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ABSTRACT

The classical choice theory considers three alternative approaches

to the individual choice problem: a criterion language, a binary

relation language and a language of choice functions. These approaches

provide equivalent descriptions of choice function classes. The

framework of rational choice is strongly based on the assumption that

criteria are ordinal scales. For instance, two scalar criteria

generate the same choice functions if and only if they are equivalent

ordinal scales. Hence, the classical framework is not able to distinguish

choices based on cardinal scales.

The aim of this paper is to present a theory of choice for ratio-

scales. It turns out that fuzzy set theory provides a sufficient basis

for costructing pair-dominant mechanisms of choice and a choice

function language which give an adequate description of choice for

ratio-scales. Scalar and vector criterion choice mechanisms are

studied in detail in the paper.

Research sponsored by the National Science Foundation Grant ENG78-23143.



Introduction

The optimization problem is considered in this paper in a general

framework of best variant choice. Many problems in decision theory,

especially in economical, psychological and social applications, are

reducible to making the best choice from a set of submitted variants

with respect to some given optimality criterion. Mostly, this criterion

is a real-valued function (scalar or vector) on the universum of

variants. The main objectives of the theory in question are a study of

behavior of best variants chosen under variations of sets submitted and

establishing relations between different mechanisms of choice, rather

than developing the technique of calculating the optimum.

The classical theory of choice considers the following framework

(see, for example, [1]). Let A be a universe of variants which is

supposed to be a finite set. A function f : A -* IR , where 1R is the set

of real numbers, is said to be a scalar criterion (goal function, utility

function, scale etc.). Values of this function are considered as measure

ments in an ordinal scale. It means that two such functions f, and f2

are regarded as equivalent if (and only if) there is a monotone increasing

transformation <f> : IR -> IR such that 4>of1 = fp. Any scalar criterion

generates the following mechanism of choice

c£ =iy GX|f(y) >f(x) for all xe x} (1)

or, which equivalent,

f
Cx = {y e X|there is no xe X such that f(x) > f(y)} (2)

Elements of Cx are considered as "best variants" in a submitted set X.

According to (1) an element x e X is regarded as the "best variant" in X

if and only if the function f takes its maximum value on the set X in the

point x. Hence, elements from Cx provide an "optimization" of a
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scalar criterion f on a given set X. Two choice mechanisms (1) and

(2) have clearly a different meaning in spite of their mathematical

equivalence: mechanism (1) defines C„ as a set of dominating variants

as opposed to (2) which claims C» to be a set of non-dominated variants.

The difference between (1) and (2) becomes more evident when we

12 n
pass to vector criteria. Let f = (f ,f ,...,f ) be a n-tuple of

scalar functions on A. As usual, we define

f(x) > f(y) iff f*(x) > f^y) for all 1.

Generally speaking, (1) and (2) define different mechanisms of choice

in this case. For example, C' defined by (1) is very often an empty set

but nonvoidness of Cx for mechanism (2) can be proved. Mechanism (1) defines

the best variant x e X as an optimal one with respect to all components

f1 of f simultaneously. On the other hand, (2) is a well-known mechanism

of Pareto-optimal choice based on a vector criterion f.

It is established in classical choice theory that both scalar and

vector criteria define mechanisms of choice which are equivalent to

pair-dominant mechanisms based on binary relations on the universe A.

The scalar criterion mechanism is the same as generated by ordering

relations and different vector criterion mechanisms (1) and (2) coincide

with mechanisms based on weak orderings and quasi-transitive relations,

respectively. Moreover, it is possible to describe classes of choice

functions based on pair-dominant mechanisms by some characteristic

properties of choice functions. Indeed, let Cx be any choice function,

i.e., a mapping which assigns a subset Cx £ x to each nonempty set

X c A. The following properties are called characteristic properties
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Heritage (H): X' cXimplies Cx, D^nr.

Strict heritage (K): X' c X and X1 n CY f $ imply Cv( = Cv n X'.
a XX

Concordance (C): Cx, u x„ D4, n cx„.
Independence of rejecting the outcaset variants (0):

Cx cr CX imply Cx = Cx,.

Remark. Properties (H) and (C) are Sen's conditions a and y»

respectively, [9]. Property (K) is Arrow's condition (C4) [2], All

these properties were also studied by Chernoff [3]. We use notations

from [1] where these properties are studied in detail.

The class of choice functions which satisfy (K) is exactly the same

as that of choice functions based on orderings and the class of choice

functions fulfilling (H), (C) and (0) coincides with that based on

quasi-transitive relations.

The main purpose of this paper is to present an extension of the

framework described above on the case when criteria are measurements

in ratio-scales. Let, for example, f, and f2 be two scalar criteria

which are equivalent ordinal scales, but f, : f« f const. Then f-, and

f2 are not equivalent ratio-scales although they yield the same choice

mechanisms by (1). Therefore, the classical framework is not able to

distinguish "optimizations" in scales which are stronger then ordinal

ones and we "lose information" passing from criteria to choice mechanisms.

