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ABSTRACT

We present an algorithm for solving singular value inequalities

over a continuum of frequencies. The algorithm is in two parts: a

master algorithm which constructs an infinite sequence of finite sets

of inequalities and a nondifferentiable optimization subalgorithm

which solves these finite sets of inequalities.
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1. Introduction

We are beginning to witness the realization that important aspects

of control system design can be expressed in terms of inequalities

[6,7,8] and, in particular, in terms of inequalities involving the

singular values of transfer function matrices, such as the compensator-plant

transfer function matrix G(x,w)*, with x £ 3R denoting the design parameters

[1,2,3,4,5,23], For example,the requirement that the closed loop system

remain stable in the face of additive or multiplicative perturbations

of G(x, w), can be expressed in terms of singular value inequalities

[2,3,5], Another example occurs in singular perturbation problems which

arise when a high order system is modeled by a low order model. The

stability of the high order system follows from that of the low order

system if certain singular value inequalities are satisfied [5].

Again, in [4] we find that the requirement for low sensitivity, in a

linear control system to additive output noise and parameter variations

can be expressed as a singular value inequality. Generally, these

inequalities have the form

Uw) 1 o(x,w) <_ a(x,uj) £u(u) (1.1)

for all (0 € [u>0,a>£],

where a_ and c~ are the smallest and largest singular values of an

appropriate transfer function matrix G(x,o>), and £(to), u(a>) are

continuous, real valued functions. Unfortunately, before this work,

there were no known algorithms for solving such inequalities. The

reason for this is that the singular values of G(x, w ) are not

continuously differentiable. In fact, they are not even differentiable

at multiplicity points.

1 G(x,w) is a complex valued matrix.
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In general, one may wish to select a compensator vector x which

not only satisfies (1.1) but a number of other specification

inequalities as well (see e.g. [7,8,9]). Furthermore, it may be

desirable to minimize some cost while doing this. However, the main

stumbling block at present is (1.1), and once we learn how to solve

(1.1), the extension of the algorithm to include additional sets of

nondifferentiable or differentiable inequalities and a cost for

optimization is quite straightforward. Because of this, to avoid

making the exposition more complex then is absolutely necessary, we

restrict ourselves to presenting an algorithm for solving the infinite

set of nondifferentiable inequalities (1.1). The algorithm consists

of two parts: a master outer approximation algorithm which

substitutes for (1.1) an infinite sequence of finite sets of non

differentiable inequalities, defined by a few points w€ [c^, wf] and

a nondifferentiable optimization subalgorithm which solves these

inequalities. As can be seen from [9], the extension of our algorithm

to the problem of minimizing a cost subject to (1.1) and additional

inequalities merely requires a fairly straighforward extension of our

subalgorithm from the form of unconstrained optimization to that of

constrained optimization.

2. Continuity and Differentiability of Singular Values

Let G(x,io) be an m x m complex valued transfer function matrix, with

x € mk the design, or compensator, parameter vector to be selected,

and co the frequency variable. The following assumption will hold in

most design situations:
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k 1
Assumption 2.1: There exists an open set X C ]R such that G : X x IR

-»• C is analytic (componentwise). n

The relevant properties of the singular values o .(x,<o),

i = l,2,..,m of G(x,co) are easiest to establish by considering first

the eigenvalues y (x,to), i = l,2,..,m, of the symmetric matrix

Q(x,co) =G* (x,co) G(x,co) (2.1)

We recall that the singular values are defined by

ai(x,aJ) "-^(x.co), i» 1,2,..,m. (2.2)

Assumption 2.2: The pairs (x, to), x £ X, to £ IR , at which Q(x,u>) has

multiple eigenvalues are isolated, i.e., for every such pair, there

exists an open neighborhood N of (x,<o) in X * ]R such that

(x,io) is the only pair in X x IR at which Q has multiple

eigenvalues. n

Referring to [10] Ch. 6 Sec. 2, we see that in view of Assumption 2.1,

Assumption 2.2 will be satisfied, except for some pathological cases,

essentially always.

Proposition 2.1: Suppose that Assumption 2.1 holds. Then the eigenvalues

y.(x,io), i = l,2,..,m, of Q(x,to) are locally Lipschitz continuous on

X * m1.

