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ABSTRACT

Two efficient algorithms are presented for obtaining steady-state
solutions of nonlinear circuits and systems driven by two or more
distinct frequency input signals. These algorithms are particularly
useful in cases where the steady-state response is either not periodic,
or is periodic but its period is too large for existing methods.

The first algorithm is applicable to any circuit or system driven
by any number P > 2 of input frequencies. The second algorithm is
restricted only to 2 input frequencies and is therefore significantly
more efficient than the first algorithm. Both algorithms are
formulated for systems described by an implicit system of nonlinear
algebraic-differential equations, thereby obviating the need to write
state equations.

Numerous examples have been solved successfully using these two
algorithms. A selection of some of these examples is given for
illustrative purposes.
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I. Introduction

A fundamental problem in the design of communication circuits, such as
modulators and mixers, is to calculate the steady-state response when the circuit
is driven by inputs having "P" distinct frequency components {w],wz,...,wp},
where P > 2 [1-2]. For complete generality, we assume the circuit or system is
described by an implicit system of differential-algebraic equations [3] of the form

fj(§,§,¥;m]t,w2t,...wpt) =0 ,J=1,2,...,mn (1.1)

where X is an n-vector denoting the state variables, y is an m-vector denoting the
remaining non-state variables and fj(-) contains p periodic input signals of fre-
quencies Wy sWys e e sWps respectively. In Appendix A, fj(-) is given by an explicit

formula which holds for most circuits of practical interest.

Standing Assumption. Given any initial state Xg» (1.1) has a unique asymptotically
almost-periodic solution [4]; namely,

x(t) = x, (t) + x,(t) (1.2)
where
5tr(t) ~0as t+w (1.3)
is called the transient component and
M
Xeslt) =39 * 1 {22k-1 cos vt + 25, sin "kt} (1.4)

is called the steady state response , where the summation is taken over all
possible frequencies [5]

A .

generated by the frequency base Wyslyseeeswp -

Note that (1.4) is not an ordinary Fourier series because its frequency spectrum
{v],vz,...,vM} is not harmonically related. In fact, 5ss(t) is not even periodic if
the frequency base {ml,wz,...,wp} is incommensurable [5]. In the mathematical
literature, (1.4) is called an almost periodic functien.

Our objective in this paper is to present 2 efficient algorithms for calculating
the steady-state response §ss(t),




Current methods for calculating 5ss(t) can be classified into 4 categories:

1. Brute force method. This approach solves (1.1) by numerical integration
(starting from an arbitrarily chosen initial state 50) until the steady state is
reached [3].

Although this method is quite general, it is prohibitively expensive for
1ightly-damped circuits where it takes a very long time for the transient component
to die out.

Moreover, if the frequency base is incommensurable, 5ss(t) is not periodic and
it is difficult to determine when the steady state has been reached.

2. Perturbation method. This approach solves (1.1) by iteration with the initial
solution often chosen to be the solution of a linearized equation. It includes the
Volterra series method [5-7] and the Picard iteration method [8].

Unfortunately, this method works only for almost linear circuits where the
nonlinearity is often extremely weak (e.g., low distortion amplifiers). For circuits
which rely on nonlinearity in an essential way (e.g., modulators and mixers) this
method becomes highly inaccurate let alone the fact that the iteration often does
not converge.

3. Harmonic balance method. This approach solves (1.1) by approximating the
solution in a finite trigonometric series and then balancing all terms having iden-
tical frequency components, often via Galerkin's procedure [9-10].

Although very interesting theoretically, this method is often extremely time-

consuming because the various frequency components are estimated by multi-dimensional

Fourier analysis.
4. Shooting method. This approach solves (1.1) by finding first an initial state
§o(often via.Newton-Raphon method) such that the solution starting from Xg is
periodic, i.e., no transient component [11-12].

There are 2 serious problems associated with this method.
(a) It can not be used when the solution ‘is not periodic.
(b) Even if the solution is periodic, the period T is often many orders of magni-
tude larger than the period of the individual frequency components Vs thereby
making the numerical integration over this long period T prohibitively expensive.
For example, consider

xss(t) = Ay cos wyt + Ay cos wyt (1.6)

The following table 1ists several combinations of Wy and Wy (of periods T.| and T2

respectively) which makes xss(t) a periodic function. Also listed is the period T
. A _

of xss(t) and the ratio P = T/T.l and Py = T/T,.
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Table 1. Example of wq and wy which make xss(t) periodic of frequency w.

wy(Hz) | w,(Hz) Ty= %f(sec)_ Ty= %g(sec) T= %?Xsec) p]é %i pzé T,
1 lo.23 6.2832 27.318 6.2832(10%)| 102 |0.23(10%)
1 l0.233 6.2832 26.967 6.2832(10%)] 103 |0.233(10%)
1 lo.2333 6.2832 26.932 6.2832(101) | 10* 0.2333(10%)
n n n
1 l0.2333...3 6.2832 26.927 6.2832(10")| 10 0.233..:3$10 )
' n digits n digits
103 [0.233(10%) 6.2832(1073) |0.26967(1073) |6.2832 103 [0.233(10%)
10*  |o.2333010% 6.2832(107%) |0.26932(107%) |6.2832 10 |o.2333(10%)
10° |0.23333(10%) 6.2832(107°) |0.26932(107°) |6.2832 10° |0.23333(10°)
n n -n -n n n
10" 10.23333...3(107) |6.2832(10™) |0.26927(10™") |6. 2832 10" |0.233...3(10™
n digits n digits -

Note that when w; = 1, T+ @ as n >, and when w; = 10", T; > 0 but T = 6.2832
as n + o, Hence, from a numerical integration point of view, it will take an
infinite amount of integration steps in order to obtain the periodic solution xss(t)
when n + . Since Py > and Pp >®@asn +w in both cases, the larger the values
of P and Po> the more computer time will be required. Hence, P and Py give a
measure of numerical efficiency of the shooting method. This observation motivates
the following:

Theorem 1

The steady state response fss(t) in (1.4) is periodic of frequency w if each

frequency v, can be expressed as a rational number

-k
"k
Moreover, if M and n, are relatively prime integers for all k = 1,2,...,M,

then the period T4 2r/w of fss(t) is given explicitly by

Vi , k=1,2,....M (1.6)

T = 2n(D) (1.7)
where+
A
n 'A‘ LoC.Mo {n'l ,nzg...,nM} (] '8)
m= G.C.D. {m1,m2,...,mM} (1.9)

+L.C.M. and G.C.D. denote Least Common Multiple and Greatest Common Divisor,
respectively.
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and

T _/n
pk é K = ('“'l')vk (]-]0)

where Tk = 2n/vk.

Conversely, if there are at least 2 frequencies vj and Ve where vj is rational
but v, is irrational, then §Ss(t) is not periodic.
Proof. Rewriting (1.4) as

fss(t) ~Ss(v1t,v2t,...,th) (1.11)

to emphasize the M periodic components of frequency VisVgseeosVys We obtain

Xgg (E4T) = xss(v (t+T) 05 (£4T) 5 ... v (84T)}
= xoq (Vg (tr2m(R)) v, (E42m(D)),. . vy (E420(D))
- ~stt —)(2’]’)),v2(t+\» @ )(2’2‘)), ,vM(th(a)(?,—;)))
= X (Vg (t+ = —( Ty, (t+ :—‘-(-ﬁ)Tz),...,vM(t-l- ':—:{%)TM)]’
= X¢q (V] (t+N]T] Vo (tH,TH) 5o sy (ENyTY)) (1.12)
where
N, A -(—) (';—k)(ﬁ";), k=1,2,...,M (1.13)

is an 1nteger in view of (1.8) and (1.9). It follows from (1.13) and (1.4) that
§Ss(t+T) = §Ss(v]t,v2t,...,th) = §ss(t) (1.18)

Hence §Ss(t) is periodic of period T. Moreover, since m and n, are relatively
prime, T is the smallest period and hence, T = 2r/w.

Finally, if ”j is rational but Vi is irrational, we can represent Vi by (1.6)
with e > Consequently, n = L.C.M.{njs...nseeesNse. ly} = o and x__(t) has

J <ss
an infinite period; i.e., it is not periodic. =

It follows from Theorem 1 that if fss(t) is periodic, its frequency is given by

_m_ G.C.D. {m1,m mM}
w=4h " L.C.M. Tnyanys oonyl

(1.15)




and its period T is bounded by:
max{Ty,TpseesTpl < T < 2n(nyn,...ny) (1.16)

It also follows from (1.8)-(1.10) that since m is typically a small integer
(m=1 if all m, are relatively prime), the period T can be many orders of magnitude
larger than that of Tk. Typically, T increases by an order of magnitude if we
increase the number of significant figures in representing the component frequencies
Ve k =1,2,...,p by one.

Observe that in solving (1.1) by numerical integration, the step size h is
determined by the period of the highest frequency component [3], namely,

h < g mn(T Ty, 00T} (1.17)

It follows from (1.16) and (1.17) that both the brute force method and the shooting
method are usually impractical when there are multiple input frequencies.

To overcome the problems associated with existing methods, we will present two
new efficient algorithms in this paper. The basic idea in both algorithms is to
find an initial state §(O)=Q 5; so that the transient component

Xep(t) = 0 for all t >0 (1.18)

regardless of whether the steady state response §ss(t) is periodic or not. In both
algorithms, 55'15 found by a Newton-Raphson mehtod. However, unlike the shooting
method [11], (1.3) is solved numerically only over a small fraction of the period T
(in the periodic case) per iteration. This is why our algorithms are computationally
quite efficient.

The algorithm to be presented in Section II is completely general and is appli-
cable regardless of the number "p" of input frequencies, provided p < =.

The algorithm to be presented in Section III is restricted only to the 2-input
frequency case (p=2). We will see that this restriction leads to a significantly
more efficient algorithm than that of Section II.

II. Almost-Periodic Solution Algorithm 1: Multiple-Input Frequencies
Since our algorithm does not depend on whether §Ss(t) is periodic or not, let
us assume that the exact steady-state response

M
Xes(t) = a5 + kZ]{QZk_] cos vt + a, sin v t} ‘ (2.1)
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is not periodic for the sake of generality. Consequently, we will call the co-
efficients a, as generalized Fourier coefficients.