It turns out that there is a model based on fuzzy set theory v/hich provides

the classical correspondence between "criteria! language", "binary relation

language" and the "language of choice functions" for the ratio-scale case.

This model uses a notion of a maximizing set due to L. A. Zadeh [12],

Let X be a set and f- a positive real-valued function on X. Zadeh defines

... f
a maximizing set M by its membership function as follows
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Mf(x) =ig^y ,for xeX. (3)
X

"Intuitively, a maximizing set M ... for a function f on X is a fuzzy

f
subset of X such that the grade of membership of a point x in M

represents the degree to which f(x) approximates to sup(f)..." ([12]).
X

Note, that it is clear from (3) that two functions f-. and f2 are

equivalent ratio-scales if and only if they define the same maximizing

sets. The notion of a maximizing set permits to give proper generalizations

of choice mechanisms (1) and (2) which turn out to be equivalent to

pair-dominant mechanisms based on fuzzy binary relations of certain types.

There are seven sections in the paper.

Abstract choice functions in fuzzy set theory are introduced in

section 1.

Choice mechanisms based on criteria measured in ratio-scales and

fuzzy binary relations are defined in sections 2 and 3. Some structural

properties of fuzzy binary relations are established in section 3.

Characteristic properties of choice functions extending classical

ones are introduced in section 4.

In section 5 main theorems are proved which establish equivalence

of different approaches to choice theory in the framework developed.

A choice mechanism based on weak orderings is studied in section G.

We suppose that the reader is familiar, in general, with choice

function theory (see, for example, [8] and, especially, [1]) and fuzzy

set theory (see, for example, [4]).

The author is grateful to L. A. Zadeh for his interest to this

work.
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1. Choice functions

Let A be a set. A fuzzy set X with universe A is a mapping

X : A -* [0;1]. X is completely defined by its membership function

X(x) with domain A and range [0;1]. P(A) denotes the set of all fuzzy

sets with universe A. We say that X is a subset of Y and write

X c Y if and only if X(x) £ Y(x) for all x e A. Operations of union

and intersection for fuzzy sets are defined point-wise by operations

v = max and a = min on [0;1]. carX denotes the carrier of fuzzy set X,

i.e., a crisp subset {x e A|X(x) > 0}. We write x e X for a fuzzy set

X if x e carX, i.e. if X(x) > 0.

Definition 1.1. A choice function C is a mapping C : P(A) + P(A)

assigning a fuzzy subset C„ c x to each fuzzy set X with universe A.

The subset Cy of X is considered as the subset of "best" elements

in X. Then the value C„(x) may be regarded as a "degree of goodness"

of the element x e X.

Examples of choice functions can be found in sections 2 and 3

where some particular classes of choice functions are defined by means

of criteria! and pair-dominance choice mechanisms. These classes may

be also described in an external way by some properties of abstract

choice functions defined above. Most properties in question are

defined in Section 4 and turn out to be quite similar to the classical

ones. But there are two important properties which have no analogs in

the classical theory. They are defined below.

Separation (S): Cx = CcarX n Xfor all Xe J>(A).

This condition claims that the choice from a fuzzy set X is completely

defined by the choice from a crisp set carX. Therefore, to define
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a choice function it is sufficient to define it for nonfuzzy sets.

By (S), "fuzziness: of choice is separated into two parts: 1) fuzziness

of choice "itself", and 2) fuzziness of a set submitted.

Positiveness (P): Cx(x) >0 for all xe X.

At the first glance, this condition looks very strangely, since it

claims that every element of submitted set should be chosen (may be with

a very small degree of belongness to the subset chosen). In other words,

there are no rejected elements in any set X with respect to the choice

function C fulfilling (P). But this circumstance is quite reasonable

in the ratio-scale framework studied in the paper. In this framework,

roughly speaking, the choice between two variants x and y is determinated

by the intensity of preference over these variants. If, say, y is

rejected, it means that x is infinitely times more preferable then y.

Obviously, this possibility should be excluded in a reasonable mathematical

model what is provided by (P).

2. Criteria! choice

It is supposed further in the paper that a universe A is a finite

set.

Let f be a positive real-valued function on A, which we shall call

a scalar criterion. The following definitions are based on the idea

of a maximizing set (see Introduction).

Definition 2.1 A dominating subset of a fuzzy set X with respect

to a scalar criterion f is a fuzzy set D' with a membership function

X

Adominating subset Dx can be also regarded as a fuzzy set of

elements which are not dominated by some y s X such that

-6-



f

f(yma ) = max(f). Following this idea we consider Dvy as a fuzzy set
max y a

of those elements which are not dominated by a given y, where f is a

"cut off" function defined by

ff(x), if f(x) < f(y),
fy(x)={
y \f(y), if f(x) >f(y).

Then an undominated subset is defined as an intersection of the family
f

of fuzzy subsets {D^/}, c v:
a y <= A

V

Definition 2.2. An undominated subset of X with respect to a

f
scalar criterion f is a fuzzy set P' with a membership function

PXfM- y^x £gh aX(x) (2.2)
X

The following proposition shows that any dominating subset is

an undominated subset and vise versa in the particular case of scalar

criteria.