Proof: Let x, xf € x, <o, w' € it1 9 and let

AQ= Q(x\co') - Q(x,to) (2.3)

-3-



Then AQ is a symmetric matrix which can be decomposed into the form

AQ-j;Pi (2.4)

where P. is a symmetric matrix with at most two nonzero elements that

are equal to some element Aq of AQ. It now follows from Wilkinson

[11], p. 41 and Parlett [12] Ch. 10 that

|y (x,co) -y (x1,^)! ll "kJ^kJ for ±= 1*2*"»m» (2.5)
&9 Xr

with m. € [0,1]. The proposition now follows from the differentiability

ofQ(','). B

Consider the matrix Q(x,u>). Let h € ]Rn , v € IR be arbitrary. Whenever

6yi(x,(o;h,v) - -^ y^x+Xh.io+Xv)|xmQ (2.6)

exists, we shall refer to it as a one dimensional derivative.

Proposition 2.2: Suppose that Assumptions 2.1 and 2.2 are satisfied.

Consider the matrix Q(x,o>). Then the bi-directional derivatives of

its eigenvalues, <5y (x,u>;h,v) , i m 1,2,... ,m,exist for all (x,to)

1 k 1
€ X x IR ,(h,v) € 3R * IR , and are continuous in (x,w) at all (x,co)

G X x IR at which Q(x,co) has distinct eigenvalues only.

Proof: Let (h,v) € ^ x -jr1De arbitrary and consider the matrix

Q(x+Xh,io+Xv) for X € ^[-1,1] with X > 0 such that x + Xh S X for all

Xe[-T,x"]. Then the yi(X) « yi(x+Xh,w+Xv), i- l,2,..,m, are the roots
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of the characteristic polynomial

n-1fCX,y) = ym+ VlCX)y + ••• + VA>

Where the a, (X) are analytic functions of X. It now follows from

algebraic function theory Csee e.g. [10]), that if y (0) is a simple

root, then there exists a X. £ (0,X] such that in all X€ [-X^X^]

yi(x) =y*(0) +c£\ +c^X2 + (2.7a)

and hence that 3y (0)/3X « a., and consequently,the one dimensional

derivative 6y (x,<o;h,v) - j^ y (x+Xh,co+Xv)|x a Qexists. Next since

f(X,yi(X)) =0,VX € [-X^XJ. (2.8)

we find that for X G (-X ,X.)

|̂fim)+|ia>yi(x)) s^n.o. (2.9)
i 3f iBecause y (0) is a simple eigenvalue, it follows that j- (0,y (0)) ^ 0

and hence,from (2.9),3y (0)/3X is seen to be a continuous function of

(x,io), which also proves the continuity of <5y (x,u);h,v).

Now suppose that y (0) is an eigenvalue of Q(x,u>) of multiplicity

U > 1, i.e. suppose that y (0) « y (0) - ... = y P~ (0). It then

follows from algebraic function theory that for some integer I £ [1,p]

and all X€ [-X ,X ], with \± € (0,X ],

yi(X) = I cW6'* (2.10)
k=0

Now, if I > 1, then y (X) will be complex for some XS (.-X^X^) .

But y (X) is an eigenvalue of a positive semi-definite matrix and
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hence must be real. We therefore conclude that I • 1 and hence that

3X
exists. Consequently, Sy (x,w;h,v) also exists,

The fact that the partial derivatives of eigenvalues of a

symmetric, positive semi-definite matrix are not necessarily continuous

at multiplicity points is best seen from a simple example. Consider the

matrix

X + X

Q(x)
1 - X

1 - xJ

1

1 2Its eigenvalues y (x), y (x) are the roots of

[y - (xV)] [y - x1] + (1-x1)2 -0

and hence

rX(x) o(^ xr) + Vd-x1)2 +(^-)

r2(x) - (x^ *r-) -V(1.XV + (2L.)

Setting x • (1,0), we get the double eigenvalue y (x)

A straightforward calculation shows that

C3y1(x)/3x1) - 0, (3y1(x)/3x2) « 1.5,

(3y2(x)/3x1) - 2, (3y2(x)/3x2) --0.5.

Now, let x * (l,e) with any e > 0. Then

CSy^x )/3x1 - 1, (3y1(x^)/3x2 -1.5,
e e

(3y2Cx )/3xX - 1, (3y2(x )/3x2 - -0.5,
C a E
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and we see that 3y (x)/3x , 3y (x)/3x are not continuous at x.

