint manifold over the base space of capacitor voltages

and inductor currents. (Usually this manifold is of the same dimension

as the base space.) The process of integrating the circuits dynamics

to obtain the transient response of the circuit consists of "lifting" the

specified velocities to a vector field on the constraint manifold (lifting

is the inverse operation of projecting). Lifting may not however be

possible at points where the projection map (restricted to the tangent

space of the constraint manifold) has singularities. We suggest in this

paper a way of resolving these singularities. We enlarge the base space

as well as the configuration manifold by introducing additional dynamic:

elements in the circuit, e-linear inductances and capacitances representing

parasitics neglected in the course of modelling so that the projection

map from the augmented manifold to the augmented base space has no

singularities. Then, for each e > 0 the dynamics of the augmented system

are well defined. To obtain a qualitative understanding of the behavior

of the original system, which presumably is close to the behavior of the

augmented system for small e, we take the (degenerate) limits as e \ o

of the trajectories of the augmented system (provided they exist). The

limit trajectories may be discontinuous and these discontinuities are

referred to as jump behavior of circuits. Another important conclusion

1



that is obtained, incidentally, is that certain segments of the

original configuration manifold are unstable under the parasitic dynamics

and so are not physically observable.

The layout of this paper, where we carry out in detail the program

outlined above, and its connection with previous work is as follows:

In Chapter II we re-examine, with the intention of motivating the

generalization, the well-studied "degenerate" van-der Pol equation

(recent references are [9], [37] and [43]) arising from a simple RC-

circuit. Our aim here is to highlight some features of this example

which are prototypical in the subsequent generalization.

The mathematical machinery required to formalize the description of

jump behavior is the study of (discontinuous) solution concepts for

constrained differential equations consistent with the interpretation

that the constraints arise from singularly perturbed dynamics. We

develop this in Chapter III. We use as tools two important recent

advances in mathematics:

(i) The work of Fenichel [12] in geometric singular perturbation

theory from an invariant manifold standpoint which includes and generalizes

(greatly) the work of Hoppensteadt [20,21], Levin and Levinson [25,26],

Tihonov, Pontryagin, Mi seenko [see [20], [25], [28] for the relevant
AA

references).

(ii) The work of Hale [16] in bifurcation or the study of

singularities -- this uses elementary analysis and calculus to study the

unfolding of singularities.

Our solution concept for constrained differential equations inlcudes

discontinuous trajectories, explains and lays down rigorous mathematical

conditions for jump behavior. Our work includes and generalizes the

solution concept proposed by Takens [40,41] in his study of gradient



constrained systems. We also prove a restricted completeness theorem

(i.e. that solutions may either be extended to t = » or escape in finite

time) for our solution concept.

In Chapters IV-V we apply this machinery to the problem of

determining circuit dynamics outlined earlier. In Chapter IV our approach

to the resistive network is from an extrinsic or port standpoint while in

Chapter V the approach is from an intrinsic or graph topological

standpoint. We explain and give physical interpretation to the various

assumptions and perturbations that needed to be introduced in the theory

of Chapter III using notions of resistive dissipativeness as the

mechanism of energy loss. The intrinsic or graph topological standpoint

is shown to be more revealing in certain instances,for example in

explicating the connection between non-monotonicity and jump.

In Chapter VI, we study briefly critical elements-equilibrium

points, closed orbits and closed relaxation oscillations. We prove an

existence theorem for relaxation oscillations in Lienard type systems

in the plane, and demonstrate the existence of a Poincare or first

return map for a class of persistent (defined in Chapter VI) relaxation

oscillations also studied by Miscenko [28].
AA

Chapter VII contains two elementary circuit examples of our ideas.

In Appendix I, we analyse further a class of non-gradient systems

studied using transform methods by Popov [31,32] to show that they

satisfy the assumptions introduced in Chapter III,

In Appendix II, we present complete stability theorems for non-linear,

non-reciprocal circuits using a generalization of resistor passivity

as the mechanism for dissipation. These theorems are similar in spirit

to those of Chua and Suwannukul [8].



Important extensions to our work are possible. For instance, to

constrained differential equations with a manifold rather than vector

space as base space (a practical example is in power systems where the

base space is the tangent bundle of an n-torus [36]). Other possible

extensions are collected in Chapter VIII.



Chapter II. MOTIVATION

For the purposes of motivating and using as example in what follows

we study in some detail a degenerate form of the van der Pol oscillator

equation, arising from the RC-circuit shown in Figure 1. The circuit

equations, with v and i labelled as shown are given by

v = i (II.1)

0 = -v-i3 +i (II.2)

we interpret these equations to mean an implicitly defined vector-field

on a 1-dimensional manifold M in (v,i) space given by

M={(v,i) :v= i3 - i} .

-2 -1
Difficulties arise in this interpretation at points ( , — ),

3vT vT
2 1

(-=— , — ) where the projection of the tangent plane TM on the v-space
3vT y/Z .21
is only a point so that the positive v at (— , — ) and the negative

Z/5 S3
9 1

v at (-^=- , — ) specified by (II.l) cannot be "lifted" to a vector
3/3 J5

field on M. This is shown in Figure 2. In an attempt to explain the

observed behavior of systems modelled by these equations, we make the

assumption that the trajectories of (II.l), (II.2) are the singularly

perturbed limit as e 4- 0 (provided they exist) of the trajectories of

v=i (II.3)

el =-v-i3+i (n-4)£

This regularization has been suggested by several authors in the

literature (recent references are [9], [37]) as also in the context

of models for heart beat by Zeeman [43]. Equations (II.3), (II.4)



represent a well defined dynamical system on R for each e > 0. The

corresponding phase portrait is plotted in Figure 3 for fixed small

e > 0. On M, i = 0 so that the vector field is vertical, whereas outside

a region (a "boundary layer" of M) where -v+ i3 -iof order e, the

flow is largely horizontal. We further require that the flow of

equations (II.3), (II.4)£ resemble that of equations (II.l), (II.2) in

regions where the solution to (II.l), (II.2) is well defined. Roughly

speaking, we are asking for solutions of (II.l), (II.2) on certain

portions of the manifold M to attract solutions of (II.3), (II.4)

starting from initial conditions close to the manifold M. This is a

kind of stability requirement referred to as consistency in the theory

of singular perturbations [4,5]. The condition for consistency is the

local asymptotic stability of an equilibrium point (v ,i ) of the

"boundary-layer" system (II.4) with v frozen at vn. This is in turn

guaranteed by

£(-v-i3+i)
<vV" °

=-3i? +1<0 (11,5)

The regions of M satisfying this condition are two disconnected subsets

of M, labeled Ma in Figure 4. We note also that by the implicit function

theorem equations (II.l), (II.2) restricted to Ma are well defined,

We contend that MQ is the only physically observable portion of the

configuration-space M of the circuit dynamics. To see this we visualize

equation (II.4) as arising from adding a small linear inductor

(e inductance) in series with the resistor and capacitor arising from

parasitics neglected in the course of modelling the circuit. Now, it

is conceivable that noise and other disturbances will force (v,i)

slightly off M so that the "boundary layer" parasitic dynamics, in the



parasitic's time scale, will determine if the flow will return toward

M or be repelled away from it. The interpretation then of (II.5) in the

language of circuit theory is strict local passivity of the resistor.

What remains to be specified is the behavior of (II.l), (11.2) on

the boundary of M , i.e. at points m« and m3 in Figure 4. For this

purpose, we examine the trajectories of (II.3), (II.4) starting from

n^ and m3 and take the limit of these as e 4-0. The resulting limit

trajectories indicate a jump in zero-time from one component of M, to the
a

other as shown by the arrowed lines in Figure 4 (from m2 to m-j and nu to

m4 respectively). This particular example thus admits in the steady state

of a relaxation oscillation — a closed orbit with two extremely fast

(0 time) transitions. It is the burden of Chapter III to give a

systematic mathematical development of jump behavior in constrained

differential equations. Critical elements of constrained differential

equations are discussed in Chapter VI.



NOTATION

(i) If g:Rn xRm ^ Rm is asmooth function (x,y) h- g(x,y), we mean

by D1g(x,y)(D2g(x,y)) the Jacobian matrix representing the derivative of

g with respect to its first (second) argument.

(ii) a(D2g(x,y) cc is the set of meigenvalues of the matrix D2g(x,y).

(iii) C_((D+,I_,C+) is the left (right, open left, open right) half

complex plane.

k(iv) D1g(x,y)[u1][u2]**-[uk] is the kth derivative of gwith respect

to its first argument (a k-linear map from RnxRnx,.,xRn(k times)

-*Rn) evaluated at u1, u2, ,..., uk.
(v) The (degenerate) system S is

x = f(x,y) (z)

0 = g(x,y)

(vi) The (augmented) system E is

x= f(x,y) (ze)

ey = g(x,y)

(vii) The "frozen boundary layer" system B is
xo

(viii) tt :Rn x Rm -? Rn is the natural projection (x,y) h-x,

(ix) M= {(x,y) € Rn+m :g(x,y) = 0} is the configuration manifold

of E.

Ma -{(x,y) €Rn+m :g(x,y) =0, a(D2g(x,y)) CC.}

is the "attracting portion" of the configuration manifold M,

Mh: {(x,y) €Rn+m:g(x,y) =0, a(D2g(x,y)) n]•>, j«o[ =tf

is the "hyperbolic portion" of the configuration manifold M.



M0 ={(x,y) €Rn+m :g(x,y) =0, det D2g(x,y) =0}

is the "singular portion" of the configuration manifold M,

(x) TM(x,y) is the tangent space to M at (x,y) - a vector space of

dimension n with its origin translated to (x,y)

ttL , , =: ir(x,y) is the restriction of it to RM(x,y).

(xi) AT is the transpose of Ae Rnxm and |-| stands for the Euclidean
norm on Rn.

(xii) $.(A) is the range-space of a vector A e Rnxm and^(A) is its

null space.



Chapter III. SOLUTION CONCEPTS FOR CONSTRAINED DIFFERENTIAL EQUATIONS

We study here solution concepts (including discontinuous or jump

behavior) for constrained differential equations of the form:

x = f(x,y)

0 = g(x,y)

For the purposes of this paper we have xe Rn, y e Rm, f:Rn x Rm -*- Rn

and g:Rn x Rm -v Rm smooth functions (smooth means Cr for r sufficiently

large so that all derivatives used in the sequel are continuous). Further

assume that 0 is a regular value of g (i.e. that Vx € Rn9 ye Rm such

that g(x,y) = 0, rank[D1g(x,y):D2g(x,y)] = m). (More generally, the

ideas in our paper should be valid for E a vector bundle over a smooth

manifold B, with ir: E -»• B a smooth projection, x, a specified vector field

on B and g:E-»• Rm a smooth map whose zero set is the constraint set.)

Equations (III.l) and (III.2) need to be interpreted. The most naive

interpretation is that (III.2) is an algebraic equation which is to be

"solved" for y, given x, — possibly many solutions (or none) exist —

and these "solutions" are to be substituted in (III.l), i,e,, if

Ax = {y :9(xo'y) = 0} ** '

then x is understood to belong to

B - {f(x0.y0) :y0 e A } .
0 0

so that we have the following differential inclusion in Rn;

x£Bx (IH.3)

In general, solutions to differential inclusions are not smooth — absolutely

10



continuous trajectories satisfying (111,3) exist in the sense of
2

Caratheodory (see Hale [17]). For example, if g(x,y) = x-y and

f(x,y) = y with x,y e R , then (III.3) takes the form

x = + y/x for x > 0, undefined for x < 0 .

Nowhere differentiable trajectories of this equation starting from x = 1

can be shown to exist. Further, there is no hope of unique trajectories

for the initial value problem for (III.3). For intuitive physical

reasons, our aim is to obtain "maximally smooth," solutions to (III.l),

(III.2) keeping in mind the physical circumstances in which these

equations arise.

III.l. Constrained Differential Equations as Dynamical Systems with

Singularities

We try to interpret (III.l), (III.2) as describing implicitly a

dynamical system on the n-dimensional configuration manifold for Z:

M = {(x,y) :g(x,y) = 0} c R n+m

(M is a manifold since 0 is a regular value of g [2]), The vector field

X(x,y) on M is specified by specifying its projection along the x-axis,

namely,

irX(x,y) « f(x,y) , (III.4)

(Here ir :Rn x Rm + Rn is the projection map (x,y) + x.) We will

choose to identify the tangent space to M at (x,y) with a (real) vector

space TM(x,y) of dimension n attached at its origin to the manifold M

at (x,y); X(x,y) then is (in coordinates) a vector belonging to TM(x,y).

At points at which TrTM(x,y) = Rn it is clear that f(x,y) uniquely

11



specifies X(x,y). Difficulties however arise when TrTM(x,y) £Rn and

f(x,y) is a vector transverse to irTM(x,y) i.e. f(x,y) points out of

tt TM(x,y) so that it is not possible to lift a specified f(x,y) along

the x-axis onto TM(x,y). As specimens, two different kinds of behavior

are illustrated in Figure 5 at a point where M has a "fold:"

(1) (Figure (5a)) f(x,y) points out of the manifold M at (x„,y )
oo

so that it would seem that the trajectory would jump off the manifold

i.e. the y-coordinate changes discontinuously (x is constrained to vary

absolutely continuously by (III.l)) to appear on some other portion of

M> say (xQ,y1) where 7rTM(xQ,y1) =Rn.

(ii) (Figure (5b)) f(x,y) points into the manifold M at (xQ,y0)

so that trajectories starting away from (x ,y ) do not tend towards

In case (i) above, (xQ,y0) is referred to as a point at which M is

overflowing. The preceding discussion then motivates the definition.

Definition III.l. (Singularities of z)

The set of points (x,y) € M at which the range of ^Itm^ v) -:

ir(x,y) c Rn are called the singular points of Z. *

A more concrete characterization of the set of singular points can

be given for the manifold M characterized by (III.2) since TM(x,y) is

then characterized by the vector space {v € Rn+m :Dg(x,y)v = 0} with

its origin translated to (x,y).

