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Abstract

Using a novel approach, the amplitude and frequency of nearly sinusoidal

nonlinear oscillators can be calculated by solving two algebraic nonlinear

equations. These determining equations can be generated to within any desired

accuracy using a recursive algorithm based on Vol terra series.

Our method inherits many desirable features of the harmonic balance method,

the describing function method, and the averaging method. Our technique is

analogous to, but is much simpler than, the classic approach due to Krylov,

Bogoliubov and Mitropolsky. Unlike conventional techniques,however, our approach

imposes no severe restriction on either the degree of nonlinearity, or the

amplitude of oscillation. Moreover, the accuracy of the solution can be determined

by a constructive algorithm.
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1. INTRODUCTION

The problem of determining the amplitude A and frequency w of weakly nonlinear

(nearly sinusoidal) oscillators dates back at least to van der Pol [1]. Since

then, several methods have been developed: they include the describing function

method [2], the harmonic balance method [3], and the averaging method due to

Krylov, Bogoliubov, and Mitropolsky [4-5].

The describing function and harmonic balance methods are widely used in design

problems when the oscillator can be modeled by a single-loop feedback system as

shown in Fig. 1. Here, G(s) denotes the transfer function of a single-input

single-output linear system made of linear time-invariant elements (e.g., resistors,

inductors, capacitors, transmission lines, etc.), and f(«) denotes a memoryless

(possibly hysteretic) scalar nonlinear function. Since these methods neglect all

harmonics of the fundamental frequency u), they are valid only when G(s) behaves

essentially like a "low-pass" filter. Although rigorous mathematical theorems are

available for checking the validity of these methods, they are often impractical

to apply. Since these methods are known to predict, incorrectly, oscillations in

systems where there are none [6], the answers should be carefully checked in

doubtful situations.

The averaging method is applicable for systems described by

x = ef(x,t), x e ]Rn

where e is a small parameter. In the case of oscillators, this method can, in

principle, allow one to calculate A and w to have any desired accuracy by choosing

a suitable "order" of determining equations [4]. However, these equations become

extremely complex beyond the second order. In practice, this method is usually

chosen only when n = 2.

More recently, the Hopf bifuraction theorem [7] offers yet another tool for

predicting the frequency "w" of oscillation, provided the amplitude "A" is

sufficiently small. Unfortunately, no simple guideline is available for determining

how small is "small".

Our objective in this paper is to develop an entirely new approach which

inherits many desirable features of the preceding methods. Some interesting

properties of this new approach are:

+

Although these methods can be generalized for multi-loop feedback systems, they
are often impractical.
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(1) Like the harmonic balance and describing function methods, our approach is
4.

formulated in terms of a single-loop nonlinear feedback system (Fig. 2(a)).

Our only assumption is that the associated open-loop system F (Fig. 2(b)) has a
_ _ §

convergent Vol terra series representation [8J:

00 .00 «00 fOO fj

y(t) =1 ••• nn(vT2',"'Tn) .n "(t-V^i (1J)
f\~ JJ —00^ —00 J —oo i=l

Unlike the harmonic balance and describing function methods,ours includes

significant effects contributed by the higher harmonics.

(2) Like the averaging method, our approach reduces to solving a pair of "algebraic"

determining equations. In our case, the equations assume the form

(1.2a)

(1.2b)

Re dN(A,o)) =0

Im dN(A,w) =0

where dN(A,co) is an algebraic function of A and w involving complex numbers,
and where Re(«) and Im(«) denote the real and imaginary part respectively. Like

the averaging method, our approach is capable, in principle, of finding A and to

to any desired accuracy.

Unlike the averaging method, our method is applicable to nth-order

differential equations with n > 2 and does not require the presence of a (often

artificial) "small parmeter" e.

(3) Unlike the Hopf bifurcation theorem, which is a "local" result, ours is

global in the sense that "A" need not be small.

In order to make this paper accessible to the non-specialist, we present

first the determining equations (for calculating amplitude and frequency) in

Section 2 using a "handbook" style. For oscillations which can be modeled by the

special feedback structure in Fig. 1, the first-order determining equations are

extremely simple. In fact, the reader need not even have to be familiar with

Vol terra series. We then illustrate several practical examples in Section 3.

From the circuit design point of view, a feedback system formulation is highly
desirable because most electronic oscillators are in fact designed as feedback
systems having a unity closed loop gain [9].

Readers unfamiliar with Volterra series needs only to assume (1.1) as a
definition and refer to Section 4 for a straightforward description of the few
additional details needed to apply our new approach.
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For more general systems, only the rudiments of Volterra series are needed

in deriving the determining equations. Whatever background that is needed is

given in Section 4 and Appendix A.

Finally, the mathematical justification of our approach is given in Section 5

along with the complete proof of all theorems.

2. THE AMPLITUDE-FREQUENCY DETERMINING EQUATION

The main result of this paper is to develop a systematic method for generating

the Nth-order algebraic determining equation (1.2) so that its solution gives the

amplitude A and frequency m of the sinusoidal oscillation to any desired accuracy.

In this section,we will present the determining equation for various cases

without proof so that the user can apply it directly without being distracted by

the rather involved mathematical justification to be given in Section 5.

A. First-Order Determining Equation

The first-order determining equation is given by:

d^A,^) AH-, (ja>) +«-| (joj)A^ -1=0 (2.1)

where H-|(ju)) and Oj (j<o) are functions of w only whose explicit form will be
given below.

Equating the real and imaginary parts of both sides of (2-1) to zero, we

obtain the following two equivalent equations:

Re d^A.w) A ReCH^ju) +^(jwjA -1} =0

Im d^A.w) AIntfH^jco) +^(jwjA2 -1} =0
(2.1a)

(2.1b)

Solving (2.1b) for A2 and substituting the result into (2.1a), we obtain
the following explicit "frequency" determining equation:

d0((o) A Re H-j(jai) -
Im H-j (jw)
Im Q-j(jw). Re Oj (jto) -1=0 (2.2)

Since (2.2) is a scalar equation in w, it can easily be solved either graphically,

or by standard numerical techniques [11]. For each solution go = a).j of (2.2), we
can calculate the corresponding amplitude A^ by direct substitution into (2.1a)
or (2.1b).

