

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SIMULATION AND PERFORMANCE EVALUATION

OF THE RISC ARCHITECTURE

by

Y. Tamir

Memorandum No. UCB/ERL M81/17

6 April 1981

SIMULATION AND PERFORMANCE EVALUATION

OF THE RISC ARCHITECTURE

by

Yuval Tamir

Memorandum No. UCB/ERL M81/17

6 April 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

UNIVERSITY OF CALIFORNIA

College of Engineering

Department of Electrical Engineering

and Computer Sciences

Computer Science Division

Simulation and Performance Evaluation of the RISC Architecture

by

Yuval Tamir

Abstract

The Reduced Instruction Set Computer (RISC) is an attempt to achieve high

performance without resorting to complex instructions and pipelining schemes.

The success or failure of this novel architecture can only be determined by its

performance in executing "real" programs. The simulator of the RISC

architecture, described in this paper, makes possible detailed studies of the

performance of RISC even though the hardware implementation of RISC is not

complete.

March 19B1

-2-

1. Introduction

Computer architecture is not an exact science. There is no generally

accepted definition of what constitutes a "good" architecture or of what is the

best measure of the "quality" of the architecture. Some traditional measures of

the "quality" of the architecture are: performance - speed (for a given class of

applications), code size, "ease of programming" and operating system support.

When a new architecture is proposed, its novel features should be evaluated

using objective criteria. Some of the information (such as cache statistics,

number of memory references and number of machine instructions executed

for a given task) required to evaluate the new features is often obtainable only

by executing programs on hardware implementing the architecture or on a

simulator for the architecture.

The RISC architecture is an attempt to achieve high performance by a

judicious choice of a simple instruction set and a special mechanism for

supporting subroutine calls5. A C compiler1, peephole optimizer2, and

assembler6 for RISC have been developed. This paper describes a simulator for

the RISC architecture which is capable of simulating the execution of substantial

programs and producing instruction and data address traces. The execution of

a few programs is simulated and a trace analyzer, developed as part of this

project, is used to obtain dynamic opcode frequencies. These results are used

for a preliminary evaluation of the novel features of the RISC architecture.

-3-

2. The RISC Architecture

RISC is a 32 bit, register oriented machine. Instructions are all the same

length (32 bits). Only load and store instructions can reference memory and the

only addressing mode for loads and stores is indexed addressing. Details of the

architecture, including the instruction set and its justification, can be found in a

paper by Patterson and Se*quin5. The three novel features of this architecture

are: a simple instruction set with a single instruction size (32 bits), a special

mechanism for subroutine calls, and a "delayed branch" scheme that makes

possible simple instruction prefetch. These three features are evaluated in this

paper and are therefore briefly described in this section.

2.1. The Simple Instruction Set

"A general trend in computers today is to increase the complexity of

architectures commensurate with the increasing potential of implementation

technologies"5. This has led to increased design time, increased design errors

and inconsistent implementations4. The RISC project attempts to show that this

increase in complexity doesn't necessarily lead to improved performance and

that, in fact, there are performance benefits to using a simple architecture

which allows a hardware (as opposed to microprogrammed) implementation of

the control unit resulting in fast execution of each instruction.

The RISC instruction set contains only simple instructions: register to

register arithmetic, logical and shift operations, loacTs and store's with a single

addressing mode (-indexed addressing of the type register+register or

register+displacement), relative jump's and conditional relative jump's, indexed

jump's and conditional indexed jump's, call and return. Due to the fixed size of

the instructions only 13 bit immediates can be used. Each time a larger

immediate la needed, two extra instructions must be executed to "construct"

the full 32 bit constant.

-4-

All complex operations such as multiply/divide, context switch, array indexing

and bounds checking, etc. must be done in software.

