Copyright © 1980, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

ALGORITHMS FOR COMPUTING ALMOST-PERIODIC STEADY-STATE RESPONSE OF NONLINEAR SYSTEMS TO MULTIPLE INPUT FREQUENCIES

۰,

....

.

by

L. O. Chua and A. Ushida

.

,

Memorandum No. UCB/ERL M80/55

16 December 1980

•

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

ALGORITHMS FOR COMPUTING ALMOST-PERIODIC STEADY-STATE RESPONSE OF NONLINEAR SYSTEMS TO MULTIPLE INPUT FREQUENCIES[†]

L. O. Chua and A. Ushida[§]

ABSTRACT

Two efficient algorithms are presented for obtaining steady-state solutions of <u>nonlinear</u> circuits and systems driven by two or more distinct frequency input signals. These algorithms are particularly useful in cases where the steady-state response is either <u>not</u> periodic, or is periodic but its period is too large for existing methods.

The <u>first</u> algorithm is applicable to any circuit or system driven by any number $P \ge 2$ of input frequencies. The <u>second</u> algorithm is restricted only to 2 input frequencies and is therefore significantly more efficient than the first algorithm. Both algorithms are formulated for systems described by an <u>implicit</u> system of nonlinear algebraic-differential equations, thereby obviating the need to write state equations.

Numerous examples have been solved successfully using these two algorithms. A selection of some of these examples is given for illustrative purposes.

[†]Research supported in part by the Office of Naval Research under Contract NO0014-76-0572 and the National Science Foundation under Grant ENG75-22282.

⁵L. O. Chua is with the Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory at the University of California, Berkeley, California 94720.

A. Ushida is with the Department of Electrical Engineering, Faculty of Engineering, Tokushima University, Tokushima, Japan.

I. Introduction

A fundamental problem in the design of communication circuits, such as modulators and mixers, is to calculate the <u>steady-state response</u> when the circuit is driven by inputs having "P" distinct frequency components $\{\omega_1, \omega_2, \ldots, \omega_p\}$, where P \geq 2 [1-2]. For complete generality, we assume the circuit or system is described by an <u>implicit</u> system of differential-algebraic equations [3] of the form

$$f_{j}(x,x,y;\omega_{1}t,\omega_{2}t,...,\omega_{p}t) = 0$$
, $j = 1,2,...,m+n$ (1.1)

where x is an n-vector denoting the <u>state variables</u>, y is an m-vector denoting the remaining non-state variables and $f_j(\cdot)$ contains p periodic input signals of frequencies $\omega_1, \omega_2, \ldots, \omega_p$, respectively. In <u>Appendix A</u>, $f_j(\cdot)$ is given by an explicit formula which holds for most circuits of practical interest.

<u>Standing Assumption</u>. Given any initial state x_0 , (1.1) has a unique <u>asymptotically</u> <u>almost-periodic solution</u> [4]; namely,

$$x(t) = x_{tr}(t) + x_{ss}(t)$$
(1.2)

where

$$x_{tr}(t) \neq 0 \text{ as } t \neq \infty$$
 (1.3)

is called the transient component and

$$x_{ss}(t) = a_{0} + \sum_{k=1}^{M} \left\{ a_{2k-1} \cos v_{k} t + a_{2k} \sin v_{k} t \right\}$$
(1.4)

is called the steady state response , where the summation is taken over <u>all</u> possible frequencies [5]

$$^{\nu}k \stackrel{\Delta}{=} {}^{m}_{1}k^{\omega}1^{+m}_{2}k^{\omega}2^{+}\cdots^{+m}_{P}k^{\omega}P$$
(1.5)

generated by the <u>frequency base</u> $\omega_1, \omega_2, \ldots, \omega_p$.

Note that (1.4) is <u>not</u> an <u>ordinary</u> Fourier series because its frequency spectrum $\{v_1, v_2, \ldots, v_M\}$ is not harmonically related. In fact, $\underset{\sim}{x_{SS}}(t)$ is <u>not</u> even periodic if the frequency base $\{\omega_1, \omega_2, \ldots, \omega_p\}$ is incommensurable [5]. In the mathematical literature, (1.4) is called an <u>almost periodic function</u>.

Our objective in this paper is to present 2 efficient algorithms for calculating the steady-state response $x_{ss}(t)$.

Current methods for calculating $x_{ss}(t)$ can be classified into 4 categories: 1. <u>Brute force method</u>. This approach solves (1.1) by numerical integration (starting from an arbitrarily chosen initial state x_0) until the steady state is reached [3].

Although this method is quite general, it is prohibitively expensive for lightly-damped circuits where it takes a very long time for the transient component to die out.

.*

Moreover, if the frequency base is incommensurable, $x_{ss}(t)$ is <u>not</u> periodic and it is difficult to determine when the steady state has been reached.

2. <u>Perturbation method</u>. This approach solves (1.1) by <u>iteration</u> with the initial solution often chosen to be the solution of a linearized equation. It includes the <u>Volterra series method</u> [5-7] and the <u>Picard iteration</u> method [8].

Unfortunately, this method works only for <u>almost linear</u> circuits where the nonlinearity is often extremely weak (e.g., low distortion amplifiers). For circuits which rely on nonlinearity in an essential way (e.g., modulators and mixers) this method becomes highly inaccurate let alone the fact that the iteration often does not converge.

3. <u>Harmonic balance method</u>. This approach solves (1.1) by approximating the solution in a finite trigonometric series and then balancing all terms having identical frequency components, often via Galerkin's procedure [9-10].

Although very interesting theoretically, this method is often extremely timeconsuming because the various frequency components are estimated by <u>multi-dimensional</u> Fourier analysis.

4. <u>Shooting method</u>. This approach solves (1.1) by finding first an <u>initial state</u> x_0 (often via Newton-Raphon method) such that the solution starting from x_0 is <u>periodic</u>, i.e., no transient component [11-12].

There are 2 serious problems associated with this method.

(a) It can <u>not</u> be used when the solution is <u>not</u> periodic.

(b) Even if the solution is periodic, the period T is often <u>many orders of magni-</u> <u>tude larger</u> than the period of the individual frequency components v_k , thereby making the numerical integration over this long period T prohibitively expensive. For example, consider

 $x_{ss}(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$ (1.6)

The following table lists several combinations of ω_1 and ω_2 (of periods T_1 and T_2 respectively) which makes $x_{ss}(t)$ a periodic function. Also listed is the period T of $x_{ss}(t)$ and the ratio $\rho_1 \stackrel{\triangle}{=} T/T_1$ and $\rho_2 = T/T_2$.

ω _l (Hz)	ω ₂ (Hz)	$T_1 = \frac{2\pi}{\omega_1} (sec)$	$T_2 = \frac{2\pi}{\omega_2}(sec)$	$T=\frac{2\pi}{\omega}(sec)$	רן ר ^{ך ≜} ך	$\rho_2 \stackrel{\Delta}{=} \frac{T}{T_2}$
1	0.23	6.2832	27.318	6.2832(10 ²)	10 ²	0.23(10 ²)
1	0.233	6.2832	26.967	6.2832(10 ³)	10 ³	0.233(10 ³)
1	0.2333	6.2832	26.932	6.2832(10 ⁴)	10 ⁴	0.2333(10 ⁴)
1	0.23333	6.2832	26.927	6.2832(10 ⁿ)	10 ⁿ	$0.2333(10^{n})$
	n digits					n digits
10 ³	0.233(10 ³)	$6.2832(10^{-3})$	$0.26967(10^{-3})$	6.2832	10 ³	0.233(10 ³)
10 ⁴	0.2333(10 ⁴)	6.2832(10 ⁻⁴)	$0.26932(10^{-4})$	6.2832	104	0.2333(10 ⁴)
10 ⁵	0.23333(10 ⁵)	6.2832(10 ⁻⁵)	0.26932(10 ⁻⁵)	6.2832	10 ⁵	0.23333(10 ⁵)
10 ⁿ	0.233333(10 ⁿ)	$6.2832(10^{-n})$	0.26927(10 ⁻ⁿ)	6.2832	10 ⁿ	0.2333(10 ⁿ)
	n digits					n digits

<u>Table 1</u>. Example of ω_1 and ω_2 which make $x_{ss}(t)$ periodic of frequency ω .

Note that when $\omega_1 = 1$, $T \neq \infty$ as $n \neq \infty$, and when $\omega_1 = 10^n$, $T_1 \neq 0$ but T = 6.2832 as $n \neq \infty$. Hence, from a numerical integration point of view, it will take an <u>infinite</u> amount of integration steps in order to obtain the periodic solution $x_{ss}(t)$ when $n \neq \infty$. Since $\rho_1 \neq \infty$ and $\rho_2 \neq \infty$ as $n \neq \infty$ in both cases, the larger the values of ρ_1 and ρ_2 , the more computer time will be required. Hence, ρ_1 and ρ_2 give a measure of numerical efficiency of the shooting method. This observation motivates the following:

Theorem 1

The steady state response $x_{ss}(t)$ in (1.4) is periodic of frequency ω if <u>each</u> frequency v_{k} can be expressed as a <u>rational</u> number

$$v_k = \frac{m_k}{n_k}, \quad k = 1, 2, \dots, M$$
 (1.6)

Moreover, if m_k and n_k are relatively <u>prime</u> integers for all k = 1, 2, ..., M, then the <u>period</u> $T \stackrel{\Delta}{=} 2\pi/\omega$ of $x_{ss}(t)$ is given explicitly by

$$T = 2\pi \left(\frac{n}{m}\right)$$
(1.7)

where †

$$n \triangleq L.C.M. \{n_1, n_2, ..., n_M\}$$
(1.8)
$$m \triangleq G.C.D. \{m_1, m_2, ..., m_M\}$$
(1.9)

[†]L.C.M. and G.C.D. denote Least Common Multiple and Greatest Common Divisor, respectively.

and

$$\rho_{k} \triangleq \frac{T}{T_{k}} = \left(\frac{n}{m}\right)\nu_{k}$$
(1.10)

where $T_k = 2\pi/v_k$.

Conversely, if there are at least 2 frequencies v_j and v_k where v_j is <u>rational</u> but v_k is <u>irrational</u>, then $x_{ss}(t)$ is <u>not</u> periodic. <u>Proof</u>. Rewriting (1.4) as

$$x_{ss}(t) = x_{ss}(v_1 t, v_2 t, \dots, v_M t)$$
(1.11)

to emphasize the M periodic components of frequency v_1, v_2, \ldots, v_M , we obtain

$$\begin{aligned} x_{SS}(t+T) &= x_{SS} \left\{ v_1(t+T), v_2(t+T), \dots, v_M(t+T) \right\} \\ &= x_{SS} \left\{ v_1(t+2\pi(\frac{n}{m})), v_2(t+2\pi(\frac{n}{m})), \dots, v_M(t+2\pi(\frac{n}{m})) \right\} \\ &= x_{SS} \left\{ v_1(t+v_1(\frac{n}{m})(\frac{2\pi}{v_1})), v_2(t+v_2(\frac{n}{m})(\frac{2\pi}{v_2})), \dots, v_M(t+v_M(\frac{n}{M})(\frac{2\pi}{v_M})) \right\} \\ &= x_{SS} \left\{ v_1(t+\frac{m_1}{n_1}(\frac{n}{m})T_1), v_2(t+\frac{m_2}{n_2}(\frac{n}{m})T_2), \dots, v_M(t+\frac{m_M}{n_M}(\frac{n}{m})T_M) \right\} \\ &= x_{SS} \left\{ v_1(t+N_1T_1), v_2(t+N_2T_2), \dots, v_M(t+N_MT_M) \right\} \end{aligned}$$
(1.12)

where

$$N_{k} \triangleq \frac{m_{k}}{n_{k}}(\frac{n}{m}) = (\frac{m_{k}}{m})(\frac{n}{n_{k}}), \ k = 1, 2, \dots, M$$
 (1.13)

is an integer in view of (1.8) and (1.9). It follows from (1.13) and (1.4) that

$$x_{ss}(t+T) = x_{ss}(v_1t, v_2t, ..., v_Mt) = x_{ss}(t)$$
(1.14)

Hence $x_{ss}(t)$ is <u>periodic</u> of period T. Moreover, since m_k and n_k are <u>relatively</u> <u>prime</u>, T is the smallest period and hence, $T = 2\pi/\omega$.

Finally, if v_j is <u>rational</u> but v_k is irrational, we can represent v_k by (1.6) with $n_k \rightarrow \infty$. Consequently, $n = L.C.M.\{n_1, \dots, n_j, \dots, n_k, \dots, n_M\} = \infty$ and $x_{ss}(t)$ has an <u>infinite</u> period; i.e., it is <u>not</u> periodic.

It follows from <u>Theorem 1</u> that if $x_{rss}(t)$ is periodic, its frequency is given by

$$\omega = \frac{m}{n} = \frac{G.C.D.\{m_1, m_2, \dots, m_M\}}{L.C.M.\{n_1, n_2, \dots, n_M\}}$$
(1.15)

-4-

and its period T is bounded by:

$$\max\{T_1, T_2, \dots, T_p\} \le T \le 2\pi(n_1 n_2 \dots n_M)$$
(1.16)

It also follows from (1.8)-(1.10) that since m is typically a small integer (m=1 if all m_k are relatively prime), the period T can be <u>many orders of magnitude</u> larger than that of T_k. Typically, T increases by an order of magnitude if we increase the number of significant figures in representing the component frequencies v_{μ} , k = 1,2,...,p by one.

Observe that in solving (1.1) by numerical integration, the <u>step size</u> h is determined by the period of the highest frequency component [3], namely,

$$h \le \frac{1}{8} \min\{T_1, T_2, \dots, T_k\}$$
 (1.17)

It follows from (1.16) and (1.17) that both the <u>brute force method</u> and the <u>shooting</u> <u>method</u> are usually impractical when there are multiple input frequencies.

To overcome the problems associated with existing methods, we will present two new efficient algorithms in this paper. The basic idea in both algorithms is to find an <u>initial state</u> $x(0) \triangleq x_0^*$ so that the transient component

$$x_{tr}(t) = 0 \text{ for all } t \ge 0 \tag{1.18}$$

regardless of whether the steady state response $x_{SS}(t)$ is periodic or not. In both algorithms, x_{O}^{*} is found by a Newton-Raphson mehtod. However, unlike the shooting method [11], (1.3) is solved numerically <u>only over a small fraction of the period T</u> (in the periodic case) per iteration. This is why our algorithms are computationally quite efficient.

The algorithm to be presented in <u>Section II</u> is completely general and is applicable regardless of the number "p" of input frequencies, provided $p < \infty$.

The algorithm to be presented in <u>Section III</u> is restricted only to the 2-input frequency case (p=2). We will see that this restriction leads to a significantly more efficient algorithm than that of <u>Section II</u>.