Let us now define H-j(jo)) and ft-i(ju)):

-4-



A.l. Special Case: Feedback Loop in Fig. 1 ff(0)=0)

Let us assume that the nonlinear function in the single-loop feedback system
f

of Fig. 1 is represented by a polynomial

f(u) =a-,u +a2u2 +a3u3 +••• (2.3)

In this case, we have simply:

^(jw) = a1 G(jo>) (2.4)

,f2a2G(j(o)G(j2u)) 4a2G(0)G(j<u) ^
^^ =j[ f-aiG(j2a>) + l-a^O) +3a3 6««J (2-5)

A.2. General Case: Feedback Loop in Fig. 2

In this case, we assume the open-loop system F in Fig. 2(b) is described by

a convergent Vol terra series (1.1). If we apply an input u(t) consisting of a

sum of exponentials, then it is shown in Section 4 that the response y(t) in

Fig. 2(b) can be calculated in the frequency domain in terms of higher-order

transfer functions H-j(s,), H2(s-|,s2), H3(s-j ,s2,s3), •••, etc. These transfer
functions are completely analogous to the familiar transfer functions from Linear

System Theory. They can be generated using a recursive algorithm described in

Appendix A which consists of solving a succession of Linear Systems. Here, we

will assume that these higher-order transfer functions have been found and simply

present the determining equations in terms of H-j(s-j), H2(s-j,s2), H3(s-j,s2>s3),««*,
etc. In particular, we have:

H^jco) AH^)

&|(jw) Â {H3(jco,ja),-j(o) +H3(ja),-ju>,ju)) +H3(-jco,jto,ja))} (2.7)

where

s^jw

H2(jco,ja>) H2(jw,-jaj)
H3(ja>,ju),-jw) AH2(j2(o,-jw) 1_H i*2u) +^WiO) 1,H (Q)— +H3(j<o,ju>,-j(o)

1 ] (2.8a)
H2(-jco,jco) H2(ju),jio)

H3(-joj,jo),ja)) AH2(0,jw) 1-H (Q)— +H2(-ja),j2aj) 1-H ^2^) +H3(-jw,joj,joj)

fIf f(«) is not a polynomial, replace it by aTaylor series expansion about its
dc operating point, and retain only the first 3 terms.
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H2(ja),-jio) H2(-jaj,joi)
W3(jto,-jw,ja)) AH2(0,jco) ^ /q\— + H2(j(o,0) ^ ;Q\— + H3(j(o,-jaj,j(o)

(2.8c)

Observe that H-j(joo) and flj(ja>) can be written down as soon as H-t (s-j),
H2(s-j,s2), and H3(s-j,s2,s3) of F are known.

Straightforward methods for deriving these higher-order transfer functions,

are given in [10], and in Appendix A. For example, applying [10] to the system

in Fig. 1, we obtain

H^) = 9] G(Sl) (2.9a)

H2(s-j,s2) = a2 G(s-j+s2) (2.9b)

H3(s1,s2,s3) = a3 G(s-,+s2+s3) (2.9c)

Substituting (2.9) into (2.6)-(2.8) and simplifying, we obtain (2.4) and (2.5).

B. Second-Order Determining Equation

The second-order determining equation is given by:

d2(A,co) AH1 (jto) +^(jwjA2 +^2(joj)A4 -1=0

or equivalently:

Re d2(A,a)) ARe{H1(ja>) +^ (jco)A^ +ft2(jco)A -1} =0
Im d2(A,oi) AWH^jw) +«1(j(o)A2 +«2(j(o)A4 -1} =0

(2.10)

(2.10a)

(2.10b)

Either (2.10a) or (2.10b) can be solved for A2 and substituted into the other
to obtain a single equation in terms of only to. For example, if Im fl2(jto) f 0.
then the result is:

d0(w) ARe H-jUo)) +Re Q1(j(o)A2(co) +Re a2(j<o)[A2(u))]2 -1=0
where

9 • -Im fy(jw) +/[Im ^(joj)]2-4[Im Q?(jco)][Im H,(joj)]
A M ± [ Olm O H \ * != 21m Q2(jo))

Let us now define H-j(j(o), ^(jco), and Q2(jco).

B.l. Special Case: Feedback Loop in Fig. 1 (f(u) =-f(-u))

Let us assume that the nonlinear function is represented by an "odd"

polynomial

3 5f(u) = a-jU + a3u + a5u + •••
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In this case, we have simply:

^(jw) =a1 G(j(o) (2.13)

^(jw) =|a3 G(jo)) (2.14)
, r3a2G(ja))G(j3o)) ">i •

°2««> =Tel l-a^tjSco) +™&MJ (2J5>
B.2. General Case: Feedback Loop in Fig. 2

In this case, H^jw) and O,(jco) are given by (2.6) and (2.7), respectively,
whereas

ft2(jw) A^g {K5(jo),jaj,jca,-jco,-ja)) + H5(ja>,ja),-j(o,ju>,-j(o)

+ Hg(jo),j(o,-jco,-jw,jco) + Hg(ja),-ja3,jaj,jaj,-jaj)

+ H5(jaj,-jca,jo),-jaj,ja)) + H5(jto,-ja),-ja),j(o,ja})

+ H5(-J£o,ja),ja),j(o,-j(o) + H5(-ja3,ja),ja),-ja),j(o)

+ tf5(-ju),ja),-ju),jco,ja)) + M5(-jfo,-ja),jaj,j(o,ja))} (2.16)

The expression defining ^(s-j ,s2,s3,s4,s5) is quite involved and is best
generated using the recursive algorithm described in Appendix A with the help of

a symbol is software system [12]. However, in the special case where F is odd

symmetric (i.e., H2n^sl*s2'*"' s2n'=0 for a11 n)> we nave:

H3(j3(o,-j(o,-ja))H3(jco,ja>,j(o)
H5(ju),ju),JGo,-jco,-ja)) = 1-H (j3to) + MJ'w,J*w,J"w,~Ja)'~Ja)' (2.17a)

H5(joj»jco,-ja),j(o>-ja)) =H5(jo),ju),-ju),joo,-ju)) (2.17b)

HgO'oojjWj-jiOj-ju^ja)) =Hgjjwjjcoj-jcoj-jcojjw) (2.17c)

H5(j(jo,-jca,jco»jco,-ja)) =Hg(jco,-jco,ja),j(o,-ja)) (2.17d)

W5(ja),-ja},j(o,-ja),jco) = H5(ju),-j(o,j(o,-ja),j<o) (2.17e)

HcfJWj-jajf-jco '̂wjjoo) = Hg(j(o,-ja),-jco,ja),jto) (2.17f)

H3(-ja),j3a),-ja))H3(j(o,ja),jco)
W5(-jco,jto,jco,jo.»,-j(o) = 1-H (j3co) +H5^~Jt^>J^»Jo),jai,-Jco) (2.17g)

f/gf-jajjjwsjwj-jwsjaj) =Hg(-jajsja)»j(0j-ja)jjw) (2.17 h)
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tf5(-jui,jco,-ja),j<o,j(o) = H5(-jw,ju),-ju),jio,j(o) (2.171)

tf5(-Jw»-Jw,jto,jaj,jw) =
H3(-jo),-jco,j3aj)H3(jaj,ja),ja))

1-H (j'3^) + H5(-ja>,-j(o,jco,ja),ja)) (2.17J)

C. Nth-order Determining Equation

The Nth-order determining equation is given by

dN(A,co) AH.|(jgo) +^(jcojA2 +ft2(j(o)A4 +
or equivalently:

Re dN(A,(o) AReCH^jw) +a,(ja>)A2 +ft2(jco)A4 +

Im dN(A,co) AImfH^ju) +^ (jco)A2 +Q2(joo)A4 +

,2N+ G^jaOA* -1 =0 (2.18)

+fiM(Ja))A2N-l} =0
•N

(2.18a)
,2N+ ^(ju^A^ -1} =0

(2.18b)

Here, H-|(jco) and &|(jto) are given by (2.6) and (2.7) as before, whereas ft2(jco),
ft3(jw)> ••'•, ^(jco) can be generated as described in Section 4 and Appendix A.

The expressions H-j(j(o), ftj(ju)), •••, &, i(jco) are identical to the
corresponding expressions in the (N-l)th order determining equation. Since the

"magnitude" of each additional term Qm(J(o)A will usually be at least an order of

magnitude smaller than the preceding term, we can interpret this additional term

as a "higher-order" correction analogous to that characterizing the averaging

method [4].

3. ILLUSTRATIVE EXAMPLES

In many applications, the designer is interested in knowing only whether

a circuit or system will oscillate, and if so, its "approximate" frequency co and

amplitude A. On such situations, it is usually quite satisfactory to choose the

first-order determining equation in view of its simplicity. If f(») is an odd_

function, then increased accuracy could be obtained with the second-order

determining equation with very little additional work.

If one is interested in a "nearly" exact value of co and A, one could always

resort to a more efficient computer simulation algorithm [11] using the above

"approximate" co and A as initial condition. In fact, one important application of

the extremely simple first-order determining equation is precisely to calculate a

good "initial condition" which is essential in the rapid convergence of the

subsequent exact computer simulation.
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Our objective in this section is to illustrate the application of these

determining equations to some typical nonlinear circuits.

Example 1. Linear one-port terminated in a nonlinear resistor

Conisder the circuit shown in Fig. 3(a) where N denotes an arbitrary linear

time-invariant one-port described by an impedance Z(s) or admittance Y(s).

If the nonlinear resistor is voltage-controlled (i=f(v)), then the equivalent
feedback representation is shown in Fig. 3(b), where G(s) = -Z(s).

If the nonlinear resistor is current-control!ed (v=f(i)), then the equivalent
feedback representation is shown in Fig. 3(c), where G(s) = -Y(s).

In either case, we can apply the explicit formulas in the preceding section

to calculate the amplitude A and frequency 00 of the oscillation, assuming the

circuit oscillates.

Example 2. Linear one-port terminated in a nonlinear inductor

Consider the circuit shown in Fig. 4(a) where £ denotes either a nonlinear

flux-controlled (i=f(<j>)) or current-controlled (<j>=f(i)) inductor. The correspond
ing equivalent feedback system is shown respectively in Fig. 4(b), with

G(s) = -Z(s)/s, and in Fig. 4(c), with G(s) = -sY(s).

Example 3. Linear one-port terminated in a nonlinear capacitor

Consider the circuit shown in Fig. 5(a) where C denotes either a nonlinear

charge-controlled (v=f(q)) or voltage-controlled (q=f(v)) capacitor. The
corresponding equivalent feedback system is shown respectively in Fig. 5(b),

with G(s) = -Y(s)/s,and in Fig. 5(c), with G(s) = -sZ(s).

Example 4. van der Pol Oscillator

The circuit shown in Fig. 6 is described by:

v+£ (l-v2)v +]^ v=0 (3.1)

If we assume R= 1 and i =L A-e, then (3.1) reduces to the well-known van der
Pol equation [3-5]:

v- e(l-v2)v +1=0 (3.2)

This celebrated equation has been extensively studied and many properties of its

solution are now well known. In particular, we have:

1. For small positive e, (3.2) has a stable sinusoidal solution of

frequency co * 1 and amplitude A^ 2. This corresponds to a stable "circular"

limit cycle of radius 2 in the phase plane.

