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ABSTRACT

The paper gives several fundamental results on strong structural

stability of nonlinear resistive n-ports. A nonlinear resistive n-port

consists of nj^ (coupled) internal resistors and n external ports. Inter
section of the internal resistor constitutive relations and the Kirchhoff

space is called the configuration space. The projected image of the con

figuration space onto the port space is called the constitutive relation

of the composite n-port. Strong structural stability means qualitative

persistence of the constitutive relation of composite n-port under small pertur

bations of internal resistor constitutive relations. Theorem 1 asserts that

a nonlinear resistive n-port is strongly structurally stable if and only

if (i) Kirchhoff space is transversal to the internal resistor constitutive

relations and (ii) the projection map of the configuration space onto port

space is a nice immersion. There is, however, an underlying assumption

for this fact to be true; there are no port-only loops and no port-only

cut sets. (Condition P). Theorem 2 says that there are "many" strongly

structurally stable n-ports. Theorem 3 gives a strong structural stabiliza

tion result via network perturbation, and Theorem 4 and Theorem 5 give

results for special class of internal resistor constituitve relations.
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I. Introduction

This paper gives several fundamental results on strong structural

stability of nonlinear resistive n-ports. A nonlinear resistive n-port

consists of nj^ (coupled) internal resistors and n external ports. Inter
section of the internal resistor constitutive relations and Kirchhoff

space (space where Kirchhoff laws are satisfied) is called the configura

tion space. The projected image of the configuration space onto port

space is called the constitutive relation of the composite n-port.^ In
this paper, strong structural stability means qualitative persistence of

the constitutive relation of composite n-port under small perturbations

of internal resistor constitutive relations. This is a reasonable concept

because circuit elements (e.g. resistors, transistors etc.) are subject

to small perturbations of parameters (e.g. temperature), and we would

like a circuit to operate in a qualitatively presistent manner under these

perturbations.

Structural stability discussed in [1] is the qualitative persistence

of configuration space under small perturbations of internal resistor

constitutive relations. It is shown in [1] that structural stability is

equivalent to transversality of Kirchhoff space and internal resistor

constitutive relations.

Sometimes strong structural stability is more appropriate than struc

tural stability, because the former guarantees persistence of constitutive

relation of the composite n-port. Iheorem_J_ (characterization result) asserts
that a nonlinear resistive n-port is strongly structurally stable if and only if

(i) Kirchhoff space is transversal to internal resistor constitutive relations

and(ii) the projection map of configuration space onto port space is a nice
immersion. (This will be explained in Section III) There is, however,

an underlying assumption for this fact to be true; there are no port-only

loops and no port-only cut sets. (Condition P) It is interesting to see

that this purely graph-theoretic condition is required in order to obtain

strong structural stability results. This condition is crucial for the

validity of a version of Whitney Immersion Theorem which plays an important

role for proving the results. (Section III), The result is best illustrated
by the following examples:

^An n-port made of all interconnection of elements is called composite
n-port.
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Example 1. Consider the 1-port of Fig. 1(a), where constitutive relations

of internal resistors and Rg are given by Fig. 1(b), ij^ = fj^ (Vj^ ),
k = 1,2. Tunnel diode is a typical element which has k k
constitutive relation of this type. It is not difficult to show that the

constitutive relation of the composite 1-port is given by the set R of

Fig. 1(c) . If one perturbs fp in such a way that the local maximum

at Vj^^^ is slightly higher than.ij^ of Fig. 1(b), then constitutive rela
tion of the composite 1-port is given by the set R' of Fig. 1(c). On the
other hand, if one perturbs fn in such a way that the local maximum at

Ki

Vr^q is slightly lower than ij^, then constitutive relation of the composite
1-port is given by R" of Fig. 1(c). The sets R, R' and R" are qualitatively
different from each other, because R has an isolated point,R' has a bow-
tie shape loops, whereas R" has nothing in the center. In other words,

R, R' and R" are not homeomorphic to each other. Similar phenomena occur
if one perturbs fp slightly in a neighborhood of v^ . Therefore, the

2 ^20
set R does not persist qualitatively under small perturbations of internal

resistor constitutive relations. This means that the 1-port of Fig. 1(a)
and (b) is not strongly structurally stable.

Example 2. Consider the 1-port of Fig. 1(a) with constitutive relations

of R^ and R2 given by Fig. 2(a). Then the constitutive relation of com
posite 1-port is given by R of Fig. 2(b). It is easy to see that slight

perturbations of fj^^ and give rise to R* and R" of Fig. 2(b). In R,
the bow-tie shape loops intersect the main curve at one point, in R' they

intersect the main curve at two points whereas in R" they never intersect
the main curve. Since R, R' and R" are qualitatively different from each

other, i.e., they are not homeomorphic to each other, the 1-port of
Fig. 1(a) and Fig. 2(a) is not strongly structurally stable.

Example 3. Consider the 1-port of Fig. 1(a) with constitutive relations

of R^ and Rg given by Fig. 3(a). Then the constitutive relation of com
posite 1-port is given by R of Fig. 3(b). This set persists qualitatively

2 As in [1], the polarity of Vp is chosen opposite to the usual convention
in order to simplify several hypotheses of the paper.
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under small perturbations of fj^ and fj^ , i.e., R, R' and R" of Fig. 3Cb)

are homeomorphic to each other. Therefore the 1-port of Fig. 1(a) and

Fig. 3(a) ^ strongly structurally stable.
Now, let us explain the difference between strong structural stability

and structural stability discussed in [1]. First look at the configuration

space Z of the l-port of Example 2. Observe that the internal resistor

constitutive relations, say A , is described by i„ - f^ (Vn ) = 0,
K*! K-j

^^R ^ Kirchhoff space Kis described by
2 2 2

^R ^ ^R ^ ~ ^*R " ^R " ^R ~ V " eliminating ij^ and
2 1 2 12 1

ip , we see that the configuration space Z = A n k is described by
2

\ ^^r/ "P =° • ("1)
Notice that intersection of 2-dimensional surfaces defined by (i) and (ii)

in the »Vp^) - space gives the 1-dimensional submanifold Zof
Fig. 4. Since (iii) does not contain ip, it does not give rise to any
further constraint on Z and hence this set Z is the configuration space

embedded inIR . Using a result in [1] one can show that this 1-port is

structurally stable, i.e., Z does not exhibit abrupt qualitative changes

under small perturbations of f^ and f^ . This is illustrated in Fig. 4Rl Rg
where V and 2" are perturbed configuration spaces. The projected image
R of 2, however, does exhibit abrupt qualitative changes under small

perturbations of f„ and f^ . The sets R, R' and R" are the same asRl Rg
those of Fig. 2. The maps ijp, jp and ttJ; are the projection maps of the
configuration spaces 2' and S" respectively, onto the port space.

Notice that for a given -Vp, (iii) defines an affine submanifold
Vr = -Vp - Vp. Intersection of this affine submanifold with 2 gives

points of the set R. Therefore, R is the projection of Z onto the

(-Vpjip) - space of Fig. 4. Similar statements apply to R' and R". Hence
this 1-port is structurally stable but not strongly structurally stable.

Fig. 5 shows how Z and R of the 1-port of Fig. 1(a) and (b) change under
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small perturbations of fo and . Again, R, R' and R" are the same asRl Kg

those of Fig. l(.c). It is clear that this 1-port is neither structurally
stable nor strongly structurally stable. Next, consider the 1-port of

Example 3. Figure 6 shows how S and R change under small perturbations

of f„ and fry . It is clear that this 1-port is structurally stable ^Ki Kg

strongly structurally stable, i.e., S and R qualitatively persist under
small perturbations of f„ and f^ . There is, however, a crucial dis-Ki Kg

tinction between qualitative persistence of E and that of R, because E is

a submanifold while R is not. (The latter has self intersection points.) For

small perturbations of fj^ and fj^ , the perturbed configuration spaces

E' and E" are diffeomorphic to the old one E. The perturbed constitutive

relations R'and R" of the composite 1-port, however, are not diffeomorphic

to the original R because of the self intersection points, i.e., the

derivative of a function cannot be defined at self intersection points.

The sets R, R' and R" are only homeomorphic to each other. This naturally

forces us to define strong structural stability by using homeomorphism

rather than diffeomorphism.

In Secion II, we will give an important preliminary result (Proposi
tion 1) which is necessary for the proofs of Theorem 1 and Theorem 2 in

Section III. As a by product of this, we will prove a conjecture in [1]
which gives a sharpened version of a result in [1]. In Section III, after
giving the characterization result (Theorem 1), we will give a density
result (Theorem 2) which asserts that there are "many" strongly structurally

stable n-ports. In Section IV, we will describe two strong structural

stabilization methods. One is by element perturbation which amounts to

perturbing the existing internal resistor constitutive relations. The

other is by network perturbation (Theorem 3) which amounts to creating

extra ports by plier's-type entry and/or soldering-iron entry. In

Section V, we will relax Condition P but deal with a slightly restricted

class of n-ports where internal resistor constitutive relations do not

impose coupling between resistor.variables and port variables. Theorem 4

and Theorem 5 are the characterization result and density result,

respectively for such n-ports.

In order to help the reader to grasp main results of the paper we

will give the following two different classifications:
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Classification I

I— characterization
n-ports with
fixed graphs

Theorem 1
Theorem 4

— density

n-ports with
network perturbations

Classification II

n-ports with general
ri internal resistor

constitutive relations

n-ports with special
internal resistor
constitutive relations

Theorem 2
Theorem 5

Theorem 3

n-ports with
condition P

Theorem 1
Theorem 2

n-ports with
network perturbations Theorem 3

Theorem 4
Theorem 5

Also, various mathematical concepts are explained as they are needed.

Throughout the paper, we will take full advantage of the coordinate-

free property of the geometric approach.

General Remarks: For simplicity's sake, we will sometimes abuse our

notation with regards to the transpose of a vector or a matrix. In order

to avoid wordiness, we will usually refer to the constitutive relation

of an n-port instead of the constitutive relation of a "composite" n-port.

II. A Preliminary Result.

Aresistive n-port Nis an interconnection of "nj^" internal coupled
2-tenninal resistors and "n" external terminal pairs which are called

ports. Let and Vp denote the voltages of the internal resistors
and the external ports, respectively, and let ip and ip be the currents
of the internal resistors and the external ports, respectively. Then

2n

(.Vr»2r) ^ Let V=(vR>Vp), i =Cip^ip) and
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9K
b = Pd + n so that (v,i) € IR . The fonowing are the standing hypotheses

i\ ^ ^

of this paper:

(a) The graph defining the topology of N is connected.

Cb) N is time-invariant.

Cc) The internal resistor constitutive relations are characterized by

Cv,1) e A (1)

where A is a (2b-nj^)-dimensional submanifold.
It is explained in [1] that (a)-Cc) are very general conditions. Some

times, we consider the situation where A is given by

A= {(v,i) ^ Ar> (2)

where Aj^ is an Pj^-dimensional submanifold. In Examples 1-3, Ais of
the form (2) and Aj^ =nvR,i|̂ ) siR^lij^ =fj^ (Vj^ ), k=1,2}. Let Kbe

k k k
the Kirchhoff space, i.e., the set of all (v,i) satisfying Kirchhoff

laws and let

E^ An K (3)

be the configuration space. We will sometimes denote a point

(v,i) SIR by X. From time to time, we view an n-port N as a network

Wby terminating the ports of N by norators [1].

Let MCjr'" be a differentiable submanifold and let F and G :

M-»-]R"' be C functions. Then the C distance between F and G at x^ M

is given by

di(F.G)(x) ^ llF(x) - G(x)0 +D(dF)^ - {dG)J. (4)
Recall that G : M->IR"' is called an embedding if it is an immersion and
if it maps M diffeomorphically onto its image. The set of all positive

numbers is denoted by IR"''. The strong or Whitney topology for the set
of all functions C^(M;]r'") from MintoIR'" is generated by sets of the
form

U(F;e(-)) = {G : M-IR"'|d^(F,G){x) <e(x) for all xe M} (5)
where F s C (M;!?"') and e : M••IR* 1s an arbitrary continuous function.
In this paper, topology for set of functions is always with respect to

3
A norator is a 2-tenninal element whose constitutive relation is given

by A,^ =IR^.
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this topology.

Let : A -»-IR be the inclusion map. Then there is a neighborhood

of with respect to the above topology such that every element

of is an embedding of A[l],[2]. A strong or Whitney perturba
tion A of A is defined by

A = FCA). F e .