2.2. Multiple Register Banks

Investigations of the use of high-level languages show that subroutine calls

(with all the related overhead of passing parameters and saving and restoring of

registers) are probably the most time consuming operation in typical

programs3. In order to avoid saving and restoring of registers, multiple banks of

registers are kept in the CPU. Anew bank of registers is allocated as a result of

a subroutine call by simply modifying a pointer. A return from a subroutine

simply changes the pointer to the previously used bank so all the registers are

restored without any memory references. In order to facilitate the passing of

parameters, the register banks overlap so that the "output" registers of the

register bank of the calling routine are the same storage elements as the

"input" registers of the register bank of the called routine. Thus, scalar

parameters can be passed without any memory references.

Since the number of register banks is limited, there is a need for a

mechanism which will handle the case when the subroutine nesting "depth" is

more than the number of register banks. This is done by having a conventional

stack which is used to store "overflowed" banks.

In the architecture being investigated, instructions may access 32

registers. Of these, 10 registers are fixed (i.e. all subroutines refer to the same

storage elements), and 22 registers are in the register bank. Six registers are

"input" registers (for parameters from the calling routine), ten are "local"

registers (for local scalars), and six are "output" registers. There are eight

register banks, one of which is always empty (for reasons beyond the scope of

this paper). When an attempt is made to allocate the eighth bank (overflow),

some of the banks are moved to memory. When a return is executed and there

-5-

are no allocated banks (underflow), a few register banks are loaded from

memory.

2.3. Delayed Jumps

The performance of RISC is increased by prefetching the next instruction

while executing the current instruction. In most existing computers, elaborate

techniques are required to prefetch the appropriate instruction after a branch

(where "branch" includes jump's, call's and return's). The RISC solution to this

problem is to always execute the instruction which follows the branch in the

code and have the branch take effect only for the instruction following the

instruction that follows the branch. This scheme is called delayed jump.

The compiler* always places a nop following the jump. The peephole

optimizers attempts to replace the nop with some useful instruction. The main
question here is whether the optimizer is successful in asufficient percentage of
the branches so that the added complexity introduced by the delayed jump is

justified.

-8-

3. The Design of aSimulator for the RISC Architecture

The simulator of the RISC architecture was developed in order to be able to
investigate the dynamic "performance" of the architecture before ahardware
implementation is complete. This simulator, written in Con aVAX running
Berkeley UNIX, reads the object file created by the assembler and "executes"
the program interpreting each instruction every time it is executed. The
register banks as well as the program counter, stack pointer and condition code
flags, can be represented by simple data structures due to the fact that the VAX

is also a 32 bit machine.

The first task in the design of the simulator was to define the type of

programs to be simulated and the level at which they will be simulated. Ideally,
the execution of an entire operating system with "typical" user processes should

be simulated. This is not practical for two reasons: (1) The ratio of simulation

time to simulated time is on the order of 100 to 1000. so simulating the

execution of an entire operating system will simply take too much time and too

many resources on the host computer (in this case the VAX). (2) An operating

system for RISC doesn't exist yet.

Even if the operating system is not simulated, the simulator must still deal

with operating system issues: Every useful program uses input/output, many

use dynamic memory allocation. The simulator developed handles this problem

by translating system calls from the program whose execution is being

simulated, to "real" UNIX system calls on the VAX. This speeds up the simulation

since the system call is executed on the VAX rather than simulated. In addition

the statistics obtained from the simulation will depend only on the program

whose execution is being simulated (whose selection is obviously completely up

to the user), and not on the way that the system routines are implemented.

The translation of simulated system calls to real system calls is done by

-7-

having the assembler assume that the entry points of recognized system calls

are at addresses where valid code can never reside ("negative" addresses

starting —1 are used). When the simulator is directed, by the object code, to

execute an instruction at a "negative" address, it assumes that a system routine

has been called and determines which system routine has been called by the

value of the negative address. Thus from the user's point of view it appears that

all system calls are done "by magic", take no (simulated) time and produce no

memory references.