Proposition III.l. (Characterization of Singular points)

The set of singular points of Z is precisely the set

M0 :- {(x,y) :g(x,y) = 0, det D2g(x,y) = 0}

12



n+mProof. TM(x,y) ={(vrv2) e r ,m": Dig(x,y)Vl +D2g(x,y)v2 =0,

V] 6 Rn, v2 e Rm }

If D2g(x,y) is non-singular we can rewrite this as

TM(x,y) ={(v1,D2g"1(x,y)D1g(x,y)v1) :v1 e Rn}

^(TMtx.y)) is then {v1 :v-j <= Rn} =Rn and (x,y) is not asingular
point. Conversely, if D2g(x,y) is singular, there exists v^ e Rn such
that D1g(x,y)v1 £ <R(D2g(x,y)) since the rank [D^Xjy) :D2g(x,y)] =m

(by assumption, 0 is a regular value of g). Hence, span (v,) £ Range

of ir(TM(x,y)) so that (x,y) is a singular point. n

Note that it may not always be necessary to admit of a jump or

discontinuous behavior at a singularity. Consider, for example

x = f(y)

0=y3 -x .

The point (0,0) is a singular point of this system. However, a trajectory

of this system tending towards (0,0) may be extended continuously by the

following prescription:

x=f(x1/3) x f 0

y=x1/3

The point x = 0 is excluded since f(x ' ) loses smoothness at that

point. This point is treated in detail in Section III.5.

In the light of this example it is clear that the study of the

trajectories at singular points for the purpose of extension involves

checking for the existence of solutions y of the equation (III.2) in

13



the "direction in which x is varying." Clearly, continuous extension is

possible iff such solutions y can be obtained as continuous (but not

necessarily even Lipschitz) functions of x. The tools used for checking

this are clearly the tools of bifurcation theory [16,27]. If infact

continuous extension is not possible from a singular point (x ,y ) we

do not wish to restart the integral curve at (x ,y-.) for some y, solution

of (III.2) chosen in some ad-hoc fashion. In order to give a physically

meaningful way of restricting the number of discontinuous extensions

of Z from singular points we introduce the notions of singular perturbations

for the system Z.

III.2. Consistency with an augmented system

Empirical and physical evidence leads us to postulate that in

practical problems (III.2) is the degenerate limit as e 4- 0 of

ey = g(x,y) (III.6)

where e > 0 is a small parameter representing parasitics neglected in the

course of modelling. The system Z is referred to as the degenerate

system and the system (III.l), (III.6) for e > 0, is referred to as the

augmented system. We denote the augmented system Z for e > 0. We define

solution concepts for (III.l), (III.2) consistent with this interpretation.

Before we recall some facts from singular perturbation theory we give

insight to the qualitative behavior of Z by rescaling time t to x = t/e.

This yields for the suspended flow

S (HI.7)
Sf-ef(x.y) "I
d£ =g(x.y)

de

Note now that the set of equilibria for this speeded up system <S is

14



precisely M so that the "fast dynamics" of (III.6) describes whether the

configuration manifold M is attracting or not to the parasitic dynamics.

Intuition then leads us to believe that trajectories of Z converge to

those of Z in those regions of M which are attracting to the parasitic

dynamics. We make this precise:

Define

^ = {(x,y) :g(x,y) = 0, det D2g(x,y) t 0} (III.8)

= M\MQ .

Let (x ,y ) £ M,. Then, by the implicit function theorem there is a unique

integral curve y(t) = (x(t),y(t)) of (III.l), (III.2) through (xQ,y0)

defined on [0,a[ for some a > 0. In coordinates,

y = ij/(x) in a neighborhood U of x in Rn

and on U (III.l), (III.2) may be written equivalently as

x= f(x.iKx)), x(0) = xQ xeu
(HI.9)

y = *(x) ,

Trajectories of the augmented system exist, originating from arbitrary

(xQ,y0) e Rn+m for all e>0. Some of these tend uniformly (consistently)
to y(t)as e 4- 0 on all closed intervals of ]0, a[ as follows (see also

Figure 6):

Theorem III.l [25] (Consistency over bounded time intervals)

Given that a unique solution curve (x(t),y(t)) =y(t) starting from

(x ,y )GM, of Z exists on [0,a[, then ]<S > 0 such that solutions of

Z starting from x(0), y(0) with |x(0)-x | + |y(0)-y | < 6 converge

uniformly to y(t) on all closed subintervals of ]0,ct[ as e 4- 0 provided

that the spectrum of D2g(x(t),y(t)) over the trajectory y(t) of Z lies

15



in the left-half complex plane bounded away from the jw-axis, n

Remarks: (i) If the pointwise consistency condition D2g(x ,y )CI
holds for (x0,yQ) eMit holds in aneighborhood of (xQ,y ). Thus we
label the subset M of M given by

Ma =((x,y) :g(x,y) =0, a(D2g(x,y)) cIJ (111,10)

the "attracting" portion of the manifold M.

(ii) Some weaker consistency conditions hold if (x ,y )eM-, but
tf(D2g(x0,yQ)) pa_. First some notation:

Let P(t) e R (0<t<a) be a family of non-singular matrices such

that for (x(t),y(t)) = Y(t):

-1 /B(t) 0 \
P'(t)D2g(x(t),y(t)) P(t) = 0<t<a (III.11)

V 0 C(t)/

m-j xm-j 0
where B(t) e r has spectrum in C_ bounded away from the jw-axis and

o

C(t) has spectrum in I+ bounded away from the jw-axis.

Theorem III.2 (Consistency from stable initial manifolds over bounded

time intervals)[26]

Given that a unique solution (x(t),y(t)) = y(t) starting from

U0,y0) eMof Zexists on [0,a[, satisfying (III. 11) above then ] an

m-,-dimensional manifold S(e) c Rm depending smoothly on £ for 0 <£<£

such that if the initial vector for Z is (xft,y (0)) with y (0) € S(e).
SUE £

then the solution to (III.l), (III.6) satisfies the inequalities (with
mlb€ R representing coordinates for S{e) in a neighborhood of y )
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|x£(t)-x(t)| < K(e|b|-Ko(e)) 0<t<a

|y£(t)-y(t)| <K(£|b|+|b|e-at/eMs))

where K and a are positive constants independent of e and u)(e) £ C° with

cd(0) =0. n

Remarks: (i) The manifold S(e) is defined by

b \ m

,z(b,£)
S(e) = {y : y =yn+ P(0) ( 1,b€R ]}

m-i m«

where z :R x]0,£ ] •* R is a continuous function,

(ii) lim S(e) exists and is an m,-dimensional manifold (see Levin [26])
£+0 '

which is the local-stable manifold of the equilibrium y of the "frozen"

(i.e. x is fixed at x ) boundary-layer system /R
o ~xQ

^=g(xQ,y) . 6 (III.l 2)
xo

This is visualized in Figure 7.

(iii) It is important to note that consistency is more delicate in this

case than in the case of Theorem III.l, since it is not generally the

case that if the initial vector of S belongs to S(0) then the trajectory

of Z denoted (x (t),y (t)) satisfies

lim lim (xp(t),yp(t)) = (xQ,yQ) = y(0) .
t+0 £+0 e e ° °

what is true is that if

(x£(0) =xo,y£(0) -y£) €s(e) .

with lim (x ,y£) = (x ,y) e S(0).
£+0 ° °
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that

lim lim (x (t),y (t)) = y(0)
t+0 £+0 £ e

(iv) Theorems (III.l), (III.2) as stated are "local" -- i.e., the initial

condition of Z£ lies close to M. Using a global center manifold technique

of Fenichel for (III.7) (see [12] and the references there in) they

can be made global: so that consistency is obtained for initial conditions
r x

belonging to a smooth (Cr) family of globally defined manifolds S 0(e)
x„ x. yo

with Sy (0), hence forth referred to as S°,being the global stable
^o

of the frozen boundary layer system U,

j \\jj, iiciiue lurui reTerrea uu as o

manifold of the equilibrium y of the frozen boundary layer system £y
o

(equation (III.13)). Rate estimates exactly as before can also be given,

namely

*\

|x£(t)-x(t)| < K(ca(E)+£|yo-y£(0)|)

|ye(t)-y(t)| <K(a)(£)+e-at/2e|yo-y£(0)|)
) (III.13)

(v) Theorem (III.2) leads us to expect that any solution concepts for

Z interpreted as the limit of z must allow for jump from points of M

which are not "atracting." We take this up next,

HI.3. Jump behavior from non-singular points

We aggregate the geometric picture obtained from Theorems (111,1),

(III.2): for a hyperbolic equilibrium point y of the frozen boundary
x

layer system &x we attach the stable manifold S transversally to M
o x yo

at (xQ,y0). When the attached manifold S is of full codimension (i.e.,
o

m, since M is an n-dimensional manifold c Rn+m) then disturbances and

noise will not cause the "state" (x9y) of Z to slip off M. If the

attached manifold is not of full codimension the state can indeed slip
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off M and transit rapidly to another portion of M driven by the parasitic

dynamics. Our definition of solution concept for Z in Section (III.6)

will infact allow for jump from those (x ,y ) € M for which

o-(D2g(x0,y0)) nc+M • (III.14)

However to make this intuitive picture correct we need certain assumptions:

Assumption 1 (Finitely many equilibrium points for<fi ).
^o

For each x e ?rM, the system^ described by (III.12) has finitelyo ~xQ

many equilibrium points.

Assumption 2 (Complete stability of (8Y )
xo

For each x e irM, the system 0 is completely stable i.e. if
o

S(T,y) is the trajectory of

£= g(xn>y) y(0) =ydx avAo

Then, lim S(*r,y) exists and € {y :g(x ,y) = 0} + <J>. Equivalently, £(x,y)
x-*»

converges to an equilibrium point of <fl for each y; so that if
^o

Sy° ={y:lim g(T,y) -y} .
X

(i.e. S is the set of initial conditions from which an element of
yo

<8Y converges to y) and C(xJ = {y :g(xn,y) = 0}, then we assume that
A U O 0

Rm =* u s.° for each x. e ttM . *
y0ec(x0) *o

Remarks: (i) The above assumption is obviously satisfied for a class of

gradient systems — i.e. ^^^x^"1"^ sucn tnat
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g(x,y) = D2F(x,y) (111,15)

and F has finitely many critical points and is proper and bounded above

for each x € irM (on each fibre).

(ii) The class of systems admitted by our assumptions may be called a

family of gradient-like (or dissipative) systems (see [39]). For a

concrete example of non-gradient systems satisfying this assumption, see

Appendix 1. Define M^to be the set of hyperbolic equilibrium points of

i.e.,
o

Mh = {(x,y) :g(x,y) =0,a(D2g(x,y)) n ]-joo, j«[ =$}

We now visualize ttM x Rm as being comprised of a family of foliations

i.e.,

{xn} x Rm = U s° =: 3
yoeC(x0) yo xo
0 ° (III.16)

ttM x Rm = U {x } x Rm =: U tf
xQeirM ° xQeirM xo

(for a precise definition of foliations refer to [1] — the foliations
x

# are singular since the leaves S may have varying dimension). We
o ^o

visualize M as a "stem" manifold to which "supporting" leaves of varying
x

dimension S are attached, These leaves represent the degenerate
yo

(infinitely fast) "parasitic" dynamics which will result in the state

tending to (x ,y ). Thus if a disturbance, say noise, causes the state
x

(xQ,y) to slip off the leaf S it falls onto some other leaf, by the

assumption 2 above, and makes an infinitely fast transition to some other

(xQ,y-j) e M. This situation is liable to happen precisely when (111.14)
x

is satisfied so that S is of dimension less than m .
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X

Note that if (x ,y ) e M is a hyperbolic equilibrium of dl , S is
o yo

a manifold of dimension equal in magnitude to the number of eigenvalues

in the left half plane of D2g(x ,y ) by the stable-manifold theorem [23].
x

Note that (x ,y ) belongs to the relative interior of S . Further, by
x yo

Assumptions 1 and 2, for all (x ,y )e M ; S is a stratified set [42],
0 xo

with (x ,y ) belonging to its boundary. This means that S is "almost"
yo

a manifold-an open dense set of it is a manifold (of dimension k say),

an open dense set of the residual is a manifold of dimension k-£ and so on

This rather cumbersome statement is visualized by noting that if (x ,y )

£ MQit is an equilibrium of<8 formed by the fusion of several equilibria
xo

(parametrized by x) so that its attracting set (or basin in the

terminology of [42]) is formed from the fusion of the stable manifolds of

varying dimension of several equilibria. This point becomes clear in

Section III.4 .

Remark: This same picture has been used by us to explain the "post-

switching" behavior of constrained equations arising from dynamics of

power-systems in [36]. This is also visualized in Figure 8,

Example: A complete picture of the foliation for the example of Section

II is given in Figure 9.

A precise definition of jump from nonsingular points is postponed to

Section (II1.5) where it is dealt on par with jump behavior at

singularities. t

First, however we restrict the class of non-^hyperbolic equilibrium

points to M . We call this the no-dynamic bifurcation assumption since

eigenvalues of the linearization of & crossing the jw-axis is
xo

symptomatic of the appearance of various kinds of non-trivial invariant

sets (for example, orbits by the Hopf bifurcation) bifurcating from the
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equilibrium point of y of & (see for a good discussion of possible
0 xo

bifurcations Guckenheimer [14]). Note that the occurrence of these

non-trivial invariant sets would contradict the Assumption 2 of complete

stability.

Assumption 3 (no dynamic bifurcations)

M = K u Mu
o n

i.e. as (x ,y )moves over M, the eigenvalues of D2g(x ,y )cross the •

jw-axis only at the origin.

III.4. Behavior at Singularities

In this section we undertake the program outlined in Section (III.2)

utilizing mainly the techniques of Hale [16] to study the bifurcations

of equation (III.2) at singularities. We also study the flow in a

neighborhood of the singularity points. First we introduce the method

of Lyapunov Schmidt to obtain the bifurcation function.