It is explained in [1] that this is an appropriate perturbation for

electrical networks. In what follows, whenever we say a perturbation
1A, it will always mean a strong C perturbation.

Recall, now, that if A n K 0 and A if. K, i.e., A is transversal to

K, then [1] z is an n-dimensional submanifold. The following proposition
plays an important role in this paper.

Proposition 1. Suppose that A n K ^ 0 and A iPi K. Given any continuous

function e : Z there is a continuous function 6 : A with the
1 9K

following property; For a C embedding F : A ->]R with d,(F,i,){x) < 6(x)

for all Xe A, there is a C diffeomorphism G: Z-j- Zsuch that d^(G,
i2){x) < e(x) for all x e Z, where

£ = A n K, A = F(A). (6)

The proof is nontrivial and is technically involved. It is given in

Appendix I.

As a by product of this proposition, we can sharpen the structural

stability result in [1]. To state our sharpening result, we need the

following definition:

Definition 1. A resistive n-port N is said to be structurally stable if
1for any small C perturbation A of A, the new configuration space

Z = A n K is homeomorphic to the old configuration space Z = A n K.

Proposition 2. (Characterization of Structural Stability)

Given a resistive n-port N assume that A n K 0.

(i) If A fh K, then Z is an n-dimensional submanifold and for any small

perturbation A of A, there is a diffeomorphism of Z onto Z which is close to

inclusion map : Z -»• K in the strong topology. Therefore N is structurally

stable.

(ii) If A-frK, then there are small perturbations A' and A" such that

Z' = A' n K is an n-dimensional submanifold and Z" = A" n k contains an
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(n+k)-dimensional submanifold, k > 0. Therefore N is not structurally

stable.

Proof, (i) is a direct consequence of Proposition 1. (ii) is proved
in [1].

Remarks. 1) Observe that in Definition 1, homeomorphism is used instead
of diffeomorphism, because, a priori we don't know if Z is a differentiable
submanifold. Proposition 2, however, tells us that one can replace homeo
morphism with diffeomorphism, a sharper property.
2) In [1], a diffeomorphism between Z and Z is constructed under the
assumption that Ais*a submanifold. Proposition 1 and Proposition 2
assume that Ais only, a submanifold. In this paper everything is
handled within the category.

We will next show that there are "many" structurally stable n-ports.

Proposition 3 (Density of Structural Stability)
Given any n-port Nwith An K j8, there is an arbitrarily small C

perturbation Aof Asuch that An K 0 and AfFi K, i.e. the perturbed
n-port Nis structurally stable. If Ais given by (2), i.e. if

n ^ ^ 2n u

A = Ao x3R , then A can be obtained in the form A = A« xIR , where
^ 2n

RAj^ is a perturbation of in IR

Proof. Proof for a general A is given in [1]. To prove the case
' 2p

A = A„ xIR^", let ttA : IR^^ -^IR be the projection map defined by
'fT^{v,i) = ^JJr'Ir^

and set

Ir ^II'r ®ik
where ij^ is the inclusion map

i|̂ : K-<- . (9)
By Lemma 1 which will be given below, we know that (i) AJh Kif and only
if A„ iFi Xr(K) and (ii) Z=Xr'(Ar)- Then using an argument similar to
that of Theorem 3 of [1], one can obtain the result. °

Lemma 1. Let A= A xIR '̂̂ . Then
R

(i) A Kif and only if Aj^ fh Xr(K).
(i1) 2 =
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Proof. Ci) To prove necessity, observe that for any ^ \ ^
there Is a (.v,t) e a n Ksuch that XrCvjI) = (V|̂ ,ij^). Let be the
projection map defined by (7). Then

By hypothesis

'(M)'' 'cv.i)' ='(v.if'" •
which together with (10) - (12) implies

In order to prove sufficiency, set (Vj^sij^) = 'n'̂ (v,i), where (v,i)eAnK.
By assumption

2nn

'(!r.1r)'R ' '(Y,.i,)XR(K) = . (13)
It follows from A=Aj^ xIR^" that

^(v.i)^ " ^(vR,iR)%®^(Vp,1p)''' •
Using (13) we have

211"'

It follows from 04) that

0 p»' p

= T IR R (^5)
Lvr'Ir) ® •

Next let

T(vj)A +Tj^^.jK =(ker dTr^)""© Ker dirr^ . (17)

Since Im dir^ is isomorphic to (Ker dTr^)'''j we have from (15) that

° - ^(xr'Ir^ )® ^ifr
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where

2"r ,

IS the isomorphism. It follows from (16) and (18) that

•~r'2r'

2n

TTp = TTp o I

^-Ir, ^ , „2n
-'Shv^Aof,r':r' ^:p':p'

Since A is an isomorphism, we conclude that

'Cv.i)' ' '(V.I)' ='(v.i)®'' •
(ii) is straightforward. °

III. Strong Structural Stability

Let TTp : be the projection map defined by

TTpCv.i) = (Vp.ip) (19)
and let

(20)

where i is the inclusion map

I : E . (21)

Then the set

R^Wp(S) (22)
is called the constitutive relation of the n-port N. This is the object

shown in Figs. 1-6 for 1-ports. Let A be a perturbation of A and

let

R̂ ;p(E) (23)
/s /\

where Z is defined by (3) and 7r„ is the corresponding projection map for
/s ~'

Z. We are now ready to give a formal definition of strong structural

stability.

Definition 2. A resistive n-port N is said to be strongly structurally
1 /X

stable if for any small C perturbation A of A, the new constitutive

relation R is homeomorphic to the original R.
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In order to state our results on strong structural stability, we

will need a new concept which we call a nice inmersion and a graph

theoretic condition which is called Condition P.

Definition 3. Suppose that I is an n-dimensional submanifold. Then

the map iTp defined by (20) is said to be a nice immersion if
(i) TTp is an immersion, i.e., rank CdTrp)x = n for all x € z.
(ii) TTp is transversal to itself, i.e., TTp(xi) = TipCxg) and x^ Xg
imply

(diTp)^^(T S) +(dwp) (T^^E) =Ir2" . (24)
(iii) There is no family of three points {x-jjXgsX^} c z, such that
x^. f Xj (i?«j) and jpCx-j) =iJpCxg) =JpCxg).
Remark. Since dim T.. Z = dim T„ Z = n, condition (24) forces the sum +

21 h
to be the direct sum @1

Let us give several examples to explain nice immersions. Consider

Fig. 7(a), where we assume that Z is a 1-dimensional submanifold and

that TTp is an immersion. This map iFp is not a nice immersion because at
y, condition (ii) is not satisfied while (i) and (iii) are satisfied.

Consider Fig. 7(b). Again, assume that Z is a 1-dimensional submanifold

and that TTp is an immersion. This map iTp fails to be a nice immersion
because the point y has three preimages and condition (iii) is violated

although (i) and (ii) are satisfied. In Fig. 7(c), the map Ttp is a nice
immersion provided that Z is a 1-dimensional submanifold and that iTp is
an immersion.

Definition 4. An n-port N is said to satisfy condition P if there are

no port-only loops and no port-only cut sets.

This graph theoretic condition is going to play one of the crucial

roles in our main results. It will turn out that Condition P is closely

related to the validity of a version of Whitney Immersion Theorem

(Lemma F of Appendix II) which will be used in the proof of our main

results in a crucial manner (see Proofs of Theorem 1 and Theorem 2). Let

us observe that the following facts are true.

Proposition 4. The following conditions are equivalent: •
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(i) There are no port-only loops.

(ii) Each port forms a cut set exclusively with resistors.

(iii) There is a tree containing all the ports.

(iv) There is a cotree consisting only of resistors.

Proposition 5. The following conditions are equivalent:

(i) There are no port-only cut sets.

(ii) Each port forms a loop exclusively with resistors.

(iii) There is a tree consisting only of resistors.

(iv) There is a cotree containing all ports.

Now, recall TTp of (19) and set

Xp ° Hp ° iK
(25)

where is defined by (9). Notice that TTp of (20) can be written as

TTp =Xpis , (26)
i.e, the restriction of Xp to E. Recall Xp defined by (8). Let p

(resp. u) be the number of independent port-only loops (resp.

port-only cut sets). Let (resp. Tg) be a tree containing maximum
number of ports (resp. resistors) and let L-j (resp. L2) be its associated
cotree. Let (resp. Ug) number of ports in (resp. Tg).

Proposition 6

(i) codim Imxp= P + U= dim Ker Xp
where codim means the complementary dimension and Im (resp. Ker) means

the image (resp. kernel) of a linear map.
(ii) p = p^, u = Ug.
Proof. The fundamental loop matrix [1] with respect to is given by

!i =n I 1
Hr, Hp, Hp,

?RR 5rp
(27)

?PP

-13-



where R. denotes resistors in L, and other symbols have similar meanings,Li 1
A dot denotes a zero submatrix of appropriate size. The fundamental loop

matrix with respect to T2 is given by

52 ' i 5t ]

^R, )!p,

5rr

5pr

Ip.

b25pp

(28)

It follows from (27) and (28) that p = p-j and y = pg- Q] (>^6sp. Qg)
be the fundamental cut set matrix with respect to (resp. Tg). Then
Q-j =[-Bj i 1] (resp. Qg =[-B^ i1]) [1]. Since

V=qTv^ , 1 =all.

for (v,i) € K [1], one has

V =

K= < (v.i)

1 =

?RR

!p,

"5rp

-B5̂pp X

"ip.

1r
4

1 •

'•2

•

1 1r^
^2

X'2

b2T
5rr b2T

5pr
^2

T
'2

• b2T
XPP

-14-
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Hence we have the parametrization : IR K defined by

Then

1r.

Ip,

X o =
-p -•

Iv.
1

~R,

5pp

and hence

codim Im Xp =2n - rank Xp ® ]
= (n-np ) + (n-np )

'•2

° "P, "Pt
H '2

i-P,

1

5pp

(31)

(32)

where np is the number of ports in T, and other symbols have similar
Ti

meanings. Next, we choose another parametrization 1^2 ^ defined by
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V =

1 =

Then
1

I
<

t— ro
1

^2

'2

II

!!p '2

Ir^
'•1

?RR

.b2
:pr

5rr

?rp

-b25pp

5pp

%

!!p.

1r.
•1

!!p^ IRj^ 1p,
'z H '

f-B^ 1:rr • 1

i • 1
•

Xr ° =
---+-

1

1

1

1

1

1

1

1icol

which implies that

Ker Xr ®^2 ^ '!(p_ 'Ir, 'ip,
'z 'z h n

!(Rt =9' If
'2

Therefore

-16-
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and hence

>(36)

r

\ • i p •

-s

< (M) ^2

'2

=

-b25pp

• '2

!p
"•1

ip
s

1

ipi ^
^1

1

CM
O.>I

1

1 ip ?PP
J

dim Ker Xr = n, + n, (37)

'2 n

Equations (32) and (37) imply (i).

Remark. The above result says that rank Xp and dim Ker Xp are complemen
tary with respect to 2n and p + u , i.e., if there are p independent port-

only loops and y independent port-only cut sets, then rank Xp drops by
p + y. This, in turn, forces dim Ker Xp to increase by this same number
p + y. This means that for any (V|̂ »ip) ^ Xp(K), there are p + y indepen
dent vectors (vp ,ip ), k = 1,..., p + y, such that (vp,Vp jip^ip ) ^ K
for all k. k k

Now observe that codim Im Xp = 0 (resp. dim Ker Xp = 0) means
Xp (resp. Xp) is surjective (resp. injective). This implies the next two facts.

Corollary 1. The following conditions are equivalent:

Ci) Condition P.

(ii) Xp is surjective.
(iii) Xp is injective.
Corollary 2. The following conditions are equivalent:

(i) There are no resistor-only loops and no resistor-only cut sets.

Cii) Xp is injective.
Ciii) Xp is surjective.

We are now ready to state the first of our main results.

Theorem 1 (Characterization of Strong Structural Stability). Suppose that
A n K 0.
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(i) If A and if jp is a nice immersion, then the fonowing hold:
"1

(ia) For any small C perturbation A of A, the map tt persists to be

a nice immersion. Furthermore, there is a C diffeomorphism H : S -»• I!

near the identity map and there is a homeomorphism Hp : K-»• Ksuch that
the following diagram commutes:

H

Z? Zp

Therefore Nis strongly structurally stable. ^
Cib) For any self intersection point (Vp,ip) SR, ];p^(Vp>ip) =2,
where # denotes the cardinality of a set. Furthermore, self intersection

points are isolated.

