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ABSTRACT

Two efficient algorithms are presented for obtaining steady-state

solutions of nonlinear circuits and systems driven by two or more

distinct frequency input signals. These algorithms are particularly

useful in cases where the steady-state response is either not periodic,

or is periodic but its period is too large for existing methods.

The first algorithm is applicable to any circuit or system driven

by any number P _> 2 of input frequencies. The second algorithm is

restricted only to 2 input frequencies and is therefore significantly

more efficient than the first algorithm. Both algorithms are

formulated for systems described by an implicit system of nonlinear

algebraic-differential equations, thereby obviating the need to write

state equations.

Numerous examples have been solved successfully using these two

algorithms. A selection of some of these examples is given for

illustrative purposes.
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I. Introduction

A fundamental problem in the design of communication circuits, such as

modulators and mixers, is to calculate the steady-state response when the circuit

is driven by inputs having "P" distinct frequency components {u^ ,w2,... »u>p}»
where ? >2 [1-2]. For complete generality, we assume the circuit or system is

described by an implicit system of differential-algebraic equations [3] of the form

•

fi(x,x,y;w,t,u)2t,...ayt) =0 ,j=l,2,...,m+n (1.1)

where x is an n-vector denoting the state variables, y is an m-vector denoting the

remaining non-state variables and f.(•) contains p periodic input signals of fre-

quencies w, ,u)2,... ,u>p, respectively. In Appendix A, f.(*) is given by an explicit
formula which holds for most circuits of practical interest.

Standing Assumption. Given any initial state xQ, (1.1) has a unique asymptotically
almost-periodic solution [4]; namely,

x(t) = xtr(t) + xss(t) (1.2)

where

xtr(t) +0 as t+ <» (1.3)

is called the transient component and

?ss(t) =?0 +J, [?2k-l cos V +?2k sin V) (1-4)
is called the steady state response , where the summation is taken over alj_

possible frequencies [5]

vk = mlka)l+m2kai2+-"+mPka)P (1.5)

generated by the frequency base {&•**&>*• ••*®o •
Note that (1.4) is not an ordinary Fourier series because its frequency spectrum

{v,,v2,...,vM) is not harmonically related. In fact, x$s(t) is not even periodic if
the frequency base {w-, ,a)2»...)wp} is incommensurable [5]. In the mathematical
literature, (1-4) is called an almost periodic function.

Our objective in this paper is to present 2 efficient algorithms for calculating

the steady-state response x (t).
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Current methods for calculating x (t) can be classified into 4 categories:

1. Brute force method. This approach solves (1.1) by numerical integration

(starting from an arbitrarily chosen initial state xQ) until the steady state is
reached [3].

Although this method is quite general, it is prohibitively expensive for

lightly-damped circuits where it takes a very long time for the transient component

to die out.

Moreover, if the frequency base is incommensurable, x (t) is not periodic and

it is difficult to determine when the steady state has been reached.

2. Perturbation method. This approach solves (1.1) by iteration with the initial

solution often chosen to be the solution of a linearized equation. It includes the

Vol terra series method [5-7] and the Picard iteration method [8].

Unfortunately, this method works only for almost linear circuits where the

nonlinearity is often extremely weak (e.g., low distortion amplifiers). For circuits

which rely on nonlinearity in an essential way (e.g., modulators and mixers) this

method becomes highly inaccurate let alone the fact that the iteration often does

not converge.

3. Harmonic balance method. This approach solves (1.1) by approximating the

solution in a finite trigonometric series and then balancing all terms having iden

tical frequency components, often via Galerkin's procedure [9-10].

Although very interesting theoretically, this method is often extremely time-

consuming because the various frequency components are estimated by multi-dimensional

Fourier analysis.

4. Shooting method. This approach solves (1.1) by finding first an initial state

xQ(often viaNewton-Raphon method) such that the solution starting from xQ is
periodic, i.e., no transient component [11-12].

There are 2 serious problems associated with this method.

(a) It can not be used when the solution is not periodic.

(b) Even if the solution is periodic, the period T is often many orders of magni

tude larger than the period of the individual frequency components vk> thereby
making the numerical integration over this long period T prohibitively expensive.

For example, consider

x (t) = A, cos oi,t +A2 cos cu2t (1.6)

The following table lists several combinations of od, and a>2 (of periods T-j and T2
respectively) which makes x (t) a periodic function. Also listed is the period T

of x (t) and the ratio p, = T/T, and p2 = T/T2.
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Table 1. Example of to, and w2 which make x (t) periodic of frequency o>.

oj^Hz) o)2(Hz) V^5^ V ^sec)Z w2 ' T= -f(sec)
0) *•*, p2-*fL J2

1 0.23 6.2832 27.318 6.2832(102) 102 0.23(102)
1 0.233 6.2832 26.967 6.2832(103) 10J 0.233(103)
1 0.2333 6.2832 26.932 6.2832(104) 104 0.2333(104)
1 0.2333...3

n digits

6.2832 26.927 6.2832(10n) 10n 0.233...3(10")
n digits

103 0.233(103) 6.2832(10"3) 0.26967(10"3) 6.2832 103 0.233(10J)

104 0.2333(104) 6.2832(10"4) 0.26932(10"4) 6.2832 104 0.2333(104)
10b 0.23333(T05) 6.2832(10"5) 0.26932(10"5) 6.2832 105 0.23333(105)
10n 0.23333...3(10n) 6.2832(10'") 0.26927(10"") 6.2832 10n 0.233...3(10")

n digitsn digits

Note that when w-, = 1, T -»- ~ as n -»• «, and when a), = 10 , T, •*• 0 but T = 6.2832

as n •*• ~. Hence, from a numerical integration point of view, it will take an

infinite amount of integration steps in order to obtain the periodic solution x$s(t)
when n -»- oo. Since p, •*• ~ and p2 -»• <» as n -»• » in both cases, the larger the values
of p-. and p2, the more computer time will be required. Hence, p-j and p2 give a
measure of numerical efficiency of the shooting method. This observation motivates

the following:

Theorem 1

The steady state response x (t) in (1.4) is periodic of frequency u> if each

frequency v. can be expressed as a rational number

k = 1,2,...,M (1.6)
m.

Moreover, if m. and n. are relatively prime integers for all k = 1,2,...,M,

then the period T 2ir/w of x At) is given explicitly by

T = 27r©m

where

n= L.C.M. {n, ,n2»... ,n^}
m= G.C.D. {m-j ,m«,... ,niw}

L.C.M. and G.C.D. denote Least Common Multiple and Greatest Common Divisor,
respectively.
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and

Mr^i (1.10)

where T. = 2ir/v..

Conversely, if there are at least 2 frequencies v. and v. where v. is rational

but vk is irrational, then x$s(t) is not periodic.
Proof. Rewriting (1.4) as

xss(t) = X^^t.Vgt,...^)

to emphasize the Mperiodic components of frequency v,,v2,...,vM, we obtain

xss(t+T) =xss(v1(t+T),v2(t+T),...,vM(t+T))

(t+27r(m-)) ,v2(t+27r(^)),... ,vM(t+2^) ))=5ss^v

=*ss(v

=*sS(v

=*ss(v

nw27n -nx/2ir^ -nA/2TTi<^l<ff><fW*Vl><f> V*>*<§»)
m m,

l,n^ 2,n< \n<

(t+N1T1),v2(t+N2T2),...9vM(t+NMTM))

where

m, m,

h *tMB = (-^)(ir-). k = !»2 M
= k k

1(H) = (JL)(J1
i.vm' vmMn.

is an integer in view of (1.8) and (1.9). It follows from (1.13) and (1.4) that

5ss(t+T) =^V'V—"V1 =*ss(t)

(1.11)

(1.12)

(1.13)

(1.14)

Hence x U) is periodic of period T. Moreover, since m. and n^ are relatively
prime, T is the smallest period and hence, T = 2ir/oj.

Finally, if v. is rational but v. is irrational, we can represent v^ by (1.6)
with n. -»•<». Consequently, n= L.C.M.Cn, ,...n.,...,n. ,...n..} = «> and xss(t) has
an infinite period; i.e., it is not periodic. •

It follows from Theorem 1 that if x (t) is periodic, its frequency is given by

m G.C.D.{m.|,m2,...,m|Y|}
n L.C.M.{n,,nOJ...,nM}.r..2: 'MJ

(1.15)

-4-



and its period T is bounded by:

max{T1,T2f...Tp} <T<2ir(n1n2...nM) (1.16)

It also follows from (1.8)-(1.10) that since m is typically a small integer

(m=l if all m. are relatively prime), the period T can be many orders of magnitude

larger than that of Tk. Typically, T increases by an order of magnitude if we
increase the number of significant figures in representing the component frequencies

v. , k = 1,2,...,p by one.

Observe that in solving (1.1) by numerical integration, the step size h, is

determined by the period of the highest frequency component [3], namely,

h<£minn-jjg,...,^} (1.17)

It follows from (1.16) and (1.17) that both the brute force method and the shooting

method are usually impractical when there are multiple input frequencies.

To overcome the problems associated with existing methods, we will present two

new efficient algorithms in this paper. The basic idea in both algorithms is to
it

find an initial state x(0) A xQ so that the transient component

xtr(t) =0for all t>0 (1.18)

regardless of whether the steady state response xss(t) is periodic or not. In both
algorithms, x* is found by a Newton-Raphson mehtod. However, unlike the shooting

method [11], (1.3) is solved numerically only over a small fraction of the period T

(in the periodic case) per iteration. This is why our algorithms are computationally

quite efficient.

The algorithm to be presented in Section II is completely general and is appli

cable regardless of the number "p" of input frequencies, provided p < «>.

The algorithm to be presented in Section III is restricted only to the 2-input

frequency case (p=2). We will see that this restriction leads to a significantly

more efficient algorithm than that of Section II.

