

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE DESIGN AND IMPLEMENTATION OF QUERY MODIFICATION

IN THE DATA BASE MANAGEMENT SYSTEM INGRES

by

Eric Allman

Memorandum No. UCB/ERL M81/11

10 March 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored by the U.S. Army Research Office Grant DAAG29-79-C-0182 and
the Department of Energy Grant DE-AS01-78ET29135.

The Design and Implementation
of Query Modification in the

Data Base Management System INGRES

Eric Allman

ABSTRACT. Certain database services such as views. Integrity assertions,
and protection constraints can be provided using a technique known as
Query Modification. This technique involves modifying a high-level query
before processing into a query that can be run safely without further
checks. The design and implementation of Query Modification in the da
tabase management system INGRES is described.

INGRES (INteractive Graphics and REtrieval System) is a relational database

management system currently operational at the University of California at

Berkeley. Recently, virtual views, semantic integrity assertions, and protection

constraints were implementing using algorithms based on query modification.

Query modification is a technique whereby user queries are modified into

queries that are guaranteed to have no semantic or access violations. These

queries can be executed directly on the database, with no runtime checking

required.

This paper describes the design and implementation of these three modules

in the database management system INGRES. Section one is a problem state

ment, describing desirable features of these modules. Section two gives a brief

summary of the INGRES environment. Section three discusses the query

modification technique. Section four describes the design and implementation

of query modification, including an evaluation of how well the implementation

satisfies the design goals, and in general to what extent the implementation has

Design & Implementation of Query Modification 1

Design & Implementation of Query Modification

succeeded. Finally, section five gives a summary and conclusion.

Design & Implementation of Query Modification 3

1. Problem Statement

1.1. Views

Views allow definition of "virtual relations'*, i.e., relations that are

defined as a function of other relations instead of being physically instan

tiated. Views are useful as a macro facility and to support obsolete sche-

mas1. For example, if a schema had existed that kept the employee and

department information in a single relation, it would be possible to maintain

this view of the world even if the relations were split up.

In IMS- or DBTG-like languages, the sub-schemas (view definitions) are

maintained by the database administrator — as are all aspects of the

schema. In INGRES, the schema is dynamic and may be extended as con

venient by the user. Logically, the same ability should be available for views.

Thus, view definitions should not require another language that the user

must learn; in other words, view definitions should be an extension of the

existing query language.

1.2. Integrity

Frequently information is known about the possible values that a

domain may legally take on that cannot be encoded in the domain's type.

These can be expressed as semantic assertions on the data. For example, an

assertion might be:

assert

(salary > 0 or status = VOLUNTEER)
and 1980 - birthdate fe 16

meaning that all records should specify someone with positive salary or else

a volunteer, and that they must be at least 18 years old.

H.8., data descriptions.

Design & Implementation of Query Modification 4

Integrity assertions should be expressed as a qualification in the query

language.

1.3. Protection

Protection is needed to restrict unauthorized access or update of the

database. Ideally, the protection system will allow selective access to sub

sets of a relations — either a subset of the attributes or a subset of the

tuples, or both.

Access to attributes can be constrained easily by examining the query

in advance. However, access to specified tuples is difficult to control, since

in the general case violations can not be determined until run time. For

example, if each user is only authorized to see the tuples of the employee

that s/he manages, then the query:

range of e Is emp
retrieve (e.all) where e.dept = toy

may or may not have a protection violation, depending on whether the

current user manages the toy department; in general this can not be deter

mined until the query is run.

Design & Implementation of Query Modification 5

2. BACKGROUND

INGRES [HELD75] (INteractive Graphics and REtrieval System) is a rela

tional database management system running on PDP-11 and VAX-112 series

computers under the UNIX3 operating system [RITC74]. The query language

QUEL is based on the relational calculus [C0DD71]. For a complete introduc

tion to INGRES and QUEL, see [W00D79] and [EPST77]. A subset of QUEL,

necessary to understand query modification, is presented here. For a com

plete discussion, see [ST0N76]

2.1. QUEL

QUEL has one declarative statement and four commands. The declara

tive statement is of the form

RANGE OF variable IS relation

The variable is declared to "range over" the relation, that is, during query

processing the variable takes on the value of successive tuples from rela

tion*.

QUEL commands are retrieve, append, delete, and replace, having the

obvious meanings. The general syntax is:

command target (target-list) where qual

where target is where to place the results6. The optional where qual res

tricts the domain of the operation; qual is a predicate calculus statement.

The target-list is a sequence of expressions of the form

attribute = function

8PDP and VAX are trademarks of Digital Equipment Corporation.
SUNK is a trademark of Bell Laboratories.