III.4.1. Bifurcation function from the method of Lyapunov-Schmidt

We study the solutions "y" of equation (III.2), namely

g(x,y) = 0 CIH.2)

with x as parameter in a neighborhood of (x ,yQ) e M i.e.

g(x0,y0) =0 and det D2g(x0,y0) =0

Notation: Let p be the rank defect of D2g(x0,y0). Then one can choose

non-singular matrices [Py :U] and [Pv :V] with U,V e R^P such that
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PVD2g^xo,yo^PU is non-singular

VTD2g(x0,y0) =0

D2g(x0,y0)u =o .

Then, (III.2) may be "decomposed" as

Pjg(x,y) =0, VTg(x,y) »0 (III.17a)

Also, represent y in Rn by

y := Pyw +Uq (III.17b)

where we Rm'p and qe Rp. With this choice of coordinates (III.17)

may be rewritten as

PygCx.P^+U )=0 (III.18)

vTg(x,PuW+uq) =0 (III.19)

Let wQ, qQ(necessarily unique) be such that yQ =PuwQ+Uq0. Equation (III.18)

is well behaved since by the Implicit function theory there is a

neighborhoodN,of (x^,w^,q,J and a function w*(x,q) such that
O 000 » »-I*

wo =«*l*o*%)

PygCx.PyW+Uq) =0 in NQ «• w=w*(x,q):

Use this function in (III.19) to obtain

N(x,q) := VTg(x,PuW*(x,q)+Uq) =0 . (111,20)

Since V D2g(xo,y0) =0 it is clear that

N(x0,qQ) =0 and D2N(x0,q0) =0 (III.21)
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Since both N and its first derivative vanish at (x ,q ) it is referred

to as the bifurcation function. The nature of the solution set of (III.2)

in the vicinity of (x ,y ) is determined from the knowledge of the higher

order derivatives of N(x,q) at (x ,q ). Note that the bifurcation

equation (III.20) consists of only p-equations to be solved for p-variables

(q) as a function of the parameter x. Thus, the foregoing procedure has

reduced the size of the problem to the dimension of the null-space of

D2g(x0»y0) (referred to as the co-dimension of the bifurcation).

III.4.2. Codimension-one bifurcations

In this case D2g(x ,y ) has precisely one zero eigenvalue so that

the bifurcation function N(x,q) is a scalar function of x € R and

9 e K . We pick out for detailed study two instances when the bifurcation

function N(x,q) is quadratic or cubic in q-q in a neighborhood of qQ.

The quadratic or fold case is particularly important since it is the

building block for more complicated bifurcations.

III.4.2.1. The quadratic or fold-case

Assume that

-K n(v%> *° (III'22)

Then, in a sufficiently small neighborhood of (x ,qQ) there is a unique

q*(x) such that

^- N(x,q) =0at q=q*(x)

that is, N(x,q) has a local minimum or maximum at (x,q*(x)) (depending

on the sign of ^-*- N(x .qj). If we define £(x) := N(x,q*(x)) we have
3q

the following theorem . (Stated, assuming £(x) to be a minimum -- if
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it is a maximum, replace £ by -5).

Theorem III.3 [16] (Fold bifurcation for many parameters)

Consider equation (III.2). Let (xQ,yQ) be asolution of (III.2), such
that 02g(xo,yQ) has rank m-1. Let N(x,q) be defined as in (III.20).

32Further, let —*• N(x ,q ) > 0. Then, there is a neighborhood U
3q£ ° ° '0

0f ^o'V and a real valued-function £(x), 5(x )=0 such that in the
0

neighborhood U :

(i) (III.2) has no solution if ^(x) > 0

(ii) (III.2) has one solution if £(x) = 0

(iii) (III.2) has two solution if £(x) <0 n

,2
Comments (i) The condition ^-*- N(x .qJ f 0 can be checked directly

3q^ ° °
from the given function g(x,y) and its derivatives, since

calculation using (III.20) verifies that

2

fIN(xo,qo) =vTD2g(xo,yo) [u][u]
3q

where (because the rank of 02g{xQ)yQ) is assumed to be (m-1), the matrix

U(V) in (III.17b) becomes acolumn vector u(v) e Rm), p?g(x ,y )fu][u] is

the second derivative at (xQ,y0) of gwith respect to y evaluated at u, u.

(ii) The statement of the theorem is visualized in Figure 10. The

theorem is a generalization to many parameters (x€Rn) of the fold behavior

associated with the scalar parabolic equation p2+q =0 in the neighborhood
of q = 0.

(iii) {x eu :£(x) = 0} is an (n-1) dimensional manifold embedded in

Rn with normal vector at xQ given by V£(x°) =D^x^y^V The fact that
Dlg(xo'yo) v^° fo11ows readily from the assumption that 0 is a regular

value of g(Dg(xQ,yo) has rank m. Hence, vTDg(xQ,yo) =[vTDig(x0>y0) ,0]
*o>. 25



(iv) Of the two distinct solutions in (iii) of the theorem one of the

solutions has index +1 and the other index -1, when considered as

equilibria of the boundary layer system ^. We visualize these two

equilibria of 6^ as annihilating each other at the fold boundary.

Three qualitative different kinds of behavior of the trajectories

of Z near a fold boundary are possible depending on the sign of -£- £(x),
given by

DS(x0)x =vTDig(x0,y0) f(x0,y0)

("0 vD1g(x0,yQ) f(xQ,y0) >0(Figure 11(a)) implies that x is varying

in a direction in which the equation (III.2) is losing solutions y (locally).

The trajectory then needs to be continued from a point (x ,y,) which lies

outside the neighborhood U of Theorem III.3. Thus, one is forced to

admit jump or discontinuous behavior at such fold boundaries. The

formalism is developed in Section (III.5),

(ii) vTDig(x0,y0) f(xQ,y0) <0 (Figure 11(b)), Trajectories of I,
defined in M seem to point away from the fold boundary, and into the

region of two solutions, specified in Theorem (III.3). One could then

extend trajectories starting from (x0,yQ) continuously (but not uniquely

— since we have a choice of two solutions y-,(x), y2(x) of (III.2) with

y](x0) =y2(x0) =y0) into M. It is, however, intuitive that trajectories

starting inside M would not tend to such fold boundaries:

Theorem III.4 (Repelling fold singularities)

Let (xQ,y0) e Mq be such that D2g(x0,y0) has rank (m-1). Further,

let (xQ,y0)satisfy the conditions of Theorem (III.3) (i\e, (x ,yQ) is a

fold singularity). Then, C trajectories of E starting in M will not

tend to (xQ,y0) if
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vl"Di9(x0,y0) f(x0>y0) <o (in.23)

Proof: By contradiction. Let y(t) :[0,ct[ •> M be a C1 trajectory of

Z, with y(0) = (x,y) e M and lim y(t) = (x.,yj. Then for t sufficiently
t+a ° °

closed to a, Try(t) e u, the neighborhood of xQ in Theorem III.3 with

C(irr(t)) increasing along the trajectory so that

D£(TTY(t))-f(Y(t)) > 0 .

By continuity then we obtain DS(xQ). f(xQ,y0) >0which contradicts (III.23)

above. n

(iii) vTD1g(x0,y0) f(xQ,y0) =0, (Figure 11(c)) This is the case when
either f(xQ,y0) =0 or the trajectories of Z in M tend to touch the fold

boundary at MQ tangentially i.e., for some t(t) = [0,a[ -»- M, lim ttyU)
tfa

is tangent to the manifold U n {x :c(x) = 0}. Precisely, we have

Proposition III.2 (Well defined dynamical system at some fold points)

If at afold point (xQ,y0) of M, i.e., at a point (xQ,y0) satisfying

the conditions of Theorem III.3

vTDig(x0,y0) f(xQ,y0) =0 (III.24)

then there exist (several) X(xQ,y0) eTM(xQ,y0) such that irX(x0,y0)

= f(xo^o}-

Proof: The vector field X(x,y) at non-singular points is given by

X(x,y) =Tr_1(x,y) f(x,y)

or in coordinates
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X(x,y) =[f(x,y), Dgg'^x.yjD^Jx.y) f(x,y)] e TM(x,y) (III.25)

At fold points where (III.24) holds, (III.25) is still true since

vTD2g(x0,y0) =0 and vTDig(x0,y0) f(xQ,y0) =0

together imply that D1g(xQ,y()) f(x0,yQ) e «(D2g(x0,y0)). This completes

the proof. Note, however, that the X(x,y) defined by (III.25) is not

uniquely specified since D2g(x,y) is not one-to one. n

Comment: In the sequel we will obtain uniqueness of X(x,y) by requiring

that D2g" (x,y) D-jg(x,y) f(x,y) <= <R(D2g(x,y)T) (i.e., no component in the
null space of D2g(x,y)).

Points where v D"jg(xo9y0) f(xQ,y0) =0 form the transition between

jump points on a fold boundary (case (i) above) and repelling fold

boundaries (case (ii) above). It is of interest to determine the nature

of this transition — we attempt to study the qualitative characteristics

of the flow of z (i.e. upto homeomorphism) near such points. We use

two tricks:

(i) Define a new vector field X(x,y) by

X(x,y) =det ir(x,y) ir'^x.y) f(x,y)

or in coordinates

X(x,y) =[det D2g(x,y) f(x,y), det D2g(x,y) D2g~}(x,y) D.jg(x,y) f(x,y)]

The map det D2g(x,y) D«g" (x,y) can be extended to a smooth map on all of

M so that X(x,y) is a vector field without singularities so long as

D1g(x,y) f(x,y) e<R(D2g(x,y)) .

The study of the integral curves of X(x,y) is of interest since they are
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the same as those of X(x,y) except in regions where det D2g(x,y) = 0,

only the parametrization (and perhaps direction, if det D2g(x,y) < 0)

is different (see [2]).

(ii) Since x 6 IR is not a parametrization for M near fold points

choose a different parametrization: namely z := P x 6 R and q 6 R

where ?z E R nis amatrix of norm 1whose span is orthogonal to the

normal of the fold boundary at (x,y), namely D-jg (x ,y )v and q is the

scalar variable from the bifurcation function (III.20). It may be checked

that this is indeed a parametrization for M in a neighborhood of (x0,yn).

X(x,y) can now be rewritten as X(z,q).

Now note that (xQ,y0) = (z ,qQ) is a critical point of X(z,q).

A basic theorem of Hartman [18] says that qualitative behavior (i.e.,

upto homeomorphism) of the integral curves of X in a neighborhood of

(z0»O is determined by the eigenvalues of its linearization at that

point (provided they are not on the imaginary axis). It may be verified

after somewhat tedious computation that the linearization of X(z,q) at

(zQ,q0) has at most rank 2. Consider the case when the base space

(x-space) has dimension 2. Then, we have the four possibilities:

(i) Both eigenvalues of the linearization real and positive (source),

(ii) Both eigenvalues of the linearization real and negative (sink),

(iii) Both eigenvalues of the linearization real and of opposite sign

(saddle).

(iv) Both eigenvalues imaginary.

These possibilities can also be viewed near the fold boundary in

the x-space as shown in Figures 12(i)-12(iv). Corresponding to the

four cases above note the jump-fold points on one side of the point

(xQ,y )and the repel 1ing-fold points on the other side of the point
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(x0,yQ). In the instance that the base space has dimension >2; the

transition is more complicated except in the two dimensions corresponding

to the eigenspaces where the linearization of X is nonzero.

III.4.2.2 The cubic or cusp case

We now assume that the bifurcation function N(x,q) is cubic in

q-q0> i.e.

2 3

*T N(xo'qo} =0 and 1 N(xQ,q0) f0 (111,27)
3q 3q

3

we assume that ?— N(xQ,q )>0 for definiteness. Then, —• (x,q) has
3q q

a smooth minimum Y0(x) in a neighborhood of (x ,q ). If this minimum is

negative for some values of x close to x then N(x,q) has at these x a

unique local maximum y-j(x) and a unique local minimum Y2M near ^n'O*

Define y(x) = Y-j(x) y2(x)- Then, we have

Theorem III.5 [16] (Cusp bifurcation for many parameters)

Consider equation (III.2). Let (x ,y ) be a solution of (III.2)

such that D«g(x ,y ) has rank m-1. Let N(x,q) be the bifurcation function
2 3

defined as in (III.20). Further, let ^ ^x0>%) =°and ^T N(Vqo^ >°
3q 3q

Then, there is a neighborhood U of (x ,y )and two functions Y0(x), y(x)

with Y0(x )=y(xq) =0 such that in the neighborhood U:

(i) If Y0(x) >0 there is a unique solution to (III.2).

(ii) If Y0(x) < 0 then y(x) is defined and

(a) y(x) < 0 implies one simple solution to (III.2),

(b) y(x) = 0 implies one simple and one double solution to (III.2),

(c) y(x) < 0 implies three simple solutions to (III.2). *
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Comments: (i) The statement of the theorem is visualized in Figure 13.

The theorem is a generalization to many parameters of the behavior of
3

the number of real solutions of the cubic scalar equation p +ap+b = 0

in the vicinity of (a,b) = (0,0), Recall from elementary algebra [22]

3 2
that this cubic scalar equation has three real solutions if 4a +27b > 0

3 2
and one double and one simple real solution if 4a +27b = 0 and one simple

solution if 4a3+ 27b2 < 0.

(ii) Though at the point (x ,y )of the cusp irTM(x.,yn) CRn, trajectories

of E can indeed be extended continuously through the cusp since (III.2)

does not "lose solutions" y as x varies through the cusp,

(iii) The study of the full unfolding of the cusp as revealed by the

theorem shows it to be formed by the tangential (non-traversal) inter

section of two fold surfaces as shown in Figure 13. Typical phase

portraits for the three sheets of the cusp assuming that either the case

of Figure 11(a) or that of Figure 11(b) occur at the fold surfaces is

shown in Figure 14. Note the continuous extension through the cusp

point.