Proposition 2.1. Dx = Px for any scalar criterion f and for all

X e P(A).

Proof. Let us choose y e X such that f(y ) = max(f). Then
0 X

Dxf(x)=7^7*xW
and, obviously,

fy (x) fy (x)
px(x) i si^rrA X(x) =flFT AX(x) =DX(x)•

X V °
On the other hand,

PX(X) "y^X \yT AX(x) i y^X iS^T *xW=0lM•
X

since

•Vx) f(x)

X
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1 9 n
Let now f=(f,f,...,f)bea vector criterion on A with

positive real-valued scalar components f1. A Pareto-set for f is

defined as a subset of all undominated elements with respect to a

vector criterion f in the classical theory. Following the idea
fi

exposed above for scalar criteria we introduce a fuzzy set u D/ which
i A

elements are regarded to be undominated by a given element y e X with

respect to f. Then a Pareto-set can be defined as an intersection of

these sets taken for all y e X.

Definition 2.3. An undominated subset or a Pareto-set of a fuzzy

f
set X with respect to a vector criterion f is a fuzzy set P» with a

membership function

•P ( \

pj(x) =v^x Y-y-rA xw (2-3)x *GX 1max(fn)
X y

Note, that (2.2) is a particular case of (2.3) for n = 1.

Dominating and undominated subsets defined above are considered in

this paper as values of choice functions.

Definition 2.4. Let f be a (scalar or vector) criterion. Choice

functions defined by

Cx = Dx and Cx » Px (2.4)

are called choice functions based on a criterion f.

Ratio-scales are defined as scales which are unique up to dilations

in the theory of measurement (see, for example, [7]). Let us suppose

that a scalar criterion f is a ratio-scale. Then dominating subsets

defined by (2.1) are invariant under dilations. Moreover, two scalar

criteria f, and f2 are equivalent ratio-scales if and only if they

have the same dominating subsets for all X c A. In the classical

theory the same statement is true for ordinal scales: two scalar

-8-



criteria are equivalent ordinal scales if and only if they yield the

same solutions of the optimization problem. Hence, the framework

described above is an extension of the classical one on the case of

ratio-scales. From this standpoint a (fuzzy) dominating set is a

natural analog of the set of all optimal states with respect to a given

scalar criterion.

In the same way, avector criterion f=(f1,f2,...,fn) may be

considered as a multidimensional ratio-scale if each component f1 is

a ratio-scale. Then Pareto-sets defined by (2.3) are invariant under

transformation defining ratio-scales. Moreover, ratio-scales f1 can be

regarded as independent measurements in the sense that they admits

distinct dilations leaving Pareto-sets invariant.

3. Pair-dominant choice

In this section a fuzzy pair-dominant mechanism of choice based on

fuzzy binary relations is introduced and some structural properties

of fuzzy binary relations are established.

Definition 3.1. A fuzzy binary relation R on A is a fuzzy set with

the universe A x A.

In the context of the problem studied a fuzzy binary relation R is

regarded as a (weak) preference relation. It means that we consider

the value R(x,y) as a degree of certainty that an element x is preferred

to an element y.

A preference relation R on A defines a choice function as follows:

Definition 3.2. A choice function C based on a fuzzy binary R

is defined by its membership function

Cx(x) =y^x R(x,y) aX(x) (3.1)
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Note, that the value Cx defined by (3.1) is a natural generalization

of fuzzy upper bound defined in [11] for nonfuzzy sets. One can also

consider (3.1) as a translation of the following definition into a fuzzy

set theory language: "x is the best element in X with respect to R

iff x is preferred to any element y in X."

A mechanism of choice given by (3.1) is said to be a pair-dominant

mechanism,since it defines the best variants by means of "pair

comparisons."

In order to separate important classes of pair-dominant mechanisms

some properties of fuzzy binary relations are defined below.

Definition 3.3. A fuzzy binary relation R is said to be

i) reflexive if R(x,x) = ! for all x £ A;

ii) complete if R(x,y) > 0 and R(x,y) = 1 or R(y,x) = 1 for all

x,y e A. (Note, that completeness implies reflexivity.)

The most important property of binary relations for choice theory

is transivity. There are different ways to introduce this notion in

fuzzy set theory (see, for example, [11]). For needs of our study some

new concepts of transivity are introduced in this section.

Definition 3.4. A complete fuzzy binary relation R is said to be

an ordering iff it satisfies the following transivity property:

if R(x,y) = 1 and R(y,z) = 1, then R(x,z) = 1 and

R(z,x) = R(z,y) • R(y,x). (3.2)

Transivity property (3.2) is, in some sense, a "mixture" of

usual crisp transivity and so-called max-product transivity introduced

in fuzzy set theory [11]. Fuzzy orderings defined above are analogous

to the classical ones and play an important role in the framework

developed.
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In choice theory the notion of a strict preference relation

associated with a given weak preference relation is \fery useful.

The following extension of this notion is suggested in this paper: a

strict preference relation PR associated with R is defined by its

membership function as follows:

JR(x,y), if R(x,y) > R(y,x),
PR(x,y) =( (3.3)

1 0, otherwise.