4Thi3 is conceptually only; the implementation mil do everything possible to avoid looking at all
tuples in relation.

5In a retrieve, target may be omitted, meaning "retrieve the data to the terminal"; in updates
target is the relation name (for append) or variable (for replace and delete) to be updated.

Design & Implementation of Query Modification 8

where attribute is the name of an attribute in the target relation, and func

tion is an arbitrary function.

Functions can be attributes (ie., values in a relation), arithmetic for

mulae, aggregates, or any reasonable combination. Attributes are of the

form var.dom, where var is a variable as declared in a range statement and

dom is a domain name. QUEL also provides "aggregates" and "aggregate

functions". Aggregates are of the form

aggr(function where qual)

where aggr includes avg, sum, min, max, and count; aggregates return a

single value. Aggregate functions are of the form:

aggr(function1 by functioiig where qual)

Aggregate functions return a single aggregate value for each unique value of

function*

2.2. Internal Format

Queries are represented internally as trees. The following discussion

will use the tree shown in figure 1. This tree uses the relation

emp(enum, dept, sal, posn, step)

and represents the query

range of e is emp
replace e (

sal = 1.1 * avg(e.sal by e.dept),
step = e.step + 1)

where e.posn = "programmer"
and e.sal < avg(e.sal where e.posn = "programmer")

This query sets the salary of all programmers who earn less than the average

salary for programmers to 10% higher than the average salary in their

Design & Implementation of Query Modification

department, and promotes them one step8.

A brief discussion of the nodes should suffice to explain the semantics of

the tree.

ROOT

RESDOM

/<3> \ /<*\
BOP VA

/(*)\ (e.

RESDOM

(5)

The ROOT node is a placeholder representing the entire

query. On the left is the target list and on the right is

ROOT

TREE BOP VAR CONST

5) (1)

CONST AGHEAD

(1.1) /

BYHEAD QLEND

VAR AGHEAD

(e.3)

AOP AND VAR CONST

'avg) / \ (e.(avg) / \ (e.4) ("programmer")

VAR BOP . QLEND

(e.3) A=)\

VAR CONST

(e.4) ("programmer")

RESDOM

/en \ AOP

(avg)

TREE VAR

(e.2)

/
VAR

(e.3)

Figure 1: Query tree for the query:
range of e is emp
replace e (

sal = 1.1 * avg(e.sal by e.dept),
step = e.step + 1)

where e.posn = "programmer"
and e.sal < avg(e.sal where e.posn = "programmer")

6Hardly an equitable salaryschedule.

Design & Implementation of Query Modification B

RESDOM

TREE

BOP

CONST

VAR

AND

QLEND

AGHEAD

AOP

BYHEAD

the qualification.

This represents a result domain. The argument is the

domain number in the result relation. On the right is

the function to replace this domain; on the left is the

rest of the target list.

This node terminates a target list.

A binary operator. There is also a UOP for unary opera

tor that has one argument on the right.

A constant. The argument is the constant value. In the

actual implementation there are several node types

representing constants of different data types.

An attribute. The argument is the variable and domain

number.

The logical and operator. There is also an OR node.

Qualifications are kept in conjunctive normal form, with

the disjunctive clauses on the left.

Terminates a qualification list.

Introduces an aggregate or aggregate function. The

qualification is on the right. In an aggregate there is an

AOP on the left; in an aggregate function there is a

BYHEAD on the left.

An aggregate operator. The argument defines what

aggregate to use. The function to be aggregated is on

the right. The left is unused.

Introduces the BY list for an aggregate function. The by

list looks like a target list and is on the left. The right

Design & Implementation of Query Modification 9

must be an AOP.

Range variables in the function part or the qualification part are local to

that aggregate. Range variables inside a BY list bind out to the rest of the

query.

2.3. Process Structure

Since processes on the PDP-11 are limited to 65K bytes, INGRES must

run in several processes. These processes are represented in figure 2.

Processes communicate via UNIX pipes.

M
• • •»

«

P Q

—>

«

O

*

*

D 2

M = tty monitor
P = parser
Q = query modification
0 = one variable query processor
D = decomposition
Z = database utilities

Figure 2: INGRES Process Structure

Design & Implementation of Query Modification 10

3. QUERY MODIFICATION

The view, integrity, and protection subsystems can all be implemented

using a query modification technique. This technique can be summarized as

taking a user query and modifying it into a query that can be run safely on the

physical database; the essential feature is that no extra code is needed in the

query processor to implement these subsystems.