Several tables for translating file descriptors and file pointers in the

simulated program to "real" file descriptors and file pointers facilitate efficient

handling of I/O system calls. An additional table is used for translating memory

references of the simulated program to real VAX addresses. These address

translations table is the same kind of table used in a virtual memory system.

Memory is divided into IK byte pages and for each page there is an entry in the

translation table which specifies its real address.

The register banks overflows and underflows, described in the previous

section, are also handled "by magic". No extra memory references are executed

and no extra instructions will appear in the statistics obtained from the

simulation. The main reasons for this "feature" are: (l) The architecture

specifies that register banks overflows and underflows cause traps.

Unfortunately, the RISC routine for handling traps in general and register

overflows and underflows in particular doesn't exist yet. (2) Handling register

banks overflows and underflows "by magic" increases simulation speed. It

should be noted that since the instructions executed in order to handle the

register banks overflows and underflows will always be the same, their effect can

easily be added to the statistics by the trace analyzer described below.

Clearly, simply simulating the execution of the program is of no interest.

-B-

The purpose of the simulation is to obtain dynamic statistics and address traces

from the execution of the program. There are two places where statistics can be

collected: (1) In the simulator itself. (2) In trace analyzers which read the

instruction and data address traces produced by the simulator. The advantage

of collecting statistics in the simulator itself is that it is faster than producing

address traces and analyzing them by special programs. The disadvantage of

collecting statistics in the simulator itself is that it clutters the simulator code

making it less readable. Furthermore, when new types of statistics are desired,

the simulator itself must be modified thereby possibly introducing bugs.

The RISC simulator collects basic dynamic statistics (namely, opcode

frequencies) and/or produces instruction and data address traces. The address

traces are compressed so that only the minimum number of bytes is stored in

the trace file or piped to the trace analyzer. Even though all addresses are 32

bits, most of them are redundant (there aren't many programs whose data

segment and text segment sizes are more than 84K bytes). A simple sign

extension scheme reduces the number of trace bytes substantially. For

instruction addresses, instead of storing the address of the instruction, the

offset from the address of the last instruction is stored. If the instruction follows

the previously executed instruction in memory, only a control byte is generated.

Thus for each instruction which was not reached by a branch and which doesn't

access memory, only one byte (the control byte) is generated.

Trace analyzers are easy to develop. As part of this project a trace analyzer

which produces opcode frequencies, opcode pair frequencies and register

reference counts was developed. This program reads the trace output from the

simulator and the object file and produces its results by relating instruction

addresses to instructions in the object flle. In addition, a trace analyzer which

produces cache statistics (hit ratios) has also been developed. This program will

-9-

be used in the future for designing a cache for RISC.

The appendix describes the details of how a given C program can be

compiled, optimized and assembled. It also describes how the resulting object

file can be used to simulate the execution of the program and obtain dynamic

statistics.

-10-

4. UnexpectedUses of the Simulator andMeasurements of its Performance

The intended use of the simulator was to evaluate the RISC architecture. As

it turned out, an equally important use of the simulator was for debugging the C

compile1 and peephole optimizer2. Once the simulator was complete and

capable of simulating the execution of large programs, it took an additional ten

days to debug the compiler and optimizer which were thought to be operational.

A few subtle bugs showed up only in relatively complex programs such as the

UNIX batch editor sed. Such bugs could not be detected without the aid of the

simulator. Thus an important use of the simulator is debugging software for the

proposed architecture. This ensures that once the hardware implementation of

RISC is complete, important software tools (such as the C compiler) will be

quickly ready for use since they can be tested and debugged in parallel with the

development of the hardware rather than after the hardware is complete.