(ii) Assume Condition P and suppose that A^K or "n-p is not a nice
inmersion. Then there are arbitrarily small perturbations A' and A"

of A such that R' and R" are not homeomorphic where A' and A" are the

constitutive relations of the perturbed n-ports. Therefore N is not

strongly structurally stable.

Before we prove this theorem, let us state an important consequence.

Corollary 3. Suppose that A n K 0 and that Condition P is satisfied.

Then Nis strongly structurally stable if, and only if Ah Kand jp is
a nice immersion.

Remarks. 1) Notice the "if and only if" nature of Corollary 3. It

completely characterizes strongly structurally stable n-ports. Recall

that Proposition 1 says that an n-port is structurally stable if and

only if A rFi K. Therefore, for strong structural stability, we need

another condition; irp is a nice immersion and that is a necessary con
dition also.

2) Assume Condition P. If N is strongly structurally stable, then (ib)

says that every self intersection point of R has exactly two points (no
more and no less) in Z which are mapped to this point by iTp. Therefore,
one can immediately tell that the 1-port in Fig. 7(b) is not strongly
structurally stable because there are three preimages of y under -n-p.
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3) Let S Cresp. S) be the set of all self intersection points of R
/\ A /V ^

(resp R). Then R - S and R - S are manifolds. If Hn : R -»• R is the
/\ A

homeomorphism given in Theorem 1, then Hp|(R - S): (R - S)->-(r - S)is a
diffeomorphism.

Proof of Theorem 1. (ib) follows from the definition of a nice immersion,

(ia) It follows from Proposition 1 that there is a diffeomorphism
6;E->-Z = AnK such that 6 is close to i provided that A is close

enough to A. Therefore Xp <» G• 2 Ris close to -n-p : E R. It
follows from Lemma F in Appendix II that Xp ®G persists to be a nice

A A ~' A~ /V

immersion. Since E=• 6(E) and since TTp = Xp|2^» "the map iTp is a nice
immersion. By the definition of a nice immersion, for any self inter

section point y = (Vp, ip) s R, there are exactly two points x^, Xg ^ 2
such that Jp(x^) = y = Trp(x2). Moreover, there are disjoint neighbor
hoods Uj^ of X|̂ , k = 1,2, in E such that is a diffeomorphism,
JpCU-i) n ijp(U2) = {y} and 7rp(U^) ?ijp(U2). Let be a neighbor
hood of X|̂ in U|̂ such that Uj^ c and define Vj^ = G(U|̂ ) c 2,

\ ™ ' k = 1,2, where a bar denotes the closure of a set. If
Xp o Gis close to TTp, we may assume that ^ = {y}» a single
ton, and Xp(V.|) ffi Xp(-V2). Set

X|̂ =:;^(y) v^. k=1.2. (38)
A A 1

where TTp =Xpl^. Then there is a-C diffeomorphism
Fig. 8) such that (i) ° G(xj^) = Xj^ and (ii) is the identity map
on a neighborhood of the boundary of V|̂ . Clearly, (J)|̂ is close to the
identity map if Uj^ is small enough. Define H : E E by

o G (x), X €

= < $2 ° 5 i ^ ^^2
^ G(x) , X^ u Uj .

Then H is a C diffeomorphism close to the identity map. For any point

y e R, there is a point x € 2 such that iTpCx) =y. We define Hp : R-»• R
by

Hp(y) =Xp - Holp\yj (40)
where TTp^ is the set theoretic inverse. We claim that this map is well-
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defined. To prove this (see Fig. 9) observe that y = JpCx^) = I[ptx2)
implies H(X|̂ ) ' ^ ' 1>2, because of the property of and (.39). •
It follows from C38) that XpCx-j) =Xpt%) =y- Therefore Hp(y) =
Xp ®H(x^) = Xp ®HCxg) =y and Hp is well-defined. Since Xp ®H=
^p o H, where Jp = Xp|2» we have from (40) that

^p ° H= Hp o . (41)

Also, the inverse

Hp^ =Xp ° " ^?p^ (42)
is continuous. Since H- and Hp are continuous. Hp is a homeomorphism.
This and (41) imply (ia).

(ii) There are four cases which can happen.

Case 1; A.^K. It follows from Theorem 2 of [1] that there is a 0^
perturbation of Asuch that A^ n Kcontains an open set Uwhich is
also an open set of an affine submanifold J of dimesnion n + k, k > 0.

Consider the splitting K= Ker Xp©(Ker Xp)"'"* Since Condition P holds.
Corollary 1 implies that dim(Ker Xp)"'* = 2n.'. Let A' be a further pertur
bation of A^ such that A' n Kcontains an open subset U' of an affine
submanifold J' such that J' has an (n+k') - dimensional factor in

(Ker Xp)"^ for some k', 1 < k' <k. Since Xp inaps (Ker Xp)"^ onto Xp(K)
isomorphically, we see that Xp(J') is an (n+k') - dimensional affine sub-

ifold. Hence R' =Xp( '̂̂ K) contains an (n+k') - dimensional open
set. On the other hand, it follows from Theorem 2 which will be given

shortly that there is another C^ perturbation A" of Asuch that xp|A"n K
is a nice immersion. Therefore R" =xp(A".^K) contains an n-dimensional
open subset but it cannot contain an open subset whose dimension is

greater than n. Therefore R' and R" cannot be homeomorphic.

Case 2: AJiS K, but TTp is not an immersion. In this case I is an
n-dimensional submanifold. Since Ttp is not an. immersion, there is an
X e s with

mam

dim dTTpCT^H) <n . (43)
Let

0 = T^Z . (44)
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Then there is a perturbation A' of A such that S'n j contains an open

subset of S' and J. By a further perturbation, if necessary, we may

assume that dim(dxp)(J) =n - 1. Then J is isomorphic to Xp(J)©J'
for some J'. Now consider the following local coordinate system on a

small neighborhood Uof x in Z. (Fig. 10) Let d" ^ be an open disc of
1R"'̂ centered at the origin with radius 1 and let L= [-1»1] CIIR. Then
there is a diffeomorphism 4> : d"**^ xL-»• Usuch that ^(0,0) =x. Since
Uc J, we can choose (j) in such a way that <J)(d" ^x{0}) ^ Xp(J) ^
Since J is isomorphic to Xp(J)©J'» there is a embedding F: A'-»-]R^^
close to 1^, such that the following hold (^"4F(A')hk):
(i) Fo^(u,o) =Xp ° F° ^ Xp ° Foj(d""''x{0})
(ii) For each (u,t), ue |tl <j,

Xp F o ^(u,t) = Xp « F o $(u,-t)

i.e. it is a self intersection point of R" = Xd(^")-

(iii) For any (u,t), u € D" , |t| > j, the point Xp F ®<|)(u,t) is not
a self intersection point of R".

(iv) rn > t f 0

Z"4
Ln-1 , t = 0.

n—1Then, for u s Int D~ , the point Xp ° F «> (|)(u,0) has a neighborhood in
R" of the form Xp ®Fo^ (d"'̂ x{0}) x{—<}. On the other hand, for the
perturbation A of A obtained by Theorem 2 which will be given shortly,

Xp(z) has no points with such a neighborhood, because each self inter
section point is isolated. Therefore, xp(^) Xp(2") homeo-
morphic.

Case 3; A Kand irp is an inmersion, but there are points x-j and Xg
such that y = 7rp(x^) = iTptxg), x-j f X2, and

A simple example is the point y of Fig. 7(a). The idea here is to

obtain a perturbation A' of A such that Xp(21') looks like R' of Fig. 11
/N ~' ^ ^

and obtain another perturbation Aof Asuch that Xp(2) looks like Rof
Fig. 11. Certainly, they are not homeomorphic. First of all, observe

that there is an affine submanifold J = ((dTrn)^ T z) n ((dirn)^ T^ z)
2 C1 b ^2 ^2

in T IR " such that dim J > 0 because of (45). Without loss of generality,
^ ♦ 2nassume that J is a linear subspace of IR . By perturbations on neighbor-

-21-



hoods of x-| and Xg in A, we obtain a A' close to Asuch that there are
neighborhoods Uj^ of Xj^, k=1,2, in Z' ^ A' OK and such that
V= XpCU^) ^ Xp(U2) is a neighborhood of y in J. Let d"" be a disk cen-
tered at 0 in k"" and let X*" = (D^xiO}) u {{0}xD"') dR*" xlR™. Then y
has a neighborhood in Xp(l '̂) homeoniorphic to x"" x D, where
k = dim J > 0. (see Fig. 12) Now let A be the perturbation obtained in

Theorem 2 which will be given shortly. Then any point y € iTpCz) has a
neighborhood homeomorphic to d" or x" but it does not have a neighbor
hood homeomorphic to x k > 0. Therefore, xp( '̂) Xp(2)
cannot be homeomorphic.

Case 4: A JFj K and conditions (i) and (ii) of Definition 3 hold, but

(iii) fails to hold, i.e., there are three points x^, Xg and x^ in Z
such that Jp(x^) =]Jp(x2) =^p^Js) ^ y^ Let A4 {(u,u} €Ir" xIR"}
which is called the diagonal of IR"x IR" . Then y has a neighborhood
in Rhomeomorphic to AU(IR"x{0}) U({0} xIR") CIR^". For example,
point y of Fig. 7(b) has such a neighborhood. On the other hand, for

the perturbation A of A obtained in Theorem 2 which will be given shortly,

each point y ^ R= xp(^) has a neighborhood homeomorphic to d" or x"
as in Case 3. (see Fig. 13) Therefore, R and R cannot be homeomorphic.

Let us now give several examples to explain significance of the

conditions in Theorem 1 and Corollary 1.

Example 4. Consider Example 1. Since K, this 1-port is not strongly
structurally stable.as described in Example 1.

Example 5. Consider Example 2. At point y of R in Fig. 2(b), condition

(ii) of Definition 3 is violated. Therefore this 1-port is not strongly
structurally stable as was explained in Example 2. Notice that this

1-port is structurally stable as was explained after Example 3.

Example 6. Consider Example 3. Since all the conditions of Theorem 1

hold, this 1-port is strongly structurally stable as explained in

Example 3.

Example 7. (A strongly structurally stable 2-port where TTp is not a
nice immersion and Condition P is violated.) This example shows that

Corollary 3 as well as (ii) of Theorem 1 is false without Condition P.
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Considsr the 2-port of Fig. 14ta) where the internal resistor constitutive
relations A is given by the following parametric form;

1r^ =P^ip^ +ip^, =Pg. where p^, pg, ip^e IR .
We will first show that A is a 6-dimensional submanifold. Taking the

derivative of the parametrization, we have

^2 V, ^P, ^Po ^PoPi

P^+1

Pl-1

^P 'Pl

'̂ 2

'P2

'̂ 2

Pl+1

i_.
I 1

4 E (46)

It is clear that this matrix has rank 6 and hence A is a 6-dimensional
o

submanifold of IR . Let K be the Kirchhoff space [1]. Then K is para

metrized by (vp ,Vp ,ip ,ip );
n *^2 ^1 ^2

**1
1 .

• •

. 1
• •

p. —.

• • 1 1
•^1

'"2
=

• • 1 1

-1 -1
• •

CSJ
Q.

>

-1 -1
• • '̂ 2

^Pl
• • 1

•

JP2. • •
•

1

A F
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Let p = (p-jspg)- Then, by the definition of transversality 11,2], A(h K
if and only if

^ (p'lJp'y
which is equivalent to

'•~^p'!!p'ip)' °® 'e-YP'ip) •
It can be shown that (46) holds and hence A JF) K. Therefore E is a

Z-dirnensional submanifold [1]. Since Kirchhoff laws are given by

'Pl ^ ^ '̂ 2 ° ^ \ ° '"l ' '"''l " 'Pz ° °
io - Id • ""d " we see that E is parametrized by (pT»ip ) andKg Kg ' ""^l
hence R is described by

2 2 .
= -Pi» Vd = -p, , 1

1 ' '2
3 2

In Fig. 14(b) a picture of R embedded in IR is given. Let ip : E IR
be the above coordinate system. Then

-1

^(Pi.ip)

Pi n* 'Po "^r "p ' ^2 = •

-2p.

-2p.