Note, that P tn"s defined is a crisp binary relation if R is a complete
K

preference relation (for example, an ordering).

The following definition introduces an important notion of a

quasi-transitive preference relation.

Definition 3.5. A complete fuzzy binary relation R is said to

be a quasi-transitive relation iff it satisfies the following transivity

property:

if PR(x,y) =1and PR(y>z) =1then PR(x,z) =1and
R(z,x) < R(z,y) • R(y9x) (3.4)

Proposition 3.1. Any ordering is a quasi-transitive relation.

Proof. Let Rbe an ordering and PR(x,y) =1and PR(y,z) =1.

Then R(x,y) =1and R(y,z) =1which imply R(x,z) = 1, by (3.2). If

R(z,x) = 1, then R(z,y) = 1, by (3.2), which contradicts PR(y,z) = 1.

Hence, R(z,x) <1, i.e. PR(x,z) =1. Now (3.4) follows from (3.2K

The following structural theorems are generalizations of the famous

Szpilrajn's theorem DO] and will be used in section 5.

Theorem 3.1. Any quasi-transitive relation is a finite union of

orderings.

Proof, it suffices to prove that for any pair (a,b) there is an

ordering R such that R£ Rand R(a,b) = R(a,b) for a given quasi-

transitive relation R. Let us consider the following cases:
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1) R(a,b) = 1

Since a crisp binary relation R defined by: xR y iff R(x,y) = 1

is a crisp quasi-ordering, then, by Szpilrajn's theorem [10], there is

a numeration A= {x.j,...,xn} such that i < j implies x^R xi and

a = x., b = xk for some k < A. Let e =min{R(x,y)}. Then e > 0,

since R is a complete relation. Let us define

fit if i > j»
R(xi,xj) =< . .

lc3"\ if 1<j
Then R is complete, R c R and R(a,b) = R(a,b) (=1). To prove

transivity, let us suppose that R(x.,x.) = 1 and R(x.,x ) = 1, i.e.,
i j j ^

s < j < i. Then, obviously, R(x.,x ) = 1 and R(x ,x.) = e
— — IS si

= eJ~s • e1-J = R(x ,x.) • R(x.,x.). Hence, R is an ordering.
^ j j • .,

2) R(a,b) < 1 and b is a unique maximal element with respect

to PR. Let us define

5fx y) = R(x»b) ,

Obviously, R(a,b) = R(a,b). Let us prove that R(x,y) < R(x,y). It

is true if R(x,y) = 1. If R(x,y) < 1, then yPRx. We also have bPj^y,

since b is a unique maximal element. Then, by (3.5), R(x,b) < R(x,y)

• R(y»b), which implies R(x,y) < R(x,y).

R is obviously a complete relation. To prove transitivity, let

R(x,y) = 1 and R(y,z) = 1. Then R(x,b) > R(y,b) and R(y,b) > R(z,b)

which-immediately imply R(x,z) = 1. Further, we have

^x)=^.^)=f^^^x)=|fe3,
which imply R(z,x) = R(z,y) • R(y,x). Hence, R is an ordering.

3) R(a,b) < 1 and there is a maximal element x f b with
max

respect to PR.
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In this case the statement of the theorem is proved by induction.

For n = 2 the statement is trivial. For n > 2 let us consider the

set A' = A \ {xm.}. Then the restriction of R on the set A' is a
max

quasi-transitive relation R'. By the induction hypothesis, there is

an ordering R' on A* such that R' CR and R'(a,b) = R'(a,b). Let us

define R on A by

R(x,y) = R'(x.y) if x,y e A\

R(xmax,x) = 1 for all xe A, and

R(x'xmay) = -—" for a11 xe A1,
^ R'(xmin>x> _

where 0<e< min{R(x,x )• R'(xml-n»x)} and x . is some minimal

element in A' with respect to PRI. We have

R(a,b) = R'(a,b) = R*(a,b) = R(a,b),

since a, be A1. Further, R(x,y) <_ R(x,y) for x,y e A' and

R(xmav>x) = R(xm;w,x) = 1, since xmav is a maximal element with
max max max

respect to PR. We also have

R(x,x , )•R'(x . ,x)

^'W =^—S :K-^ °mi— =R(x'xmax)R'tx^'n'X R'(Xm,n,x) ^
v min x min

Hence, RCR, R is a complete relation, since so is R'.

Let us prove now that R has transivity property (3.2). Suppose

that R(x,y) = 1 and R(y,z) = 1 for distinct x,y,z e A. If x,y,z e A',

then (3.2) is true by induction hypothesis. Since R(x,x ) < 1 for
max

all x e A', then {x9y9z} £ A' only if x = xm . Then R(xm .z) = 1 and
max max

R(z>x ) = - e-R'(z,y)
max

R'<*prin'z> R'(xmin.z)-R'(z.y)

= R'(z,y) •-—g R(z,y) •R(y,x_,Y),
R'(xmin,y)
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since R' is an ordering and x . is a minimal element with respect to
3 min r

PRI. It is a trivial case when some of elements x.,y9z are equal. °

It is much easier to prove the converse theorem.