II. Almost-Periodic Solution Algorithm 1: Multipie-Input Frequencies

Since our algorithm does not depend on whether x (t) is periodic or not, let

us assume that the exact steady-state response

M

issW =!o +J/52K-1 cos V +?2k sin vkt}
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is not periodic for the sake of generality. Consequently, we will call the co

efficients a. as generalized Fourier coefficients.

Even though the number M of frequency components in (2.1) could be quite large

(M may equal »!) in most practical cases,

Ak =/°?2k-lD2 +Da2kfl2 *° for a11 k>N (2*2)
where 0*0 denotes Euclidean norm.

Hence, we will seek to find an approximate solution

N

h{t) =2o +^ {?2k-l cos V +?2k sin vkt} (2.3)

whose N < M.

A. Calculating a. when transient component is zero

In section II-B, we will present an algorithm for finding an initial state

x! such that the transient solution component xtr(t) in (1.3) is zero for t>_ 0.
In this subsection, let us assume xQ has been found so that the solution of (1.1)
starting from xQ is x(t) = x$s(t) for t>0.

To minimize computation time, we will often choose a relatively small N so
that (2.2) is not necessarily satisfied. In this case, the following theorem is

important:

Theorem 2. Properties of Generalized Fourier Coefficients

Let N < M be any_ positive integer,

(a) For any_ (not necessarily optimum) N-frequency component approximation

xN(t) Ab0 +J^b^.! cos vkt +b2k sin vkt} (2.4)
to x (t) in (2.1), the mean-square error

„.ss

T

NCXjjttJ-x^t)]2 Aliml J »xss(t)-xN(t)02dt
+

is given explicitly by:

+We define the mean of x(t) by

M{x(t)} Alim yf x(t)dt
~ T-h» ' j0
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"kssW-i^t)]2 •"C&s^J2 -»2o'2 -\ I 'Sk'2 +D2o-5o"2 +\ I 'Sk'Sk'2 (2-5)
K"" 1 In- I

(b) Among all possible coefficients (bQ,b1,...,t>2N> in (2.4), the coefficients
which result in a minimum mean-square error are precisely the first 2N+1 generalized

Fourier coefficients; namely

bk =ak, k=0,1,2,...,2N (2.6)

(c) The minimum mean-square-error is given by:

M[xss(t)-xN(t)]2 =1 I !ia.82 (2.7)
~ss ~N ' k=N+l ~K

Proof. It suffices to prove the scalar case.

? N ?
(a) M[xss(t)-xN(t)r = M<xss(t) - bQ - I [b2k-1cos V+b2ksin vkt]r

^=ljyj
-M[xss(t)]2 -2bQM[xss(t)] -2M{xss(t) ^[b2k_lCos vkt+b2ksin vRt]}

N

+bg +M{ I [b2k-1 cos vkt+b2k sin vfct]}2 (2.8)

where we have made use of the fact that

M{sin vt} = 0 for all v (2.9)

M{cos vt} =0 for all v t 0 (2.10)

The last term in (2.8) can be further reduced:

N N 2N

"y^k-i"5 v+»2ksin v^2 -\ j/^k-i+^k) • \ ki} b2 (2-u)
Substituting (2.1) for xss(t) in the second and third terms in (2.8), we obtain

N

2bQM[xss(t)] + 2M{xss(t) I [b^cos vkt+b2ks1n vfct]}
N k=1 2N

=2a0b0 +kI/b2k-la2k-l+b2ka2k) =2a0b0 +kl}\\ <2-12>
Substituting (2.11) and (2.12) into (2.8), we obtain:

2NM[xss(t)-xN(t)]2 =M[xss(t)]2 - 2aob0 -^a^ +b2 ♦ \ J b2
=M[xss(t)]2 -a2 -\| a2 +(a0-b0)2 ♦ \ | Uk-bfc)

which is just the scalar version of (2.5).

-7-
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(b) Since bfc occurs only in the last 2terms of (2.13), the minimum of (2.13)
occurs when (2.6) holds. M
(O M[xss(t)]2 =a2 +Î a2
Substituting (2.6) and (2.14) into (2.13), we obtain:

M[x (t)-xN(t)]2 =l I a2SS N t k=N+1 K

which is just the scalar version of (2.7). •

(2.14)

(2.15)

Theorem 2 shows that regardless of the integer N, the generalized Fourier co

efficients {aQ,a,,...,a2N> in (2.3) can be obtained by minimizing the means-square-
error between x (t) and x«(t). Hence, increasing the number of frequency compo-

nents from N to N+l does not affect the previously calculated coefficients.

Since by assumption, x.Jt) =Q for t> 0, we can calculate x$s(t) by solving
(1.2) numerically. Assuming a uniform step size At, let us calculate (Z+1) time

steps to obtain xcc(At), xcc(2At),...,xc.(kAt),...,x_.((Z+l)At), where Z is some
integer to be chosen later.

Since Theorem 2 implies that the jth components a. , k = 0,1,...,2N, of each

generalized Fourier coefficient ak can be determined independently of the coef
ficients of the remaining components of the vector xN(t), it suffices for us to
derive a formula for calculating these coefficients in the scalar case. To simplify

our notation, define the vectors

Wz> A

xss(0)

xss(at)

xss(24t) ,xN(Z) 4

xN(0) a0

xN(At) a1
xN(2At)

•

•

,a a a2

xN(ZAt)
: _a2N_

, and a(Z) a

xss(ZAt)

and the Z x (2N+1) matrix

r a

1 1 0 1 0

1 COS v,At sin v,At cos vNAt sin vNAt
1

1

COS

COS

2v^t

Zv-jAt

sin

sin

2v At

Zv,At

• • •

• • •

• • •

COS

COS

2vMAt
. N

ZvNAt

sin

sin

2vNAt

ZvNAt
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Theorem 3

The (2N+1) generalized Fourier coefficients (a0,a.j,
(scalar version of (2.3)) are given by

.,ak, .,a2N> of xN(t)

a = a(Z) + e(Z) (2.18)

where

a(Z) A(fr)"1 rT xss(z) (2.19)

and e(Z) is an error vector satisfying

e(Z) -*- 0 as Z •+ «, (2.20)

The (2N+1) x (2N+1) matrix (rTr) in (2.19) is non-singular for all positive
frequencies v ,v2,...,vN and for any step size At if, and only if

At f
2mr

for all i, k = 1,2,...,N, and for any integer n.

Proof.

,_ 1 fM[x_Jt)-xN(t)r = limf [x,Jt)-xM(t)r dt
ss N

where

e(Z) ^ 0 denotes the error resulting from taking only a finite number Z of time
steps.

Now substituting t = kAt in (2.3) and using the notations in (2.16) and (2.17),

we can write

1 9 T
I [xec(kAt)-xM(kAt)]Z = [x (Z)-xM(Z)]T[xee(Z)-xM(Z)]

k=0
ss VN

=\Z TITO [lQ [xss(kAt)-xN(kAt)]2 At
=Wn{ j0 [xss(kAt)-xN(kAt)]2J +e(Z)

~ssv ' ~N "ssvw ~N

•[xss(z)-ra(z)]'[xss(z)-ra(z)]

=4(z^ss(z) - iT(z^\s(z) - sL^au)
+aT(Z)rTra(Z)

-9-
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After adding and subtracting a^GG^a =s'Va to (2.23), where

GArTr and aArTxss(Z) (2.24)
we obtain

}b^om^t =xl,<«.ss(z, -rw--. •.Via,. !W)

=(atfJ-G"1^ {atfj-f1*) +xJs(Z)xss(Z) - aV1* (2.25)
Since only the first term of (2.25) depends on a(Z), and since G as defined

in (2.24) is clearly positive semi-definite, it follows from (2.22) and (2.25)

that the mean-square error M[x (t)-x»(t)] attains its minimum when

a(Z) =<f\ » (r^rVx^tt) (2.26)
It follows from Theorem 2 that as Z -»• «, a(Z) -»- a and hence e(Z) •* 0 in (2.18).

Y ~ ~

The proof showing (r r)is nonsingular if and only if (2.21) holds involves

some cumbersome determinant expansions. The details are given in Appendix B. •

Theorem 3 gives us an explicit formula for calculating (approximately) the

(2N+1) generalized Fourier coefficients {aQ,a,,...,a2N> for any_ N; namely,

az (rTr)-irT xss(z) (2.27)

This approximate formula becomes exact as the number Z of integration time

steps tends to ».

Since (2.21) applies only at a countable set of isolated points, it is easy

to choose a suitable At satisfying (2.21). Once At is chosen, r can be calculated

from (2.17). The vector xgs(Z) in (2.17) represents (2N+1) "samples" taken from
the exact steady-state solution x.Jt) from (2.1) at a regular time interval equal

to At.