_] ^ p̂ ^

C46)

(47)

Since rank (diTpOif;'̂ )^^ qj =1, is not an immersion at ij;"^(0,0) =0ez
(See Fig. 14(b)). One'can see intuitively that Rpersists to be quali
tatively the same object under small perturbations. (Proof of this fact
is omitted since it is technically involved.) Therefore this 1-port is
strongly structurally stable even though Hp is not an immersion, where
Condition P is violated. One can also see from Fig. 14 that for any

small perturbation Aof A, the map iTp will not be an immersion.

Remark. The proofs of our main results depend crucially on the C^-ness
of the perturbation Aof A. If we consider perturbations, the proof
for (ii) of Theorem 1 does not work. Roughly speaking, the reason is
the following. Suppose that Ais described by y =x^. In Case 1 of the
proof for (ii) of Theorem 1 and in the proof of Proposition 2, one has
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to take a procedure which is equivalent to flattening A onto the x-axis
locally (see Fig. 15) in obtaining A. This is impossible by a C pertur
bation. To see this let us recall that the perturbation A of A must

sati sfy

|x^ - f(x)| + l2x - {Df)jj| + 12 -
for small e(x), where A is described by y = f(x). It is impossible,
however, to make the left hand side of (48) small, because at x = 0, we
have (Df), =0, (D^f)Q =0.|2 - (D^f)ol =2. On the other hand, the c'
distance |x - f(x)| + |2x - (Df)),l "n be made arbitrarily small. A
similar procedure is taken in the proof for Case 3 of (ii) of Theorem 1.

k
The above difficulty arises for all C perturbations, k ^ 2. On the
other hand, if we consider 0^ perturbations of A, then all the trans
versal ity arguments do not make sense because of the very definition of
transversal ity; AiFi K T^A +T^K =IR^^. Namely tangent spaces cannot
be defined on manifolds, in general. Also, the set of all functions

F : A such that F(A) n K is a submanifold, is not an open subset

of C^(A;TR '̂̂ ) with respect to the strong topology.
We will next give another important result on strong structural

stability which says that there are "many" strongly structurally stable
n-ports provided that Condition P holds.

Theorem 2 (Density of Strong Structural Stability)

Given an n-port N assume that A n K 0 holds and that Condition P

is satisfied. Then there is an arbitrarily small C^ perturbation Aof
A such that An K 0, A^ K and iTp is a nice immersion. Therefore the

/s

perturbed n-port N is strongly structurally stable. Furthermore, if

A=An xIR^", then Acan be obtained in the form A=Ap xIR^", where
- 1 . . „.2nn ^is a C perturbation of Aj^ in IR

Proof. It follows from Proposition 3 that there is a C^ perturbation
Aof Asuch that An K 0 and AfF) K. If A= Aj^ x IR , we have
A= A|̂ xlR^". Therefore, we may assume that A Kis satisfied already.
By Condition P and Corollary 1, we know that Xp defined by (25) is a
surjection; Xp(K) =IR^". Since dim 2=n, it follows from Leirana Fof
Appendix II that there is an arbitrarily small C^ perturbation
Fp : I -»-lR^" of Xp|2 ="""p such that Fp is a nice immersion. It follows
from Xp(K) =IR^" that there is an isomorphism A: K-•]R^"©Ker Xp such
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Pn

that A(x) = ' where iTg is the projection of 3^ ©Ker Xp
onto the second factor. We define a map Fq :Z Kby

Then Fg is a perturbation of the inclusion map : E -»• K. Therefore Fg
is an embedding. It follows from Lemma G of Appendix II that there is a

extension F : A of F« which is close to the inclusion mappi ~ —U
: A -»-R . Observe that the extension F obtained by Lemma G is so

defined as F(.x) ^ xs Kfor all x€ K, this implies that F(a) n K= Fg(E).
(See (A.43) of Appendix II in the proof of Lemma H.) Since A n K 0
and since A ^ K, we have F(A) ri K ^ 0 and F(A) (T| K, provided that F is C
close enough to Since Fp in (49) is a nice immersion and since Ais
an isomorphism, we see that XpiFQ(2) = Xp|F(A) o Kis a nice immersion.
Therefore AA F(A) is the perturbation sought. Finally, consider the case
A ' hr. X It follows from Lemma H of Appendix II that there is

^ 2nD I , . ^2nnan Fp : Ap-»-]R ^ which is arbitrarily C close to the inclusion : Ap-^-R ^
such that for a given F, we have F(S) =An K, wehre A=Fp(Ap) xR^".
Since A is a small perturbation of A, we have AnK^0,AfF|K.

Q

Remark. Observe that Whitney Immersion Theorem (Lemma F of Appendix II)

is crucial in the proof of Theorem 1 as well as Theorem 2. The former, in

turn, crucially depends on the fact that Xd(X) =R > i.e.. Condition P.
1 ?h

If this condition is not satisfied, the set of immersions is not dense in C (A;IR ).

Example 7 is a case in point. Since there is a port-only loop. Proposition

6 tells us that dim Imxp = i < 2, i.e.. Condition P is violated. There
is no way of making iTp an immersion by perturbations. In order to further
clarify the significance of Whitney Iiranersion Theorem, suppose that K is

3 3 2isomorphic to R and that Xp is the projection map of R onto R . There
fore dim Im Xp = 2 < 4. Suppose also that Z is given as in Fig. 16. Then,
it is clear that at x ^ E, (<i^p)x" ?» where TTp= Xp|2. There is no way of
making ITp an immersion by perturbations.

We will next give a method of checking condition (ii) of Definition 3
concerning nice immersions. A method of checking condition (i) is given
in [1]. Since Ais a C^ submanifold of dimension 2b-np, for each point
(Vo,io) e A, there is a neighborhood UCR '̂̂ of this point and there is
a C^ function f : U such that
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An u = f'\o) (50)

and

rank(Df), = n|̂ for all (v.i) e A U. (51)

Let T be a tree for N and let L be its associated cotree. Decompose

Vand i as V= (v '̂Kr^ 1 ° ° fundamental
loop matrix and set

f(M) =[y-(?v^!)!Tl?i,r^?iTl)^^(M) •
This matrix plays an important role in checking transversality ofAand K
[1]. It turns out that this matrix is important for checking condition
(ii) of nice immersion also.

Proposition 7. Let An K 0, AS Kand suppose that conditions (i) and
(iii) of Definition 3 are satisfied. Then iTp is a nice immersion if and
only if Jp(v,i) = ''Tp(y»i) implies

F(v,i)
rank

F(v,T)

where F is defined by (52) and F is defined similarly.

Proof. Let (;|),znu) be a local chart for Z at (v,i) and let

= b

g(v,i) =

Bv

Qi

f(v,i)

(53)

(54)

-1
where f is as in (50) and (51). Then Z n u = g (0). Similarly for

(v,i), we have Zn 0 = g"^(0), where Uand g are defined similarly. We
first claim that

^"•(^P^Iv.i) '̂"^^P^(v,T)
if and only if

rank
(59)(v,1)

^Bi'(^.i)

To this end observe that

= 2b . (56)
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^ ^ ^ ^ ^ A# <M

where TTp is defined by (19). It follows from the proof of Proposition 3
in [1] that

rank(djp)j^^^.j = rank
!p

(22^(v,i)
- '•ank(Dg)(^^.j .

On the one hand, the fact that Hp 1s an iirmersion implies rank(dTrp)/
and A'n Kimplies rank(Dg)jy j = b + n. Therefore

rank

Similarly

rank

Therefore

Z p

<5i)(v.i)

TT *Zp

(59)(v.T)

= 2b .

= 2b .

dim(Ker n Ker(Dg)j^^,. j)

= dim(Ker n Ker(Dg)^~ jj) =0 .
Now suppose that (56) holds. Then

d1m(Ker(Dg)jy^.j n Ker(Dg)^~jj) =0

and hence

d1m(Ker(Dg)(^^^)+Ker(Dg)(-j))
=<l1m(Ker(Dg)^^^^j©Ker(Dg)^-jj) =2n , (60)

Equations (57), (58) and (60) imply (55). Conversely, suppose that (55)

holds. Since rank iTp = 2n, (57) implies that

d1m(Ker(Dg)(^^^j+Ker(Dg)(5jj) >2n. (61)
Since jp is an immersion, (58) implies that equality in (61) must hold.
This implies (59) which, in turn, implies (56). Finally we will show

that (56) is equivalent to (53). Since
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^59)(v.i)

1 5t
• • 1

D f D f ' D. f D. f
-Ir -Ir I -Ir -It

it is clear that (56) holds if and only if

!r

rank

(v,i)

= 2b

(62)

By elementary operations, one can show that (62) holds if and only if (53)
holds. °

Example 8. Consider the 1-port of Fig. 1(a) where the internal resistor

constitutive relations are given by Fig. 3(a). Choose T= {R^, Rg)
to be our tree. Then v^ = (V|̂ .,V|̂ ), v^ = Vp, i-j- = (ip ,ip ), i^^ = ip,
Bt =[1 1], ~ ^ ^ ^ ^

5v^°

Di f =
^Ir

-Dfr

-Df,

1 .

. 1

Therefore the matrix of (53) is given by

{-OfR h
n ^R

1

(-OfR )- 1
2 R2 -I
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At self intersection points of R, none of the derivatives (Dfo )„ ,

(Dfn )r, , k = 1> 2, vanishes. By checking Fig. 3(a)

and Fig. 3(b) carefully, one sees that (Dfn ).. ^ (Dfn )« , k = 1, 2,
h \ "k

at self intersection points. Hence the matrix of (63) has rank 3. Since

conditions (i) and (iii) of Definition 3 are satisfied. Proposition 7

tells us that iTp is a nice immersion.

IV. Strong Structural Stabilization

Suppose that a given n-port N is not strongly structurally stable.

Theorem 2 says that one can make N strongly structurally stable by a

small perturbation of A, provided that Condition P holds. Such a

perturbation is called element perturbation. Here we will give another

strong structural stabilization procedure which is called network pertur

bation. It amounts to. creating extra ports by "pliers-type entry" or

"soldering-iron entry". Note that element perturbation gives rise to a

new A but it keeps K unchanged, while network perturbation gives rise to

a new ambient space where n is the number of ports created.

Recall that norator imposes no constraints on the existing internal resis

tor constitutive relations. Therefore, network perturbation is equivalent

to inserting norators by pliers-type entry or soldering-iron entry. Recall

that N is the network obtained from N by terminating ports with norators.

(See Section II).

Theorem 3 (Strong Structural Stabilization via Network Perturbation)

Given an n-port Nlet A= A^ xlR and let An K 0. Suppose that
N is not strongly structurally stable. Let T be an arbitrary tree for

Wand let L be its associated cotree. Decompose T and L as T = u Py
and L = ^ respectively, where R and P denote resistors and

ports, respectively. Insert an extra port in parallel with each branch

of Ry and insert an extra port in series with each branch of R^. Then
the resulting (n+nj^)-port Nsatisfies the following conditions:
(i) A n K^ 0, (ii) S is strongly structurally stable.

For proof we will need two lemmas.

Lemma 2. Let and Tg be arbitrary trees for Wand let and L, be
associated cotrees. Let B-,- (res p. B^ ) be the main part of "the funda-

-'l ~'2
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mental loop matrix with respect to T^(resp. Tg). Decompose v as
V = (v, ,Vt- ) and decompose i as i = (i, ). Then A jFj K if and only
7^ ^^1 -'l ^ ~'2

rank F^^(v,i) = n^ for all (v,i) g i (64)

where

,12(.. 4v.i) =[D„ f-(D„ f)BT !d. f+(0. f)Bl ] (65)

and f is as in (50) and (51).

Proof. Since the Kirchhoff space Kis described by B^v = 0 and Qgi = 0,
it follows from an argument in [1] that A iFi K if and only if for each

(v.i) e z

!i

rank 92 = b + n,

U Si!
(v,i)

where (resp. Qg) is the fundamental loop (resp. cut set) matrix with
respect to (resp. Tg). More explicitly, this matrix is given by

9t,

Di ! 5i t
-^2

(v.i)

By elementary operations, one can show that this matrix has rank b + nj^
if and only if (64) holds. °

Remark. Observe that we took full advantage of the fact that transversality

is a coordinate-free property when we used two different trees simultan

eously in (64) as well as (65). This enables us to prove Theorem 3.

