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ABSTRACT

The paper gives several fundamental results on strong structural
stability of nonlinear resistive n-ports. A nonlinear resistive n-port
consists of MR (coupled) internal resistors and n external ports. Inter-
section of the internal resistor constitutive relations and the Kirchhoff
space is called the configuration space. The projected image of the con-
figuration space onto the port space is called the constitutive relation
of the composite n-port. Strong structural stability means qualitative
persistence of the constitutive relationof composite n-port .undersmall pertur-
bations of internal resistor constitutive relations. Theorem 1 asserts that
a nonlinear resistive n-port is strongly structurally stable if and only -
if (i) Kirchhoff space is transversal to the internal resistor constitutive
relations and (ii) the projection map of the configuration space onto port
space is a nice immersion. There is, however, an underlying assumption
for this fact to be true; there are no port-only loops and no port-only
cut sets. (Condition P). Theorem 2 says that there are "many" strongly
structurally stable n-ports, Theorem 3 gives a strong structural stabiliza-
tion result via network perturbation, and Theorem 4 and Theorem 5 give
results for special class of internal resistor constituitve relations.
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I. Introduction

This paper gives several fundamental results on strong structural
stability of nonlinear résistive n-ports. A nonlinear resistive n-port
consists of np (coupled) internal resistors and n external ports. Inter-
section of the internal resistor constitutive relations and Kirchhoff
space (space where Kirchhoff laws are satisfied) is called the configura-
tion space. The projected image of the configuration space onto port
space is called the constitutive relation of the composite n-port.1 In
this paper, strong structural stability means qualitative persistence of
the constitutive relation of composite n-port under small perturbations
of internal resistor constitutive relations. This is a reasonable concept
because circuit elements (e.g. resistors, transistors etc.) are subject
to small perturbations of parameters (e.g. temperature), and we would
1ike a circuit to operate in a qualitatively presistent manner under these
perturbations.

Structural stability discussed in [1] is the qualitative persistence
of configuration space under small perturbations of internal resistor
constitutive relations. It is shown in [1] that structural stability is
equivalent to transversality of Kirchhoff space and internal resistor
constitutive relations.

Sometimes strong structural stability is more appropriate than struc-
tural stability, because the former guarantees persistence of constitutive
relation of the composite n-port. Theorem 1 (characterizationresult) asserts
thata nonlinear resistive n-port is-stronglystructurally stableif andonly if
(1) Kirchhoff space is transversal to internal resistor constitutive relations
and (i1) the projection map of configuration space onto port space is a nice
immersion. (This will be explained in Section III) There is, however,
an underlying assumption for this fact to be true; there are no port-only
loops and no port-only cut sets. (Condition P) It is interesting to see
that this purely graph-theoretic condition is required in order to obtain
strong structural stability results. This condition is crucial for the
validity of a version of Whitney Immersion Theorem which plays an important
role for proving the results. (SectionIIl). The result is best illustrated
by the following examples:

Tan n-port made of all interconnection of elements is called composite
n-port.
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Example 1. Consider the 1-port of Fig. 1(a), where constitutive relations
of internal resistors R, and R, are given by Fig. 1(b), iR = ka(ka),

k = 1,2. Tunnel diode is a typical element which has

constitutive relation of this type. It is not difficult to show that the
constitutive relation of the compnsite 1-port is given by the set R of
Fig. l(c)z. If one perturbs le in such a way that the local maximum

at vR]0 is slightly higher than:i; of Fig. 1(b), then constitutive rela-
tion of the composite 1-port is given by the set R' of Fig. 1(c). On the

other hand, if one perturbs fR in such a way that the local maximum at
] \

*
vR10 is slightly lower than.iR, then constitutive relation of the composite

1-port is given by R" of Fig. 1(c). The sets R, R' and R" are qualitatively
different from each other, because R has an isolated point,R' has a bow-

tie shape loops, whereas R" has nothing in the center. In other words,

R, R' and R" are not homeomorphic to each other. Similar phenomena occur
if one perturbs fR2 slightly in a neighborhood of VRZO. Therefore, the

set R does not persist qualitatively under small perturbations of internal
resistor constitutive relations. This means that the 1-port of Fig. 1(a)

and (b) is not strongly structurally stable.

Example 2. Consider the 1-port of Fig. 1{a) with constitutive relations
of R, and R, given by Fig. 2(a). Then the constitutive relation of com-
posite 1-port is given by R of Fig. 2(b). It is easy to see that slight
perturbations of fR1 and fR2 give rise to R'-and R" of Fig. 2(b). InR,.

the bow-tie shape loops intersect the main curve at one point, in R' they
intersect the main curve at two points whereas in R" they never intersect
the main curve. Since R, R' and R" are qualitatively different from each
other, i.e., they are not homeomorphic to each other, the 1-port of

Fig. 1(a) and Fig. 2(a) is not strongly structurally stable.

Example 3. Consider the 1-port of Fig. 1(a) with constitutive relations
of R] and R2 given by Fig. 3(a). Then the constitutive relation of com-
posite 1-port is given by R of Fig. 3(b). This set persists qualitatively

2As in [1], the polarity of vp is chosen opposite to the usual convention

in order to simplify several hypotheses of the paper.
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under small perturbations of le and fRz, i.e., R, R' and R" of Fig. 3(b)

are homeomorphic to each other. Therefore the 1-port of Fig. 1(a) and
Fig. 3(a) is strongly structurally stable. .

Now, let us explain the difference between strohg structural stabf1ity
and structural stability discussed in [1]. First look at the configuration
space ¢ of the 1-port of Example 2. Observe that the internal resistor

constitutive relations, say A , is described by iR - o (vR ) =0,
1 1 M
iR - fR (vR ) = 0, and that Kirchhoff space K is described by
2 2 "2 ' '
Vo *+ vy +vy=0,1i, -i, =0, iy =1, = 0. By eliminating i, and
R2 R] P R2 R] R2 I R]

iR » we see that the configuration space £ = A N K is described by
2

ig = fy (vp ) =0 : (1)
P R1 R1 .
ip - fr (sz) =0 . (i1)
Vo, +v, +v,=0 . (ii1)
RZ R] P

Notice that intersection of 2-dimensional surfaces defined by (i) and (ii)
in the (ip,vR VR ) - space gives the 1-dimensional submanifold I of
1 72

Fig. 4. Since (iii) does not contain ip, it does not give rise to any
further constraint on I and hence this set I is the configuration space
embedded in RS. Using a result in [1] one can show that this 1-port is
structurally stable, i.e., I does not exhibit abrupt qualitative changes
under small perturbations of fR] and fRz. This is illustrated in Fig. 4

where I' and I" are perturbed configuration spaces. The projected image
R of Z, however, does exhibit abrupt qualitative changes under small
perturbations of fR and fR . The sets R, R' and R" are the same as

1 2

those of Fig. 2. The maps gp, 36 and g; are the projection maps of the

configuration spaces I, I' and Z" respectively, onto the port space.

Notice that for a given ~Vp, (i11) defines an affine submanifold

VR, = -Vp_ - Vp. Intersection of this affine submanifold with Z gives
2

points of the set R. Therefore, R is the projection of I onto the
(-vP,iP) - space of Fig. 4. Similar statements apply to R' and R". Hence
this 1-port is structurally stable but not strongly structurally stable.
Fig. 5 shows how I and R of the 1-port of Fig. 1(a) and (b) change under




N

small perturbations of fR and fR . Again, R, R' and R" are the same as
1 2

those of Fig. 1(c). It is clear that this 1-port is neither structurally
stable nor strongly structurally stable. Next, consider the 1-port of
Example 3. Figure 6 shows how £ and R change under small perturbations
of fR] and fRz. It is clear that this 1-port is structurally stable and

strongly structurally stable, i.e., T and R qualitatively persist under

small perturbations of 'FR and fR . There is, however, a crucial dis-
1 2 ,
tinction between qualitative persistence of I and that of R, because I is

a submanifold while R is not. (The latter hasself intersectionpoints.) For
small perturbations of fR1 and fRz, the perturbed configuration spaces

Z' and " are diffeomorphic to the old one I. The perturbed constitutive
relations R' and R" of the composite 1-port, however, are not di ffeomorphic
to the original R because of the self intersection points, i.e., the
derivative of a function cannot be defined at self intersection points.

The sets R, R' and R" are only homeomorphic to each other. This naturally
forces us to define strong structural stability by using homeomorphism
rather than diffeomorphism. ’

In Secion II, we will give an important preliminary result (Proposi-
tion 1) which is necessary for the proofs of Theorem 1 and Theorem 2 in
Section III. As a by product of this, we will prove a conjecture in [1]
which gives a sharpened version of a result in [1]. In Section III, after
giving the characterization result (Theorem 1), we will give a density
result (Theorem 2) which asserts that there are "many" strongly structurally
stable n-ports. In Section IV, we will describe two strong structural
stabilization methods. One is by element perturbation which amounts to
perturbing the existing internal resistor constitutive relations. The
other is by network perturbation (Theorem 3) which amounts to creating
extra ports by plier's-type entry and/or soldering-iron entry. In
Section V, we will relax Condition P but deal with a slightly restricted
class of n-ports where internal resistor constitutive relations do not
impose coupling between resistor variables and port variables. Theorem 4

and Theorem 5 are the characterization result and density result,

respectively for such n-ports.
In order to help the reader to grasp main results of the paper we

will give the following two different classifications:
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Classification I

Ty atd Theorem 1
characterization|-—~—- = - - —————
n-ports with Theorem 4
[ fixed graphs density l-_____..__..____________ Theorem 2
Theorem 5
'n-ports with

—Inetwork perturbations{” """ T T T T - --——————TT Theorem 3

Classification II
n-ports with| ________|Theorenm 1
n-ports with general condition P Theorem 2

—t internal resistor

constitutive relations " | n-ports with _-
network perturbations [~

n-ports with special
Ll internal resistor | emm e e ]
constitutive relations|

Theorem 4
Theorem 5

Also, various mathematical concepts are explained as they are needed.
Throughout the paper, we will take full advantage of the coordinate-
free property of the geometric approach.

General Remarks: For simplicity's sake, we will sometimes abuse our
notation with regards to the transpose of a vector or a matrix. In order
to avoid wordiness, we will usually refer to the constitutive relation

of an n-port instead of the constitutive relation of a "composite" n-port.

II. A Preliminary Result.

A resistive n-port N is an interconnection of "nR“ internal coupled
2-terminal resistors and "n" external terminal pairs which are called
ports. Let vp and p denote the voltages of the internal resistors
and the external ports, respectively, and let iR and jp be the currents
of the internal resistors and the external ports, respectively. Then

2"g 2n s g
(Vpoig) €R " and (vp,ip) €R™. Let v = (vp.¥p), 1 = (ip.ip) and
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b= ng +n so that (v,i) € IRZb.

of this paper:

(a) The graph defining the topdiogy of N is connected.

(b) N is time-invariant.

(¢) The internal resistor constitutive relations are characterized by

2b (1)

The following are the standing hypotheses

(v.i) EACR

where A is a (,2b-nR)-d1'mensiona] C1 submanifold.
It is explained in [1] that (a)-(c) are very general conditions. Some-
times, we consider the situation where A is given by

_ . 2b p

= {(v,1) €R7|(vp 1) € Ap} (2)
where AR isann -d1mens1ona1 C] ubmamfo]d In Examples 1-3, A is of
the form (2) and AR = {(vp.ip) er* |1 = ka(ka), k = 1,2}. Let K be-

the Kirchhoff space, i.e., the set of aH (!,1’) satisfying Kirchhoff
laws and let

s&ank | (3)

be the conﬁguratwn space. We will sometimes denote a point
(v 1) €R 2b by X. From time to time, we v1ew an n-port N as a network
N by terminati ng the ports of N by norators [1].

Let MCR™ be a d1fferent1ab1e submanifold and let F and G :

M +R" be C] functions. Then the C] distance between F and G at >~<€ M
is given by , |
d1 (F,6)(x) & IF(x) - 6(x)1 + 1(dF), - (dG), 0. (4)

Recall that G : M +R™ is called an embedding 1'1~° it is an immersion and
if it maps M diffeomorphically onto its image. The set of all positive
numbers is denoted by R, The strong or Hhitney C] topology for the set
of all C1 functions C](M;lRm) from M into R™ is generated by sets of the
form

U(Fe(-)) 2 46 : M>R"|d;(F,6)(x) < e(x) for all xEM}  (5)

where F € C](M;]Rm) and ¢ : M~R" is an arbitrary continuous function.
In this paper, topology for set of functions is always with respect to

3A norator is a 2-terminal element whose constitutive relation is given

_ w2
byAR—IR.




this topology.

Let T A +IR2b be the inclusion map. Then there is a neighborhood
V(EA) of 1, with respect to the above topology such that every element
of V(lA) is an embedding of A[1],[2]. A strong or Whitney C1 perturba-
tion A of A 1is defined by

ié F(A) Fe V(IA)

It is explained in [1] that this is an appropriate perturbation for
g]ectr?cal networks. In what follows, whenever we say a perturbation
A, it will always mean a strong Cl perturbation.