III.4.2.3 Higher order codimension one singularities

These are the singularities at which the first nonyanishing derivative

of N(xQ,q) with respect to q is at least of order 3. The key to the

study of these singularities is the following normal form theorem of

Thorn ([42], see also Hale [16]),

Theorem III.6 [42] (Normal form)

Suppose N(x,q) = Rn x R + R is a C°° map with

N(xQ,q) =c(q-q0)k +0(|q-qo|k+1) cf0 (III.28)
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3N(x a) k-2 aRank (a..) =k-1 where -^_=^-^ (q-qQ)J +Odq-q/"1)
(III.29)

Then, there is a C°° change of coordinates x=n(x) e Rk"1, \ =£(x,q)

e R near (x,q) = (xQ,q0) such that in these coordinates, N has the form

- - - k k"1N(x.q) =q + I x.^q1 (111,30) »
i=0 1+l

Remarks: (1) The function N(x,q) is called the normal form of N(x,q) or

the universal unfolding of N. Note that in a specific example some

of the parameters x.. may be zero so that the actual unfolding or

bifurcation of the singularity of (III.2) may only be a projection of

the universal unfolding.

(2) Theorem (III.6) is very powerful — it contains as special cases

versions of Theorem (III.3), (III.5). However, to find the explicit

bifurcation functions (£(x) in Theorem (III.3) and y0(x), y(x) in

Theorem (III.5)) is more involved. However n(x) of Theorem
Is

III.6 can be determined approximately (upto 0(|x| ))) from the matrix

We show one example of the application of these ideas. The basic

message is: at an even order codimension one singular point solutions

to (III.2) may be lost in the direction in which x is varying (as in

the fold case) and at odd-order singular points, solutions are not lost

locally (as in the cusp case). The unfolding of the singularities on

the other hand gets increasingly complicated.

III.4.2.4. The quartic or swallow tail singularity

We will assume here that the bifurcation function has already been

reduced to normal form, i.e.
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N(x,q) =q4 +x^q2 +x2q +x3 • (III.31)

The projection of the surface N(x,q) =0 on the x-j, Su, x~ coordinates

is shown in Figure 15(a). The fold lines comprising the bifurcation

with two symmetric cusps are shown in Figure 15(b). The flow near folds

and cusps is as discussed in III.4.2.1 and III.4.2.2.

Jump is infact predicted if the flow tends to (xQ9y0), a swallow

tail singularity point, since four solutions of (III.2) annihilate each

other at (x0,yQ).

III.4.3. Higher codimension bifurcations

If more than one eigenvalue of D2g(x0,y0) is 0 at (xQ,y )e MQ the

bifurcation function N(x,q) has higher dimension. The difficulty here is

that unless N(x,q) is a gradient function, i.e. there exists

V(x,q) :Rn x R p -»- R such that

N(x,q) =(D2V(x,q))T ,

there is no theory of normal forms (no extension of Theorem (111,6)).

Thus, specific bifurcations need to be checked, often by laborious

numerical work. In the special case that N(x,q) = D2V(x,q) the

singularities involved are called umbilics (see Thorn [42]). One

example of what is called a hyperbolic umbilic is shown unfolded in

Figure 16.

For the study of more general (non-gradient) N(x,q) the scaling

techniques of Chow, et al. [3] are of interest.

III.5. Systematic mathematical formulation of jump behavior

Definition III.2 (Jump behavior)

The solution of the system Z described by equations (111,1), (III.2)
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is said to jump from (xQ,y0) €Mto (xQ,y1) e Mh if given 6>0, ^zQ >0,
tQ > 0 such that Ve e ]0,e ] ,

lxe"xol + IVyol <6 (III.32)

and for t€ [etQ,a[

|x(t,e)-x(t)| + |y(t,e)-y(t)| < <5 (III.33)

where x(t,e), y(t,e) is the trajectory of z starting from (x ,y ) at

t=0; x(t),y(t) is the trajectory of Estarting from (xQ,y-|) e Mat

t = 0 and defined on [0,a[. n

Comment: The intuitive content of our definition is that trajectories

of the augmented system start close to one equilibrium of & and tend
xo

increasingly rapidly towards trajectories starting from a different

equilibrium of £ . We first characterize how our definition admits
xo

of jump from points belonging to M./M ,

Theorem III.7 (Jump from certain non-singular points)

Let (xQ,y0) G Mh and further let a(D2g(x0,y0)) n (E+ f <[>. Further,

let all sufficiently small neighborhoods V of y in {x } x Rm be

decomposed as

XX X

v = (vns °) u (vns °) u ... u (vns °) (ill.34)
yo yl yp

X X

where V n s° f <\> for i = l,...,p and the S° are the stable manifolds
y-i y^

of the (hyperbolic) equilibria y. of 6 . Then, the system E admits
xo

of jump from (xQ,y0) to (x()Sy1),(x0,y0) to (xQ>y2), ..., (xQ,y0) to (xQ,yp)

Proof: From Assumption 2 (the complete stability assumption) it is clear

that neighborhoods V of y can be decomposed as in (III.34). From the
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We next describe the application of our definition to jump at

singularities: (xQ,yo) is asingularity of Iif yQ is an equilibrium of
(B^ formed by the coalescence of two or more hyperbolic equilibria; for

o

example, a fold is formed by the coalescence of two equilibria of

index +1 and.-l; the cusp by the coalescence of three equilibria and so
_, x

on. The attracting set of such a non-hyperbolic equilibrium S ° does not
yo

necessarily contain y in its interior. For instance* the attracting
xoset Sy for (xQ,y0) on afold boundary of Mfl is an m-dimensional manifold

with boundary, with yQ 6 boundary S° (see Figure 16). Then, for any
o x

neighborhood Vof yQ in {y }x Rm, VCS° so that it is intuitive to
•h yo

verify that the techniques of Theorem III.7 can be used to verify that

jump is permissible from (xQ,y0) to (x^), (xQ>y2) or (xQ,y3). In
general, we have as a corollary to Theorem III.7.

Corollary III.8 (Jump from singular points)

Let (xQ,y0) e MQ. Then, the system Z admits of jump from (x ,y )

if for all neighborhoods V of (x ,y ) in {x } x Rm

xrt
V c s ° .
f yo

Further, let all sufficiently small neighborhoods V of (x ,y ) in {x } x Rm

be decomposed as

XX x

v = (vns °) u (vns O) u ... (vns °)
yo yl yp

X0 Xn <
where V n s f $ for 1 = l,...,p, and the S ° are the stable manifolds

of the hyperbolic equilibria y. of A . Then, E admits of jump from
0(x0,y0) to (x0,yi), ..., (xQ,yp).

Remarks: (i) It may be shown that if (x ,y ) is a cusp point, with
x

tf(D29(x0,yo^ C(t- then Sv is infact tne center stable manifold of
yo x

0 ; so that y belongs to the interior of S ° (this is derivable from
xo ° y0
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Kelley [24]) and no jump is predicted at such cusp points. This is in

keeping with the conclusion of III.4.2.2.

It is clear that jump is "optional" at non-singular points belonging

to MR/Ma i.e., solutions may infact be continuously extended (see also

Comment (iv) below). Furthermore, continuous extension is infact

possible at some singular points, for instance recall the example of

Section III.l and Case (iii) of III.4.2

By continuous extension of solution of

.2 with a "cubic" singularity.

Ethrough asingularity (xQ,y0)

at t = 0 we mean an integral curve of E, y(t) :]0,ct[ + M. with lim y(0)
n t+0

= (x ,y ). Then, we assume

Assumption 4 (Continuous extension from some singular points)
x

Let (xQ,y )CM . If S contains (x ,y ) in its relative interior in

{xQ} x R ,then there is a continuous extension of solutions of E

through (xQ,y0).

Comment: The validity of Assumption 4 for gradient systems seems tacit

in Thorn [42].

(ii) In the statement of Theorem (III.7) and Corollary (III.8) we

insisted that the jump end points (xQ,y.|) , ..., (xQ,y )be hyperbolic

thereby ruling out situations of the sort shown in Figure 19 where

x x

V = (vns °) u (vns °)
yo yl

and (xQ,y0) and (x0,y.,) are both non-hyperbolic. In.such a case

it is clear that jump should infact be to (x ,y2). It is clear that

Theorem (III.7) does not predict jump to (x ,y-«) in this case since

estimates of the form (III.33) required by Definition (III.2) will not

hold in this instance. Details of the characterization of jump in this
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instance are more involved. For instance,

Theorem (III.9) (Jump characterization with multiple singularities)

Let (xQ,y0) € MQ. Further, let for all neighborhoods Vof yQ in

{xQ} xRm, Vcs °and let all small Vbe decomposed as
+ yo

X * X x

V = (vns °) u (vnsw°) u ... u (vns °)
v * yi y

38
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X X

where V n S ° f $ for i = l,...,p and S ° are the stable manifolds of
y\ y\

the hyperbolic equilibria y. for i=2 ,..., pof #x and (xQ,y1) e MQ.
o

Decompose small enough neighborhoods Uof (x0,y,) in {x } x R as

XX x

u=(uns °) u (unsv° )u ... u (uns° ) .
y1 yp+l yp+q

W1'tn yp+p •••» yp+q hyperbolic equilibria of 6^ . Then, Eadmits of

jump from (xQ,y0) to (xQ,y2) ,..., (xQ,yp+q).

Proof: Exactly as in Theorem (III.7).

Note: Jump is not predicted from (x ,y ) to (x 9y-i). H

(iii) In the instance that g(x,y) = D2F(x,y) (gradient constraints)

our definition of.jump specializes to a very simple criterion proposed

by Takens [40,41] as follows:

Theorem III.10 (Jump characterization for gradient constraints)

In the instance that g(x,y) =D2F(x,y) where F(x,y) :Rn xRm -> R

is for each x a proper function bounded above with finitely many critical

points, the system E admits of jump from (x ,y ) to (x ,y-j) if there

exists a path in {x } x Rm from (x ,y ) to (x ,y,) such that F(x ,y)

increases continuously along this path.



Proof: In the special case of gradient constraints the boundary layer

system fi» is a gradient system with
^o

^=D2F(x0,y) . (III.35)

The critical points of F(x ,y) are then the equilibrium points of & .
0 xo

The specialization of Theorem (II1.7) Corollary (III.8) and Theorem (III.9)
x

to this system are immediate since (x ,y) € s iff there exists a path
0

from y to yQ along which F(x ,y) increases continuously. n

(iv) Theorem (III.7), Corollary (III.8) and Theorem (III.9) specify

conditions when the system E admits of a jump. Jump may infact not be

necessary for continuous extension of the trajectories of E at (x ,y ),

for instance at (xQ,y0) e Mn\fV or in cases ^ and ^"^ of Sectl0n
III.4.2.1 when (x0»y0)eM is a fold point. But we will still permit

jump since such points are sensitive to noise and disturbances.

III.6. Complete solutions of constrained differential equations

Motivated by the discussion so far we define our solution concept

for E:

Definition (III.3)(Solution Concept)

A possibly discontinuous function y(t) :]0,ct[ -»• M (y(t) = (x(t),y(t))

is a solution to E if

(i) At given t1 > 0, the right and left hand limits of y(t), x(t)

exist. Further,

x(t") =f(Y(t")) , x(t|) =f(Y(t{))

(ii) When y(t-|) f y(t^) then the jump satisfies the conditions of

definition (III.2). n
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Comments: (i) The solution is maximally smooth in that we do not allow

for discontinuous changes in y unless it is consistent with the physical

interpretation of E.

(ii) Since y(0) need not belong to M, the solution can be chosen to begin

with a jump onto M. When we refer to a solution y(t) :[0,a[ of E we will

infact allow this possibility.

(iii) The model we have for the solutions of the dynamical system E

is a continuous-discrete system in the following fashion:

At x = xQ we label the solutions to (III.2) 1, 2, 3, ..., p. Then

we proceed to draw a bifurcation diagram for (III.2) by continuation methods,

showing how new solutions are born or how solutions coalesce as for

instance in Fig. 20(a). These labels are the states for the discrete

dynamics which consist of jump information between different labels as

shown in Figure 20(b). Figure 20(b) is what is referred to as a labelled

diagram i" the theory of dynamical systems [38]; with vertices representing

equilibria of £x and oriented segments representing possible jumps
o

from saddle or unstable equilibria.

It is clear that jumps are possible in the labelled diagram till one

reaches vertices from which there are no outward pointing segments.

These are precisely points of M .
a

Note that in general the labelled diagram admits of cycles so that

there may be a set of equilibria of ^ ,y], y2, ..., y such that jumps

are possible from (x^) to (xQ,y2), ..., (xQ,yp) to (x^). (called
acyclic saddle loop [1].) These cycles are however not possible if

9(x,y) = D2F(x,y) .

and F: Rn x Rm + R satisfies the assumptions of Theorem (III. 10) for

then we would have (by Theorem (III. 10))
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F(x0,y1) <F(xQ,y2) <... <F(xQ,yp) <F(x()fy1)

which is a contradiction. Moreover, we have

Proposition III.3 (Jump always possible to M )
^ a

x

Given that S° n v C V for some neighborhood V of (x ,y )S M in
m o -h ° °

{xQ} xR and 7rMa =Rn, then Eadmits of jump to (x ^) €M,provided
there is no cycle involving points of M .

o

Proof: We consider two cases:
x

(^ (xo,yo^ S Mh' Then» Sv is amanifold of dimension < m. Further,
yo

since

XX X

v= (vns °) u (vns °) u ... u (vns °)
yo y1 yp

X X

by the Baire category theorem, atleast one of the S° (say S °) has
yi ^1

interior; so that {xQfy}) e Ma uMQ. If {xQ,y}) e Ma, we are done;

if (xo,yl^ € Mo the situation is treated as in (ii) below.
x

(ii) If (x0,y0) sM,S° is not amanifold but is almost one; technically
^o

it is a stratified set (see Thorn [42]), i.e., an open dense set of it is

a manifold of dimension k (say), an open dense set of the resuidal set

is a manifold of dimension (k-1) and so on (see also the discussion after
x x

Assumption 2). Thus, (x ,y )6 boundary S ° and S ° is a closed set so
x0 xrt ° y°

that if S nv c v, then V\(S °nv) must be open. By the Baire category
Jo f yo x

theorem as before there must exist (x .y,) e M u M with S ° n V ^ <b.
o ^ a o y, ' Y

If (x0,y-|) € MQ we repeat this step. The process will end in finitely

many steps since the number of equilibria is finite, 7rMa = Rn and there
a

are no loops involving points of M . n
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Definition (III.4) (Complete solution)

Given a solution Y(t) :[0,a[ of E, it is said to be complete if

either a =« or Y(t) can be extended to [0,a] or {y(t) :t€ [0,a[} is not

compact.