3.1. Design Goals

3.1.1. Maximize code overlap

Whenever possible, code should be shared among these three subsys

tems. This can be thought of as, exploit natural similarities whenever pos

sible. The goal was to have at least fifty percent of query modification code

non-specific to any one subsystem.

3.1.2. Minimize system impact

Whenever possible, it was desired that the rest of INGRES be unaware

that query modification exist. Naturally, the parser must be expanded to

include the syntax necessary to define views and constraints; however, the

changes necessary to query optimization (decomposition), execution (one

variable query processor), and the access methods should be kept to a

minimum.

3.1.3. Use standard interfaces

This follows as a corollary to the above goal. The internal form of

queries that query modification reads should be indistinguishable from the

form that it generates. Besides minimizing the effort necessary to imple

ment the interfaces, this also makes the system more understandable and

permits progress on the rest of INGRES to continue concurrently with

Design & Implementation of Query Modification 11

development of query modification.

3.2. Syntax

In the following descriptions, braces ("[]") represent optional syntax.

3.2.1. Views

The syntax to define a view is:

define view name (target-list) [where qual]

The semantics are nearly identical to the retrieve into statement, except

that instead of instantiating the result, the definition is stored.

3.2.2. Integrity

The syntax to define an integrity assertion is:

define integrity on variable is qual

The semantics are that when updating variable, insure that the

corresponding qual must hold after the update completes.

3.2.3. Protection

The syntax to define a protection constraint is as follows:

define permit oper on relation [(domain-list)]
to name

[at term]
[from time to time]
[on day to day]
[where qual]

This has the semantics: let operation oper be performed on the domains

listed in domain-list in relation to user with login name name. This per

mission only applies while logged in at terminal term between the times

listed and on the days listed. Append the qual to the query. The

"(domain-list)" may be omitted, as may the at, from, on, and where

clauses, in which case they default to the greatest possible range of values.

Design ft Implementation of Query Modification 12

The user name may be the keyword all.

3.3. Evaluation Order

The order in which these three algorithms are performed has a

significant efiect on the usability and functionality of the system. The rela

tionships will be explored in pairs.

3.3.1. Views and integrity

It is generally important for views to be processed before integrity

assertions, since otherwise defining views might accidently subvert the

integrity mechanism. The integrity assertion declaration module could

apply the view algorithm to the assertion, but this could have unexpected

and possibly bizarre side effects on other queries.

3.3.2. Views and protection

The implications of choosing evaluation order for the view and protec

tion mechanism are severe. Executing protection before views (i.e., pro

tecting views) gives a finer granularity to the protection mechanism. For

example, a database administrator could create the view that is the aver

age salary of employees, and then grant permission on that view while

denying permission on the employee relation, thereby prohibiting users

from finding other aggregate information (e.g., minimum salary, or the

count of the number of employees). This is the approach taken by

System-R [GRIT76].

However, this has pitfalls. A database administrator could create a

view to a sensitive relation without setting the protections properly,

thereby subverting the protection mechanism without realizing it. Also, a

single piece of data might be accessible through one view but not another.

For example, consider:

Design & Implementation of Query Modification 13

range of e is employee
define view VI (e.name, e.dept, e.salary)
where e.dept = "toy"
define view V2 (e.name, e.salary, e.manager)
where e.age < 30

range of vl is VI
define permit retrieve of vl to all
range of v2 is V2
define permit retrieve of v2 to all

The salary of a particular employee may be available via one of the views

but not the other. On the other hand, the statements:

define permit retrieve of e (name, dept, salary)
where e.dept = "toy"
define permit retrieve of e (name, salary, manager)
where e.age < 30

will always yield the desired data in a single query.

3.3.3. Integrity and protection

Protection constraints can never have any efiect on the integrity algo

rithm, since protection never changes the set of domains being updated,

and integrity only applies to domains being updated. However, integrity

assertions can efiect the operation of the protection system, since they

may add domains to the reference set of the query. For this reason, pro

tection should be performed before integrity.

Design ft Implementation of Query Modification 14

4. IMPLEMENTATION

This section describes the changes and additions necessary to INGRES to

support the query modification system.

4.1. System Catalogs

Several system catalogs were added to each database to support query

modification.

4.1.1. Tree catalog

The tree catalog contains the query trees needed by the various query

modification subsystems. As such, it is not particular to any of the

modules. It is of the format:

treerelid cl2 relation name
treereiowner c2 relation owner
treeid i2 internal name
treeseq i2 sequence number
treetype cl type information
treetree clOO contents of tree

Treerelid and treeowner uniquely identify the relation that this tree

applies to. Treetype is 'p', T, or V for a protection constraint, integrity

assertion, or view definition respectively. Within a relation and type, treeid

identifies the tree. The concatenation of treerelid, treereiowner, treetype,

and treeid uniquely identify the query tree.