In practice, x^e(Z) is of course calculated numerically by solving (1.1)
-ss ^ j.

starting from any initial state xQ which results in a,zero transient component.
Finally, note that (2.27) gives the (2N+1) generalized Fourier coefficients

of only one component of the state vector x (t). Hence, (2.27) must be applied

This implicit system of differential-algebraic equations can be solved using the
Backward Differentiation Formula (BDF) as described in [3].
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n times for the V state variables in x. Since r remains unchanged, each calcu

lation involves only changing x (Z) in (2.27) corresponding to each component of

-ss *

B. Finding the initial state xQ
If we let xN (Tb) denote the ith component of xN(t) from (2.3) at any time

t=Tb ,then n
N

*nSV =ao. +.L{a2k-i.C0SvkTb +a2k. sin vkV (2-28)
I I Ix™-II I

when a. denotes the ith component of a.. Substituting (2.27) for a. in (2.28),

we obtain

xN.(Tb)-* YT(Th)a1 =/(T^Ctr^J-V^^z)] -x^(z) [r^r)"1^)],
i = l,2,...,n (2.29)

where x (Z) denotes the x (Z) (as defined in (2.16)) associated with the ith

component1of x (t), and

Y(Tb) A [1 cos \>}\ sin v^, ..., cos v^ sin v^] (2.30)

Since r(rT) y(TJ in (2.29) remains unchanged for all i - l,2,...,n, we can
- - - H

combine all n components of xM(t) from (2.29) into a single matrix equation:
~n

XN (V

xsSl(0' "ss/^ xss/2it>

xss2(°) xss2(At> xss2<2At>

x (0) xs (At) x (2At)
n n n

_j

*N(Tb;*0 '

where the (Z+l)-vector

X(At,Z; xQ )

a(Tb;At,Z,N) AjlrV1}!^)

K* (ZAt)
ss

xee (ZAt)
ss

xss <ZAt>
n

"aQ(Tb;At,Z,N)

ai(Tb;At,Z,N)

a2(Tb;At,Z,N)

az(Tb;At,Z,N)

a(Tb;At,Z,N) (2>31)

(2.32)

depends only on T.,At,Z, and N (since r in (2.17) depends on At,Z,and N) but not

on Jo •
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We can recast (2.31) into an exact equation by introducing a slack variable
eN(Tb;At,Z); namely,

xm(V>xo) "X(At,Z;x*) a(Tb;At,Z,N) =-eN(T ;At,Z)CNvV*0' (2.33)

Observe that eN(Tb;At,Z) -*• 0 if the following 3 conditions are satisfied:
1) Z = oo.

*

2) x_e(t) is calculated by solving (1.1) numerically with xn as the initial

state, where xQ is any initial state which satisfies (1.18).
3) x (t) is calculated with infinite precision and zero local truncation

error.

None of these conditions can be exactly met in practice. Moreover, even if

eM(T,;At,Z) = 0, we still can not solve (2.33) for xn since we do not as yet have

the information (i.e., the coefficients aQ,a,,a2,...a2N) needed in (2.3) to cal
culate xN(Tb;xQ ).

Instead of (2.33), however, suppose we define the following system of "n"

related equations as a function of the "n" components xQ ,xQ ,...,xQ
initial vector xQ A[xQ xQ ... xQ ] =[x,(0) x2(0) ... x(0)] :n

of the

X^VXq)

x2(Tb;xQ)

*l\ ;x0}

xQ x^At-.Xg) x1(2At;x0)...x1(ZAt;x0)

xQ x2(At;xQ) x2(2At;x0)...x2(ZAt;x0)
» •

xQ xn(A.t;xQ) xn(2Ajt;x0)...xn(ZAt;xQ)

X(At,Z;xQ)

F(xQ;Tb,At,Z,N)

a0(Tb;At,Z,N)"

ai(Tb;At,Z,N)

a2(Th;At,Z,N)

az(TbL;At,Z,N)

a(Tb;At,Z,N)

where x.(t;xn) denotes the ith component of the complete solution x(t) = xt (t)

+ x (t) of (1.1) starting from the initial state xQ, for t = 0, At,2At,...,ZAt,
and Tb. Observe that unlike (2.31), both x(T;x0) and X(At,Z;xQ) can be calculated
by solving (1.1) numerically.

it

Now at xQ = xQ ,x. (t) =0 for t >^ 0 (by definition) and hence we can write

?(V?0 }=*sslV*0 }=?N(V*0 }+*M-N(Tb;*0 }

-12-
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wnere Jss^V-O*) =WV and -N^V-0 =̂~N^V as defined in t2*1) and ^2*3^
respectively; and where x„ N(Tb;xQ )denotes the remaining (M-N) terms of xss(T.)
which have been excluded from xN(Tb). Consequently, at xQ = xQ ,(2.34) can be
written as follows:

xN(Tb;x0*) -X(At,Z;xQ*)a(Tb;At,Z,N) =-x^_N(Tb;xQ*) (2.36)

Comparing (2.33) and (2.36), we find

eN(Tb;At,Z) = xM.N(Tb;xQ ) (2.37)

Equation (2.37) is remarkable because it says that eN(Tb;At,Z) -*- 0 when
N •+ M. In other words, if the exact steady state response x (t) in (2.1) has

"* w w

only M < <» frequency components, and if we choose N = M in (2.3), then

eN(Tb;At,Z) =0 and (2.31) becomes exact for any Z.
Indeed, when M = N and Z = 2M + 1, r becomes a square matrix and the gen

eralized Fourier coefficients can be calculated exactly from (2.27):

a=r"^ss(Z) (2'38)
Similarly, (2.32) in this case (Z=2M+1) reduces to

a(Tb;At,Z) =rTY(Tb) (2.39)

Of course in practice, we will normally choose N « M in order to save compu

tation time. This choice is often necessary anyway because M = ~ for most prac

tical circuits. Fortunately, the amplitudes of the higher-order terms [5] in

many practical circuits satisfy (2.2) so that the error vector e(T, ;At,Z) remains

relatively small even though N « M.

Let us summarize the preceding observations as follow:

Remarks:

1. The solution xQ of the nonlinear equation

fCxQ;Tb,At,Z,N) =0 (2.40)

*
as defined in (2.34) for fixed At and Z represents, a good approximation to x

provided the number of frequency components N and/or the number of time-step

samples Z are chosen to be sufficiently large. In particular,
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x0 x0 as N •+• <*> and/or Z (2.41)

2. Since (2.40) is not given in closed analytical form, it must be caluclated
numerically for each xQ, At, and Z.
3. Equation (2.40) can be solved for xQ (for fixed At and Z) by the Newton-Raphson
method [3]:

*0̂ "-^.CJ^))]-1 F(xp);Tb,At,Z,N)
CO •^FvC0 /J ~XC0

3F(xQ;Tb,At,Z,N)

3*0
where Jp(xiJ') A

CO " ~0

- Jj)denotes the Jacobian matrix of F(xQ;Tb,At,Z,N) at xQ = x«w
ated by the method given in Section II-C.

it if

4. Once the initial state xQ is found, we solve (1.1) numerically with xQ as
the initial state to obtain x (At), x (2At),..., x (ZAt). Substituting the ith

component, i = l,2,...,n, of these data into (2.27), we obtain the first (2N+1)

generalized Fourier coeeficients aQ ,a, ,...,a«N of the ith component x (t) of
the steady state response x (t). 1The1steady-slate response xN(t) at any1time
t = T. can now be obtained by calculating (2.3) at t = T..

J (A) J
C. Evaluating the Jacobian matrix Jp(xXJ/)

Since the most time-consuming part in solving for xQ via the Newton-Raphson
method is the numerical calculation of the Jacobian matrix Jp(xiJ^), it is
essential to develop efficient computational methods. Taking the Jacobian of

F(xQ;At,Z,N) in (2.34), we obtain

(2.42)

(2.43)

This can be evalu-

J (xVJM
^F^O ;

(jh .^Vgp)
3*0 y -y(J)

*0 ~0

I a.(Th;At,Z)
k=0 K Q

3x(kAt;xQ)

y -y(J'
CO ~0

(2.44)

Hence, we need to calculate

8x(t;xQ)

**0
/.x at t = 0,At,2At,... ,ZAt, and Tb

?0=*0

(2.45)

These (Z+2) n x n matrices can be calculated by the numerical differentiation

method described in Section 17-5-2 of [3]. If the circuit associated with (1.1)

ace this step
state'.

'If xss(t) is periodic and its period T is not too large, we can replace
by numerically solving (1.1) from t=0 to t=T with xQ as the initial

-14-



is given, the most efficient method for calculating (2.45) is the sensitivity

network approach given in Section 17-5-3 of [3].

However, if (1.1) is available only analytically1", the sensitivity network
approach is not applicable. In this case, the following method is much more

efficient and accurate than that of numerical differentiation:

In vector form, (1.1) becomes

f(x,x,y;o)1t,ajot,...,aj t) = 0

ITaylor ExDan

where fx^(t),y^(t
Applying Taylor Expansion about (x^J'(t),y/J^(t)) at the jth stage of the iteration,

re (x
= yU)

)) denotes the solution of (2.41) with initial state
xQ = xr", we obtain

;U) ti)(+\ M)f(xw;(t),xVJ'(t),yu'(t),w1t,w2t,...,a)pt) +

+ 0(Bn(t)ll2,tlTi(t)II2,ilY(t)il2) =0

where

~n(t)~

3f 3f 3f~

W 3x 3y
n(t)

v(t)

(2.46)

(2.47)

r|(t) Ax(t) -x(j)(t), Y(t) Ay(t) -y(j)(t) (2.48)

The first term in (2.47) is identically zero because (x^'(t),y^'(t)) is asolu
tion of (2.46). Neglecting the higher-order terms, (2.47) can be recast as

follow:

n(t)

y(t)
= -

3f 3f

3x 3y

-1

3f

3X
n(t) a

(j),(j)(;U'(t),/J'(t))

A(j)(t)

B(j)(t)
n(t) (2.49)

The first component equation of (2.49) is a linear time-varying differential

equation

4*
Our algorithms in this paper are valid for ariy_ equation of the form (1.1), which
need not be associated with a circuit.
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n(t) =A(j)(t) n(t)

where A^(t) is an n x rr-matr-ix";funotl-ift».i5f time." Wa^ilXlhencefOr-th^-refer/to
(2.50) as the variational equation associated with (2.46).