Now let A=Apj xIR^". Then f of (50) and (51) is independent of
of (Vp,ip). Let Up =Un]R^"R and define f^ : -*-IR"R by:r
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For the tree T. , k = 1,2, decompose B_ as
K

^R,

^P,

ok
?RR

5pr

ok
Erp

5pp

Recall ir^ of (7) and define ttj^
A

Ir ^R ° i

2n„
S ^IR ^ hy

(66)

(67)

t68)

where i is defined by (21). Substituting (66) and (67) into (65), one

obtains the following:

Corollary 4. Let A= Aj^ x IR , let and be arbitrary trees and let
and Lg be associated cotrees. Then Afh Kif and only if

.12rank F,^ (Vj^.ip) = "r all (Vr.Ir) ^

where

fR^^liR'iR^ ^ ~Vr ^R " ^R^~RR ' ' ~R^~RP !
L ^1 •?L

5i, !r ^(Pi, !r)!rr : (Pi
:

1

!r^?pr

()!R'iR)

(69)

Proof of Theorem 3. The symbol will denote a function or a set

associated with perturbed N. One can show that A n K 0 as in the proof

of Theorem 4 of [1]. Let P^ (resp. Pg) be the branches of the extra
ports inserted in parallel (resp. series) with R^ (resp. R^). Then

= R,j. u P,p u R^ is a tree and = P^ u P,| u is its associated co-
tree. Therefore, contains all the resistors and Vj^ =(Vj^ ,Vj^)

~^R " -R' ?RR ~-RP " where and B^p are as in (67) for Nand
0 denotes a 0 x 0 matrix. Set T^ AP^ u p,| u Pg. Then Tg is another
tree and L2 AR.^. u R^ u P^ is its associated cotree. Hence Lg contains all
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the resistors and = (i^ .1,, ) = i,, = 1r, =0. Substituting these

data into (69), we have

£r ^ : -ir-r

12It follows from (51) that rank Fj^ ~ "r ^-R'Ir^ ~

e Aj^ 3 7rj^(S). By Corollary 4, we have AfFi K. Now, since t2 consists
only of ports and since Lg contains all the resistors, it follows from
an argument similar to Proposition 5 that there are no resistor-only

loops and no resistor-only cut sets in N. It follows from Corollary 2

that Xp is injective and hence TTp = Xp|2 is an embedding. Afortiori iTp
is a nice immersion. It follows from Theorem 1 that N is strongly

structurally stable. n

We can reduce the number of extra ports by choosing appropriate

trees. Let be a tree containing maximum number of ports and let

be its associated cotree. Let Tg be a tree containing maximum number of
resistors and let Lg be its associated cotree such that c Tg and
P, c L«, where R^ (resp. P, ) denotes resistors (resp. ports) inLi ^ 'l H

(resp. L^). It is not difficult to show that such a pair of trees
exists. We will use the following notation in decomposing the branches

of W:

resistors Dorts

^1 ^^2 Rt (=Rr )
'l2 'l

CVJ

Q.

'•I '•2 h*•12 H2 H

*^12

"12
.2nProposition 8. Given an n-port N let A= Ap xIR and let An K 0.

Suppose that Nis: not strongly structurally stable. Let (resp. T^)
be a tree containing maximum number of ports (resp. resistors) and

decompose the branches of W as above. Insert an extra port in series
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with each branch of R- and Insert an extra port in parallel with each
12

branch of R, . Then the perturbed N is an (n+n„ +n„ )-port satis-
12 T /

. 12^ Ha
fying the following conditions: (i) An R 0, (ii) N is strongly struc
turally stable, where np (resp. n^^ ) is the number of branches in
Rt- (resp. R, ). 12 Ha
Ha Ha ^

Proof. The fact An R 0 can be proved in the same manner as the proof
of Theorem 4 in [1]. Let T, = R^ u R u R.« u p . Then

^ . 'Ha Ha ^la
is a tree and u p^^ P-j ^ ^2 associated cotree.

yv 12 /s
Therefore, T^ contains all the resistors and Vj^ = Vj^ = Vj^, Bj^j^ = 0.

ys 1Let '̂ 2^ ^ P12 ^ P"! ^ ^2' ^a ^
A A 1̂
L9 = P, uR- ur, UR.«isits associated cotree. Therefored. Ha Ha Ha ^ .vo
contains all the resistors and ij^^ = i^ = ip, = 0. It follows from

^a
the same argument as that of Theorem 3 that rank fn (yn,in) = n^

^ -vK -vK K
and that Jp ts a nice immersion. Therefore Nis strongly structurally
stable. n

Remark. The number n„ (resp. np ) is the number of independent
'12\d l^2

resistor-only cut sets (resp. loops). Therefore, the network perturba

tion used in Proposition 8 as well as in Theorem 3 eliminates resistor-

only loops and resistor-only cut sets. It, then, transversalizes A and
^ /s ^ ^

K, and makes Xp an injection. The fact that Xp is injective forces R to

have no self intersection points. In fact, R=x p(^) =TTp(£) is an
nR(=nR)-dimensional submanifold, because TTp = Xp|Z : Z^ Ris now an
embedding. This means that if resistor-only cutsets and resistor-only

loops are eliminated, then nice properties of Ap(Ap) are inherited to R.
Observe that nice properties associated with Ap, a submanifold, may
be destroyed by resistor - only cut sets and resistor-only loops if it is

mapped into the port space by xp- The network perturbation, therefore,
is a kind of "blowing up" procedure for eliminating self intersection

points. Notice the distinction between this condition and Condition P;

the former excludes resistor-only cut sets and resistor-only loops while

the latter excludes port-only cut sets and port-only loops.
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Example 9. Consider the 1-port N of Fig. 1(a) where internal resistor

constitutive relations are given by Fig. 2(a). As was explained in

Example 2 this 1-port is not strongly structurally stable. Let

= {PjR-l} and Tg = {R-j »R2} be the trees discussed in Proposition 8.
Then the procedure of Proposition 8 telIs us to create an extra port in

parallel with R, as in Fig. 17(a) and N is strongly structurally stable.
* A

Roughly speaking, this procedure provides more free space for R so that

R would look like the configuration space Z of Fig. 4, where there are no

self intersection points. Observe that if one follows the procedure of

Theorem 3 then one has to add one more port as in Fig. 17(b).

V. Strong Structural R-stability

Recall that in Theorem 1 and Theorem 2. Condition R was crucial. In

this section, we will relax Condition P but restrict ourselves to those

n-ports whose internal resistor constitutive relations are of the form
2n" ^A= A|̂ xIR . In this section, therefore, a perturbation A of A is of

the form A=Aj^ xIR^", where Aj^ is a perturbation of Aj^ inIR^"R. We will
give an "if and only if" condition for a special case of strong structural

stability without Condition P.

In order to simplify notation, we will identify two linear subspaces

if they have the same dimension, i.e., if they are isomorphic. We will

write-= to denote that two objects are isomorphic.

Recall X|̂ 0"^^ (8) and recall that dim Ker Xj^ =V + P » where p
(resp. y) is the number of independent port-only loops (resp. port-only

cut sets) (see Proposition 6). Also recall Xp of (25). In order to state
the results of this section, we will need several lemmas and definitions.

Lemma 3. Ker Xp Ker Xp = •

Proof. Recall the coordinate system used in the proof of Proposition 6.

Let (v,i) e Ker Xp- Then, in terms of we have (see (29) and (30))

r^R 1

-PR

2

•

"•i
Vp . , i =

2

1

V = s

-Rt^ • - Ir^.
'z

•

1

a.>?
1

1 Spp
2_ _
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It follows from this that (v,i) € Ker Xp only if (v,i) = 0. «

Now, Lemma 3 implies that Ker Xp is contain,2d in a complement of
Ker Xp* Since Xp niaps any complement of Ker Xp onto its image, it
follows from (i) of Proposition 6 that there is a 2n-(p+ii) - (p+y)

= 2(n-p-ij) - dimensional linear subspace H of IR such that

IniXp= H©Xp(L) =H©L ^ (72)
where L = Ker Xp* Define

Ko =Xp^(H) . (73)
Lemma 4. Kq © L= K. (74)

Proof. We first claim that

Kq n L= {0} . (75)

To prove this let x e Kq n L. Then Xp(x) e Xp(Kq) ^ Xp(L) = Hn Xp(L)
= Hn L. This and (72) imply Xp^x) = 0. Hence x e Ker Xp ^ Ker Xp*
This and Leirena 3 imply (75).

By (i) of Proposition 6, we have

dim Kq =dim Xp^(H) =dim H+dim Ker Xp
= dim H+ dim K- dim Im Xp

= 2(n-p-y) + (n+nj^) - (2n-p-y)

= n + np - p - y

= dim K - dim L

which implies dim Kq + dim L= dim K. This and (75) imply (74). °

Since L = Ker Xps it follows from Lemma 4 that

XrIS =S "
isomorphism. Assume

TTp of (19). Then, we have

2n

An3r'-''(xp(K)) i (ApXlR^") n (m ''xxp(K))
~ Ap XXp(K)
= Ap X(H©L)
= (ApXH) XL .
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It follows from this. Lemma 4and Kc TTp"^(xp(K)) that the following
holds:

E=AnK=(AnTr^-''(xp(K))) nK
= ((ApXH)xL) n (Kq@L)
= ((ApXH)nKQ) XL .

Defi ne

AqA Ap XH, Eq AAq n Kq . (77)

Lemma 5.

(i) Xpl^Q : Kq His surjective.
2np

(ii) Xr|Kq : Kq is injective.

Proof, (i) follows from definition (73). (ii) follows from the fact that

the map defined by (76) is an isomorphism. n

Letti ng

rAiR ^©H (78)
1 2"r 2n„we have from (72) that (^pCK)) = K x ^p(K) = K x H0L =IRq©L

Summarizing the preceding arguments, we see that for a given N, there is

a unique Nq given by the following:

2n,

Kq DAq ^ Ap XH

Xpl^o u ^0 ~ ^0 S

Pn

In this section, we will always assume that A is of the form Ap xIR and

by a perturbation A(resp. Aq) of A(resp. Ag), we mean Ap xIR^" (resp.
/V. " 2nnAp XH), where Ap is a perturbation of Ap inIR , Also, by the con
stitutive relation of Ng, we mean the set Rg = Xp(^o^*

?nLemma 6. Assume that A= Ap xIR . Then for Ng, statements of Theorem 1
and Theorem 2 hold without Condition P.
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Proof. There is a perturbation of Ap such that Ap f) X}^(Kq). Since
L = An XH, it follows from an argument similar to the proof of Lemma 1
that Aq fF| Kq. Therefore Zq = Aq n Kq is a C submanifold. It follows
from (76) - (78) that

dim Zq = dim Aq + dim Kq - dimlRg

= (np+2(n-p-u)) + (n+np-p-u)

- 2(n+np-p-y) = n - p - u .

It follows from Lemma .5 that Condition P for Nq is unnecessary to prove
Theorem 1. Since dim H= 2(n-p-u) = 2 dim Zq, one can show a result
similar to Lemma F of Appendix II. Therefore Theorem 2 holds without

Condition P. °

?n
Definition 5. Let Abe of the form Ap xIR and let Nq be as above.
Then iTp = Xpl^ : S is said to be an admissible immersion if
Xpl^Q : Sq ^ His a nice immersion.

Remark. It can be shown that the definition of admissible immersion does

not depend on the particular choice of H satisfying (72).
The following fact follows from the proof of Theorem 1.

Proposition 9. Assume A= Ap xIR and An K 0, Afh K. If Jp is an
admissible immersion, then the following hold;

(i) R= fTp(Z) -Xp(l^o^ ^ ^ intersection point
(Vpj^p) S R,

![p ^ll^p'lp^ ~
where » denotes that two objects are homeomorphic. Furthermore, every

connected component a of the self intersection set of R is of the form

a « {x} X L c H©L

where x ^ His a self intersection point of Rq.

(iia) For a small C^ perturbation Ap of Ap, the map Xpl^g ^
immersion. Furthermore, there is a C^ diffeomorphism H : Z -»• Z near the
identity map and there is a homeomorphism Hp : R R such that the
following diagram commutes:
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(nb) HIS of the form Hq x id. for some C diffeomorphism Hq : Zq -»• Zq,
where id. : L L is the identity map. Hp is of the form HpQ x id.for
some homeomorphism [!po = ''o - «o- Furthermore, the following diagram
commutes:

Z » Zq XL
Hq Xid.

•> Zq XL « Z

(xrIZq) " (XplSg) Xid.

R 35 Rq XL
N/'

Rq XL R
HpO ^

We are now ready to define strong structural R-stability and state

its characterization result.