The treetree domain contains the text of the tree. It is actually not of

type character: this is the closest approximation (ilOO would be pre

ferred). Since trees can be longer than 100 bytes, the treeseq field is a

sequence number within a group of tuples defining a tree.

In early versions of INGRES, character type domains where defined to

be blank-padded. The access method routines that could insert tuples

turned all null-terminated strings into blank-padded domains. It was

Design ft Implementation of Query Modification 15

necessary to remove this "feature", since null bytes are legal in trees.

Fortunately, this was anticipated well in advance: release 6.1 changed the

blank-padding code to give an error if a null byte appeared, and the

modules that created values insured that character domains were blank-

padded before insertion.

4.1.2. Protect catalog

There is one tuple in the protect catalog for each protection state

ment that has been issued. The format of this catalog is:

relation name
relation owner
sequence number
user to which this applies
terminal ident
operation set
beginning time of day
ending time of day
beginning day of week
ending day of week
domain set permitted
tree sequence number
Resultvar number in tree

Prorelid and proreiown define the relation that this constraint applies to.

The propermid domain identifies this statement so that it can be removed

later. Prouser is an internal user code; a value of blank means that the

constraint applies to everyone. Preterm gives the terminal that the the

constraint applies to; blank means all. Proopset tells what operations the

constraint applies to. Times of day are stored as minutes-since-midnight.

Days of the week are stored with zero = Sunday. If protree is negative,

there is no qualification associated with this protection constraint; other

wise, it is a link to the treeid field in the tree catalog for the qualification

associated with this constraint. The entries zero and one are reserved to

prorelid cl2
proreiown c2

propermid 12

prouser c2

proterm cl

proopset il

protodbgn 12

protodend i2

prodowbgn il

prodowend il

prodomset il67
protree 12

proresvar il

7Since INGRES does not support anil6 type, this (and other similar domains in otherrelations)
is implemented as four i4 domains, named prodomset1 through prodomset4.

Design & Implementation of Query Modification 16

mean the special cases permit all to all and permit retrieve to all respec

tively; these special cases do not have entries in the protect catalog;

Status bits in the relation catalog define these cases (described in more

detail below). Proresvar tells which variable in the tree is being con

strained.8

4.1.3. Integrities catalog

This catalog has one tuple for each integrity assertion known to the

system. It contains:

intrelid cl2 relation name
intrelowner c2 relation owner
intdomset il6 set of domains affected
inttree i2 tree sequence number
intresvar il variable affected in tree

The intdomset field is for efficiency only; it permits us to avoid adding

assertions to the qualification of the query that cannot possibly fail. Other

domains are similar to the corresponding fields in the protect catalog.

Since currently INGRES only supports single variable assertions, the

intresvar field is not needed; it is included for generality.

4.1.4. Relation catalog

The relation catalog has not changed in structure to add query

modification. However, the semantics of certain fields have been

extended. The relevant parts of the relation catalog are:

^ince two-variable constraints with both variables ranging over thesame relation are allowed, it
is important to tell which variable is which. For example, take the constraint:

range of e is employee /• employees ♦/

range of m is employee /♦ managers ♦/
define permit replace on e (salary) to all
where e.number = CURRENTLUSER
and e.salary > msalary
and e.manager = m.number

(which says, permit all employees who earn more than their managers to update their own salaries.)
It is critical to store that fact that variable e is being constrained instead of m, reversal would
change the semantics to read, permit all employees who earn more than their managers to update
their manager Is salary.

Design ft Implementation of QueryModification 17

relid

relowner
relspec
relindxd

relstat

relsave

reltups
relatts

relwid

relprim

cl2 relation name
c2 relation owner
il storage mode
il set if indexed
i2 status bits
i4 purge date
i4 number of tuples
i2 number of attributes
i2 tuple width
i4 number of primary pages

This catalog has one tuple for every relation known to the system.

The main extension is to the relstat field. The following bits have been

added:

S_yiEW

SYBASE

SJNTEG

S_PROTUPS

S.PROTALL

S_PROTRET

If set, this relation is a view. The semantics of several

of the other domains change, as described below.

If set, this relation is the base for a view.

If set, there are integrity constraints defined on this

relation.

If set, there are tuples existent in the protect relation

that apply to this relation.

If clear, this relation has permit all to all permission.

If clear, this relation has permit retrieve to all permis

sion.