2. For small negative e. (3.2) has an unstable sinusoidal solution of

frequency <o = 1 and amplitude A ~ 2. This corresponds to an unstable "circular"

limit cycle of radius 2 in the phase plane.
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Let us analyze the van der Pol equation (3.2) using the first-order

determining equation (2.1). Comparing Fig. 6 with Fig. 3(a), we identify:

G(s) =
-e+(s+l)

(3.3)

Since f(v) =-iv3, we have ai =0for all if 3and a3 =--j. Consequently,
(2.4) and (2.5) give:

Mjw) =0, fl,(jco) =x [ ]—H
1 ' * -£+j((0-7-)

(3.4)

Substituting (3.4) into (2.1), we obtain the following first-order determining

equation:

d1(A,o>)=^[- t

Simplifying (3.5), we obtain

-f A2 +e- j(o)-l) =0

Solving (3.6) we obtain the first-order solution:

(0=1, A = 2

1 -] A -1 = 0 (3.5)

(3.6)

(3.7)

Consequently, our first-order determining equation gives exactly the same

answer as that obtained from solving an analogous first-order equation derived

from the method of averaging [4]. Since neither A nor co in this case depends

on c, it is clear that (3.7) is only an approximate solution.

To determine the effect of the parameter e on A and <o, let us write the

following second-order determining equation. Since f(v) is an odd function of

v, we can use (2.15) to obtain:

*Zf ] "\ (3.7)ft2(ja)) = 48 [-e+j(o)-l)][-e+j(3w-^)l
Substituting (3.4) and (3.7) into (2.10), we obtain:

d2(A,(o) =-|
-e+J(«-£) 48lt-£+J(a)-^)][-£+J(3(o-i)],

-1=0 (3.8)

3(0'

Simplifying (3.8) and equating the respective real and imaginary parts to zero,

we obtain:

Re d2(A,co) =e2A4 +12e2A2 - 48e2 +144co2 +If - 160 =0 (3.8a)
-10-



Im d2(A,co) =-36e(oA2 +4eA2/oo +192eoj - 64 e/co =0:T (3.8b)

Solving (3.8) numerically with e = 0.2, we obtain:

Second-order Solution: co = 0.9975 s 1, A = 1.998 * 2 (3.9)

The error resulting from a first-order analysis can be analyzed by

substituting (3.7) into (3.8a) to obtain the "slack" equation

Re d«(2,oj) 9 ? , 9 1 ?
L =e- +9c/ +-^ -10 =9(u/-l) + (-j- 1) +e

(0 (0

=9((o+l)(o)-l) + (1 +1)(1-1) +e2 =0 (3.10)

Now if we let co = 1 + 6w and make use of the approximations:

co +1 * 2, 1+1*2 "^ (3.11)
(0 '

we would obtain

186(0 - 26w + e2 = 0 (3.12)

1 2Hence 6u> = - yg- e and we can write the second-order solution as

- i 12a) - 1 - ^ e (3.13)

This answer is identical to that obtained from solving an analogous second-

order equation derived from the method of averaging [4]. In other words, the

solution derived from our second-order determining equation has the same degree

of accuracy as that obtained from applying the averaging method of the same order.

If we repeat our analysis using a 3rd-'order determining equation, we will

see that a correction term proportional to e will have to be subtracted from

(3.13). Repeating this analysis using a higher-order determining equation of a

sufficiently high order we can in principle generate an analytical expression

giving to as a function of e, which is correct to any desired accuracy.

Example 5. Unforced Puffing's Equation

The circuit shown in Fig. 7 is described by:

J+^-^ +l^^+^^O (3.14)
4. y\

d2(A,(o) represents the left-hand-side of the equation obtained by simplifying

(3-8)-



If we assume R= 1 and i= LA e, then (3.14) reduces to the well-known
"unforced" Duffing1s Equation:

(3.15)$ + £$ + $ + e<j> = 0

It is well known that this equation is globally asymptotically stable [5,13]

and hence there is no oscillation. This implies that our determining equation can

not have a solution. Let us confirm this conclusion.

Comparing Fig. 7 with Fig. 4(b), we identify

G(s) =-=ZjSl =.(£)[ !_] (3.16)
s+(s +f)

- .3Since f(({>) = <J> ,we have a- =0 for all i f 3, and a3 = 1. Consequently, (2.4)
and (2.5) give:

H1(jo>) =0, n,(jtt) =-(|=-)[ Ly] (3.17)
1 ] j4w e+j(a)-l)

Substituting (3.17) into (2.1), we obtain the following first-order determining

equation:

cMA.oi) =-(4f-)[ A ,]-1=0 (3.18)
1 j4w e+j((o-l)

In order for (3.18) to have a real solution A and w, it is necessary that A f 0

and e + j(w —) be purely imaginary. But this is possible only if e = 0. Hence,

the first-order determining equation (3.18) does not have a solution, as expected.

Since f(4>) is odd symmetric, we can use (2.15) to obtain

e+j(o)--) e+j(3(o-^)

substituting (3.17) and (3.19) into (2.10), we obtain:

d2(A,u) =-(3§-)[ A 1]-(-£-*)[ L-y-lC ^—-y-] -1=0 (3.20)
2 J4w e+j(«-l) 16co2 e+j(eo-l) e+J(3ca-^)

Simplifying this equation and equating the respective real and imaginary parts

to zero, we obtain:

Re d2(A,co) =- | c2A2 +eco(4<o - 1 - ^) =0 (3.20a)
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2

Im d2(A,(o) =-|e(3«o-Jj)A2 -tVva4 "we2 +w((rt "o7)(3u)"3to} =° (3'20b)
We can recast (3.20a) as follow:

-f eA2 =-a)[((o-l) +(3w-^)] (3.21)

Substituting (3.21) into (3.20b) and simplifying,we obtain

•»<*»-±>2+tV4a4 +«2-° (3-22)
Since the first term is non-negative and the last two terms in (3.22) are

positive, it follows that (3.22), and hence the second-order determining equation,

can not have a solution, as expected.

Example 6. Tunnel Diode Oscillator

Consider the circuit shown in Fig. 6 again but with a new set of parameters:

R = 250 ft, L = 200 nH, C = 500 pf.