Corollary 2.1: Suppose that Assumptions 2.1 and 2.2 are satisfied that

y (x, to) is a simple eigenvalue of Q(x,to), with x e X. Then there exists

an open neighborhood N in X x R of (x,co) such that V y (x,co) exists

and is continuous for all (x,co) € N .
x,u>

Proof: Since y (x,u>) is a simple eigenvalue of Q(x,co), all the partial

derivatives 3y (x,to)/3x exist and are continuous for all (x,io) £ N— — .

Hence, by Theorem 9.16 in [13], V y (x,u>) exists and is continuous for

all (x,(o) e n . n

Referring to Bellman [14] p. 60, we see that when y (x,co) is a

distinct eigenvalue, then V y (x,co) must be given by the formula

m . 3Q. (x,w)
Vxyx(x,co) «- I yjXx,u>) ^ vi(x,co) (2.14)

j"l

where Q. ^ is the jth column of Q and v.(x,co) is the unit norm eigenvector

of Q(x^o), corresponding to y (x,to). Formula (2.14) is very easy to

obtain formally, as follows:

[y^x.uOl -Q(x,w)] v±(x,(o) =0. (2.15)

Hence,

3v (x,io)
[yNx.u)! - Q(x,u))]

+ vi(x,to) Vxyi(x,co)

m 3Q,(x,to)
+ I Vi(x,<o) 1~ -0. (2.16)

j=l

3x

T
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Since flv.(x,w)I • 1 and v.(x,u>) is also a left eigenvector of Q(x,<o),

(2.14) follows directly from (2.16) after premultiplication of (2.16)

by v (x,w) • The v and o to which they correspond can be computed

simultaneously by means of a singular value decomposition algorithm,

such as [15].

Since the gradients Vy (x,u>) do not necessarily exist nor are

continuous at pairs (x,u) at which y (x,u>) is a multiple eigenvalue of

Q(x,co), an algorithm for solving eigenvalue inequalities has to make use

of generalized gradients and their relevant properties [16] which we

now summarize.

Definition 2.1. The generalized gradient 3^ (x,co) is defined by

3v^x.w) - co lim Vyi(x+v ,u>) (2.17)

where v. -*» 0 is such that Vy (x+v ) exists* and so denotes the convex hull.

Proposition 2.3: Suppose that Assumptions 2.1 and 2.2 hold. Then the

generalized gradients S^Cxjio) i-l,2,..,m, of the eigenvalues
yiCx,u), i- 1,2,..,n, of Q(x,o>), exist for all (x,w) € X* m .

Furthermore, they are compact and upper semicontinuous (i.e.tx.-*-x,

gjSd^Cxj.w), g^gWiea^BJI).

Proof: Since by Proposition 2.1, the y± are locally Lipschitz continuous,

the desired result follows directly from [16]- n

Generalized Mean Value Theorem 2.1 [17]. Suppose that Assumptions 2.1

and 2.2 hold. Let y (x,u>) be defined as before. Then for any x', x"€ x,

to € ir1, there exists a K- x,+s(x"-xl), with s€ (0,1), such that
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yi(x",to) -yi(x,,to) «<g^, xM -x'> (2.18)

with g^ S3xyi(C,uj). n

This completes our collection of relevant results about the

y (x,io) and we are now ready to proceed with the construction of an

algorithm for solving singular value inequalities.

3. An algorithm for singular value inequalities over a discrete set

of frequencies

We begin by developing an algorithm for solving singular value

inequalities at a set of frequencies. Thus, in this section, we

k
consider the problem of finding a vector x €= 3R such that the singular

values a (x,to), o (x,to), ..., a (x,«o) of a complex valued m xm transfer

function matrix G(x,co), satisfy inequalities of the form

AGO <. or (x,co ) <_ u(u ) for i » l,2,..,m

j = 1,2,..,J (3.1)

Since there is no essential loss in generality and considerable

saving in detail, we shall develop first a version of the algorithm for

the simplest case of (3.1) viz.