II. Almost-Periodic Solution Algorithm 1: Multiple-Input Frequencies

Since our algorithm does <u>not</u> depend on whether $x_{SS}(t)$ is periodic or not, let us assume that the <u>exact steady-state response</u>

$$x_{ss}(t) = a_{0} + \sum_{k=1}^{M} \{a_{2k-1} \cos v_{k}t + a_{2k} \sin v_{k}t\}$$
(2.1)

is <u>not</u> periodic for the sake of generality. Consequently, we will call the coefficients a_k as <u>generalized</u> Fourier coefficients.

Even though the number M of frequency components in (2.1) could be quite large (M may equal ∞ !) in most <u>practical</u> cases,

$$A_{k} \triangleq \sqrt{\left\| a_{2k-1} \right\|^{2} + \left\| a_{2k} \right\|^{2}} \approx 0 \quad \text{for all } k > N \tag{2.2}$$

where **I** · **I** denotes Euclidean norm.

Hence, we will seek to find an approximate solution

$$x_{N}(t) = a_{0} + \sum_{k=1}^{N} \{a_{2k-1} \cos v_{k}t + a_{2k} \sin v_{k}t\}$$
(2.3)

whose N < M.

A. <u>Calculating a</u>, when transient component is zero

In <u>section II-B</u>, we will present an algorithm for finding an initial state x_0^* such that the transient solution component $x_{tr}(t)$ in (1.3) is zero for $t \ge 0$. In this subsection, let us assume x_0^* has been found so that the solution of (1.1) starting from x_0^* is $x(t) = x_{ss}(t)$ for $t \ge 0$.

To minimize computation time, we will often choose a relatively small N so that (2.2) is <u>not</u> necessarily satisfied. In this case, the following theorem is important:

Theorem 2. Properties of Generalized Fourier Coefficients

Let N < M be any positive integer.

(a) For any (not necessarily optimum) N-frequency component approximation

$$\overline{x}_{N}(t) \triangleq \stackrel{b}{\sim}_{0} + \sum_{k=1}^{N} \stackrel{cos v_{k}t + b}{\sim}_{2k} sin v_{k}t}$$
(2.4)

to $x_{ss}(t)$ in (2.1), the mean-square error

$$M[\underset{\sim}{x_{ss}}(t)-\underset{\sim}{\overline{x_{N}}}(t)]^{2} \triangleq \lim_{\substack{T \to \infty \\ +}} \frac{1}{T} \int_{0}^{T} [\underset{\sim}{x_{ss}}(t)-\underset{\sim}{x_{N}}(t)]^{2} dt$$

is given explicitly by: '

[†]We define the mean of x(t) by

$$M\{x(t)\} \triangleq \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) dt$$

$$M[x_{ss}(t)-\overline{x}_{N}(t)]^{2} = M[x_{ss}(t)]^{2} - \|a_{0}\|^{2} - \frac{1}{2}\sum_{k=1}^{N}\|a_{k}\|^{2} + \|a_{0}-b_{0}\|^{2} + \frac{1}{2}\sum_{k=1}^{N}\|a_{k}-b_{k}\|^{2}$$
(2.5)

(b) Among all possible coefficients $\{b_0, b_1, \ldots, b_{2N}\}$ in (2.4), the coefficients which result in a <u>minimum</u> mean-square error are precisely the <u>first</u> 2N+1 generalized Fourier coefficients; namely

$$b_{k} = a_{k}, k = 0, 1, 2, \dots, 2N$$
 (2.6)

(c) The <u>minimum</u> mean-square-error is given by:

$$M[x_{ss}(t)-x_{N}(t)]^{2} = \frac{1}{2} \sum_{k=N+1}^{M} \|a_{k}\|^{2}$$
(2.7)

<u>Proof</u>. It suffices to prove the <u>scalar</u> case.

(a)
$$M[x_{ss}(t)-\overline{x}_{N}(t)]^{2} = M\{x_{ss}(t) - b_{0} - \sum_{k=1}^{N} [b_{2k-1}\cos v_{k}t+b_{2k}\sin v_{k}t]\}^{2}$$

$$= M[x_{ss}(t)]^{2} - 2b_{0}M[x_{ss}(t)] - 2M\{x_{ss}(t)\sum_{k=1}^{N} [b_{2k-1}\cos v_{k}t+b_{2k}\sin v_{k}t]\}$$

$$+ b_{0}^{2} + M\{\sum_{k=1}^{N} [b_{2k-1}\cos v_{k}t+b_{2k}\sin v_{k}t]\}^{2}$$
(2.8)

where we have made use of the fact that

$$M{sin vt} = 0$$
 for all v (2.9)

$$M\{\cos vt\} = 0 \quad \text{for all } v \neq 0 \tag{2.10}$$

The last term in (2.8) can be further reduced:

$$M\{\sum_{k=1}^{N} [b_{2k-1}\cos v_{k}t+b_{2k}\sin v_{k}t]\}^{2} = \frac{1}{2}\sum_{k=1}^{N} (b_{2k-1}^{2}+b_{2k}^{2}) = \frac{1}{2}\sum_{k=1}^{2N} b_{k}^{2}$$
(2.11)

Substituting (2.1) for $x_{ss}(t)$ in the second and third terms in (2.8), we obtain

$${}^{2b}_{0}M[x_{ss}(t)] + 2M\{x_{ss}(t)\sum_{k=1}^{N} [b_{2k-1}\cos v_{k}t + b_{2k}\sin v_{k}t]\}$$

$$= 2 a_{0}b_{0} + \sum_{k=1}^{N} (b_{2k-1}a_{2k-1} + b_{2k}a_{2k}) = 2a_{0}b_{0} + \sum_{k=1}^{2N} a_{k}b_{k}$$
(2.12)

Substituting (2.11) and (2.12) into (2.8), we obtain:

$$M[x_{ss}(t)-\overline{x}_{N}(t)]^{2} = M[x_{ss}(t)]^{2} - 2a_{0}b_{0} - \sum_{k=1}^{2N} a_{k}b_{k} + b_{0}^{2} + \frac{1}{2}\sum_{k=1}^{2N} b_{k}^{2}$$

= $M[x_{ss}(t)]^{2} - a_{0}^{2} - \frac{1}{2}\sum_{k=1}^{2N} a_{k}^{2} + (a_{0}-b_{0})^{2} + \frac{1}{2}\sum_{k=1}^{2N} (a_{k}-b_{k})^{2}$ (2.13)

which is just the scalar version of (2.5).

(b) Since b_k occurs only in the last 2 terms of (2.13), the minimum of (2.13) occurs when (2.6) holds. (c) $M[x_{ss}(t)]^2 = a_0^2 + \frac{1}{2} \sum_{k=1}^{M} a_k^2$ (2.14)

Substituting (2.6) and (2.14) into (2.13), we obtain:

$$M[x_{ss}(t)-x_{N}(t)]^{2} = \frac{1}{2} \sum_{k=N+1}^{M} a_{k}^{2}$$
(2.15)

which is just the scalar version of (2.7).

<u>Theorem 2</u> shows that regardless of the integer N, the generalized Fourier coefficients $\{a_0, a_1, \ldots, a_{2N}\}$ in (2.3) can be obtained by minimizing the means-squareerror between $x_{ss}(t)$ and $\overline{x}_N(t)$. Hence, <u>increasing the number of frequency compo-</u> nents from N to N+1 does not affect the previously calculated coefficients.

Since by assumption, $x_{tr}(t) = 0$ for $t \ge 0$, we can calculate $x_{ss}(t)$ by solving (1.2) numerically. Assuming a uniform step size Δt , let us calculate (Z+1) time steps to obtain $x_{ss}(\Delta t)$, $x_{ss}(2\Delta t)$,..., $x_{ss}(k\Delta t)$,..., $x_{ss}((Z+1)\Delta t)$, where Z is some integer to be chosen later.

Since <u>Theorem 2</u> implies that the <u>j</u>th components a_{kj} , k = 0, 1, ..., 2N, of each generalized Fourier coefficient a_k can be determined independently of the coefficients of the remaining components of the vector $x_N(t)$, it suffices for us to derive a formula for calculating these coefficients in the <u>scalar</u> case. To simplify our notation, define the vectors

$$\begin{array}{c} x_{ss}(Z) \triangleq \begin{bmatrix} x_{ss}(0) \\ x_{ss}(\Delta t) \\ x_{ss}(2\Delta t) \\ \vdots \\ x_{ss}(Z\Delta t) \end{bmatrix}, x_{N}(Z) \triangleq \begin{bmatrix} x_{N}(0) \\ x_{N}(\Delta t) \\ x_{N}(2\Delta t) \\ \vdots \\ x_{N}(Z\Delta t) \end{bmatrix}, a \triangleq \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{2N} \end{bmatrix}, and \hat{a}(Z) \triangleq \begin{bmatrix} \hat{a}_{0}(Z) \\ \hat{a}_{1}(Z) \\ \hat{a}_{2}(Z) \\ \vdots \\ \hat{a}_{2N}(Z) \end{bmatrix}$$
(2.16)

and the $Z \times (2N+1)$ matrix

$$\begin{bmatrix} 1 & 1 & 0 & \dots & 1 & 0 \\ 1 & \cos \nu_{1} \Delta t & \sin \nu_{1} \Delta t & \dots & \cos \nu_{N} \Delta t & \sin \nu_{N} \Delta t \\ 1 & \cos 2\nu_{1} \Delta t & \sin 2\nu_{1} \Delta t & \dots & \cos 2\nu_{N} \Delta t & \sin 2\nu_{N} \Delta t \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \cos 2\nu_{1} \Delta t & \sin 2\nu_{1} \Delta t & \dots & \cos 2\nu_{N} \Delta t & \sin 2\nu_{N} \Delta t \end{bmatrix}$$
(2.17)

Theorem 3

The (2N+1) generalized Fourier coefficients $\{a_0,a_1,\ldots,a_k,\ldots,a_{2N}\}$ of $x_N(t)$ (scalar version of (2.3)) are given by

$$a = \hat{a}(Z) + \varepsilon(Z)$$
(2.18)

where

٩.

z

$$\hat{\underline{a}}(Z) \triangleq (\underline{\Gamma}^{\mathsf{T}}\underline{\Gamma})^{-1} \underline{\Gamma}^{\mathsf{T}} \underset{\sim}{\times}_{ss}(Z)$$
(2.19)

and $\varepsilon(Z)$ is an error vector satisfying

$$\varepsilon(Z) \rightarrow 0$$
 as $Z \rightarrow \infty$ (2.20)

The (2N+1) × (2N+1) matrix $(\Gamma^{T}\Gamma)$ in (2.19) is <u>non-singular</u> for all positive frequencies v_1, v_2, \ldots, v_N and for any <u>step size</u> Δt <u>if, and only if</u>

$$\Delta t \neq \frac{2n\pi}{|v_i \pm v_k|}$$
(2.21)

for all i, k = 1, 2, ..., N, and for any integer n. Proof.

$$M[x_{ss}(t)-x_{N}(t)]^{2} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} [x_{ss}(t)-x_{N}(t)]^{2} dt$$

$$= \lim_{Z \to \infty} \frac{1}{(Z+1)\Delta t} \left\{ \sum_{k=0}^{Z} [x_{ss}(k\Delta t)-x_{N}(k\Delta t)]^{2} \Delta t \right\}$$

$$= \frac{1}{(Z+1)} \left\{ \sum_{k=0}^{Z} [x_{ss}(k\Delta t)-x_{N}(k\Delta t)]^{2} \right\} + \varepsilon(Z) \qquad (2.22)$$

where

 $\epsilon(Z) \ge 0$ denotes the error resulting from taking only a <u>finite</u> number Z of time steps.

Now substituting $t = k\Delta t$ in (2.3) and using the notations in (2.16) and (2.17), we can write

$$\sum_{k=0}^{Z} [x_{ss}(k\Delta t) - x_{N}(k\Delta t)]^{2} = [x_{ss}(Z) - x_{N}(Z)]^{T} [x_{ss}(Z) - x_{N}(Z)]$$

$$= [x_{ss}(Z) - \hat{r_{a}}(Z)]^{T} [x_{ss}(Z) - \hat{r_{a}}(Z)]$$

$$= x_{ss}^{T}(Z) x_{ss}(Z) - \hat{a}^{T}(Z) \hat{r}^{T} x_{ss}(Z) - x_{ss}^{T}(Z) \hat{r_{a}}(Z)$$

$$+ \hat{a}^{T}(Z) \hat{r}^{T} \hat{r_{a}}(Z) \qquad (2.23)$$

After adding and subtracting $\sigma^{T}G^{-1}GG^{-1}\sigma = S^{T}G^{-1}\sigma$ to (2.23), where

$$\underbrace{G} \triangleq \underbrace{\Gamma}^{\mathsf{T}} \underbrace{\Gamma} \quad \text{and} \quad \underbrace{\sigma} \triangleq \underbrace{\Gamma}^{\mathsf{T}} \underbrace{x}_{ss}(Z)$$
 (2.24)

we obtain

$$\sum_{k=0}^{Z} [x_{ss}(k\Delta t) - x_{N}(k\Delta t)]^{2} = x_{ss}^{T}(Z)x_{ss}(Z) - \hat{a}^{T}(Z)\underline{G}\underline{G}^{-1}\underline{\sigma} - \sigma^{T}\underline{G}\underline{G}^{-1}\hat{a}(Z) + \hat{a}^{T}(Z)\underline{G}\hat{a}(Z) + \sigma^{T}\underline{G}^{-1}\underline{G}\underline{G}^{-1}\underline{\sigma} - \sigma^{T}\underline{G}^{-1}\underline{\sigma} = (\hat{a}(Z) - \underline{G}^{-1}\underline{\sigma})^{T}\underline{G} (\hat{a}(Z) - \underline{G}^{-1}\underline{\sigma}) + x_{ss}^{T}(Z)x_{ss}(Z) - \sigma^{T}\underline{G}^{-1}\underline{\sigma} (2.25)$$

Since only the first term of (2.25) depends on $\hat{a}(Z)$, and since G as defined in (2.24) is clearly positive semi-definite, it follows from (2.22) and (2.25) that the mean-square error $M[x_{ss}(t)-x_N(t)]^2$ attains its minimum when

$$\hat{a}(Z) = \mathcal{G}^{-1} \mathcal{G} = (\mathcal{\Gamma}^{T} \mathcal{\Gamma})^{-1} \mathcal{\Gamma}^{T} \mathcal{X}_{ss}(Z)$$
(2.26)

It follows from <u>Theorem 2</u> that as $Z \rightarrow \infty$, $\hat{a}(Z) \rightarrow a$ and hence $\varepsilon(Z) \rightarrow 0$ in (2.18). The proof showing $(\Gamma^{T}\Gamma)$ is nonsingular if and only if (2.21) holds involves some cumbersome determinant expansions. The details are given in Appendix B.