Let the nonlinear resistor be described by a tunnel-diode like characteristic:

i =f(v) =-0.0108V - 0.003v2 +O.lv3 (3.23)

The impedance in this case is given by

Z(s) = \ ttt (3'24a)
(l/250)+(5x!0b/s)+5xl0 ,us

and the coefficients a^ are:

a1 = -0.0108, a2 = -0.003, a3 = 0.1

Substituting (3.24) into (2.4) and (2.5), we obtain

(3.24b)

Mjeo)- 0.0108[ ttq L-g ] (3-25)
1 5x10 ,Uj(o-5xlObj/(o+l/250

T C 1.8x10" . .1"•''' ti«...-'Vs...'.>«.OTw-'>-»..i>iwi.».>(i.||.V|;-y[)j<=. (J-28)

r}5xlO"10ju-5xlObj/uj+O.G(W.
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Substituting (3.25) and (3.26) into (2.1) we obtain

|(A.«) «}f- 1.8x10
-5

(5x10"]°ju>-5x106j/u+0.004)(10"9ju-2.5x106j/u+0.004)(1 0.0108

10"9ju-2.5x106j/u+O.004

0.3 aA2 + 0.0108

5xlO"10ju-5x106j/u+0.004J" 5x10"1°ju-5x106j/w+0.004
1 • 0 (3.27)

(3.27)

Solving (3.27) numerically, we find

A = 0.301, co = 99.99 x 101 (3.28)

Example 7. Wien-Bridge Oscillator

As our final example, consider the Wien-Bridge oscillator circuit shown in

Fig. 8(a), where R-j = R2 = 1, and C-. = C2 = 1. The op amp is modeled by a
nonlinear voltage-controlled voltage source and the resulting circuit is shown

in Fig. 8(b), where

f(v) = 3.234V - 2.195v3 + 0.666v5 (3.29)

This circuit can in turn be described by the equivalent single-loop feedback

system shown in Fig. 8(c), where

G(s) = 1

3+(s +1)

and the coefficient a. are

a1 = 3.234, a3 = -2.195, a3 = 0.666

Substituting (3.30) into (2.13), (2.14) and (2.15), we obtain

0 /, x _ -1.646
VJa,) -j(o-j/a,+3

-14-

(3.30a)

(3.30b)

(3.31)

(3.32)



14.45 6.66Q9(jco) = 0.0625<
2 l(ja)-j 3.234j/(o+3)(3joj-j/3oj+3) (1 -3^/3^3) Joj-j/(o+3,

Substituting (3.31), (3.32) and (3.33) into (2.10) we obtain

cUA,co) =0.0625 f 1^4§ TT^r +-LeLS) a4
L(j(o-j/a)+3)(3ja)-j/3(o+3)(l -,,,, AlJX) Joj-j/<o+3j

3jco-j/3co+3

1.646 A2 + 3.234 . -j = 0
jco-j/oj+3 jco-j/(o+3

Solving (3.34) numerically, we obtain

A = 0.384, co = 0.996

(3.33)

(3.34)

(3.35)

4. DERIVING THE DETERMINING EQUATIONS: INTUITIVE APPROACH

Our objective in this section is to derive the formulas given in Section 2

using an intuitive "frequency-domain" approach familiar to engineers. The

mathematical justification of the validity of this approach will be given in

Section 5.

In the frequency-domain approach, we assume the system in Fig. 2(a) is in

"steady state" in the sense that all waveforms can be expressed as a sum of

sinusoidal signals of various component frequencies. In particular, let the

input to the system F be

8 Pi1u(t) = I A.e "
i=l n

(4.1)

Substituting (4.1) into the Vol terra series (1.1), we find the output of F is

given by:

» r"f« f» /M P-.U-tJX/m P,(t-Tp)\
y(t) -A IJ-.-Lh-^i-2--'n)(1s1v M v )

- I
n=l

p^v
"ih ^ !dT,dT2,,#dTn

-00 i -00

M M

ln(TlsT2,--,T ) I I ••• I
1 n l =1 i =1 i =1^ I 12 I 1n I
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I \ Pi (t-T^+'-'Pi (t-Tn)

00 [MM M

• I (I I - I
n=l I1!"1 V1 V1

c n

hn(TrT2'--Tn)e ]

(p. +p. +...+p. )
•1 ^ \

J -00 J -00

dx,divdT A. A. •••A.12 nj i, i2 in (4.2)

We can simplify the expression within the bracket in (4.2) by introducing
a.

the notation:'

-s1t,-s2T2..-snT

-co'"Lhn(Tl,T2'""'Tn)e 1 dT-idx2,#,dTn

(4.3)

Since Hn(si»s2,«»*,sn) is of fundamental importance in this paper and plays the
same role as that of a "transfer function" in linear system theory, we will

henceforth call it an nth order transfer function of F. Using this notation,

(4.2) becomes

yM = I { I H(p. ,p. ,...,p )A. A. ..-A.
(p +p +-..+p )f

n ^2 \

where

VPl^Pl/'-'Pl^AH^.Sg,...^) s^P.- ,s2=p.I ^ <L 12

(4.4)

•—•sn"p1.
(4.5)

denotes the nth-order transfer function evaluated at s. = p. , s« = p. ,«**,s =p. ,
1 71 c h n nn

and where the second simulation index in (4.4) covers all possible combinations of

(s-|,s2,-*-,sn) as each argument s. goes over p1 ,p2,*-«,pn, respectively.
Equation (4.4) shows that if the input u(t) is a sum of exponentials with

exponents p-j »P2,'-*,pn, then the output y(t) of F is also a sum of exponentials

By analogy to Laplace transform in the single variable case (n=l), Hn(s,,s2,"«,s )
is also called the n-dimensional Laplace transform of hn(t-|,t2>••• ,tn) [8].
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with exponents p* + •••+p. , each weighted by the nth-order transfer function
1 n

Hn(p. ,p. ,"*,p. ). Hence, once the transfer functions H-i(s-i), H«(s19So),n 1-, i2 in i c i

•••,Hn(s^,s2,»««,sn),««« ofF is known, the response of F to u(t) can be written
down explicitly using (4.4). Fortunately, these higher-order transfer functions

can be evaluated by a recursive algorithm given in [10] for nonlinear circuits,

or by the analogous algorithm given in Appendix A for nonlinear systems.