Comments: (i) {y(t),t e [o,a[} not compact is the condition referred

to in the theory of ordinary differential equations [17] as finite

escape time.

(ii) It is clear that if the solutions of Eare complete and stay
bounded they can be extended till they are defined on [0,~[.

From a little reflection it is clear that there is no hope for

proving acompleteness theorem for trajectories of E, taking values

on all of M, since as we have noted above acycle of jumps is possible.

Thus we could possibly have a situation in which we have a sequence

of jumps at times {t-}", with lim t. =awith the lim infimum of jump
i-*»

distances non-zero. However, we will show that if we restrict ourselves

to the attracting portion of M,

Ma =Ux,y) =g(x,y) =0, a(D2g(x,y)) ctj

we do have complete solutions. For reasons that will become clear in

Section IV, we refer to Ma as the physical measurable portion of the

configuration space M.

Theorem III.11 (Completeness of solutions on physically measurable

portion of the configuration space)

Let 7rMa =Rn; and y(t) :[0,a[ +Ma be asolution of E. Then,
either (y(t), te [0,ct[} is not compact or a = » or the solution y(t)

can be extended to take values in Ma on [0,a], provided there are no
a

cycles involving points in M . n
o
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Proof: All we need to show is that if (x ,y ) = lim y(t) e M , then a
t+a

continuation (possibly jump) can be prescribed to belong to Ma. Two
x a

possibilities arise: (a) If V n S c V for some neighborhood V -- then
yo f

by Proposition (III.3), we can choose a jump from (x_,y_) to (x.,y-,) e Ma.
v o o o I a

(b) If V c s for small enough neighborhoods V then by assumption 3,
yo

a continuous extension possibly not belonging to Ma exists. But if such
a

an extension exists then by Proposition (III.3) a (jump) extension ending

in some (x ,y-|) e M exists.

Thus in any case 3(x ,y-j) ^ M such that we may choose (x ,y-i) = y(a)

and y(t) :[0,a] -> Ma satisfying Definition III.3. a
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Chapter IV: JUMP BEHAVIOR IN CIRCUITS AND PHYSICALLY MEASURABLE

OPERATING POINTS

We consider the application of the theory of Chapter III to a fairly

general class of non-linear,time-invariant networks shown in Figure 21.

The batteries, constant sources and other non-dynamic elements are

assumed to be lumped into the resistive time-invariant n-port,

IV.1. Circuit Equations

(C)&(L) We assume the capacitors to be time-invariant charge controlled
nr+C5

and the inductors to be time-invariant flux-controlled. Let z e K

nr
be the vector of charges on the capacitors (z, e R ), fluxes in the

n« n +np
inductors (z2 e F )and x€ F c * be the vector of capacitor voltages

nc n2(x-j e R u) and inductor currents (x2^R ). Further, assume that the

capacitors and inductors are reciprocal, that is, their constitutive

relations are given by

x = h(z) = VH(z) (IV.1)

where H(z) is the stored energy of the capacitors and inductors. To

prevent bifurcation of (IV.l) and hence discontinuous changes in

capacitor voltages and inductor currents for continuous changes in

capacitor charges and inductor fluxes we assume that h is a C

nc+n£
diffeomorphism on R .

(R) The constitutive relations of the n + n =: n port are given by
C At

g(x,y) = 0 (IV,2)

where y is the hybrid vector of capacitor port currents (y,) and

inductor port-voltages (y2) with reference directions so chosen that

x'y represents power into the n-port and g is a C function:
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R x Rn -* Rn with 0 as a regular value (in the terminology of [7],

the n-port is strongly regular).

Then the circuit equations are:

z = -y (IV.3)

x = h(z) = VH(z); g(x,y) = 0 (IV.4)

These could be written as

x=-Dh(h'1(x))y (IV.5)

0 = g(x,y) (IV.6)

If there exists a global hybrid representation for the n-port

involving capacitor port voltages and inductor port currents as dependent

variables i.e., a function ^:Rn + IRn such that

0 = g(x,y) <>y = \\>{x) .

the above equations (IV.5) and (IV.6) can be reduced to differential

equations in the normal form, namely

x=-Dh(h_1(x)) i[»(x) .

It is precisely the absence of global hybrid representations

involving capacitor port voltages and inductor port currents as dependent

variables that may lead to jump behavior. We give now a physical

interpretation in a circuit context to the perturbations and assumptions

introduced in the previous section. For this purpose, we first

specialize (IV.6) to assume that the n-port admits of some global hybrid

representation.
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There exists a partition A u B of {l,...,n} such that

XA =V^'V (IV.7)

yB = V^A'V (IV.8)

T ,are equivalent to (IV.6). (Here againx yis the power into the n-port.)

We use these equations in (IV.5) to obtain

with

x= -Dh(h-1(x)) *A

fB(yA,xB)

0 = XA " fA(*A'xB> '

Jump behavior may occur when there exist (x,y«)

D-jfA(yA,xB) is singular.

IV.2. Physically measurable operating points

The first task is to define the circuit dynamics on the n-dimensional
n+n.

manifold M c R " given by

M={x €RnsyAe R A:xA -fA(yA,xB) =0}

(IV.9)

(IV.7)

n+n.

R such that

(IV.10)

n+n.

We assume that 0 is a regular value of the map xA-fA(yA,Xj$) :R
nA

The understanding is that equation (IV.7) is the singularly perturbed

limit as e+0 of

eyA = xA - fA(yA,xB) (IV.11)

46



Physical significance of singular perturbation assumption

The assumption (IV.11) has the interpretation of introducing small

(parasitic) linear inductances and capacitances at the A-ports of the

n-port as shown in Figure 22. Note that (IV.11) requires that at the

A-ports the parasitics to be introduced at the capacitor ports are

e-inductors in series and at the inductor ports are e-capacitors in

parallel. This interpretation does not of course mean that the parasitics

introduced are the only ones associated with the circuit — they do,

however, represent, in a sense, the "net" effect of parasitics as seen

at the A-ports which cannot be completely discarded in the qualitative

analysis of the slow-speed dynamics of (IV.7), (IV.9), particularly

in the neighborhood of operating points where D^- is singular. Further

justification arises as follows:

A current-controlled resistor is envisioned as the singularly

perturbed limit as e+0 of the resistor in series with a small linear

parasitic inductor because the current is the controlling variable. The

dual is true for a voltage-controlled resistor.

The multiport generalization of this notion is the addition of

parasitic inductances at ports where the current is the controlling

(independent) variable and the dual for the voltage-controlled ports.

From this standpoint, then, appropriate parasitics must be added both

at A and B ports — however at the B ports the just added parasitic

capacitances are in parallel with the large capacitors and the parasitic

inductors in series with large inductors so that their perturbation is

negligible (regular perturbation). This is suggested by the dotted lines

in Figure 22. At the A-ports the parasitics are paired with elements of

the opposite kind and cannot be neglected as we have seen in the relaxation-

oscillation example of Chapter II.
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The seemingly ad-hoc assumption of having all parasitics of equal

magnitude is made inconsequential to our development by assuming that

any required scaling has already been incorporated into the algebraic

equations (IV.7).

From Theorem III.8 the attracting portion of M is precisely

Ma a{(X'^A) :XA =fA(yA'xB) ' ^Va^A^B^ C*+} • (IV-12)
o

(We need (E+ in (IV.12) from the minus sign in (IV.7)). From the discussion

in Chapter III it is clear that this is the only portion of M stable to

noise and modelling inaccuracies and the only portion which is robustly

physically measurable using perfect instruments.

We now relate M and the strict local dissipativeness of an operating

point (x,y.).

nAConsider an nA-port with pA e R standing for a hybrid list of
nA

port voltages and currents and qA e R standing for the complementary

list of port voltages and currents with reference directions chosen so

that pAqA stands for the power into the nA-port. Let the nA port have

global hybrid constitutive relation qA := q(pA)« Then,

Definition IV.1 (Strict local dissipativeness)

An operating point (PA»qA) of the nA«port described above is said

to be strictly locally dissipative if there exists a positive definite

Q such that QDq(pA) is positive definite.

Remarks (i) The definition above is a generalization of strict-local

passivity which is defined by setting Q = I.

(ii) The definition allows for scalings in the measurements of currents

and voltages by choice of suitable diagonal Q.
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Consider now the nA-port of Figure 23 with hybrid constitutive

relation

% " XA - VPA'XB> • <IV-13>

Here x° stand for the voltage and current values of independent voltage

and current sources (frozen-large capacitors and inductors). Since the

dynamics of the nA-port are given by

epA =x° -fA(pA,x°) (IV.14)

it is clear that the set of equilibria of (IV.13) parameterized by x is

precisely

n+nA
M={(x,pA) 6 R A; xA -fA(PA>xB) »0} . (IV.10)

Then, we have

Theorem IV.1 (Physically measurable operating points)

n+nA

Ma = ttWp) € R : XA " VVV = 0j a(DlfA(yA>xB) C*+}

is precisely that subset of M, at which the operating points parameterized

by x of the hybrid nA port of Figure 23 with constitutive relation (IV.13)

are strictly locally dissipative.

Proof: Follows from the Lyapunov lemma, i.e.,

o(D1fA(yA,xB))C J+ o ]Q >osuch that D^y^x^Q +QD1fA(yA,xB)T >0
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IV.3. Complete stability of the circuit equations associated with the

parasitics

Recall from Section III that the key assumption (Assumption 2) for

the description of Z as the singularly perturbed limit of £ was the

complete stability of the "frozen" boundary layer system &, for all x_.
xo °

In the circuit context this assumption has the physical interpretation of

no-high frequency or parasitic ringing. More explicitly, Assumption 2

is equivalent to the complete stability of the n«-port shown in Figure 23

with capacitors,inductors "frozen" (constant voltage, current sources).

We draw on the notions of dissipativeness introduced in

Definition (IV.1) to give conditions on the nA-port to guarantee complete

stability of the equation (IV.11) with x frozen at x°. Our conditions

use techniques similar to those of Chua and Suwannukul [8]. We however

use dissipativeness rather than passivity. Recall that the dynamics

of the nA-port of Figure 23 are

£PA = *A" VPa^B5 (IVJ4)

with the x's frozen.

As is Assumption 1, Section III we assume that (IV.13) has finitely

many equilibria, say {pA>ieJ.

Definition IV.2 (Dissipativeness relative to p«)

The nA-port with hybrid constitutive relation qA = q(pA) is said

to be dissipative with respect to an equilibrium point of (IV.14),

PA in aset £(pA) cR Awith pj e^(PA) if there exists amatrix Q.>0
PA

such that

(PA-PA)TQ 1q(PA) >0 VpA G#PA) (IV. 15)
PA

with equality holding iff pA =pj. n

50



^/_1Remarks: (i) If Dq(pA) has eigenvalues in the open right half plane, then

^(pj) can be chosen to include an open neighborhood of pi.

(ii) As before, if Q . can be chosen to be the identity matrix in (IV.15)

pA
dissipative may be replaced by passive.

We now state a special case of a Theorem proved in Appendix 2 for

complete stability of circuits using Definition (IV.2) for the circuit

of Figure 23.

Theorem IV.2 (Physical basis for complete stability)

Every trajectory of (IV.14) is bounded and converges to the discrete

set {p^}i€J if:

(i) there exists ICJ such that q(pA) is dissipative with respect to

pA, iEIin the sets £(pA) defined by

6(PA) -{PA: |Q i(PA-PA)+PA|2 -PA Qt^a-Pa) ^a(P/\)} (IVJ6)
pA PA

where Q .is obtained from the definition of dissipativeness and a(pA)
pA

is suitably chosen such that

(ii) there exists R > 0 such that

: zjRq(zA) >0 VzA f u t${v\)
i^J

with equality holding iff q(zA) =0. n

Comments: (i) The above theorem is to be interpreted to mean using global

R-dissipativeness (with respect to the origin) to stitch together local

Q . dissipativeness to yield physical mechanisms for energy loss in the

pa
entire state space.

(ii) If an equilibrium pA is not asymptotically stable it is clear that
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the inequality of (IV.15) can not hold in an open neighborhood of pA so

that *?(pA) can at best be a lower dimensional set.

Proof: As presented in Appendix 2 and the statement of the theorem

visualized in Figure 25.

IV.4. Representation invariant property of singular points

Non-linear resistive n-ports often have several global hybrid

representations, with different port voltages and currents as controlling

variables. It is of obvious importance to assert that if one hybrid

representation predicts the existence of singularities, other hybrid

representations (provided they exist) also predict this. To be specific,

let the hybrid n-port admit of two hybrid representations, one of the

form (IV.7) and (IV.8) and the other of the form

xA =^A^B5 (IVJ7)

yB - fgfoA.xg) <IV-18)

Equations (IV.17), (IV.18) combined with equations (IV.5) yield equations

of the form (IV.7), (IV.8) with A, B replaced by A, B respectively.