Theorem 3 gives us an explicit formula for calculating (approximately) the (2N+1) generalized Fourier coefficients $\{a_0, a_1, \ldots, a_{2N}\}$ for <u>any</u> N; namely,

$$a \approx (\underline{\Gamma}^{T} \underline{\Gamma})^{-1} \underline{\Gamma}^{T} \underline{x}_{ss}(Z)$$
(2.27)

This approximate formula becomes exact as the number Z of integration time steps tends to ∞.

Since (2.21) applies only at a countable set of isolated points, it is easy to choose a suitable Δt satisfying (2.21). Once Δt is chosen, Γ can be calculated from (2.17). The vector $x_{ss}(Z)$ in (2.17) represents (2N+1) "samples" taken from the exact steady-state solution $x_{ss}(t)$ from (2.1) at a regular time interval equal to St.

In practice, $x_{ss}(Z)$ is of course calculated <u>numerically</u> by solving (1.1) starting from any initial state x_0^* which results in a <u>zero</u> transient component.⁺

Finally, note that (2.27) gives the (2N+1) generalized Fourier coefficients of only <u>one component</u> of the state vector $x_{ss}(t)$. Hence, (2.27) must be applied

[†]This implicit system of differential-algebraic equations can be solved using the Backward Differentiation Formula (BDF) as described in [3].

n times for the "n" state variables in x. Since Γ remains unchanged, each calculation involves only changing $x_{ss}(Z)$ in (2.27) corresponding to <u>each</u> component of $x_{ss}(t)$.

B. Finding the initial state $x_{\sim 0}^{*}$

If we let $x_{N_i}(T_b)$ denote the <u>i</u>th component of $x_N(t)$ from (2.3) at any time $t = T_b$, then

$$x_{N_{i}}(T_{b}) = a_{0_{i}} + \sum_{k=1}^{N} \{a_{2k-1_{i}} \cos v_{k}T_{b} + a_{2k_{i}} \sin v_{k}T_{b}\}$$
(2.28)

when a $_{k_{i}}$ denotes the $\underline{i}th$ component of a $_{\sim k}.$ Substituting (2.27) for a in (2.28), we obtain

$$x_{N_{i}}(T_{b}) \approx \chi^{T}(T_{b})_{a_{i}} = \chi^{T}(T_{b})[(\Gamma_{i}^{T}\Gamma_{i})^{-1}\Gamma_{i}^{T}x_{ss_{i}}(Z)] = \chi^{T}_{ss_{i}}(Z) [\Gamma_{i}(\Gamma_{i}^{T}\Gamma_{i})^{-1}\chi(T_{b})],$$

$$i = 1, 2, ..., n$$

$$(2.29)$$

where $x_{ss}^{T}(Z)$ denotes the $x_{ss}(Z)$ (as defined in (2.16)) associated with the <u>i</u>th componentⁱ of $x_{ss}(t)$, and

$$\underbrace{\gamma(T_b)}_{\underline{A}} \begin{bmatrix} 1 \cos v_1 T_b & \sin v_1 T_b, \dots, \cos v_N T_b & \sin v_N T_b \end{bmatrix}^T$$
(2.30)

Since $\Gamma(\Gamma^{T}\Gamma)^{-1}\gamma(T_{b})$ in (2.29) remains unchanged for all i = 1, 2, ..., n, we can combine all n components of $x_{N}(t)$ from (2.29) into a single matrix equation:

where the (Z+1)-vector

$$\underline{\alpha}(\mathsf{T}_{\mathsf{b}};\Delta\mathsf{t},\mathsf{Z},\mathsf{N}) \triangleq \underline{\Gamma}(\underline{\Gamma}^{\mathsf{T}}\underline{\Gamma})^{-1}\underline{\gamma}(\mathsf{T}_{\mathsf{b}})$$
(2.32)

depends <u>only</u> on T_b , Δt , Z, and N (since Γ in (2.17) depends on Δt , Z, and N) but <u>not</u> on x_0^* .

We can recast (2.31) into an <u>exact</u> equation by introducing a <u>slack</u> variable $\varepsilon_N(T_b; \Delta t, Z)$; namely,

$$\sum_{n}^{X} (T_b; \sum_{0}^{*}) - \sum_{n}^{X} (\Delta t, Z; \sum_{0}^{*}) \simeq_{n}^{\alpha} (T_b; \Delta t, Z, N) = -\varepsilon_{N} (T_b; \Delta t, Z)$$
(2.33)

Observe that $\varepsilon_N(T_b; \Delta t, Z) \rightarrow 0$ if the following 3 conditions are satisfied: 1) $Z = \infty$.

- 2) $x_{ss}(t)$ is calculated by solving (1.1) numerically with x_0^* as the <u>initial</u> <u>state</u>, where x_0^* is any initial state which satisfies (1.18).
- 3) $x_{ss}(t)$ is calculated with infinite precision and zero local truncation error.

None of these conditions can be exactly met in practice. Moreover, even if $\varepsilon_N(T_b;\Delta t,Z) = 0$, we still can <u>not</u> solve (2.33) for x_0^* since we do <u>not</u> as yet have the information (i.e., the coefficients $a_0, a_1, a_2, \dots, a_{2N}$) needed in (2.3) to calculate $x_N(T_b;x_0^*)$.

Instead of (2.33), however, suppose we define the following system of "n" related equations as a function of the "n" components x_0, x_{02}, \ldots, x_0 of the initial vector $x_0 \triangleq [x_0, x_0, \ldots, x_0]^T = [x_1(0) \times (0) \times (0)]^T$:

$$\begin{bmatrix} x_{1}(T_{b};x_{0}) \\ x_{2}(T_{b};x_{0}) \\ \vdots \\ x_{n}(T_{b};x_{0}) \\ \vdots \\ x_{n}(T_{b};x_{0}) \end{bmatrix} - \begin{bmatrix} x_{0} & x_{1}(\Delta t;x_{0}) & x_{1}(2\Delta t;x_{0}) \dots x_{1}(Z\Delta t;x_{0}) \\ x_{0} & x_{2}(\Delta t;x_{0}) & x_{2}(2\Delta t;x_{0}) \dots x_{2}(Z\Delta t;x_{0}) \\ \vdots \\ x_{n}(\Delta t;x_{0}) & x_{n}(\Delta t;x_{0}) & x_{n}(2\Delta t;x_{0}) \dots x_{n}(Z\Delta t;x_{0}) \end{bmatrix} \begin{bmatrix} \alpha_{0}(T_{b};\Delta t,Z,N) \\ \alpha_{1}(T_{b};\Delta t,Z,N) \\ \alpha_{2}(T_{b};\Delta t,Z,N) \\ \vdots \\ \alpha_{2}(T_{b};\Delta t,Z,N) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\underbrace{x(T_{b};x_{0})} & \underbrace{x(\Delta t,Z;x_{0})} \\ \underbrace{x(\Delta t,Z;x_{0})} & \underbrace{x(\Delta t,Z;x_{0})} \\ \underbrace{x(T_{b};\Delta t,Z,N)} \\ \underbrace{x(T_{b};\Delta t,Z,N)} \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

$$\underbrace{x(T_{b};\Delta t,Z,N)} = \underbrace{0}_{n} (2.34)$$

where $x_i(t;x_0)$ denotes the <u>i</u>th component of the <u>complete</u> solution $x(t) = x_{tr}(t) + x_{ss}(t)$ of (1.1) starting from the <u>initial state</u> x_0 , for t = 0, $\Delta t, 2\Delta t, ..., Z\Delta t$, and T_b . Observe that unlike (2.31), both $x(T_b;x_0)$ and $X(\Delta t, Z;x_0)$ can be calculated by solving (1.1) numerically.

Now at
$$x_0 = x_0^*$$
, $x_{tr}(t) = 0$ for $t \ge 0$ (by definition) and hence we can write
 $x(T_b;x_0^*) = x_{ss}(T_b;x_0^*) = x_N(T_b;x_0^*) + x_{M-N}(T_b;x_0^*)$ (2.35)

where $x_{ss}(T_b; x_0^*) = x_{ss}(T_b)$ and $x_N(T_b; x_0^*) = x_N(T_b)$ as defined in (2.1) and (2.3) respectively; and where $x_{M-N}(T_b; x_0^*)$ denotes the remaining (M-N) terms of $x_{ss}(T_b)$ which have been excluded from $x_N(T_b)$. Consequently, at $x_0 = x_0^*$, (2.34) can be written as follows:

$$x_{N}(T_{b};x_{0}^{*}) - \chi(\Delta t,Z;x_{0}^{*})_{\alpha}(T_{b};\Delta t,Z,N) = -x_{M-N}(T_{b};x_{0}^{*})$$
(2.36)

Comparing (2.33) and (2.36), we find

$$\varepsilon_{N}(T_{b};\Delta t,Z) = x_{M-N}(T_{b};x_{0}^{*})$$
(2.37)

Equation (2.37) is remarkable because it says that $\varepsilon_N(T_b; \Delta t, Z) \rightarrow 0$ when $N \rightarrow M$. In other words, if the <u>exact</u> steady state response $x_{ss}(t)$ in (2.1) has only $M < \infty$ frequency components, and if we choose N = M in (2.3), then $\varepsilon_N(T_b; \Delta t, Z) = 0$ and (2.31) becomes <u>exact</u> for any Z.

Indeed, when M = N and Z = 2M + 1, Γ becomes a <u>square matrix</u> and the generalized Fourier coefficients can be calculated <u>exactly</u> from (2.27):

$$a_{z} = \Gamma^{-1} x_{ss}(Z)$$
 (2.38)

Similarly, (2.32) in this case (Z=2M+1) reduces to

$$\underset{\sim}{\alpha}(\mathsf{T}_{\mathsf{b}};\Delta\mathsf{t},\mathsf{Z}) = \underset{\sim}{\mathsf{r}}^{\mathsf{T}}\underset{\gamma}{\Upsilon}(\mathsf{T}_{\mathsf{b}})$$
(2.39)

Of course in practice, we will normally choose N << M in order to save computation time. This choice is often necessary anyway because $M = \infty$ for most practical circuits. Fortunately, the amplitudes of the higher-order terms [5] in many practical circuits satisfy (2.2) so that the error vector $\varepsilon(T_b;\Delta t,Z)$ remains relatively small even though N << M.

Let us summarize the preceding observations as follow: <u>Remarks</u>:

1. The solution \hat{x}_0 of the nonlinear equation

$$F(x_0;T_b,\Delta t,Z,N) = 0$$
(2.40)

as defined in (2.34) for fixed Δt and Z represents, a good approximation to x_0^{-1} provided the number of <u>frequency components</u> N and/or the number of <u>time-step</u> samples Z are chosen to be sufficiently large. In particular,

$$\hat{x}_{0} \rightarrow \hat{x}_{0}^{*} \text{ as } \mathbb{N} \rightarrow \infty \text{ and/or } \mathbb{Z} \rightarrow \infty$$
(2.41)

2. Since (2.40) is not given in closed analytical form, it must be caluclated numerically for each x_0 , Δt , and Z.

3. Equation (2.40) can be solved for x_0 (for fixed Δt and Z) by the <u>Newton-Raphson</u> method [3]:

$$x_{0}^{(j+1)} = x_{0}^{(j)} - [J_{F}(x_{0}^{(j)})]^{-1} F(x_{0}^{(j)};T_{b},\Delta t,Z,N)$$
(2.42)

where
$$\int_{F} (x_0^{(j)}) \Delta = \frac{\partial \mathcal{F}(x_0; T_b, \Delta t, Z, N)}{\partial x_0} \Big|_{x_0} = x_0^{(j)}$$
 (2.43)

denotes the Jacobian matrix of $F(x_0;T_b,\Delta t,Z,N)$ at $x_0 = x_0^{(j)}$. This can be evalu-

ated by the method given in <u>Section II-C</u>. 4. Once the initial state x_0^{+} is found, we solve (1.1) numerically with x_0^{+} as the initial state to obtain $x_{ss}(\Delta t)$, $x_{ss}(2\Delta t)$,..., $x_{ss}(Z\Delta t)$. Substituting the <u>i</u>th component, i = 1, 2, ..., n, of these data into (2.27), we obtain the first (2N+1) generalized Fourier coefficients $a_0, a_1, \dots, a_{2N_j}$ of the <u>i</u>th component $x_{ss_j}(t)$ of the steady state response $x_{ss}(t)$.^{+ i}Theⁱsteady-state response $x_N(t)$ at <u>any</u>ⁱtime $t = T_j$ can now be obtained by calculating (2.3) at $t = T_j$. C. <u>Evaluating the Jacobian matrix $J_F(x_0^{(j)})$ </u> Since the <u>most time-consuming</u> part in solving for x_0 via the Newton-Raphson method is the numerical calculation of the Jacobian matrix $J_F(x_0^{(j)})$, it is

essential to develop efficient computational methods. Taking the Jacobian of $F(x_0; \Delta t, Z, N)$ in (2.34), we obtain

$$\underbrace{J}_{F}(x_{0}^{(j)}) = \frac{\partial x(T_{b};x_{0})}{\partial x_{0}} \Big|_{x_{0}=x_{0}^{(j)}} - \underbrace{\sum_{k=0}^{Z} \alpha_{k}(T_{b};\Delta t,Z)}_{k=0} \frac{\partial x(k\Delta t;x_{0})}{\partial x_{0}} \Big|_{x_{0}=x_{0}^{(j)}}$$
(2.44)

Hence, we need to calculate

$$\frac{\partial x(t;x_0)}{\partial x_0} \Big|_{\substack{x_0 = x_0^{(j)}}} \text{ at } t = 0, \Delta t, 2\Delta t, \dots, Z\Delta t, \text{ and } T_b$$
(2.45)

These (Z+2) n x n matrices can be calculated by the numerical differentiation method described in Section 17-5-2 of [3]. If the circuit associated with (1.1)

⁺If $x_{ss}(t)$ is <u>periodic</u> and its period T is not too large, we can replace this step by numerically solving (1.1) from t = 0 to t = T with x_{0}^{*} as the initial state.

is given, the most efficient method for calculating (2.45) is the <u>sensitivity</u> network approach given in Section 17-5-3 of [3].