Now if the system in Fig. 2 has a periodic solution of frequency co, then

in general, the Fourier spectrum of u(t) and y(t)' will contain all harmonics kw

of the fundamental frequency co. Now let us extract the fundamental frequency

component from y(t) using an ideal filter P and let us extract the remaining com

ponents by another ideal filter I-P. It is convenient to think of P as an

"operator" and I as an "identity" operator, so that I-P means whatever remains

after the fundamental signal component has been extracted. Using these two

operators, we can transform Fig. 2(a) into the equivalent system shown in Fig. 9(a).
By definition of P, we can write:

u(t) =P(y(t)) =|A|cos(u)t+*A) =|ejajt +\ e"j(ot (4.6)
where A A |A|eJ* is a complex phasor and A denotes the complex conjugate of A.

Now cut the loop in Fig. 9(a) and redraw the resulting system in Fig. 9(b).

If we apply u(t) given by (4.6), then, because of the "ideal" filter P, the output

is:

A A

z(t) =|Az|cos(a)t+*Az) =-f eJa)t +-f e"JU)t (4.7)

It follows from Figs. 9(a) and 9(b) that a necessary and sufficient condition

for the system in Fig. 2(a) to have a periodic solution of frequency co is that

Az = A. Since Az depends in general on both A and oj, let us determine next the
function Az = Az(A,cj).

The system S in Fig. 9(b) consists of a cascade of two subsystems S-j and S2-
In Appendix A, we show that given the transfer functions H-j(s-j), H2(s-j,s2),
•••'Hn(s19s2,--*sn),««-, of F, we can generate a "formal" Volterra series between
z(t) and u(t) for S. In particular, we give a recursive algorithm for generating

t
Mathematically, P is called a projection operator.

To be rigorous, we must first prove that z(t) can be expressed by a "convergent"
Volterra series in terms of u(t). Here, we are interested only in generating the
series "formally" in the same spirit as that of a "formal" power series expansion,
In Section 5, it will be clear that this "formal" series — which is always well
defined in view of our recursive algorithm — is all that is needed to prove the
main result.
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tf1(s1),tf2(s1,s2),"«,tfn(s1,s2,'^,sn),'«', in terms of H^s^, H2(s1,s2),
•••,Hn(s-j,s2,»«»,sn),*»«, etc. Moreover, we show how the higher-order transfer
functions can be generated in a symbolic form — e.g., Eq. (2.17) ~ using the

Macsyma software system [12]. Alternatively, given any (s-j ,s2,«««,sn)
= (jkiojjjk^'-'j.k^hour recursive algorithm allows us to calculate the
numerical value of H(jkiw,jk2co,*-»,jknco).

To derive A as a function of A and co, compare (4.6) and (4.1) and identify

M= 2, A-j = A/2, A2 = A/2, p1 = jco, and p2 = -joj. It follows from (4.4) (with

j(co+co+/»»+u))t

z(t) « I \ I m H(p. ,p. ,...p. )A. A. .-A. e

y replaced by z, and Hn by Hn) that

n terms (4.8)

A A
where A.. ~ J or 2 ' anc' the '-" S1*9ns denote all possible combinations satisfying

(recall z(t) is given by (4.7)):

co+^co+ ••• +co = +co
v v ;

n terms

Since (4.9) can not be satisfied if n is even, it follows that

Hn(s-|,s2,«»»,s )=0 for n= even integer

Moreover, since

(4.9)

(4.10)

Wn(jk^,jk^,•••,jkno>) =^(-jk^j-jk^j'-'.-j^co) (4.11)

where k.. = +1, it suffices to sum only those terms in (4.8) which contribute to

-f ejojt; namely,1"
A

-f eJwt =^(joj) I ej(A)t (Ist-order term)
j. u i a ,• • \ A A A _j(co+o)-a))t+ n3(jco,Jco,-Jco) g- g- ^ eJ v 7

x u i a ,• a \ A A A aj(-<o+co+oj)t \+ n3(-jco,Ja),J(o) ^r-o •? ed v ' /

"\

2 2 2

x u a a a \ A A A ,j(co-(o+co)t+ n3(jco,-Jco,J(o) g 2 2e
J

3 rd-order terms

The sum of the remaining__terms is just the complex conjugate of (4.9) and
A .t

contributes therefore to -£• e"J .
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+ Hr

+ Hr

+ Hc

+ H,

+ H,

((o+co+co-co-oj)t "^

(0J+(O-OJ+C0-Oj)t

(co+co-oj-co+oj)t

(co-oj+co+oj-co)t

(0J-(0+0J-0J+0j)t

(cO-OJ-OJ+OJ+Oj)t

(-OJ+CO+OJ+OJ-Oj)t

(-(O+0J+0J-OJ+C0)t

(-CO+OJ-OJ+OJ+Oj)t

(-OJ-OJ+OJ+CO+Oj)t

+ H,

x A A A A A iJoj, joj, jco,-jco,-joj) ^ 2 2 2 2 e

Joj,jco,-jco,joj,-jco) 2 2 2 2 2 e

joo,joj,-jw,-jco,jco) 2" 2" 2" 2" 2

a a a a \ A A A A A JJoj,-jco,joj,joj,-joj) 2 2 2 2 2

A A^ A A A Jj(o,-jco, jco,-jw,joj) 2 2" 2" 2 2 e

... x A A A A A Jjoj,-joj,-joj,joj,joj) 2 2 2 2" 2 e

7T A A A A i-joj,joo,j(o,joo,-jco) 2" 2" 2 2* 2

A A A A A \ A A A A A aj-jo),joj,jco,-joj,jco) 2" 2 2" 2"2

• • • ♦ ♦\rtrtMr\rt A»J-Joo,jco,-jco,jco,jco) 2 2 2 2 2

-Joj,-jco,joj,jco,joj) 2" 2"2 2" 2

5th-order terms

+ H,

+ HE

+ tf,

+ tf.

+ H.