Another application of the simulator is in obtaining information that will

help in making the optimizer generate more efficient code. In some cases, the

optimizer replaces nop's that follow jumps with the instruction at the

destination of the jump. In the case of conditional jumps there is sometimes a

choice of replacing the nop with the instruction at the destination of the jump or

the instruction that follows the nop in memory. The ideal choice is to use the

instruction that will be needed more often. In order to make this choice the

optimizer has to know whether the jump is more likely to be taken or not (i.e.

whether the conditions for the jump are usually satisfied of not). Using the

instruction address trace, produced by the simulator, and the trace analyzer, it

is possible to collect statistics that will show, for each type of conditional jump

and each direction of jump, whether the conditions for the jump are usually

satisfied or not. It is hoped that, by collecting this information for several

benchmark programs, the probable behavior of most programs can be deduced

-11-

and this information can be used to make the optimizer generate more efficient

code.

Since the simulator must interpret each instruction each time it is

executed and perform the functions of the single instruction using many

instructions on the host computer, it is clear that a large simulation time to

simulated time ratio is to be expected. For this simulator, for all the programs

whose execution was simulated, this ratio was found to be around 400:1. The

simulated time was determined using the dynamic statistics that show the

number of instructions of each type that were executed and assuming that each

load or store takes BOO nsecs and all other instructions take 400 nsecs (this

assumption is based on the VLSI implementation of RISC being developed in

Berkeley). The simulation time was determined using the time command

and/or the C language profiler. From the profiler it can be determined that

most of the simulation time (about 60%) is spent in executing the functions of

the instruction and about 20% is spent in translating RISC addresses to "real"

addresses on the VAX.

It should be noted that piping the address trace to the opcode trace

analyzer (see appendix) significantly increases the simulation time. For all the

benchmarks used, the execution time (CPU time) of the trace analyzer was

about 60% that of the simulator.

-12-

5. Evaluation of the RISC Architecture

As indicated in section 2, the three novel features of the RISC architecture

are: a simple instruction set. the multiple register bank scheme, and the

delayed jumps. Out of the many possible measures of the effectiveness of these

features, this paper will concentrate on performance (i.e. the time it takes to

perform a given task), since high performance (with a simple architecture) is

the major goal of the RISC architecture. Since the execution time is needed,

some assumptions must be made about the execution time of each instruction.

As in section 4 (and with the same justification), the assumption is that each

load or store (i.e. each memory access) takes BOO nsecs and all other

instructions take 400 nsecs.

Ideally, each one of the novel features of the RISC architecture should be

evaluated independently. For example, it would be interesting to evaluate the

effectiveness of a simple instruction set without the multiple register banks by

having a compiler, optimizer, assembler, simulator package which used the

simple instruction set but used a conventional stack to store registers and pass

parameters in a subroutine call. Unfortunately, the software development effort

required for this approach makes it impractical in our research environment.

Therefore the effectiveness of each one of the features has to be deduced from

data obtained from the execution (simulation) on the full RISC architecture.

The choice of benchmarks is a critical part of every performance study of

this kind. The benchmarks are usually chosen to reflect the expected (or

measured) workload of the system. In this case, there is no working system to

measure. A reasonable future application for RISC is as a personal computer

running UNIX. Hence the "expected load" may be chosen by considering

"typical" UNIX workloads.

As indicated in section 3, simulating the complete operating system and its

-13-

workload is not practical. Furthermore, many programs include references to

system data structures or to system programs which, in turn, refer to system

data structures. Simulating the execution of this kind of programs is also not

practical since it requires "simulating" many system data structures and/or

having to compile a long "chain" of system routines which call one another.

Hence the choice of benchmark programs is rather limited.

The first two benchmarks to be used in this study are based on a program

called "puzzle" developed by Forest Baskett. This is essentially a bin-packing

program that solves a three-dimensional puzzle. It was chosen mainly because it

has been run on many different computers and can therefore be used to

compare RISC to the state of the art in commercial computers. There are two

versions of this program: The first, called puzzle, uses subscripts to access

arrays. The second, called ppuzzle uses pointers to access arrays.

The next benchmark to be used is the UNIX recursive quicksort program

being used to sort 2800 integers, in the range (0,100000) that were generated by

UNIX's multiplicative congruential random number generator rand. This

program will be referred to as gsorf. Qsort was chosen since sorting is a

common operation which is important for most compilation and text processing

tasks which are heavily used on UNIX.