Even though the number M of frequency components in (2.1) could be quite large
(M may equal =!) in most practical cases,

2 Z
A A/ lag, (0% + 1, 1% =0 forall k >N (2.2)

where -1 denotes Euclidean norm.
Hence, we will seek to find an approximate solution

N
x(t) = a5+ kZ] {ag,_q €0s vt +a, sin vt} (2.3)

whose N < M.
A. Ca1cu1ating_3k when transient component is zero
In section II-B, we will present an algorithm for finding an initial state
0 such that the transient solution component X4 (t) in (1.3) is zero for t > 0.
In this subsect1on, let us assume x0 has been found so that the solution of (1 1)
starting from x0 is §(t) = §ss(t) for t > 0.

To minimize computation time, we will often choose a relatively small N so
that (2.2) is not necessarily satisfied. In this case, the following theorem is
important:

Theorem 2. Properties of Generalized Fourier Coefficients

Let N < M be any positive integer.

(a) For any (not necessarily optimum) N-frequency component approximation

N
xy(t) A by + k§1{92k“ cos vyt + by, sin vt} (2.4)

to xss(t) in (2.1), the mean-square error

Mx  (£)-%, ()1 4 ] T Ho ((£)xy(£)1%at

is given explicitly by:

Twe define the mean of x(t) by

M{x(t)} A 1im 1 IT x(t)dt
= T 1 o '



N
2,1 2
k=1
(b) Among all possible coefficients {90’91""’92N} in (2.4), the coefficients

which result in a minimum mean-square error are precisely the first 2N+1 generalized

2. 2

MIxo ()% (£) T2 = Mixe (£)% - lag g 1% + lag-by

Fourier coefficients; namely

b k =0,1,2,...,2N (2.6)

B = 3o

(c) The minimum mean-square-error is given by:

2.1 ¥ g 2
s P =1 T 27

Proof. It suffices to prove the scalar case.

_ N
(a) M[xss(t)-xN(t)]2 = Mix (t) - by - k§] [by_qc0s v t+by, sin vkt]}2

= Mlx g (£)1% - 2boMIx ()] - 2Hxgg(£) } Dby 1005 Vytbysin vyt])

N
+ b5 + My } [bgyq €08 vyBby i v t11 (2.8)

where we have made use of the fact that
M{sin vt} =0 for all v (2.9)
M{cos vt} =0 forall v#0 (2.10)

The last term in (2.8) can be further reduced:

N . 2 1 N o o A ,
M{kZ][62k_1cos vty sin v t1}° = §'k21(b2k-1+b2k) = E.kzl by (2.11)

Substituting (2.1) for xss(t) in the second and third terms in (2.8), we obtain

N
ZPOM[xss(t)] + ;M{xss(t)kgl[bZK_]cos vkt+b2ksin vkt]}
2N
* 2 aghy + L (Pp2ac1"Ppidai) = Zagbo * 1 aydy (2.12)

Substituting (2.11) and (2.12) into (2.8), we obtain:
, ‘ 2N 2N
- 2 _ 2 2 .1 2
2N - 2N ~
_ 2 2 1 2 2,1 )2 2.13
MIx  (t)] a z-kzl a + (35-by)“ + §.kzl (ak'bk) ( )

which is just the scalar version of (2.5).
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(b) Since bk occurs only in the last 2 terms of (2.13), the minimum of (2.13)
occurs when (2.6) holds.

2 2 .1 2
(c) MIx ()]° = ag * E.kgl ay, (2.14)
Substituting (2.6) and (2.14) into (2.13), we obtain:
M
2 _1 2
MIx . (t)=xy(t)]1° =% ] a (2.15)

which is just the scalar version of (2.7). =

Theorem 2 shows that regardless of the integer N, the generalized Fourier co-
efficients {30’91”"’32N} in (2.3) can be obtained by minimizing the means-square-
error between 5ss(t) and gﬁ(t). Hence, increasing the number of frequency compo-
nents from N to N+1 does not affect the previously calculated coefficients.

Since by assumption, §t#j)==g.for t>0, we can calculate §ss(t) by solving
(1.2) numerically. Assuming a uniform step size At, let us calculate (Z+1) time
steps to obtain §Ss(At), fss(ZAt)""’5ss(kAt)"'°’fss((Z+])At]’ where Z is some
integer to be chosen later.

Since Theorem 2 implies that the jth components s k = 0,1,...,2N, of each
generalized Fourier coefficient a, can be determined inéependent]y of the coef-
ficients of the remaining components of the vector 5N(t)’ it suffices for us to
derive a formula for calculating these coefficients in the scalar case. To simplify
our notation, define the vectors

[ x (0) | x () | [ag | 2,(D) |
xgg(at) X (4t) a, a,(2)

xss(2) & | x55(2000 () & (2000 }o28 | 2y |, and a(2) 4 [a,(2) (2.16)
LxS;(ZAt)_ fN(iAtl _AZN_ L:521;‘(2)_

and the Z x (2N+1) matrix

1 1 0 . 1 0
1 cos v]At sin v]At ... COS vNAt sin vNAt

rall cos 2v1At sin Zv]At ee.  COS ZvNAt sin ZvNAt (2.17)
1 cos Zv1At sin iv]At ::: cos ivNAt sin ivNAt



Theorem 3
The (2N+1) generalized Fourier coefficients {ao,a],...,ak,...,aZN} of xN(t)
(scalar version of (2.3)) are given by

a = a(2) +e(2) (2.18)
where
@) 4 D7 1T x4(@) (2.19)

and 5(2) js an error vector satisfying

E(Z) +0 asZ-+w ‘ (2.20)

The (2N+1) x (2N+1) matrix (ng) in (2.19) is non-singular for all positive
frequencies v],vz,...,vN and for any step size At if, and only if

2nm
At # (2.21)
Ivitvkl
. for all i, k = 1,2,...,N, and for any integer n.
Proof. ' T
2 .1 2
MIx_ (t)-x4(t)]° = Tim -J X o (t)-x,(t)] dt
sS N T T 0 [ sS N )]
= Tim 75 % [x_(kAt)-xy(kat) 12 at
7 (Z+1)at k5p  SS N

JA
- TikTT{:kZO [xss(kAt)-xN(kAt)]%} + e(2) (2.22)
where
e(Z) > 0 denotes the error resulting from taking only a finite number Z of time
steps.
Now substituting t = kAt in (2.3) and using the notations in (2.16) and (2.17),
we can write

Z
L Drs (0t) X (A T = L (2)-2y(2)] T (2)-xy()]

[ (2)-Ta(D) 1 Txg ()-Ta ()]

=T T(7ypT ) P
= X (Z)%6(Z) - @ (Z)T %, (Z) - %, (Z)Ta(Z)

~ e

+a1(2)r'ra(z) (2.23)



After adding and subtracting o6

GATT

we obtain

Z 2
kgo[xss(kAt)-xN(kAt)}

and

T

9AT's

lgglg = 5T

-~

g'lg to (2.23), where

ss(Z) . (2.24)

Xs(Dxes(1) - 3'(mees - oTeg™a(2) + AT (2)GA(2)

T

*a 6 leg o - TG']c

tQ

((2)-6719)76 (a(2)-6710) + x4 (D)x (2) - ¢'8g (2.25)

Since only the first term of (2.25) depends on §(Z), and sincé G as defined
in (2.24) is clearly positive semi-definite, it follows from (2.22) and (2.25)

that the mean-sguare error M[xss(t)-xN(t)]2 attains its minimum when

a(z) = 67lg = (r'0) 71Tk (2) (2.26)
It follows from Theorem 2 that as Z + «, §(z) + a and hence E(Z) + 0 in (2.18).

The proof showing (E'f)is nonsingular if and only if (2.21) holds involves
some cumbersome determinant expansions. The details are given in Appendix B. ®

Theorem 3 gives us an explicit formula for calculating (approximately) the
(2N+1) generalized Fourier coefficients {ao,a],...,aZN} for any N; namely,

2= (D7 x (@)

~SS

(2.27)

This approximate formula becomes exact as the number Z of integration time

steps tends to «,

Since (2.21) applies only at a countable set of isolated points, it is easy
to choose a suitable At satisfying (2.21). Once At is chosen, I can be calculated
from (2.17). The vector 555(2) in (2.17) represents (2N+1) "samples" taken from
the exact steady-state solution §ss(t) from (2.1) at a regular time interval equal

to At.

In practice, 535(2) is of course calculated numerically by solving (1.1) .
starting from any initial state x, which results in a zero transient component.

Finally, note that (2.27) g;ves the (2N+1) generalized Fourier coefficients
of only one component of the state vector §Ss(t). Hence, (2.27) must be applied

+This jmplicit system of differential-algebraic equationscan be solved using the
Backward Differentiation Formula (BDF) as described in [3].
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n times for the "n" state variablesinx. Since T remains unchanged, each calcu-

lation involves only changing 555(2) in (2.27) corresponding to each component of

fss(t)'

B. Finding the initial state X0
If we Tet xN_(Tb) denote the ith component of §N(t) from (2.3) at any time

t= Tb, then 1

*

N
XNi(TB) = 2, + kzl{aZk_]iCOS‘vab + 2k, sin v, Ty} (2.28)

when a, _ denotes the ith component of a,. Substituting (2.27) for a; in (2.28),
i < g

we obtain
#y, ()= Y (T, )2y = XT(Th)[(ng)"ngssi(Z)] - 5’5‘51(2) [r(r'm) ™ (m, )1,

i=1,2,...5n (2.29)

where 5150(2) denotes the 555(2) (as defined in (2.16)) associated with the ith
component ' of fss(t)’ and

I(Tb) A 1 cos 120 sin VTps --es COS T sin vNTb]T (2.30)

Since E(ETE)’]I(Tbg in (2.29) remains unchanged for all i = 1,2,...,n, we can
combine all n components of §N(t) from (2.29) into a single matrix equation:

_ a9 - PaO(Tb;At,ZA,N)_
XN1(Tb) xss](o) xss](At) xSS](ZAt) cee xssi(ZAt)
. o (Tp 54¢,Z,N)
xNz(Tb) < xssz(o) xssz(At) xssz(ZAt) . xssz(ZAt)
. : : aZ(T 3At,Z,N)
: : : : 2: : b,
an(Tb) Lxssn(o) xssn(At) xssn(ZAt) cee xssn(ZAt)
:__.,_*7 . N— - — 7/ - O‘Z(Tb ;AtaZsN)
§N(Tb;§0 ) ‘X'(At:z; "fo ) _.\.—v.__/ -

ol 388.2.N (5 41

where the (Z+1)-vector

a(Tysat,2,0) A T(2'D) ' y(T,) (2.32)

~ o~ o~

depends only on T, ,At,Z, and N (since T in (2.17) depends on At,Z,and N) but not
* ~ ‘
on X -
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We can recast (2.31) into an exact equation by introducing a slack variable

gN(Tb;At,Z); namely,

* *
’fN(Tb‘i‘o) - E(At’z;’fo) g(Tb;vAt,Z,N)

= 'EN(Tb ;At’Z)

Observe that EN(TB;At’Z) + 0 if the following 3 conditions are satisfied:

1) 7=
2)

state, where x0 is any initial state which satisfies (1.18).