J

. . . . . . . x A A A A A A A aj(co+oj+oj+oj-oj-oj-oj)t
jco,joj,jco,jco,-joj,-joj,-joj) 2"2"2"2"2"2"

• • higher-order terms (4.12)

Since the system in Fig. 9(a) is autonomous (i.e., it has no external forcing

functions), there is no loss of generality to choose our time origin such that the

oscillation condition A2 = A is a real number. Substituting Az = Awith^iA = 0
into (4.12) and cancelling 4 eJtot from both sides, we obtain:

1=H-jCjoj) +^(Joj)A2 +n2(jw)A4 +••• +fln(joj)A2n +•••
where

^(joj) A^ {H3(joj,jco,-joj) + H3(-joj,joj,joj) + tf3(jco,-jo),joj)}

^(Joj) Ajg {Hg(joj,joj,joo,-jco,-jco) + ^(jco.jcjj-jco, joj,-joj)

+ Hg(jco9Jco»-jco»-joj,j(o) + Hg(j(o»-j(Ojjoj,j(o»-jco)

+ Hg(joj,-joj,joj»-jco,jcj) + ^(jojj-jojj-jojjjojjjoj)

+ Hg(-joj,joj,jajjjco»-jco) + Kg(-joj»joj>joj,-j(0>jco)

+ Hgf-jcojjcos-jcojjojjjco) +tfj^-jojj-jcojjojjjoj.joj)}

-19-
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Assuming that ft (joj) =0 for n >N, and substituting tf,(joj) = H-j(joj) into
(4.13), we obtain the determining equation:

dN(A,co) AH^joj) +ft^jcojA2 +ft2(jco)A4 +••• +ftN(jto)A2N-l =0 (4.15)

which is precisely (2.18). In the special cases N = 1 and N= 2, we obtain (2.1)

and (2.10) respectively.

5. MATHEMATICAL JUSTIFICATION

In this section, we will give a rigorous mathematical proof which justifies

the "intuitive approach" used to derive the determining equation in Section 4.

In particular, we will present a method for testing whether a solution of the

determining equation does indeed imply the existence of a periodic solution

having an amplitude A and frequency oj closed to the solution. As a bonus, our

test will also yield a bound on the approximation error.

A solution of the determining equation d^AjOj) =0 corresponds to an
intersection (ojq,Aq) between Re dN(A,oj) = 0. and Im dN(a,ca) = 0.
Our test consists of constructing a small rectangle A about Q which contains

the exact solution (co,S). Our basic strategy is to use degree theory [14]

to show that the higher-order terms (k>N) neglected in (4.13) in order to

arrive at (4.15) does not cause the intersection to leave the rectangle A.

A. Modeling the Determining Equation

Equation (4.13) is derived from Fig. 9(b) and is exact if n -*• «>. Since (4.15)

neglects all terms with n > N, let us derive a "symbolic model" which is described

exactly by (4.15).

Note that each coefficient ft (jco) in (4.13) is a well-defined algebraic

expression generated by the recursive algorithm in Appendix A. Note also that

in (4.13) ftn(joj) is associated with an amplitude A . Hence, neglecting ft (joj)
for n > N is equivalent to suppressing all algebraic terms in (4.13) involving

A %A * ,••• etc. A review of the recursive algorithm in Appendix A

suggests the "symbolic model" shown in Fig. 11 will give precisely (4.15), where

T2N is a "symbolic" operator which suppresses all algebraic terms involving A
with 2n > 2N. We call this operator "symbolic" to emphasize that unlike the

operators P and I-P (which operate on time waveforms and produce time waveforms

as outputs), T?N operates on algebraic expressions, such as (4.14), and produces
an algebraic expression at its output devoid of higher-order terms A ,A ,•••.
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Similarly, the operator T2N+1 suppresses all terms involving A2N+2,A2N+3,»"
etc.

The symbolic model in Fig. 11 is introduced here mainly as a conceptual

aid in deriving equations which automatically suppress higher-order terms which

do not contribute to (4.15). It is not a computer-simulation model.

Since the symbolic model results from keeping only the lower-order terms in

A or A , we add a subscript "I" (for lower) to the variables x, y, and z

as shown in Fig. 11. Note that

x(t) = xz(t) + x^(t), y(t) = yt(t) + yh{t),z(t) = zz(t) + z/j(t) (5.1)

where the subscript "h" denotes contributions due to the neglected higher-order

terms. Using the recursive algorithm in Appendix A, we can generate a "formal"

Volterra series for x-(t), y?(t), and zz(t) in terms of the input u(t). For our
present purpose, however, we are mainly interested in x-(t) due to the input

u(t) =I eJ(ot +4 e"Jwt -- the same input used in deriving (4.13) and (4.15):

xz(t) =fe** +(|) e"*1* +(£)* X2(joj,joj) e^ +...
3

+ (?) X3(joj,joj,joj) ej3cot +...

2N

+(f) X2N(joj,joj,...,joj) ej2Nwt (5.2)

It is important to note that the higher-order transfer functions,

X2(s-|,s2), X3(s1,S2»s3),,,# » X2N^s1,s2,",,s2n' are autoniat1'ca1Ty generated by the
recursive algorithm in Appendix A in the process of generating W2N+1^STS2'*",S2N+1^
Hence, we can calculate x-(t) either symbolically or numerically using (5.2).

Observe that if we apply (5.2) as the input to F in Fig. 11, and derive the

corresponding expression T2N(I-P) F(x-(t)),we would obtain the following
identity:

xz =u+T2N(I-P) F(xz) (5.3)

In general, Ffx-(t)) will contain all harmonics of eJ and aTl_ higher-order
Aterms in j. The operation (I-P) F(x-(t)) suppresses the fundamental

-.

The operator after P is T2N+, and not T2N because we have actually cancelled
out an "A" from both sides of (4.12) to obtain (4.13) so that in fact terms

involving A have been included in the derivation of the determining equation
(4.15).
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component whereas the subsequent operation T9M(I-P) F(x-(t)) further suppresses
2N+1 2N+2

all terms involving A ,A ,•••, etc.