2nDefinition 6. Let Abe of the form Ap x F Then N is said to be
.1strongly structurally R-stable if for any small C perturbation Ap of Ap,

R and R are homeomorphic.

Theorem 4. (Characterization of Strong Structural R-Stability)

Let Abe of the form Ap xF^" and let AnK 0. Then Nis strongly
structurally R-stable if and only if

(i) AfI\K. .

(ii) TTp is an admissible immersion.

Proof. Sufficiency follows from Proposition 9. In order to prove

necessity we consider the following four cases;

Case 1. A^K. It is clear that Aq^Kq. It follows from an argument
similar to the proof of Lemma 1 that Ap^Xr(Kq). Since Xr|Kq is
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injective, dim X[^(Kq) = dim Kg = n + rij^ - p - y. Therefore, it follows
from an argument similar to the proof of Theorem 2 in [1], we have a

small perturbation of Aj^ such that Ap n Xj^(KQ) contains an open
subset of an (n-p-y+k) - dimensional affine submanifold for some k ^ 1.
Since XplKg is surjective, it follows from an argument similar to the
proof of Theorem 1 that Rg = XpC^g) contains an open subset of an (n-p-y+k')
- dimensional affine submanifold, T^ k' < k. It also follows from a
similar argument to the proof of Theorem 1 that there is.another

perturbation Ap of Ap such that Xpl^Jj ® immersion. Therefore R'
and R" cannot be homeomorphic.

Case 2. but Xpl^g immersion. By assumption. Eg is a
submanifold of Kg. Since Xp|Kg is injective,
diffeomorphism. Since Xpl^g iiranersion and since XrI^q is a
diffeomorphism one sees that Xp ® HciR^n pQj.
immersion. Since X^C^Iq) ~ Xp(K), using an argument similar to the
proof of (ii) of Theorem 1, one can show that there are small pertur

bations Ap and AJJ of Ap such that Xp(2^Q) and Xp(2q) are-not homeomorphic,
where E^ AA^ nKg, iy, AA^ xH, Eg AAg nKg^ Ag AAjJ xH.

The remaining two cases can be proved in a manner similar to that of

Case 3 and Case 4 of (ii) of Theorem 1. h

Remark. In Case 2 of the proof of Theorem 4, we must perturb Ap but not
Ag. This is the reason why we consider the map Xp ® instead

Xpl^Q*
The following is a density result for strong structural R-stability.

The proof is similar to that of Theorem 2.

Theorem 5. (Density of Strong Structural R-Stability)

Let A be of the form A„ xIR and let A n K 0. Then there is an
T K

arbitrarily small C perturbation Ap of Ap such that
- . ^ .N On(i) An K 0, where A= Ap xIR

(ii) A fF| K.

(iii) TTp is an admissible immersion.

Therefore the perturbed N is strongly structurally R-stable.

So far, we have only shown the existence of Kg and Ag. The following
result describes a simple way of obtaining Ag and Kg. Recall that
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p (resp. y ) is the number of independent port-only loops (resp. cut sets),
OnProposition 10. Let Nbe an n-port with A= xIR . Let (resp. Tg)

be a tree containing maximum number of ports (resp. resistors) and let

(resp. Lg) associated cotree such that Rj. c Tg and c

Open branches of P[_^ (port branches belonging to L-j) and short Py (port
branches belonging to Tg) and call the resulting (n-p-y)-port Nq. Then

(i) Kq is isomorphic to the Kirchhoff space of Nq.

(ii) Aq is diffeomorphic to the internal resistor constitutive relations
of Ng.

Proof. We decompose the port branches of N in the following manner:

^1 h

pi i 2
Pt

*•2
pIL2 Pt

'2

h ^2

Fundamental loop and cut set matrices with respect to T-j and are given,
respectively, by

1r.

"5rr

"5rp

5rp

^P,

Ip,

5pp

5pp

!!r.

5rr

~p2
•^1

5rp r2 "I
5rp

!pp b2
Spp

lpi_

-42-
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!r,

1r,

Hrr

lipl

ipT

5pr

5pp

" 2
~P

^ 2V,

5pr

-B^"^
rpp

!rr

!pr

5pr

!!p.

?pp
r2
5pp

Ir^ ip
'2 '2

where subscript R denotes variables associated with resistors and a bar
A 1 2denotes that matrix is with respect to and Lg. Let ?j = P^ u P^

A 1 2 111and P^ ^ P[ u P^ . Then

r

Ker Xr = < (v,i)

- (vp,ip)

V.

(VrjIr) ~ (OjO)

5pp

-b2T
5pp

?pp

?pp

K
^Pl

-Pr

-B^ •5pp

= 0

= 0

1 I -
!pp

— >

~h
2

"p

= 0

!p
*•1

01
II

ip

' >

.B^"^Spp

xpp
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° 2'Ip^ ° 2^
4 'i

= {(Vp .ip ) = L .
~ h~ h

We next compute H of (72). To this end observe that

(VrjIr) = (0,0)

Xp(K) = \ (v,1)

r'

= \ (Vp'ip)

1i !pp 5pp ^

•-"Spp rpp 1 3

115pp ?pp ^

PglT ^T' .
L gpp 5pp 11-1

-44-

)!p.
•1

! 1~p'.

1 2
P ,

ip.

5!p,

!! 1^p'.

L2

^ 2

1p.

= 0

= 0

= 0

= 0

"N

(79)

(80)

(81)

J



2 1
Since and since P, = Pi » we have from (72), (79), (80)

' 2 ' 1 1 ^2
and (81) thar ' '

r

[ 1 I bJp ]

H= s (vp'ip)

^41 ! 1]

^p,
•1

11
pv

1 2
P ,

= 0

= 0

V o = 0, i , = 0

'l 4

= \(Vp 9V 1 ,i 2 »^p

2(n-p-u)
= {(v , 9i o )

-P'̂ -P\
'1 4

^ I I ?PP ^

^41 i 1 ]

} .

XP,
•1

11
pv

1 2
P ,

IP.

It follows from Lemma 4 and (80) that Kq of (73) is given by

= {(v,i) e K| Vp = 0, ip = 0}.
Tg ^-1

2 1
But since P^- = Pt and P, = P, , we have

4 4 ^1 2

= 9» 1 1 "9^
P T P f

'1 4
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1 • I ?RR

-!rr 41 I1

°pp

§RP

?pp

!r.

Hp
^1

Hr.

^ 1~p'.

1r.

^ 2

IP-

I^IiIrr 5rp^

= \ (Vd .»D >*D 1

H Ti ~Pr.

Since p1 = P? , we see that Kf. is the Kirchhoff space of N«. This proves
'l 4 ^

(i). Finally, it follows from (82) that Aq of (77) is given by the
following:

Ir, ipf )
4 4 2

'•"SL "!pRiy
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-V

= Oj i 1
- ~pi

liR,

* 1p'.

1r,

1r,

= 0

= 0

J

= 0

= 0

y



Aq = Aj^ XH Uvr.v 1 j iR»l 2 ^ ^R^
T L
'l 4

1 2where •« denotes that the two objects are diffeomorphic. Since P-J. = P, »
'l 4

this set is the internal resistor constitutive relations of Nq. This
proves (i i). h

Proposition 10 gives an easy way of checking conditions (i) and (ii)

of Theorem 4. Namely, pick T, and To, open P, , short P^ and obtain an
' 4 4

(n-p-y)-port Nq. Then check transversality of Aq and Kq and check if
Xpl^Q is a nice immersion.

Example 10. Consider the 2-port of Fig. 14(a) where Ap is described by
the following parametrized form:

1 '1

2(1+Pl) "2 2(l+p^)

'1 1+Pi
= P' , P2 ^ IR

Taking the derivative of these functions with respect to (p^^P2)> one can
show that Aj^ is a 2-dimensional submanifold. In order to check strong
structural R-stability, we choose = {P-jjRi} and T2 = {R-j, R2}. Then
Pl = {P2} and we open P2. We then apply Theorem 4 to this 1-port Nq.

In order to check transversality we apply Proposition 2 of [1]. Choose

Tq = {R^, R2} to be a tree for Nq and let Iq be its associated cotree.
Then R^ ={R^, R2}, R^ =0s =0s gjp =[1 1]^ so that

*/ \P (PlsP2/ ~ 5iR

(p-,sP2)

Pl(2-p^)

(i+p?)^

-• P

Since this matrix has rank 2, it follows from Proposition 2 of [1] that

Aq (fi Kq, Observe that any (VpsVp^ 1ipsip^) Eq is given by
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(Vn jVp jVp (ip ,ip jip ) =
"l "*2 1 ' 1 2 1

Therefore

'1 '1 •Pi

,2{l+p^) ' 2(1+p^) ' 1+p^

Pi €]R

'1 Pi
3 ' 3 ' 31+p^ 1+p^ 1+p^

Picture of this set is given by Fig. 18(a). By inspection Xpl^Q is a
nice immersion. Therefore Theorem 4 tells us that N is strongly structurally

R-stable. Notice that (Vpjip) S R= Xp(^) ts given by

(Vp »Vp jip >ip ) —Pi Pg P^ Pg
-P -Pi

1+p, 1+p^
'1 "n • "n

Therefore R looks like Fig. 18(b). As was described by Proposition 9,

Ris of the form xp(^o^ ^

Remark. If N is strongly structurally R-stable, then one can show that

N is strongly structurally stable, i.e., R persists under small pertur

bations Aof A, where Ais not necessarily of the form Ap x IR^". The
proof is very involved, however.
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Appendix I

Proof of Proposition 1. We will first explain the idea of the proof.

Given Z = A n K, let A be a perturbation of A and let Z = A n K.

(Fig. 19). We would like to define a diffeomorphism between z and Z.
This is not as easy as it looks. Here, we first consider the tangent
space T A and let N Z be the orthogonal complement of T„Z in T A.

(Fig. 20). Recall that A = F(a) for some C embedding F. (See Section
II) Observe that for x € a n K, the point F(x) may not be in K. Speaking
very roughly, we map N^Z by F, which is a certain modification of F, and

^ ^ 20) The map : Z-j- Z, x -»• y, is essentially
the one which we look for. There is a problem, however, because N Z may

1 . . 1not be C in x when Z is only C . Therefore the above map may not be C .
This stems from the fact that N Z is defined in terms of T Z and T A, and

X XX

the fact that T z and T A are defined in terms of derivatives of functions.
Q &

A similar difficulty arises in the proof of Theorem 2 of [1]. That is the
2

very reason we had to assume that A is C in defining a diffeomorphism :

Z->-Z. Here we overcome this difficulty by approximating the submanifold

by a- C submanifold and then extend F of (6) to F using a special map

called exponential map. The extension is necessary in order to map N^Z
since F is defined only on A.

For proof, we will need several terminologies and lemmas. For the

convenience of the reader, we will give simple pictures explaining the
ideas involved.

If A is a manifold, the set TA = u T A is called the tangent
x6A ^

bundle. The zero section of TA is the set u 0 , where 0 is the zero
x^A

vector of T A . If r >. 3, then there are a'neighborhood Wc TA of the
♦ ^ y*"2zero section and a C map, called an exponential map

exp : W A (A.l)

such that ([4,p.72])

(i) exp(O^) = X

(ii) exp^ = exp | T^A : (T^^A) n W Ais a diffeomorphism

(iii) (d exp^)Q : T^^A ^ T^A is the identity.

A-1



Intuitively, exponential map pushes TA onto A as in Fig. 21. It provides
us with a convenient means for extending a map on A.

If E is a submanifold of A, let N E be the orthogonal complement

of T E in T A. (Fig. 22) The set
J\ ^

NE = U N^E (A.2)
x6E ^

is called the normal bundle of E in A. Then we have a bundle splitting [2]
TAlE = TE0NE (A.3)

where TA|E = u T A. A tubular neighborhood of E in A consists of
x6E - _ • r

NE, an open neighborhood Vof the zero section c : E -»• NZ and a C diffeo-
morphism (j) of V onto an open neighborhood Uof E in A which commutes with

(Fig. 23) The map (j> is called the tubular map and U= ^(V) is called
the tube. Using [4,p.96, Theorem 9] and its proof, one has the following

lemma:

Lemma A. Let E be a C~ submanifold of A. Then there is a c" tubular
neighborhood of E in Awith a C*" tubular map ((> : U Vsuch that

<|>|N,z n V= exp^lN z n V. . . (A.4)
'v A A A

The following lemma can be proved in a similar manner to that of

[5,p.41, Theorem 4.3].