However, if (1.1) is available only analytically⁺, the sensitivity network approach is not applicable. In this case, the following method is much more efficient and accurate than that of numerical differentiation:

In vector form, (1.1) becomes

$$f(x,x,y;\omega_1t,\omega_2t,\ldots,\omega_pt) = 0$$
(2.46)

Applying Taylor Expansion about $(x^{(j)}(t), y^{(j)}(t))$ at the <u>j</u>th stage of the iteration, where $(x^{(j)}(t), y^{(j)}(t))$ denotes the solution of (2.41) with initial state $x_0 = x_0^{(j)}$, we obtain

$$f(\overset{*}{x}^{(j)}(t), \overset{*}{x}^{(j)}(t), \overset{*}{y}^{(j)}(t), \overset{*}{\omega_{1}}^{t}, \overset{*}{\omega_{2}}^{t}, \dots, \overset{*}{\omega_{p}}^{t}) + \begin{bmatrix} \frac{\partial f}{\partial \overset{*}{x}} & \frac{\partial f}{\partial \overset{*}{x}} & \frac{\partial f}{\partial \overset{*}{y}} \end{bmatrix} \begin{bmatrix} \overset{*}{\eta}(t) \\ \overset{*}{\eta}(t) \\ \overset{*}{y}(t) \end{bmatrix} + \underbrace{O(\Vert \overset{*}{\eta}(t) \Vert^{2}, \Vert \overset{*}{\eta}(t) \Vert^{2}, \Vert \overset{*}{y}(t) \Vert^{2}) = O \qquad (2.47)$$

where

$$\underline{y}(t) \triangleq \underline{x}(t) - \underline{x}^{(j)}(t), \underline{y}(t) \triangleq \underline{y}(t) - \underline{y}^{(j)}(t)$$
(2.48)

The first term in (2.47) is identically zero because $(x^{(j)}(t), y^{(j)}(t))$ is a solution of (2.46). Neglecting the higher-order terms, (2.47) can be recast as follow:

$$\begin{bmatrix} \dot{n}(t) \\ \dot{\gamma}(t) \end{bmatrix} = -\begin{bmatrix} \frac{\partial f}{\partial \dot{x}} \frac{\partial f}{\partial y} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial f}{\partial \dot{x}} \\ \frac{\partial f}{\partial \dot{x}} \end{bmatrix} \begin{bmatrix} \dot{n}(t) \\ \dot{\gamma}(t) \\ \dot{\gamma}(t) , \dot{\gamma}(j) \\ \dot{\gamma}(t) \end{bmatrix} \begin{bmatrix} \dot{n}(t) \\ \dot{n}(t) \end{bmatrix}$$
(2.49)

The first component equation of (2.49) is a <u>linear time-varying differential</u> equation

[†]Our algorithms in this paper are valid for <u>any</u> equation of the form (1.1), which need <u>not</u> be associated with a circuit.

$$\dot{\eta}(t) = A^{(j)}(t) \eta(t)$$
 (2.50)

where $A^{(j)}(t)$ is an n x matrix function of time. We will henceforth refer to (2.50) as the variational equation associated with (2.46).

The solution of (2.50) corresponding to any <u>initial state</u> n(0) is given by [13]

$$\eta(t) = \phi^{(j)}(t) \eta(0)$$
(2.51)

where $\Phi_{\alpha}^{(j)}(t)$ is the <u>fundamental matrix</u> solution of (2.50).[†] If we choose

$$n_{\tilde{n}}(0) = [0 \ 0 \ \dots \ 0 \ n_{k}(0) \ 0 \ 0 \ \dots \ 0]^{\mathsf{T}}$$
 (2.52)

then

$$n_{i}(t) = \Phi_{ik}^{(j)}(t) n_{k}(0), j = 1, 2, ..., n$$
 (2.53)

where $\Phi_{ik}(t)$ denotes the <u>ik</u>th element of $\Phi(t)$. It follows from (2.52) that

$$\frac{\partial x_{i}(t)}{\partial x_{k}(0)} = \frac{n_{i}(t)}{n_{k}(0)} = \Phi_{ik}(t)$$
(2.54)

Hence we have proved that

$$\frac{\frac{\partial \mathbf{x}(\mathbf{t};\mathbf{x}_{0})}{\partial \mathbf{x}_{0}}}{\sum_{i=0}^{i} \sum_{j=0}^{i} \left(\mathbf{j}\right)} = \Phi^{(\mathbf{j})}(\mathbf{t})$$
(2.55)

It follows from (2.54) that $J_F(x_0^{(j)})$ in (2.44) can be calculated accurately in 3 steps:

- 1) Form the variational equation (2.50) at each iteration.
- 2) Calculate the fundamental matrix solution $\Phi^{(j)}(t)$ of (2.50).
- 3) Calculate (2.44).

D. Initialization Guidelines

To <u>initiate</u> the algorithm for finding the initial state x_0^* , it is necessary to choose the 5 parameters N, Z, Δt , T_b and x_0 for constructing the nonlinear equation (2.34). Since a good choice of these parameters depends on both the nature of the problem (number of state variables, degree of nonlinearity, amplitudes of input signals, number of input frequencies, etc.) and the <u>computer</u> <u>being</u> used (word length, single or double precision, etc.), we can only offer

[†]The jth column of the <u>fundamental matrix solution</u> is simply the solution of (2.51) with the initial state

some guidelines which have been found useful in our numerous numerical experiments conducted using our algorithm.

a) Choice of N.

Recall N \leq M is the <u>number of frequency components</u> used in the <u>truncated</u> steady state solution $x_N(t)$ in (2.3). For <u>typical</u> communication circuits (amplifiers, mixers, modulators, etc.) the number of <u>significant</u> frequency components is usually known from previous analysis and N should be chosen to include all such components.

If the number of <u>significant</u> frequency components is <u>not</u> known from previous experience, we simply make an intuitive guess. If this guess is unrealistic, it will show up in the subsequent error analysis (to be discussed in <u>Section II-E</u>) and we will have to repeat the analysis with a larger N.

b) Choice of Z, Δt , and T_b.

Recall that Δt is the uniform <u>sampling step size</u> used in "sampling" the numerical solution of (1.1) and Z is the total number of samples taken. It is important to note that " Δt " is <u>not</u> the same as the <u>integration step size</u> "h" used in solving (1.1).

In most of our numerical experiments, we solve (1.1) using a $4\underline{th}-6\underline{th}$ order <u>BDF algorithm</u> [3] with a step size $h = T_{min}/50$, where T_{min} is the <u>smallest period</u> of the N frequency components. This choice usually gives a very <u>accurate</u> numerical solution for x(t).

Our sampling step size Δt is usually chosen within the range

$$7h < \Delta t < 13h$$
 (2.56)

provided (2.21) is satisfied. In practice, <u>ill-conditioning</u> could occur if Δt is chosen to be too small, or if it contains some frequency components v_j and v_k such that $|v_j - v_k| \approx 0$. (See <u>Appendix B</u>)

Although <u>Theorem 3</u> shows that the generalized Fourier coefficients can be calculated <u>exactly</u> only if $Z \rightarrow \infty$ (see Eq. (2.20)), our numerical experiments show that good results can be obtained in many practical cases with a considerably smaller Z. In particular we have found the following range to be adequate for the many examples we have tried so far:

(2N+1) < Z < 2(2N+1)

-17-

(2.57)

Finally, the choice of T_b is somewhat arbitrary as it does <u>not</u> affect the theory in <u>Sec. II-A</u> from which our algorithm is based. However, since the generalized Fourier coefficients are estimated by samples taken over the time interval $[0, Z\Delta t]$, we choose

$$T_{b} > Z\Delta t$$
 (2.58)

so that the data $x(T_b;x_0)$ would not be redundant.

c) <u>Choice of x_0 </u>.

To assure and to hasten the convergence of the Newton-Raphson iteration, it is desirable to pick a good <u>initial guess</u> $x_0^{(0)}$. Unfortunately, no intuitive guide-lines are available especially when the steady state solution $x_{ss}(t)$ is <u>not</u> periodic.

One approach which has worked well for our examples is to replace the input frequencies $\{v_1, v_2, \ldots, v_N\}$ by an <u>approximate</u> set of frequencies $\{v_1, v_2, \ldots, v_N\}$ so that the associated steady-state waveform is <u>periodic</u> with a relatively small period $T = 2\pi(n/m)$, where m and n are defined in (1.8)-(1.9) and is bounded by (1.16). Using this approximate set of frequencies, we then apply the <u>shooting</u> <u>method</u> [11], or any other efficient method for finding x_0^{*} for <u>periodic</u> solutions, to calculate x_0^{*} . We then take this approximate x_0^{*} as our initial guess $x_0^{(0)}$.

If we let $m_{max} \triangleq \max\{m_1, m_2, \dots, m_N\}$ and $n_{min} \triangleq \min\{n_1, n_2, \dots, n_N\}$, then (1.7) suggests the following algorithm for reducing T:

(1) If $v_k = m_k$ is an <u>integer</u> for all k = 1, 2, ..., N, then we increase m_{max_n} until it is <u>not</u> a prime number and then increase v_k , k = 1, 2, ..., N, until m_{max}/v_k is an integer.

Example 1. Let $v_1 = 2$, $v_2 = 3$, and $v_3 = 7$. Then $\{m_1, m_2, m_3\} = \{2, 3, 7\}$ and we have from (1.7)

$$T = \frac{2\pi}{G.C.D.\{2,3,7\}} = 2\pi$$

Now increase $m_{max} = 7$ to $\hat{v}_3 = \hat{m}_3 = 8$, and then increase v_2 to 4. The new period associated with $\{\hat{v}_1, \hat{v}_2, \hat{v}_3\} = \{2, 4, 8\}$ is

$$\hat{T} = \frac{2\pi}{G.C.D.\{2,4,8\}} = \pi$$
 (2.59)

(2) If $v_k = m_k/n_k$ is <u>not</u> an integer, we first change m_k as in (1) and then change n_k , k = 1, 2, ..., N until it becomes a multiple of n_{min} .

<u>Example 2</u>. Let $v_1 = 2/5$, $v_2 = 3/8$, and $v_3 = 7/9$. Then $\{m_1, m_2, m_3\} = \{2, 3, 7\}$ as in <u>Example 1</u> and $\{n_1, n_2, n_3\} = \{5, 8, 9\}$. From (1.7), we find

$$T = 2\pi \left[\frac{L.C.M.\{5,8,9\}}{G.C.D.\{2,3,7\}} \right] = 720\pi$$
 (2.60)

Since $n_{min} = 5$, we change n_2 and n_3 to $n_2 = 10$, and $n_3 = 10$ so that

$$\hat{T} = 2\pi \left[\frac{L.C.M.\{5,10,10\}}{G.C.D.\{2,4,8\}} \right] = 10\pi$$
(2.61)

Note that dramatic reduction in period from 720π to $10\pi!^{\dagger}$

(3) If v_k is an <u>irrational</u> number, we first approximate it by a rational number and then proceed as in (2).

Example 3. Let $v_1 = 0.404040...$, $v_2 = 0.375010101...$, and $v_3 = 0.7777...$. We can approximate v_1, v_2 , and v_3 by $v_1 = 2/5$, $v_2 = 3/8$, and $v_3 = 7/9$ and then proceed as in Example 2. Note the period changes from $T = \infty$ to $T = 10\pi$. E. Termination Guidelines

Since our choice of N may <u>not</u> be realistic in the sense that one or more significant frequency components may have been inadvertently excluded from (2.3), our algorithm does <u>not</u> terminate when the Newton-Raphson iteration in (2.42) converges to an initial state x_0^* . We must further validate our answer as follows:

(1) If the steady-state response $x_{ss}(t)$ is <u>periodic</u> with a reasonably small period T, we simply solve (1.1) numerically for $x(t,x_0^*)$ (with x_0^* as initial state) from t = 0 to t = T and verify that $x(0;x_0) = x(T;x_0)$

(2) If the steady-state response $x_{ss}(t)$ is <u>not periodic</u>, or if it is periodic with an unreasonably large period T, we can carry out the following heuristic validation procedure in view of (2.7) of <u>Theorem 2</u>.

- (a) Solve (1.1) numerically for $x(t,x_0^*)$ (with x_0^* as initial state) from t = 0 to t = T, where T is chosen to be sufficiently large.
- (b) Solve for $x_N(k\Delta t, x_0^*)$ using (2.31) where $T_b = k\Delta t$ and the entries $x_{ssj}(k\Delta t)$ in the matrix $X(\Delta t, Z; x_0^*)$ are substituted by $x_j(t; x_0^*)$, t = 0, Δt , $2\Delta t$,... $Z\Delta t$.
- (c) Calculate the error

$$\varepsilon_{j} \triangleq \sqrt{\frac{1}{T} \left\{ \sum_{k=0}^{Z} \left[x_{j} \left(k \Delta t; x_{0}^{*} \right) - x_{N_{j}} \left(k \Delta t; x_{0}^{*} \right) \right]^{2} \right\}}$$
(2.62)

We could reduce \hat{T} further by decreasing (instead of increasing) n₂ and n₃ to n₂ = 5 and \hat{n}_3 = 5. However, the \hat{v}_2 and \hat{v}_3 no longer represent a good approximation. for <u>each</u> component j = 1,2,...,n.

If $\max{\epsilon_1, \epsilon_2, \dots, \epsilon_n}$ is smaller than some perscribed tolerance, <u>stop</u>. Otherwise, increase N and/or Z and start all over again.

F. Summary of Multi-Frequency Algorithm

Step O.	Specify the 4 parameters N, Z, Δt , and T _h (See Section II-D) and
	calculate the vector $\alpha(T_b; \Delta t, Z, N)$ using (2.32).
	Set j = 0.
<u>Step 1</u> .	Choose initial state $x_0 = x_0^{(j)}$ (for j = 0, see <u>Section II-D</u>) and
	solve (1.1) numerically to obtain $x(\Delta t), x(2\Delta t), \dots, x(Z\Delta t)$.
	Calculate $F(x_0;T_b,\Delta t,Z,N)$ from (2.34). If $ F(x_0;T,\Delta t,Z,N) < \varepsilon$
	whose ε is a sufficiently small positive number, call $x_0 = x_0^*$ and
	go to Step 4.
<u>Step 2</u> .	Compute the Jacobian matrix $J_F(x_0^{(j)})$ in (2.43). (See <u>Section II-C</u>).
<u>Step 3</u> .	Compute $x_0^{(j+1)}$ via the Newton-Raphson iteration (2.42).
	Go to Step 1 with $j \rightarrow j + 1$.
Step 4.	Solve (1.1) for $x(t)$ with x_0^* as initial state from $t = 0$ to $t = T_b$
	where $T_b =$ period if $x_{ss}(t)$ is periodic, or T_b is a sufficiently large
	number.
	<u>Case 1</u> . $x_{ss}(t)$ is periodic with small period T:
	Calculate $\varepsilon_{i} = x_{i}(0, x_{0}^{*}) - x_{i}(T; x_{0}^{*}), j = 1, 2,, n$
	<u>Case 2</u> . $x_{ss}(t)$ is <u>not</u> periodic or is periodic with large T:
	Calculate ε_i using (2.62), j = 1,2,,n.
	If $\max\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n\} > \varepsilon_0$
	where ε_0 is a sufficiently small positive number, increase N and/or
	Z and repeat <u>Steps</u> 0-4.
Step 5.	STOP.
	a second a second se

G. Illustrative Examples

Numerous examples have been solved successfully using the 2 algorithms presented in <u>Sections II and III</u>. Because of its widespread interest, let us apply the preceding algorithm to solve the forced Duffing's equation [14-15]:

$$\ddot{x} + k\dot{x} + c_1 x + c_2 x^3 = f(t)$$
 (2.63)

This equation arises in many physical problems (e.g., ferro-resonance circuits) and is known to exhibit many interesting phenomena; including <u>subharmonic</u>, <u>almost</u>-

periodic, and chaotic solutions [16].