S-BINARY If set, assume that there may be non-printable charac

ters in characters domains. These characters will be

printed in octal. This bit is included for efficiency rea

sons, since it is much less expensive to print if this

check need not be made.

The SLPROTALL and SJPROTRET flags are asserted low to maintain

compatibility with the semantics of existing databases. It was felt that it

would be wiser to avoid having existing relations suddenly become

Design ft Implementation of Query Modification 18

inaccessible.

Flags SJNTEG, S.PROTUPS, S_PROTALL, S.PROTRET, S_BINARY, and

S_yBASE are provided for efficiency only and are not strictly necessary in

the implementation. The first four enable the algorithms to avoid scanning

system catalogs for certain common special cases. The S_yBASE allows

INGRES to avoid destroying a relation that is the base of a view.

If the relation is a view (i.e., the S_yiEW bit is set), the domains rel-

spec, relindxd, reitups, and relprim are unused. The domains relid,

relowner, relstat, relatts, and relwid are unchanged.

4.2. Code Structure

Query modification is implemented as a process following immediately

after the parser. It reads query trees in conjunctive normal form as pro

duced by the parser and produces modified trees, also in conjunctive normal

form.

The process can be broken into four main parts:

(1) Code incidental to query modification. This includes the code to read the

input pipe and decide if a request should be processed (i.e., is a query

versus some other request, such as a database utility request), code to

read and build trees, code to write trees, and code to support the

environment (e.g., handle interrupt signals).

(2) Code to actually perform query modification. This is in four sections: (a)

the view module, (b) the integrity module, (c) the protect module, and

(d) the code to dispatch the query to these three modules.

(3) Code to define new query modification statements in the database. This

is in four sections: (a) code to define views, (b) code to define integrity

assertions, (c) code to define protection statements, and (d) code shared

Design ft Implementation of QueryModification 19

among these three to store a definition tree into the database.

(4) Utility code used by (2) and (3) above. These include codes to issue

other queries needed during processing, routines to manipulate the

range table, routines to scan trees for various conditions (e.g., existence

of aggregates or particular VAR nodes), routines to build bit vectors

representing sets of variables referenced, routines to concatenate

qualifications, etc.

4.3. 'Views

4.3.1. Update anomalies

There are several updates that can not be performed on certain views,

necessitating that the update be aborted. Some updates can be per

formed, but will have anomalous results. INGRES only allows updates that

can be guaranteed to have consistent results, defined by:

An update is consistent if and only if the result of performing the update
on the view and then materializing0 the view is the same as the result ob
tained by materializing the view and then performing the update.

The following discussion summarizes these problems.

4.3.1.1. syntactic problems

A view may have a domain defined as a non-simple value (that is, not

a simple attribute). A replace on this domain and any append will

require this domain to take on a value. For example, if the view is

defined as

range of b is baserel
define view vl (d = b.x + b.y)

then the update

H.9., turning the viewinto a physicalrelation, perhaps "by issuing the query:
range of v is view
retrieve into vtemp (v.all)

Design & Implementation of Query Modification 20

append to vl (d = 5)

would expand to

append to baserel (x + y = 5)

which cannot be resolved.

All append statements must be rejected in this case, since even

domains not mentioned are set by default to zero. Also, all delete state

ments must be rejected if the view includes an aggregate, since they

might modify the value of the aggregate.

There is a range of cases that might be handled. In particular, any

domain that is defined as an invertible function could be made to work,

but we do not feel this is cost effective at this time.

4.3.1.2. disappearing tuple anomaly

If a view has a qualification, any update of any domain mentioned in

that qualification allows even non-duplicate tuples to disappear. For

example, consider the view defined as

range of b is baserel
define view v2 (d = x.a)
where x.a = 4

The tuple added by the update

append to v2 (d = 7)

will not appear in the view (even though it will be appended to baserel).

Under these conditions all updates except deletes must be disal

lowed.

4.3.1.3. join problems

Views defined as joins have many update problems. For example,

take the relations Rl(a, b) and R2(b, c) as shown in figure 3(a). The view

Design & Implementation of Query Modification 21

Rl|a|b R2 |b |c

|7|0 I0|3
I8|0 I0 |4

(a)

V3 |a|b |c

|7|0|3
|7|0|4
I8|0 |3
I8|0 |4

(b)

Figure 3: Relations & equijoin.

defined as the equijoin

range of x is Rl
range of y is R2
define view v3 (x.a, x.b, y.c)
where x.b = y.b

is shown as it would appear materialized in figure 3(b).