Theorem 3.2. Any finite union of orderings is a quasi-transitive

relation.

Proof. Let R = UR where each R. is an ordering. In order to
i

prove (3.4), note that aPRb if and only if there is j such that

R.(a,b) = 1 and R^bja) < 1 for all i, or, by completeness of R., if

and only if R.(a,b) = 1 and R..(b,a) < 1 for all i. Then, obviously,

xPj^y and yPRz imply xPRz and

R(z,y) • R(y,x) = [VR.-(z,y)] . [VlUy.x)]
i i

> V [R-(z,y) •(R.(y,x)] = VR.(z,x) = R(z,x),
i i

since R. are orderings. Hence, R is a quasi-transitive relation. n

Orderings and quasi-transitive relations play a distinguished role

in the choice theory. It will be proved in section 5 that choice

functions (3.1) based on these relations coincide with choice functions

based on scalar and vector criteria, respectively. Hence, mechanisms

of choice based on maximizing sets provide the same choice as fuzzy

pair-dominant mechanisms - the result which is well-known in the classical

choice theory.

4. Characteristic properties of choice functions

Two general properties of choice functions - separation and

positiveness - were already introduced in section 1. In the rest of

the paper only choice functions fulfilling these properties are

considered.

In this section three additional characteristic properties are

defined which are extensions of classical rationality properties.
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These properties are called characteristic because their conjunctions

separate important classes of choice functions (see section 5).

In order to introduce characteristic properties, we need the

following notion. For any nonempty fuzzy set X a normalizator of X

is a fuzzy set N(X) with a membership function

(N(X))(x) «Jjf
where h(X) = max{X(x)} is a height of a set X.

Now, the characteristic properties are defined as follows:

Heritage (H): if X' c X are crisp sets, then

cx. 2N(cxnx').

Strict heritage (K): if X' c X are crisp sets, then

Cx, = N(Cxnx').

Concordance (C): CX'ux" - CX'nCX"*

Obviously, these conditions are of the same nature as classical

ones described in the Introduction. Therefore, we assign them the

same names.

Since the fulfillment of (P) is assumed in the paper, we have no

rejected elements in any nonempty submitted set and a fuzzy form of the

condition (0) (see Introduction) is not involved in the framework

developed.

5. Main theorems

In this section two theorems are proved which establish

equivalence of criterion language, binary relation language and choice

function language in the framework of scalar and vector optimization.

Theorem 5.1. Let C be a choice function. The following statements

are equivalent:
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i) C is based on some scalar criterion f;

ii) C is based on some ordering R ;

iii) C fulfills properties (S), (P) and (K).

Proof, i) -*• ii).
f

Let f be a positive function and Cw = Dx. Let us define a

fuzzy binary relation R by

R(x,y) "Jjjj-A 1. (5.1)
Then

cj(x) =y/>x R(x,y) aX(x) =y^x fgj- aX(x)

=iS#rAXw =Dxfw =cxW>
X

i.e. a choice function based on R coincides with C. Let us prove

that R is an ordering. It is clear from (5.1) that R is complete.

Let us suppose that R(x,y) = 1 and R(y,z) = 1. Then, by (5.1),

f(x) >_ f(y) _> f(z) which imply R(x,z) = 1 and

R(y,x) -$$ ,R(z.y) -fg} .R(z,x) -Jjfj- •
Hence, R(z,x) = R(z,y) • R(y,x) and R is an ordering,

ii) -*• iii).
D

Let R be an ordering and C = C , i.e.

Cx(x) =CR(x) =y^x R(x,y) aX(x).
First we prove that

where xma is a maximal element in A with respect to PD, i.e.
max k

R(x ,x) = 1 for all x € A. Two cases are considered:
v max '
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1) R(x,y) = 1. Since R(xmax,x) = 1, we have, by (3.2),

R(y'xmax} = R(y'x) ' R(x'xmax)' Hence' R^'xmax) 1 R(x'xmax) and
the right side of (5.2) is 1.

2) R(x,y) < 1. Then R(y,x) = 1, which together with

R(xmax'y) =]imPly R(x'xmax} =R^ ' ^'W* Then R(x>xmax}
< R(y»xmav) and (5.2) is true in this case too.
— max

Let us prove now that C fulfills (K). We have, by (5.2)

CR(x) =^ R(x>xmax} ,>
Xw yex max{R(x,x),R(y,x J7 X(xj

max' w max'

Further,

R(x'xmax}
max{R(x,x J7 AX(x) <5'3)x max'

R(x,x )
v max'

maxlR(x,xraax)}
(NtcJ nX'))(x) = X K(x>x ) aX'(x)

max max'
X' ,aaxx{R(x'W}

R(x,x ) D
_ max v i/ \ p** / \
" max{R(x,x )} A x W = cx,lx)'

yi max

by (5.3). Hence, (H) holds for CR.

It is easy to see that CR also fulfills (S) and (P).
iii) 1- i).