To apply our algorithm, let us recast (2.63) into the form of (1.1), which in this case is just the state equation

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -kx_{2} - c_{1}x_{1} - c_{2}x_{1}^{3} + f(t)$$
(2.64)

To be specific, let us choose a 3-frequency-input signal

$$f(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t + A_3 \cos \omega_3 t$$
 (2.65)

and k = 0.1, $c_1 = 2.0$ and $c_2 = 1.0$.

We have solved (2.64) using many different combinations of amplitudes and frequencies, 4 of which are listed in <u>Table 2.</u>

<u>Table 2</u>. Four combinations of A_i and ω_i and their respective periods.

case	۹ ₁	A ₂	A ₃	ωı	ω2	ω3	$T_1 = \frac{2\pi}{\omega_1}$	$T_2 = \frac{2\pi}{\omega_2}$	$T_{3}^{=} \frac{2\pi}{\omega_{3}}$	$T=2\pi(\frac{n}{m})$
1	0.4	0.4	0.4	1	0.35	0.155	6.283	17.951	40.54	400π
2	0.4	0.4	0.4	1	0.85	0.170	6.283	7.392	36.96	200π
3	0.5	0.5	0.5	1	0.35	0.155	6.283	17.951	40.53	400π
4	0.5	0.5	0.5	1	0.85	0.170	6.283	7.392	36.96	200π

From previous experience, we know all frequency components

$${}^{\nu}k = {}^{m}_{1}k {}^{\omega}_{1} + {}^{m}_{2}k {}^{\omega}_{2} + {}^{m}_{3}k {}^{\omega}_{3}$$
(2.65)

with

$$|\mathbf{m}_{1k}| + |\mathbf{m}_{2k}| + |\mathbf{m}_{3k}| \le 3$$
(2.66)

are likely to be non-negligible. Since these are 30 frequency components satisfying (2.66), we choose N = 30 in (2.3). Applying the preceding algorithm with $\Delta t = 11 T_1/50$, Z = 1.5(60) = 90, and $T_b = 23 T_1$, we obtain the initial state x_0^* listed in <u>Table 3</u> corresponding to the 4 cases in <u>Table 2</u>. Also listed is the error ε_i calculated using (2.62)

	×₀* 4	≦ ×*(0)	Error		
case	x ₁ *(0)	x2 [*] (0)	ε _l	^ε 2	
1	0.69667	-0.18304	0.53(10 ⁻³)	0.99(10 ⁻³)	
2	0.78298	-0.13834	0.14(10 ⁻²)	0.22(10 ⁻²)	
3	0.82931	-0.32269	0.92(10 ⁻³)	0.14(10 ⁻²)	
4	0.81562	-0.46932	0.33(10 ⁻²)	0.57(10 ⁻²)	

<u>Table 3</u>. Initial state computed using multi-frequency algorithm with a 6th order BDF algorithm [3].

Using the initial states from <u>Table 3</u> and (2.27), we have calculated the 60 generalized Fourier coefficients a_1, a_2, \ldots, a_{60} in (2.3) corresponding to N = 30 for cases 1 and 2. The waveforms of $x_1(t)$ for these 2 cases are plotted (using (2.3)) as the <u>solid</u> waveforms in Figs. 1(a) and 2(a), respectively. As a check over the accuracy of our solutions, we solve (1.1) using the same initial states and the solution at each integration time step is shown as "dots" in Figs. 1(a) and 2(a) respectively. Note the remarkable accuracy in both cases.

To compare the amplitudes of the 30 frequency components, we use (2.27) to plot the discrete frequency spectrum for these 2 cases in Figs. 1(b) and 2(b), respectively.

Finally, to obtain a measure of the rate of convergence of the Newton-Raphson iteration (2.42), the error

$$\varepsilon^{(j)} \triangleq \sqrt{F_1^2(x_0^{(j)}; T_b, \Delta t, Z, N) + F_2^2(x_0^{(j)}; T_b, \Delta t, Z, N)}$$
(2.67)

at each iteration is plotted in Fig. 3 for cases 1 and 2, respectively. Note that both converges rapidly in 4 iterations.

III. Almost-Periodic Solution Algorithm 2: Two Input Frequencies

In this section, we assume the circuit or system is driven by no more than 2 frequencies; i.e., $P \le 2$ in (1.1). Hence, let us rewrite (1.1) and (1.5) as follows:

$$f(\dot{x}, x, y; \omega_1 t, \omega_2 t) = 0$$

$$v_k = m_{1k}\omega_1 + m_{2k}\omega_2, \ k = 1, 2, \dots, M$$
(3.1)
(3.2)

Substituting (3.2) into (1.4) and making use of standard trigonometric identities, we can recast the steady-state response $x_{ss}(t)$ as follow:

$$\begin{aligned} x_{ss}(t) &= a_{0} + \sum_{k=1}^{M} \left\{ a_{2k-1} \cos(m_{1k}\omega_{1} + m_{2k}\omega_{2})t + a_{2k} \sin(m_{1k}\omega_{1} + m_{2k}\omega_{2})t \right\} \\ &= a_{0} + \sum_{k=1}^{M} \left\{ a_{2k-1} \left[(\cos m_{1k}\omega_{1}t) (\cos m_{2k}\omega_{2}t) - (\sin m_{1k}\omega_{1}t) (\sin m_{2k}\omega_{2}t) \right] \right. \\ &+ a_{2k} \left[(\sin m_{1k}\omega_{1}t) (\cos m_{2k}\omega_{2}t) + (\cos m_{1k}\omega_{1}t) (\sin m_{2k}\omega_{2}t) \right] \right\} \\ &= a_{0} + \sum_{k=1}^{M} \left\{ \left[a_{2k-1} \cos m_{1k}\omega_{1}t + a_{2k} \sin m_{1k}\omega_{1}t \right] \cos m_{2k}\omega_{2}t \right. \\ &+ \left[a_{2k} \cos m_{1k}\omega_{1}t - a_{2k-1} \sin m_{1k}\omega_{1}t \right] \sin m_{2k}\omega_{2}t \right\} \end{aligned}$$
(3.3)

If we let B denote an integer bound such that

٩.

$$|m_{1k}| + |m_{2k}| \le B$$
 (3.4)

then the number M of non-zero frequency components v_k is given in <u>Table 4</u> for B = 1,2,...,10.

<u>Table 4</u>. The integers M, 2M + 1, and 2B + 1 as a function of B.

В	1	2	3	4	5	6	7	8	9	10
М	2	6	12	20	30	42	56	72	90	110
2M+1	5	13	25	41	61	85	113	145	181	221
2B+1	3	5	7	9	11	. 13	15	17	19	21

This table can be easily verified by counting the number of <u>solid</u> dots subtended by an isosceles triangle of base length 2B in Fig. 4. For example, we can enumerate the following frequency components when B = 3:

 $v_1 = \omega_1, v_2 = \omega_2, v_3 = 2\omega_1, v_4 = 2\omega_2, v_5 = 3\omega_1, v_6 = 3\omega_2, v_7 = \omega_1 + \omega_2, v_8 = \omega_1 - \omega_2, v_9 = \omega_1 + 2\omega_2, v_{10} = \omega_1 - 2\omega_2, v_{11} = 2\omega_1 + \omega_2, and v_{12} = 2\omega_1 - \omega_2.$ Hence, M(3) = 12.

Observe that all solid dots on the m_{1k} -axis in Fig. 4 denote <u>harmonics</u> of ω_1 . Likewise, those on the m_{2k} -axis denote <u>harmonics</u> of ω_2 . All other solid dots

denote intermodulation components. In particular, all solid dots on a horizontal line through $m_{2k} = N$, N = 1, 2, ..., correspond to frequency components of the form $v_k = m_{1k}\omega_1 + N\omega_2$. Hence, if we regroup all frequency components in (3.3) corresponding to dots on a horizontal line together, we can recast (3.3) into the form

$$x_{ss}(t) = g_0(t) + \sum_{k=1}^{B} \{ g_{2k-1}(t) \cos k\omega_2 t + g_{2k}(t) \sin k\omega_2 t \}$$
 (3.5)

where $g_0(t)$, $g_1(t)$, $g_2(t)$,..., $g_{2B}(t)$ contain only cosine and since components which are harmonics of ω_1 and are therefore all <u>periodic</u> functions of period $T_1 = 2\pi/\omega_1$. Since this observation is the basis of <u>Algorithm 2</u>, we will restate it as a theorem:

Theorem 4.

-

The steady-state response $x_{ss}(t)$ in (3.3) which contains (2M+1) generalized Fourier coefficients can be recast into the form of (3.5) containing only (2B+1) <u>coefficient functions of time</u> $g_0(t)$, $g_1(t)$, $g_2(t)$,..., $g_{2B}(t)$ which are all <u>periodic</u> of period $T_1 = 2\pi/\omega_1$.

A comparison between the number of coefficients describing (3.3) and (3.5) is given in <u>Table 4</u>. Observe that (3.5) has <u>much fewer</u> coefficients compared to that of (3.3) specially for large B. For example, when B = 8, <u>Algorithm 1</u> from <u>Section</u> <u>II</u> would entail solving for 145 generalized Fourier coefficients, whereas only 17 coefficient functions need be specified in (3.5). Our objective in this section is to develop a new algorithm which takes full advantage of this remarkably concise form of solution.

A. <u>Calculating $g_k(0)$ when transient component is zero</u>.

In <u>Section III-B</u>, we will present an algorithm for finding an initial state x_0^* such that the transient component $x_{tr}(t)$ in (1.3) is zero for $t \ge 0$. In this subsection, let us assume x_0^* has been found so that the solution of (3.1) starting from x_0^* is $x(t) = x_{ss}(t)$ for $t \ge 0$, where $x_{ss}(t)$ is given by (3.5).

For reasons that will be clear in <u>Section III-B</u>, we need to derive a relationship for calculating $g_k(0)$, k = 0, 1, 2, ..., 2B, in terms of "(2B+1)" samples $x_{ss}(0)$, $x_{ss}(T_1)$, $x_{ss}(2T_1)$, \dots , $x_{ss}(2BT_1)$ taken at $T_1 = 2\pi/\omega_1$ intervals. Since each component $x_{ss}(t)$ of $x_{ss}(t)$, i = 1, 2, ..., n, can be calculated separately, it suffices for us to derive the <u>i</u>th component $g_{i,k}(0)$ of $g_k(0)$.

Substituting t = 0,
$$T_1, 2T_1, \dots, 2BT_1$$
 into (3.5)
and using
 $g_{i,k}(kT_1) = g_{i,k}(0)$, k = 1,2,...,2B (3,6)
in view of Theorem 4, we obtain

Equation (3.7) consists of 2B+1 equations in terms of the 2B+1 coefficients g_{i,0}(0),g_{i,1}(0),g_{i,2}(0),...,g_{i,2B}(0). If we define the (2B+1)-vectors

÷.

$$\sum_{ss_{i}}^{x} (B) \triangleq \begin{bmatrix} x_{ss_{i}}^{(0)} \\ x_{ss_{i}}^{(T_{1})} \\ x_{ss_{i}}^{(2T_{1})} \\ \vdots \\ x_{ss_{i}}^{(2BT_{1})} \end{bmatrix} \text{ and } \underbrace{g}_{B_{i}} \triangleq \begin{bmatrix} g_{i,0}^{(0)} \\ g_{i,1}^{(0)} \\ g_{i,2}^{(0)} \\ \vdots \\ g_{i,2B}^{(0)} \end{bmatrix}$$
(3.8)

and the (2B+1) \times (2B+1) square matrix

then (3.7) assumes the condensed form

$$\hat{\Omega}(B)g_{B_{i}} = x_{ss_{i}}(B), i = 1, 2, ..., n$$
(3.10)

Theorem 5

The 2B+1 coefficients $g_{i,0}(0), g_{i,1}(0), g_{i,2}(0), \dots, g_{i,2B}(0)$ describing the steady-state response (3.5) can be calculated exactly from

$$g_{B_{i}} = \Omega(B) \times (B) \times (B) , i = 1, 2, ..., n$$
 (3.11)

The matrix $\Omega(B)$ is <u>non-singular</u> if, and only if, there does <u>not</u> exist an integer L_2 such that

$$\frac{\omega_2}{\omega_1} \neq \frac{L_2}{L_1}$$
, $L_1 = 1, 2, \dots, 2B$ (3.12)

<u>Proof</u>. Eq. (3.11) follows directly from (3.10). The proof that (3.12) is a necessary and sufficient condition for $\Omega(B)$ to be <u>non-singular</u> is given in Appendix C.

<u>Corollary</u>

1. $\Omega(B)$ is always <u>non-singular</u> if ω_1 and ω_2 are <u>incommeasurable</u>.

2. If ω_1 and ω_2 are both rational numbers, we can make $\widetilde{\Omega}(B)$ nonsingular by choosing

$$B < \frac{T}{2T_1}$$
(3.13)

where T is the period denfined in (1.7).

Proof. <u>Corollary 1</u> follows directly from (3.12). <u>Corollary 2</u> is proved in <u>Appendix D</u>.