Then, our first conclusion is

Proposition IV. 3 (Invariance of singular points)

{(x,y) :xA = fA(yA.xBh yB = fB(yA.xB), det o1fA(yA»xB) =0}

= {(x,y) :x^ = fA(yA>xB); yg = f§'yA'xB)j det DlfA^A,xB^ =0}* (IV-19)

Proof: It is clear that the resistive constraint manifolds are the same

in both representations i.e.,
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{(x,y) :xA = fA(yA.xB); yB = fB(yA,xB)}

a {(x,y) :xj = fA(yA,xg); yg = fg(yA,xg)}

Recall from Proposition III.l that the set of singular points of the system

Zdefined on {(x,y) :g(x,y) = 0} is {(x,y) :g(x,y) = 0, det D2g(x,y) =0}.

We compute this set for the circuit dynamics in two different ways using

the two representations. In the instance of the A, B hybrid representation

D1fA(yA,xB)

D2g(x,y) =

DlfB(VV -I

so that the set of points at which det D g(x,y) = 0 is the set of points

where det D-jfA(yA>xB) = 0. Similarly computing using the second

representation ,we obtain that the set of points at which det D2g(x,y)=0

to be the set of points where det D-jfj(yA,xg) = 0. This completes the

proof. n

With proposition IV.3 at hand, it is largely a matter of checking

for instance that a fold in one representation is equivalent to a fold

in the other and the three cases of Chapter III, Section 4.2.2 arise

equivalently in both hybrid representations. These are intuitively

clear but the algebraic details are messy and omitted.

There are certain other global, physically-reasonable circuit

invariants like the jumps which we are not yet able to show explicitly.

The difficulty seems to arise from the different spaces (dimensionally)

in which the dynmaics are embedded for different representations.
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IV.5. The case of no-hybrid representation

Resistive n-ports can easily fail to have global hybrid representa

tions (see [11] and [7] for numerous examples). To explicate the nature

of the difficulties involved here we appeal to the example of Section II

with a different (v-i) characteristic for the resistor as shown in

Figure 26, say

Y(1»v) = 0 . (IV.20)

For, ie ]-«,i*3[ the implicit function theorem may be applied to (IV.20)

to yield v = g(i) (current controlled). On augmenting with a

parasitic inductor we obtain

ei = v-g(i) 1e ]-~,i3[ , (IV.27)

Trajectories of this equation with initial condition, i = i and v > v

fixed, tend to i~, when the augmenting equation (IV.21) fails to be

defined. In keeping with our earlier comments, we note that the resistor

characteristic changes at i' from being current controlled to being

voltage controlled, so that the augmenting parasitic ought to be a

capacitor rather than an inductor. Our standpoint here is that the

resistor characteristic is not the relation shown in Figure 26 but the

hysteretic characteristic shown in Figure 27 obtained when a variable

current source is applied to the terminals of the non-linear resistor.

Then, the resistor characteristic is given by

v=g(i) 1e]-*,13[ I
) for 1+ (IV.22)

v= g^i) ie [i3,~[
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v= g-j(i) i<= ]i2>°°[
for 1+ (IV.23)

v = g(i) i€ ]-°°,i2]

These equations (only piecewise continuous) are used in the augmented

dynamics of (IV.21) with (IV,22) or (IV,23) being used depending on

whether i is increasing or decreasing.

In the general n-port case, non-existence of any hybrid representation

is symptomatic of neglected parasitics inside the n-port whose effect

cannot be reflected to the n-port terminals. In analogy to the previous

case hysteretic characteristics can be obtained for various combinations

of port-excitations (t and +); but perhaps what is needed in such instances

is a detailed study of the network inside the n-port to determine the

circuit dynamics and jump behavior. This is done in the next chapter.
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Chapter V. GRAPH TOPOLOGICAL DESCRIPTION OF JUMP BEHAVIOR IN CIRCUITS

We have limited our discussion of jump behavior in circuits to a

port-description of the resistive network. This description may be

inadequate to establish circuit behavior when the n-port has no hybrid

representation. Also, certain global representation invariant properties

of jump behavior seemed difficult to deduce. For this reason we give a

circuit topological description.

V.l. Topological formulation of circuit equations as constrained equations

The components of the networks we consider (see Fig. 28) are non

linear resistors, inductors and capacitors, independent constant voltage

and current sources and linear controlled sources. The network satisfies

the usual consistency requirements: no E-loop, no J-cutset, no C-E loop,

no L-J cutset* and the network admits of a normal tree (see [6] for a

detailed description of assumptions). Let v^, v-, vRj be the voltage

vectors of voltage sources, capacitors and non-linear tree resistors and

J' V 'RL the current vectors of current sources, inductors and non

linear cotree resistors. Then under mild conditions (see [6]) on the

resistive network we have, from Kirchhoff laws,

r n

n*RT

VRL

H11 i H12

H21 | H22

rRT
+ G, + G,

RL

for suitably dimensioned matrices H,,, H,2, H2,, H22, G, and G2

Furthermore,

1c

_VL_
" G3

vc
+ G4

VRT

JRL_
+ G5

VE

>_ -J

(V.l)

(V.2)

The last two assumptions are for simplicity alone — there is no loss of
generality (see [5], [33]).
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so that if C(vp) and L(i.) are the incremental nonsingular capacitance

and inductance matrices then we have from (V.2)

n "1-1
vc

+ G.
4

VRT

X
+ G5

VEd

dt

C(vc)

1{\]J
(V.3)

Assume for simplicity that the non-linear tree resistors are voltage

controlled and non-linear cotree resistors are current controlled (other

cases can be treated similarly) with characteristics

RT = -g(vRT) = -9.1 <VRT1>
-9VvRTp}

and vRL =-f(iRL) =
•tyW

(V.4)

so that we get as constraint equation for (V.3)

0 =t(vRT,iRL,vc,iL) =
"g(vRTf
f(iRL)

+
Hn Hi2

H21 H22

"vrt"
+ Gi

vc
+ G2

1J
(V.5)

Our conclusion (also proved as a local rather than global perturbation

result in [29], Theorem 2) is

Theorem V.l (Choice of Parasitics for circuit dynamics)

There exists a choice of linear parasitic capacitors and inductors

for the circuit described above such that circuits equations for the

augmented system are in normal form.

Proof: We consider only the case when non-linear tree resistors are

voltage controlled and non-linear cotree resistors are current controlled

(the same results hold for other cases so long as each resistor is

controlled by its own voltage or current).
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Associate an e-linear parasitic capacitance in parallel (soldering-

iron entry) with each voltage controlled resistor and a e-linear inductor

in series (pliers entry) with each current controlled resistor. From the

discussion so far it is clear that the augmented system has dynamics

given by (V.3) and the (p+q)-equations

RT

RL

g(vRT)

f(iRL)

Hn |Hi2

H21 JH22

RT

-&• -G, (V.6)

RL

This completes the proof. n

Comments: (i) The perturbations in this theorem bear resemblance to

the perturbations of the previous section (see Figure 29).

(ii) In several practically important cases resistors may be either

current or voltage controlled and the parasitics may be dictated by either

layout or device physics (for instance in the Ebers-Moll model of the

transistors, the parasitic capacitances for the base emitter and base-

collector are determined from device-physics). Our prescription for

handling such systems is to augment the given set of parasitics till

a set of equations in normal form is obtained. Instead of integrating

the resulting stiff differential equation we prescribe taking the limit

— which is a constrained differential equation whose solutions are

discussed in Section IV. Parasitic dynamics reenter the picture only

when jump is permitted i.e. on M and M. \M .

(iii) When the network has non-linear controlled sources — one replaces

them by a combination of linear controlled sources and non-linear

resistors (this is always possible) and then applies Theorem (V.l).

For more general circuit elements, the above theorem may still be used to

introduce perturbations to obtain locally well defined dynamics.
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V.2. Connections between non-monotonicity and jump behavior

Folklore in circuit theory has it that jump-behavior arises from

non-monotonicity of resistor characteristics. The origin of such folklore

can be checked from a study of the solutions of the (p+q) equations (V.5)

as arising from the intersection of (p+q) manifolds, (each of dimension

p+q-1) each arising from one constraint (equation). The qualitative

nature of the jth such manifold (with vc, vE, i,, i, fixed), say, is

visualized easily as being the intersection of a load line and the jth

resistor characteristic as shown in Figures 30(i), (ii). One sees that

for monotone resistor characteristics and load lines of negative slope

(corresponding to passivity) there is atmost one solution, whereas for

non-monotone characteristics different numbers of solutions are possible

depending on the values of (vc and ij) thereby showing precisely the

possibility of jump behavior through the loss of solutions (locally) to

(V.5). For instance we have indicated in the example of Fig. 30(ii)

instances of 1, 3 or 1 solutions for different load lines. To make this

precise, we have

Proposition V.l (No jump for monotone circuits)

If the hybrid equations for the (p+q)-port associated with non-linear

resistors is locally strictly passive and the non-linear resistors

are monotone then the circuit equations (V.3), (V.5) have no singularities

and in particular do not exhibit jump behavior.

Proof: We only need to check that for all vE> ij, vc, i, for which a

solution vRT, iRL to (V.5) exists the Jacobian [Dy 1 <Kvpj>iRL>vc>ii)
KI KL

has eigenvalues in the open right half plane (so that the eigenvalues of the

linearization of (V.6) lie in the left half plane). This Jacobian has
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the form

passivity

H
11

'21

Dg(vRT)i 0

0 :Df(i^jj

l12
>0

'22

•n

LH21

12

'22J

Further, by strict local

and

Dg(vRJ) J 0

0 !Df(iRL)
is a non-negative definite diagonal matrix. Hence

'11

'21

'12

'22
0

0
> 0 proving the proposition.

n

Comment. The above proposition guarantees no singularities and jumps only

if a solution to (V.5) exists. The existence of solutions to (V.5) for

all Vp, ij, vc, i, is more delicate and conditions for this are derived

in [34], [35]-namely that H beamatrix of Class PQ. Note however that

a matrix of Class PQ is dissipative iff it is positive definite. For

detailed proofs of the existence of normal form equations for monotone

networks see [10].

In the instance that some of the algebraic equations (V.5) are known

to have unique solution the alternative method [4] can be used to

simplify computation. A trivial instance is

Proposition V.2 (Reducing the dimension of (V.5))

If H00 e Class P and each {f,.}?.-, is monotone increasing and C\
LL 0 1 1-1

iR, such that (V.5) is equivalent tothere exists a C function h:v
RT

n.

0 =g(vRT) +HnvRT +H12h(vRT) +^ + 6, (V.7)

iRL - h(vRT)

60



where G-,, G2 stand for the first p rows of G|, G2 respectively.

Proof: See for instance [34].

Comment. One needs of course to still check the local-dissipativeness

of the operating point before accepting the solution.
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Chapter VI. CRITICAL ELEMENTS OF CONSTRAINED DIFFERENTIAL EQUATIONS,

ESPECIALLY RELAXATION OSCILLATIONS

We return here to the notation and terminology of Chapter III. By

a critical element of a dynamical system is meant an equilibrium point

or a closed orbit. Constrained differential equations admit of two

kinds of closed orbits: closed orbits which are continuous and closed

orbits which are discontinuous.

Definition VI.1 (Relaxation oscillations)

A (necessarily) discontinuous curve y : [0,a] -»• M (a>0) is called

a relaxation oscillation if

(i) y(t) is a solution of Z

(ii) Y(ct) = y(0) . °

Remark, (i) Consider a class of gradient differential equations with

gradient constraints given by

x = -D,F(x,y)
1 (VI.1)

0 = D2F(x,y)

Here F:RnxIRm^R. Then, we have

Proposition VI.1 (Possibility of relaxation oscillations)

Along continuous solutions of (VI.1) not passing through singularities

F decreases, and if the system exhibits a jump from (x ,y )to (x ,y-j)

F(xQ,yi) > F(x0,y0) .

Proof: The second part of the proposition is a restatement of Theorem

(III.10). The first part follows from the fact that if the solution is

continuous and does not pass through singularities it is differentiable
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so that

-^ F(x,y) =<D1F(x,y),x> +<D2F(x,y),y>

=-iD-jFCx.y)!2 <0

Inorder to have relaxation oscillations, we need a combination

of continuous relaxation (F decreasing) interspersed with jump regeneration

(F increasing).

VI. 1. Relaxation oscillations in the plane

We use the intuition of Proposition (VI.1) to generalize the

example of Section II.

Theorem VI.l (LiSnard type relaxation oscillation)

Consider the constrained differential equation in the plane (x,y€3R)

given by

x = -g(y) (VI.2)

0 = x - f(y) (VI.3)

where: (i) g(-x) = -g(x) and xg(x) > 0 Vx f 0 ,

(ii) f(-y) = -f(y) and f(y) < 0 for 0 < y < a ,

(iii) for y > a, f(y) is positive and increasing ,

(iv) f(y) -• oo as y -»- co ,

(v) for each x, there are only finitely many y satisfying (VI.3).

Then, the system Z admits of a unique relaxation oscillation. Further,

trajectories starting from all (x,y) f (0,0) converge to this orbit.

63



Proof: (i) Construction of the orbit.

For ye [o,a] f(y) reaches a minimum (at most at finitely many

points by assumption (v) above). Consider the value y closest to 0

at which the minimum is reached. At this point the system Z allows of

ajump from (xo=f(y0),yQ) to (x^), anon singular point (from

assumptions (ii) and (iii) above) with y1 <0. Further, for all y>0,

x is negative, so that the solutions of E, starting from (x,y) with

y > 0 must tend to the minimum permissible value of x in the half plane

{(x,y) =y>0} i.e., xQ. If there are several values of y at which

this minimum is reached, jump is permissible from these points to

(x0,yQ) as discussed in remark (ii) after corollary (III.8).

For y < 0, x is positive and since f(-y) = -f(y) an exactly

analogous argument serves to establish jump from (-x = f(-y ),-y ) to

(-x0,y-|). Puting these pieces together one completes the construction

of the orbit as shown in Figure 31.