Let us define f(x) = CA(x). Then f is positive, by (P), and

DxfM =iSft* xw •J^qm^M
X X M

= (N(CA ncarX))(x) aX(x) =CcarX(x) a X(x) =Cx(x),

by (K) and (S). The proof is over. i
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Remark. The theorem proved is an extension of the famous Arrow's

result [2, theorems 2 and 3].

Theorem 5.2. Let C be a choice function. The following statements

are equivalent:

i) C is based on some vector criterion f;

ii) C is based on some quasi-transitive relation R;

iii) C fulfills properties (S), (P), (H) and (C).

Proof, i «-• ii).

Let C is based on a vector criterion f, i.e.

•F I \

Cv(x) = Pv(x) = <X Y £- a X(x) (5 4)V ' Xv ' yGX l max/4:i/vU VA; ^°*H'
xex1Tyw'

We have, for y e X,

SlCfJtx) f\y)'f\y) (5-5)
Hence, by (5.1) and part i) -* ii) of the proof of theorem 5.1,

Km
R.(x,y) = —*—.

xeXtTyw
defines an ordering. By theorem 3.2, R = ur. is a quasi-transitive

relation. It is obvious from (5.4) that C= CR.

Conversely, let C = C for some quasi-transitive relation R,

i.e.

Cx(x) =CR(x) =̂ R(x,y) aX(x). (5.6)
By theorem 3.1,

m

R(x,y) = V R,(x,y)
i=l n

-18-



where R. are orderings. Let x\ayf be a maximal element in A with
1 max

respect to P and f\x) = Mx,x"Lv). It follows from (5.2), that
#k_* i max * 7

R1-(x,y) =V2^- a1. Hence, by (5.5) and (5.6),

zv m f^x) .
cX(x) =vex V iSST^i AXW =P*WX y€X .=1 «j{fi(x)} X

where f= (f1,f2,...,fm).

ii) «->• iii).

Let C is based on a quasi-transitive relation R (see 5.6)). Then

(S) and (P) trivially hold. Let us prove (H). It is sufficient to

prove that

y£x R(x.y)
roxy{/sR(x.y)}lA' R(x'y) (5'7>
xex1 yex

for all xe X1, where X' c x are crisp sets. Let yQ e X be an element

such that R(x,yQ) < R(x,y) for all yex. Then (5.7) is equivalent to

R(xsy0)
maxxGX,{R(x,y0)}

< R(x,z) for any z e X'. (5.8)

Obviously, it suffices to prove that

R(x,yQ) < R(x,z) • R(z,yQ) for any ze X'. (5.9)

Note, that (5.8) is true if R(x,z) = 1 and we may suppose that R(x,y) < 1

If R(z>y0) = 1» then (5.9) is true, by choice of yQ. Let R(z,yQ) < 1.

Then R(yQ,z) = 1 and R(z,x) = 1 imply (5.9), by (3.4).

In order to prove (C), let X = X' u X". Then

CR,(x) aCR,(x) =[y^x,R(x,y) aX'(x)] a[y^x„R(x,y) aX"(x)]:

=y^x R(x,y) aX'(x) aX"(x) <y^x R(x,y) aX(x) =CR(x),

I.e. L»y ^ v ' '' ^v" *
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Conversely, let C fulfill (S), (P), (H) and (C). We define a

fuzzy binary relation R by

R(x,y) =C{x>y}(x).

Note, first of all, that (H) implies Cx = N(Cy) if we take X' = X.

Hence, h(Cx) = 1 for a nonempty X, i.e., there is xe x such that

Cx(x) =1. It is obvious now that R is a complete relation.

In order to prove transivity property (3.4), let us suppose that

PR(x,y) =1and PR(y,z) = 1, i.e. that R(y,x) <1and R(z,y) < 1.

Then {x,y} c XQ = {x,y,z} implies, by (H),

Cx (y)

R(y'x) =C{x,y} (y) ±max Cv (x),Cv (y)}
X0 ' X0

We have CY (y) < CY (x), since R(y,x) < 1. In the same way,
A0 A0

R(z,y) < 1 implies C„ (z) < CY (y). Further, by (H),
A0 ~ A0

Cx (x) .

R(x'z) =C{x,z} (x) -max{CY (x),Cy (z)}
A0 A0

which implies R(x,z) = 1, since CY (x) > CY (z).
A0 A0

Note, that h(CY ) = 1 implies CY (x) = 1 in this case.
A0 A0

Let us consider now a representation XQ = {x,z} u {y,z}. Then, by

(C),

cx M >c{XsZ}(z) AC{y,z}(z) =R(z'x) AR(z'y)

and, by (H),

But, in the same way,

A0 A0

cx (y)
R(y,x) =C{Xjy}(y)>^=CXo(y)

-20-



which together with (5.10) yield

R(z>y) • R(y,x) > R(z,x) a R(z,y).

Since R(z,y) _> R(z,y) • R(y,x), we have

R(z,x) < R(z,y) • R(y,x) < 1

which proves (3.5). Hence, R is a quasi-transitive relation.