£(w) <. o (x,co) <_ u(to), i = l,2,...,m, (3.3)

where ufa) • °° is allowed. Since co is fixed in (3.3), we may obviously

i i 2 i
drop it in our notation. Since y (x) = a (x) , and a (x) >. 0 always, we

can substitute for (3.3), the equivalent set

I1 < y±(x) < u2, i= 1,2,.., m. (3.4)
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2

Now , for i - l,2,...,m let

f*(x) ay±(x) - u2 <3-5a)

and for i - m+ 1, ..., 2m, let

f^x) - A2 - y1"^) (3.5b)

Since, the y (x) are not continuously differentiable, there is no

advantage in treating them individually, as in Newton's method or in

a method of feasible directions, hence we define

i|/ (x) « max f^x), (3.6)
i€2m

with 2jn» {1,2,.., 2m}, which permits us to replace (3.4) by the

statement: find an x € X such that

Kx) < 0. (3.7)

Since the function ^(.) is obviously not continuously differentiable,

it is necessary to introduce a smoothed out, "steepest descent

equivalent" rule for computing descent directions. To this end, for

any e > 0, we define 3

3ip(x) * co g 3f^x1) (3.8)
e ieig(x') e

x'6B(x,e)

here, for a given o > 0,

I (x») - {ie2m|fi(x,) - iKx1) >-oe} (3.9)

2 To extend our treatment to more than one frequency to, all that needs
to be done is that more fi(*) need to be defined.

3 It can be seen from the proofs to follow that we may have used Io(x')
instead of I (x1) in the definition of 3£4»(x). However, the use of le(x!)
is bound to result in better computational behavior.
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compute h , we could then easily define a convergent algorithm, patterned

on a phase I method of feasible directions (see [19]) which would

minimize ^(x) and hence, under mild assumptions, solve (3.7) in a finite

number of iterations. Unfortunately, it is impossible to compute h ,

and therefore we can only hope to construct an algorithm based on the

ideas presented so far, if we can construct,efficiently,suitable

approximations to h . We shall now describe such a process.

Suppose that 0 £ 3 'l'(x) and that we have a discrete approximation

\ C 8£^x) t0 3 *(*) (i.e. Y contains a finite number of vectors).

By applying a standard quadratic programming algorithm, we can compute

b^ - Nr(Yk) - arg min{HhO|h €Yfc} . (3.15)

Since Y. C 3j|>(x), we must have Bh.II >. Oh 0. Now, referring to Fig. la,

suppose we find a g, £ 3 i/>(x) such that

<8k~!V V -° (3,16)

and then form Y. . * {g.} U y We can now compute h^, = Nr(Y,_).

Clearly, Bh D <_ Rh^-ll < lib- D. Furthermore, as is proved in [20],

this process cannot continue for an infinite number of k's, unless h = 0.
e

We now show that either h, is an adequate approximation to h or else a

g, as above can be constructed in a finite number of iterations. Thus, if

2 elV
♦fr-TS^r V " *w £" 2iih7 ihkQ ± - —t- (3.17)

we accept b^, on the basis (cf.(3.14)) that it is at least "half as

good" as h as a descent direction. If (3.17) does not hold, then

referring to Fig. lb (since KO is directionally differentiable because
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and

V^ "x»6bW) 3fV) (3'10)

where Sf^x) - 3y1(x) for i- 1,2,.., mand 3fi(x) -{g| - g€ 3y1"^(x)}

for i •m+l,m+2,..,2m. Now, suppose that for some e > 0, 0 £ 3£*Kx). Let

h - Nr(3 tKx)) - arg min CBu' 0|li* € 3J>(x) > (3.11)
e e e

Then, for any X€ (0,£/Bh B), we have (x-Xh) € B(x,e) and, by the

generalized mean value theorem iKx-Xh) - 4>(x)

- max {f^x-Xh )- i|>(x)}
i e

» max {f (x-Xh ) - t(>(x)}
i€l0Oc-Xhe)

max {f*(x) - <j/(x) - X<g* h >} (3.12)
iei0(x-xhe) 6

where g* e 3fi(x-siXh ), i- 1,2,..,2m with s1 € (0,1). Now for

i - l,2,...,2m,(x-s Xh ) € B(x-Xh ,e) by construction and hence all the

g„ € 3 *Cx). Therefore, because of (3.11), we must have
5 e

<g* - h ,h> > 0, i- 1,2,..,2m, (3.13)
£ E E "—

i.e. <g*, h> > Bh B2. In addition, f^x) - Kx) <0 for all i.

Consequently, (3.12) yields

4»(x-Xh) -Kx) <.- xBh B2 (3.14)

for all X e [0, s/flh B].

Because 3 4»(x) is upper semicontinuous, it follows Theorem 2,

p. 116 in [18], thatOh Bis lower semicontinuous. If we could only
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Step 2: If for j >, 0, an integer, such that Be/M £ 6 <. z/M »we have

Kx-3jh) -*(x) <.- -|- Dhll2 , (3.20)

set h, ° h and go to End.