Assuming we have

range of v is v3

the update

delete v where v.a = 7 and v.c = 4

will produce the relation shown in figure 4(a); the update

replace v (v.b = 1)
where v.a = 8 and v.c = 3

will produce the relation shown in figure 4(b), and the update

append to v3 (v.a = 6, v.b = 0, v.c = 4)

will produce the relation shown in figure 4(c). All the relations shown in

Design & Implementation of Query Modification

V3| a| b| c

|7|0|3
18 | 0 | 3
18|0 | 4

(a)

V3 | a | b | c

17
17
18
IB

0 | 3
0|4
1 13
0|4

(b)

V3 | a | b | c

7

7

8

8

8

0

0

0

0

0

3

4

3

4

4

(c)

Figure 4: Anomalous updates.

22

figure 4 are unexpressible in Rl and R2 without modifying the definition

of the view in some arbitrarily complex manner.

To avoid these anomalies, we must disallow any update on a view

with more than one variable in the target list.

If we had more information about the semantics of the join domains

consisted of unique values, we could relax this constraint considerably.

For example, suppose that the view empdept consisted of the the

employee and the dept relations joined on dept§ (i.e., each tuple contains

all the information on each employee and the department in which they

work). Since we have semantic information about this view, we know that

Design & Implementation of Query Modification 23

updates of (e.g.) employee names do not affect the department informa

tion, and changing the manager of the department does not change any

information regarding the employees. However, INGRES does not main

tain this information.

4.3.2. View algorithm

The following algorithm processes views:

(1) Perform steps 2 —7 until no view substitution takes place, i.e., until

the query is totally in terms of instantiated relations.

(2) Perform steps 3 —7 for all relations in the query that are views.

(3) If the query is an update and the view defines a domain using an aggre

gate, abort the query. This prevents a query from assigning a value to

an aggregate.

(4) If the query is not a retrieve, and if the variable we are doing view

replacement for is the variable being updated, perform the following

steps:

(a) If this query is a delete or append, and if the view is defined over

more than one relation, abort the query since it would take at least

two queries to satisfy it.

(b) If a delete, go on to step 5.

(c) If an append, and the view has a qualification, abort the query

because we cannot guarantee that the tuple will appear in the view

—i.e., the disappearing tuple anomaly.

(d) For each result domain in the query, locate the definition for that

domain in the view and perform steps (e) —(g).

(e) If the definition is not a simple variable, abort the query, since it

would require setting an expression to a value.

Design & Implementation of Query Modification 24

(f) If this variable appears in the qualification of the view, abort the

query for the same reason as (c) above. This test is here because

the requirements for replace are less strict than for append.

(g) Replace the result domain by the substitution in the view definition.

(5) For each variable mentioned in the query that is for the current view,

replace the variable by its definition.

(6) If the query is a replace, and if the new query ranges over more than

one relation, abort the query because it could result in a non

functional update.

(7) Append the qualification from the view to the query tree.

(8) After all view processing is complete, renormalize the tree into con

junctive normal form.

4.3.3. Denning views

Defining a view is trivial: there are no exceptional conditions that can

occur. The definition is stored directly into the database schema.

Views defined on views are left in this form. It might be advantageous

to do the view expansion at definition time, thereby avoiding repeated

expansion when used. This has one disadvantage: when the user prints the

definition of the view, it will not match the definition input, which could be

confusing. Since we anticipate views on views will be a rare occurrence, we

feel the efficiency issue is not of major import.

4.4. Integrity Assertions

4.4.1. Integrity algorithm

The integrity processor is extremely straightforward. The processor

does nothing if the query is not an update or if there are no integrity

Design & Implementation of Query Modification 25

assertions on the relation being updated (determined by the SJNTEGbit in

the relstat field of the relation catalog). Also, since single-variable

aggregate-free assertions can never be violated by deleting tuples, delete

statements are passed through unmodified.

A domain set is built that can be compared against the domain set

stored in the integrities catalog. Assertions that can not possibly be

violated are excluded10. The integrity qualification is then merged into the

qualification of the query.

Only single-variable aggregate-free assertions are supported, owing to

the difficulty and cost of supporting more complex assertions. In particu

lar, any other form of assertion requires more complex processing, up to

re-running the assertion as though the update had been made in advance

to assure that the update will be acceptable. For example, an assertion

such as:

range of e is employee
range of d is department
define integrity on e is e.dept# = d.dept#

(meaning that every employee must be in a department that exists)

requires a scan of the department relation every time an employee is hired

or transferred to determine existence.