Let us prove now that CR =C. If {x,y} c X, where Xis any
crisp subset of A, then, by (H),

Cx(x)
R(x,y) =C{Xjy}(x) >max{Cx(x)scx(y)}

which implies, for x e x,

R _ /\ /\ CX^ CX^CX(x) =yex R(x'y) -yGXmax{Cx(x),Cx(y)} =Rc^" =CX(x)*
On the other hand, X = u {x,y} if x e X, which implies, by (C),

y€X

CXW ly^X C{x,y}W =y^X R(x^ =CXRW'
Hence, Cx = Cx for all crisp X and it is true for all fuzzy sets X,

by (S). The proof is over. n

6. Consistent optimization and weak orderings

Let f = (f ,f ,...,f ) be a vector criterion on A with positive

real-valued scalar components f1. We define a dominating subset of a

given fuzzy set Xwith respect to fas a fuzzy set Dx with amembership

function

Dxf(x>=?ii£$7**w-
A

The set Dx can be regarded as a fuzzy subset of elements of X

which dominate all elements of X with respect to all functions f1
f f1 f1simultaneously. Obviously, Dx =n D' where D' are dominating

l
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subsets for scalar criteria f1, i.e. Dx may be also considered as

a "consistent" maximizing subset of X with respect to a vector

criterion f. Note, that in the classical theory such a choice usually

appears to be empty.

Generally speaking, the statement of Proposition 2.1 is false

for vector criteria. It may be proved only that Dx cp£ for any fand X.
A choice function defined by Cx = Dl for a vector criterion is

said to be a choice function based on consistent optimization. It turns

out that such choice functions have a representation by a pair-dominant

choice mechanism based on fuzzy weak orderings.

Definition 6.1. A reflexive fuzzy binary relation R is a weak

ordering iff it has a max-product transivity property ([11]):

R(x,y) • R(y,z) < R(x,z) (6.1)

for all x,y,z e A.

Proposition 6.1. Any ordering is a weak ordering.

Proof. Since a complete relation is reflexive, it is sufficient

to prove that (3.2) implies (6.1). Let R be an ordering. If R(x,z) = 1,

then (6.1) is trivial. Let R(x,z) < 1, i.e., R(z,x) =1. If R(x,y) = 1,

then R(z,y) = 1 and R(y,x) • R(x,z) = R(y,z), by (3.2), and

R(x,y) • R(y,z) = R(y,z) < R(x,z).

Let R(x,y) < 1, i.e. R(y,x) =1. If R(y,z) = 1, then R(x,y) = R(x,z)

• R(z,y), by (3.2), which implies

R(x,y) • R(y,z) = R(x,y) < R(x,z).

If R(z,y) = 1, then R(x,y) • R(y,z) = R(x,z). °
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The following theorem shows that choice functions based on

consistent optimization and on weak orderings yield the same choice.

Theorem 6.1. Let C be a choice function. The following statements

are equivalent:

i) C is based on consistent optimization,

ii) C is based on some weak ordering R.

Proof, i) -*- ii).

Let f=(f ,f ,...,f )be avector criterion and Cx =D^. We define

R(x.y)-? Oxl-1
1 max{f1(x),f1(y)}

Then

DX(x) imax Jv AX(x) =t yGX rJ,\*i,\xy (f ) Ii max{f (x),f (x)}_
a X(x)

yex

r~

A illxl
L1 max{f1(x),f1(y)}_ AXM =y^x R(x'y) AX(x) =CX(x)

.R
i.e. C = C for R defined above.

In order to prove that R is a weak ordering the following lemma

is established.

Lemma 6.1. Let a,3»Y be positive numbers. Then

a 3 < a
max{a,3> max{3sY} - max{a,y} *

Proof. Let a < 8. Then (6.2) is true, since max{3,y} >. max{a,y}.

Let a > £. Then (6.2) is equivalent to

8 < a
max{3,Y> - max{a,y} '

If Y f. ot, then (6.3) is true, since 3 < max{B5Y>- If y > a then

(6.3) is true, since a > 8.

-23-
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have

We return to the proof of the theorem. By the previous lemma we

R(x,y) • R(y,z) =
r n

A f1(x)
J=l maxCf^xJ.f^yJL

rM

r n

A llill
1=1 maxCf^yJ.f^z)}

n

1 A
i=l

m_
max{fq (x) ,f1 (y)} max{f1 (y) ,f1 (z)}_

n fi / \

< A V212-"! =R(x'z)«1=1 max{f1(x),f1(y)}

Hence, R has a max-product transivity property. R is a weak ordering,

since it is obviously a reflexive relation.

Conversely, let R be a weak ordering and A = {x,,x2,...,x } any

numeration of A. Let us define fn(x) = R(x,x.). Then

R(x,x.)