Recall, now, that if ANK# @ and A K K, i.e., A is transversal to
K, then [1] Z is an n-dimensional submanifold. The following proposition
plays an important role in this paper.

Proposition 1. Suppose that ANK # @ and A @ K. Given any continuous
function € : I -»IR+~, there is a continuous function & : A +R" with the
following property: For a C] embedding F : A »R2P w1th d, (F 1A)(x)< 6(5)
for all x € A, there is a ¢! d1ffeomorph1sm G:I~ 5 such that d](g,

Z)(x) < e(x) for al] X € I, where
TNk, A= F). (6)

The proof is nontrivial and is technically involved. It is given in
Appendix I.

As a by product of this proposition, we can sharpen the structural
stability result in [1]. To state our sharpening result, we need the
following definition: ‘

Definition 1. A resistive n- port N is said to be structurally stable if

for any small C] perturbation A of A, the new configuration space

by Aj A N K is homeomorphic to the old conf1gurat1on space £ = A NK.

Proposition 2. (Characterization of Structural Stability)

Given a resistive n-port N assume that A NK # 0.
(i) If A A K, then T is an n-dimensional ¢! submanifold and for any small ¢!
perturbation A of A, there is a diffeomorphism of I onto z which is close to
inclusion map : £ -+ K in the strong C] topology. Therefore N is structurally
stable.
(ii) If A-#K, then there are small C] perturbations A' and A" such that

z! 4 A' N K is an n-dimensional C1 submanifold and =" é=A" N K contains an
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(n+k)-dimensional submanifold, k > 0. Therefore N is not structurally
stable.

Proof. (i) is a direct consequence of Proposition 1. (ii) is proved
in [1]. n

Remarks. 1) Observe that in Definition 1, homeomorphism is used instead
of diffeomorphism, because, a_priori we don't know if Z is a differentiable
submanifold. Proposition 2, however, tells us that one can replace homeo-
morphism with diffeomorphism, a sharper property.

2) In [1], a diffeomorphism between X and T is constructed under the
assumption that A is-a C2 submanifold. Proposition 1 and Proposition 2
assume thatA is only a C.l submanifold. In this paper everything is

handled within the C] category.

We will next show that there are "many" structurally stable n-ports.

Praposition 3 (Density of Structural Stability)

Given any n-port N with A NK# @, there is an arbitrarily small C
perturbat1on A of A such that A NK# P and AF K, i.e. the perturbed
n-port N is structurally stable. If A is given by (2), j.e. if

A= le?'n, then A can be obtained in the form A= AR lezn, where
2n
R

1

g
KR is a perturbation of AR inR
Proof. Proof for a general A is given in [1]. To prove the case

2n
A = AR X lRZ", let Lré : lR2b +R R be the projection map defined by
Eé(!’i) = (!R_’iR) (7)

and set

fle>

XR-TRe Ik | (8)
where 1 is the inclusion map

Y . K- R® . (9)

By Lemma 1 which will be g1ven below, we know that (i) A A K if and only
if Ay A xR(K) and (ii) ¢ = XR (AR) Then using an argument similar to
that of Theorem 3 of [1], one can obtain the result. ]

Lenmma 1. Let A = A le2 Then

(i) ARK 1f and only if Ap & xp(K).
(i1) z = % (AR)



Proof. (i) To prove necessity, observe that for any (vR,1 ) € A O XR(K),
there is a (v,i) € A N K such that XR(V i) = (vR,1R). Let =, be the
projection map defined by (7). Then

IR T, M = Ty iR (10)

Ry, 1% = T(vg iR (K) (1)
2by . 2np

glrR(T(v 1)IR ) T(anR)]R ¥ (12)

By hypothesis
_ 2b
T, ) * T, ) 7 Twai R
which together with (10) - (12) implies

T(!R,iR)AR (vR R)XR(K) dTrR(;(v f)h* T(v 1)K)

= 2by _ R
R (v, i) = Typ,iR
In order to prove sufficiency, set ("R’iR).= né(v,i), where (v,i)EANK,
By assumption

‘ on 4
R
T Ay + Ty o yvxolK) = T, . (13)
(vpsdg) R T(vpsig)ZR (vpoigh"
It follows from A = AR X IRZ" that
_ 2n :
T i) = Tve, i) RO Ty i R - (14)
b ~R?-R PP
Using (13) we have
R, 100 T, 1)K = Tvgai )R Tivg,1 0% (K
SRR (15)
(vpsig)
It follows from (14) that
2n
Ker dﬂ'RlT(v 1) T(‘Ypiip)m . (]6)
Next let
- 1L ¥
T(V,‘i)A + T(!,l)K = (ker EI.'ER) @ Ker ST.IR . (17)
Since Im dwR is isomorphic to (Ker gfﬁ)l’ we have from (15) that
2n
Tt * Ty, = é(T(yR,jR)lR )@ Ker drp (18)
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where
2n

A:T .
b T
is the isomorphism. It follows from (16) and (18) that

2n
= R L]
T(M.)A + T(!,E)K E(T(!R’ER)R ) @ Ker dn

"o ler drp)”

2n
= R 2n
IS NANRICR AR

Since 5 is an isomorphism, we conciude that
- 2b
T(.y,j)A * T(y,j)K ) T(y,j)lR '
(ii) is straightforward. n

III. Strong Structural Stability

Let nF', : ]R2b ->1R2rl be the projection map defined by
' Y = : .
mp(¥s1) = (¥ps1p) (19)
and let
Mo 2 mlon (20)
~P P <

where 1 is the inclusion map

1:z R (21)

-~

Then the set
REm(s) (22)

is called the constitutive relation of the n-port N. This is the object
shown in Figs. 1-6 for l-ports. Let A be a C] perturbation of A and
let

R & () | (23)
where I is defined by (3) and Tp is the corresponding projection map for
. We are now ready to give a formal definition of strong structural
stability.

Definition 2. A resistive n-port N is said to be strongly structurally
stable if for any small C] perturbation A of A, the new constitutive
relation R is homeomorphic to the original R.

-11-



In order to state our results on strong structural stability, we
will need a new concept which we call a nice immersion and a graph
theoretic condition which is called Condition P.

Definition 3. Suppose that I is an n-dimensional C] submanifold. Then
the map Tp defined by (20) is said to be a nice immersion if
(i) Tp is an immersion, i.e., rank (QEP)X = n for all x € I.

(ii) mp s transversal to itself, i.e., HP(fl) = fp(fz) and X1 # Xy
imply '
_ m2n )
(drply (T, 2) + (dp), (T, 0) =R (24)

(iii) There is no family of three points {x],xz,x3} C 1, such that
xi # xj (UéJ) and I,TP(ZE]) = Ep(fz) = IP(X3)° .
Remark. Since dim T_ £ = dim Tx L = n, condition (24) forces the sum +

X %2
to be the direct sum @

Let us give several examples to explain nice immersions. Consider
Fig. 7(a), where we assume that I is a 1-dimensional submanifold and
that Tp is an immersion. This map Tp is not a nice immersion because at
y» condition (i) is not satisfied while (i) and (iii) are satisfied.
Consider Fig. 7(b). Again, assume that I is a 1-dimensional submanifold
and that m is an immersion. This map ul fails to be a nice immersion
because the point y has three preimages and condition (iii) is violated
although (i) and (ii) are satisfied. In Fig. 7(c), the map mp is a nice
immersion provided that T is a 1-dimensional submanifold and that m, is
an immersion. )

Definition 4. An n-port N is said to satisfy condition P if there are
no port-only loops and no port-only cut sets.

This graph theoretic condition is going to play one of the crucial
roles in our main results. It will turn out that Condition P is closely
related to the validity of a version of Whitney Immersion Theorem
(Lemma F of Appendix II) which will be used in the proof of our main
resultsin a crucial manner (see Proofs of Theorem 1 and Theorem 2). Let
us observe that the following facts are true.

Proposition 4. The following conditions are equivalent: -

-12-
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(i) There are no port-only loops.

(ii) Each port forms a cut set exc]usivé]y with resistors.
(ii1) There is a tree containing all the ports.

(iv) There is a cotree consisting only of resistors.

Proposition 5. The following conditions are equivalent:
(i) There are no port-only cut sets.
(ii) Each port forms a loop exclusively with resistors.
(iii) There is a tree consisting only of resistors.
(iv) There is a cotree containing all ports.

Now, recall m, of (19) and set

% 21 ° XK (25)

where K is defined by (9). Notice that Tp of (20) can be written as
T = XplZ (26)

i.e, the restriction of xp to I. Recall yp defined by (8). Let p

(resp. u) be the number of independent port-only loops (resp.

port-only cut sets). Let T (resp. Tz) be a tree containing maximum
number of ports (resp. resistors) and let Ly (resp. L2) be its associated
cotree. Let P (resp. “2) be the number of ports in L] (resp. Té).

Proposition 6 .
(i) codim Im XP= p +pu=dim Ker Xp

where codim means the complementary dimension and Im (resp. Ker) means
the image (resp. kernel) of a linear map.

(i1) p = py» W T My

Proof. The fundamental loop matrix [1] with respect to Ta.is given by

A |
B =il Bl

v \") V' v
R vp v p
L Ly RT] T
l
l 1 1 (27)
1 : Ban  Erp
1 | B
! | Bpp

-13-



where RL denotes resistors in L] and other symbols have similar meanings.
A dot denotes a zero submatrix of appropriate size. The fundamental loop
matrix with respect to T2 is given by

Ay
B, =014 Bp )l

\'} V' Vv v
R vp v vp
L L RT2 T,
l 2
] | Brr (28)
= N I .
2 2
! L 8RB -

It follows from (27) and (28) that p = py and u = u,. Let Q] (resp. Qz)
be the fundamental cut set matrix with respect to T] (resp. TZ)’ Then
g] = [-g;li 1] (resp. Q = [-§$25 1]) [1]. Since

vs 91!71’ is= §£1L2 (29)
for (Y’i) € K [1], one has
. _ — 3
B 1 1 1
v -Bp, -B
~RL] ~RR ZRP
1
v -B v
..PL1 ~PP ~RT1
v = =
~ v 1 Vv
RT] ! oy
v 1
o _Jn— i !
= (v.1) — > (30)
i o |
L,
iP ! riR |
i = | . i T
~ s 2T 2T .
i
R, Brr  Bpr lPL2
5 : 2T |- -
~PT ~PP
. B 2_ n _ J

-14-



Hence we have the parametrization ¥y ‘R

Then

and hence

where np

T

meanings.

b . K defined by

o
RT]
v Vv
p v
T
1'—?
i i
~R ~
L
i
Ip
L2_
V) v 1 1
M Yp IR lp
RT] Lk Ly L,
- 1| -
-Bpp |
T
L R D et aee e T TP (31)
| 1
| 2T
| Bpp
codim Im Xp = 2n - rank Xp ° ?'1
= (n-np ) + (n-ny, )
P
T Ly
=n, +0n (32)
P P
L T,

is the number of ports in T1 and other symbols have similar

Next, we choose another parametrﬁzation Yo for K defined by
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_ - F_ 2 ]
‘R, BRR
2
2 2
%, Br  Bpp YR,
2 2
v = =
~ !RT 1 YPT
2 2
Yp, . !
1 L
o - _
lRL 1
1
i 1 i
ip I R
L L
i= |, T .
~ R Brr » L
1 1
. 1T T
I, Bep  Bpp
1
Then
v v i i
v Yp IR Ip
RTz Ty Ly
-, |
-BRr |
! |
I oo
I 1
| 1T
BRr
. -
which implies that
Ker xp © ¥o = {(Vp Vg »ip »ip )| Vv 0
~R ~2 -vRT ~PT ~RL ~PL l ~RT ~

2 2 1 1 2

Therefore

-16-
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e . - - - - _ - =
R i IR
LZ L1
2 .
vp “Bpp ip 1 ,
Ly L
Ker xo = < (v,i) = Vp s = i (36)
2R ~da ~P . P
v . T. i L
2 1
. 1T
Y, ! Ip, Bpp
q R R T N J
and hence
dim Ker yp = n +n (37) -
2R PT PL
2 1
Equations (32) and (37) imply (i). . ]

Remark. The above result says that rank Xp and dim Ker Xg are complemen-
tary with respect to 2n and p + u , i.e., if there are p independent port-
only loops and u independent port-only cut sets, then rank Xp drops by
p + u. This, in turn, forces dim Ker XR to increase by this same number
p + u. This means that for any (!R’iR) € XR(K)’ there are p + u indepen-
dentvectors(!pk,ipk), k=1,..., p + u, such that (!R’!Pk’iR’iPk) €K
for all k. .

Now observe that codim Im Xp = 0 (resp. dim Ker XR = 0) means
Xp (resp. XR) is surjective (resp. injective). This implies the next two facts.