Updates that can not be made because they violate an assertion are

silently ignored. There are two alternative approaches that could be

taken:

(1) A separate query could be run in advance to retrieve the tuples that

will fail the update. Two resolutions could be chosen: the violations

could be stored in another relation (or printed) and the update could

be run to completion, or the update could be aborted until all

10,'appends must alwayshave all assertions included, since all domains are alwaysupdated.

Design & Implementation of Query Modification 28

violations were fixed. This would require running another query on

every update, which could be prohibitively expensive.

(2) A new node type could be added to the tree representing a qualification

that must be true. If such a qualification were to fail, an error mes

sage would be issued. This requires considerable perturbation in the

query processing modules, and could slow execution on all queries

(including retrieves, and updates of relations with no integrity asser

tions).

4.4.2. Integrity definition

During integrity assertion definition, checks must be made to insure

that the assertion is single-variable and aggregate-free. Also, checks are

made to insure that assertions are not defined on views (since the evalua

tion order is such that assertions on views would never be honored) and

that the user defining the assertion owns the relation being constrained.

The assertion is then inverted, and a query is issed to check that the asser

tion already holds. If it does not, the definition is aborted. Only after

satisfying these conditions is the assertion added to the database.

It would be possible to apply the view algorithm to the integrity asser

tion to translate assertions on views into assertions on physical relations.

However, this could result in surprising assertions that would show through

in possibly disturbing ways.

4.5. Protection Constraints

4.5.1. Protection algorithm

The protection system first looks through the set of variables that are

referenced in the query and creates a set of variables that might have vio

lations. Variables ranging over relations owned by the user executing the

Design &Implementation of Query Modification 27

query, relations with the S_PROTALL bit asserted (clear), and relations with

the S_PROTRET bit asserted during a retrieve are not candidates for viola

tions. These three cases are expected to handle most queries.

Of the remaining variables, each is taken one at a time. Four sets are

created representing usage in various contexts. These sets are:

uset The set of domains updated. In a retrieve, this set will be

empty.

rset The set of domains retrieved to the user. This includes

domains involved in some computation, including aggregate

functions and aggregates with qualifications.

aset The set of domains with the aggregate value retrieved. No

qualifications are allowed.

qset The set of domains used in any context in a qualification.

From these sets, it is possible to create a set of operations performed

in this query. This will be at most one of {delete, append, replace) together

with any of {retrieve, aggregate, test). This set will represent the set of

operations that have not yet had at least one protection statement qualify

- necessary to carry out a "default to deny" policy.

The processing of known protection statements then begins. For each

statement regarding the relation we are currently processing, we check if

the statement applies - if not it is ignored11. A statement applies if it is

specified as being for the current user on the current terminal, and the

current time falls within the specified limits.

This statement is then examined to see what operations it might give

permissions for. If it won't satisfy anything in the query, it is thrown out.

away
"Since protection statements only addpermissions, it is never dangerous to throw a statement

Design & Implementation of Query Modification 26

The process of "satisfying" requires that the domain set of the statement

intersect the domain set of the query in an appropriate context.

At this point we know this protection statement will give us useful per

missions. The qualification associated with the protection statement is dis

joined to all qualification lists for operations to which this statement

applies. For example, if the protection qualification is

where e.manager = CURRENTJJSER

and the domain manager is used for update and test, then that

qualification will be appended to the qualifications being built for update

and test, but not the qualifications being built for retrieve and aggregate.

Since at least one protection clause has applied to this query, the set

of operations not yet satisfied is reduced by the set of operations satisfied

by this protection statement.

When all applicable protections statements have been processed, the

operation set is checked. If this set is not now null, the query is aborted

for lack of permission. If the query is ok, then the qualification lists

created above are conjoined to the user query. The query is then normal

ized to conjunctive normal form and returned.

4.5.2. Defining protection clauses

The definition phase of protection first checks all the possible parame

ters for validity (e.g., users must exist, times must be in range, etc.) and

builds the set of domains referenced. Protection statements on views are

disallowed. The special cases permit all to all and permit retrieve to all

are identified and extracted. Finally, the necessary inserts to system

catalogs are made.

Design &Implementation of Query Modification

4.8. Evaluation

4.6.1. Statistics

The following chart shows the size of the query modification code.

Process Size Breakdown

•line. fnnntinn

Total for process

Just query modification

NonQM code (1-2)

Access method code

bytes

50920

16394

34526

13714

overhead (3—4) 20812

29

Everything from line 3 down results from utility libraries that can be

shared with the rest of INGRES in a large address space machine such as a

VAX. For this reason, the rest of this computation will use the total for

query modification alone as the base.

The following breakdown shows what percentage of the code is in use

for various functions.