3)
error.

None of these conditions can be exactly met in practice.

N(T 3At,Z) =

culate xN(T 3Xg ).

Ss(t) is calculated with infinite precision and zero local truncation

Moreover, even if
*
0, we still can not solve (2.33) for X0 since we do not as yet have

the 1nformat1on (1 e., the coefficients 31875355 - EZN) needed in (2.3) to cal-

Instead of (2.33), however, suppose we define the following system of "n"

(2.33)

(t) is calcu]ated by solving (1.1) numerically with x0 as the initial

related equations as a function of the "n" components Xg. *%Xgo s+ 22Xg of the
s ais T._ 1 T.n
initial vector Xg 4 [x01 x037... xon] = [x](O) x2(0) cen xn(O)] :
- uo(Tb;At,Z,N) -
- -
x](Tb;fo) xo] x](At;go) (2At xo)... x, (Z&t; xo) a1(Tb;At,Z,N) 0
o - o = 0
XZ(Tb’fo) x02 2(At %)  %p(28t3xg). . .x,(ZAt5%,) a, (T, 38L,2,N) :
N .. . . . 0
xn(Tb’fo) _fon xn(At,§0) X (ZAt xo)...xn(ZAt,fo)_ : 0
e 7 J az(Th;AtszaN)
x(T 3x4) X(At LX) - -
~"b’~0 ~0 a(T, 38t,2,N)
- N ~ LV_J
E(ﬁo;Tb sAt,ZsN) = 9
2.34)
where x (t-xo) denotes the ith component of the complete solution §(t) = ftr(t)
+ X (t) of (1.1) starting from the initial state Xg» for t = 0, At,2At,...,ZAt,

and Tb Observe
by solving (1.1)
Now at Xq =

numerically.
*
Xg » Xge(t)

* *
x(Ty 3% ) xss(Tﬁ;fo ) =

* %
N Ths%g ) + Xuon(Ty 3% )

that unlike (2.31), both §(T ,50) and 5(At,Z;§0) can be calculated

=0fort>0 (by definition) and hence we can write

(2.35)



where x (Tb,x0 ) = xss(Tb) and XN (T 3Xg ) N(Tb) as defined in (2.1) and (2.3)
respect1ve1y, and where x N(Tb,x0 ) denotes the remaining (M- N) terms of x. (T )
which have been excluded from §N(Tb) Consequently, at x; = X5 » (2.34) can be

written as follows:
* * *

Comparing (2.33) and (2.36), we find

x

Equation (2.37) is remarkable because it says that EN(Tb;At’Z) + 0 when
N > M. In other words, if the exact steady state response 5ss(t) in (2.1) has
only M < = frequency components, and if we choose N = M in (2.3), then
EN(TB;At’Z) = 0 and (2.31) becomes exact for any Z.

Indeed, when M= Nand Z =2M + 1, r becomes a square matrix and the gen-
eralized Fourier coefficients can be calculated exactly from (2.27):

= p-¥
2= I lxg (D) (2.39)

Similarly, (2.32) in this case (Z=2M+1) reduces to
a(Tps4t,2) = TTy(Ty) (2.39)

O0f course in practice, we will normally choose N << M in order to save compu-
tation time. This choice is often necessary anyway because M = « for most prac-
tical circuits. Fortunately, the amplitudes of the higher-order terms [5] in
many practical circuits satisfy (2.2) so that the error vector g(Tb;At,Z) remains
relatively small even though N << M,

Let us summarize the preceding observations as follow:

Remarks:
1. The solution go of the nonlinear equation

F(xg3ThsAt,Z,N) = 0 (2.40)

*
as defined in (2.34) for fixed At and Z represents, a good approximation to X
provided the number of frequency components N and/or the number of time-step
samples Z are chosen to be sufficiently large. In particular,
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~

*
Xg > Xg as N> and/or Z + (2.41)

2. Since (2.40) is not given in closed analytical form, it must be caluclated
numerically for each X2 At, and Z.

3. Equation (2.40) can be solved for Xq (for fixed At and Z) by the Newton-Raphson
method [3]:

X1 (J) - 13N T RS T, At.ZN) (2.42)
. 3F(x »At,Z,N)

here J-(x{3)) A Th 2.43

where JrlXo 3%, xg = §(()J) (2.43)

denotes the Jacobian matrix of f(x 3Ty 54t,2 ,N) at Xg = ~SJ). This can be evalu-
ated by the method given in Section II-C.
4. Once the initial state 54* is found, we solve (1.1) numerically with 50* as
the initial state to obtain §ss(At), §SS(2At),..., §SS(ZAt). Substituting the ith
component, i = 1,2,...,n, of these data into (2.27), we obtain the first (2N+1)
generalized Fourier coeeficients a, ,a, ». - slpy of the ith component x. (t) of
the steady state response X (t) el steady-state response xN(t) at a __x_t1me
t= TJ can now be obta1ned by calculating (2.3) at t = T..
C. Evaluating the Jacobian matrix J Lxg__l

Since the most time-consuming part in solving for X via the Newton-Raphson
method is the numerical calculation of the Jacobian matr1x J (ng)), it is
essential to develop efficient computational methods. Tak1ng the Jacobian of
f(§O;At,Z,N) in (2.34), we obtain

J°

. ax(Ty 3x,) JA ax(katsx.)
3p(xdd)) = =220 - T o (Tysat,z) =0 . (2.48)
) ~ w.=xd) k=0 ~ w.=xld)
X0~%0 20 20
Hence, we need to calculate
ax(t xo)
__'— (-) at t = 0,At,2At,...,ZAt, and Tb (2.45)
2 J

-~

These (Z+2) n x n matrices can be calculated by the numerical differentiation
method described in Section 17-5-2 of [3]. If the circuit associated with (1.1)

’If Xg (t) is periodic and its period T is not too 1arge; we can replace this step
by numer1ca11y solving (1.1) fromt = 0 to t = T with Xg @s the initial state.
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is given, the most efficient method for calculating (2.45) is the sensitivity
network approach given in Section 17-5-3 of [3].

However, if (1.1) is available only ana]ytica11y+, the sensitivity network
approach is not applicable. In this case, the following method is much more
efficient and accurate than that of numerical differentiation:

In vector form, (1.1) becomes

f(%,f,z;w]t,wzt,...,mpt) =0 (2.46)

Applying Taylor Ex ansion about (5(3)(t) y(J)(t)) at the jth stage of the iteration,
where { (J)(t) 5y (t)] denotes the solution of (2.41) with initial state

Xg = 501 » we obtain _ _
n(t)
af af of
£ ()69 (), 0 (8) s gt spt) +[—; = -3:-] n(t)
T T
+ .ﬁ(t)llz,llg(t)llz,ﬂz(t)[lz) = 0 (2.47)
where
n(t) 4 x(8) - x9)(e), y(8) & y() -y (e) (2.48)

The first term in (2.47) is identically zero because (x(j)(t),y(j)(t)] is a solu-
tion of (2.46). Neglecting the higher-order terms, (2.47) can be recast as
follow:

n(t) of of - of i)
ol IR I | R PO R .
(5(3)(t)’¥(3)(t))

The first component equation of (2.49) is a linear time-varying differentia]
equation

Tour algorithms in this paper are valid for any equation of the form (1.1), which
need not be associated with a circuit.
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n(t) = A)(£) n(t) (2.50)

where A(J)(t) is an n x mmateix functlen of tJmew “We will henceforth _refer:to-
(2.50) as the variational equation associated w1th (2.46).

The solution of (2.50) corresponding to any initial state n(0) is given by

[13]

n(t) = 09)(t) n(0) (2.51)
where g(J)(t) is the fundamental matrix solution of (2.50).f If we choose

n(0) = [00...0 n0) 00 ...01 (2.52)
then

ny(t) = (J)(t) n(0), 3 = 1,2,...0m (2.53)

where ¢.k(t) denotes the ikth element of ¢(t). It follows from (2.52) that

ax;(t)  n,(t)
3% (07 ™ 7,107~ Pikl®) (2.54)

Hence we have proved that

af(t;xo)

ax _(3)

- g(j)(t) (2.55)
A

It follows from (2.54) that QF(féj)) in (2.44) can be calculated accurately
in 3 steps:

1) Form the variational equation (2.50) at each iteration.

2) Calculate the fundamental matrix so]utio;_érj)(t) of (2.50).

3) cCalculate (2.44).

D. Initialization Guidelines .

To initiate the algorithm for finding the initial state Xg it is necessary
to choose the 5 parameters N, Z, At, Tb and Xg for constructing the noniinear
equation (2.34). Since a good choice of these parameters depends on both the
nature of the problem (number of state variables, degree of nonlinearity,
amplitudes of input signals, number of input frequencies, etc.) and the computer
being used (word length, single or double precision, etc. ), we can only offer

TThe jth column of the fundamental matrix solution is simply the solution of (2 51)
with the initial state
T

n(0) =[00...010...0]
t-'jth position
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some guidelines which have been found useful in our numerous numerical experiments
conducted using our algorithm.
a) Choice of N.