Step 3: Set I «* 0, r » y « E/tlbJ.

Step 4: Evaluate Vf (x-yh) for i S I0(x-^h) (perturbing u slightly, if

necessary to create distinct eigenvalues in this set) and set

dtKx-yh;h) = max <7fi(x-yh), h> (3.21)
ieio(x-uh)

Step 5: If d\Kx-yh;h) >_ - -r flhJ go to Step 8. Else continue.

Step 6: If

iKx-yh) -*(x) ±-| BhO2 (3.22)

set I « y. Else set r = y.

Step 7: Set y = (Jl+r)/2 and go to Step 4.

Step 8: Set

Y-YU (Vfi(x-yh)|

ieIQ(x-yh), dij;(x-yh;h) «<Vfi(x-yh),h >} (3.23)

and go to Step 1.

End. n

In view of the preceeding discussion, the following result is

fairly obvious. For a proof, see [9,20,21,22].
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the y CO are one dimensionally differentiable) at the value of X S

[0, e/flhe0] at which Kx-Th^-Kx) --jIhJ2, we must have a
directional derivative dKx-Xk;tL) >. -i Bh.II2. Now,

dKx-Ihk;V " «-, af^x-Ih^) (3.18)
i Iq(x—Xh, )

Since the values of Xat which the fi(.) are not differentiable are

isolated, we may assume that the Vfi(x-Xhk) exist for all iei(x-X\)
Ci.e. that these are all simple eigenvalues). Let

gk €{7fi(x-Thk) |i EI^x-lb^)}

be such that dKx-Th^) o-<v ^ . rbn we ^ ^ a) ^ e^^
and b) dKx-Xh^) «-<V \> ^ TBh/. But this implies that'

<vV±i V2<! V (3.19)

and hence that gfc satisfies (3.16). Consequently, if 0f 3^(x), after
afinite number of augmentations of Yfc, we obtain an b^ such that
C3.17) holds. Because of the continuity of the dfi(x-Xh;h) in X

(which follows from the series (2.7a), (2.10), we can find a X *X
k

and corresponding gk which satisfies (3.16) in a finite number of

operations. We now present such a process in the form of

Subroutine 3.1:

Data: x€X, 0€ C0,l), e>0, Y>0; YC9^(x), adiscrete subset; k,
an integer.

Step_l: Compute h-Nr(coY). if lhB <Ye, set b^ -hand go to End.
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Step 6: Set xfcfl • ^ - P i^ .

Step 7: If ^(x,+1) <. 0, stop. Else, set k = k + 1 and go to Step 1. n

Theorem 3.1: Suppose that 0 £ 3-$00 for all x £ X such that $(x) > 0,

and that Algorithm 3.1 constructs a bounded sequence {x, }^=0 in X. If

{x, } is infinite, then any accumulation point x* of {x^} satisfies

Kx*) - 0.

Proof: First, suppose that x is such that ip(x ) > 0, so that

0 £ 3qtKx ). Then, because of the continuity of the f (•) and the upper

semicontinuity of the 3f (•), there exists an e. > 0 such that

0 £ 3 i|>(x ). Since for all £ € [0,6,3.3 t|»(x ) C 3 ^(x ), there
el x e el

it 4 it it
must exist an £ - e /2 e [0, £-], such that if h£*(x ) • Nr (3£^(x )),

then ilh *H >^26e > 5e*. Since IIh *(x)H is lower semicontinuous

(h *(x) • Nr(3 *<|>00)) there must exist a p > 0 such that

Qh .(x)H > 6e* V x€ B(x*,p*) . (3.27)

Now, suppose that {x, }, as constructed by Algorithm 3.1 is infinite,

* it

that x is one of its limit points and that <Kx ) > 0. Then we have:

a) ^(x, ) is a monotonically decreasing sequence, b) There exists a

k * *
subsequence {x. }, g _. such that x. -*- x and hence there exists a k such

that x, € b(x ,p ) for all k£K, k >_ k , with p as in (3.27). Hence

it it it
for k € K, k ^ k , Step 5 will be reached with e ^ e , with e as in

(3.27), and hence, from (3.20), (3.26) and (3.27), we must have, with

* a* * *
l such that B 5 <. 1, that L < i for all k € K, k >_ k , so that

<. -•—""* 6e* Vk € K, k1 k* . (3.28)
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Proposition 3.1: If 0 £ 3 Kx), then Subroutine 3.1 will construct an

h. satisfying (3.20) in a finite number of iterations. n

We are finally ready to state an algorithm for solving the

problem of finding anx^X such that Kx) ± 0.