R(x'y) -maxlRlx.x^.Rty.x^}
by max-product transivity of R. Hence,

>R^ = y\
y

A f1(x)Cx(x) - '\ R(x,y) a x(x) < '\
yfcX max^xhf^y)}

a X(x)

x ^T }

.R Ri.e., CY c DY for all i, which implies CY c dy. On the other hand,
'X X

n R(x,x.)n # l / x

JzBt AXW - ADx(x) = A
1=1 "x (f') ,_-, max{R(x,x.)}i-i x i

a X(x)

.R,< A R(x,x.) a X(x) = C?(x).
1=1 1 X

Hence, CR =D^. °

7. Discussion

In this section choice mechanisms introduced and some related

topics are discussed.
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1. Choice mechanisms based on dominating sets have the following

interpretation which, possibly, makes the basic idea more clear. In

some particular problems not optimal states are studied but so-called

"quasi-optimal" or "e-optimal" states. Let, for example, f be a scalar

criterion, e > 0 - some real number and X - a fixed set submitted. We

denote f = max(f). A state x e X is said to be e-optimal iff
max Y

|f(x)-fmax| £ e. The set C^ of all e-optimal states in Xmay be

regarded as the set of "best states" in this case. Then Cx'£ is a

value of some choice function. If f is a ratio-scale, it is more natural

to consider "relative quasi-optimal" states. Namely, let a e (0;1]

("decisive level"). The state x e X is said to be a-optimal (in a

relative sense) iff f(x) > a • f . Then
' — max

c['a ={x6X|f(x) >a- f }
max'

again defines achoice function. (Note, that Cx =cl,e, if

a = 1 - -e .) The choice of decisive level seems to be a subjective
max

one: why should be chosen, for example, a =.9 instead of a = .91? In

a general theory it is better to study the ensemble {Cx } taken for

all a e (0;1], But this idea leads exactly to the notion of a fuzzy

set defined by means of level-sets in fuzzy set theory (see [4] or [11]).

Hence, fuzzy set theory provides a natural basis for simultaneous study

of quasi-optimal states taken for various levels.

2. Basic notions of dominating and undominated subsets introduced

in section 2 may be considered as "translations" of classical definitions

into the fuzzy set theory language. It is well-known (see, for example,

[4]) that basic set-theoretic operations in fuzzy set theory are models

of logical connectives and quantifiers:
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corresponds to the connective "and",

// "or",

x corresponds to the quantifier "for all x",

V
x // "for some x"

If the notion of a maximizing set is chosen as a basic one, then all

definitions in section 2 are translations of classical ones. Table 7.1

represents most important examples of these translations.

3. The interpretation of value R(x,y) for a given ordering R

becomes more evident if we consider a standard decomposition of R into

strict preference and indifference relations. This decomposition plays

an important role in the classical theory. We have already defined a

strict preference PR by

fR(x,y), if R(x,y) >R(y,x),
PR(x,y) ={

10, otherwise.

An indifference relation IR is defined by

IR(x,y) = R(x,y) a R(y,x).

It is easy to verify that PR is a crisp quasi-series and PR u IR = R

for any ordering R. One may say that all fuzziness of an ordering R is

concentrated in an indifference relation IR. Indifference relations

derived from orderings have many attractive properties which make it

possible to consider them as equivalence relations and to define a

proper notion of classes (see [6]). Then any ordering R may be

regarded as a crisp linear ordering over the set of fuzzy classes of

indifference relation IR.

4. From the fuzzy set theory point of view all preference

relations introduced in section 3 are not "very fuzzy" ones. Our

definitions are more restrictive than usual definitions in fuzzy set
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theory (cf. [4], [11]) (but provide a complete framework described in

the paper). On the other hand, formula (3.1) defines a choice function

for arbitrary fuzzy binary relation R. It turns out that certain

pair-dominant choice mechanisms defined by (3.1) generate classes of

choice functions which may be described by means of characteristic

properties in the same way as it was done in sections 4 and 5. This

approach, using standard fuzzy binary relations,is developed in [5].

Naturally, characteristic properties in [5] are different from those

introduced in this paper.

5. The notion of a maximizing set may be also introduced in case

of interval scales [4]. Then dominating and undominated subsets

define choice functions in the same way as it was done for ratio-scales

in this paper. It is easy to show that there is no pair-dominant mechanism

which generates the same choice functions as based on maximizing sets

for interval scales. But there is a mechanism of choice based on fuzzy

ternary relations which provides a similar framework of choice in this

case. The author intends to study this problem in a future publication.
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Classical notions Translations

A set of maximal elements in X
with respect to f.

X

A subset of elements in X which
are not dominated by a given
y e X, or, equivalently, a sub
set of maximal elements in X
with respect to fy.

fv fVWDyy(x) = y,* x a X(x)X v ' max(fy) v '
X

A subset of undominated elements
in X, or, equivalently, a subset
of elements in X which are not
dominated by y for all ySX.

PXf<x> =y^X D?W

X

A subset of elements in X which are
not dominated by a given y e X, or,
equivalently, a subset of elements
in X.which are maximal with respect
to fJ for some i.

YA*)

A Pareto set subset in X, i.e., a
subset of elements which are not
dominated by y for all y£X.

pxW-AYDxyoo

=/^yy fy(x{ ax(x)
ySX i max/.*! \ v '

X KJy}

Table 7.1
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