Recall N < M is the number of frequency components used in the truncated
steady state solution §N(t) in (2.3). For typical communication circuits
(amplifiers, mixers, modulators, etc.) the number of significant frequency compo-
nents is usually known from previous analysis and N should be chosen to include
all such components.

If the number of significant frequency components is not known from previous
experience, we simply make an intuitive guess. If this guess is unrealistic, it
will show up in the subsequent error analysis (to be discussed in Section II-E)
and we will have to repeat the analysis with a larger N.

b) Choice of Z, At, and T}.

Recall that At is the uniform sampling step size used in "sampling" the
numerical solution of (1.1) and Z is the total number of samples taken. It is
important to note that "At" is not the same as the integration step size "h"
used in solving (1.1).

In most of our numerical experiments, we solve (1.1) using a 4th-6th order
BDF algorithm [3] with a step size h = Tminlso’ where Tmin is the smallest period
of the N frequency components. This choice usually gives a very accurate numerical
solution for x(t).

Our sampling step size At is usually chosen within the range

7h <At < 13h (2.56)

provided (2.21) is satisfied. In practice, ill-conditioning could occur if At is
chosen to be too small, or if it contains some frequency: components vj‘and vy such
that |vJ. -\)kl'z 0. (See Appendix B)

Although Theorem 3 shows that the generalized Fourier coefficients can be
calculated exactly only if Z + » (see Eq. (2.20)), our numerical experiments show
that good results can be obtained in many practical cases with a considerably

smaller Z. In particular we have found the following range to be adequate for
the many examples we have tried so far:

(2N+1) < Z.< 2(2N+]) (2.57)
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Finally, the choice of Tb is somewhat arbitrary as it does not affect the
theory in Séc. II-A from which our algorithm is based. However, since the gener-
alized Fourier coefficients are estimated by samples taken over the time interval
[0,ZAt], we choose

so that the data §(Tb;§0) would not be redundant.
c) Choice of Xq-

To assure and to hasten the convergence of the Newton-Raphson iteration, it
is desirable to pick a good initial guess 580). Unfortunately, no intuitive guide-
lines are available especially when the steady state solution §ss(t) is not
periodic.

One approach which has worked well for our examples is to repIaEe the input
frequencies {“l’“Z""’“N} by an approximate set of frequencies {G],vz,...,vN} o)
that the associated steady-state waveform is periodic with a relatively small
period T = 2w(n/m), where m and n are defined in (1.8)-(1.9) and is bounded by
(1.16). Using this approximate set of frequencies, we then apply the shooting
method [11], or any other efficient method for finding X * for periodic solutions,
to calculate 50*. We then take this approximate 50* as our initial guess 580).

If we Tet m . A max{m,my,...,m} and n . Amin{n sn,y,...ony}, then (1.7)

max = i
suggests the following algorithm for reducing T:

() 1If v = m is an integer for all k = 1,2,...,N, then we increase m ..
until it is not a prime number and then increase Vs k =1,2,...,N, until mmax/vk
is an integer.

Example 1. Let vy = 2, vy = 3, and vy = 7. Then {m],mz,m3} = {2,3,7} and we
have from (1.7)

_ 2m _
T=gTD.Z377 " 2"

Now increase Moax = 7 to v3 =my = 8, and then increase V) to 4. The new period

associated with {3] ,32,\)3} = {2,4,8} is

T=gTDiz48F - (2.59)
(2) If v, = m/n, is not an integer, we first change m as in (1) and then
change Nes k = 1,2,...,N until it becomes a multiple of Mmin®
Example 2. Let vy = 2/5, v, = 3/8, and vq = 7/9. Then {ml,mz,m3} = {2,3,7}
as in Example 1 and {n],nz,n3} = {5,8,9}. From (1.7), we find
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-

_ L.C.M.{5,8,9} | _ 2.60
T=2n l:G.C.D.{Z,3,7}:l 720w (2.60)

Since Nain = 5, we change n, and n, to n, = 10, and ng = 10 so that
T L.C.M.{5,10,10} L
T"ZW[GCDZ48:I 10w (2.61)

Note that dramatic reduction in period from 720w to 10m T

(3) 1If " is an irrational number, we first approximate it by a rational
number and then proceed as in (2).

Example 3. Let vy = 0.404040..;, v, = 0.§750]0101..., End Vg = 0.7777... .
We can approximate VsVos and Vg by vy = 2/5, v, = 3/8, and V3 = 7/9 and then pro-
ceed as in Example 2. Note the period changes from T = » to T = 10w.

E. Termination Guidelines

Since our choice of N may not be realistic in the sense that one or more
significant frequency components may have been inadvertently excluded from (2.3),
our algorithm does not terminate when the Newton-Raphson iteration in (2.42)
converges to an initial state Xg We must further validate our answer as
follows:

(1) If the steady-state response xss(t) is periodic w1th a reasonabl]y
small period T, we simply solve (1.1) numerically for x(t 2Xg ) (with Xq as
initial state) fromt = 0 to t = T and verify that x(0 Xq ) ==x(T,x

(2) If the steady-state response Xs (t) is not per1od1c or 1f it is
periodic with an unreasonably large per1od T, we can carry out the following
heuristic validation procedure in view of (2.7) of Theorem 2.

(a) Solve (1.1) numerically for x(t X *) (with XO* as initial state) from

=0tot=T, where T is chosen to be sufficiently large.

(b) Solve for xy(kat, xo) using (2.31)} where T, =. kAtand theentries x_ . (kAt) in the

matrix §(At Z; X *) are substituted by xj(t X ) t =0, at, ZAtg...ZAt.

(c) Calculate the error

(1 * * |
€. é/:}z-{ ) [Xj (kAt;i(0 )-xN.(k?At;a(‘O )Jz} (2.62)

*we could reduce T further by decreasing, (instead of increasing) n, and ny to
n, = 5 and n3 = 5, However, the Vo and v3 no longer represent a ggod approx1mat1on
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for each component j = 1,2,...,n.

If max{e],sz,...

wise, increase N and/or Z and start all over again.
F. Summary of Multi-Frequency Algorithm

Step 0.

te

:

te
te)

it

Step 4.

“Step 5.

Specify the 4 parameters N, Z, At, and Ty (See Section II-D) and
calculate the vector g(Tb;At,Z,N) using (2.32).
Set j = 0.
Choose initial state X9 = géj) (for j = 0, see Section II-D) and
solve (1.1) numerically to obtain x(At),§(2At),...,§(ZAt).
Calculate F(x b,At wZ,N) from (2.34). If ﬂf(fO;T,At,Z,N)B <*e
whose £ is a suff1c1ently small positive number, call X9 = Xg and
go to Step 4.
Compute the Jacobian matrix J (x(J)) in (2.43). (See Section II-C).
Compute xéJ +1) via the Newton- Raphson iteration (2.42).
Go to Step 1 with j - j + 1.
Solve (1.1) for x(t) with 50* as initial state fromt =0 to t = T
where T = period if fss(t) is periodic, orTb is a sufficiently larg
number.
Case 1. (t) is per1od1c with small per1od T:
Calcu]ate eJ = xJ(O oX ) - X (T; 3Xg ) j=1,2,.
Case 2. Xss (t) is gg;_per1od1c or is periodic with 1arge T:
Ca]cu1ate €; using (2.62), j = 1,2,...,n
If maX{e],ez,...,en} > g
where €5 is a sufficiently small positive number, increase N and/or
Z and repeat Steps 0-4.
STOP.

®

G. Illustrative Examples

Numerous examples have been 'solved successfully using the 2 algorithms pre-

sented in Sections II and III. Because of its widespread interest, let us apply

the preceding algorithm to solve the forced Duffing's equation [14-15]:

X + kx + cyx + c2x3 = f(t)

This equation arises in many physical problems (e.g., ferro-resonance circuits)

,en} is smaller than some perscribed tolerance, stop. Other-

(2.63)

and is known to exhibit many interesting phenomena; including subharmonic, almost-
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periodic, and chaotic solutions [16].
To apply our algorithm, let us recast (2.63) into the form of (1.1), which

in this case is just the state equation

X1 % %
-kX, = CyX, = € x3 + f(t) (2.64)
2 1M 2™

)

To be specific, let us choose a 3-frequency-input signal
f(t) = A, cos wyt + A, cos wot + A3 cos wat (2.65)

and k = 0.1, ¢y = 2.0 and Cy = 1.0.

We have solved (2.64) using many different combinations of amplitudes and
frequencies, 4 of which are listed in Table 2.
Table 2. Four combinations of Ai and ws and their respective periods.

_om _om _ow N

1 0.410.410.411[0.35|0.155 | 6.283 | 17.951| 40.54 400w
2 0.4{0.4{0.411]0.85]0.170 | 6.283 7.392| 36.96 200w
3 [0.5/0.5]0.5[1({0.35{0.155 | 6.283 | 17.951| 40.53 400m
4 0.5/0.5/0.5{110.85]0.170 | 6.283 7.392] 36.96 200

From previous experience, we know all frequency components

Vi = Mppwg + My w, + My W (2.65)
with

Im]kl + lmZkI + |m3kl <3 (2.66)

are likely to be non-negligible. Since these are 30 frequency components satis-
fying (2.66), we choose N = 30 in (2.3). Applying the preceding algorithm with
At = 11 T]/SO, Z = 1.5(60) = 90, and TB= 23 T], we obtain the initial state 50*
listed in Table 3 corresponding to the 4 cases in Table 2. Also listed is the

error ¢, calculated using (2.62)
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Table 3.