Corollary 1. The following conditions are equivalent:
(i) Condition P.
(i) Xp is surjective.
(i11) XR is injective.
Corollary 2. The following conditions are equivalent:
(i) There are no resistor-only loops and no resistor-only cut sets.
(ii) Xp is injective.
(iii) Xg is surjective.
We are now ready to state the first of our main results.

Theorem 1 (Characterization of Strong Structural Stability). Suppose that
ADK# Q.
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(i) If A Mand if m, is a nice immersion, then the following hold:

(ia) For any small CT perturbation A of A, the map ﬁp persists to be

a nice immersion. Furthermore, there is a C.l diffeomorphism H : L - E
near the identity map and there is a homeomorphism H, : R -~ R such that
the following diagram commutes:

z = > 5
T T
~P l l ~P
Ho v
R > R

Therefore N is strongly structurally stable.
(ib) For any self intersection point (!P’iP) € R, E;](Xp,ip) =2,
where # denotes the cardinality of a set. Furthermore, self intersection
points are isolated.
(ii) Assume Condition P and suppose that A &K or Tp is not a nice
immersion. Then there are arbitrarily small C] perturbations A' and A"
of A such that R' and R" are not homeomorphic where A' and A" are the
constitutive relations of the perturbed n-ports. Therefore N is not
strongly structurally stable.

Before we prove this theorem, let us state an important consequence.

Corollary 3. Suppose that A NK # @ and that Condition P is satisfied.
Then N is strongly structurally stable if, and only if A & K and E is
a nice immersion.

Remarks. 1) Notice the "if and only if" nature of Corollary 3. It
completely characterizes strongly structurally stable n-ports. Recall
that Proposition 1 says that an n-port is structurally stable if and
only if A & K. Therefore, for strong structural stability, we need
another condition; o is a nice immersion and that is a necessary con-
dition also.

2) Assume Condition P, If N is strongly structurally stable, then {ib) -
says that every self intersection point of R has exactly two points (no
more and no less) in I which are mapped to this point by Tp- Therefore,
one can immediately tell that the 1-port in Fig. 7(b) is not strongly
structurally stable because there are three preimages of y under Tp-
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3) Let S (resp. S) be the set of all self intersection po1nts of R
(resp R) Then R - S and R - S are manifolds. If EP R+ R 1s the
homeomorphism given in Theorem 1, then QPKR -S):R - S)+(R - S)is a
diffeomorphism.

Proof of Theorem 1. (ib) follows from the definition of a nice immersion.
(ia) It fo]]ows from Proposition 1 that there is a diffeomorphism

G £+3 = A N K such that G is close to 1 provided that A is close
enough to A. Therefore Xp © G:I~ R is c]ose to Tp 2 L R. It

follows from Lemma F in Append1x II that Xp ° G pers1sts to be a nice
immersion. Since I = "G(Z) and since “p Xplz the map “p is a nice
immersion. By the definition of a nice immersion, for any self inter-
section point X’é (YP’ ip) € R, there are exactly two points Xps Xo €z
such that EP(§1) =y= “P(xz) Moreover, there are disjoint neighbor-
hoods Uk of Xy s k = 1,2, in T such that "P'Uk 1s a diffeomorphism,

np(U]) N WPOJZ) = {y} and nPUJ) anb(uz) Let Uk be a ne1ghbor~

hood of x, in U, such that Uﬁ C U, and define Vi —-G(Uk) C Z

V: A'G(Uk) Cc Z k = 1,2, where a bar denotes the closure of a set. If

Xp © G is close to Tps We may assume that XP(Vl) N XP(VZ) {y}, a single-
ton, and XP(Vl) ) xp(vz) Set

% 2l A, k=1,2, (38)
where fp = XPIE' Then there is a-C' d1ffeomorph1sm P g (see
Fig. 8) such that (i) 9 ° G (xk) = xk and (11) ¢, is the 1dent1ty map .
on a nelghborhood of the boundary of Vk Clearly, ¢k is close to the

identity map if Uk is small enough. Define H T+ % by

¢ 08 (0, xeU
)¢ 80800, xEU (39)
G (x) » XEU UL,

Then H is a C1 diffeomorphism close to the identity map. For any point
y € R, there is a point x € & such that gp(f) = y. We define Hp: R > R
by

Holy) & xp o H o 3l (y) (40)

where w;] is the set theoretic inverse. We claim that this map is well-
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defined. To prove this (see Fig. 9) observe that y = EP(EI) = EP(§2)
implies ﬂ(fk) = X,» k = 1,2, because of the property of ¢, and (39). -
It follows from (38) that XP(§1) = XP(QZ) = 2. Therefore.ﬁp(x) =

xp ° H(xq) = xp ° H(x,) = § and H, is well-defined. Since xp o H =

ﬁp o H, where ﬁP’é Xplg’ we have from (40) that

A

TpoH=Hyom . (41)
Also, the inverse
-1 -1 a-1
Hp = xp o H o m (42)

is continuous. Since HP and §;1 are continuous, HP is a homeomorphism.
This and (41) imply (ia).
(ii) There are four cases which can happen.

Case 1: A& K. It follows from Theorem 2 of [1] that there is a C]
perturbation A1 of A such that A] N K contains an open set U which is
also an open set of an affine submanifold J of dimesnion n + k, k > 0.
Consider the splitting K = Ker y, ® (Ker XP)*. Since Condition P holds,
Corollary 1 implies that dim(Ker XP)l = 2n.  Let A' be a further pertur-
bation of A] such that A' N K contains an open subset U' of an affine
submanifold J' such that J' has an (n+k') - dimensional factor in

(Ker xp)* forsome k', 1< k' < k. Since xp maps (Ker x,)* onto xo(K)
isomorphically, we see that XP(J') is an (n+k') - dimensional affine sub-
manifold. Hence R' é=>~(P(A'n K) contains an (n+k') - dimensional open
set. On the other hand, it follows from Theorem 2 which will be given
shortly that there is another C1 perturbation A" of A such that XP|A“r1 K
is a nice immersion. Therefore R" é=?V(P(A"_ﬁK) contains an n-dimensional
open subset but it cannot contain an open subset whose dimension is
greater than n. Therefore R' and R" cannot be homeomorphic.

Case 2: AR K, but o is not an immersion. In this case I is an
n-dimensional submanifold. Since T is not an. immersion, there is an
X € T with

dim gEP(I§Z) <n . (43)

Let
Ji1: . (44)

13
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Then there is a C1 perturbation A' of A such that Z'N J contains an open
subset of &' and J. By a further perturbation, if necessary, we may
assume that dim(gzp)(a) =n - 1. Then J is isomorphic to XP(J)(:)J'

for some J'. Now consider the following local coordinate system on a
small neighborhood U of X in . (Fig. 10) Let " n-1 be an open disc of
RrR" -1 centered at the origin with radius 1 and let L =[ 1,1] CR. Then
there is a diffeomorphism ¢ : " -1 X L += U such that ¢(0 0) = X. Since
U CJ, we can choose ¢ in such a way that ¢(Dn ]x{O}) c xP(J) x {0}.
Since J is isomorphic to xP(J)@J there is a C] embedding F : A'~ e
close to 1,, such that the following hold (Z"AF(A') NK):

(1) F o 9(u,0) = xp © F o 9(u,0) =% ° F o 90" 'x{0})

(ii) For each (u,t), ue D"' ,» |t] 5-2-,

Xp © F o ¢(ust) = xp o F o ¢(u,-t)

~ ~ ~

j.e. it is a self 1ntersect1on point of R" ”‘X (z").
(iii) For any (u t), u€ D"' [t] > ;, the point XP o Fo g(g,t) is not
a self intersection po1nt of R".
(iv) | n s, t#0
dim(dxp) TFog(u,t) 2=

n-1 ,t=0.
Then, for u € Int p"” ], the po1nt xpoFe ¢(u 0) has a neighborhood in
R" of the form Xp © F o9 (0" 1x(0}) x {—7. On the other hand, for the
perturbation A of A obtained by Theorem 2 which will be given shortly,
Xp(z) has no points with such a neighborhood, because each self inter-

section point is isolated. Therefore, P(Z) and x,(z") are not homeo-
morphic.

Case 3: AR K and Tp is an immersion, but there are points X and x
such that y = wp(x]) = “p(xz)’ X1 # X5, and

(d'n'P) T Z+(d1rp) T z#TlR
X 2 X2

22

A simple examp]e is the point y of Fig. 7(a) The idea here is to
obtain a C' perturbation A' of A such that xp(Z') looks 1ike R' of Fig. 11
and obtain another perturbation A of A such that XP(Z) looks 1like R of
Fig. 11. Certainly, they are not homeomorph1c First of all, observe
that there is an affine submanifold J —-((dnp) X Tx1z) n ((glrp)x2 T, z)

~

in TleZn such that dim J > 0 because of (45). Without loss of generality,

assume that J is a linear subspace ofIRzn 8y perturbations on neighbor-
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hoods of X1 and Xo in A, we obtain a A'Aclose to A such that there are
neighborhoods U, of x,, k = 1,2, in ' = A' NK and such that

v é’XP(U1) N xp(Uy) is a neighborhood of y in J. Let D™ be a disk cen-
tered at 0 inR™ and Tet X" £ (0"x{0}) U ({0}x0") CR™ xR". Then y

has a neighborhood in XP(Z') homeomorphic to XK Dk, where

k = dimJ > 0. (see Fig. 12) Now let A be the perturbation obtained in
Theorem 2 which will be given shortly. Then any point y € EP(E) has a
neighborhood homeomorphic to D" or X" but it does not have a neighbor-
hood homeomorphic to X"X x DK, k > 0. Therefore, xp(Z') and Xp(ﬁ)

cannot be homeomorphic.

Case 4: A R/ K and conditions (i) and (ii) of Definition 3 hold, but
(iii) fails to hold, i.e., there are three points Xys Xy and X3 inz:
such that EP(X]) = fP(i‘z) = ’IP(53) 4 YER. Letald {(u,u) eRr" x M

which is called the diagonal of R"x R". Then y has a neighborhood

in R homeomorphic to A U (]R"x{O}) U ({0} xIR") C]Rzn. For example,
point y of Fig. 7(b) has such a neighbSrhood. On the other hand, for-
the perturbation A of A obtained in Theorem 2 which will be given shortly,
each point y € R4 KP(E) has a neighborhood homeomorphic to 0" or X"
as in Case 5. (see Fig. 13) Therefore, R and R cannot be homeomorphic.
= §

Let us now give several examples to explain significance of the
conditions in Theorem 1 and Corollary 1.

Example 4. Consider Example 1. Since Agf K, this 1-port is not strongly
structurally stable.as described in Example 1.

Example 5. Consider Example 2. At point y of R in Fig. 2(b), condition
(i1) of Definition 3 is violated. Therefore this 1-port is not strongly
structurally stable as was explained in Example 2. Notice that this
1-port is structurally stable as was explained after Example 3.

Example 6. Consider Example 3. Since all the conditions of Theorem 1
hold, this 1-port is strongly structurally stable as explained in

Example 3.

Example 7. (A strongly structurally stable 2-port where m, is not a
nice immersion and Condition P is violated.) This example shows that
Corollary 3 as well as (ii) of Theorem 1 is false without Condition P.
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Consider the 2-port of Fig. 14(a) where the internal resistor constitutive
relations A is given by the following parametric form:

1 2
PRI

1 2
v =5 P =P
Ry 5 271 1

-

1R = D]TP] + ip]> iR = pz: where p-l, pz, iP-[e R.

1 2
We will first show that A is a 6-dimensional submanifold. Taking the
derivative of the parametrization, we have

o) 0 i \ v i
1 ] 2 P] | P] P2 Pz_
v pqt '
v p1-1 |
] i p-+1
R.I P] 1 |
i 1 | g
o l_ O (46)
VP] | 1 .
I
. ]
iP] 1
|

It is clear that this matrix has rank 6 and hence A is a 6-dimensional

submanifold of R8. Let K be the Kirchhoff space [1]. Then K is para-

metrized by (vp sVp »ip sip )3
Ry*'Ry* Py Py

_vR]T 1. LT

e, co L

IR, L S o YR
iRz = LI "R2 =~ 11
vPJ -1 -1 ip'l

vPz -1 -1 —1p2_

iP] 1

_iPZ_ i 1
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Let p = (p],pz). Then, by the definition of transversality [1,2], A MK
if and only if

+ImF =1R8 for all (p,v

Im E . yia)
~(0s¥pip) p>lp

which is equivalent to
L puyptp)

It can be shown that (46) holds and hence A R K. Therefore I is a

2-dimensional submanifold [1]. Since Kirchhoff laws are given by

Vo + Vo +vy =0, vy +vy, +vy, =0,1i, -i, -1i, =0and

Py Ry Ry P Ry Ry Ry Py P

= 0, we see that £ is parametrized by (pl’iP ) and

: 1

f] = 8 for all (Q’YP’iP) . (46)

i, =iy =1
Ro Py P2
hence R is described by
2 2 . . .
Vp = =p7s Vp = =0y, 1 » ip = pqiy (47)
Py 1 P2 1 Py P2 1 Py

In Fig. 14(b) a picture of R embedded in RS is given. Let p:I » R
be the above coordinate system. Then

B .
-Zp]
-2p
-1 1
dr o , =
(drpey )(01,1P]) i 1
oy P

Since rank (95P°?-])(0,0) =1, T is not an immersion at 9-](0,0) = g € 1.