Lemma B. Given a C? submanifold Aof such that AjFi Kfor an affine
submanifold KoflR '̂̂ , there is a embedding H with the following
properties:

(i) H is arbitrarily close to in the strong topology.

(ii) H(A) is a C" submanifold of IR^^.
(iii) H(e) is a c"" submanifold of Kwhere E = An K.

(iv) H(A) fh K, H(A) n K = H(E).
2b

Let Gu be the set of all b-dimensional linear subspaces of IR and
D

let M. be the set of all b x 2b matrices having rank b. For any A e M,^,
D 2b ~

the rows of A are linearly independent in IR . Therefore, the rows

determine an element of Gu which is denoted by X(A). The set Mu is an
2 " ~

open subset of IR^*^ so that it has a natural c" differentiable structure.
If we define Vc to be open iff X'̂ (V) is open in then G|̂ is a
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c" submanifold and the map X : 1s C~. [5,p.43, Theorem 5.2].

Lemma C. [5,p.45, Lemma 5.3]. Let Nbe a manifold and let f : N^ Gj^
be a map. Given x e N, there are a neighborhood U of x and a map

i'* • U \ such that X <> f^ = f.
Let J and K be two affine submanifolds of IR such that J n K 0,

J (1^ Kand dim J + dim K= 2b. Then J n Kis a single point Pjj^. We
define the angle between J and K to be the following quantity:

0(J,K) = sup u,v>
- " • ?JK' ° ?K • ?JK

(A.5)

P, € J, P|̂ € K, Hull = flvB = 1

where < , > denotes the inner product.

Lemma D. Let N be a manifold and let K be a b-dimensional affine submani

fold of If J : N-»• G|̂ is continuous, J(x) n K 0 and J(x) fFi Kfor
X € N, then the map : N -»• IR defined by

Xe(J(x),K) (A.6)

is continuous.

Proof. It follows- from- Lemma C that there is a set of b row vectors

(x),...,j''(x) continuous in x such that J(x) = spanlJ^(x),...,J^(x)}.
Hence the result follows from definition (A.5). «

2h
Let K be a linear subspace of IR and consider the splitting-

IR^*^ = K0K''". We will write
.2b ^IR 3 X= (x.|,X2), X-J € K, Xg S K-*-.

pu

Lemma E. Let r be a submanifold of IR such that dim K + dim r = 2b and

K if) r. Let P € K n r and let y : [0,1] r be a map satisfying

(i) y(0) = P

(11) •

Let L(t) (resp. LgCt)) be the length of the path Y([0,t]) (resp. Y2([0»i^]))
where Y(t) = (Y-j (t) ,Y2(i^)) ^ kOk-*-). Then

r 1

L(l) <
1 dLgCt)

dt

A-3
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Remark. Since fi K and since dim ^ ^

0 <6(T^^^jr,K) <1 so that (A.7) makes sense.
Proof. Let us first consider an affine submanifold J of with J ih K.

Let P, AP satisfy P, P+ AP € j and write P= (Pi,P2) ^ K0K''' ,
AP = ((AP)^, (APjg) e K©K^ (Fig. 24). Then

!I(AP)J (AP), (AP), AP (AP),
T"V- = < '» < 0(O,K)OAPll llAPn II(AP)^II ~ IlAPll- !I(AP)^11 ""

implies ll(AP)^tl <. llAPlI 6(J,K). Since llAPll^ =ll(AP)^ll^ +il(AP)2ll^
£ OaPO^ 6(0,K)^ +fl(AP)2ll^, we have

ll(AP)JI
1 . (A.8)

/l-e(J,K)^

Next, consider the submanifold r and y in the hypothesis and put

Ay = Y(t+At) - Y(t). If Ay is small enough one can think of Ay belonging
to Then, it follows from (A.8) that

ll(Ay)JI
OAtB < ~ . (A.9)

/l-9(T^(t)r.K)^
Integrating (A.9) over [0,1], we have (A.7). n

Proof of Proposition 1

Step 1: Approximation of A by a C~ manifold.

It follows from Lemma Bthat there 1s a embedding H: a satisfying
(i) - (iv) of Lerrnia B. We fix one such Hand set A= H(A), i = H(A) HK.
Since Aand E are C manifolds, it follows from Lemma A that there is a
tubular neighborhood of E in A. Let NE be the normal bundle on E and let
NyE be the orthogonal complement of T^E in T^A. There are a neighborhood
Vof the zero section in NE, a neighborhood Uof E in Aand the tubular
map J : V U such that

$|NyE n V=exPylNyE n v .
Then $(Qy) =y and

(d(j|NyE n V))q : NyE ^ T^A (A.10)
«y ryj

is a linear injection. Therefore setting V A N E n v one sees that
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Uy4$(y (A.n)
is an open ball of dimension b = n + nj^ which is transversal to S at y.
Set

U^ ^ . (A.12)

Since H* : A ->• A Is a C diffeoinorphism, U Is a tubular neighborhood of
2 in Aand is an open ball of dimension b = n + nj^ which is transversal
to Z at X. (Fig. 25)

Step 2: Definition of G : Z E = F(A) n k.

Let H, U, V, U, V etc. be as in Step 1. We claim that if F is

close to in the strong topology, then

F(U^)iF,K (A.13)

and

F(U ) n K is a single point . (A.14)
^ A

In order to prove this observe

V =
Since the map defined by (A.10) is a linear injection, (A.ll) and (A.15)

imply

TyA =Y©Tyy (A. 16)
Since H is an embedding, if y = H(x), then (A.16) implies

Since T E CT K and since A n K, (A.17) implies •
A A

Since dim T„U^ + dim T^K = 2b, (A.18) implies
A X X

.. (A.19)

Now, since exPy(Vy) = U^, one has
Uy nK={y}^. (A.20)

We claim that

n K = {X} , (A.21)

If not, there is an x* x in n K. Then
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x'€U^nKCAnK = S . (A.22)
^ J\

Since H(E) = H(A) n K, (A.22) implies

H(x') G A n K C K

and hence

H(x')GUy. (A.23)
But since H is an embedding H(x') f H(x). Therefore, (A.23) contradicts

(A.20). Hence if F is close enough to then (A.19) and (A.21) imply

(A.13) and (A.14).~
For X G z define (Fig. 26)

G(x) = F{U^) n K .

It follows from (A.14) that G is a well-defined function. 6 is a surjec-

tion onto F(A) n K because F(A) n K = F(U) n K if F is close enough to

1.. By definition, G is an injection. We next claim that G is a local
'vll ^ ~

diffeomorphism at each point. To prove this, let v : NZ ^ Z be the

normal bundle map defined by v(ri) =y» where n^ N^Z. Let = v <»
and (Fig. 27) • "

= H^ o ip 0 H ,
Generally, the degree of differentiability of v is lower than that of

Z. But since Z is C", v/e have that v is C*". Since is also c", we
know that if is C" and ij; is Since Z = F(A) n Kis a submanifold,
we see that

ij; o F"^ [Z : Z Z
is c\ Observe that for any yGz, there is an xGzsuch that yGF(U^).
Since F(U ) ^ K, we have

^ A

{F(U~) n F(A)) ifi (KnF(A)) in F(A) . (A.24)
Since FCUj^) n F(A) = F(Uj^) and since Kn F(A) = E, (A.24) implies

ECUx.) 2, i.e.,
"" TpF(U) =TpF(U^)©Tp£ (A.25)

for all P € F(U ) n £. By the definition of i(/, we know that F o ij;" (x)
= F(U ). Set P = y in (A.25) and map both sides of (A.25) by (d(ii;oF"l)) .
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By the definition of ij;, the map (d(ipoF"^))^ annihilates the direction
-1perpendicular to 1^1, Therefore, we have (d(i|;oF ^

(d{5;<.r^))wTyf(U) = Hence ={0}© (d($«r''))yTyL Since T^Z
and T Z have the same dimension, the map d(il;®F ) is an isomorphism.

y ^ A/ A# y
—1 ^ —1

By definition, we know that ® F |Z = G . Since we already showed
that 6 is bijective, we conclude that G is a diffeomorphism.

Step 3; Estimate of IlG(x) - xll.

Let A, Z, F, G etc. be the same as in Step 1 and Step 2, There is a

sequence <j) = Aq c c c .... of compact submanifolds with boundary
such that U A|̂ = Aand Aj^ c Int Aj^^-j, where I'nt denotes the interior

k~0

of a set. Let U be the tube of Z in A obtained in Step 1 and set

Uk = (Afc+i-Ak) U• (A-26)
Then is a compact manifold with boundary where the bar denotes closure

of a set. Since each y s u belongs to a unique U , we denote it by
A# J\ '

U^(y). By the definition of U^, the map : U G|̂ , "'̂ y^x(y)'
tinuous, where Gj^ is the set of all b-dimensional linear subspaces. It
follows from (A.5) and A/Fi Kthat there is an Aj^, 0 £ Aj^ < 1 such that

e(TyUj^jyj,K) <Aj^ for all y € Uk .

~I ~Define = Aj^ + —^ < 1. Then, there is a continuous function

6^ : A-•IR''" such that d^.(F,i^)(y) <6-^{y) implies
6(Tp(yj(F(U^(y))).K) <Ak for all y € Uk . (A.27)

Next, we will estimate the distance between x e E and G(x) = F(Uj^.) n K.

Let us write F(x) - 6(x) = (u-jjUg)® where u^ € K, U2^ K"*-. (Fig. 26)
Let Ug be the linear subspace spanned by Ug. Then F(Uj^) ^ (KQUg)
because TF(Ujj) ^ Kfor all ye F(Uj^). Therefore M̂ F(Uj^) n (kOUj)
is a 1-dimensional submanifold. Let ^2 : K©U2 ->• U2 be the natural

projection map. We claim that Tr2lM : M irgCM) c U2 is a diffeomorphism.
To prove this let : K0K"'" K"*"- be the natural projection map. Then
diT maps T F(U ) isomorphically onto K"*" because T F(U ) ^ Kand

y-t X y-" X
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dim K = dim T F(U ). Therefore, TrjFCUy) : F(Uy) ->• K"^ is a local diffeo-

morphism. Since is close to a part of an affine submanifold and since

F is close to the identity map, j |F(U^) is injective. Finally, since
^ J. 'w A

J2IM = conclude that ir2|M : M Tr2(M) is a diffeomorphism. Hence
J2(M) is a curve. Observe that F(x), G(x) € Mand let y : [0,1] ^ M
be a arc from 6(x) to F(x). It follows from the above argument that

J2 o Y is also an arc. It follows from Lemma Dthat
(A.27) is continuous in y. Let L(t) and L2(t)

be as in Lemma E. Then Leirsna E and (A.27) imply that if

di(F,iA)(y) < S-jCy) then for x e s n Uj^, the following is true:

llG(x) - F(x)Il < L(l)

J^t

>/l-A^
Ilu2li

dL2(t)
3t

dt

clL2(t)
cFE dt

(A.28)

where 0 _< Aj^ <1. Let us denote the K"** - component of a vector by ( )2
Since x, G(x) € K for x € z we have

= (f(x)-i)2 •

Since II(F(x)-x)2fl £ IlF(x)-xll, (A.28) and (A.29) imply

IlG(x) - F(x)ll <

7R
llF(x) -xll

for Xe z n Uj^. Hence, for x € z n Uj^,

A-8
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OG(x) - xll < ( — +1) llF(x) - xll (A.30)
Vl-A^ /

Step 4: Estimate of il(dG)^ - 111.
X pu

For a point x e z, le^ N be a neighborhood of x inlR" . There is a

local chart Cii7,N) of x such that f: N-i-VxWxZisa diffeomorphism

where Zis a neighborhood of the origin of Ir'̂ , Wis a neighborhood of
n • * -i

the origin of IR and V is a neighborhood of the origin of R , J(Nnz) = V,
ii7(NnK) =VXWand f(Nnj^) = if(x)} x {0} x Z. In order to simplify the
arguments, we will identify N with V x Wx Z. (Fig. 28), If x SAH N,

then Xis of the form x = (v,0,z) e Vx Wx Z. Let F(y,0,z) = (Fi(y,0,z),

FgCv.OjZ),F2(v,0,z)) e VXWXZwhere F is as before. If F is close to
then F^CvjOjZ) = z where = means that the left hand side is approximately

equal to the right hand side. Although we could give a precise estimate we

do not need it and this approximation simplifies the argument significantly.