Initial state computed usin

BDF algorithm [3].

g multi-frequgncy algorithm with a 6th order

* *
Xg 4 x (0) Error
case . N
X1 (0) Xo (0) € €g

1 lo.e9667 | -0.18304 |0.53(1073)|0.99(1073)
2 10.78298 | -0.13834 [0.14(10°2)|0.22(1072)
3 [0.82031 | -0.32269 [0.92(1073)]0.14(1072)
4 |0.81562 | -0.46932 [0.33(1072)0.57(1072)

Using the initial states from Table 3 and (2.27), we have calculated the 60
generalized Fourier coefficients 315355+ 53g in (2.3)-corresponding to N = 30 for
cases 1.and 2. The waveforms of x](t) for these 2 cases are plotted (using (2.3)) as
the solid waveforms in Figs. 1(a) and 2(a), respectively. As a check over the
accuracy of our solutions, we solve (1.1) using the same initial states and the
solution at each integration time step is shown as "dots" in Figs. 1(a) and 2(a)
respectively. Note the remarkable accuracy in both cases.

To compare the amplitudes of the 30 frequency components, we use (2.27) to
plot the discrete frequency spectrum for these 2 cases in Figs. 1(b) and 2(b),
respectively.

Finally, to obtain a measure of the rate of convergence of the Newton-Raphson
iteration (2.42), the error

£ 5/ P83 sm, ae, 2N 4R T Lat,,N) (2.67)

0

at each iteration is plotted in Fig. 3 for cases 1 and 2, respectively. Note that
both converges rapidly in 4 iterations. '

III. Almost-Periodic Solution Algorithm 2: Two Input Frequencies
In this section, we assume the circuit or system is driven by no more than 2

frequencies; i.e., P < 2 in (1.1). Hence, let us rewrite (1.1) and (1.5) as

follows:
f(i,f,.x;wﬁ,mzt) = 9 (3.])
\)k = m-lkm] + m2km2’ k = ],ch-o,M . (3-2)

-22-



_Substituting (3.2) into (1.4) and making use of standard trigonometric identities,
" we can recast the steady-state response fss(t) as follow:

M
Xss(t) =239 * kZ] Bpy-1 Cos(Mypupimyuy)t + 2y, sin(m, k“’]+m2k‘”2)t}
M ) °

+ a5, [(sin my wit)(cos mywyt)+(cos mywqt)(sin m2kw2t)€}

M
a, + kzl {:[32k-1 cos m]k“1t+§2k sin m]kw]t] cos mkazt

If we let B denote an integer bound such that
Imyp |+ Imy | < 8 ~ (3.4)

then the number M of non-zero frgquency components Vi is given in Table 4 for
B=1,2,...,10.
Table 4. The integers M, 2M + 1, and 2B + 1 as a function of B.

B 1 2 3 4 5 6 7 8 9 10

M 2 6 12 20 30 42 56 72 90 | 110
2M+1 5 13 25 41 61 85 113} 145 | 181 221
2B+1 3 5 7 9 1 13 15 17 19 21

This table can be easily verified hy counting the number‘of‘églig dots subtended -
by an isosceles triangle of base‘length 2B in Fig: 4. For example, we can enum-
erate the following frequency components when B = 3:
V] T Wys Yy = W, Vg = Zm], Vg = Zmz, Vg = 3m], Vg = 3w2, Vg =y + Wos
Vg T Wy = Wy Vg T wy * 2w2, Vip T Wy - sz, Vi1 T 2w1 * wys and Vip = Zm] - Wwo.
Hence, M(3) = 12.

ObseryeAthat all solid dots on the my-axis in Fig. 4 denote harmonics of
wy - Likewise, thoseon the mzwaxis denote harmonics of Wy . A1l other solid dots
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denote intermodulation components. In particular, all solid dots on a. horizontal
line through Moy = N, N=1,2,..., correspond to frequency components of the form
Vi T My + N, Hence, if we regroup all frequency components in (3.3)

corresponding to dots on a horizontal line together, we can recast (3.3) into
the form

B
Xgs(t) = golt) + kgl { gpp_1(t) cos kuyt + gy (t) sin kuyt} (3.5)

where go(t), g](t), gz(t),...,gZB(t) contain only cosine and since components
which are harmonics of Wy and are therefore all periodic functions of period

T] = 2ﬂ/w]. Since this observation is the basis of Algorithm 2, we will restate
it as a theorem:

Theorem 4.

The steady-state response §ss(t) in (3.3) which contains (2M+1) generalized
Fourier coefficients can be recast into the form of (3.5) containing only (2B+1)
coefficient functions of time go(t), g](t), gz(t)""’QZB(t) which are all
periodic of period T1 = 2ﬂ/m1.

A comparison between the number of coefficients describing (3.3) and (3.5) is
given in Table 4. Observe that (3.5) has much fewer coefficients compared to that
of (3.3) specially for large B. For example, when B = 8, Algorithm 1 from Section
1I would entail solving for 145 generalized Fourier coefficients, whereas only
17 coefficient functions need be specified in (3.5). Our objective in this
section is to develop a new algorithm which takes full advantage of this remark-
ably concise form of solution.

A. Calculating gk(O) when transient component is zero.
In Section III-B, we will present an algorithm for finding an initial state
0 such that the transient component X3 (t) in (1.3) is zero for t > 0. In this
subsection, let us assume x0 has been found so that the solution of (3 1)
starting from x0 is x(t) = 5ss(t) for t > 0, where §ss(t) is given by (3.5).

For reasons that will be clear in Section III-B, we need to derive a rela-
tionship for calculating gk(o), k =0,1,2,...,28B, in terms of "(2B+1)" samples
x5 (0), Xss (1), X (ZT )s. "’xss@BTl)take" at Ty = 2m/w,; intervals. Since each
component X (t) of X (t), i=1,2,...,n, can be calculated separately, it
suffices for ﬁs to der1ve the ith component 95, k(0) of gk(O)

Substituting t = 0, Tq,2Tq,...,2BT; inte (3 5) .

and using ) .

gi,k(kT1) = gi,k(o)’ k=1,2,...,2B (3.,68)

in view of Theorem 4, we obtain
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. B
xssi(o) ) 91;0(0) * k§] gi,2k-1(0)

B
xssi(ZTl) = 9;,0(0) * kZ] 91,2k-1(0) €os ZkupTy + g5 5, (0)

B

xssi(T]) = 91’0(0) + kZ1 {:gi,Zk-l(o) cos kuoT; + 91,2k(0) sin szT]j}

sin 2kw,T

")

. . B *
xssi(ZBTl) = 91’0(0) +,k£1{%i,2k_](0) cos 2kBu, T, + gi,Zk(O) sin ZkaZIE}

7

Equation (3.7) consists of 2B+1 equations in terms of the 2B+1 coefficients

91,0(0):gi,1(0)’91,2(0):-~-:gi,ZB(o)-
If we define the (2B+1)-vectors

xssi(O)
xssi(Tl)
§ss.(B)=é xss.(ZTl)
i |
xssi(ZBT]

—

)

and the (2B+1) x (2B+1) square matrix

1.
1
1

1
cos(abT])
cos(ZuET])

cos(szT])

cos(ZszT])

0
sin(ubT])
sin(ZuéT])

Sin(szT])

sin(ZszT])

then (3.7) assumes the condensed form

(B)gg
k|

=X

~SS,i

(B), i =1,2,...,n

and 9. A
i
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91,0(0)-
9;,1(0)
gi,g(o)

gi,éB(O)

1
COS(B“QT])
cos(ZBu?T])

cos(Bzsz])

2
cos (2B sz])

0
sin(ZBu?T1)

. 2
sin(28B wyTy

¥ (3.7)

(3.8)

(3.9)

)

(3.10)



Theorem 5

The 2B+1 coefficients 91,0(0)’91 ](0),91 2(0),...gi 28(0) describing the

steady-state response (3.5) can be calculated exactly from

-1
gBi = g(B) Essi(B) ' o i = ],2’-0-,n

The matrix Q(B) is non-singular if, and only if, there does not exist an integer

L2 such that

o b
Wy L] 1

Proof. Eq. (3.11) follows directly from (3.10). The proof that (3.12) is a
necessary and sufficient condition for Q(B) to be non-singular is given in
Appendix C. &

Corollary
1. Q(B) is always non-singular if 0y and wy are incommeasurable.

2. If wy and w, are both rational numbers, we can make Q(B) nonsingular by
choosing

T
B < ?T;

where T is the period denfined in (1.7).
Proof. Corollary 1 follows directly from (3.12). Corollary 2 is proved in
Appendix D. .
B. Finding the initial state X0
Consider the ith component of (3.5) at t = (ZB+1)T1:

JA
)(ss_i ((ZB-H )T]) = 95 ,0(0) + kg] {gi’Zk_](O) COS(ZB+])(U2T.I + g5 ,2k(0) sin(2B+

Substituting (3.11) for g; k(0) in (3.14), we obtain
x.. ((2B+1)T.)= &§'(B)g, = 6'(B)a ' (B)x . (B)
SSi 1 ~ ~B.i ~ -~ ~SS_i

-1
_ o7 T
= x3, (B8 (2)3(8)
where
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(3.11)

(3.12)

(3.13)

1 )sz-l}
(3.14)

(3.15)



-
] §(8) & [1 cos[(28+1)ayT;] sinl(2841)ugTy] ... cos[(2B+1)Bu,Ty] Sin[(28+1)80,1]

(3.16)

Since [gT(B)]'] §(B) in (3.15) remains unchanged for all i = 1,2,...,n, we
can combine all "n" components of fss(t) from (3.15) into a single matrix equation:

- -
xss1((28+])T1)

xssz((28+1)T])

Xssn((23+‘)71)

b —
\ J

-~

x<s ((28+1)T,)

where the (2B+1) - vector

8(8) A [T(8)] ™" &(B)

- M ep® |
xss](o) xss](Tl) xss1(2T1) Xss](ZBTl)
‘ 8,(B)
xssz(o) Xssz(T1) xssz(ZTl) xssz(ZBTl) . (3.17)
; : B, (8)
xssn(o) xssn(Tl) xssn(ZT]) xssn(ZBTl) .
— _ ‘LBZB(B)_
X(8) 8(8)
(3.18)

depends only on B.