B. <u>Finding the initial state x_0^{-1} </u> Consider the <u>i</u>th component of (3.5) at t = (2B+1)T₁:

$$x_{ss_{i}}((2B+1)T_{1}) = g_{i,0}(0) + \sum_{k=1}^{Z} \left\{ g_{i,2k-1}(0) \cos(2B+1)\omega_{2}T_{1} + g_{i,2k}(0) \sin(2B+1)\omega_{2}T_{1} \right\}$$
(3.14)

Substituting (3.11) for $g_{i,k}(0)$ in (3.14), we obtain

$$x_{ss_{i}}((2B+1)T_{1}) = \delta^{T}(B)g_{B_{i}} = \delta^{T}(B)\delta^{-1}(B)x_{ss_{i}}(B)$$
$$= x_{ss_{i}}^{T}(B)\delta^{T^{-1}}(B)\delta(B)$$
(3.15)

where

$$\delta(B) \triangleq \left[1 \cos[(2B+1)\omega_2T_1] \sin[(2B+1)\omega_2T_1] \dots \cos[(2B+1)B\omega_2T_1] \sin[(2B+1)B\omega_2T_1]\right]^T$$
(3.16)

Since $\left[\Omega^{T}(B)\right]^{-1} \delta(B)$ in (3.15) remains unchanged for all i = 1, 2, ..., n, we can combine all "n" components of $x_{ss}(t)$ from (3.15) into a single matrix equation:

$$\begin{bmatrix} x_{ss_{1}}((2B+1)T_{1}) \\ x_{ss_{2}}((2B+1)T_{1}) \\ \vdots \\ x_{ss_{n}}((2B+1)T_{1}) \\ \vdots \\ x_{ss_{n}}((2B+1)T_{1}) \end{bmatrix} = \begin{bmatrix} x_{ss_{1}}(0) & x_{ss_{1}}(T_{1}) & x_{ss_{1}}(2T_{1}) & \cdots & x_{ss_{1}}(2BT_{1}) \\ x_{ss_{2}}(0) & x_{ss_{2}}(T_{1}) & x_{ss_{2}}(2T_{1}) & \cdots & x_{ss_{2}}(2BT_{1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{ss_{n}}(0) & x_{ss_{n}}(T_{1}) & x_{ss_{n}}(2T_{1}) & \cdots & x_{ss_{n}}(2BT_{1}) \\ \vdots \\ x_{ss_{n}}(2B+1)T_{1} \end{bmatrix} = \begin{bmatrix} x_{ss_{1}}(0) & x_{ss_{2}}(T_{1}) & x_{ss_{2}}(2T_{1}) & \cdots & x_{ss_{2}}(2BT_{1}) \\ \vdots \\ x_{ss_{n}}(2B+1)T_{1} & \vdots \\ \vdots \\ x_{ss_{n}}(0) & x_{ss_{n}}(T_{1}) & x_{ss_{n}}(2T_{1}) & \cdots & x_{ss_{n}}(2BT_{1}) \\ \vdots \\ x_{ss_{n}}(2B+1)T_{1} & \vdots \vdots \\ x_{ss_{n}}(2B+1)T_{1} &$$

where the (2B+1) - vector

$$\overset{\beta}{\underset{\sim}{}}^{(B)} \triangleq [\widetilde{\Omega}^{\mathsf{T}}(B)]^{-1} \widetilde{\delta}(B)$$
(3.18)

depends only on B.

Observe that (3.17) is <u>exact</u> provided the integer bound B in (3.4) includes <u>all</u> "M" frequency components of the <u>exact</u> steady-state response $x_{SS}(t)$ in (3.3). In this case, the entries $x_{SS}(t)$, $t = 0,T_1,2T_1,...,2BT_1$ in X(B) can be obtained by solving (3.1) using x_0^- as the initial state. Since x_{0}^+ is precisely what we are seeking, let us define the following

Since x_0^{n} is precisely what we are seeking, let us define the following system of "n" related equations as a function of the "n" components $x_{0_1}^{n}, x_{0_2}^{n}, \dots, x_{0_n}^{n}$ of the initial vector

 $\overset{\mathbf{x}_0}{\sim} \triangleq \begin{bmatrix} \mathbf{x}_{0_1} & \mathbf{x}_{0_2} & \dots & \mathbf{x}_{0_n} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \mathbf{x}_1(0) & \mathbf{x}_2(0) & \dots & \mathbf{x}_n(0) \end{bmatrix}^{\mathsf{T}}:$

$$\begin{bmatrix} x_{1}((2B+1)T_{1};x_{0}) \\ x_{2}((2B+1)T_{1};x_{0}) \\ \vdots \\ x_{n}((2B+1)T_{1};x_{0}) \end{bmatrix} - \begin{bmatrix} x_{1}(0) & x_{1}(T_{1};x_{0}) & x_{1}(2T;x_{0}) & \dots & x_{1}(2BT_{1};x_{0}) \\ x_{2}(0) & x_{2}(T_{1};x_{0}) & x_{2}(2T_{1};x_{0}) & \dots & x_{2}(2BT_{1};x_{0}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n}(0) & x_{n}(T_{1};x_{0}) & x_{n}(2T_{1};x_{0}) & \dots & x_{n}(2BT_{1};x_{0}) \end{bmatrix} \begin{bmatrix} \beta_{0}(B) \\ \beta_{1}(B) \\ \beta_{2}(B) \\ \vdots \\ \beta_{2}(B) \\ \vdots \\ \beta_{2}B(B) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\underbrace{x((2B+1)T_{1};x_{0})}_{\sum(2B+1)T_{1};x_{0}} & \underbrace{x(B;x_{0})}_{\sum(2T_{1};x_{0})} & \dots & x_{n}(2BT_{1};x_{0}) \\ \underbrace{x((2B+1)T_{1};x_{0})}_{\sum(2B+1)T_{1};x_{0}} & \underbrace{x(B;x_{0})}_{\sum(2B+1)} & \underbrace{x(B;x_{0})}_{x(B+1)} & \underbrace{x$$

where

 $x_1(kT_1,x_0)$, k=0,1,...,2B+1 denote the <u>i</u>th component of the <u>complete</u> solution $x(t) = x_{tr}(t) + x_{ss}(t)$ of (3.1) starting from the <u>initial</u> state x_0 , for t = 0, $T_1, 2T_1, \dots, 2BT_1, (2B+1)T_1$. Observe that unlike (3.17), both, $x((2B+1)T_1; x_0)$ and

X(B;x₀) can be calculated by solving (3.1) numerically. Since (3.19) reduces to (3.18) when $x_0 = x_0^*$, it follows that x_0^* can be found by solving

$$F(x_0;B) = 0$$
 (3.20)

by Newton-Raphson iteration as in (2.42), with $F(\cdot)$ replaced by $F(x_0;B)$. The Jacobian matrix $J_F(x_0^{(j)})$ can be evaluated by the <u>sensitivity network</u> <u>approach</u> [3] if the circuit is given. If only the equation (3.1) is given, the Jacobian matrix can be calculated from

$$\int_{\mathbb{Z}F} (x_{0}^{(j)}) = \frac{\partial x_{2}(2B+1)T_{1};x_{0}}{\partial x_{0}} \left| \begin{array}{c} -\frac{2B}{\sum} & \beta_{k}(B) & \frac{\partial x(kT_{1};x_{0})}{\partial x_{0}} \\ x_{0} = x_{0}^{(j)} & x_{0} = x_{0}^{(j)} \end{array} \right|$$
(3.21)

where $\frac{\partial x((2B+1)T_1;x_0)}{\partial x_0}$ can be evaluated using (2.55).

To save computation time, the integer bound B is chosen to include only the <u>significant</u> frequency components in (3.3). In this case, the initial state x_0^* (B) computed from (3.20) will depend on B and is therefore <u>not</u> exactly equal to x_0^* . Clearly,

 $x_0^*(B) \rightarrow x_0^*$ as $B \rightarrow B^*$

where B^* denotes the integer which is large enough to include <u>all</u> frequency components of (3.3).

(3.22)

C. Initialization Guidelines

Since (3.1) must be solved many times numerically from t = 0 to $t = (2B+1)T_1$, we always choose ω_1 to be the <u>larger</u> of the 2 input frequencies. Once ω_1 is identified, we can calculate $F(x_0;B)$ in (3.19) by specifying the 2 parameters B and x_0 .

a) <u>Choice of B</u>.

The integer bound B in (3.5) should be chosen equal to at <u>least</u> the order of the highest significant harmonics of ω_2 in the steady-state response. It is independent of ω_1 . This important property allows us to analyze a large class of communication circuits where the "signal" frequency at ω_2 is <u>much smaller</u> than the "carrier" or "pump" frequency ω_1 . In such cases, harmonics of ω_2 will usually be quite small even though the input signal at frequency ω_1 is usually very large (thereby generating many higher harmonics of ω_1) so that accurate answers can often be obtained with B = 3.

If the order of the highest significant harmonics is not known, we simply make an intuitive guess. If this guess is unrealistic, it will reveal itself in the subsequent error analysis (to be discussed in <u>Section III-D</u>).

b) <u>Choice of x_0 </u>.

The same procedure presented in <u>Section II-C</u> also applies here.

D. <u>Termination Guidelines</u>.

Recall that in practice, the solution $x_0^*(B)$ of (3.20) is <u>not</u> the exact solution x_0^* . Consequently, we must <u>validate</u> this answer before terminating.

(1) If the steady-state response $x_{ss}(t)$ is <u>periodic</u> with a reasonably small period T [see(1.7)] then we simply solve (3.1) numerically for $x(t;x_0^{*}(B))$ (with $x_0^{*}(B)$ as initial state) and verify that $x(0;x_0^{*}(B)) \cong x(T;x_0^{*}(B))$.

(2) If the steady-state response $x_{SS}(t)$ is <u>not</u> periodic, or if it is periodic with an unreasonably large period T, we can estimate the error with the help of (2.51). If the "approximate" solution $x(t;x_0^{(*)}(B))$ is indeed close to the exact solution $x(t;x_0^{(*)})$ for all $t \ge 0$, then it follows from (2.48) and (2.51) that

$$\|x(t;x_{0}^{*}) - x(t;x_{0}^{*}(B))\| \leq \|\phi(t)\| \|x_{0}^{*} - x_{0}^{*}(B)\|$$
(3.23)

for all $t \ge 0$.

If we let $g_k^{*}(0)$ and $g_k(0)$ denote the "exact" (computed using (3.11) with $B = B^{*}$ and $exact x_0^{*}$) and "approximate" (computed using (3.11) with <u>approximate</u> $x_0^{*}(B)$) values, then

Since the coefficients $g_k^*(0)$ and $g_k(0)$ can be interpreted as the Fourier coefficients associated with the frequency $k\omega_2$ at t = 0, it is reasonable to assume that if $\|g_k(0)\|$ is sufficiently small for k > 2B + 1, the computed initial state $x_0^*(B)$ will be sufficiently close to x_0^* , and hence

$$g_{2k-1}^{\star}(0) \cong g_{2k-1}(0), \ k = \frac{1}{2}, 1, 2, \dots, B$$
 (3.25)

It follows from (3.23), (3.24), and (3.25) that we can approximate (3.23) by

$$\|x(t;x_{0}^{*}) - x(t;x_{0}^{*}(B))\| \leq \|\phi(t)\| \{\sum_{k=B+1}^{B} \|g_{2k-1}^{*}(0)\| + \varepsilon(B,x_{0}^{*}(B))\}$$
(3.26)

where $\varepsilon(B, x_0^*(B))$ is an error from the first two terms in (3.24).

Even though the right hand side of (3.26) can not be calculated from available data, the following <u>heuristic</u> procedure has been used successfully in all examples we have investigated so far:

- (1) Solve (3.1) numerically for $x(t;x_0^{*}(B))$ from t = 0 to $t = 2(B+2)T_1$.
- (2) Calculate g_{B_i} , i = 1,2,...,n, using (3.9) and (3.11) with B replaced by B+2 and with $x_{ss_i}(t)$ replaced by $x_i(t;x_0^{*}(B))$ for $t = 0,T_1,2T_1,...,2(B+2)T_1$.

(3) If

 $_{\mathsf{B}+1}\varepsilon_{\mathsf{B}+2} \triangleq []g_{2\mathsf{B}+1}(0)] + []g_{2\mathsf{B}+3}(0)]$

(3.27)

is smaller than some prescribed tolerance, <u>stop</u>. Otherwise, increase B and start all over again.

E. Summary of Two-Frequency Algorithm

Step 0.	Choose ω_1 to be the larger of the 2 input frequencies. Specify the
	<pre>integer bound B (see Section III-C). Set j = 0.</pre>
Step 1.	Choose initial state $x_0 = x_0^{(j)}$ (for j=0, see <u>Section II-D</u>) and solve
	(3.1) numerically to obtain $x(T_1)$, $x(2T_1)$, $x(2BT_1)$.
	Calculate $F(x_0;B)$ from (3.19). If $\tilde{I}F(x_0;B)\tilde{I} < \varepsilon$, where ε is a
	sufficiently small positive number, $\tilde{call} x_0 = x_0^*(B)$ and go to <u>Step 4.</u>
Step 2.	Compute the Jacobian matrix $J_F(x_0^{(j)})$ in (3.21) (see <u>Section II-C</u>).

<u>Step 3</u>. Compute $x_0^{(j+1)}$ via the Newton-Raphson iteration (2.42) with $F(\cdot)$ replaced by $F(x_0, B)$. Go to <u>Step 1</u> with $j \rightarrow j+1$. Step 4. <u>Case 1</u>. $x_{ss}(t)$ is periodic with small period T: Solve (3.1) for x(t) with $x_0^*(B)$ as initial state from t = 0 to t = T. Calculate $\varepsilon_{j} = x_{j}(0,x_{0}^{*}(B)) - x_{j}(T;x_{0}^{*}(B)), j = 1,2,...,n.$ <u>Case 2</u>. $x_{ss}(t)$ is <u>not</u> periodic or is periodic with large T: Solve (3.1) for x(t) with $x_0^*(B)$ as initial state from t = 0 to t = 2(B+2)T₁. Calculate $_{B+1}\varepsilon_{B+2}$ as defined in (3.27). If $\max\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n\} > \varepsilon_0$ (case 1) (case 2) $B+1^{\varepsilon}B+2 > \varepsilon_0$ where $\boldsymbol{\epsilon}_{\boldsymbol{D}}$ is a sufficiently small positive number, increase B and repeat Steps 0-4. Stop. Step 5.

F. <u>Illustrative Examples</u>

Example 1. Duffing's Equation with 2 frequency inputs:

We have used the preceding algorithm to solve (2.64) when f(t) contains only 2 input frequencies. The results corresponding to 3 different combinations of parameter k, c_1 , c_2 , and f(t) are summarized in <u>Table 5</u> for B = 9, 11, 13, and 17 respectively.