Possibly the most interesting benchmark is UNIX's batch editor sed being

used to run a few (admittedly random) commands on the manual for the make

program (this choice was also quite random). This program was chosen because

editing is one of the most important tasks in an interactive system and the type

of operations performed by the script used (searching for a pattern and

substituting another pattern) are typical of most programs that handle ASCII

text as their input.

The final benchmark is a Tower of Hanoi program being used to move

-14

18 disks. It was chosen mainly in order to demonstrate what happens with a
program which consists, almost entirely, of subroutine calls. This program will
be referred to as tower.

The basis for the discussion in this section will be the data in Table 1. All the
RISC data was obtained using the RISC simulator and opcode trace analyzer.
The VAX data on puzzle, ppuzzle and gsort was obtained by Patterson and
Se-quinS using an instruction trace program. The VAX execution time for sed and
tower were obtained using the ash time command and the Cprofiler. (Using the
profiler, the time spent in system 1/0 routines, which is not taken into account
in the RISC simulation, was subtracted from the execution time reported by

time in order to make fair comparisons with RISC). The number of data memory

references for sed and tower for the VAX has not been determined. The
programs run on the VAX were all optimized. Both optimized and unoptimized
versions of the programs were run onthe RISC simulator.

The RISC statistics presented in Table 1are only a small part of the wealth

of information produced by the simulator and trace analyzer. The
interpretation of some of the items is not obvious: ldhi is an instruction which is
only used when a constant which requires more than 13 bits is needed. The "«
instructions simulated" is the number of instructions actually simulated and it
does not include the handling of register banks overflows/underflows or the

execution of any of the routines which are "trapped" by the simulator and
executed "by magic" (see section 3). The #overflows+#underfiows reported is the
number of register banks overflows and underflows under the assumption that
whenever there is an overflow, four register banks are stored In memory and

whenever there is anunderflow, four register banks are loaded from memory.

The "estimated RISC execution time" is obtained by adding an estimate of

the time it takes to handle register banks overflows and underflows to the time

-15-

.„„*. U». ~=» »~ » °""° , „.MlU.n u. «- —

—-—~ - :;r.~——-—--- "4
„a.,.„, - —M- - — """

-18-

execute the simulated instructions. Hence, gross errors in the assumed number

of instructions needed to handle overflows/underflows multiplies/divides, would

not significantly change the total execution time of the program.

The results show that for all the benchmarks, optimized programs on RISC

ran as fast as or faster than the same programs on the VAX 11/780 (a successful

modern minicomputer). The question is which of the three novel features of the

RISC architecture is (are) mainly responsible for this impressive performance.

The effectiveness of the simple instruction set is evaluated by comparing

the execution time to that of an existing successful machine which has a

complex instruction set, namely the VAX 11/780. First, it should be noticed that

for all the benchmarks, except sed, even the unoptimized programs ran faster

on RISC than on the VAX. Unoptimized programs take advantage of the delayed

jump scheme only after call instructions (where the instruction that follows the

call saves the stack pointer). If the delayed jump scheme was not used at all, an

upper bound on the total execution time is the time it takes to execute the

unoptimized programs plus the time it takes to execute n add instructions

where n is the number of call's executed and add is the instruction which is used

to save the stack pointer. From the data, for all the benchmarks, except sed,

the upper bound on the execution time without delayed jumps still shows RISC

running faster than the VAX. Hence the delayed jump scheme is not the key to

RISC's success.

In order to evaluate the overlapping register banks scheme, the execution

time with conventional registers and call/return mechanism (using the stack)

should be determined. For example, if the number of extra cycles (where each

load/store takes two cycles and all other instructions take one cycle) for each

call return pair was 50 (saving and restoring registers, passing parameters etc.),

puzzle and ppuzzle would still be faster on RISC. The rest of the benchmarks

-17-

would be slower. Thus there are some performance advantages to a simple

instruction set even without the novel register bank scheme.