Observe that (3.17) is exact provided the integer bound B in (3.4) includes
all "M" frequency components of the exact steady-state response 5ss(t) in (3.3).
In this case, the entries*fss(t), t =0J,,2Ty,...,2BT; in X(B) can be obtained
by solving (3;1) using Xy as the initial state.

Since X0 is precisely what we are seeking, let us define the following
system of "n" related equations as a function of the "n" components

1 *2 n

-eesXg of the initial vector

. % ]T = [x](O) x2(0) cee xn(O)]T:

n
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o
- - ~lep® ] Jo
xq ((2B+1)T,3%,} x(0) x(Tysxg) %(2T5x4) .. x; (28T 3x,) o)

: B8, (B
xz((23+1)T];§0) x5(0) Xo(T13%4) x2(2T1;§0) coe %y(2BTy3x0) ! =
: ) . . ... . 8,(B) | |0
x, ((2B+1)73%,) (O) X, (Ty3%g) % (ZT],xo) cee X (ZBT],XO) :
— p— — —
8288 | o
— ~ R
x((2B+1)T, 3 X(Bsx,) B(B) O
(@ns) (8%, O
E(EO;B) (3.19)
where

xi(le’XO) k=0,1,...,2B+1 denote the ith component of the complete solution
5(t) = Xy (t) + X (t) of (3.1) starting from the initial state X2 fort =0,
Tl,ZT], ZBT],(ZB+])T Observe that unlike (3.17), both, x((2B+1)T;;x,) and
X(B xo) can be calculated by solving (3.1) numerlcally

Since (3.19) reduces to (3.18) when Xg = Xg o it follows that x0 can be found
by solving

F(xq3B) = 0 (3.20)

by Newton-Raphson iteration as in (2.42), with F( ) replaced by F(xo,B)

The Jacobian matrix JF(x(J)) can be evaluated by the sensitivity network
approach [3] if the circuit is given. If only the equation (3.1) is given,
the Jacobian matrix can be calculated from

: 2 KT, 3
F(X(J)) 5((2§:1)T1 50) ; B, (8) Eis_}(_xg_z_ (3.21)
~0 (J) k=0 ~0 _ (3)
0% %070

ax ((2B+1)T; 3x,)
where — ™ = can be evaluated using (2.55).

To save computation time, the integer bound B is chosen to include only the
- (3 . - 3 - - * *
significant frequency components in (3.3). 1In this case, the initial state X0 (B)

computed from (3.20) will depend on B and is therefore not exactly.equal to 55.
Clearly,
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(3.22)

50*(8) > 2(_0* as B » B*

where B* denotes the integer which is large enough to include all frequency com-
ponents of (3.3).
C. Initialization Guidelines

Since (3.1) must be solved many times numerically fromt =0 to t = (ZB+1)T],
we always choose wy to be the larger of the 2 input frequencies. 0nceco] is
identified, we can calculate 5(50;3) in (3.19) by specifying the 2 parameters
B and x,.

a) Choice of B.

The integer bound B in (3.5) should be chosen equal to at least the order of
the highest significant harmonics of wz in the steady-state response. It is
independent of Wy - This important property allows us to analyze a large class of
communication circuits where the "signal" frequency at Wy is much smaller than
the "carrier" or "pump" frequency wy- In such cases, harmonics of w, will usually
be quite small even though the input signal at frequency Wy is usually very large

(thereby generating many higher harmonics of w]) so that accurate answers can often
be obtained with B = 3.

If the order of the highest significant harmonics is not known, we simply
make an intuitive guess. If this guess is unrealistic, it will reveal itself in
the subsequent error analysis (to be discussed in Section I111-D).

b) Choice of Xg-

The same procedure presented in Section II-C also applies here.
D. Termination Guidelines.

Recall that in practice, the solution Xg (B) of (3.20) is not the exact
solution x0 . Consequently, we must validate this answer before terminating.

(1) If the steady-state response Xs (t) is periodic with a reasonably
small period T [see(1.7)) then we s1mply so]ve (3.1) numerical]y for x(t Xg (B))
(with X *(B) as initial state) and verify that x(O Xq (B»== x(T Xq (B»

(2) If the steady-state response Xs (t) is ggg periodic, or 1f it is
periodic with an unreasonably large per1od T, we can est1mate the error with the
help of (2.51). If the "approximate” solution x(t Xq (Bn is indeed close to the
exact solution x(t Xq ) for all t > 0, then it fo11ows from (2.42) and (2.51) that

ﬂx(t;x ) - E(t;fo «Bnﬂ < fo(t)0 850 - %o (B)H (3.23)
for all t > 0.

If we let 9 (0) and gk(O) denote the "exact" (computed using (3.11) with.

B = B and exact X9 ) and "approximate" (computed using (3.11) with a approximate’
(B)} values, then
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BY

B
* J* *
ﬂfo = X ()1 = n[go (0)+k‘§'|92k-](0)] - [90(0)‘k§]92k_] (0)]1
o B . 8,
2199 (0) - (01 + 2 1 g5 1(0) = gy (O + [~ Ngp (0T (3.24)
k=1 k=B+1
Since the coefficients gk*(o) and gk(O) can be interpreted as the Fourier co-
efficients associated with- the frequency sz at t = 0, it is reasonable to assume
thit if ﬂgk(o)ﬂ is sufficiently small for k > 2B + 1, the computed initial state
~ *
Xg (B) will be sufficiently close to Xg » and hence

%*
9o1(0) = 99 1(0)s K = 1,1,2,...,B (3.25)

It-follows from (3.23), (3.24), and (3.25) that we can approximate (3.23) by
*
B * *
Ix(tsxg) - x(tsxg(B)1 < to(8)IC ) 1gpy (O + £(8.x0(8))] (3.26)

where 3(8,55'(8)) is an error from the first two terms in (3.24).

Even though the right hand side of (3.26) can not be calculated from avail-
able data, the following heuristic procedure has been used successfully in all
examples we have investigated so far:

(1) Solve (3.1) numerically for §[t;§o*(B)) fromt =0t t = 2(B+2)T].

(2) Calculate 9%.» i=1,2,...,n, using (3.9) agd (3.11) with B replaced

by B+2 and with xg¢ (t) replaced by x,(t;x; (B)) for t = 0,T,,2T;,...,
2(B+2)T,. ! .
(3) If
p+1%8+2 A 199847 (0N + lgyg,5(0)1 (3.27)
is smaller than some prescribed tolerance, stop.
Otherwise, increase B and start all over again.
E.. Summary of Two-Freguency Algorithm '

Step 0. Choose wy to be the larger of the 2 input frequencies. Specify the
integer bound B (see Section III-C). Set j = O.

Step 1. Choose initial state Xq = féj) (for j=0, see Section II-D) and solve
(3.1) numerically to obtain f(T]), 5(2T1), f(ZBT]).
Calculate f(fo;B) from (3.19). If ﬂf(fo;B)ﬂ < € where e is a
sufficiently small positive number, call Xq = ~0(B) and go to Step 4.

\y Step 2. Compute the Jacobian matrix ﬂp(féj)) in (3.21) (see Section II-C). .\V
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\ (3+1) .. . . . M
Step 3. Compute x; via the Newton-Raphson iteration (2.42) with F(-) re-

placed by f({O,B). Go to Step 1 with j -+ j+1.

Step 4.
Case 1. (t) is periodic with smal] period T:
So]ve (3.1) for §(t) with X0 (B) as initial state fromt =0to t = T.
Calculate
* * ' .
g5 = xj[O,fo (B)} - xj(T;zc0 (B)), Jj=1,2,...,n.
Case 2. (t) is not periodic or 1s periodic with large T:
Solve (3.1) for §(t) with Xq (B) as initial state fromt = 0 to

= 2(B+2)T1. Calculate B+15B+2 35 defined in (3.27). If

max{s],ez,....en}>reo (case 1)

B+]€B+2 > eo (Case 2)

where € is a sufficiently small positive number, increase B and
repeat Steps 0-4.
Step'5. Stop.

F. Illustrative Examples
Example 1. Duffing's Equation with 2 frequency inputs:
We have used the preceding algorithm to solve (2.64) when f(t) contains only
2 input frequencies. The results corresponding to 3 different combinations of
parameter k, C1s Co» and f(t) are summarized in Table 5 for B = 9, 11, 13, and
17 respectively.
Table 5. Examples Applying the Two-Frequency Algorithm

(1) f(t)=0.5 cost |(2) f(t)=0.3 cost |(3) f(t)=(1+cos 0.115t) cost
+0.5 cos 0.81t +1.5 cos 0.115t
B o s * * * *
x, (BY.x. (B) | xq (B)| xq (B) Xq  (B) Xq (B)
0, ‘o, ) %o, 0, 0, 0,
o | 1.04898 | 0.26642 | 1.272851 0.27251 1" 1.36899 -0.34537
n 1.11403 | 0.64204 |1.24281 | 0.17135 | 1.39967 0.00736
13 | 1.12986 | 0.63906 |1.22548 | 0.30906 | 1.34835 0.16875
15 | 1.11865 | 0.63562 |1.21332 | 0.33872 | 1.35403 | 0.15168 .
16517700021 16517°0-0083 | 14€15=0-023
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In each case, an error estimate using (3.27) is calculated and the results
are also listed in Table 5. For example, in case 1, we have

16517 = 193(0)1 + 1g5,(0)1

>

1935 1(0)] + 1935 2(0)] + 934 1(0)] + 1934 (0|

0.000853 + 0.000444 + 0.000244 + 0.000554 = 0.0021 (3.28)

The rate of convergence for these 3 cases are shown in Fig. 5. The conver-
gence rate for case 3 is not as good as the cases 1 and 2 because we have delib-
erately chosen a poorer initial guess for constrast.

The steady-state waveforms corresponding to the 3 cases listed in Table 5
are shown in Figs. 6(a), 7(a), and 8(a), respectively. The corresponding frequency
spectrum calculated by the FFT algorithm [17] are shown in Figs. 6(b), 7(b), and
8(b), respective]y.? For all cases, the higher-order harmonic and with modulation
components are negligible, as is typical in many practical examples.