(See Fig. 14(b)). One can see intuitively that R persists to be quali-
tatively the same object under small perturbations. (Proof of this fact
is omitted since it is technically involved.) Therefore this 1-port is
strongly structurally stable even though Tp is not an immersion, where
Condition P is violated. One can also see from Fig. 14 that for any
small perturbation A of A, the map ip will not be an immersion.

Remark. The proofs of our main results depend crucially on the C]-ness
of the perturbation A of A. If we consider C2 perturbations, the proof
for (ii) of Theorem 1 does not work. Roughly speaking, the reason is
the following. Suppose that A is described by y = xz. In Case 1 of the
proof for (ii) of Theorem 1 and in the proof of Proposition 2, one has
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to take a procedure which is equivalent to flattening A onto the x-axis
locally (see Fig. 15) in obtaining A. This is impossible by a C2 pertur-

bation. To see this let us recall that the C2 perturbation A of A must
satisfy
X2 - H(x)| + |2x - (0F) | + 12 - (0%F), | < e(x) (48)

for small e(x), where A is described by y = f(x). It is impossible,
however, to make the left hand side of (48) small, because at x = 0, we
have (0F)y = 0, (0%8)g = 0.2 - (0%F)g| = 2. On the other hand, the ¢!
distance [x - f(x)| + |2x - (D%)XI can be made arbitrarily small. A
similar procedure is taken in the proof for Case 3 of (ii) of Theorem 1.
The above difficulty arises for all ck perturbations, k > 2. On the
other hand, if we consider C0 perturbations of A, then all the trans-
versality arguments do not make sense because of the very definition of
transversality; A M K ¢>T A+ T K= ‘RZb Namely tangent spaces cannot
be defined on C0 man1fo]ds, in general Also, the set of all C] functions
F:a +R2P such that F(A) N K is a submanifold, is not an open subset
of C‘(AJRZb) with respect to the strong c0 topology.

We will next give another important result on strong structural
stability which says that there are "many" strongly structurally stable
n-ports provided that Condition P holds.

Theorem 2 (Density of Strong Structural Stability)

Given an n-port N assume that A N K # # holds and that Condition P
is satisfied. Then there is an arbitrarily small ¢! perturbation R of
A such that A N KA# 8, A A K and To is a nice immersion. Therefore the
perturbed n-port N is strongly structurally stable. Furthermore, if
A= Ap X ]RZ", then A can be obtameg in the form A = AR xIRZ", where
AR is a C.l perturbation of AR inR R,

Proof. It follows from Proposition 3 that there is a C] perturbation

A of A such that AN K # @ and A f K. If A = Ay x R, we have

A= AR R%", Therefore, we may assume that A ; K is satisfied already.
By Condition P and Corollary 1, we know that Xp defined by (25) is a
surjection; XP(K) =R®. Since dim I = n, it fol]ows from Lemma F of
Appendix II that there is an arbitrarily small C perturbation

Fp: 2 +]R2n of xPIZ Tp such that Fp is a nice immersion. It follows

from XP(K) = R%" that there is an 1somorph1sm A:K +]R2"®Ker Xp such
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that A(x) = (XP(§)’112°'5(§))’ where T, is the projection of IRZ"@Ker' Xp
onto the second factor. We define a C] map F0 :Z » K by

Fo(x) & AN (Fp(x),my0A(x)) (49)

Then EO is a C] perturbation of the inclusion map : £ - K. Therefore F

is an embedding. It follows from Lemma G of Appendix II that there is a
C] extension F : A ->R2b of F which is close to the inclusion map
1 A +R2b. Observe that the extension F obtained by Lemma G is so
defined as F(x) =~ x& K for all x€ K, This implies that F(A) N K = Fy(z).
(See (A.43) of Appendix II in the proof of Lemma H.) Since ANK# @
and since A F K, we have E(A) NK#9 and E(A) R K, provided that f is C]
close enough to 7% Since F, in (49) is a nice immersion and since A is
an isomorphism, we see that~>§p|fo(2) = xplF(A) N K is a nice immersion.
Therefore A ) F(A) is the perturbation sought. Finally, consider the case
A = AR X 1R2n° ~Irtlz follows from Lemma H qf Appendix II that there is ]
an Fo @ Ay >R R which is arbitrarily C' close to the inclusion : Ap + R R
such that for a given F, we have F(z) = A NK, wehre A = Frlrg) x RZN,
Since A is a small C] perturbation of A, we have AnK#08,4m K.:l
Remark. Observe that Whitney Immersion Theorem (Lemma F of Appendix II)
is crucial in the proof of Theorem 1 as well as Theorem 2. The former, in
turn, crucially depends on the fact that ZSP(K) = lRZ", i.e., Condition P.
If this condition is not satisfied, the set of immersions is not dense in C](A;IRZb) .
Example 7 is a case in point. Since there is a port-only loop, Proposition
6 tells us that dim Imx, = 1<2, i.e., Condition P is violated. There
is no way of making Tp an immersion by perturbations. In order to further
clarify the significance of Whitney Immersion Theorem, suppose that K is
isomorphic to R3 and that Xp is the projection map of R3 onto RZ. There-
fore dim Im Xp © 2 < 4. Suppose also that £ is given as in Fig. 16. Then,
it is clear that at x €1, (QEP)x= 0, where Tp = ZPIZ‘ There is no way of
making T, an immersion by perturbations.

hre will next give a method of checking condition (ii) of Definition 3
concerning nice immersions. A method of checking condition (i) is given
in [1]. Since A is a C] submanifold of dimension 2b-ng, for each point
(!0’10) € A, there is a neighborhood U C]R2b of this point and there is

1 nR

a C function f : U->R " such that
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Anu =50 (50)
and
r'ank(Df)(v 1) for all (v, 1) EANU . (51)

Let T be a tree for N and let L be its associated cotree. Decompose
vand i as v = (!L’!T) and i = (iL’iT)’ Let B = [lggT] be the fundamental
loop matrix and set

F(v i)= [D f-(D Lf)”T'91Lf+(E1Tf)* J(v i) - (52)
This matrix p]ays an important role in checking transversality of Aand K
[1]. It turns out that this matrix is important for checking condition
(ii) of nice immersion also. '

Proposition 7. Let ANK # @, A & K and suppose that conditions (i) and
(ii1) of Definition 3 are satisfied. Then m, is a nice immersion if and
only if EP(Y l) P(v i) implies

F(v,i)
rank | 7~ b (53)

(v>1)

e

where F is defined by (52) and F is defined similarly.
Proof. Let (g,z:ﬁu) be a local chart for I at (!,i) and let

Bv
. A .
glv.1) = | Qi (54)
fyv.1)
where f is as in (50) and (51). ThenI NU = (0) Similarly for

(E,i), we have L N = g (0), where U and g are defined similarly. We
first claim that

- men
if and only if
(Dg) (y ;
rank |~ (1) | gp (56)

~

(Dg)(;’§)

To this end observe that
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Im(dﬂp)( 1) + Im(dwp)( ) P(Ker‘(Dg)( )+Ker(Dg)(~ ~)) (57)

where mp is defined by (19). It follows from the proof of Proposition 3
in [1] that

™
rank(dﬂp)( i) = rank

- rank(Dg),. .
'~ | (0g)y,4) = (D)

On the one hand, the fact that mp is an immersion implies rank(dwp)(v 1)

and A i K implies rank(gg)(v i) = b + n. Therefore

™p
rank =2b .
(99)(v,i)
Similarly _
.n.l
rank ~P =2b ,
(99)(7,3
Therefore

dim(Ker fﬁ N Ker(gg)(!’i))

= dim(Ker T N Ker(gg)(v’T)) =0 . (58)
Now suppose that (56) holds. Then
d1m(Ker(Dg)( ) N Ker(Dg)( )) =0 (59)
and hence
dim(Ker(Qg)(!’i)+Ker(Q§)(ggi))
= dim(Ker(gg)(v,i)@Ker(p‘g)(;ﬁ)) =2n. (60)

Equations (57), (58) and (60) imply (553. Conversely, suppose that (55)

holds. Since rank né = 2n, (57) implies that

d1m(Ker(Dg)( )+Ker(Dg)(~ ~)).Z 2n. (61)

Since mp is an immersion, (58) implies that equality in (61) must hold.
This implies (59) which, in turn, implies (56). Finally we will show
that (56) is equivalent to (53). Since
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I
(Dg) (, sy = | 8L
~27(v,i) : : | ~T -
D f D fl!D.f D, f
N Y e i
e -(!31)
it is clear that (56) holds if and only if
1 Br : . ]
: T
. . | “Br !
ek O D OB T8 D @l |
LT - I
(gsz)(V,7) (D f)(v 1) | (D f (v 1) ( )(v 1)
i M M
(62)

By elementary operations, one can show that (62) holds if and only if (53)
holds. o

Example 8. Consider the 1-port of Fig. 1(a) where the internal resistor
constitutive relations are given by Fig. 3(a). Choose TA {Rys Ry}
to be our tree. Then v, = (le,sz), V) = Vp, dp = (iR],iRz), i

8= 01 1,

L= Tpr

- -Df
Ry

-

Therefore the matrix of (53) is given by

of, ) 1]
Ry VR,
(-Df, ). 1 (63)
R Ve,
Voof, )~ 1
L R2 VR2 ]
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At self intersection points of R, none of the derivatives (DfR )v
k 'R
(Dfg )y » k = 1, 2, vanishes. By checking Fig. 3(a) k
k 'R
k
and Fig. 3(b) carefully, one sees that (DfR )V_ # (DfR )V s k=1, 2,
, k'R, kR,
at self intersection points. Hence the matrix of (63) has rank 3. Since
conditions (i) and (iii) of Definition 3 are satisfied, Proposition 7

tells us that T is a nice immersion.

IV. Strong Structural Stabilization

Suppose that a given n-port N is not strongly structurally stable.
Theorem 2 says that one can make N strongly structurally stable by a
small C1 perturbation of A, provided that Condition P holds. Such a
perturbation is called element perturbation. Here we will give another
strong structural stabilization procedure which is called network pertur-
bation. It amounts to creating extra ports by "pliers-type entry" or
"soldering-iron entry". Note that element perturbation gives rise to a
new A but it keeps K unchanged, while network perturbation gives rise to
a new ambient spacele(b+") where n is the number of ports created.
Recall that norator imposes no constraints on the existing internal resis-
tor constitutive relations. Therefore, network perturbation is equivalent
to inserting norators by pliers-type entry or soldering-iron entry. Recall
that N is the network obtained from N by terminating ports with norators.
(See Section II).

Theorem 3 (Strong Structural Stabilization via Network Perturbation)
Given an n-port N let A = AR x]R2n and let ANK # @. Suppose that
N is not strongly structurally stable. Let T be an arbitrary tree for
N and let L be its associated cotree. Decompose T and L as T = RT UPr
and L = RL U PL’ respectively, where R and P denote resistors and
ports, respectively. Insert an extra port in parallel with each branch
of RT and insert an extra port in series with each branch of RL’ Then
the resulting (n+nR)-port N satisfies the following conditions:
(i) AnK # @, (ii) R is strongly structurally stable.
For proof we will need two lemmas.

Lemma 2. Let T and T, be arbitrary trees for N and let L1 and Ly be

associated cotrees. Let B (resp. B, ) be the main part of the funda-
“1 ~2
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mental loop matrix with respect to T](resp. TZ)' Decompose Vv as
v = (VL VT ) and decompose i as i = (i ’1T ). Then A R K if and only

~ ~ ~ ~ ~ L

rank F'2(v,i) = ng for all (v,1) €2 (64)
where

12,y A !

F(v,i) = [Dv f- (Dv f)B; D, f 4 (u f)BT ] (65)

and f is as in (50) and (51). '

Proof. Since the Kirchhoff space K is described by 513 = 0 and 921 = g,
it follows from an argument in [1] that A A K if and only if for each
(vyi) €

B
rank . gz = b + nR
o, f D;f

- - (!’i)
where B, (resp. Qz) is the fundamental loop (resp. cut set) matrix with
respect to T1 (resp. Tz). More explicitly, this matrix is given by

1 B
~ ~T«l

3 .

Q —

p, £ O, f | D, f D, f
~V, ~ ~V ~1 ~lg ~
P FR Tt Palids :

. —(v,i)

~ o~

l
l
| -
I 2
|
|

By elementary operations, one can show that this matrix has rank b + Np
if and only if (64) holds. R

Remark. Observe that we took full advantage of the fact that transversality
is a coordinate-free property when we used two different trees simultan-
eously in (64) as well as (65). This enables us to prove Theorem 3.