Clearly the overlapping register bank scheme is very eflective. This is
demonstrated by the superior performance for qsort and tower which use a

relatively large number ofsubroutine calls.

The delayed jump scheme, though probably not critical to the success of
RISC, is also quite eflective. This is demonstrated by the greatly reduced
number of nop's in optimized programs which result in large reductions in the
total number of instructions executed (which shows that the nop's are replaced
with useful instructions). It should be noted here that the optimizer does other
optimizations besides replacing nop's. These other optimizations result In fewer
jump's and tdhi's. The effectiveness of the delayed jump scheme is
demonstrated by the great reductions in the number of nop's ou top ol the

reductions in the number of jump's.

All three of the main features of the RISC architecture are quite effective.
The delayed jump scheme is not essential to RISC's success but it does result in
faster programs. The fact that RISC is faster for several different types of
programs (puzzle which has many loops, sed which has many memory
references and qsort and tower which have many procedure calls) is
encouraging and indicates that the RISC architecture would be agood choice for
a general purpose personal computer system.

-18-

6. Future Research

A simulator for the RISC architecture, capable of simulating the execution

of "real" programs and obtaining dynamic statistics, has been developed. This

simulator was used to demonstrate the effectiveness of the RISC architecture.

Clearly, more benchmarks should be run in order to pass final judgement of

RISC. The next step is to use the simulator to design an optimal cache for RISC.

This would require using the trace analyzer (already written) capable of

obtaining cache hit ratios. Another question which should be answered is the

effect of the number of register banks in the CPU on RISC's performance. This

can easily be studied requiring only slight modifications to the trace analyzer.

The results from the simulation of tower show that register banks overflows

and underflows may be rather time consuming. This raises the question of what

overflow/underflow policy (i.e. how many register banks to store when an

overflow occurs and how many to load when an underflow occurs) would

minimize the total time they require (this is dependent on the number of

overflows/underflows as well as the memory traffic when an overflow/underflow

occurs). The policy used to obtain the results in this paper was rather

arbitrarily chosen. Studies of this issue can easily be performed using the

simulator developed.

Operating system issues have not yet been addressed in the RISC project.

Once the operating system features in the architecture are finalized they should

be included in the simulator so that some measures on the expected

performance of UNIX on RISC could be obtained.

-19-

Acknowiedgements

This research was sponsored by the Defense Advance Research Projects

Agency (DoD), ARPA Order No. 3803, and monitored by Naval Electronic System

Command under Contract No. N00039-K-0251.

-20-

References

1. Campbell, R., A C Compiler for RISC, University of California, Berkeley, CA

(1981).

2. Campbell, R.. A Peephole Optimizer for RISC, University of California,

Berkeley. CA(1981).

3. Cohen, E. and Soifler, N., "Static and Dynamic Statistics of C," CS292R

Final Project Reports (unpublished), pp. 101-140 University of California,

(June 1980).

4. Patterson. D. A. and Ditzel. D. R., "The Case for the Reduced Instruction Set

Computer," Computer Architecture News B(8) pp. 25-33 (October 1980).

5. Patterson, D. A. and Sdquin, C. H.. "RISC I: A Reduced Instruction Set VLSI

Computer," (to be presented) Eighth Annual Symposium on Computer

Architecture, (May 1981).

8. Tamir. Y.. An Assembler for RISC, University of California, Berkeley. CA

(1981).

-21-

Appendix 1: Using the Simulator

Generating RISC Object files from CPrograms

Using the RISC compiler and optimizer, the assembly code for any given C
program can easily be obtained. If the Cprogram is in file foo.c, the assembly
code can be written to file foo.o by the command:

/lib/cpp foo.c | fcom -1 | optim >! foo.o

where /lib/cpp is the Cpreprocessor, fcom is the RISC Ccompiler and optim is

the RISC peephole optimizer.