The solution of (2.50) corresponding to any initial state n(Q) is given by

[13]

n(t) =*(j)(t) n(0)
where <rJ'(t) is the fundamental matrix solution of (2.50). If we choose

then

n(o) =[o o... o nk(o) oo... o]T

ni(t) =$ik)(t) nk(0)' j=1»2—»n
where $..(t) denotes the ikth element of $(t). It follows from (2.52) that

11\ "*

H^T^^T *ik(t)
Hence we have proved that

3x(t;xQ)

**0
=$(j)(t)

y -y^)
*0~*0

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

,(j)It follows from (2.54) that Jp(x^) in (2.44) can be calculated accurately
in 3 steps:

1) Form the variational equation (2.50) at each iteration.

2) Calculate the fundamental matrix solution <rJut) of (2.50).
3) Calculate (2.44).

D. Initialization Guidelines
• *

To initiate the algorithm for finding the initial state xQ , it is necessary
to choose the 5 parameters N, Z, At, Tb and xQ for constructing the nonlinear
equation (2.34). Since a good choice of these parameters depends on both the
nature of the problem (.number of state variables, degree of nonlinearity,

amplitudes of input signals, number of input frequencies, etc.) and the computer
being used (word length, single or double precision, etc.), we can only offer

+The ith column of the fundamental matrix solution is simply the solution of (2.51)
with the initial state

n(0) = [0 0 ... 010 ... 0]T
"—jth position
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some guidelines which have been found useful in our numerous numerical experiments
conducted using our algorithm.

a) Choice of N.

Recall N < M is the number of frequency components used in the truncated

steady state solution xN(t) in (2.3). For typical communication circuits
(amplifiers, mixers, modulators, etc.) the number of significant frequency compo

nents is usually known from previous analysis and N should be chosen to include

all such components.

If the number of significant frequency components is not known from previous

experience, we simply make an intuitive guess. If this guess is unrealistic, it

will show up in the subsequent error analysis (to be discussed in Section II-E)

and we will have to repeat the analysis with a larger N.

b) Choice of Z, At, and T^.

Recall that At is the uniform sampling step size used in "sampling" the

numerical solution of (1.1) and Z is the total number of samples taken. It is

important to note that "At" is not the same as the integration step size "h"

used in solving (1.1).

In most of our numerical experiments, we solve (1.1) using a 4th-6th order

BDF algorithm [3] with a step size h = T . /50, where T . is the smallest period

of the N frequency components. This choice usually gives a very accurate numerical

solution for x(t).

Our sampling step size At is usually chosen within the range

7h < At < 13h (2.56)

provided (2.21) is satisfied. In practice, ill-conditioning could occur if At is

chosen to be too small, or if it contains some frequency.components v.. and vu such

that |v.-\>k[*0, (See Appendix B)
Although Theorem 3 shows that the generalized Fourier coefficients can be

calculated exactly only if Z -»• » (see Eq. (2.20)), our numerical experiments show
that good results can be obtained in many practical cases with a considerably

smaller Z. In particular we have found the following range to be adequate for

the many examples we have tried so far:

(2N+1) < Z < 2(2N+1) (2.57)

-17-



Finally, the choice of T is somewhat arbitrary as it does not affect the

theory in Sec. II-A from which our algorithm is based. However, since the gener

alized Fourier coefficients are estimated by samples taken over the time interval

[0,ZAt], we choose

Tb > ZAt (2.58)

so that the data x(Tb;xQ) would not be redundant,
c) Choice of xQ.

To assure and to hasten the convergence of the Newton-Raphson iteration, it

is desirable to pick a good initial guess xi '. Unfortunately, no intuitive guide
lines are available especially when the steady state solution x (t) is not

periodic.

One approach which has worked well for our examples is to replace the input

frequencies {v,,v2»...,vN> by an approximate set of frequencies {v,,v2,...,v^} so
that the associated steady-state waveform is periodic with a relatively small

period T = 2ir(n/m), where m and n are defined in (1.8)-(1.9) and is bounded by

(1.16). Using this approximate set of frequencies, we then apply the shooting
*

method [11], or any other efficient method for finding xn for periodic solutions,
* * ~u (0)to calculate xQ . We then take this approximate xQ as our initial guess xX .

If we let m Amax{m,,m2,...,mN> and n . Amin{n,,n2,...,n..}, then (1.7)
suggests the following algorithm for reducing T:

0) If v. = m. is an integer for all k= 1,2,...,N, then we increasejnmax^
until it is not a prime number and then increase v., k= 1,2,...,N, until mmax/vk
is an integer.

Example 1. Let v. = 2, v2 = 3, and v3 = 7. Then {m^.n^tin^} = {2,3,7} and we
have from (1.7)

T 2ir, «
1" G.C.D.12,3,7) " ^

Now increase m_ =7 to v3 = nu = 8, and then increase v2 to 4. The new period
associated with{5, ,v2,v3} =(2,4,8) is

*' &.C.DAi.i.6l •* (2-59)
(2) If v. = m./n. is not an integer, we first change mk as in (1) and then

change n. , k = 1,2,...,N until it becomes a multiple of n ..

Example 2. Let v-j = 2/5, v2 = 3/8, and v3 = 7/9. Then {m^m^n^} = {2,3,7}
as in Example 1 and {n,,n2,n3} = {5,8,9}. From (1.7), we find
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T = 2tt
L. CM. {5,8,9}
G.C.D.{2,3,7}

= 720tt

Since n . = 5, we change n2 and n3 to n2 = 10, and n3 = 10 so that

T = 2tt
L.C.M.{5,10,10}
G.C.D.{2,4,8}

= IOtt

(2.60)

(2.61)

Note that dramatic reduction in period from 720ir to IOtt!-*"
(3) If v^ is an irrational number, we first approximate it by a rational

number and then proceed as in (2).

Example 3. Let v, = 0.404040..., v9 = 0.375010101..., and v, = 0.7777... .

We can approximate vrv2, and v$ by v] =2/5, v2 =3/8, and v3 =7/9 and then pro
ceed as in Example 2. Note the period changes from T = °° to T = 10ir.

E. Termination Guidelines

Since our choice of N may not be realistic in the sense that one or more

significant frequency components may have been inadvertently excluded from (2.3),
our algorithm does not terminate when the Newton-Raphson iteration in (2.42)
converges to an initial state xQ . We must further validate our answer as
follows:

(1) If the steady-state response xss(t) is periodic with areasonably
small period T, we simply solve (1.1) numerically for x(t,xQ*) (with x* as
initial state) from t=0to t=Tand verify that x(o!xn) - x(T;xn f

(2)- If the steady-state response xss(t) is not periodic, or if it is
periodic with an unreasonably large period T, we can carry out the following
heuristic validation procedure in view of (2.7) of Theorem 2.

(a) Solve (1.1) numerically for x(t,xQ*) (with xQ* as initial state) from
t = 0 to t = T, where T is chosen to be sufficiently large.
Solve for xN(kAt,xQ) using (2.31) where Tfa =.kAt and theentries x (kAt) in the(b)

(c) Calculate the error

matrix X(At,Z;xQ ) are substituted by Xj(t;xQ ), t =0, At, 2At?...ZAt.

:j £/f{ I kj CkAt;^*)-^^(kA.tws0*D |̂ (2.62)

^We could reduce T further by dec^easingjinstead of increasing) n2 and n^ to
n2 =5and n3 = 5. However, the v2 and v3 no longer represent agood approximation.
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for each component j = l,2,...,n.

If max{e1,e2,...,en} is smaller than some perscribed tolerance, stop. Other
wise, increase N and/or Z and start all over again.

F. Summary of Multi-Frequency Algorithm

Step 0. Specify the 4 parameters N, Z, At, and Tb (See Section II-D) and
calculate the vector a(Tb;At,Z,N) using (2.32).
Set j = 0.

Step 1. Choose initial state xQ =x*J"' (for j=0, see Section II-D) and
solve (1.1) numerically to obtain x(At),x(2At),...,x(ZAt).

Calculate F(xQ;Tb,At,Z,N) from (2.34). If flF(x0;T,At,Z,N)H <e
whose e is a sufficiently small positive number, call xQ = xQ and
go to Step 4.

Compute the Jacobian matrix Jc(xiJM in (2.43). (See Section II-C).
f *j.t ^ "" ""^ •

Compute xiJ ' via the Newton-Raphson iteration (2.42).
Go to Step 1 with j -*- j + 1.

Step 4. Solve (1.1) for x(t) with xQ as initial state from t = 0 to t =Tb
where Tb= period if x (t) is periodic, orTbis a sufficiently large
number.

Case 1. x_.(t) is periodic with small period T:
~ss jf if

Calculate e. = x.(0,xQ )- x..(T;x0 ), j= l,2,...,n
Case 2. x (t) is not periodic or is periodic with large T:

Calculate e. using (2.62), j = l,2,...,n.
j

If max{e1,e2,...,e }> eQ
where eQ is a sufficiently small positive number, increase N and/or
Z and repeat Steps 0-4.

Step 5. STOP.

Step 2.

Step 3.

G. Illustrative Examples

Numerous examples have been solved successfully using the 2 algorithms pre

sented in Sections II and HI. Because of its widespread interest, let us apply

the preceding algorithm to solve the forced Duffing's equation [14-15]:

x + kx + C.X + c2x' = f(t) (2.63)

This equation arises in many physical problems (e.g., ferro-resonance circuits)

and is known to exhibit many interesting phenomena; including subharmonic, almost-
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periodic, and chaotic solutions [16].

To apply our algorithm, let us recast (2.63) into the form of (1.1), which

in this case is just the state equation

xl = x2

x2 = "kx2 " clxl " C2X1 + f^

To be specific, let us choose a 3-frequency-input signal

f(t) = A, cos w,t + A2 cos u)2t + A3 cos w3t

and k= 0.1, c, = 2.0 and c2 = 1.0.
We have solved (2.64) using many different combinations of amplitudes and

frequencies, 4 of which are listed in Table 2.