Algorithm 3.1:

Data: xQ, £ > 0, a > 0, 6^ (0,1), y > 0, 6 >0 .

Step 0: set k •» 0.

Step 1: Set £ • £ .

Step 2: For i € I 00,

If f (x. ) corresponds to a simple eigenvalue of Q(x. ), compute

8i "Afi(xk} (3,24)

making use of the formula (2.14).

If f 00 corresponds to a multiple eigenvalue of Q(x, ), compute

g± -Vf±(xk+d) (3.25)

Where d is a randomly selected vector, with BdB _< 0*9e.

Set Y- {g±|i eie(xfc)}.

Step 3: Transfer x. , Y, £, y. k to subroutine 3.1 to compute h. .

Step 4: If Bh. B < 6e, set e • e/2 and go to Step 2. Else continue.

Step 5: Compute the smallest integer I, >_ 0 such that

UjO^-B \)-U*y) <-fkDl^B2 (3.26)
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IM <_ a (x,w) £u(o>), for i - l,2,..,n

a) € [ojo> a)f] (4.1a)

Where £,u : ]R -• IR are continuous functions and the o (x,u>) are the

singular values of a m x m transfer function matrix 6(x,u)). As in the

preceeding section, we rewrite (4.1a) into the equivalent problem of

finding an x^X satisfying

2 i 2
£(u>) <. y (x,(d) <.u(u>) , for i = l,2,..,m

a) S [ci)q, ajf] , (4.1b)

i i 2
where the y (x,tu) = a (x,u>) are the eigenvalues of the positive

semidefinite m x m matrix

A ^

Q(x,u>) « G(x,w) » G(x,to) G(x,tu). (4.2)

and

As in section 3, we define again

f^x.co) « yi(x,w) - u(o))2, for i« l,2,..,m (4.3a)

f^x.oj) = A(u>)2 - yi"n(x,a)), for i=m+l, m+2, .., 2m. (4.3)

Next, we define

Kx,o>) » max f (x,u>) (4.4)
i € 2m

Where 2m » 1,2,..,2m .

Finally, we define <t> : X •*• B. by

<J>(x) «=» max iKx,u) (4.5)
oj S n

with fl » [u> , o) ]. We note that ^(*,*) is continuous and hence* since
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But (3.28) implies that Kx,) -*• - • which, by continuity of ij>(')>

contradicts our assumption that if>(x ) > 0. Hence we are done. Q

An important assumption in Theorem 3.1 is that the sequence {x. }

constructed by Algorithm 3.1 is in X, the subset of IR in which the

transferfunction G(x,u>) matrix is componentwise analytic. If we assume

that for x £ X,G(x,w) has a pole at x, then iKx) * °° and, provided an

upper bound on the singular values is included or, we see that the

Algorithm 3.1 will automatically avoid such points.

Finally, an important and rather obvious extension of Theorem 3.1

is as follows.

Corollary 3.1: Suppose that 0 £ 3 t|>(x) for all x € x such that i|>00 >. 0.

IfAlgorithm 3.1 constructs a bounded sequence {x. }, then this sequence

must be finite and its last element, say xr» satisfies tf>(xr) <. 0. n

The assumptions in Theorem 3.1 and Corollary 3.1 that 0 € 3Q^00 for all

x £ X such that tf>(x) > 0 (or ?Kx) >, 0) is totally analogous to a similar

assumption made in phase I methods of feasible directions (see [19]) and

is weaker than appropriate assumptions for Newton's method to work in

solving differentiable inequalities.

We are now ready to proceed to our final stage, namely the

construction of an algorithm for solving singular value inequalities

over a continuum of frequencies.

4. A Master Algorithm for Singular Value Inequalities Over a

Continuum of Frequencies .