Table 5. Examples Applying the Two-Frequency Algorithm

В	(1) f(t)=0.5 cost +0.5 cos 0.81t		(2) f(t)=0.3 cost +1.5 cos 0.115t		(3) f(t)=(1+cos 0.115t) cost		
	×01 ^{*(B)}	× ₀₂ *(B)	×01 (B)	× ₀₂ *(B)	× ₀₁ *(в)	× ₀₂ *(B)	
9	1.04898	0.26642	1.27285	0.27251	1.36899	-0.34537	
11	1.11403	0.64204	1.24281	0.17135	1.39967	0.00736	
13	1.12986	0.63906	1.22548	0.30906	1.34835	0.16875	
15	1.11865	0.63562	1.21332	0.33872	1.35403	.0.15168	
	16 ^ɛ 17 ^{=0.0021}		16 [€] 17 ^{=0.0083}		14 ^ε 15 ^{=0.023}		

In each case, an error estimate using (3.27) is calculated and the results are also listed in <u>Table 5</u>. For example, in case 1, we have

$$16^{\varepsilon_{17}} = \left[\frac{g_{32}(0)}{g_{32,1}(0)} + \frac{g_{34}(0)}{g_{32,2}(0)} + \frac{g_{34,1}(0)}{g_{34,2}(0)} + \frac{g_{34,2}(0)}{g_{34,2}(0)} \right]$$

= 0.000853 + 0.000444 + 0.000244 + 0.000554 = 0.0021 (3.28)

The rate of convergence for these 3 cases are shown in Fig. 5. The convergence rate for <u>case 3</u> is not as good as the <u>cases 1 and 2</u> because we have deliberately chosen a poorer initial guess for constrast.

The steady-state waveforms corresponding to the 3 cases listed in <u>Table 5</u> are shown in Figs. 6(a), 7(a), and 8(a), respectively. The corresponding frequency spectrum calculated by the FFT algorithm [17] are shown in Figs. 6(b), 7(b), and 8(b), respectively.[†] For all cases, the higher-order harmonic and with modulation components are negligible, as is typical in many practical examples. <u>Example 2</u>. <u>Transistor Modulator Circuit</u>:

Consider the differential-pair amplitude modulator circuit shown in Fig. 9(a), where $e_1(t)$ and $e_2(t)$ denotes the <u>carrier</u> and <u>signal</u> input, respectively. Using the algorithm described in <u>Appendix A</u>, and the Ebers-Moll circuit model [3] shown in Fig. 9(b) for the transistors, we obtain the following system of 4 <u>implicit</u> <u>differential-algebraic equations</u> for this circuit:

$$-C \frac{dv_{1}}{dt} - \frac{v_{1}}{R_{L}} - i_{2} - I_{s}[e^{\lambda(v_{1} - v_{cc})} - 1] + \alpha I_{s}[e^{\lambda v_{4} - 1}] = 0$$

-I_{s}[e^{\lambda(v_{4} + e_{1})} - 1] + \alpha I_{s}[e^{\lambda(e_{1} - v_{cc})} - 1] - I_{s}[e^{\lambda v_{4} - 1}] + \alpha I_{s}[e^{\lambda(v_{1} - v_{cc})} - 1]
- I_{s}[e^{\lambda(v_{4} + e_{2} - v_{E})} - 1] + \alpha I_{s}[e^{\lambda v_{3}} - 1] = 0 (3.28)

$$-I_{s}[e^{\lambda v}3-1] + \alpha I_{s}[e^{\lambda (v_{4}+e_{2}-v_{E})}-1] + \frac{1}{R_{B}}[v_{cc}-v_{E}+e_{2}-v_{3}] = 0$$

-L $\frac{di_{2}}{dt} - v_{1} = 0$

Note that the first 3 equations in (3.28) correspond to <u>KCL</u> applied at nodes (1, 2), and (3) respectively, whereas the 4th equation corresponds to <u>KVL</u> applied <u>around the loop</u> formed by the inductor L.

^TNote that unlike in the Multi-Frequency Algorithm, the generalized Fourier coefficients are not directly available in this algorithm. Setting $e_1(t)$ and $e_2(t)$ to zero, we first solve (3.28) for the following dc operating point:

$$v_{1_Q} = 0, i_{2_Q} = 0.155 \times 10^{-3}, v_{3_Q} = 0.259, v_{4_Q} = 0.241$$
 (3.29)

We then choose $x_1(0) \triangleq v_1(0) = v_1$ and $x_2(0) \triangleq i_2(0) = i_{20}$ as our initial guess $x_0^{(0)}$ and apply the <u>two-frequency</u> algorithm for 2 different amplitudes V_2 for the signal $e_2(t)$; namely $V_2 = 4.0$ and 5.3, respectively. For $V_2 = 4.0$, we choose B = 6. However, for $V_2 = 5.3$, we choose B = 13 to account for the additional harmonics that are likely to be significant in view of the larger input signal amplitude. In both cases, our algorithm converges in 2 iterations and the results are summarized in <u>Table 6</u>.

<u>Table 6.</u> Results obtained with two-frequency algorithm using a 4th order BDF method [3] with a step size $h = 4\pi(10^{-8})$ sec.

٦				Initia	al State	Error Estimate		
case				v ₁ (0)	i ₂ (0)	B+1 ^e B+2 for v ₁	B+1 ^e B+2 for i2	
	(1)	V ₂ =4.0	B=6	-3.927	0.2387(10 ⁻³)	0.78(10 ⁻³)	0.59(10 ⁻⁷)	
	(2)	V ₂ =5.3	B=13	-3.422	0.1138(10 ⁻³)	0.23(10 ⁻¹)	0.95(10 ⁻⁵)	

Using the 2 initial states in <u>Table 6</u>, the steady-state waveforms corresponding to the modulator output voltage $v_0(t)$ and the base-to-emitter-voltages $V_{EB}(t)$ for transistors T_1 and T_3 are shown in Figs. 10(a),(b),(c) and 11(a),(b),(c), respectively. Note that the modulator output waveform in Fig. 10(a) is typical of those composed of a carrier and 2 side band frequencies $\omega_1 \pm \omega_2$. Even the waveforms $V_{EB}(t)$ in Figs. 10(b) and (c) are quite smooth, indicating the absence of significant higher-order frequency components. Consequently, very accurate results were obtained with only a relatively small B = 6.

On the other hand, the corresponding waveforms for case 2 in Fig. 11 indicate the presence of many more frequency components. Consequently, a much larger B will be needed to obtain results of acceptable accuracy. We found B = 13 is adequate for this purpose.

The normalized frequency spectrum corresponding to the output waveforms $v_{0}(t)$ in <u>case 2</u> as obtained by the FFT method [17] is shown in Fig. 12.

IV. Concluding Remarks

Two efficient algorithms have been presented for finding almost periodic steady-state response of nonlinear circuits and systems.

The <u>multi-frequency algorithm</u> is very general as it allows <u>any</u> number of commensurable or incommensurable input frequencies $\omega_1, \omega_2, \ldots, \omega_p$. Although the output normally includes only harmonic and inter-modulation frequency components of the form $v_k = m_{1k}\omega_1 + m_{2k}\omega_2 + \ldots + m_{pk}\omega_p$, where m_{jk} are integers, other frequency components, such as <u>subharmonics</u>, may also be included in this algorithm if their presence are suspected.

ê

The <u>two-frequency algorithm</u> is applicable only if there are no more than 2 input frequencies. This restriction, however, is more than compensated by its greatly increased computational efficiency, specially when the steady-state response contains many frequency components. That this algorithm is significantly better than algorithm 1 (when applied in the 2-frequency case) is best seen by comparing the number of respective coefficients in <u>Table 4</u>. Note that for B=10, Algorithm 1 must calculate 221 coefficients whereas Algorithm 2 needs to calculate only 21. Note that 2B + 1 increases only by 2 as we increase B by 1; consequently, the <u>two-frequency algorithm</u> remains computationally quite efficient even with a larger B, thereby allowing stronger nonlinearities. This is particularly useful when the <u>amplitude</u> of the higherfrequency input(ω_1) is much larger than that of ω_2 , as is common in communication circuits where ω_1 denotes the <u>carrier</u> frequency and ω_2 denotes the <u>signal</u> frequency. In this case, the number of significant harmonic components of ω_2 will be relatively small so that a small B suffices.

It is also interesting to note that in the limiting case where we have only one frequency input (P=1), then (3.5) reduces to $x_{ss}(t) = g_0(t)$. In this case, the <u>two-frequency algorithm</u> reduces to the usual <u>shooting method</u> [3,11].

Certain numerical <u>ill-conditioning</u> could occur in the Algorithm 1 when the step size Δt is chosen to be <u>too small</u>. The ill-conditioning problem is due to loss of number of significant digits and therfore depends strongly on the choice of the computer.

Finally we remark that if the steady state-solution is <u>not</u> periodic so that the <u>brute-force method</u> is impractical (since we must in theory integrate for <u>all</u> $t \ge 0$), or if the nonlinearity is not sufficiently weak for the <u>Perturbation</u> and <u>Volterra series</u> methods to converge, then our algorithms are presently the <u>only</u> methods available for finding steady-state solutions, let alone their good computational efficiency.

Acknowlegement

The authors would like to thank Mr. E. Nishiyama for programing Example 2 in Section III.

.

.

1

٩

REFERENCES

- 1. K. K. Clarke and D. T. Hess, <u>Communication Circuits: Analysis</u> and Design, Addison-Wesley Publishing Company, 1971.
- 2. <u>Transmission Systems for Communications</u>, Bell Telephone Laboratories, Inc. Revised 4th Edition, 1971.

4

- L. O. Chua and P. M. Lin, <u>Computer-Aided Analysis of Electronic</u> <u>Circuits: Algorithms and Computational Techniques</u>, Prentice Hall, 1975.
- L. O. Chua and D. N. Green, "A qualitative analysis of the behavior of dynamic nonlinear networks: steady state solutions of nonautonomous networks," <u>IEEE Trans. Circuits and Systems</u>, Vol. CAS-23, pp. 530-550, September 1976.
- L. O. Chua and C. Y. Ng, "Frequency domain analysis of nonlinear systems: general theory," <u>IEE J. Electronic Circuits and Systems</u>, Vol. 3, pp. 165-185, 1979.
- Y. L. Kuo, "Distortion analysis of bipolar transistor circuits," <u>IEEE Trans. Circuit Theory</u>, Vol. CT-20, pp. 709-716, November 1973.
- J. J. Bussgang, L. Ehrman, and J. W. Graham, "Analysis of nonlinear systems with multiple inputs," <u>Proc. IEEE</u>, Vol. 62, No. 8, pp. 1088 -1119, August 1974.
- T. B. M. Neil, "Improved method of analyzing nonlinear electrical networks." <u>Electronic Letters</u>, Vol. 5, No. 1, pp. 13-15, January 1969.
- 9. M. Urabe, "On the existence of quasiperiodic solutions to nonlinear quasiperiodic differential equations." <u>Nonlinear Vibration</u> <u>Problems</u>, Warsaw, pp. 85-93, 1974.
- 10. T. Mitsui, "Investigation of numerical solutions of some nonlinear quasiperiodic differential equations." <u>Publ. of the Research</u> <u>Institute for Mathematical Sciences Kyoto Univ.</u>, Vol. 13, No. 3, pp. 793-820, 1977.

- 11. T. J. Aprille, Jr. and T. N. Trick, "Steady-state analysis of nonlinear circuits with periodic input." <u>Proc. IEEE</u>, Vol. 60, No. 1, pp. 108-114, January 1972.
- 12. M. S. Nakhla and F. H. Branin, Jr., "Determining the periodic response of nonlinear systems by a gradient method." <u>Circuit</u> <u>Theory and Applications</u>, Vol. 5, pp. 255-273, 1977.
- 13. J. K. Hale, Ordinary differential equations, J. Wiley, 1969.
- C. Hayashi, <u>Nonlinear Oscillation in Physical Systems</u>, McGraw-Hill, New York, N.Y., 1964.

,

- 15. Y. Ueda, <u>Some Problems on the Theory of Nonlinear Oscillations</u>, Nippon Printing and Publishing Co., Ltd., Osaka, Japan, 1968.
- 16. Y. Ueda, "Steady motions exhibited by Duffing's equation -- a picture book of regular and chaotic motions," in <u>Conf. on New Approaches to Nonlinear Problems in Dynamics</u>, (Monterey, CA), Dec. 9-14, 1979; to appear in the <u>Engineering Foundation Conference Proc.</u>, SIAM.
- 17. E. O. Brigham, <u>The Fast Fourier Transformation</u>, Prentice Hall, Englewood Cliffs, N.J. 1974.

V. Appendix

Appendix A. Explicit Formula for Reduced System of Implicit Equations

Let N be a nonlinear network containing voltage or current-controlled 2-terminal resistors, voltage-controlled 2-terminal capacitors, currentcontrolled 2-terminal inductors, as well as independent and controlled sources. Mutual couplings are allowed so long as they are restricted to elements belonging to the same class. Let each independent source be considered as part of a "composite" branch as in [3]. Adoping the notations in <u>Section 17-2</u> of [3], we obtain the following <u>tableau</u> equation for N:

n-1 KCL equations {
$$\begin{bmatrix} A & 0 & 0 \\ 0 & 1 & -A^T \\ 0 & 1 & -A^T \\ \vdots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} i \\ v \\ v \\ v \\ n \end{bmatrix} - \begin{bmatrix} AJ \\ E \\ g(\dot{v}_C, \dot{i}_L, v, i) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (A-1)
b elements consitu-{ $\begin{bmatrix} K_i & K_v & 0 \\ v \\ i & v \end{pmatrix} \begin{bmatrix} v \\ v \\ v \\ n \end{bmatrix} - \begin{bmatrix} AJ \\ E \\ g(\dot{v}_C, \dot{i}_L, v, i) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Equation (A-1) consists of a system of (n-1) + 2b <u>implicit</u> equations of the form (1.1) where "b" denotes the number of composite branches and "n" denotes the number of nodes. Our goal in this section is to derive an equivalent system of implicit equations containing fewer number of equations and variables for an important subclass of networks.

In particular, we assume that <u>N contains no loops of capacitors and indepen-</u> dent voltage sources, no cut sets of inductors and independent current sources and that all controlled sources are current sources depending on either resistor or capacitor voltages. Consequently, there always exists a <u>normal tree</u> T containing <u>all capacitors</u> and no <u>inductors</u> [3].