Table 2. Four combinations of A. and a>. and their respective periods.

case Al A2 A3 wl co2 w3 1 w.
T = 2tt
2 u)2 v-3 o)3- T=2*®m

1 0.4 0.4 0.4 1 0.35 0.155 6.283 17.951 40.54 400ir

2 0.4 0.4 0.4 1 0.85 0.170 6.283 7.392 36.96 2007T

3 0.5 0.5 0.5 1 0.35 0.155 6.283 17.951 40.53 400tt

4 0.5 0.5 0.5 1 0.85 0.170 6.283 7.392 36.96 200TT

From previous experience, we know all frequency components

vk = m^ + m2ku)2 + « «3

with

hikl + KJ + I™*! i33k

(2.64)

(2.65)

(2.65)

(2.66)

are likely to be non-negligible. Since these are 30 frequency components satis

fying (2.66), we choose N = 30 in (2.3). Applying the preceding algorithm with
At =11 ^50, Z=1.5(60) =90, and Tb= 23 T1, we obtain the initial state xQ*
listed in Table 3 corresponding to the 4 cases in Table 2. Also listed is the

error e. calculated using (2.62)
j
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Table 3. Initial state computed using multi-frequency algorithm with a 6th order
BDF algorithm [3].

case

xQ Ax*(0) Error

x7*(0) x2*(0) el e2

1 0.69667 -0.18304 0.53(10"3) 0.99(10~3)

2 0.78298 -0.13834 0.14(10'2) 0.22(10"2)

3 0.82931 -0.32269 0.92(10'3) 0.14(10'2)

4 0.81562 -0.46932 0.33(10"2) 0.57(10"2)

Using the initial states from Table 3 and (2.27), we have calculated the 60

generalized Fourier coefficients a,,a2,...,ag0 in (2.3) corresponding to N= 30 for
eases 1and 2. The waveforms of x^(t) for these 2 cases are plotted (using (2.3)) as
the solid waveforms in Figs. 1(a) and 2(a), respectively. As a check over the

accuracy of our solutions, we solve (1.1) using the same initial states and the

solution at each integration time step is shown as "dots" in Figs. 1(a) and 2(a)

respectively. Note the remarkable accuracy in both cases.

To compare the amplitudes of the 30 frequency components, we use (2.27) to

plot the discrete frequency spectrum for these 2 cases in Figs. 1(b) and 2(b),

respectively.

Finally, to obtain a measure of the rate of convergence of the Newton-Raphson

iteration (2.42), the error

;(j) A/ F^X^^.At.Z.Nj+F^x^-^.At.Z,N) (2.67)

at each iteration is plotted in Fig. 3 for cases 1 and 2, respectively. Note that

both converges rapidly in 4 iterations.

III. Almost-Periodic Solution Algorithm 2: Two Input Frequencies

In this section, we assume the circuit or system is driven by no more than 2

frequencies; i.e., P < 2 in (1.1). Hence, let us rewrite (1.1) and (1.5) as

follows:

fCx,x,y;o)-|t,o)2t) =0

vk = "hk^l + ^k^' k= 1*2>-">M
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Substituting (3.2) into (1.4) and making use of standard trigonometric identities,
we can recast the steady-state response x$s(t) as follow:

M r ^xss(t) =?0 +̂ (?2k-l cos(mlka>1+m2kaJ2)t +a£k sin^^+m^^Jt j
M r

=aQ + I Ja2k-1 [(cos mlko)1t)(cos m2ka)2t)-(sin m^^tjfsin m2koj2t)]

+a2k[(sin m,kuj,t)(cos m2kw2t)+(cos m^ko)-jt)(sin ^^t)] I

C=aQ + I ) [a2k-1 cos mlkoj-,t+a2k sin ni-j^t] cos m2ka>2t

+ [a2k cos miuaji*~a2k.i sin m,k<A),t] sin n>2kw2t >

If we let B denote an integer bound such that

|mlkl + |m2k| < B

then the number M of non-zero frequency components vk is given in Table 4 for
B = 1,2,...,10.

Table 4. The integers M, 2M + 1, and 2B + 1 as a function of B.

B 1 2 3 4 5 6 7 8 9 10

M 2 6 12 20 30 42 56 72 90 110

2M+1 5 13 25 41 61 85 113 145 181 221

2B+1 3 5 7 9 11 . 13 15 17 19 21

(3.3)

(3.4)

This table can be easily verified by counting the number of solid dots subtended

by an isosceles triangle of base'length 2B in Fig; 4. For example, we can enum
erate the following frequency components when B = 3:

Vn = U), , V« = U)«, V0 = 2(1^, , Vy, = 2u)0, Vc = 3d),, Vc = 3u>0, V7 s (O-i + U)9,"i uj-i > 2 2' 3 V v4 2' v5 V v6 >2> v7 «!

Vg = w-i - o)2, Vq = w-j + 2oj2, v-jq = a)-. - 2oj2, v.,.. = 2w, + co2, and v,2 = 2a)-, - ai2.
Hence, M(3) = 12.

Observe that all solid dots on the mlk-axis in Fig. 4 denote harmonics of
u-.. Likewise, those on the m2k-axis denote harmonics of o)2. All other solid dots
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denote intermodulation components. In particular, all solid dots on a horizontal

line through m2k=N, N= 1,2,..., correspond to frequency components of the form
vk = m)k^ + Na)2* Hence, if we regroup all frequency components in (3.3)
corresponding to dots on a horizontal line together, we can recast (3.3) into
the form

B

xss(t) =?0W + I { §2k-l(t) cos ku2t +?2k(t) s1n ka)2t}
i\— i

(3.5)

where gQ(t), g-j(t), g2(t),...,g2B(t) contain only cosine and since components
which are harmonics of w, and are therefore all periodic functions of period

T-j = 2tt/o)-| . Since this observation is the basis of Algorithm 2, we will restate
it as a theorem:

Theorem 4.

The steady-state response x (t) in (3.3) which contains (2M+1) generalized

Fourier coefficients can be recast into the form of (3.5) containing only (2B+1)

coefficient functions of time gQ(t), g-,(t), g2(t),...,g2B(t) which are all
periodic of period T, = 2-n/u,.

A comparison between the number of.coefficients describing (3.3) and (3.5) is

given in Table 4. Observe that (3.5) has much fewer coefficients compared to that

of (.3.3) specially for large B. For example, when B = 8, Algorithm 1 from Section

H would entail solving for 145 generalized Fourier coefficients, whereas only

17 coefficient functions need be specified in (3.5). Our objective in this

section is to develop a new algorithm which takes full advantage of this remark

ably concise form of solution.

A. Calculating g. (0) when transient component is zero.

In Section III-B, we will present an algorithm for finding an initial state

xQ such that the transient component xt (t) in (1.3) is zero for t^ 0. In this
subsection, let us assume xn has been found so that the solution of (3.1)
starting from xn is x(t) = x._(t) for t > 0, where xcc(t) is given by (3.5).

For reasons that will be clear in Section III-B, we need to derive a rela

tionship for calculating gk(0), k= 0,1,2,...,2B, in terms of "(2B+1)" samples
xssC0), x^CTj), xss(.2T.J),...,x^BTt) taken at T-, = 2-ir/^ intervals. Since each
component x Ct) of x (t), i = l,2,...,n, can be calculated separately, it

suffices for is to derive the ith component g. .(0) of gk(0).
Substituting t = 0, T-, ,.2T1,... ,.2BT-| into (3.5), .
and using

^.k^V =gi,k(0)' k =1»2,..,,2B C3,6L
in view of Theorem 4, we obtain
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xSSi(o) =gi;o(o) +^ 91>2k-i(0)

xss.(V =91,0(0) +̂ f9i,2k-l(0) C0S ku2Tl +9i,2k(0) s1n "Vlj

V21^= 9i.°(0) +Ji(>2k-i(0) cos 2kai2Tl +9i«2k(0) sin z^v | (3'7)
. . *

xsSi(2BV =9i,0(0) +* kIi{"9i.2k-l(0) cos2kfiW2T1+ 91>2k(0) sin 2kB<o2T^
Equation (3.7) consists of 2B+1 equations in terms of the 2B+1 coefficients

9T,0(0)'9i,1(0)'gi,2(0) 9i,2B(0)
If we define the (2B+1)-vectors

x„ (B) A

xss. W)

ss

ss

(V

(2T,)

x (2BT,)

and gD A
~B. -

and the (2B+1) x (2B+1) square matrix

1 1 0

1 cos(<a>2T, ) sin(ouT,)

1 cos(2o)2T1) sin(2o^T1)

g1t1(0)
gi>2(0)

\

1 0

cos(Ba^T,) sin(Bo^T-j)

cos(2Bo^T1) sin(2Bu£T.,)

U(B) A

1 cos (BoigT,) sin(Bo^T-j)

1 cos(2Bo)2T-|) sin(2Ba)2T1)

then (3.7) assumes the condensed form

G(B)gR = x (B), i = l,2,...,n
~ ~b. -ss..
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2 2cos(B o)^) sin(B w^ )

cos(2B2to2T1) sin(2B2o)2T1)

(3.8)

(3.9)

(3.10)



Theorem 5

The 2B+1 coefficients gi 0(0),g.. 1(0),gi 2C0), g. 2B(0) describing the
steady-state response (3.5) can be calculated exactly from

-1

gB = fi(B) x„ (B)
i ~ ~bi>i

, i = l,2,...,n (3.11)

The matrix ft(B) is non-singular if, and only if, there does not exist an integer

l_2 such that

u>2 t_2
77-^1— » L1 = 1,2,... ,2B^ L1 1 (3.12)

Proof. Eq. (3.11) follows directly from (3.10). The proof that (3.12) is a

necessary and sufficient condition for ft(B) to be non-singular is given in

Appendix C. *

Corollary

1. ft(B) is always non-singular if m, and oj2 are incommeasurable.
2. If W, and w2 are both rational numbers, we can make fl(B) nonsingular by
choosing

T (3.13)B <
2T

where T is the period denfined in (1.7).