Now Tet A = Ay x B2". Then f of (50) and (51) is independent of

of (vpsip). Let Up & U NR*™R and define fp : Uy »R'R by

~R " "R
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frlvpsip) & fv,i). (66)

For the tree Tk, k = 1,2, decompose ET as

K
\'} v
v Yp
i RTk T
K K
'R, B Bre
K ) (67)
K
Y, Bor  Bpp
K
B N 2n

Recall mh of (7) and define mp : T >R by
R AR (68)

where 1 is defined by (21). . Substituting (66) and (67) into (65), one
obtains the following:

Corollary 4. Let A = AR x]Rzn, let T1 and T2 be arbitrary trees and let

L] and L2 be associated cotrees. Then A i K if and only if
rank Fol(vgsig) = np for all (vp.ip) € mr(Z)

where . o
n - -
“'R ~R ~R R ~R I R .
T 5L L
] ] ] .l ]
(69)
D. f,+ (D, f,)B2 '(D. f,)B2]
~RL "RT ] “'R‘r
2 : 2 ' 2

(vgsdg) -

Proof of Theorem 3. The symbol ~ will denote a function or a set
associated with perturbed N. One can show that & N & # @ as in the proof
of Theorem 4 of [1]. Let P (resp. P,) be the branches of the extra
ports inserted in parallel (resp; series) with Rp (resp. RL)' Then

?]=Q Rp UPp UR, is a tree and L, 4p U P, UP, is its associated co-

L
tree. Therefore, T, contains all the resistors and v,,. = (vp »Vp )
o e TR Ry

A A A A 1 A
= Vp = Vpo g;R = g;p =0, whereAgaR and g;P are as in (Gz) for N and
§ denotes a 0 x 0 matrix. Set T, AP, UP, UP,. Then T, is another

tree and IZ AR  UR UP, is its associated cotree. Hence L, contains all
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the resistors and 1RI = (jRL,i ) =g = ips gﬁR = §. Substituting these
2
data into (69), we have

A]Z
(V,'I) lef
~R°.R R~R ~R~R (
1

It follows from (51) that rank 5;2 (QR’ER) = np for all (GR,?R) = (vR,iR)

Yrolg) -

€ A :>nR(z) By oro]]arz 4, we have A ® K. Now, since ? consists
only of ports and since L2 contains all the resistors, it fo]lows from
an argument similar to Proposition 5 that there are no resistor-only
loops and no resistor-only cut sets in N. It follows from Corollary 2
that XP is injective and hence "P —-XPIZ is an embedd1ng. Afortiori Ep
is a nice immersion. It follows from Theorem 1 that N is strongly
structurally stable. n

We can reduce the number of extra ports by choosing appropriate
trees. Let T] be a tree containing maximum number of ports and let L]
be its associated cotree. Let T2 be a tree containing maximum number of
resistors and let L2 be its associated cotree such that R c T2 and

P, CL,, where Ry (resp. P, ) denotes resistors (resp. ports) in
L2 1 b
L (resp. L]). It is not difficult to show that such a pair of trees

exists. We will use the following notation in decomposing the branches
of N: ‘

‘55‘"““-~€J resistors ports
T.NT R (=R ) P
LNL R P (<P, )
1 2 L]Z le L]
WOk o P12
L, NT, Ry 6
2n

Proposition 8. Given-an n-port N let A = Ap xIR™" and Tet ANK # 0.
Suppose that N is not strongly structurally stable. Let T] (resp. T2)
be a tree containing maximum number of ports (resp. resistors) and
decompose the brqnthes of N as above. Insert an extra port in series
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with each branch of R.,.]2 and insert an extra port in parallel with each

branch of R

Lo Then the perturbed N is an (n+nR np )-port satis-

fying the following conditions: (i) A NK # @, (ii) N is strongly struc-

turally stable, where nRT (resp. Np ) is the number of branches in
L

R (resp. R, ). 12 12

M2 b2

Proof. The fact A NR # § can be proved in the same manner as the proof
. 2 A

of Theorem 4 in [1]. Let T RT]Z U R,_]2 UR, Y P.r]2 Then
T, is a tree and [ A P UP., UP, UP, is its associated cotree.

1 1 L]2 12 1 2

A . . N 21 _
Therefore, TI contains all the resistors and !R? = Vg = Vpo §RR = Q.
1
A A A N
Let Té —-PT U P]2 v P] v P2’ Then T2 is avtree and

N 12 : ‘ ~
L2=é PL URT v RL U R]2 is its associated cotree. Therefore L2
12 12 12 ~o

contains all the resistors and i, = ?R =1ips BRR © . It follows from
Rp, RO~ <

the same argument as that of Theorem 3 that rank ?;Z(QR,?P) = np
and that ﬁp is a nice immersion. Therefore N is strongly structurally
stable. H

Bﬁméﬂﬁf The number nRT (resp. np ) is the number of independent
12 L]2

resistor-only cut sets (resp. loops). Therefore, the network perturba-

tion used in Proposition 8 as well as in Theorem 3 eliminates resistor-

only loops and resistor-only cut sets. It, then, transversalizes A and

ﬁ, and makes QP an injection. The fact that Qé is injective forces R to

A

have no self intersection points. In fact, R = ¥ P(%) = fp(g) is an

nR(=ﬁR)-dimensiona1 submanifold, because fp = gplﬁ : T >R is now an
embedding. This means that if resistor-only cutsets and resistor-only
loops are eliminated, then nice properties of AR(KR) are inherited to R.
Observe that nice properties associated with Ap, @ submanifold, may

be destroyed by resistor - only cut sets and resistor-only loops if it is
mapped into the port space by Xp- The network perturbation, therefore,
is a kind of "blowing up" procedure for eliminating self intersection
points. Notice the distinction between this condition and Condition P;
the former excludes resistor-only cut sets and resistor-only loops while
the latter excludes port-only cut sets and port-only Toops.
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Example 9. Consider the 1-port N of Fig. 1(a) where internal resistor
constitutive relations are given by Fig. 2(a). As was explained in
Example 2 this 1-port is not strongly structurally stable. Let

Tl-é {P,R1} and szé {RI’RZ} be the trees discussed in Proposition 8.
Then the procedure of Proposition 8 tells us to create an extra port in
parallel with R] as in Fig. 17(a) and N is strongly structurally stable.
Rough]y speaking, this procedure provides more free space for R so that

R would look like the configuration space I of Fig. 4, where there are no
self intersection points. Observe that if one follows the procedure of
Theorem 3 then one has to add one more port as in Fig. 17(b).

V. Strong Structural R-stability

Recall that in Theorem 1 and Theorem 2, Condition P was crucial. In
this section, we will relax Condition P but restrict ourselves to those
n-ports whose internal resistor constitutive relations are of the form
A= AR x]R2n In this section, therefore, a perturbation A of A is of
the form A = AR x]RZ", where T\R is a perturbation of AR in IRan. We will
give an "if and only if" condition for a special case of strong structural
stability without Condition P. :

In order to simplify notation, we will identify two linear subspaces
if they have the same dimension, i.e., if they are isomorphic. We will
write-= to denote that two objects are isomorphic.

Recalil xR of (8) and recall that dim Ker xR =y + p , where p
(resp. u) is the number of independent port-only loops (resp. port-only
cut sets) (see Proposition 6). Also recall Xp of (25). In order to state
the results of this section, we will need several lemmas and definitions.

Lemma 3. Ker xp NKer x5 = {0} .

Proof. Recall the coordinate system 91 used in the proof of Proposition 6.
Let (!,1) € Ker xp. Then, in terms of y,, we have (see (29) and (30))

e — e — — — po— -

Vv . 1
R ~R
L ] L,
Yp “Bpp ip !
L L
M ) Ypp > 1° = ip -
~ v . ~ ~ i L
YR 1 ~R 2
L 2T
v 1 i B
M ~ ~P Spp
i T]_ i | i Tz_ i |
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It follows from this that (v,i) € Ker Xp only if (v,i) = 0. o

Now, Lemma 3 implies that Ker xR is containad in a complement of
Ker Xp* Since Xp Mmaps any complement of Ker Xp onto its image, it
follows from (i) of Proposition 6 that there is a 2n-{p+u) - (p+u)
= 2(n=-p-u) - dimensional linear subspace H of]R2n such that

Imxp = H®2§P(L) =H®L . (72)
where L = Ker xp. Define

o B (H) (72)
Lemma 4. K ®L = K. (74)
Proof. We first claim that '

Ko NL = {0} . (75)

Io prove this let x € KO N L. Then Xp(f) € XP(KO)'O XP(L) =HN XP(L)

= HAL. This and (72) imply KP(f) = 0. Hence x € Ker xp N Ker xo.
This and Lemma 3 imply (75).

By (i) of Proposition 6, we have

. RIS P, .
dim K0 = dim Xp (H) = dim H + dim Ker Xp

dimH + dim K - dim Im Xp

2(n-p-u) + (n+np) - (2n-p-u)

n+np -p-u

dim K - dim L

which implies dim K, + dim L = dim K. This and (75) imply (74). R
Since L = Ker XR* it follows from Lemma 4 that

XplKg t Ky > Xp(K) (76)

2n

is an isomorphism. Assume that A is of the form AR xR™" and recall

Eﬁ of (19). Then, we have
=1 ~ 2n 2nR
A0 (xp(K) = (Aex B2M) 0 (R Ry (K))
= Ag x %K)

= Ag X (H®L)
(ARxH) xL.
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It follows from this, Lemma 4 and K C Eé'](XP(K)) that the following
holds:

L=ANK= (AOm" (xP(K))) nK
= ((AgxH)xL) N (K,®L)
= ((ARxH)nKO) x L.
Define

N K

AcAA 0

0="R
Lemma 5.
(1) KPIKO : Ky > H is surjective.

xHy, Z, A A

0 0

. i anpoL L
(ii) XRIKO : KO.-»]R is injective.
Proof. (i) follows from definition (73). (ii) follows from the fact that

the map defined by (76) is an isomorphism. ‘ =
Letting
A PR
R2R "(DH (78)

2n 2n
we have from (72) that 1™ (x, (K1) = R "x x(K) = R R DL = Ry@L.
Summarizing the preceding arguments we see that for a given N, there is

a unique N0 given by the following:

xp! Ko RO S xH

R, 2K

0> Ko
A
Xp“‘o\H Iy = Ay N Ky

In this section, we will always assume that A is of the form Ap xR

by a perturbation A (resp. A ) of A (resp. 0), we mean AR le2" (resp.
2n

AR X H), where AR is a perturbation of AR 1n]R R. Also, by the con-

stitutive relation of Ny, we mean the set R, =’ZP(ZO)’

2n

2N and

Lemma 6., Assume that A = AR x R Then for‘NO, statements of Theorem 1
and Theorem 2 hold without Condition P.
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Proof. There is a C]

Proof. perturbation AR of Ap such that A A xR(KO) Since
A0 AR x H, it follows from an argument similar to the proof of Lemma 1
that AO ﬁ‘KO. Therefore ZO = AO N K0 is a C1 submanifold. It follows
from (76) - (78) that

dim £, = dim Ry + dim K, - dinRy
(ng#2(n-p-u)) + (n+np-p-u)

2(n#np=p=u) =n-p -~ u

It follows from Lemma 5 that Condition P for N0 is unnecessary to prove
Theorem 1. Since dim H = 2(n-p-u) = 2 dim ﬁo, one can show a result
similar to Lemma F of Appendix II. Therefore Theorem 2 holds without
Condition P. ' n

Definition 5. Let A be of the form A x R2" and 1let N be as above.

Then Tp = xPIZ D +]R2n js said to be an admissible immersion if
XPIZO : Iy~ H is a nice immersion.

Remark. It can be shown that the definition of admissible immersion doés
not depend on the particular choice of H satisfying (72).
The following fact follows from the proof of Theorem 1.

Proposition 9. Assume A = AR le2n and ANK#@, ARK. If T is an

admissible immersion, then the following hold:
(i) R = np(z) ==KP(ZO) x L and for any self intersection point

# -1 oy
mp (Ypsip) = 2, |
where = denotes that two objects are homeomorphic. Furthermore, every
connected component o of the self intersection set of R is of the form
~{x} xLCH@L
where X € H is a self intersection point of RO.
(iia) For a small C] perturbation KR of Ap, the map XPIEO is also a nice

immersion. Furthermore, there is a C! dvffeomorph1sm H £ > % near the
jdentity map and there is a homeomorphism HP R+ R such that the
following diagram commutes:

-39-



[ e o4

Hp

{323
=
> é————-—l"l)
[ 3o
=)

R > R

(iib) H is of the form Hy x id. for some ¢! diffeomorphism EO Pl 30,
where id. : L = L is the identity map. ﬂp is of the form ﬁPO x id.for
some homeomorphism ﬂPO : RO - RO. Furthermore, the following diagram
commutes:

" Hy x id. R .
(xplZy) x id. (xplZg) x 1id.
Y .Y
R = RO X L . >=Ro xL =R
EPO x id. )

We are now ready to define strong structural R-stability and state
its characterization result.
2n

Definition 6. Let A be of the form AR xR Then N is said to be
strongly structurally R-stable if for any small C1 perturbation KR of Ags

R and R are hqmeomorphic.