It follows from the implicit function theorem that there is a function

z = Q(v) satisfying F2(v,0,Q(v)) = 0. We can also show that
(dQ) =- (D2f3)"^(2vf3) where (D2F3) (resp. (DyF^)) is the partial deriva
tive of F^ with respect to z (resp. y). Therefore, we can make fKdQ)^!]

1
arbitrarily small by making F sufficiently C close to If x ^ Z n N,

then Xis of the form x=(v,0,0) and F"^ «6(v,0,0) =(v»0,Q(y)).
(Fig. 28) Hence for any a > 0 there is a 8 > 0 such that d^(f>i^)(x) < 6»
Xe ZnNimplies ll(d(F^®G))j^ - 111 <a, x€ znN. Since G=F<> (F'̂ oQ),
we have (d6)„ = (dF) , (d(F"^oG))^. Since ll(dF)ll is bounded in_ X f^°G(x) - - - J
A n N, there is an a > 0 such that Il(dF) II < a for x € A n N. Without

loss of generality assume 8 < a. Then

ll(dG) - m = D(dF) , (d(F"''oG)) - 111„ X - — |:-l„G(x) ~ ~ ~ X ~

= ll(dF) , {(d(F-^oG)) -1) + ((dF) , -DH
~~! ~ ~ ~ ~ ~ ~T 5^?) ~

< ll(dF) , 11 »(d(F"^oG))^ - in + ll(dF) , - III
~ ~T ~~ ~ X ~ - iF-'oG(x) ~
< a a + 8 < (a+l)e, x€znN . (A.31)
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Now recall Uj^ defined by (A.26). Since is compact, it is covered by
a finite number of neighborhoods of the form N given in the above

argument. Therefore, (A.31) implies that for any > 0, there is a

5"j^ > 0 such that

•Ucl6)j^ - III < "2" (A.32)

where x € Z n Uj^.

Step 5: Completion of the Proof.

Let e : Z be the continuous function given in the statement of

Proposition 1. Recall and U|̂ defined in Step 1. Since
(Aj^^-j-Aj^) c Int Aand since Zn Uj^ = ((A|̂ ^^-A|̂ ) nu) n K, the set 21 n
is compact. Since e is continuous = inf{e(x)|x ^ znUj^} is attained
on ZnU|̂ and > 0. Choose a continuous function dg : Z in such
a way that

^ ~ / ]
+ r

k/i-^
holds. It follows from (A.30) that if ilF(x) - xll < 62(x) and if

1 \ ^kllG(x) - xll</ —^—+ 1 llF(x) - xi

~ Vl-A^ J ~~ ~
where x e znU|̂ . Hence, for any x ^ Z, if llF(x) - xH <
di(F,i.A)(y) < 6^(y) for all y ^ A, then

e(x)
llG(x) - xll < . (A.33)

Next define a continuous function 6^ • 2 in such a way that

< 6j^, Xe e n

where is as in (A.32). Then, for x € EnU|̂ , d^(F,i^)(x) <
implies

®kii(dG)x - 111 < -Yi-r~ •

Finally define 5 : Z-»-IR^ by

6(x) =min{6-j(x), 62(x), 63(x)} .
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Then, it follows from (A.33) and (A.34) that d^(F,iy^)(x) < 6{x), x^ E,
implies

di(G,iA)(x) < e(x) . °
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Appendix II

The following is a version of Whiteny Immersion Theorem [6], Although

the fact is not stated in [6] as it is stated here, it is not difficult

to prove it.

1 9ni
Lemma F. Let M be an m-dimensional C manifold and let F : M be

an arbitrary C map. Then the following hold:
1 2m 1(i) There is a C nice immersion 6 : M-»-IR which is arbitrarily C

close to F.

(ii) If F is a nice immersion, then every map G which is close to

F is a nice immersion.

In other words, the set of all nice immersions is a dense and open subset

of in the strong topology.

1 2h 1
Lemma G. Let A be a C submanifold of IR and let Z be a C submanifold

of A. Then, for any continuous function e : A-^IR , there is a continuous

function 6 : E->-IR^ with the following property : for an arbitrary em-
2h 1bedding Fq : E->-IR with d-j(FQ,i)(x) < 6(x), there is a C embedding

F : A-»-IR2b such that F|E = Fq and >iy^)(x) <e(x), where i is
defined by (21).

Proof. Let dim E = n. It follows from [5, Theorem 5.5] and its proof

that there are a neighborhood Wof E inIR and a family of (2b-n)-

dimensional affine submanifolds {M |̂x € z} such that
(i) M is in X € E,

(ii) (Fi E, X e £ ,

(In) (Mnw) n~(Mnw) = 0 if x y.
X y ~ ~

Itfollows from these properties that there is a function a : E->1R^
such that 0 < a(x) < 1 and the ball ^ {y G - yll _< a(x)}
contained in W. (Fig. 29) It is clear that there is a function

6 : [0,1] [0,1] such that e(0) = 1, 6(1) = 0, (0$)^ £ 0, t e [0,1],
and (D6)q = (D6)-j = 0. For example.

e(t) ^
t 1 I 1

e ® dSi
'1 -1.-'

e = ds

0 / 0

)w, for the given t

satisfy e'(x) < e(y) for any y ^ and define y and 6 : E-»-IR^ by
will do. Now, for the given e : E^IR^ in the statement let e' : E-»-IR^
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and

y(x) = max

(Da)^

6(x) ^
a(x)e'(x)

4y(x)~

+rrW) ( max (06).),!
te[0,l] ^

(A.35)

(A.36)

respectively. Without loss of generality one may assume that W= u B .
xs: C

Then, for any y s Wthere is a unique x S z such that y ^ 8^^.
Define F : by

F(y) ^

/Oy-xllX
y^8[-^j If y e

(A.37)

if y ^ W.

It is clear that F is well-defined and is C We will show that if

di(Fo,i)(x) < 6(x), then

d^(F,i^)(y) < e(y), y ^ A. (A.38)

In order to show this observe that at each Xq ^ E, there is a chart
(<J),U), where Uis a neighborhood of Xq in Zsuch that J(U) cir" x {0}
and i)(Bj^) c {z} x for some point z€Ir". Let <j)"^(v,w) =y and
denote the derivative of F in terms of (t> by

= ((5iEV (DbEV-
Then, it follows from (A.35) and (A.36) (t = ZfZ\ ) that

(D6)

/ /II y-xii \ ^

y-x
-(Da)j^lly-xll-||~ ~|| a(x)

(o(x))'

(Da)

A"rj"
a(x)

(x-y)

< (D6)i a(x) ^ "(5Eo)x -1»

A-13



Also

1 Y(x)(llFg(x)-xll + ll(DFg)j^-lll)

=y(x) d^(FQ,0(x) <y(x)6(x) i e'(x) <^ e(y).

I / /By-xBN \\

(De)

< (De).

y-x

lly-xU
(Fn(x)-x)t "^rrxT

lF«(x)-xll 6(x)

~ a(x)~ -

<^ e'(x) <^ e(y) .
It follows from (A.39) and (A.40) that

10"(PE^y -1

1 6(t)0Fg(x) - xO + 0(DF) - 10

- ''l^Po'i^^if^ * T * T

1T +\ ^(y) +i =(y) =I ^(y) •
This implies (A.38). Since is an embedding, F is an embedding also.

Therefore this is the desired map. n

Lemma H. Let A= A„ xIR^", An K 0 and A K. If Condition P holds,
1

then for a sufficiently small C perturbation F : Z -»• K of the inclusionn Arf 2ri

ij, : Z-»• K, there is an arbitrarily small C perturbation Fj^ : Aj^ -^IR ^
of the inclusion : Aj^ IR ^ such that

R

E= F(E) = F|̂ (A,^) X n K.

Proof. Since Condition P holds. Corollary 1 implies that Xd defined by
A , /s A , /N

(8) is injective. Therefore 7rj^ = X|̂ |2 and = XdI^^ ^re diffeomorphisms.
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Defi ne

fRO = JR ° f• ° • (A.41)

If F : 2 Kis C^ close to the inclusion : E K, then Fnn is also
2nn "''̂ 0close to the inclusion : Xr(2^) -^IR It follows from an argument

similar to that of the proof of Lemma G that there is an embedding

Fj^ : Aj^ -^-IR Rwhich is close to the inclusion : Aj^ -^JR such that

?rIIr^^^ " ErO * (A.42)
We first claim that

!r(^r' ^ Xr(K) = fR(A,^R(K)) . (A.43)
In order to prove this recall (A.37) and observe that the extension

/lly-xll\
h fRO defined in such a way that F,^(y) - y =$1-^^^(Fj^q(x)-x) .
Since Fj^q : J[r(2) ;r(2) CXf^(K), we have J ^ Xr(K). Therefore
FR(y) - y ^ Xr(K). This implies that Fj^(y) e Xp(K) if and only if
y € Xr(K) which, in turn, implies (A.43). Since Aj^ n x,^(K) = Trp(E), we
have, from (A.42) and (A.43) that

FR(AR)nxR(K) = FR(A^R(K)) = FRo;^(Z.)

= Fpo" :r(^' •
Since :r^F,^(Ar)fixr(K) ) =Fp(A|̂ )xIR^" n k, we have from (A.41) and (A.44)
that

Fp(Ap) xIr2" nK= =F„ »irp(z) =F(Z)
which is the desired equality.
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FIGURE CAPTIONS

Fig. 1. A 1-port which is not strongly structurally stable, (a) The

circuit diagram, (b) Constitutive relations of R-j and R^.

(c) Constitutive relations of the composite 1-port before and

after perturbations.

Fig. 2. A 1-port which is not strongly structurally stable, (a) Constitutive

relations of R^ and Rg. (b) Constitutive relations of the composite

1-port before and after perturbations.

Fig. 3. A 1-port which is strongly structurally stable, (a) Constitutive

relations of R-j and Rg. (b) Constitutive relations of the composite

1-port before and after perturbations.

Fig. 4. A 1-port which is structurally stable but not strongly structurally

stable; configuration spaces and constitutive relations of the

composite 1-port before and after perturbations.

Fig. 5. A 1-port which is neither structurally stable nor strongly

structurally stable; configuration spaces and constitutive relations

of the composite 1-port before and after perturbations.

Fig. 6. A 1-port which is structurally stable and strongly structurally

stable; configuration spaces and constitutive relations of the

composite 1-port before and after perturbations.

Fig. 7. Illustration of nice immersion, (a) jp violates condition

(ii) of nice immersion, (b) jp violates condition (iii) of nice

immersion, (c) jp is a nice immersion.

Fig. 8. The diffeomorsism Vj^.

Fig. 9. Adiagram illusteating the relationships among H, Hp, Xp and jp^
Fig. 10. The sets Z", R" and x l in Case 2 of the proof of Theorem 1.



Fig. 11. Constitutive relations of the composite n-port before and after

perturbations in Case 3 of the proof of Theorem 1.

Fig. 12. The set X*" = (d'"x{0}) u ({0}xD'") in Case 3 of the proof of

Theorem 1.

Fig. 13. Constitutive relations of the composite n-port before and after

perturbation in Case 4 of the proof of Theorem 1.

Fig. 14. Astrongly structurally stable 2-port where iTp is not a nice

immersion and Condition P is violated, (a) The circuit diagram,

(b) Constitutive relation of the composite 2-port.
/s 2

Fig. 15. A perturbation A, where A is described by y = x .

Fig. 16. An example illustrating the significance of Condition P.

Fig. 17. Strong structural stabilizations of the 1-port of Example 2.

(a) Strong structural stabilization by Proposition 8. (b) Strong

structural stabilization by Theorem 3.

Fig. 18. A 2-port which is strongly structurally R-stable. (a) The set

Xp(2q). (b) The set R. .

Fig. 19. Perturbed configuration space Z of S due to the perturbation

A of A.

Fig. 20. The map F.

Fig. 21. A geometric interpretation of exponential map.

Fig. 22. Tangent space T^^Z and its orthogonal complement N^Z in T^^A.

Fig. 23. Tubular map and tube, (a) A commutative diagram for tubular

map and tube, (b) A tube U for a 2-dimensional A.

Fig. 24. Relationships among P, AP, (AP)^ and (AP)2.

Fig. 25. The sets Z, U and U .
A

Fig. 26. The map G :Z ^ F(A) n K.



Fig. 27. The maps ip and J. (a) Relationship of v and ({>~^. (b) A
commutative diagram for and i/i.

Fig. 28. The sets V, Wand Z for local chart (ifTji).

Fig. 29. The ball B .
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