Proof. Corollary 1 follows directly from (3.12). Corollary 2 is proved in

Appendix D.

B. Finding the initial state xQ
Consider the ith component of (3.5) at t= (2B+l)T.j:

xssJ(2B+1)V =gi,0(0) +I fgi,2k-l(0) C0Sl2B+1HTl +9i,2k(0) sin(2B+l)o>2T1
^ (3.14)'

Substituting (3.11) for g. .(0) in (3.14), we obtain
1 ,K

xss((2B+l)T1)= 5T(B)gB> =^(B^^Bjx^^B)

-J
.-1

= x» (B)fi' (B)6(B) (3.15)

where
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6(B) Afl cos[(2B+l)o)2T1] sin[(2B+l)^2T1] ... cosEtfB+DBu)^] sin[(28+1)60)^J
(3.16)

Since [flr(B)] 6(B) in (3.15) remains unchanged for all i = l,2,...,n, we

can combine all "n" components of xcc(t) from (3.15) into a single matrix equation:
-ss

XsSi((2B+l)Tl)
xSS2((2B+l)Tl)

xss ((ZB+l)^)

V_

xss «°> xss <V xss <2V

xss2(°' xss2<V xss2(2Tl'

xss <°> xss<V xss<2V
n n n

xss((2B+l)T1)

where the (2B+1) - vector

X(B)

3(B) A[^(B)]"1 6(B)

xss2<2BV

x„ (2BT,)

60(B)

^(B)

B2(B)

B2B(B)

3(B)

(3.17)

(3.18)

depends only on B.

Observe that (3.17) is exact provided the integer bound B in (3.4) includes

all "M" frequency components of the exact steady-state response xgs(t) in (3.3).
In this case, the entries xss(t), t=0,T1,2T1,...,2BT1 in X(B) can be obtained
by solving (3.1) using xn as the initial state.

* ~v
Since xQ is precisely what we are seeking, let us define the following

system of V related equations as a function of the "n" components

xQ ,xq ,...,xq of the initial vector
12 n

x0 A[xo x0 *•• x0 ^ =^xl^0^ x2^ ••' xn^°^T:
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x^CZB+iyiy,^}

x2((2B+l)T1;x0)

xn((2B+l)Ti;x0)

V_ J

x((2B+l)T1;x0)

where

x-jlO) x^T^Xq) x1(2T;xq) ... x1(2BT1;xQ)

x2(0) XgOy.Xg) x2(2T1;xQ) ... x2(2BT7;xQ)
• • » • • • #

• • • • * • ,

xn(0) W^O5 xn(2Tl;x0} — xn(2BTl;x0}

X(B;xQ)
^

F(x0;B)

j~B0CB) 0

b-,Cb)

B2(B)
•

0

32B(B)
0

0

(3.19)

B(B)

X,-(kTi,xQ), k=0,l,...,2B+1 denote the ith component of the complete solution
x(t) = xtr(t) + xs(t) of (3.1) starting from the initial state xQ, for t= 0,
T1,2T1,...2BT1 ,(28+1)^. Observe that unlike (3.17), both, x((2B+l)T1 ;xQ) and
X(B;xn) can be calculated by solving (3.1) numerically.

Since (3.19) reduces to (3.18) when xQ = xQ ,it follows that Xq can be found
by solving

f(x0;B) =9

by Newton-Raphson iteration as in (2.42), with F(-) replaced by F(xQ;B).
The Jacobian matrix Jc(Xq )can be evaluated by the sensitivity network

approach [3] if the circuit is given. If only the equation (3.1) is given,

the Jacobian matrix can be calculated from

where

J (x^)}
!lFlC0 ;

ax((2B+l)T1;xQ)

3x0

2B 8x(kV,xn)
- I eklB) -~ 1~°

k=0 K
V -y(j)
*0~x0

3x0

3x((2B+l)Tl5x0)

3X0
can be evaluated using (2.55).

* -y(J)
x0"x0

(3.20)

(3.21)

To save computation time, the integer bound B is chosen to include only the

significant frequency components in (3.3). In this case, the initial state xQ (B)
computed from (3.20) will depend on B and is therefore not exactly equal to x*.
Clearly,
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x0*(B) -xQ* as B-B* (3.22)

where B* denotes the integer which is large enough to include all frequency com
ponents of (3.3).

C. Initialization Guidelines

Since (3.1) must be solved many times numerically from t=0 to t= (2B+l)T.j,
we always choose u)-, to be the larger of the 2 input frequencies. Oncec^ is
identified, we can calculate F(xQ;B) in (3.19) by specifying the 2 parameters
B and xQ.
a) Choice of B.

The integer bound B in (3.5) should be chosen equal to at least the order of

the highest significant harmonics of w in the steady-state response. It is

independent of c^. This important property allows us to analyze a large class of
communication circuits where the "signal" frequency at cj2 is much smaller than
the "carrier" or "pump" frequency ^. In such cases, harmonics of w2 will usually
be quite small even though the input signal at frequency co, is usually very large
(thereby generating many higher harmonics of w^) so that accurate answers can often
be obtained with B = 3.

If the order of the highest significant harmonics is not known, we simply
make an intuitive guess. If this guess is unrealistic, it will reveal itself in
the subsequent error analysis (to be discussed in Section III-D).
b) Choice of xQ.

The same procedure presented in Section II-C also applies here.
D. Termination Guidelines.

Recall that in practice, the solution xn*(B) of (3.20) is not the exact
it „u

solution xQ . Consequently, we must validate this answer before terminating.
(1) If the steady-state response x$s(t) is periodic with areasonably

small period T (see(1.7)) then we simply solve (3.1) numerically for x(t;xQ*(B))
(with xQ (B) as initial state) and verify that x(0;xQ*(B)) =x(T;xQ*(B)).

(2) If the steady-state response xss(t) is not periodic, or if it is
periodic with an unreasonably large period T, we can estimate the error with the

help of (2.51). If the "approximate" solution x(t;xQ*(B)) is indeed close to the
exact solution x(t;xQ*) for all t>0, then it follows from (2.43) and (2.51) that

0x(t;xQ*) -x(t;xQ*((B))H <l«(t)l BxQ* -xQ*(B)B (3.23)
for all t^ 0.

If we let gk (0) and gk(0) denote the "exact" (computed using (3.11) with .
B=B and exact xQ )and "approximate" (computed using (3.11) with approximate'
Xg (B)} values, then
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*

B

lx0 - x0 (B)l - a[gQ (0)+ I gg^CO)] - [g0(0)- J g2k-1(0)]l
*

B B

1 a?0*t0) - ?0C0)9 + I Bl2k-l(0) *l2k-l(0)!I + E B22k-lCO)B (3*24)
k=l k=B+l

ft

Since the coefficients gk (0) and gk(0) can be interpreted as the Fourier co
efficients associated with-the frequency ku)2 at t = 0, it is reasonable to assume
that if 3g^(0)B is sufficiently small for k > 2B + 1, the computed initial state

* *~* *
xQ (B) will be sufficiently close to xQ ,and hence

?2k-l(0) «§2k-l(0)> k=1,1,2,...,B (3.25)
It-follows from (3.23), (3.24), and (3.25) that we can approximate (3.23) by

*

B

lx(t;x*) -x(t;x*(B)}l <l«(t)I{ I ilg2k ,(0)i +e(B,x (B))} (3.26)
~o ~u — ~ k=B+l

where e(B,x*(B)) is an error from the first two terms in (3.24).

Even though the right hand side of (3.26) can not be calculated from avail

able data, the following heuristic procedure has been used successfully in all

examples we have investigated so far:

(1) Solve (3.1) numerically for x(t;xQ (B)) from t=0to t=2(6+2)^.
(2) Calculate gD , i = l,2,...,n, using (3.9) and (3.11) with B replaced

~D ♦ it

by B+2 and with x (t) replaced by x.(t;xQ (B)J for t=0,T, ,21^....,
2(.B+2)T1. i

(3) If

B+leB+2 4°W°>° +"PW0'1 (3'2?)
is smaller than some prescribed tolerance, stop.

Otherwise, increase B and start all over again.

E. Summary of Two-Frequency Algorithm

Step 0. Choose w, to be the larger of the 2 input frequencies. Specify the

integer bound B (see Section III-C). Set j = 0.

Step 1. Choose initial state xQ =» x^ (for j=0, see Section II-D) and solve
(3.1) numerically to obtain x^), x(2T1), x(2BT1).
Calculate F(xn;B) from (3.19). If DF(xn;B)il < e, where e is a

sufficiently small positive number, call xn = xn(B) and go to Step 4.

v[/ Step 2. Compute the Jacobian matrix Jp(xiJ') in (3.21) (see Section II-C). n|^
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'Step 3. Compute Xq ' via the Newton-Raphson iteration C2.42) with F(0 re- A

Step 4.

placed by F(xQ,B). Go to Step 1with j •* j+1

Case 1. x (t) is periodic with small period T:

Solve (3.1) for x(t) with xQ (B) as initial state from t =0 to t = T.
Calculate

ej =xj(0,x0*W "xj(T;x0*(B)J, j=l,2,...,n.
Case 2. x„(t) is not periodic or is periodic with large T:

Solve (3.1) for x(t) with xQ (B) as initial state from t=0to
t=2(6+2}^. Calculate B+1eB+2 as defined in (3.27). If

(case 1)max{£,,e2,...,e }> £q

B+leB+2 > £/ (case 2)

where eQ is a sufficiently small positive number, increase B and
repeat Steps 0-4.

Step 5. Stop.