Theorem 4. (Characterization of Strong Structural R-Stability)

Let A be of the form AR.x]R2n and let ANK# @. Then N is strongly
structurally R-stable if and only if
(i) A @A K

(i1) p is an admissible immersion.

Proof. Sufficiency follows from Proposition 9. In order to prove
necessity we consider the following four cases:

Case 1. A K. It is clear that Ao,f(Ko. It follows from an argument
similar to the proof of Lemma 1 that AR,ﬁrXR(KO). Since XRIKO is
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injective, dim XR(KO) = dim Kg =n +np-p-u Therefore, it follows
from an argument similar to the proof of Theorem 2 in [1], we have a

small C] perturbation Aé of AR such that Ah N XR(KO) contains an open
subset of an (n-p-p+k) - dimensional affine submanifold for some k > 1.
Since XPIKO is surjective, it follows from an argument similar to the

proof of Theorem 1 that R6 é=)$P(26) contains an open subset of an (n-p-u+k')
- dimensional affine submanifold, 1" < k' < k. It also follows from a
similar argument to the proof of Theorem 1 that there is.another C.l
perturbation Aﬁ of AR'Such that XP'ZS is a nice immersion. Therefore R'

and R" cannot be homeomorphic.

Case 2. A R K but Xplto is not an immersion. By assumption, ZO is a C]

submanifold of K;. Since XRIKO is injective, XRIZO DIy > KR(ZO) is a
diffeomorphism. Since XPlzo is not an immersion and since XRIZQ is a
diffeomorphism one sees that x, © (XRlzo)-] : XR(ZO) > H CR?" is not an
immersion. Since XR(ZO) = A N KR(K)’ using an argument similar to the
proof of (ii) of Theorem 1, one can show that there are small ¢! pertur-
bations Aé and Ap of Ap such that Xp(zé) and Zp(za) are -not homeomorphic,
whereZbé%ﬂKo,AééAéxH, Zﬁé[\aﬂKo,AaéAﬁxH.

The remaining two cases can be proved in a manner similar to that of
Case 3 and Case 4 of (ii) of Theorem 1. ]

Remark. In Case 2 of the proof of Theorem 4, we must perturb AR but not
Ay- This is the reason why we consider the map yp ° (ZRIZO)-1 instead
of XP'ZO’

The following is a density result for strong structural R-stability.
The proof is similar to that of Theorem 2.

Theorem 5. (Density of Strong Structural R-Stability)

Let A be of the form AR xIR2n and Tet ANK # @. Then there is an
arbitrarily small C] perturbation AR of AR such that
2n

(i) ANK#9D, whereK=KRxIR
(i) A & K.

(111) T, is an admissible immersion.

Therefore the perturbed N is strongly structurally R-stable.

So far, we have on]y shown the existence of K0 and Ao. The following
result describes a simple way of obtaining AO and KO' Recall that
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p {resp. u ) is the number of independent port-only loops (resp. cut sets).

Proposition 10. Let N be an n-port with A = AR xIRzn. Let T] (resp. Tz)
be a tree containing maximum number of ports (resp. resistors) and let
L.l (resp. L2) be its associated cotree such that RT c T2 and PL] c L2

Open branches of PL (port branches beIong1ng to Lﬂ and short Py (port
branches belonging to T ) and call the resulting (n-p-p)-port No- Then

(i) Ko is isomorphic to the Kirchhoff space of Ng-

(i) A0 is diffeomorphic to the internal resistor constitutive relations
of NO'

Proof. We decompose the port branches of N in the following manner:

L T

PL P}] P$1

Plz E sz T,
L T2

Fundamental loop and cut set matrices with respect to T] and T2 are given,
respectively, by

V') v v v v
L L RT1 p r p.T]
' 1 2
] : Brr Brp Brp
1 2
11 Bpp Bpp
|
i i i i i
L L RT] P r p r
IR I 7 .
-BeR S
1T 1T |
“Bep  Bpp | !
2T o1 |
“Sgp <Bpp | 1
L | _
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YR Y1 V2 v vp
L p P ~Ry  ~Pp
2 L2 L2 2 2
! : B - |
! . : Bor  Bpp
=2 =2
. | B Bpp
i i i i i
~R ~pt ~pl ”RT ~P
L P P T
_ 2 Ly L2 2 2
T =T . T l
Brr ~Bpr B | ]
T =2T
Bpp  -Bpp | !
where subscript R denotes variables associated wiph resistors and a bar
denotes that matrix is with respect to T2 and L2. Let PT A P} ) P$
1 1 1
and PLé P}_ UP% . Then
2 2 2
( (!R’ER) (9;39)— _ N
v
| Bp | | P
1 l :2 v =0
~ v bl
1% TR
Ker xo = § (¥si) - 3.~ = )
~ ~ . -IT I ) ip .
2T - i ~
-8pp | P
. — - L - J
r — 11T - 3
| -Bpp Y,
l | =2 21=0
B v ~
| =pp ~P
i 4177
= q (vpsip) " 1T | T 7 f
~PP | 1 ..PL1 =0
_BZT ~ ~
2pp | P
_ 4 L -
. J
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= Uy, pdlyp,
=y 1

We next compute H of (72).

e

. N

Ty

I

(vp»1p)

P
L

::0}

~

=0, i
2 1
) eRPHY = L .

p— 1
(-Bpp Bpp! 1]

~

-44-
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O

RO

1O

A\

(79)

(80)

> (81)




Since Py = P? and since P, = Pl ., we have from (72), (79), (80)

and (81) that® | T2
r -y Y
vp
. h
L1 Bed |y, =0
o
1
L
H2 ¢ (vpoip) K ) ] | ?
~p
: 2T Lol
[-Bpp | 11 2 =0
i
~p
Vo =0,i4, =0
Pe, Pl
1 2
~ J
«
( —
[ Vp
I ol L‘|
[1 8pp] =0
L '
q ) "
= ((vy Vv 51 sip - .
~Pp tepl Cep2  7Pr i,
1 T] L2 2 P L
2T 2 |
[Bpp i 11, =0
| i
ip
R
\.
2 (v, ., )erdinely, (82)
“pl_ "pé,
1 b

It follows from Lemma 4 and (80) that Kg of (73) is given by
Ky = {(v,i) € K|(!,1) 1L}

=lni) exly =01, =0k
2 , 1
) 2
But since P. =P5 and P, =P, , we have
T, T L L
kg = Uwi)EXly 5 =01, =0
P P
T L
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o

(=]

I

J/

This proves

v
~RL1
1 | B BYo || v
- * I ZRR ~RP ~P
i ] b
.1 Bop || YR,
1
v
~p
P T]
¢ vsd) -
Ir,
RSy |1 5 2
~RR PR | & ¢ ~P2
I L,
B2l | 1
~PP ~ i
i | 2o,
;
~P
T
2
L e —
p
! 1
[118gp Bgp!
= (v Vo sV q 1 ip )
‘-R ,“'R ,~‘I ] ~ R
ﬁ h T Pt T Lsz T2
"T Ll|
[-Brr ~Bpgill
\
Since P1 = Pi » we see that K0 is the Kirchhoff space of NO'
1 2
(i). Finally, it follows from (82) that Ay of (77) is given by the
following:
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Ao = AR XH= {(!R’!P] EiR’iPZ )l(!R’iR) € AR}
T L
where ~ denotes that the two objects are diffeomorphic. Since P} = Pf
1 2
this set is the internal resistor constitutive relations of NO' This
proves (ii). H

Proposition 10 gives an easy way of checking conditions (i) and (id)

of Theorem 4. Namely, pick T] and T2, open PL » Short PT and obtain an
1 2
(n-p-u)=-port NO' Then check transversality of A, and K, and check if

0 0
xplZy is a nice immersion.

Example 10. Consider the 2-port of Fig. 14(a) where AR is described by
the following parametrized form:

Py Py v
v = ———-— ’ v =
Ry 2(1+p]) R 2(1+p]§)
K
. 1 . :
1 = ’ 1 =p s Pys PRE R .
R, ;;;§ R, = P2 1° P2 |

Taking the derivative of these functions with respect to (p1,pz), one can
show that AR is a 2-dimensional submanifold. In order to check strong
structural R-stability, we choose T] = {P],R1} and T2 = {R], R2}. Then

PL = {PZ} and we open P2. We then apply Theorem 4 to this 1-port NO'
1
In order to check transversality we apply Proposition 2 of [1]. Choose

Toé {R], } to be a tree for NO and let L0 be its associated cotree.
Then Ry - {R], Rpbs Ry = 9 Brp = Bog = 0 By = [1 177 so that
o iy 1 91(2-03) | :
PysPp) = in = | =g .
~ ‘F1P2 ~ ~R i] (1+03)2 |
T (0y50,) l
1272 . 1 | 1

Since this matrix has rank 2, it follows from Proposition 2 of [1] that
A0 A KO. Observe that any (!R’VP] iiR’iP]) € Zo is given by
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P p -0y i of o2
(g, Y, Vo, 11 ol vp ) = (o s ==l —3i—h, L5, L),
172 T2 T \2(1+e))  2(T+e)) Ty T+ T4py T4
Therefore
o o
XP(ZO) = 3T 3 lp] €ER; .
~ 'l-l-p.I ]+p.I '

Picture of this set is given by Fig. 18(a). By inspection XPIZO is a
nice immersion. Therefore Theorem 4 tells us that N is strongly structurally
~ R-stable. Notice that (vp,ip) ER= XP(Z) is given by

‘( o o o o% Ceg
v ,V a1 ,1 = s T A 1 2 _-i s P s 1 .
Py P PPy ]+p~l§ 1+p§’ Py '|+p§1 Py L

Therefore R looks like Fig. 18(b). As was described by Proposition 9,
R is of the form XP(ZO) X L.

Remark. If N is strongly structurally R-stable, then one can show that
N is strongly structurally stable, i.e., R persists under small pertur-
bations A of A s where A is not necessarily of the form KR X HQZ". The
proof is very involved, however.
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Appendix I

Proof of Proposition 1. We will first explain the idea of the proof.
Given £ = ANK, let A be a C1 perturbation of A and let z é=ﬁ N K.
(Fig. 19). We would 1like to define a diffeomorphism between £ and .
This is not as easy as it looks. Here, we first consider the tangent
space TxA and let Nxz be the orthogonal complement of sz in TXA.

(Fig. 20). Recall that A = F(4) for some C' embedding F. (See Section
II) Observe that for x € ANK, the point F(x) may not be in K. Speaking

very rouqh]y, we map N Z by F, which is a certa1n modification of F and

set y ==F(N Z) NK. (F1g 20) Themap : £ -+ %, X >y, is essentially
the one wh1ch we look for. There is a problem, however, because N z may

not be C] in X when I is only C1 Therefore the above map may not be C]
This stems from the fact that N > is defined in terms of T rand T s and
the fact that T XZ and T A are def1ned in terms of der1vat1ves of funct1ons.
A similar d1ff1cu1ty arises in the proof of Theorem 2 of [1]. That is the
very reason we had to assume that A is C2 in defining a diffeomorphism 3
£+£. Here we overcome this difficulty by approximating the C] submanifold
by a- C” submanifold and then extend f of (6) to f using a special map
called exponential map. The extension is necessary in order to map NXZ
since F is defined only on A. -

For proof, we will need several terminologies and lemmas. For the
convenience of the reader, we will give simple pictures explaining the
ideas involved.

If Ajs aC’ manifold, the set TA

fie>

) T A is called the tangent
XEA X
bundle. The zero section of TA is the set U 0 x? where 0 is the zero
XEA T
vector of TxA If r > 3, then there are a ne1ghborhood w C TA of the
Cr-2

zero section and a map, called an exponential map

exp : W-A (A.1)
such that ([4,p.72])

(1) exp(0,) = x

~X
4.

(i) exp,, exp | T W (TXA) NW > A is a diffeomorphism

(iii) (g expé)Ox P Tgﬂ -~ T5A is the identity.

~
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Intuitively, exponential map pushes TA onto A as in Fig. 21. It provides
us with a convenient means for extending a map on A.
If £ is a C" submanifold of A, let Nxz be the orthogonal complement
of TZ in T A. (Fig. 22) The set -
Ned U Nz (A.2)
| xex |
is called the normal bundle of 5 in A. Then we have a bundle splitting [2]
TA|z = T2(ONE . , (A.3)
where TA|Z Ly T A A C" tubular neighborhood of £ in A consists of

NZ, an open neighborhood V of the zero section z:Z~>Nanda ¢’ diffeo-
morphism ¢ of V onto an open neighborhood U of T in A which commutes with
¢. (Fig. 23) The map ¢ is called the tubular map and U = o(V) is called
the tube. Using [4,p.96, Theorem 9] and its proof, one has the following
lemma :

Lemma A. Let T be a C submanifold of A. Then there is a ¢ tubular
neighborhood of £ in A with a ¢ tubular map ¢ : U+ V such that

QINXZ nys= expxleZ ny., - o (A.4)

-~ -~

The following lemma can be proved in a similar manner to that of
[5,p.41, Theorem 4.3].