Example 2. Transistor Modulator Circuit:

Consider the differential-pair amplitude modulator circuit shown in Fig. 9(a),
where e](t) and ez(t) denotes the carrier and signal input, respectively. Using
the algorithm described in Appendix A, and the Ebers-Moll circuit model [3] shown
in Fig. 9(b) for the transistors, we obtain the following system of 4 implicit
differential-algebraic equations for this circuit:

dv, v A(vq=V_ )
1 1._; 1 "cc P\ =
-C T 'R—L— - 12 - Is[e -]] + aIs[e 4-]] 0
A(v,+e,) Aleq=v_.) Alvy=v_)
-Is[e 4 -1] + uIs[e 1 Tee -1] - Is[elv4-1] + aIs[e 1 ee’_
A(v,+e,-Vc) Av
- Is[e 472 E-I] + als[e 3-1] =0 (3.28)
Av,+e,-V.)
Av 4 "2 'E 1 _
di

Note that the first 3 equations in (3.28) correspond to KCL applied at nodes
Q) ;@ , and® respectively, whereas the 4th equation corresponds to KVL applied
around the loop formed by the inductor L.

+Note that unlike in the Multi-Frequency Algorithm, the generalized Fourier co-
efficients are not directly available in this algorithm.
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Setting e](t) and ez(t) to zero, we first solve (3.28) for the following dc

operating po

=0
Q

Vi

int:

s 1
2q

We then choose x_(0) A v](O)

(0)
guess X

choose B = 6.

put signal amplitude.

Q

= 0.15 x 1073, v, =0.259, v, = 0.241

Q

the results are summarized in Table 6.

Table 6.

method [3] with a step size h = 4u(10'8) sec.

=V and x2(0)=g 12(0) = 12 as our initial
and apply the two-frequencyqalgorithm for 2 different amplitudes V2
for the signal ez(t); namely V2 = 4.0 and 5.3, respectively. For V2 = 4.0, we
However, for V2 = 5.3, we choose B = 13 to account for the
additional harmonics that are likely to be significant in view of the larger in-
In both cases, our algorithm converges in 2 iterations and

Results obtained with two-frequency algorithm using a 4th order BDF

-Initial State Error Estimate
case v1(0) 12(0) B+1EB+2 for V1 l+1EB+2 for iz
(1) “V2=4.0 B=6 | ~3.927 0.2387(10'3) 0.78(10-3) 0.59(10'7)
(2) V2=5.3 B=13| -3.422 0.1138(10'3) 0.23(]0']) 0.95(10-5)

(3.29)

Using the 2 initial states in Table 6, the steady-state waveforms correspond-
ing to the modulator output voltage vd(t) and the base-to-emitter-vo]tagesVEB(t) for
transistors T] and T, are shown in Figs. 10(a),(b),(c) and 11(a),(b),(c), respec-

tively.

nificant higher-order frequency components.

were obtained with only a relatively small B = 6.
On the other hand, the corresponding waveforms for case 2 in Fig. 11

indicate the presence of many more frequency components.
larger B will be needed to obtain results of acceptable accuracy.

B = 13 is adequate for this purpose.

The normalized frequency spectrum corresponding to the output waveforms

Consequently, a much

We found

Vo(t) in case 2 as obtained by the FFT method [17] is shown in Fig. 12.
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Note that the modulator output waveform in Fig. 10(a) is typical of those
composed of a carrier and 2 side band frequencies wy *wy. Even the waveforms
VEB(t) in Figs. 10(b) and (c) are quite smooth, indicating the absence of sig-
Consequently, very accurate results



IV. Concluding Remarks

Two efficient algorithms have been presented for finding almost periodic
steady-;tate response of nonlinear circuits and systems.

The multi-frequency algorithm is very general as it allows any number of
commensurable or incommensurable input frequencies W sWpse e e slipe Although the
output normally includes only harmonic and inter-modulation frequency components
of the form Ve = My FMyus +o Mg wp, where mjk are integers, other
frequency components, such as subharmonics, may also be included in this algorithm
if their presence are suspected.

The two-frequency algorithm is applicable only if there are no more than 2
input frequencies. This restriction, however, is more than compensated by its
greatly increased computational efficiency, specially when the steady-state
response contains many frequency components. That this algorithm is significantly
better than algorithm 1 (when applied in the 2-frequency case) is best seen by
comparing the number of respective coefficients in Table 4. Note that for
B=10, Algorithm 1 must calculate 221 coefficients whereas Algorithm 2
needs to calculate only 21. .Note that 2B + 1 increases only by 2 as
we increase B by 1; consequently, the two-frequency algorithm remains comput-
ationally quite efficient even with a larger B, thereby allowing stronger
nonlinearities. This is particularly useful when the amplitude of the higher-
frequency input(w1)isnmch larger than that of Wy, as is common in communication
circuits where Wy denotes the carrier frequency and Wy denotes the signal
frequency. In this case, the number of significant harmonic components of

Wy will be relatively small so that a small B suffices.
It is also interesting to note that in the limiting case where we have only

one frequency input (P=1), then (3.5) reduces to fss(t) = go(t). In this case,
the two-frequency algorithm reduces to the usual shooting method [3,111].

Certain numerical ill-conditioning could occur in the Algorithm 1 when
the step size At is chosen to be too small. The ill-conditioning problem is due
to loss of number of significant digits and therfore depends strongly on the
choice of the computer.

Finally we remark that if the steady state-solution is not perjodic so that
the brute-force method is impractical (since we must in theory integrate for all
t > 0), or if the nonlinearity is not sufficiently weak for the Perturbation and
Volterra series methods to converge, then our algorithms are presently the only
methods available for finding steady-state solutions, let alene their good compu-
tational efficiency.

-34-



Acknowlegement

The authprs.would like to thank Mr. E. Nishiyama for programing
Example 2 in Section III.

-35-



REFERENCES

K. K. Clarke and D. T. Hess, Communication Circuits: Analysis
and Design, Addison-Wesley Publishing Company, 1971.

Transmission Systems for Communications, Bell Telephone Labora-
tories, Inc. Revised 4th Edition, 1971. T

s

L. 0. Chua and P. M. Lin, Computer-Aided Aﬁé1ysis of Electronic
Circuits: Algorithms and Computational Teé¢hniques, Prentice
Hall, 1975.

L. 0. Chua and D. N. Green, "A qualitative analysis of the be-
havior of dynamic nonlinear networks: steady state solutions of
nonautonomous networks," IEEE Trans. Circuits and Systems,

Vol. CAS-23, pp. 530-550, September 1976.

L. 0. Chua and C. Y. Ng, "Frequency domain analysis of nonlinear
systems: general theory," IEE J. Electronic Circuits and Systems,
Vol. 3, pp. 165-185, 1979.

Y. L. Kuo,"Distortion analysis of bipolar transistor circuits,"
IEEE Trans. Circuit Theory, Vol. CT-20, pp. 709-716, November 1973.

J. J. Bussgang, L. Ehrman, and J. W. Graham, "Analysis of nonlinear
systems with multiple inputs," Proc. IEEE, Vol. 62, No. 8, pp. 1088
-1119, August 1974.

T. B."M. Neil, "Improved method of analyzing non]ineaﬁ electrical
networks." Electronic Letters, Vol. 5, No. 1, pp. 13-15, January
1969.

M. Urabe, "On the existence of quasiperiodic solutions to non-
linear quasiperiodic differential equations." Nonlinear Vibration
Problems, Warsaw, pp. 85-93, 1974.

T. Mitsui, "Investigation of numerical solutions of some nonlinear
quasiperiodic differential equations." Publ. of the Research
Institute for Mathematical Sciences Kyoto Univ., Vol. 13, No. 3,
pp. 793-820, 1977.




11.

12.

13.
14,

15.

16.

17.

T. J. Aprille, Jr. and T. N. Trick, "Steady-state analysis of
nonlinear circuits with periodic input." Proc. IEEE, Vol. 60,
No. 1, pp. 108-114, January 1972.

M. S. Nakhla and F. H. Branin, Jr., "Determining the periodic
response of nonlinear systems by a gradient method." Circuit
Theory and Applications, Vol. 5, pp. 255-273, 1977.

J. K. Hale, Ordinary differential equations, J. Wiley, 1969.

C. Hayashi, Nonlinear Oscillation in Physical Systems, McGraw-
Hi1l, New York, N.Y., 1964.

Y. Ueda, Some Problems on the Theory of Nonlinear Oscillations,
Nippon Printing and Publishing Co., Ltd., Osaka, Japan, 1968.

Y. Ueda, "Steady motions exhibited by Duffing's equation -- a
picture book of regular and chaotic motions," in Conf. on New
Approaches to Nonlinear Problems in Dynamics, (Monterey, CA),

Dec. 9-14, 1979; to appear in the Engineering Foundation Confer-
ence Proc., SIAM.

E. 0. Brigham, The Fast Fourier Transformation, Prentice Hall,
Englewood Cliffs, N.J. 1974.




V. Appendix

Appendix A. Explicit Formula for Reduced System of Implicit Equations

Let N be a nonlinear network containing voltage or current-controlled
2-terminal resistors, voltage-controlled 2-terminal capacitors, current-
controlled 2-terminal inductors, as well as independent and controlled sources.
Mutual couplings are allowed so long as they are restricted to elements belonging
to the same class. Let each independent source be considered as part of a
"composite" branch as in [3]. Adoping the notations in Section 17-2 of [3], we
obtain the following tableau equation for N:

1G] [ag

n-1 KCL equations {|A 0 G f|i AJ 0
b KVL equations (|0 1 -5T v |- |E 1= 10 (A-1)
b elements consitu-{j K; K, 0]|v, g(GC,iL,v,i) 0

tive relations S § BN S -

Equation (A-1) consists of a system of (n-1) + 2b implicit equations of the form
(1.1) where "b" denotes the number of composite branches and "n" denotes the
number of nodes. Our goal in this section is to derive an equivalent system of
implicit equations containing fewer number of equations and variables for an
important subclass of networks.