We now turn to our problem in its most general form, namely, find an

x £ X such that

-17-



which is why the term "outer approximation" is used for the set on the

left. The Master Algorithm below, makes use of a double subscripted

sequence {£..)v .which must satisfy the following hypotheses:

HI: £.. - 0 for all k and E.fc >0 for all k > j, (4.11a)

H2: e^k/e1 as k"*"00, (4.11b)

H3: e\ 0 as j -*• ». (4.11c)

There is some skill involved in selecting a sequence {£..) which

is particularly well matched to one's problem. However, a good rule of

thumb is to keep the £., as large as possible for as long as possible

since this results in the smallest sets of finite inequalities that

must be solved at each iteration of the Master Algorithm. A particular

example of such a sequence {e .} is given by e., = 100 [(. -)

' (k+T)1/10]' k=V*1'2'-'" and j<k.

Finally, if we wish to be sure that Algorithm 3.1 will solve the

finite sets of inequalities to be constructed by the Master Algorithm,

we must make the following assumption.

Assumption 4.1: For any finite subset 11 Cj), for every x S X such

that max ip(x,io) >. 0,

0£co U 3i|;0(x,aj), (4.12)

where

n 00 • (co'en U(x,u>') = max iKx,u>')} - (4.13)

k

-20-



n is a fixed compact set, by the Maximum Theorem p. 116 in [18], $(•) is

also continuous. Thus, the problem we wish to solve, can be stated as

that of finding an x € x such that

<fr(x) <0. (*-6)

We propose to solve (4.6) by decomposing this problem into an

infinite sequence of finite sets of inequalities which need to be solved

only approximately by Algorithm 3.1. Our method is extracted from the

outer approximations methods proposed for infinitely constrained

optimization problem in [23].

First, we must introduce an acceptable scheme for approximately

evaluating <fr(x). Let I :K+ + 1N+ (with 3N+ - {0,1,2,3,...}) be such

that A(k) -*• - monotonically as k -»• • and, for k € u+, let*

J^ A{tt|« .o)o +ĵ ^, j-l,2,..,*(k)} C*-?)

and let

(j> (x) ^ max tKx,w) ^*8^

Obviously, <J>, (x) is always computable in a finite number of operations

(assuming that the a computations are finite). Also, given any compact

set C C x,

Uk(x) - <|>00| +0ask +«, (4.9)

uniformly in C. Note also that

{x|4>, (x) < 0} D {x|Kx) ±0}, (4.10)
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Proof: We distinguish between two cases. First suppose that the

Master Algorithm jams up, cycling between Steps 2 and 3 and generates

an infinite sequence x. B x, ,. ° - - -. , i.e., x, = x,
oo o

for all k^ k . Then we must have <frk(x, ) <_ 0 for all k >_ k and
o

hence, <f>(x, ) <_ 0.
o

Next, suppose the sequence (x, } was constructed without jamming

K *
up in the loop defined by Steps 2 and 3, and suppose that x, -»- x.

For the sake of contradiction, suppose that <J>(x) > 0. Hence, since by

continuity <Kx«) -»• <|>(x) and l^i-Osi-) ~ ^^iP I**" ° as ^ "*" 0B» and

E. \ 0, by construction, there must exist a j such that

♦jfej) 1 *(x)/2 >ej >ejk (4.16)

for all j £ K such that j >_ j and k >_ j. Since by construction of x.

ti i|»(x,,o)) £ 0 for all u> € o ,and u>. G fi for all j e K, j >. jQ and

k > j, we must have

and

*(xk,wj) <. 0 for all jek, j>jQ

and k >. j + 1 . (4.17)

Now, ft is compact and hence iK',u) is continuous, uniformly in w^ fl.

Therefore we must have

1*0^,^) -*(Xj.Wj)| +0, (4.18)

as j •*• «>, with j, k ^ k and k >_ j+ 1. But (4.17) and (4.18) imply that

lim <fr.(x.) < 0 , (4.19)
j6R j j "

which,in turn,implies that lim <(>(x.) ±0, Hence since x. -»• x and $(•)
j € K 2 3
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We are now ready to introduce the

Master Algorithm 4.1

Data: A set of discrete frequencies nQC aand adouble subscripted

sequence (£..}. . satisfying (4.11a) - (4.11c). A function

Jt :U, •*• U, such that Jl(k)/^~ ask->».

Step 0: Set k = 0.

Step 1: Compute by means of Algorithm 3.1 an x^ such that

Kx.^) £ 0 for all w€ fife . (4.14)

Step 2: Compute 4^0^) and ani^G^ such that H\t\> - \(\> •

Step 3: If 4>k0O f. °» set Xj.- - Xj^, set k - k+1 and go to Step 2.