Lemma B, Given a C}

submanifold K of ]R2b
properties:

submanifold A of IRZb

, there is a C] embedding H :A+R

such that A R K for an affine
2b with the following

(i) Ij is arbitrarily close to 1A in the strong C] topology.
(1) H(A) is a C* submanifold of %,
(ii1) H(Z) is a ¢” submanifold of K where £ = A NK.

(iv) H(A) @K, H(A) N K = H(Z).

Let Gb be the set of all b-dimensional linear subspaces of 1R2b and

let Mb be the set of all b x 2b matrices having rank b. For any A € Mb’
the rows of A are linearly independent in 1R2b. Therefore, the rows
determine an element of G, which is denoted by A(A). The set M, is an

2
operi subset of IRZb so that it has a natural C* differentiable structure.

If we define V C Gb to be open iff }'](V) is open in Mb’ then Gb is a
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¢” submanifold and the map A My > G s ¢”. [5,p.43, Theorem 5.2].

Lemma C. [5,p.45, Lemma 5.3]. Let N be a c" manifold and let f N~ Gb
be a Cr map. Given X € N, there are a ne1ghborhood U of X and ach map
f u- Mb such that Ao f = f

Let J and K be two affine submanifolds of R such that J NK # @,
J A Kand dim J + dim K = 2b, Then J N K is a single point EJK' We
define the angle between J and K to be the following quantity:

2b

A us=Py-Pue ¥ = PP
8(J,K) = sup Cu,v) : (A.5)

PJ €J, E € K, flull = vl =1

where (, ) denotes the inner product.

Lemma D. Let N be a manifold and let K be é b-dimensional affine submani-
fold of R, If J : N » G, is continuous, J(x) N K # 8 and J(x) f K for
X € N, then the map : N- R defined by

x + 8(J(x),K) (A.6)
is continuous.

Proof. It follows: from Lemma C that there is a set of b row vectors
gl(g),...,gb(g) continuous in x such that g(§) = span{J ( ),...,J (x)}
Hence the result follows from definition (A.S); n

Let K be a linear subspace of]R2b and consider the splitting.
P k@KE We will write '
2b =~ _ _ L
RT3 x = (x1:%))s % €K, x) €K
Lemma E. Let T be a submanifold of R such that dim K + dim T = 2b and
KRT. LetPEKNT and Tet v : [0,1] +T be a C1 map satisfying

(1) y(0) =P
(ii) T (t)r MK .

Let L(t) (resp Lz(t)) be the length of the path y([O t]) (resp. yz([O t1)),
where Y(t) = (y;(t),y,(t)) € K@K"). Then

1

dL,(t

L(1) 5[ —1 gi ) s (A.7)
o/ 1-8(T_,.\T,K)®

y(t)"?
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Remark. Since T (t)r A K and since dim T (t)r + dim K = 2b, we have
0 < 6(T (t)r sK) < 1 so that (A.7) makes sense.
Proof. Let us first consider an affine submanifold J of]R2b with J B K.

Let P, 8P €R?® satisfy P, P + &P € J and write P = (P1.P,) € KDK* ,
AP = ((4P);, (4P),) € K@K"‘ (Fig. 24). Then

1(ap), 1 (aP);  (aP), AP (4P},
it = ( , d ) < {——, = ) < e(‘],K)
1apl lapl " 0(ap),d T BaplB(ap),0 <

implies 1(aP);0 < 1aPI 6(d,K). Since 1aPI = 1(ap) 1% + I (ap), 12
< 18P1% 6(3,K)% + 1(aP), 12, we have

I(ap), 1
lapl < ~2

~ /1-8(0,K)2

Next, consider the submanifold I and Y in the hypothesis and put
y(t+At) - y(t) If Ay is small enough one can think of AY belong1ng
to Ty(t) Then it follows from (A.8) that

(A.8)

I (ay),0
layl < 2 . (A.9)
2
/1- e(TY(t)r,K)
- Integrating (A.9) over [0,1], we have (A.7). |

Proof of Proposition 1
Step 1: Approximation of A by a ¢” manifold.

It follows from Lemma B that there is a ! embedding H : A eqm2b satisfying

(i) - (iv) of Lemma B. We fix one such H and set A H(A), 5 4 H(A) NK.
Since A and ¥ are C* manifolds, it fol]ows from Lemma A that there is a
tubular neighborhood of £ in K. Let NI be the normal bundle on I and let
NyZ be the orthogonal complement of T % in T A. There are a neighborhood

ll|>¢

V of the zero section in NE, a ne1ghborhood ] of £ in A and the tubular
map ¢ : V = U such that
v N v = 5 N v
gINZZ v eprINZE V.
Then Q(Qy) = y and
(Q(QINZZ NV))g = NI T A (A.10)

Yy
<y 4 4 - - -
is a linear injectiofi. Therefore setting V, AN Z NV one sees that
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Uy & 2(V,) (A.11)

is an open ball of dimension b = n + Np which is transversal to I aty.
Set
A =10 A =17

Since ﬂ'l t A+ Aidis a c‘ diffeomorphism, U is a tubular neighborhood of

Z in A and Ux is an open ball of dimension b = n + np which is transversal
to £ at x. (Fig. 25)
Step 2: Definition of G : £ + % & F(A) N K.

Let H, U, V, U, V etc, be as in Step 1. We claim that if F is

close to 1a in the strong C] topology, then

E(Ux) A K (A.13)
and )

E(UX) N K is a single point . (A.14)

~

In order to prove this observe
A=TI®V . : .15
TXA ZE®X ~(A.15)
Since the map defined by (A.10) is a linear injection, (A.11) and (A.15)
imply

T!A = Tzz@TXUZ. : (A.16)
Since H is an embedding, if y = 5(5), then (A.16) implies
TA = sz®Txux ) (A.17)

~ ~ ~ o~

Since T,z ¢ TXK and since A ® K, (A.17) implies -

2b

R = T&A + TKK = T&Ux + sz + TKK = Téu5 + TKK' (A.18)

Since dim T U, + dim T K = 2b, (A.18) implies
2E 0 k

T5U§@T§K =R . (A.19)
Now, since exp (Vy) = Uy, one has

U, K= W} . (A.20)
We c1a;m that

Ux NnK= {x} . (A.21)

If not: there is an x' # x in Ux N K. Then

~
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x' €U NKCANK=2¢. (A.22)

~

Since H(Z)

X

ﬂ(A) N K, (A.22) implies
H(x') €ANKCK
and hence
H(x') € Ey . - (A.23)

But since H is an embedding H(x ) # H(x) Therefore, (A.23) contradicts
(A.20). Hence if F is close enough to 1y then (A.19) and (A.21) dimply
(A.13) and (A.14).

For x € & define (Fig. 26)

G(x) F(U ) NK .

It follows from (A.14) that G is a well-defined function. G is a surjec-
tion onto E(A) N K because F(A) NK = f(u) NKif F is close enough to
Ty By definition, G is an injection. We next claim that G is a local
diffeomorphism at each point. To prove this, let v : NI + I be the
normal bundle map defined by v(n) = y» where n € Nyi. Let $=é Ve g']
and (Fig. 27) - ~

pAH T oy,

Genera]]y, the degree of differentiability of v is lower than that of
. But since I is ¢”, we have that v 1s c”. S1nce ¢'1 is also C, we:

know that g is ¢~ and P is C]. S1nce T = F(A) NK is a C] submanifold,

we see that
P o f-1|§ P T3
is C]. Observe that for any y € £, there is an X € I such that y e E(Ux).
Since E(Ux) A K, we have ~
(F(U,) N F(A)) & (KAF(A)) in F(A) . (A.24)

Since - F(U )N F(A) E(Ux) and since K N F(A) = £, (A.28) implies
F(Ux) > 2, i.e., i
THm-TFu)@T* - (A.25)

for all P € F(U ) n 3. By the definition of P, we know that F ° w (x)
E(Ux) Set P y in (A.25) and map both sides of (A.25) by (d(woF ]))



By the definition of y, the map (g(iJOF-]))y annihilates the direction
perpendicular to T Z Therefore, we have zd(woF'])) T F(U ) =0 and

e
l

[[EA S

(d(yeF” )) T E(U)

and Tyz have the same d1mens1on, the map d(w°F )
-1

By definition, we know that oo E |Z G . Smce we already showed
that G is bijective, we conclude that G is a C] diffeomorphism.

T.Z. Hence T2 = {0}@(d(¢op")) T . Since T,z

X y
is

oI

n isomorphism.

¢

Step 3: Estimate of l|§(§) - 5[].

Let A, Z, F G etc. be the same as in Step 1 and Step 2. There is a
sequence ¢ = AO C A] C A2 «... Of compact submanifolds with boundary
such that U Ak = A and Ak C Int Ak+1’ where Int denotes the interior

k=0
of a set. Let U be the tube of £ in A obtained in Step 1 and set
A

Then Uk is a compact manifold with boundary where the bar denotes closure
of a set. Since each y € U belongs to a unique U x> we denote it by

By the defim’tion of U » the map : U » Gb, yw TU is con-

x(y) y x(y)?
tinuous, where Gb is the set of all b-dimensional 11near subspaces. It
follows from (A.5) and A @ K that there is an Ai, 0 < Ay < 1 such that

e(T U ),K) < A' for all y €U, .

x(y
1-A!

Define Ak 4 Al'< + 5 k < 1. Then, there is a continuous function

81 ¢ A >R such that d]-(f’}.A)(‘Z) < 6](z) implies
e(TE(X)(E(Uf(Z))),K) < Ak for all y € Uk . (A.27)
Next, we will estimate the distance between x € ¢ and G(x) = E(U,) N K.

Let us write F(x) - G(x) = (u;,u,), where u; € K, up€ K. (F1g~ 26)
Let U, be the Tinear subspace spanned by u,. Then F(U ) & (KG® U2)

because T F(U ) R K forally€ F(U ). Therefore M = E(Ux) N (K@Uz)

is a 1- d1mens1ona1 submanifold. Let Ty K(-'l_-)U2 + U, be the natural

projection map. We claim that 112|M M "Z(M) cu, is a diffeomorphism.
To prove this let T, K@K + K% be the natural projection map. Then
dr maps T F(U ) 1somorph1ca11y onto K! because T F(U ) R K and



dim K* = dim T F(U ). Therefore, m |F(U,) : F(U,) » K* is a Tocal diffeo-

morphism. S1nce U is close to a part of an aff1ne submanifold and since

f is close to the 1dent1ty map, ~1|F(U ) is injective. Finally, since
To[M = IM we conclude that m,|M : M > wz(M) is a diffeomorphism. Hence
2(M) is a C! curve. Observe that F(x) G(x) €M and et y : [0,1] + M

be a C! arc from G(x) to F(x) It follows from the above argument that

Mooy is also an arc. It follows from Lemma D that

G(TE(X)(E(UE(X)))’K) of (A.27) is continuous in y. Let L(t) and Lz(t)

be as in Lemma E.. Then Lemma E and (A.27) imply that if
d](f,lA)(y) < 6](!) then for x €I N Ups the following is true:

16(x) - F(x)I < L(1)

(1 : dLy(t)
< 0t dt
- 7
Jo JI-G(TI(t)E(Uf)’K)
T
< g dt
Jo 1AL
1
= lu,! (A.28)

Jl-Aﬁ

where 0 < Ak < 1. Let us denote the K' - component of a vector by ( )2.
Since x, G(x) € K for x € T we have

= (F(x)-6(x)), = (F(x)-6(x)), + (8(x)-x),
= (F(x)-x), . (A.29)
Since "(E(f)'f)Zu < llf()é)-fll, (A.28) and (A.29) imply

16(x) - F(x)0 <

1EG0)

] "Ak

forxeznN Uk’ Hence, for X €z N Uk’
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2
] 'Ak

if d1(f,1 )(y) < 8 (y) for all y € A.