Since a linker loader has not been written yet. all needed routines (except
system routines for I/O and dynamic memory allocation) must be compiled
together. As indicated in section 3. calls to the system routines are translated
by the assembler into calls to "negative" addresses and are later "trapped" by

the simulator.

The simulator assumes that the main entry point is address 0. Therefore

the Cmain routine must be the first routine in the Csource file.

An object file named foo.out can be generated from the assembly source

with the command:

ras —o foo.out foo.o

where ras is the RISC assembler.

-22-

Simulating the Execution of Programs

The execution of the program can be simulated, using the simulator of the

RISC architecture. The command for using the simulator is:

8im [—a "command line arguments"] [-d maximum data segment size] [-k

maximum data stack size] [—w maximum window stack size] [—si standard

input file] [-so standard output file] [-se standard error file] [-O register

file overfiow policy] [-U register file underflow policy] [—S statistics file] [

-t[d] trace file] [object file]

The specified "object file" is assumed to contain the output from the RISC

assembler. If no object file is specified, the simulator attempts to read file

ras.out, in the current directory, as the object file.

The options are:

-a. "command line arguments"

Allows command line arguments to be passed to the simulated program.

The list of arguments should be enclosed in double quotes if csh expansion

is desired and in single quotes if csh expansion is not desired.

—d n

The maximum number of bytes in the data segment is set to n Kbytes,

where n is any positive integer. The default is 120.

-k n

The maximum number of bytes in the data stack is set to n Kbytes, where n

is any positive integer. The default is 3.

n

The maximum number of bytes in the window stack (which holds overflowed

register banks) is set to n Kbytes, where n is any positive integer. The

default is 7.

-23-

-si file

The "standard input" of the simulated program is the specified file. Itfile is

"-" or if this flag is not specified, the "standard input" of the simulated

program is the "standard input" of the simulator (which is usually the

terminal).

-so file

The "standard output" of the simulated program is the specified file. If file

is "-" or if this flag is not specified, the "standard output" of the simulated

program is the "standard output" of the simulator (which is usually the

terminal).

—se file

The "standard error" of the simulated program is the specified file. If file is

"-" or if this flag is not specified, the "standard error" of the simulated

program is the "standard error" of the simulator (which is usually the

terminal).

-O n

The register file overflow "policy" is specified. When an overflow occurs,

only n occupied register banks will be left in the CPU. 8-n register banks

willbe stored in memory, n is an integer between 1 and 7. The default is 4.

-*J n

The register file underflow "policy" is specified. When an underflow occurs,

n register banks will be loaded from memory. (Obviously, if the number of

register banks in memory is less than n. only that number of banks will be

loaded), n is an integer between 1 and 7. The default is 4.

-B file

The simulator collects dynamic opcode frequencies and the number of

overflows and underflows and stores the results in the specified file at the

-24-

end of the simulation. If file is "-", the results are written to "standard

output".

file

The simulator generates an address trace and writes it into the specified

file. If the d option is specified, instruction and data address traces are

generated. Otherwise, only an instruction address trace is generated. If

file is "—", the trace is written to "standard output" for piping into a trace

analyzer. In this case, if the "standard output" of the simulated program

was not directed to some file, it is directed to /dev/tty (Le. the user's

terminal) so that it won't get mixed with the address trace.

-25-

Using the Instruction Trace Analyzer

An instruction trace analyzer, called trace, has been written, trace reads

the instruction address, trace produced by the simulator, and the object file,

produced by the assembler, and generate various dynamic statistics on the

execution of the program. The address trace is either in a file or is piped from

the simulator. The latter is usually recommanded since trace files large enough

to yield useful results are usually require millions of bytes of disk space.

The command for using trace is:

trace [-4 trace file] [-j][-p][-r][-*][-o statistics file] [object file]

The specified "object file" is assumed to contain the output from the RISC

assembler. If no object file is specified, trace attempts to read file ras.out, in the

current directory, as the object file.