In particular, we assume that N contains no loops of capacitors and indepen-
dent voltage sources, no cut sets of inductors and independent current sources
and that all controlled sources are current sources depending on either resistor
or capacitor voltages. Consequently, there always exists a normal tree T con-
taining all capacitors and no inductors [3].

If we let i, and v, denote the current and voltage vectors of all inductors
in N, and let 1] and g]'denote the current and voltage vectors of the remaining
elements, then (A-1) can be recast as follows:

10 1y ot o ] Jeen] o
0 0 To 1T lo i) (Ll |O
I R 1 570 B - P (A-2)
0 0 1o 1lmly| |g 0
MR o o] (M [

where the reduced incidence matrix A is similarly partitioned into A = [A] A2],
and where E(iz) denotes the incremental inductance matrix. Substituting

A-1



1= Yyq * 90aY) = Yo (AT #E)) + g(iuy) (A-3)

into the last equation in (A-2), we obtain the following reduced system of
equations:

Ayip * (AyA)Y, = -AYE; = Aqg(Toay) + A (A-4)
T < ys
Yo = Ao¥p + Ep = LUp)i, (A-5)
Let Vr denote the branch voltage vector associated with the normal tree T,
and let v, denote the corresponding cotree voltages. Since all capacitors are

~L
assigned in T, Ve is a subvector of v Ve Similarly, since all inductors are

assigned in the cotree, Vo is a subvector of Vi Let the reduced incidence
matrix A be partitioned accordingly into AT and AL’ so that KVL assumes the form

T
v E

AT vy + Lol (A-6)
il 1AL E,

Since the columns of AT correspond to tree branches, BT is non-singular [3].
Hence we can solve for the node-to-datum voltage vector Vi from (A-6) to obtain

[A] [v Erl (A-7)
= AT[AT] [vy - EJ+E, (A-8)

Substituting (A-7) and (A-8) into (A-4) and (A-5), and denoting the inductor
current vector i by iL’ we obtain

..] ~
Aol * “‘1” AIIATL (vp = Eq) + ANE; + Ag(icayy) - A= 0 (A-9)

AlAT1 " (ur - Ep) + B - L(iD = O (A-10)

where

vy 8 gy

and vy is given by (A—8),

Equations (A-9)-(A-10) constitute a reduced system of implicit equations- in

terms of the state variables x A [gCiL]T and the non-state variables contained
within y..

A-2



Equation (A-9) can be interpreted as the nodal equation of N with all
inductor currents iL. considered as independent sources, and with all node-
to-datum voltages exﬂressed in terms of the normal tree voltage vector Vr.
Similarly, (A-10) can be interpreted as the fundamental loop equations (relative
to the normal tree T) formed by the inductor links. These interpretations allow
us to write down the reduced system of implicit equations of simple nonlinear
networks -- such as that considered in section III -- by inspection. If N
contains loops of capacitors and independent voltage sources, or cut sets of
inductors and independent current sources, the above procedure can be easily
generalized by first expressing the cotree capacitor voltages in terms of tree
capacitor voltages, and tree inductor currents in terms of cotree inductor
currents [3].

APPENDIX B
The matrix LTE in Theorem 3 is non singular if, and only if,

2nw
At # T;;;;;T

where T is a Zx(2N+1) matrix, where Z > 2N+1.
Proof. ng is clearly symmetric and positive semi-definite and hence its
eigenvalues A,, A,,...,A are real and non-negative. Hence det (QTE)

= Al% AZ,...An # 0 ® all eigenvalues are positive < QTE is positive definite
x(2') x>0 for all x # 0

Hence, we have
det (£TE) # 0 e columns of [ are linearly independent. (8-2)

The matrix T in (2.17) can be recast as follows:

1 1 1 ... 1 1 0 0 0
1 o381 I8 oI 8 ||l [.5-30.5]...0 0
r=|1 eI 3 328 9%y |10 o5 jo.5| .. .0 0

e . . . . . . -
. . . L] - . .

L eIZ01 gmi18y | JT8N oiZ8y g 0 0 [0'5 ’30'5}
—
N

0 0 0.5 jo0.5
L B ]
\ ___J )
r 0 (8-3)

where 6y 4 ViAt. Since D is clearly non-singular,
Columns of T are 1linearly independent
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Columns of I'' are linearly independent
o eI 5 MO ang 38 4 1 fopany i £k
3 mx # *2nw and f # *2nm, for any integer n
® 8; 6 #x2nm  for any integer n (B-4)
It follows from (B.2) and (B.4) that

$
@
"

T - 2nm
det (T'T) #0 = vy ot £ v At # £2nm @ At # 8]

APPENDIX C

The matrix @(B) in (3.9) is non singular if, and only if, there exists an in-
teger _.N such that

w L
2 4 2 =1,2,...,28 (c-1)
Wy _J 1

Proof. We can recast mAS in (3.9) as follows:

o T . 1 1 0 0 ...0 0
1 &30 30 3B BO g [0.5-50.5] .. .0 o
ag) = |! 20 -d26 o L2Bo 3280 | | o 105 jo.5|...0 O
o o e oalle o o 0.5 -j0.5
1 eI28¢ e~32Bo L J2BT -32B7¢
0 0 0 0.5 3j0.5
AL T T Va
) mgv d\ Annmv

where ewew.:. Since D is non-singular,
Q(B) is non-singular

®  Columns of Q'(B) are linearly independent

o oIk _ o0 40 for i,k = 0,21, £2,...28, i £ k

o 1.-gil10 44 forl u.fm,....mw o
* Ly # mrma for any integer L,

Substituting ¢ a w,Tq = masm\ed into (C-3), we obtain:
Q(B) is non-singular

= Llugfey) £ Ly

A-4



APPENDIX D . .
If wy and w, are rational numbers, we can make Q(B) non-singular by choosing

T
B <-2-7r-—]- (D'])

Proof. Let w, 4 my/ny and wy & my/n, be irreducible fractions. Then T
= Zw(n]/m]), Ty = 2n(n2/m2), and T = 2n(n/m), where n = L.C.M. {ny,n3} and
m G.C.D.{m1,m2}. Hence m = mm]', m, = mmz', ny = kn1', n, = knz', and
n= k"1'"2' for some integer k.
Now, since G.C.D.{my' ,my'} =1, 6.C.D. {m',n'} =1, and G6.C.D. {my o0yt }=1,
we have G.C.D.{mz'n1',mf,n2? = 1. It follows that if
max{L;} = 2B < m]'nz' (D-2)

'-1(:—?) 'Ll = Ll(m Z)"L(

But (D.2) is equ1va1ent to
. . my'm) fny' ng 2 kny' g
28Ty <my'ny'Ty = my'ny’ (ng/my) (m/n)T = )\ T WT T (D-4)

then

) # integer (D=3)

Hence, if ZBTl < T, then (C.1) holds. L]



Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

FIGURE CAPTIONS

Steady-state waveform for Duffing's equation X+ 0.1x + 2x + x3

= 0.4 cost + 0.4 cos 0.35t + 0.4 cos 0.155¢t.

(a) Solid waveform represents approximate solution obtained with
multi-frequency algorithm. Solid dots denote solution obtained by
numerical solution of (2.64) starting from X" = (0.69667,-0.18304)
from Case 1.

(b) Discrete frequency spectrum obtained from (2.27).

Steady-state waveform for Duffing's equation X +0.1x + 2x + x3

= 0.4 cos t + + 0.4 cos 0.85t + 0.4 cos 0.17t.

(a) Solid waveform represents approximate solution obtained with
multi-frequency algorithm. Solid dots denote solution obtained by
numerical solution of (2.64) starting from 56* = (0.79298,-0.13834)
from Case 2.

(b) Discrete frequency spectrum obtained from (2.27).

The rate of convergence for Case 1 (shown dotted) and Case 2 (shown
solid) in the Examples in Table 2. Horizontal axis indicates the
iteration number j. Vertical axis indicates the error e(j ) computed
at the jth iteration using (2.67).

Geometrical interpretation of (3.4) for B = 1,2,...,10. Each solid
dot denotes one frequency component ™ 2 + Moy Lo+

The rate of convergence for bases 1, 2, and 3 in the Examples in

Table 3. Horizontal axis indicates the iteration number j. Ver-

tical axis indicates the error estimated by

() = /=2, (). 2, (),

e = SR (x,9)8) + F7 (x,58)

(a) Steady-state waveform for Duffing's equation X + 0.06x + x + x3
= 0.5cos t+0.5cos 0.81¢t (Case 1)

(b) Normalized frequency spectrum of (a).

(a) Steady-state waveform for Duffing's equation X + 0.05x + x + X3

=0.3cost+1.5¢c0s0.115 ¢ (Case 2)



Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

(b) Normalized frequency spectrum of (a).

(a) Steady-state waveform for Duffing's equation X + 0.1Xx + x + X

= (1 +cos 0.115 t) cos t (Case 3)
(b) Normalized frequency spectrum of (a).

(a) Differentia1-pair amplitude modulator circuit. V.. = 10V,
= 0.01 cos 0. 115(105)t and e2(t) =V, cos 0. 115(106)t.

(b) Ebers-Mo]thrans1stor circuit model with the 2 diodes described
by Iy = ILe % - 11, 1, =107, & = 40, a = 0.99.

(a) Steady-state output voltage waveform Yo (t) for Case 1: carr1er
signal e](t) 0.1 cos 106 t, input signal ez(t) = 4,0 cos 0. 115(10 't
(b) Corresponding base-to-emitter voltage waveform VEB(t) for

transistor T],
(c) Corresponding base-to-emitter voltage waveform vEB(t) for

transistor T3.

(a) Steady-state output voltage waveform V (t) for Case 2: carrier
signal e](t) 0.1 cos 108 t, input signal ez(t) = 5.3 cos 0. 115(106)t.
(b) Corresponding base-to-emitter voltage waveform vEB(t) for
transistor T].

(c) Corresponding base-to-emitter voltage waveform vEB(t) for
transistor T3.

Normalized frequency spectrum for the modulator output voltage wave-
form in Fig. 11(a) (Case 2)
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e SIMULATION
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Normalized Frequency Spectrum of x(t)
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Normalized Frequency Spectrum of x(t)
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