16(x) - xI < < L 1) IE(x) - xI (A.30)

Step 4: Estimate of H(dG) - lﬂ

For a point X €z, 1ef N be a neighborhood of X 1n]R2b. There is a
local chart (w N) “of x such that g:N>VxWxZisa diffeomorphism
where Z is a ne1ghborhood of the origin of]Rb W is a neighborhood of

the origin of R "R and Vis a neighborhood of the origin of R", y(NTZ) =
P(NK) =V x Wand $(NU ) = {B(x)} x {0} x Z. In order to simplify the

arguments, we will identify N with V x W x Z. (Fig. 28). If x €N,
then x is of the form x = (v,0,z) €V x W x Z. Let F(v,0,2) = (EI(Y’Q’E)’

52(!’9’5)’53(3’9’5)) €V x W x Z where F is as before. If F is ¢! close to

e then 53(3,9,5) % z where = means that the left hand side is approximately
equal to the right hand side. Although we could give a precise estimate we
do not need it and this approximation simplifies the.argument significantly.
It follows from the implicit function theorem that there is a function

z = Q(v) sat1sfy1ng F3(v 0, Q(v)) = 0. We can also show that

( ) = - (D F3) (D F3) where (D F3) (resp. (D F3)) is the partial deriva-
tive of Fj with respect to z (resp. v). Therefore, we can make H(gg)v

arbitrarily small by making F suff1c1ent1y C] close to 1pe If X €z N N,

then x is of the form x = (v 0,0) and F ° G(v,0, 0) = (v,0 Q(v))
(Fig. 28) Hence for any @ > 0 there is a B>0 such that d](F 1A)(x) < B,
x € NN implies ﬂ(d(F °G)) -1l <a, x€LNN. Since G=Fo (E ]og),
we have (dG). = (dF) (d(r"oe)) . Since I(dF)I is bounded in
~a’ X ~n ‘1 ~ o~ -~ X ~
2 f 09(5) ~
A NN, there is an a > 0 such that ﬂ(dF)xH <a for x € ANN. Without

~

loss of generality assume 8 < a. Then

1(ge), - 10 = WP (d(F™og)), - 11

2 “YFTeG(x) YT T X
= 1(dF) ;  ((d(F"Teq)) D+ (g, D)
~"Fog(x) ¢ log(x) ~
<U(dF) ;I U(d(r“oe)) - 10+ (P -1
TR eG(x) T T T TYFTeG(x) 7
caa+f<(atl)s, xE€EIAN , (A.31)
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Now recall Uy defined by (A.26). Since Uk is compact, it is covered by
a finite number of neighborhoods of the form N given in the above
argument. Therefore, (A.31) implies that for any € > 0, there is a
?S'k > 0 such that
- s €k

d](f,lA)(p <3 implies ll(gg)x - lll <= (A.32)
where X €I N Uk' ”
Step 5: Completion of the Proof.

Let e : £ +R be the continuous function given in the statement of

Proposition 1. Recall Ak and Uk defined in Step 1. Since
(Ak-ﬂ'Ak) C Int A and since L N Uy = ((Ak+l'Ak)nU) N K, the set I ﬁUk
is compact. Since € is continuous € 4 inf{e(x)|§ € thk} is attained
on I ﬂUk and € > 0. Choose a continuous function 62 ) ->IR+ in such
a way that

x

Sp(x) < 1
2 + 1)
(/ "AE

holds. It follows from (A.30) that if IIF(§) - 5!] < 52(5) and if
dy(Fa1,)(y) < 8;(y) for all y € &, then

1 € e(x)
— + ] “F(X) - X“ < —é-i 2~
Tk

where x € zNU, . Hence, for any x € I, if lIF(§) - 5{1 < 62(5) and if
dy(F,1,)(y) < 8;(y) for all y € A, then

- elx)
“9(5) - 5" < 2~ . (Af33)

I6(x) - xl <

Next define a continuous function 63 ¢ Iz +IR+ in such a way that

S3(x) < § x€z Nl
where ?S'k is as in (A.32). Then, for x € zﬂUk, d1(E’IA)(§) < 63(5)

implies

€k e{x)
H(gg)x - 1II <7< 2" . (A.34)

Finally define s : £ ~R' by
8(x) & mins;(x), 8,(x), 85(x)1
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Then, it follows from (A.33) and (A.34) that dl(f’}.A)(i‘.) < '8()5), x €I,
- implies , : ‘

dy (6,1,)(x) < e(x) . ﬁ - =
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Appendix I1
The following is a version of Whiteny Immersion Theorem [6]. Although

the fact is not stated in [6] as it is stated here, it is not difficult

to prove it. |

Lemma F. Let M be an m-dimensional C.l manifold and let F : M ->]R2m be

an arbitrary C] map. Then the following hold: -

(i) There is a C.I nice immersion G : M >R

close to F. )

(ii) If E is a nice immersion, then every ¢! map G which is ¢! close to

E is a nice immersion.

In other words, the set of all nice immersions is a dense and open subset

of C](M;IRZ'“) in the strong ¢! topology.

R2P

which is arbitrarily C)

Lemma G. Let A be a C] submanifold of and let I be a C] submanifold
of A. Then, for any continuous function € : A ->]R+, there is a continuous
function § : T +R’ with the following property : for an arbitrary em-
bedding EO : T +R% with d1(50’l)(§) < 6(5), there is a C] embedding

F: A>R2 such that F|T = F

and d1(F(§),1A)(§) < g(x), where 1 is
defined by (21).

0

Proof. Let dim £ = n. It follows from [5, Theorem 5.5] and its proof
that there are a neighborhood W of I in IR2b and a family of (Zb-n)-
dimensional affine submanifolds {Mx|§ € 1} such that
(i) M isc' inxez, ~
(ii) foﬁ I, x€zL ,
(111)  TMN) N (MOW) = @ if x # y.
Itfol1ows~from the;e properties that there is a C] function o : L +R
such that 0 < a(x) < 1 and the ball B, 4 {y € M 1% -yl < a(x)}
contained in W. (Fig. 29) It is clear that there is a C! function ,
8 : [0,1] »~ [0,1] such that g(0) =1, 8(1) = 0, (DB); <0, te[0,1],
and (De)0 = (DB)] = 0. For example,

t 1.1 1 1, 1

a(t) AI ST J ST

0 0
will do. Now, for the givene : L »>R" in the statement let ¢' : I +R"
satisfy e'(é) < e(z) for any y € B, and define y and § : I ~R by

~
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'Ilrua)x ( (08)), (A.35)
v(x) = max ~—I|l + max (DB 1 .
: N0 &%) oy
and
s a(x)e' (x) -
6(‘)5) =W (A.36)
respectively. Without loss of generality one may assume that W = XLEJEBX.
Then, for any y € W there is a unique X € ¥ such that y € B ~
Define Fu lR2b ?'b by ~
<lly-x[l)( 0
y + B \—== F.(x)-x) ifyew
A L alfi ~07 2 2
f(x) = (A.37)
y , ifygEW.

It is clear that f is well-defined and is C] . We will show that if
d](fosl)(f) < G(X), then
di(Fo1)(y) <ely), y€nr. (A.38)

In order to show this observe that at each Xg € I, there is a chart
(¢ U), where U is a neighborhood of Xq in I such that Q(U) CIRn x {0}
and ¢(Bx) c {z} xIR2b N for some point z eR". Let g (!"’1) A y and
denote Ehe derivative of F in terms of ¢ by
-1 _ -] o]
(D(Eg™ N (y) = UBEE Dy > (B Dy )

(055, (0g6),)-

fie>

Uy-xﬂ
Then, it follows from (A. 35) and (A. 36) (t LY ) that -
oc(xi

o0 m21))

Ey(E1)),t -

: y
= (0a)  by=xl-py=r o(x)
(08)  ——=— S5 (Epu)=x) + BB ((DEg),-D)

(D),

f-‘DB)J( £

1 |
+ - -
at&;)“fo(f) Xl + 1(Fq) 5
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< Y(X)(IFg(x)=x + B(DFy) -11)

= ¥(x) 43(Fys1)(x) < ¥(x)8(x) < 7€' (x) < ¥ ely). (A.39)

"Also
1(0a(F=1 ). | ( "y'xn)( (x)-)
Dp(F-1 =D, (Bl =127/ (Fn(x)=x :
| oo, |
y-X
i_Y_-XH
2|08y 5y (Fplx)=x)
uso"(x)-xu 8(x)
< (08)y =5ty — < (08)e 5y
<getlx) <gely) . | (A.40)

It follows from (A.39) and (A.40) that
dy(Fs1,)(y) = DF(y)-yl + H(BE)Z -1

A

B(t)“fo(f) - 5" + “(EE)X - ll|
< dy(Fga1)(x) + 7 ely) + 1 <

<gely) +pely) +pely) =

~

This implies (A.38). Since 1, is an embedding, F is an embedding also.

Therefore this is the desired map. o

Lemma H. Let A = Ay xRZ", 4 NK# B and A K. IF Condition P holds,
then for a sufficiently small C  perturbation f : T+ K of the inclusion
lp ¢ z - K, there is an arbitr%ﬂy small C1 perturbation ER : AR +lR2nR
of the inclusion }‘AR : AR + R R such that

2n

Proof. Since Condition P holds, Corollary 1 implies that %R defined by
s s . A A ay 5 .
(8) is injective. Therefore m, = XRIZ and mp 4 XR|Z are diffeomorphisms.
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Define FRO XR(Z) > XR(Z) by

~R0 ° F.o wR‘ ) (A.41)
1

If f :Z » Kis C close to the inclusion : I » K, then FRO is also C
close to the inclusion : XR(Z) +R nR It follows from an argument
similar to Ehat of the pr?of of Lemma G that there is an egbedd1ng
ER AR +-R R which is C° close -to the inclusion : AR +R "R such that

FrITR(Z) = Foo (A.42)
We first claim that
Falig) N xp(K) = FalAgxa(K)) . (A.43)

In order to prove this recall (A.37) and observe that the extension

' ly-xi
Fp of FRO is defined in such a way that FR(y) -y= B(—(—)—>(FR0(X) X).
Since Fro * I.'R(E) R(2:) C XR(K), we have FRO(x) - x€ xR(K\ Therefore
ER(X) -y€ ER(K)' This implies that FR(y) € xR(K) 1f and only if
y € KR(K) which, in turn, implies (A.43). Since Ay N XR(K) = ER(E)’ we
have, from (A.42) and (A.43) that S

FRiAR) N xp(K) = Fplhgxp(K))

Fr o mR(Z)
= Fro © TR(2) (A.44)

Since l?.é](fR(AR)n?SR(K)) = ER(AR)'X Rr%" N K, we have from (A.41) and (A.44)
that

Falig) xR¥" Nk = T2l o Fp o mp(z) = F(1)

which is the desired equality. a
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Fig. 3.

Fig. 4.

Fig. 5.

Fig. 7.

Fig. 8.
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FIGURE CAPTIONS

A 1-port which is not strongly structurally stable. (a) The
circuit diagram. (b) Constitutive relations of Ry and R2‘

(c) Constitutive relations of the composite 1-port before and

after perturbations.

A 1-port which is not strongly structurally stable. (a) Constitutive
relations of R] and R2' (b) Constitutive relations of the composite
1-port before and after perturbations.

A 1-port which is strongly structurally stable. (a) Constitutive
relations of Ry and R,. (b) Constitutive relations of the composite
1-port before and after perturbations.

A 1-port which is structurally stable but not strongly structurally
stable; configuration spaces and constitutive relations of the
composite 1-port before and after perturbations.

A 1-port which is neither structurally stable nor strongly
structurally stable; configuration spaces and constitutive relations
of the composite 1-port before and after perturbations.

A 1-port which is structurally stable and strongly structurally
stable; configuration spaces and constitutive relations of the
composite 1-port before and after perturbations.

Illustration of nice immersion. (a) mp violates condition

(ii) of nice immersion. (b) T violates condition (iii) of nice
immersion. (c) mp is a nice immersion.

The diffeomorsism ¢, : V, >V, .

A diagram illusteating the relationships among H, ﬁp, XP and g;].

n-1

The sets £", R" and D x L in Case 2 of the proof of Theorem 1.



Fig. 11. Constitutive relations of the composite n-port before and after
perturbations in Case 3 of the proof of Theorem 1.

Fig. 12. The set X" = (D"x{0}) U ({0}x0") in Case 3 of the proof of
Theorem 1.

Fig. 13. Constitutive relations of the composite n-port before and after
perturbation in Case 4 of the proof of Theorem 1.

Fig. 14. A strongly structurally stable 2-port where p is not a nice
immersion and Condition P is violated. (a) The circuit diagram.
(b) Constitutive relation of the composite 2-port.

Fig. 15. A perturbation K, where A is described by y = xz.

Fig. 16. An example illustrating the significance of Condition P.

Fig. 17. Strong structural stabilizations of the 1-port of Example 2.
(a) Strong structural stabilization by Proposition 8. (b) Strong

structural stabilization by Theorem 3.

Fig. 18. A 2-port which is strongly structurally R-stable. (a) The set
KP(ZO)‘ (b) The set R.

Fig. 19. Perturbed configuration space £ of I due to the perturbation
R of A.

Fig. 20. The map f.

Fig. 21. A geometric interpretation of exponential map.

Fig. 22. Tangent space TXZ and its orthogonal complement NXZ in TXA.
Fig. 23. Tubular map and~tube. (a) A commutative diagram ;or tub;]ar
map and tube. (b) A tube U for a 2-dimensional A.

Fig. 24. Relationships among P, AP, (AE)] and (AE)Z.
Fig. 25. The sets Z, U and Ux‘
Fig. 26. The map G :T - F(A) N K.



Fig. 27. The maps ¢ and . (a) Relationship of v and §'1. (b) A

commutative diagram for y and 3.
Fig. 28. The sets V, W and Z for Tocal chart (y,N).
Fig. 29. The ball Bx'
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