The options are:

-i file

The specified file is the instruction address trace produced by the

simulator. If this argument is not specified or if file is "-". the address

trace is read from "standard input".

-j Directs trace to produce detailed statistics on conditional jumps. The

frequencies of each type of conditional jump and the number of times that

each one of these jumps was taken are displayed.

-p Directs trace to display opcode pairs frequencies,

-r Directs trace to display the number of times each register (actually, each

register number) was referenced.

-A Indicates that static statistics are desired. No trace file is read and every

instruction is assumed to be "executed" once in the order in which

instructions appear in the object file.

-26-

file

The statistics collected are written to the specified file. If this flag is not

specified or file is "-". the statistics are written to "standard output".

-27-

Appendix 2: The Implementation of the Simulator

The simulator is written in the C programming language. It consists of

about 2200 lines of code residing in eight ".c" (C procedures) files and three ".h"

(header) files. All constants and global data structures are defined in header

files. Some of these data structures correspond directly to RISC hardware

registers. One of the header files ("risen") is also used by the RISC assembler.

This file includes the definitions of the machine language and a list of "system"

subroutines which can be "trapped" by the simulator.

The simulator is implemented by thirty procedures, most of which are used

to set up the simulation environment by loading the object file, initializing data

structures and handling the "system calls" which are "trapped" by the

simulator. The most important routines are:

allocdat Does dynamic memory allocation for the simulated program. It

uses the standard UNIX routines to allocate the memory and then

sets up the translation tables used by the simulator to include

that memory in the address space of the simulated program.

comargs If there are any command line arguments for the program being

simulated, this routine decodes them and places them in the

memory space of the simulated program.

freewindow Frees the bottom window in the register file by moving its con

tents to the register window stack.

getwindow Loads the top window in the register file by loading it with the con

tents of the top window in the register window stack.

iosetup Sets up the translation tables between the simulated I/O system

and the "real" I/O system.

-28-

loadsegs Loads the object file placing the text segment and data segment in

different areas in memory. In order to speed up the simulation,

the instructions are stored in memory already partially decoded.

In addition, the data stack and register window stack are allocated

and the stack pointer is initialized.

main Decodes command line arguments and calls a sequence of rou

tines which load the object file, initialize data structures, simulate

the execution of the program and clean up before termination.

progexit Terminates execution.

r_cleanup Cleans up before termination by flushing I/O buffers and closing

files used by the simulated program.

regsetup Sets up the register file and the PC stack.

simulate Simulates the execution of the program. This routine simulates

the operations of the instructions of the program being simulated.

It "traps" calls to system routines and calls other simulator rou

tines which perform the desired operations. Simulate can also

collect statistics and generate address traces.

syscall Performs the operations of "trapped" system calls. This routine is

called with an argument which indicates which system routine was

"trapped". The operations of the "trapped" routine are performed

with the host computer (the VAX) operating on data structures of

the simulated program (as opposed to the usual mode of operation

where the data structures of the simulated program are manipu

lated only by simulated RISC instructions).

tranadd Translates a given RISC address into the "real" address (Le. the

VAX address) where the desired data is located.

The execution of the simulator begins in main which, after decoding

-29-

command line arguments, calls loadsegs, regsetup, comargs, iosetup, simulate,

r_eleanup and progexit in sequence.

The routine simulate performs most of the functions of the RISC control

unit. Instruction fetching and decoding are done by simulate. The execution of

instructions which do not reference memory, do not cause register file overflow

or underflow and do not call "system" routines, is also handled by simulate

without any procedure calls. An instruction which references memory requires

a call to tranadd An instruction which causes register file overflow requires a

call to freewindow. An instruction which causes register file underflow requires

a call to getwindow. An instruction which calls a "system" routine requires a call

to syscall.

	Copyright notice 1981
	ERL-81-17