If we let \underline{i}_2 and \underline{v}_2 denote the current and voltage vectors of <u>all</u> inductors in N, and let \underline{i}_1 and \underline{v}_1 denote the current and voltage vectors of the remaining elements, then (A-1) can be recast as follows:

where the reduced incidence matrix A is similarly partitioned into A = $\begin{bmatrix} A_1 & A_2 \end{bmatrix}$, and where $L(i_2)$ denotes the incremental inductance matrix. Substituting

$$i_{1} = Y_{b}v_{1} + g(\dot{v}_{c}, v) = Y_{b}(A_{1}^{T}v_{n} + E_{1}) + g(\dot{v}_{c}, v)$$
(A-3)

into the last equation in (A-2), we obtain the following <u>reduced</u> system of equations:

$$A_{2}i_{2} + (A_{1}Y_{b}A_{1}^{T})v_{n} = -A_{1}Y_{b}E_{1} - A_{1}g(\dot{v}_{c}, v) + A_{J}$$
(A-4)

$$v_2 = A_{22n}^T v_1 + E_2 = L(i_2)i_2$$
 (A-5)

Let v_T denote the branch voltage vector associated with the <u>normal</u> tree T, and let v_L denote the corresponding cotree voltages. Since all capacitors are assigned in T, v_C is a subvector of v_T . Similarly, since all inductors are assigned in the cotree, v_2 is a subvector of v_L . Let the reduced incidence matrix A be partitioned accordingly into A_T and A_L , so that KVL assumes the form

$$\underbrace{\mathbf{v}}_{\sim} \triangleq \begin{bmatrix} \mathbf{v}_{\tau} \\ \mathbf{v}_{L} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{\tau} \\ \mathbf{A}_{L} \end{bmatrix}^{\mathsf{T}} \underbrace{\mathbf{v}}_{\mathsf{n}} + \begin{bmatrix} \mathbf{E}_{\tau} \\ \mathbf{E}_{L} \end{bmatrix}$$
(A-6)

Since the columns of A_T correspond to <u>tree</u> branches, A_T is non-singular [3]. Hence we can solve for the node-to-datum voltage vector v_n from (A-6) to obtain

$$\mathbf{v}_{n} = \begin{bmatrix} \mathbf{A}_{T}^{\mathsf{T}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{v}_{\mathsf{T}} - \mathbf{E}_{\mathsf{T}} \end{bmatrix}$$
(A-7)

$$\mathbf{v}_{L} = \mathbf{A}_{L}^{\mathsf{T}} [\mathbf{A}_{T}^{\mathsf{T}}]^{-1} [\mathbf{v}_{T} - \mathbf{E}_{T}] + \mathbf{E}_{L}$$
(A-8)

Substituting (A-7) and (A-8) into (A-4) and (A-5), and denoting the inductor current vector i_{2} by i_{1} , we obtain

$$\frac{A_{2}i_{L}}{A_{2}i_{L}} + (A_{1}Y_{b}A_{1}^{T})[A_{T}^{T}]^{-1}(v_{T} - E_{T}) + A_{1}Y_{b}E_{1} + A_{1}\hat{g}(\dot{v}_{c}, v_{T}) - AJ = 0$$

$$A_{2}^{T}[A_{T}^{T}]^{-1}(v_{T} - E_{T}) + E_{2} - L(\dot{i}_{L})\dot{i}_{L} = 0$$

$$(A-9)$$

$$(A-10)$$

where

$$\hat{g}(\hat{\mathbf{y}}_{\mathsf{C}}, \hat{\mathbf{y}}_{\mathsf{T}}) \triangleq \hat{g}(\hat{\mathbf{y}}_{\mathsf{C}}, \hat{\mathbf{y}}) \Big|_{\hat{\mathbf{y}}} = \begin{bmatrix} \mathbf{y}_{\mathsf{T}} & \mathbf{y}_{\mathsf{L}} \end{bmatrix}^{\mathsf{T}}$$

and v_{τ} is given by (A-8),

Equations (A-9)-(A-10) constitute a reduced system of implicit equations in terms of the state variables $x \triangleq [v_C i_L]^T$ and the non-state variables contained within v_T .

Equation (A-9) can be interpreted as the <u>nodal equation</u> of N with all inductor currents i_{L_1} considered as independent sources, and with all nodeto-datum voltages expressed in terms of the <u>normal tree</u> voltage vector \underline{v}_T . Similarly, (A-10) can be interpreted as the <u>fundamental loop</u> equations (relative to the normal tree T) formed by the <u>inductor links</u>. These interpretations allow us to write down the <u>reduced system of implicit equations</u> of simple nonlinear networks -- such as that considered in <u>section III</u> -- by <u>inspection</u>. If N contains loops of capacitors and independent voltage sources, or cut sets of inductors and independent current sources, the above procedure can be easily generalized by first expressing the cotree capacitor voltages in terms of tree capacitor voltages, and tree inductor currents in terms of cotree inductor currents [3].

APPENDIX B

The matrix $\underline{\Gamma}^{T}\underline{\Gamma}$ in <u>Theorem 3</u> is <u>non singular</u> if, and only if, $\Delta t \neq \frac{2n\pi}{|v_{i} \pm v_{k}|}$

where $\underline{\Gamma}$ is a Zx(2N+1) matrix, where $Z \ge 2N+1$. <u>Proof.</u> $\underline{\Gamma}^T \underline{\Gamma}$ is clearly symmetric and positive semi-definite and hence its eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ are real and <u>non-negative</u>. Hence det $(\underline{\Gamma}^T \underline{\Gamma})$ $= \lambda_1, \lambda_2, \ldots, \lambda_n \neq 0 \Leftrightarrow$ all eigenvalues are positive $\Leftrightarrow \underline{\Gamma}^T \underline{\Gamma}$ is positive definite \Leftrightarrow $x^T (\underline{\Gamma}^T \underline{\Gamma}) \ge 0$ for all $\underline{x} \neq 0$

Hence, we have det $(\Gamma \Gamma) \neq 0 \Leftrightarrow$ columns of Γ are linearly independent. (B-2) The matrix Γ in (2.17) can be recast as follows:

 $\mathbf{I} = \begin{bmatrix}
1 & 1 & 1 & . & . & 1 & 1 \\
1 & e^{j\theta_1} & e^{-j\theta_1} & . & . & e^{j\theta_N} & e^{-j\theta_N} \\
1 & e^{j2\theta_1} & e^{-j2\theta_1} & . & e^{j2\theta_N} & e^{-j2\theta_N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & e^{j2\theta_1} & e^{-jZ\theta_1} & . & e^{jZ\theta_N} & e^{-jZ\theta_N} \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & . & . & 0 & 0 \\
0 & [0.5 & -j0.5] & . & . & 0 & 0 \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 & 0 & [0.5 & -j0.5] \\
0 & 0 &$

where $\theta_{1} \stackrel{\Delta}{=} \nu_{i} \Delta t$. Since D is clearly <u>non-singular</u>, Columns of Γ are linearly independent

Ω(B) ົΩ(B) where Proof. ກ(B) ₿ \$ det \$ \$ Û \$ teger L₂ such that APPENDIX C Û Û is non-singular $(\Gamma^{T}\Gamma) \neq 0$ ejk¢ <mark>ہ ا</mark> گ is non-singular] - e^{jLl¢} ¢ ≙աշTղ․ The matrix $\underline{\mathfrak{Q}}(B)$ in (3.9) is non singular if, and only if, there exists an in-Ð ___ L1 (m2/m1) ≠ L². L₁ φ ≠ 2L₂π **H** Columns of Γ' are linearly independent $e^{j\theta}i_{n} \neq e^{\pm j\theta}k$ and $e^{\pm j\theta}i_{n} \neq 1$ Substituting $\phi \triangleq \omega_2 T_1 = 2\pi\omega_2/\omega_1$ into (C-3), we obtain: Columns of $\tilde{\Omega}'(B)$ are linearly independent ----___ **____** . . . + 9 K We can recast $\tilde{\Omega}(B)$ in (3.9) as follows: follows from (B.2) and (B.4) that ± θ_k ≠ ±2nπ ל <mark>וי2</mark> , גן = 1,2,...,28 ל - ejiø ej28¢ ej2¢ ej¢ ≠ ±2nπ Since \$ ¥ 0 e-j28¢ **⊭** 0 e-j2¢ ν_i Δt ± ν_K Δt ≠ ±2nπ ⇔ e-j∳ • • • Ω'(B) Dֲ is non-singular and and for any integer n for $L_1 = 1, 2, \dots, 2B$ for i,k = 0,±1, ±2,...±B, i ≠ for any integer L₂ e^{±j0}i ej282¢ $\theta_{i} \neq \pm 2n\pi$, for any integer n ej2B¢ e^{jBф} e-j28²¢ e-j2B¢ e-jBф ∆t ≠ for any i ≠ k 0 •---0 0 0 יז[±]ע_k 0.5 0.5 0 ~ -j0.5 j0.5 0 0 0 `0 5 ບ ເບ 0 -j0.5 j0.5 0 0 0 (c-1) (C-2) (C-3) (8-4)

50

A-4

4

.

APPENDIX D

If ω_1 and ω_2 are rational numbers, we can make $\Omega(B)$ <u>non-singular</u> by choosing

$$B < \frac{T}{2T_1}$$
(D-1)

<u>Proof.</u> Let $\omega_1 \triangleq m_1/n_1$ and $\omega_2 \triangleq m_2/n_2$ be <u>irreducible</u> fractions. Then $T_1 = 2\pi(n_1/m_1)$, $T_2 = 2\pi(n_2/m_2)$, and $T = 2\pi(n/m)$, where $n = L.C.M. \{n_1, n_2\}$ and $m = G.C.D.\{m_1, m_2\}$. Hence $m_1 = mm_1'$, $m_2 = mm_2'$, $n_1 = kn_1'$, $n_2 = kn_2'$, and $n = kn_1'n_2'$ for some <u>integer</u> k.

Now, since G.C.D. $\{m_1', m_2'\} = 1$, G.C.D. $\{m_1', n_1'\} = 1$, and G.C.D. $\{m_2', n_2'\} = 1$, we have G.C.D. $\{m_2', n_1', m_1', n_2'\} = 1$. It follows that if

$$\max\{L_1\} = 2B < m_1' n_2'$$
 (D-2)

then

$$L_{1}\left(\frac{\omega_{2}}{\omega_{1}}\right) = L_{1}\left(\frac{T_{1}}{T_{2}}\right) = L_{1}\left(\frac{m_{2}n_{1}}{m_{1}n_{2}}\right) = L_{1}\left(\frac{m_{2}'n_{1}'}{m_{1}'n_{2}'}\right) \neq \text{ integer}$$
(D-3)

But (D.2) is equivalent to

$$2BT_{1} < m_{1}'n_{2}'T_{1} = m_{1}'n_{2}'(n_{1}/m_{1})(m/n)T = \left(\frac{m_{1}'m}{m_{1}}\right)\left(\frac{n_{2}'n_{1}}{n}\right)T = \frac{n_{2}'kn_{1}'}{kn_{1}'n_{2}'}T = T \quad (D-4)$$

Hence, if $2BT_1 < T$, then (C.1) holds.

FIGURE CAPTIONS

Fig. 1 Steady-state waveform for Duffing's equation x + 0.1x + 2x + x³
= 0.4 cos t + 0.4 cos 0.35t + 0.4 cos 0.155t.
(a) Solid waveform represents approximate solution obtained with multi-frequency algorithm. Solid dots denote solution obtained by numerical solution of (2.64) starting from x = (0.69667,-0.18304) from Case 1.
(b) Discrete frequency spectrum obtained from (2.27).
Fig. 2 Steady-state waveform for Duffing's equation x + 0.1x + 2x + x³
= 0.4 cos t + 0.4 cos 0.85t + 0.4 cos 0.17t.

(a) Solid waveform represents approximate solution obtained with multi-frequency algorithm. Solid dots denote solution obtained by numerical solution of (2.64) starting from $x_{o}^* = (0.79298, -0.13834)$ from <u>Case 2.</u>

(b) Discrete frequency spectrum obtained from (2.27).

- Fig. 3 The rate of convergence for Case 1 (shown dotted) and Case 2 (shown solid) in the Examples in <u>Table 2</u>. Horizontal axis indicates the iteration number j. Vertical axis indicates the error $\varepsilon^{(j)}$ computed at the <u>jth</u> iteration using (2.67).
- Fig. 4 Geometrical interpretation of (3.4) for B = 1,2,...,10. Each solid dot denotes one frequency component $m_{1k}\omega_1 + m_{2k}\omega_2$.

\

Fig. 5 The rate of convergence for Cases 1, 2, and 3 in the Examples in <u>Table 3.</u> Horizontal axis indicates the iteration number j. Vertical axis indicates the error estimated by

$$\varepsilon^{(j)} = \sqrt{F_1^2(x_0^{(j)};B) + F_2^2(x_0^{(j)};B)}$$

- Fig. 6 (a) Steady-state waveform for Duffing's equation $\ddot{x} + 0.06\dot{x} + x + x^3$ = 0.5 cos t + 0.5 cos 0.81 t (Case 1) (b) Normalized frequency spectrum of (a).
- Fig. 7 (a) Steady-state waveform for Duffing's equation $\ddot{x} + 0.05\dot{x} + x + x^3$ = 0.3 cos t + 1.5 cos 0.115 t (<u>Case 2</u>)

- (b) Normalized frequency spectrum of (a).
- Fig. 8 (a) Steady-state waveform for Duffing's equation $\ddot{x} + 0.1\dot{x} + x + x^3$ = (1 + cos 0.115 t) cos t (Case 3) (b) Normalized frequency spectrum of (a).
- Fig. 9 (a) Differential-pair amplitude modulator circuit. $V_{cc} = 10V$, $V_E = 5V$, L = 2 mH, C = 500 pF, $R_L = 20 \text{ k}\Omega$, $R_B = 15 \text{ k}\Omega$, $e_1(t) = 0.01 \text{ cos } 0.115(10^6)\text{t}$ and $e_2(t) = V_2 \text{ cos } 0.115(10^6)\text{t}$.
 - (b) Ebers-Mol₁ transistor circuit model with the 2 diodes described by $I_{dk} = I_s[e^{-1}]$, $I_s = 10^{-8}A$, $\lambda = 40$, $\alpha = 0.99$.

Fig. 10 (a) Steady-state output voltage waveform $v_0(t)$ for <u>Case 1</u>: carrier signal $e_1(t) = 0.1 \cos 10^6 t$, input signal $e_2(t) = 4.0 \cos 0.115(10^6)t$ (b) Corresponding base-to-emitter voltage waveform $v_{EB}(t)$ for transistor T_1 . (c) Corresponding base-to-emitter voltage waveform $v_{EB}(t)$ for transistor T_3 .

- Fig. 11 (a) Steady-state output voltage waveform $V_0(t)$ for <u>Case 2</u>: carrier signal $e_1(t) = 0.1 \cos 10^6 t$, input signal $e_2(t) = 5.3 \cos 0.115(10^6)t$. (b) Corresponding base-to-emitter voltage waveform $v_{EB}(t)$ for transistor T_1 . (c) Corresponding base-to-emitter voltage waveform $v_{EB}(t)$ for transistor T_3 .
- Fig. 12 Normalized frequency spectrum for the modulator output voltage waveform in Fig. 11(a) (<u>Case 2</u>)

(a)

Fig. 4

F

_

>

Fig. 9

Fig, II

؛

z

3