Ouerv Modification Code Size Breakdown

Module bytes percent

Views 910 5.5%

Protection 3398 20.7%

Intecritv 920 5.6%

disnatchins 76 0.5%

TOTAL unshared 0M 5304 32.4%

View definition 380 2.3%

Protection definition 2516 15.3%

Intesrritv definition 1080 6.6%

shared definition 992 6.1%

TOTAL definition 4968 30.3%

shared 0M soeciflc code 3836 23.4%

environment support 2286 13.9%

TOTAL shared 6122 27.3%

GRAND TOTAL 16394 100.0%

Design &Implementation of QueryModification 30

4.6.2. Match with design goals

4.6.2.1. maximize code overlap

The query modification code was split approximately equally three

ways between query modification processing, definition, and shared utili

ties. This fell short of the desired goal of one half shared code; however,

the overlap is skewed by having constraint definition in the same module.

4.6.2.2. minimize system impact

The INGRES parser was modified to support the syntax required by

query modification. The following table summarizes the productions

added.

Production Snmmarv

views 5

protection 33

integrity 10

shared 2

TOTAL QM 50

TOTAL in grammar 201

Although query modification uses almost 25% of the productions in the

grammar, the net effect on the parser is somewhat smaller; most query

modification actions are small relative to the size of QUEL actions.

The parser was further modified to pass an extended range table to

query modification so that it would be unnecessary for query

modification to scan the system catalogs for most common cases.

Most of the database utilities (such as print, copy, and destroy) had

to be modified to correctly process protection and views. These changes

where minor.

No changes were required in the query processing modules.

Design & Implementation of Query Modification 31

4.6.2.3. use standard interfaces

As noted above, the range table was extended. This extension was

totally downward compatible. This was the only change in the interface.

We feel this goal was met.

4.6.3. Lack of detection of violations

Both the protection and integrity systems should be modified to catch

violations. Logging of protection violations would help discourage attempts

at compromising the system. Integrity violations should be flagged so that

at least the user would be aware that the update has not been made.

Detection of violations of single-variable constraints would not be

difficult if changes where made to the query processing modules. The sim

plest technique would attach qualifications to the query tree which would

be required to be true for all tuples otherwise satisfying the qualification.

This technique has the disadvantage that it does not extend to the mul-

tivariable case; use of this technique to catch protection violations would

require limiting protection qualifications to single-variable aggregate-free

predicates.

Certain protection violations are detected before query processing.

Violations of this type can be easily logged without changes to the rest of

INGRES.

Integrity violations could be detected by first running the query with

the integrity clause inverted. This is easy to do, but would tend to increase

the time needed to process any update by a factor of at least two.

Design & Implementation of Query Modification 32

5. CONCLUSIONS

Query modification has been used successfully to implement views, pro

tection constraints, and integrity assertions in INGRES. Although there are

several additions that should be made before this particular implementation

would be salable in a production environment, the general technique is viable,

being flexible, having little impact on the rest of the system, and functionally

powerful.

Future areas of possible research include expanding the range of possible

updates to views and expanding integrity assertions beyond single-variable

aggregate-free.

Design & Implementation of Query Modification 33

6. REFERENCES

[C0DD71] Codd, E.F., "A Data Base Sublanguage Founded on the Relational

Calculus", Proc. 1971 ACM-SIGFIDET Workshop on Data Descrip

tion, Access, and Control, San Diego, California, November 1971.

[EPST77] Epstein, Robert S.. "A Tutorial on INGRES", Electronics Research

Laboratory Memorandum UCB/ERL M77/25. University of Cali

fornia, Berkeley, December 1977.

[GRIT76] Griffiths, Patricia P., and Wade, Bradford W., "An Authorization

Mechanism for a Relational Data Base System". IBM Research

Report RJ 1721 (#25154), February 1976.

[HELD75] Held, G.D., Stonebraker, M.R., and Wong. E., "INGRES - A Rela

tional Data Base Management System", Proc. 1975 National Com

puter Conference, AFIPS Press, 1975.

[ST0N76] Stonebraker, M.R.. Wong, E.. Held, G.D., and Kreps, P.. "The

Design and Implementation of INGRES", ACM Transactions on

Database Systems, 1, 3.

[RITC74] Ritchie, D.M., and Thompson, K., "The UNTX Timesharing Sys

tem", Communications of the ACM, 17,1 (July 1974).

[W00D79] Woodfill, J., et al, "The INGRES 6.2 Reference Manual", Electron

ics Research Laboratory Memorandum UCB/ERL M79/43.

University of California, Berkeley.

	Copyright notice 1981
	ERL-81-10