Step 4: Construct

Qfcu • {\} u l»i €°kl«VV - ejk }• (4-15)

Set k • k+1 and to to Step 1. n

Examining (4.15) we see the advantage in keeping the £k as large

as possible for as long as possible: this results in the largest

removal of points w from flfe in the construction of Gk+1« Xt should

also be noted that a good thing can be overdone and it is best to

adjust the s.k sequence interactively, as the computation progresses.

Theorem 4.1: Suppose that Assumptions 2.1, 2.2 and 4.1 are satisfied.

Let {x, }TmQ be any sequence constructed by the Master Algorithm 4.1.
A CO *

Then any accumulation point x of i^-^0 satisfies *00 f. 0.
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is continuous, we must have <Kx) <. 0. But this contradicts our hypothesis

and hence we are done. n

Although we are not able to establish that the cardinality of the

sets ft, remains bounded, computational experience leads one to expect

the set ft, to be small and to stay small, and hence the computation of

the x, is not too difficult. The computation of xk+1 is further

facilitated by using x, as an initial point for Algorithm 3.1.

5. Conclusion:

We have shown that distributed singular value inequalities can be

solved by combining concepts of outer approximations with those of

nondifferentiable optimization. The algorithm is usable as presented.

However, since it is the first algorithm for this class of problems, we

expect with time to evolve more efficient versions which make greater

use of the properties of singular values.
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FOOTNOTES

1 G(x,(u) is a complex valued matrix.

2 To extend our treatment to more than one frequency u>, all that needs

to be done is that more f (') will need to be defined.

3 It can be seen from the proofs to follow that we may have used Iq(x')

instead of I (x1) in the definition of 3 iKx). However, the use of I (x1)
£ E fc

is bound to result in better computational behavior.
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and let U be a matrix of orthonormal eigenvectors associated with the

eigenvalues f (x) of Q(x). Finally, let E be a diagonal matrix
E(x-yn,n;

whose elements are the ordered eigenvalues of u -^- (x-Xh)I, U .
£ oA A—y E

Then

A (x-mh,h) = E (x-yh,h) (A3)
£ £

Thus, rather than performing a full singular value decomposition at

x-yh we only need to perform of singular value decomposition for the much

smaller matrix U -^ (x-Xh)L . U . Furthermore, if V is a matrix of
e 3x 'X=3 E

eigenvectors for this smaller matrix, then the required eigenvectors for

the gradient formulas are the columns of the matrix U \/. We note that

whereas the calculation of eigenvectors in the vicinity of multiple

singular values by SVD is highly ill conditioned, the above described

process can be expected to be quite well conditioned.
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Appendix: Computational Aspects of Subroutine 3.1

We shall now examine some of the computational aspects of subroutine

(3.1). First, since in step 5, the test dip(x-mh;h) ^- -rM is used,

the next h computed in step 1 (say, lOwill satisfy, approximately, Bh-0

iT^hR. Obviously this process is not likely to go on for more than a

few iterations when BNr(3 <Kx))B is comparable to the "diameter" of that

set. As flNr(3 iJ>00)B goes to zero, progressively more work would be

required. However, since we are not minimizing t|>00 but only looking for

an x such that tKx) £ 0, it can be expected that the work spent in Subrou

tine 3.1 will never be excessive. It is possible to decrease this work

even further at the expense of risking to accept a somewhat worse direction

by replacing the factor j in (3.20), (3.22) and (3.26) by 0.1, say, and
3

the factor -r in Step 5, by 0.15, say, which results in the successive

vector h produced in step 1 of Subroutine 3.1 to drop in length by a

factor of approximately 0.15, (i.e. Bh B£ 0.15flh ld")«

Next, it has been pointed out to us by Prof. W. Kahan, of the

Department of Electrical Engineering and Computer Sciences, University of

California, Berkeley, that the computation required in (3.21) can be

carried out approximately without performing a full singular value de

composition, thus resulting in considerable savings. This suggestion is

based on the observation that for £ small,

d (x-mh;h) " max dfi(x-yh;h) (Al)
i€ie(x)

and that the directional derivatives df\x-mh;h), i^I (x) are approximately

given by the following formula: Let

A£(x-mh;h) -diag(dfiOc-mh;h)) (A2)
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FIGURE CAPTIONS

Fig. la. Successive improvement of h.

Fig. lb. Definition of X.
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