F. Illustrative Examples

Example 1. Puffing's Equation with 2 frequency inputs:

We have used the preceding algorithm to solve (2.64) when f(t) contains only

2 input frequencies. The results corresponding to 3 different combinations of

parameter k, C., c2, and f(t) are summarized in Table 5 for B= 9, 11, 13, and
17 respectively.

Table 5. Examples Applying the Two-Frequency Algorithm

B

(1) f(t)=0.5 cost
+0.5 cos 0.81t

(2) f(t)=0.3 cost
+1.5 cos 0..115t

(3) f(t)=(l+cos 0.115t) cost

x0i*(B) ^VB> \ (B) xo2 W x0i (B) xo2 (B)

9

11

13

15

1.04898

1.11403

1.12986

1.11865

0.26642-.

0.64204

0.63906

0.63562

1.27285

1.24281

1.22548

1.21332

0127251 :

0.17135

0.30906

0.33872

• 1.36899

1.39967

1.34835

1.35403

-0.34537

0.00736

0.16875

.0.15168

lge17=0.0021 16e17=0.0083 ue15=0.023
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In each case, an error estimate using (3.27) is calculated and the results

are also listed in Table 5. For example, in case 1, we have

16e17 = D?32(0)tI + B?34t0)i

A|g32J(0)| +|g32>2(0)| +|g34J(0)| +|g34>2(0)|

= 0.000853 + 0.000444 + 0.000244 + 0.000554 =" 0.0021 (3.28)

The rate of convergence for these 3 cases are shown in Fig. 5. The conver
gence rate for case 3 is not as good as the cases 1 and 2 because we have delib

erately chosen a poorer initial guess for constrast.

The steady-state waveforms corresponding to the 3 cases listed in Table 5

are shown in Figs. 6(.a), 7(a), and 8(a), respectively. The corresponding frequency
spectrum calculated by the FFT algorithm [17] are shown in Figs. 6(b), 7(b), and

8(b), respectively. For all cases, the higher-order harmonic and with modulation

components are negligible, as is typical in many practical examples.

Example 2. Transistor Modulator Circuit:

Consider the differential-pair amplitude modulator circuit shown in Fig. 9(a),

where e^t) and e2(t) denotes the carrier and signal input, respectively. Using
the algorithm described in Appendix A, and the Ebers-Moll circuit model [3] shown

in Fig. 9(b) for the transistors, we obtain the following system of 4 implicit
differential-algebraic equations for this circuit:

dv

"C1T" R
L

X(v„+

1 Vl , X(vl"VrC) ivr^-V^ '°-" +"IsCeXVl] -0

[e 4 ]-1] +oIs[e ] cc -1] -Is[eXv4-l] +«Is[e ] cc -1]
X(v4+e2-VE) Xv3

-Is[e 4 2 E-l] +als[e 3-l] =0 (3.28)

. \m ^(v4+e?-VF) ,-Is[eXv3-l] +als[e 4 2 E-1] +J- [Vcc-VE+e2-v3] =0
D

di2
-L -w - vl " °

Note that the first 3 equations in (3.28) correspond to KCL applied at nodes

©,©, and® respectively, whereas the 4th equation corresponds to KVL applied
around the loop formed by the inductor L.

Note that unlike in the Multi-Frequency Algorithm, the generalized Fourier co
efficients are not directly available in this algorithm.
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Setting e,(t) and e2(t) to zero, we first solve (.3.28) for the following dc
operating point:

v, =0, i9 =0.155 x10~3, v, =0.259, v. =0.241 (3.29)

We then choose x (0) A v,(0) = v, and x«(0) A i9(0) = -\0 as our initial
(0) 1 ~ ' 'n Qguess xA ' and apply the two-frequencyyalgorithm for 2 different amplitudes V2

for the signal e2(t); namely V2 = 4.0 and 5.3, respectively. For V2 = 4.0, we
choose B = 6. However, for V2 = 5.3, we choose B = 13 to account for the
additional harmonics that are likely to be significant in view of the larger in

put signal amplitude. In both cases, our algorithm converges in 2 iterations and

the results are summarized in Table 6.

Table 6. Results obtained with two-frequency algorithm using a 4th order BDF
-8method [3] with a step size h = 4tt(10 ) sec.

Initial State Error'Estimate

case Vl(o) i2(0) B+leB+2 f0r Vl B+leB+2 f0r ""2

CD

(2)

V2=4.0

V2=5.3

B=6

B=13

-3.927

-3.422

0.2387(10"3)

0.1138(10"3)

0.78(10"3)

0.23O0"1)

0.59(10"7)

0.95(10"5)

Using the 2 initial states in Table 6, the steady-state waveforms correspond

ing to the modulator output voltage VqU) and the base-to-emitter-voltages VEB(t) for
transistors T, and T3 are shown in Figs. 10(a),(b),(c) and ll(a),(b),(c), respec
tively. Note that the modulator output waveform in Fig. 10(a) is typical of those

composed of a carrier and 2 side band frequencies ai, + w2. Even the waveforms
VEB(.t) in Figs. 10(b) and (c) are quite smooth, indicating the absence of sig
nificant higher-order frequency components. Consequently, very accurate results

were obtained with only a relatively small B = 6.

On the other hand, the corresponding waveforms for case 2 in Fig. 11

indicate the presence of many more frequency components. Consequently, a much

larger B will be needed to obtain results of acceptable accuracy. We found

B = 13 is adequate for this purpose.

The normalized frequency spectrum corresponding to the output waveforms

vQCt) in case 2 as obtained by the FFT method [17] is shown in Fig. 12.
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IV. Concluding Remarks

Two efficient algorithms have been presented for finding almost periodic

steady-state response of nonlinear circuits and systems.

The multi-frequency algorithm is very general as it allows an£ number of

commensurable or incommensurable input frequencies a), ,<o2,... ,wp. Although the
output normally includes only harmonic and inter-modulation frequency components

of the form v^ = m-j^a}, + m^w,, + ... + mp.a}p, where m.^ are integers, other
frequency components, such as subharmonics, may also be included in this algorithm

if their presence are suspected.

The two-frequency algorithm is applicable only if there are no more than 2

input frequencies. This restriction, however, is more than compensated by its

greatly increased computational efficiency, specially when the steady-state

response contains many frequency components. That this algorithm is significantly

better than algorithm 1 (when applied in the 2-frequency case) is best seen by

comparing the number of respective coefficients in Table 4. Note that for

B=10, Algorithm 1 must calculate 221 coefficients whereas Algorithm 2

needs to calculate only 21. Note that 2B + 1 increases only by 2 as

we increase B by 1; consequently, the two-frequency algorithm remains comput

ationally quite efficient even with a larger B, thereby allowing stronger

nonlinearities. This is particularly useful when the amplitude of the higher-

frequency input (a),) is much larger than that of uj2, as is common in communication
circuits where ui, denotes the carrier frequency and w2 denotes the signal
frequency. In this case, the number of significant harmonic components of

w2 will be relatively small so that a small B suffices.
It is also interesting to note that in the limiting case where we have only

one frequency input (P=l), then (3.5) reduces to x$s(t) = gQ(t). In this case,
the two-frequency algorithm reduces to the usual shooting method [3,11].

Certain numerical ill-conditioning could occur in the Algorithm 1 when

the step size At is chosen to be too small. The ill-conditioning problem is due

to loss of number of significant digits and therfore depends strongly on the

choice of the computer.

Finally we remark that if the steady state-solution is not periodic so that

the brute-force method is impractical (since we must in theory integrate for alj_

t >. 0), or if the nonlinearity is not sufficiently weak for the Perturbation and
Vol terra series methods to converge, then our algorithms are presently the only

methods available for finding steady-state solutions, let alone their good compu

tational efficiency.
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V. Appendix

Appendix A. Explicit Formula for Reduced System of Implicit Equations

Let N be a nonlinear network containing voltage or current-controlled

2-terminal resistors, voltage-controlled 2-terminal capacitors, current-

controlled 2-terminal inductors, as well as independent and controlled sources.

Mutual couplings are allowed so long as they are restricted to elements belonging

to the same class. Let each independent source be considered as part of a

"composite" branch as in [3]. Adoping the notations in Section 17-2 of [3], we

obtain the following tableau equation for N:

n-1 KCL equations { A

b KVL equations { 0

b elements consitu-{
tive relations L"

1 -A1

i<i £v 9 In

AJ 0

E = 0

g(vr,i. ,v,i) 0

(A-1)

Equation (A-1) consists of a system of (n-1) + 2b implicit equations of the form

(1.1) where "b" denotes the number of composite branches and "n" denotes the

number of nodes. Our goal in this section is to derive an equivalent system of

implicit equations containing fewer number of equations and variables for an

important subclass of networks.

In particular, we assume that N contains no loops of capacitors and indepen

dent voltage sources, no cut sets of inductors and independent current sources

and that all controlled sources are current sources depending on either resistor

or capacitor voltages. Consequently, there always exists a normal tree T con

taining all capacitors and no inductors [3].