(ii) The rest of the proof (uniqueness and all non-zero trajectories

tending to the orbit) is straightforward and is omitted. °

Remark: (i) Using Theorem (VI.2) and the comments in Section VI.2 we

may conclude that the augmented system

x = -g(y)

*t ^ (VI'4)ey = x - f(y)

admits of a unique periodic orbit for e e ]0,e ] for some e > 0. Note

the resemblance of this result to a result of Hartmann [18] showing the

existence of unique periodic solutions to (VI.4) with e = 1 (see also [19])
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VI.1. Persistence of equilibrium points and closed orbits

The set of equilibrium points for Z is precisely the same as the

set of equilibrium points for Z . Further from the results of

Hoppensteadt [21] we have that if (x ,y ) is an equilibrium of E, Z then

the eigenvalues of the linearization of the vector field of Z are of the

form

{cr(D1f(x0,y0) -D2f(xQ,y0) D^x^)"1 D:,g(x0,y0)) +0(e),

^a(D2g(x0,y0)) +0(e°)} .

In particular if (x ,y ) e M and it a stable equilibrium point of Z, it

is a stable equilibrium point of Z for e e ]0,e ] for some e > 0.

Further, for closed orbits we have the following result from

Fenichel [12]:

Let C be a closed orbit not passing through any singular points.

By assumption 2 then for each (x,y) € C, D2g(x,y) has the same number of

eigenvalues in the open left (right) half plane, say p(m^p). The stability

of the orbit m under the flow of Z is determined by checking if the

eigenvalues of the linearization of the first-return or Poincare map lie

inside the unit disc with the exception of one eigenvalue which is always

1 (see [1] for details of the definition of the Poincare map). The orbit

is said to be hyperbolic if none of the eigenvalues of the linearization

of the Poincare map (except one) lie on the unit disc. Then, we have

Theorem VI.2 [12] (Persistence of closed orbits)

Let C be a closed hyperbolic orbit of Z passing through no singular

points, with q,(n-2-q),eigenvalues of the linearization of the Poincare

map inside,(outside),the open unit disc. Further, let for each (x,y) e C,
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P,(m-p),eigenvalues of D2g(x,y) lie in the open left,(right)half plane.
Then, for e e ]0,e ]. I has a closed hyperbolic orbit C with C

w =< e e

tending smoothly to C (the period also depends smoothly on e). Further,

p+q/m+n-2-p-q),eigenvalues of the linearization of the Poincare map for
E£ lie inside (outside) the open unit disc. n

VI-2- Poincare map for persistent relaxation oscillations

A relaxation oscillation y :[0,T] -* M is persistent if 3e such
-> o

that Ve e ]0,e ], Z admits of a closed orbit y : [o,T ]- Fn x Rm with

Y£ converging to y and T£ tending to T as e4-0.

Consider y :[0,T] -*• Mfl u MQ a relaxation oscillation with two jumps

from fold singularities - from {x]ty^) e MQ to (x^y^ €Ma and from

(x2,y2) e MQ to (x2,y2) e Ma (see Figure 32). Further for sufficiently

small neighborhoods U1 and U2 of {xvy}) and (x2,y2) in {x}} x Rm and
{x2> x ]Rm respectively let

ul =(^ns^u^nsjj)

U2 =(U2ns^2) u(u2nsj2)

Further let

vj^gUpy^ f(x}$y}) >0

V2D2g(x2,y2) f(x2,y2) >0

J

Unique
jump

(VI.5)

(VI.6)

(VI.7)

(VI.8)

where v.,, v2 are bases for the null-space of D^x^) and D2g(x2,y2)

respectively. Miscenko [28] has shown that such y are persistent. A

simpler proof is possible by our methods. However, our aim here is to

demonstrate the existence of first return maps for y: Let N be a
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submanifold of Mfl of codimension 1 transverse to y(t) at y(0) = (x ,y )

GMa between (xp^) and (x2,y2). From Theorem III.3, it follows that

the singular points in aneighborhood of (x],y1), (x2,y2) are fold points
Further inequalities like (VI,7), (VI.8) hold at such points and

conditions like (VI.5), (VI.6) are valid at such points so that jump is

still uniquely defined. Thus, under the flow of Z (in the sense of

Definition (IV.3)), asmall neighborhood of (xQ,y )in Nis mapped
(smoothly) back into itself. This is the Poincare^map for y. Conjugacy

of Poincare maps [1] defined using different submanifolds N is easy to

show. We conjecture that the eigenvalues of the linearization of this

Poincare map contains the same stability information as in the case of

regular closed orbits.

Remarks: 0) The extension of this theorem to relaxation oscillations

with more than two jumps from fold boundaries (as in Theorem (VI.2) for

instance) is trivial provided conditions like (VI.5), (VI.7) are

satisfied at each fold point.

(ii) Relaxation oscillations with their continuous segments not in M

are generally not persistent.
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Chapter VII. EXAMPLES

VII.1 An example of Chua et al [7]

We analyze by our methods an example from [7] shown in

Fig. 33(i). Clearly, the resulting equation has singularities, as

shown in Fig. 33 (fii). To obtain equations in the normal form, we

add parasitics as shown, to get

1p = "VR1 " VR2

e5Rl"-fRl<vRl> +ip V

£°R2 =-fR2(vR2) +*p ^

(VII.1)

Clearly, Ma, the observable portion of the configuration space, is

the subset of {Op.vR1,vR2):ip =fR1(vR1) =fR2(vR2A where
dv—^R1^VR1^ >° and dv— ^R2^VR2' >°* Tnese conditions can be shown

on individual resistor characteristics as in Fig.33(ii) (solid lines)

and for the composite dynamics in Fig.33 (iii) with v =vR, +vR2.

Some possible jumps are also shown in Figure 33(iii) - they are all

from fold singularities.

VII.2 An astable multivibrator

We consider the simplest astable multivibrator consisting of

two npn transistors with symmetric cross coupling between the base of

one transistor and the collector of the other through capacitors as

68



as shown in Fig. 34 (a).

The description of the resulting relaxation oscillation in

this circuit is found in elementary books (eq. [45]) . Jump takes

place at points where the solutions to the Ebers Moll equations change

discontinuously - qualitatively, the jumps are described by transition

from Ql off, Q2 saturated to Ql saturated, Q2 off and vice versa. The

discrete system whose states describe the jump transition has labeled

diagram (see Section III) as shown in Fig. 34(b). The state with Ql

and Q2 both"on" is unstable to the parasitic dynamics and so is not

observed. This state alternately annihilates the other two stable

states, namely, Ql saturated, Q2 off; and Ql off, Q2 saturated in

fold bifurcations. For a more detailed quantitative analysis of multi

vibrator equations using the techniques of Miscenko, see [30].
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Chapter VIII. CONCLUDING REMARKS

Important extensions to our work are possible in several

directions; from a mathematical standpoint, some areas are:

(i) The description of jump behavior for implicitly defined or

constrained dynamics defined over a manifold, rather than a vector-space,

as the base space.

(ii) The detailed description of the flow near singularities of

codimension larger than one.

(iii) The development of solution concepts for constrained part

ial differential equations.

(iv) Stability and persistence of relaxation oscillations, as

well as the description of more complicated invariant sets than critical

points and orbits for constrained systems. Also, the study of bifurca

tions of these invariant sets.

From an applications viewpoint, open problems lie in:

(i) The detailed study of the dynamics of special classes of

circuits, for instance, transistor circuits.

(ii) The description of jump behavior in non-linear distributed

circuits.

(iii) Variational calculus and optimal control for constrained

systems.

70



Appendix 1. A CLASS OF COMPLETELY STABLE SYSTEMS SATISFYING ASSUMPTION 2

We consider here a class of system studied by Popov [31,32]. They

are of the standard-control form with set point u_

x = Ax + Bu

y = SCx u = h(y) + u

We assume that A, B, C have the following special structure

n*n n.xn.A=diag(ArA2,...,A ) e Fnxn with A.6R1 1

B =

C =

b1 0

0 bo

0 0 ... b.

c{ 0T
0 cl

0 0 ... c
PJ

n .xl

e Fnxp with b. e F n

e f pxn with ct e f 1

(Al.l)

h(-) :Fp -• Fp is of the form y^|

nonsingulur. Further, we assume

W
.Se F pxp is symmetric and

.%%)

Monotonicity Assumption

(i) The matrices A. are strictly Hurwitz and the impulse response

T Aitfunctions g.(t) = c.e b. are completely monotonically decreasing

for t > 0. Further, g..(0) is normalized to 1 for Vi.
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A large subset of the class of C°° functions satisfying this

assumption are characterized by their Laplace transforms having poles

on the negative real axis with positive residues at these poles,

(ii) The functions h. are uniformly Lipschitzian and strictly increasing,

that is ;|L, 6 > 0 such that

6)i < h.(p+u) - h^p) < Lu Vi (A1.2)

for all u > 0 and p € F .

Using transform methods, Popov [31] proves

Theorem Al.l [31] (Complete stability of (Al.l))

Under the monotonicity assumption ewery solution x(t) of (Al.l) is

bounded and approaches the set of stationary solutions of (Al.l) as t -»• °°,

i.e.

lim {inf|x(t)-z |:z € {z :Az + Bh(SCz) = Bu } = 0 °
t-*»

Thus, the system of (Al.l) with the monotonicity assumption is a

completely stable non-gradient system. We use the alternative method

[4] to study the set of stationary solutions of (Al.l) i.e.

{zQ e Fn :Az +Bh(SCz )+BuQ =0} . (A1.3)

Let PB e Fpxn be the left inverse of Band P$c e Fnxp the right
inverse of SC. Choose PB eFn"pxn and P$c 6Rnx(n"P) such that

.PBJ
and [Pcr:psc^ are non"sin9ular an(l

PB-B =0 (A1.4)

SC«P$C =0 (A1.5)
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Decomposing z as z =Pscq +Pscr, we rewrite Az +Bh(SCz) =BuQ as

PBAPSC« +PBA~PSCr +"<« =uo (A1'6)

Vsc" +~PBAPSCr =° (A1-7)

Note that (A1.7) is a linear equation. We assume that it can be solved

uniquely for r (i.e. PrAPsc is non-singular) so that we have a low-order

nonlinear equation in q (p equations in p variables) from (A1.6), namely

PBAPscq + h(q) « uQ (A1.8)

where

PB := PbCI-APs^PbAPsc)"1^] . (A1.9)

Equation (A1.8) is well studied in circuit theory (see Sandberg and Wilson

[34,35]) and there are known sufficient conditions for (A1.7) to have

multiple solutions, which is the situation of interest to us. For

instance, we have

Theorem A1.2 [34] (Multiple equilibria of (Al.l))

If PBAPSC is not of Class P and h(-) satisfies (A1.2) then given

any 6>0, ^P-j* Q? and ui €rP sucn tnat

PBAP$cqi +h(qi) - PBAP$cq2 + h(q2) - U] .

and |q-j-q2| = 6. a

With these theorems in mind we can now state a class of functions

g(x,y) which satisfy the absolute assumption (Assumption 2) and has

multiple solutions for g(x ,y) = 0; namely,

g(x,y) = Ay + Bh(SCy) + Bx (ALIO)
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where A, B, C and h satisfy the assumptions made earlier. The class

can obviously be generalized to

g(x,y) = Ay + Bh(x,SCy) (Al.ll)

where h(xQ)) satisfies the general assumptions for fixed x , The study

of the solutions is now a more subtle matter.

We next prove that the class of systems (Al.ll) satisfies our other

main assumption — that eigenvalues of D2g(x,y) cross the jco axis at the

origin as (x,y) moves on M. We infact prove that all eigenvlaues of

D2g(x ,y )in the right half plane are real slightly modifying Theorem 8.3

from [31].

Theorem Al.3 (no dynamic bifurcations for Al.ll)

Let (x ,y ) be a solution of

Ay + Bh(x,SCy) = 0

Then all <E+ eigenvalues of A+ BD2h(xQ,SCy0)SC are real. *

Proof: Since each A. is strictly Hurwitz, the C+ eigenvalues of

A + BD2h(xQ,SCy )SC coincide with the (D+ solutions s of

det(I-SC(sI-A)-1BD2h(x0,SCy0)) =0 , (Al.l2)

Now Ce B = g(t) is a diagonal matrix of completely monotone decreasing

functions (i.e. with derivatives of alternating sign). We have by

Bernstein's theorem [14] that

g(t) =r e"atdQ(a)
JO

where Q(-) is a diagonal matrix with all its elements bounded, increasing

functions.
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Th

By Fubini' s theorem

G(s) =C(sI-A)"1B =J^dQfa) (A1.13)
o

is is an analytic function for every seC+, Now, denote D2h(x ,SCy )

by K. K is a positive definite diagonal matrix. Choose zGln such

that for s G I a solution of (Al.l2),

z- SG(sQ)Kz= 0 .

Since S is symmetric and non-singular

<z,G(s0)Kz) =(z,S_1z>G F . CAT ,14)

However from (Al.l3)

Im G(sQ) = -Im sQ 1, ',2 dQ(a) .
0 s -tap

1 o '

so that the diagonal elements of Im G(sQ)K are different from 0 and of

the same sign if Im sQ ? 0. This contradicts (AT.14) unless Im sQ = 0.

This establishes the theroem. Further it establishes that eigenvalues

of A+ BD2h(xQ,SCyo)SC cross the jw-axis at the origin. °
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Appendix 2. COMPLETE STABILITY THEOREMS

We begin by globalizing the basic theorem of the first method of

Lyapunov for C dynamical systems with well defined flow (no finite escape

time) on F having finitely many equilibrium points

x = f(x) (A2.1)

Recall that a set is co-complete [1] if the w-limit points of every

trajectory originating in that set belongs to the set.