If we let i2 and y2 denote the current and voltage vectors of all inductors
in N, and let i-j and y, denote the current and voltage vectors of the remaining
elements, then (A-1) can be recast as follows:

1 0 -lb 9 | 9
0 0 0 1 I 0

0 0 1 0 '-A

0 0 0 1 1 -A

£l $2 "o ~? ~~o

Tii" g(v.,v) 0

h \M2)\Z 0

h - 17" =
"oT

Iz u?2 0

L-n_ ~Q •" "o~

(A-2)

where the reduced incidence matrix A is similarly partitioned into A = [A-, A2]
and where L(i2) denotes the incremental inductance matrix. Substituting

A-1



Ii =IbJfi +i(^>= Ib(£iV!i} + i&c"J (A-3)

into the last equation in (A-2), we obtain the following reduced system of

equations:

A2i2 +(A1Y.AJ)vn =-A^YJE, -Mtf ,v) +AJ

Iz "& +!2 =btVl2

(A-4)

(A-5)

Let v- denote the branch voltage vector associated with the normal tree T,

and let v. denote the corresponding cotree voltages. Since all capacitors are

assigned in T, v- is a subvector of v_. Similarly, since all inductors are

assigned in the cotree, v» is a subvector of v.. Let the reduced incidence

matrix A be partitioned accordingly into A_ and A,, so that KVL assumes the form

T

(A-6)lr St v. ♦ Jl
It AL

~n

h

Since the columns of Ay correspond to tree branches, A^ is non-singular [3].
Hence we can solve for the node-to-datum voltage vector v from (A-6) to obtain

u - &&\t - y+ h

(A-7)

(A-8)

Substituting (A-7) and (A-8) into (A-4) and (A-5), and denoting the inductor

current vector i- by i. , we obtain

^T
A2iL +(A^aJkaJ] (vt - ET) +A^ +A^tv,.,^) -AJ =0

aJcaJ ]̂ (yT -?t) +!2" ^k]li" 9

where

* • C»T 111
and Vj is given by (A-8),

Equations (A-9)-(A-lQ) constitute a reduced system of Implicit equations in

terms of the state variables xA[vciL]T and the non-state variables contained
within v.,.

A-2

(A-9)

(a-io)



Equation (A-9) can be interpreted as the nodal equation of N with all
inductor currents i, considered as independent sources, and with all node-
to-datum voltages expressed in terms of the normal tree voltage vector vT.
Similarly, (A-10) can be interpreted as the fundamental loop equations (relative
to the normal tree T) formed by the inductor links. These interpretations allow
us to write down the reduced system of implicit equations of simple nonlinear

networks — such as that considered in section III — by inspection. If N

contains loops of capacitors and independent voltage sources, or cut sets of
inductors and independent current sources, the above procedure can be easily
generalized by first expressing the cotree capacitor voltages in terms of tree
capacitor voltages, and tree inductor currents in terms of cotree inductor

currents [3].

APPENDIX B

The matrix rTr in Theorem 3 is non singular if, and only if,

a+ ^ 2nir
At'iW

where r is a Zx(2N+l) matrix, where Z > 2N+1.

Proof. rTr is clearly symmetric and positive semi-definite and hence its
eigenvalues X, X2,...,X are real and non-negative. Hence det (r r)

•= X-, X2,...Xn t 0o all eigenvalues are positive <* rTr is positive definite <>
xT(rE) x>0 for all x f 0
Hence, we have
det (£Tr) f 0 «» columns of £ are linearly independent. (B-2)
The matrix I in (2.17)\can be recast as follows:

r =

l i

1 eJ'ei

1 e^

e-jei

1 eJ'Zel e-J'Zel

1

eJ0N
1

J20N iS-J26N

•

•

•

eJZeN

•

e-JZ8N

S

A ..where 9-j =V-At. Since Dis clearly non-singular,
Columns of r are linearly independent

A-3

0 0

0.5 -jO.5

0.5 jO.5

..00

..00

..00

0.5 -jO.5

0.5 jO.5

j

(B-3)



**
Columns
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V

are
linearly

independent
o

eJel.
f

e±j6k
and

e±jei
f

1
for

any
1

f
k

**
9j

±
9k

^
±2nir

and
8^

^
±2mr,

for
any

integer
n

°
6^

±
6fc

^
±2mr

for
any

integer
n

It
fo

llo
w

s
from

(B
.2)

and
(B

.4)
th

a
t

det
(rTr)

i
0

«•
vi

At±
v„

At^
±2nir

<•
At?*

•
2"ir

.

A
P
P
E
N
D
I
X

C

(B-4)

The
matrix

Q(B)
in

(3.9)
is

non
singular

if,
and

only
if,

there
exists

an
in

teger
l>2

such
that

uj2
L2

TT~
r

T
,

L
t

=
1

,2
,...,2

B
w

l
L

l
•1

Proof.
We

can
recast

0(B)
in

(3.9)
as

follows:

1J
*

1
1

JBcD

1

.-JB<
fr

0(B
)

=
j2

^
-
m

eJ2B<J>
e-j2BcJ>

eJ2B<j>
e-j2B(J>

ej2B2(|>
e-j2B2(J)

Irian
w

here
(j^ouT

,.
Since

D
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non-singular,
0(B

)
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n
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n
-sin

g
u

la
r

~
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Q
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independent

o
eJW

-
e^1*

f
0

for
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0,±

1,
±
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B
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f

k
~

1
-

ejL
^

^
0
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«••
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4>
^

2L2ir
for
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integer

l_2

Substituting
<f>a

o
^

=
Zm

og^
into

(C
-3),

we
obtain:

0(J3)
is

n
o

n
-sin

g
u

la
r

«*
Lj(ujg/a)^)

t
L2-

_
^

A
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v
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0
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0
0

0
0

0
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-j0
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0
.5

jO
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-2)
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APPENDIX D

If oi-. and ai2 are rational numbers, we can make 0(B) non-singular by choosing

B<217 (D-l)
Proofs Let ^ Ami/ni and cd2 Any^ De irreducible fractions. Then Tj
=ar^/m-,), T2 =2Tr(n2/m2), and T=2Tr(n/m), where n=L.C.M. {^ ,n2> and
m=G.C.D.{mvmz}. Hence m] =mj ,m2 =mm2» ,n] =kn^ ,n2 =kn2' ,and
n= kn-|' n2» for some integer k.

Now, since G.C.D.OnV ,m2' }=1, G.C.D.(m^ .n,' }=1, and G.C.D.Cnu' ,n2' }= 1,
we have G.C.D.(m2' n^.m^n^ = 1. It follows that if

maxCL^ =2B < m-,1 n2» (D,2)
then

Ll(?) •h(lj) •h^-H^-J tinteger (M,
But (D.2) is equivalent to

2BTl <mi.n2'T1 =mi'"2'(n1/™1)(m/n)T -l^jf^jT=̂ T-T(D-4)
Hence, if 28^ < T, then (C.l) holds. •

A-5



FIGURE CAPTIONS

3
Fig. 1 Steady-state waveform for Duffing's equation x + O.lx + 2x + x

= 0.4 cos t + 0.4 cos 0.35t + 0.4 cos 0.155t.

(a) Solid waveform represents approximate solution obtained with

multi-frequency algorithm. Solid dots denote solution obtained by
numerical solution of (2.64) starting from xQ* =(0.69667,-0.18304)
from Case 1.

(b) Discrete frequency spectrum obtained from (2.27).
3

Fig. 2 Steady-state waveform for Duffing's equation x + O.lx + 2x + x

a 0.4 cos t + + 0.4 cos 0.85t + 0.4 cos 0.17t.

(a) Solid waveform represents approximate solution obtained with

multi-frequency algorithm. Solid dots denote solution obtained by

numerical solution of (2.64) starting from xd* = (0.79298,-0.13834)
from Case 2.

(b) Discrete frequency spectrum obtained from (2.27).

Fig. 3 The rate of convergence for Case 1 (shown dotted) and Case 2 (shown

solid) in the Examples in Table 2. Horizontal axis indicates the

iteration number j. Vertical axis indicates the error e^J' computed
at the jth iteration using (2.67).

Fig. 4 Geometrical interpretation of (3.4) for B = 1,2,...,10. Each solid

dot denotes one frequency component m-j^w, + nu^.

Fig. 5 The rate of convergence for Cases 1, 2, and 3 in the Examples in

Table 3. Horizontal axis indicates the iteration number j. Ver

tical axis indicates the error estimated by

c(j) =/F1z(x0lJ,;B) +F2z(x0"';B) .

Fig. 6 (a) Steady-state waveform for Duffing's equation x + 0.06x + x + x

= 0.5 cos t + 0.5 cos 0.81 t (Case! )

(b) Normalized frequency spectrum of (a).
3

Fig. 7 (a) Steady-state waveform for Duffing's equation x + 0.05x + x + x

= 0.3 cos t + 1.5 cos 0.115 t (Case 2)



(b) Normalized frequency spectrum of (a).

Fig. 8 (a) Steady-state waveform for Duffing's equation x + O.lx + x + x

= (1 + cos 0.115 t) cos t (Case 3)

(b) Normalized frequency spectrum of (a).

Fig. 9 (a) Differential-pair amplitude modulator circuit. Vcc = 10V,
V£ =5V, L=2mH, C=500 pF, RL =20 kQ, RB =15 kO, e^t) =
=0.01 cos 0.115(.106)t and e2(t) =V2 cos 0.115(106)t.

(b) Ebers-Moll^transistor circuit model with the 2 diodes described

dk *h* ^ "«. hby lAu = lS* dk " !]» l* =10"8a» X=40, a=0.99.

Fig. 10 (a) Steady-state output voltage waveform v (t) for Case 1: carrier

signal e^t) =0.1 cos 106 t, input signal e2(t) =4.0 cos 0.115(106)t
(b) Corresponding base-to-emitter voltage waveform VroU) f°r

transistor T.

(c) Corresponding base-to-emitter voltage waveform vEB(t) for
transistor T3.

Fig. 11 (a) Steady-state output voltage waveform V (t) for Case 2: carrier
6 —————

signal e^t) = 0.1 cos 10 t, input signal e2(t) = 5.3 cos 0.115(10 )t
(b) Corresponding base-to-emitter voltage waveform VcB(t) for
transistor T,.

(c) Corresponding base-to-emitter voltage waveform Vco(t) for

transistor T3.

Fig. 12 Normalized frequency spectrum for the modulator output voltage wave

form in Fig. 11(a) (Case 2)
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