Theorem A2.1 [8] (Globalization of first method of Lyapunov)

The system (A2.1) is completely stable, i.e. all bounded trajectories

converge to equilibrium points if:

(i) There is a finite collection of oj-complete sets {K-jK-i with

associated C functions V. :K-j •»• F+ such that

W^x)1 f(x) <0 Vx €K. (A2.2)

with equality holding iff f(x) = 0,

1 r\(ii) There is a C (stitching) function VQ : F -* F+ such that

Wn(x)T f(x) <0 VxeK\u K. (A2.3)
0 "~ 1*1 7

With equality hold iff f(x) =0. h

Proof: It is easy to check from (A2.2) that every bounded trajectory

of (A2.1) starting in K.. at t = 0 converges to an equilibrium point in

K-. Further any trajectory that intersects one of the K., say K-, at

some finite time converges to an equilibrium point in K-.

We are left with the case when a bounded trajectory labelled

x(t,xj e Fn\ u K. Vt 6 [0,»[. Let w(xj be the (compact) w-limit
0 \i=] i °
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set of x(t,xQ). (p eoj(x0) iff 3 tk +» such that x(tk,xQ) •> p). We

now have two possibilities:
I

(i) oj(xJ n u k. f <j> and w(x_) does not consist of equilibrium pointso .=1 1 o

of (A2.1). Restart (A2.1) from a point in w(x ) n IC for some j. This

converges to an equilibrium point in K.; so that by uniqueness of
j

solutions of (A2.1) x(t,x ) also converges to that equilibrium point.
n \ 1

(ii) u)(xn) c F \ u «.. But then one notes that Vn is a C function
\i=l n °

bounded below decreasing along trajectories of (A2.1) and defined on the

oo-complete set {x(t,x ),t e [0,<»]} Uoj(x ). Thus, x(t,x ) must converge

1
to an equilibrium point in F \ UK.. n

i=l 1

We use definition (IV.2) to apply this theorem to the study of

complete stability of circuit equations in the normal form described by

x = -g(VH(x)) (A2.4)

where H:Fn +F+ is proper, g:Fn -> Fn are smooth and h:=VH :Fn -»- Fn

is a diffeomorphism.

Here, x is the vector of charges on capacitors, fluxes in inductors,

H is the energy storage function of the "reciprocal" capacitors and

inductors, and VH(x) is the function of constitutive relationships

between capacitor charges, inductor fluxes and capacitors voltages,

inductor currents, g is the global hybrid representation of the resistive

n-port with capacitor port voltages and inductor port currents as

independent variables (assumed to exist). The minus sign in (A2.4) arises

from physical considerations.

We assume again that (A2.4) has finitely many equilibria.

The dynamics of capacitor voltages and inductor currents

z = VH(x) = h(x) are given by
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z=-Dh(h_1(z)) g(z) (A2.5)

where Dh(-) e Fnxn is the Hessian of Hand so is asymmetric matrix.

We first consider the case when the inductors and capacitors are

linear so that

H(x) =j x Px for some positive definite P.

Then, (A2.5) may be rewritten as

z = -P g(z) . (A2,6)

Then, we have

Theorem A2.2 (Complete stability of circuit equations with linear

capacitors and inductors)

Every trajectory of (A2.6) is bounded and converges to an equilibrium

of (A2.6) if:

(i) there exists afinite set of equilibrium points of (A2.6) {z^}? -,

such that Pg is dissipative with respect to z. in the set#(z.j) given by

(z.) ={z €= Fn :|z. +Qz (z-z.)|2 -|z.|2 -(z-z.)TQz (z-z.) < z}

where az e F+ is suitably chosen and Q > 0 arises from the definition

of dissipativeness, i.e.

(z-z.)Qz g(z)>0 Vzetf(Zi) (A2.7)

with equality holding iff z = z..

p ~
(ii) there exists R > 0 such that Vz ^ u #(z.)

i=l 1

zTRg(z)>0 (A2.8)

with equality holding iff g(z) = 0. °
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Proof: It may be verified using (A2.7) and (A2.8) that the sets tf(z..)

with the corresponding functions

and the function

VQ(z) =|R1/2z|2

satisfy the conditions of Theorem (A2.1), Thus, all bounded trajectories

of (A2.6) converge to equilibrium points of (A2.6). All we need to show

then is that all trajectories are bounded. For this choose %* large
P

closed ball so that all the equilibrium points and u #(z.) c%. Such
i=l 1

a choice is possible since the^z^) are compact and the number of

equilibria are finite. Further, by (A2.8)

VQ <0 Vz£/£.

Since V is proper, there exists c > 0 so that

V0(z)<c^ze;e .

Thus every trajectory wandering outside 7{ is eventually attracted back

toK\ and so is bounded.

This completes the proof. n

Remark: Theorem (IV.2) is a restatement of Theorem (A2.2) with P = I.

For the case when the capacitors and inductors are non-linear the

absolute stability is more delicate and it is more convenient to work

with equation (A2.4) with its built-in energy function H(x). We have

Theorem A2.3 (Complete stability of normal form circuit equations)

Every trajectory of (A2.4) is bounded and converges to an equilibrium
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point of (A2.4) if

(i) there exists a finite set of equilibrium points of (A2.4) {x.}? •.

such that g is passive with respect to z. = h(x.) in the sets ^(z.-)

= h(#(x.j)) where

tf(x.) ={x €Fn :H(x) -H(x.) -h(x1)T(x-xi) <ax }

for suitably chosen a , i.e.
xi

(h(x)-h(Xi))T g(h(x)) >0 Vx e^Xl) (A2.9)

with equality holding iff x = x-
P

(ii) there exists R > 0 such that Vx f u tf(x,)
i=l n

h(Rx)T Rg(h(x)) >0 (A2.10)

with equality holding iff g(h(x)) = 0.

Remark: The theorem is visualized in Figure 19.

Proof: It is easy to verify using (A2.9), (A2,10) that the functions

V.j(x) defined on d(x^) by

V^x) =H(x) -H(x.) -h(xi)T (x-x.)

and V (x) = H(Rx)

satisfy the conditions of Theorem (A2.1). All trajectories are bounded

from an argument exactly like that in Theorem A2.2 above using the

assumption that H(-) is proper. a

Note: A more general version of Theorem (A2.3) involving dissipativeness

runs into difficulties, because of the non-linearity associated with the
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constitutive relations between the capacitors charges, inductor fluxes

and capacitor voltages inductor currents. In particular, if H is

strictly convex, then it induces a Riemannian metric on Fn, i.e.

its Hessian is used to define the inner product. (See [2] for details).

Dissipativeness then defined relative to this metric, obtains the required

stability theorem.
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FIGURE CAPTIONS

Figure 1 Degenerate van der Pol oscillator circuit.

Figure 2 The dynamical system of (II.l), (II.2).

Figure 3 Phase portrait of'regularized circuit equations' for e>0.

Figure 4 Choice of configuration space of (II.l), (II.2) consistent

with (II.6), (II.7).

Figure 5 Illustrating the nature of the difficulty in obtaining

X(x,y) from f(x,y).

Figure 6 Illustrating the consistency requirement.

Figure 7 Visualization of stable initial manifolds for augmented system

Figure 8 Post-switching or post-fault behavior.

Figure 9 Foliation of F corresponding to (II.l), (II.2).

Figure 10 Visualization of fold bifurcation.

Figure 11 Behavior of vector field X near fold boundary.

Figure 12 Behavior of X(x,y) in the neighborhood of points where

vTDig(x0,y0)f(x0,y0) =0.
Figure 13 Visualization of cusp bifurcation.

Figure 14 Typical flow of X in the neighborhood of a cusp.

Figure 15 (a) Complete unfolding of the quartic or swallow tail singul

arity.

Figure 15 (b) Sections of the unfolding showing number of solutions.

Figure 16 Complete unfolding of the hyperbolic umbilic.

Figure 17 Jump from non-singular points.

Figure 18 Jump from a (fold) singularity.

Figure 19 Showing multiple singularities at x .

Figure 20 Continuous-discrete system model for Z.

82



Figure 21 Nonlinear circuit from a port standpoint.

Figure 22 Nonlinear circuit with parasitics introduced.

Figure 23 The n. port associated with the parasitics with the larger

capacitors and inductors frozen.

Figure 24 Visualizing .the globalization of the Lyapunov theorem.

Figure 25 Depicting the theorem on absolute stability.

Figure 26 Resistor characteristic for circuit of Figure 1.

Figure 27 Hysteretic characteristic of resistor shown in Figure 26.

Figure 28 An n-port N created by extracting all independent sources and

nonlinear elements.

Figure 29 Parasitic augmentation to get circuit equations in normal form.

Figure 30 Illustrating multiple solutions arising from nonmonotone

resistor characteristics.

Figure 31 Constructing the relaxation oscillation for Theorem VI.].

Figure 32 Relaxation oscillation of Section VI.3.

Figure 33 Circuit example (after Chua et al. [7]).

Figure 34 (a) Astable multivibrator circuit.

Figure 34 (b) Labelled diagrams associated with discrete dynamics of the

circuit of Figure 34(a).
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V

f
C=l

V,

RC circuit

(a)

Resistor Characteristic

(b)

Figure 1. Degenerate van der Pol oscillator circuit

TM(m,)

Figure 2. The dynamical system of (II.l), (II.2)
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Figure 3. Phase portrait of 'regularized circuit equations

for e > 0.

Figure 4. Choice of configuration space of (II.l), (II.2)

consistent with (II.6), (II.7).
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g(x,y) =0

(x0tYo)

X(x,y)

7rxX(x,y)

f(*o>yo)

g(x,y)=0

Vo)I(x°'XO^y)^^
(x,y)

• «

7rxX(x,y) x

1-u.

Figure 5. Illustrating the nature of the difficulty in obtaining
X(x,y) from f(x,y).

Augmented system trajectories

Degenerate system trajectory

Figure 6. Illustrating the consistency requirement.
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s *„

Augmented system

(xq'Yo)
(—*—gU,
V\

y) =0

•\
i^

s^2>
Sy"(0)

Figure 7. Visualization of stable initial manifoled for

augmented system.

Figure 8

£i(x,y)=0
*\(Pre-switching)

^ ^
t=0+"

^o^oi (Post-switching)
».

"•sjjto)

Post-switching or post-fault behavior.
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^Leaf of dimension 0
Leaf of dimension I

Figure 9. Foliation of jfl corresponding to 0T.1), (II.2).

x

4

Fold boundary

Figure 10. Visualization of fold bifurcation.
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FOLD
BOUNDARY

c»>0

•£(x)<0 U£M =0

(a) Overflowing

FOLD
BOUNDARY

FOLD
BOUNDARY

£W>0

:£(x)<0 ^£(x)=0

(b) Non-overflowing

£(x)>0

£(x)<0 VCU) =0

(c) Tangential trajectories

Figure 11 Behavior of vector
field Xnear fold boundary
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(i) (ii)

(iii) (iv)

Figure 12. Behavior of X(x,y) in the neighborhood of points

where vTD1g(xo,y0)f(x0,y£)) =0.
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7(x)
I PROJECTION

Figure 13. Visualisation of cusp bifurcation.
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UPPER SHEET

CENTER SHEET

YnM

♦X(x)

BOTTOM SHEET

iYM

Figure 14. Typical flow of X in the neighborhood of a cusp
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Figure 15 (a) Complete unfolding of the quartic or swallow
tail singularity.

*i <0 x,=0 xi>0

Figure 15 (b) Sections of the unfolding showing number of
solutions. <
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x,=0

x,>0

Figure 16. Complete unfolding of the hyperbolic umbilic
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(xo'*6>

<v^ s,°

*1

("o^

Picture drawn in {x } x

Figure 17. Jump from non-singular points

(x0,y2)

Figure 18. Jump from a (fold) singularity.
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Figure 19. Showing multiple singularities at x .
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(a) Defining the statas of the discrete system

(b) Labeled diagram showina jumps between states of the discrete

system.

Figure 20. Continuous-discrete system model for Z.
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Figure 21. Nonlinear circuit from a port standpoint,

+ € Vl,A

xi,a

X2,A

*2,A

A ports

Resistive
time-

invariant

n-port

Resistive

time-

invariant

n-port

Vi3

XI,B ;i-6

L2,B.

—'TOP

-J -2'B

B ports

Figure 22. Nonlinear circuit with parasitics introduced
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Figure 23. The nA port associated with the parasitics with the larger
capacitors and inductors frozen.

Figure 24. Visualizing the globalization of the Lyapunov theorem.
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DISSIPATIVE RELATIVE

TO 0

Figure 25. Depicting the theorem on absolute stability.

(iOtvo)

('i.v.)

Figure 26. Resistor characteristic for circuit of Figure 1
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<b VR Test circuit

Figure 27. Hysteretic characteristic of resistor shown in Figure 26.

TREE + 1 •COTREE

f\v

5
JRT I

"*'C
L_

Bh m

LINEAR RESISTIVE

n-PORT

&'-

Figure 28. An n-port N created by extracting all independent sources and
nonlinear elements.
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T/T

4F

A

N
LINEAR m-PORT

'RL

-Wv-

Figure 29. Parasitic augmentation to get circuit equations in normal form.

A'R

--,-_ J^LOAD

(i)

(ii)

*VR
LINES

Figure 30. Illustrating multiple solutions arising from nonmonotone

resistor characteristics.
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Figure 31. Constructing the relaxation oscillation for Theorem VI.1

Figure 32. Relaxation oscillation of Section VI.3.
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(iii)

KJA \
-m N

V

Figure 33. Circuit example (after Chua et al. [7]).
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* i

V

IK

^

i

5V

30K K

~T

lOOpF

He

lOOpF

's<2

Figure 34 Ca). Astable multivibrator circuit,

Ql off

Q2 sat

Q7 on
Q2 on

Ql sat
Ql ofi

Ql on

/

Q2

/
on

Ql sat

i/ Q2 off

CO
Q2

off

sat

Ql on
02 on

30 K

Q] off
Q2 sat

Ql on
QZ on

Ql off
02 sat

Ql off
Q2 sat

* Ql sat
Q2 off

QJ sat
Q2 off

Figure 34 Cb). Labeled diagrams associated with discrete dynamics

of the circuit of Figure 34 (a).
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