Corresponding to the input u(t) =|e^1 +2e'^ »tne neglected terms in
x(t) is of the form

h^ - I Bn *imt (5.4)
n—°°

Since T2N suppresses all contributions due to x,(t), we have

T2N(I-P) F(xz) = T2N(I-P) F(xz+X7z) (5.5)

On the other hand, Fig. 9(b) shows that

x= xz + x^ = u+ (I-P) FU^+x^) (5.6)

Solving for x, and making use of (5.3) and (5.6), we obtain

xfc= d-T2N>(*-P) F(yV (5'7)

where I denotes an "algebraic" Identity operator, i.e., it transforms any

algebraic expression into itself.

Now decompose F in Fig. 11 into a linear and a nonlinear part:

F= FL + FNL (5.8)

Substituting (5.8) into (5.7) and making use of the distributive property of

F^, we obtain

\ ' <I-T2N)(WHFL(xz) ♦ \(*h) *^(Xj^)}' (5.9)
Since x- contains only lower-order terms in A,

(I-T2N)(I-P) FL(xz) =0 (5.10)

Since the operator I-P suppresses the first harmonic component, x, in (5.7)

does not contain any first-harmonic component so that we can write

(I"T2N)(I-P) rL(xh) -FL(xfc) (5.11)

substituting (5.10) and (5.11) into (5.9), we obtain

(I-FL>**- (I-T2N)(I-P) *WW <5-12>

Since FL is alinear operator, FL(Aejka)t) =AH.,(jkaj)ejka3t, where H^Sj)
is the first term in the Volterra series expansion of F. Assuming
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inf |l-H,(jkoj)| > 0 (5.13)
tf+1 '

The operator (I-F.) can be inverted in the subspace excluding the fundamental

harmonic component so that (5.12) can be solved for x,:

X/j= (I-Fr^l-T^MI-P) FNL(xA)AC(X/2) (5.14)

Now for an£ A and co, we can calculate x-(t) from Fig. 11 due to the input

u(t) =j eJa)t + £e"Ja)t. For any such x^(t) — which depends on Aand co — (5.14) is a
nonlinear operator equation whose solution x,(t) gives the "correction" due to the

neglected higher-order terms. In other words, for any A and co, the exact solution

of the open-loop system in Fig. 2(b), or equivalently Fig. 9(b), is given by
+

x(t) = x-(t) + x,(t). We will henceforth call (5.14) the corrector equation.

B. Existence of Periodic Solution

To prove that the closed loop system in Fig. 2(a) has a periodic solution of

frequency co and fundamental component amplitude A, it suffices to prove the

following:

1. For any A and co, the open-loop system in Fig. 9(b) has a solution due
. . . ,. x A iwt , A -jojt
to an input u(t) = ^ e 2* *

2. There is a particular A and co such that PF(x(t)) = u(tj, where x(t)
denotes the exact solution of Fig. 9(b) due to u(t) =|eja)t +j e"ja)t.

In the following theorems, we assume that F is a continuous operator in the
<» . .

sense that the Fourier coefficients of F(x(t)) due to x(t) = I <*nejna)
n=-co

depend on an and oj continuously. We also assume that the Fourier coefficient of
the waveform xz(t) due to u(t) =|e^wt +j e"Ja)t depends continuously on Aand oj.
Theorem 1. Justification of determining equation

Hypotheses: Suppose the following conditions hold:

1. The determining equation (4.15) has a solution (ojq,Aq). (See Fig. 10).
Moreover,

3Re dN(A,co) 9Re dN(A,co)
3A 3co

31m dN(A,oj) 31m dN(A,u)
3A 3to

? 0 (5.15)

0J=0Jq, A=Aj

The solution of the corrector equation (5.14) is a fixed point of the operator
C(-) [11,15].

Geometrically, (5.15) is equivalent to the condition that the two curves
Re dN(A,co) = 0 and Im dN(A,oj) = 0 are not tangent to each other at Q in Fig. 10,
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2. There is aclosed rectangle Acontaining (ojq,Aq) satisfying the following
conditions.

(a) (oj0>Aq) is the only solution of the determining equation (4.15) in A.
(b) For all (oj,A) e a, the corrector equation (5.14) has a solution x/i(A,co)
which depends continuously on A and oj.

(c) For all (U»A) on tne boundary of the rectangle A,

|A dN(A,oj)| >l(I-T2N+1)P F(xl+xfc(A,co))lr (5.16)

Conclusion:

The single-loop feedback system in Fig. 1 has a periodic solution with

frequency co and fundamental component amplitude A inside A.

Proof. Hypothesis 2(b) guarantees that the open-loop system in Fig. 9(b) has an
exact solution x(t) = xz(t) + x^t) for all (oo,A) e awhich depends continuously
on A and oj. It remains therefore only for us to prove that the exact equation

u=PF(xz+xfc) (5.17)

describing the closed-loop system in Fig. 9(a) has a solution. To do this,

recast (5.17) as follow:

-u +T2f|+1 PF(x^) +(I-T2N+1)P H^\) -0 (5.18)
The first two terms in (5.18) corresponds to A dN(A,oj) because T2N+1

suppresses all terms contributed by xfe. Let the waveform corresponding to the
BN(Aj(u) icot BN(Asa)) -iojtthird term in (5.18) be denoted by -2-g e^z +-^ eJ(x)\ Then the

solution of (5.18) is equivalent to that obtained by solving the nonlinear

equation
BM(A,co)

f(A,oj) AdN(A,oj) +-^j »0 (5.19)

where f(«) is a continuous function of A and oj. It follows from Hypotheses 1

and 2(a) that the degree of the mapping dN(«) in A with respect to zero is +1
[14]. Moreover, Hypothesis 2(c) guarantees that the "perturbation" due to

BN(A,co)/A does not change the degree so that degree of f(A,co) is also +1.
Hence (5.19) has a solution in A. This is equivalent to saying that the

"**Axil, denotes the sum of the magnitude of the Fourier components of
jncot ~*(t) = I V ' ,i.e., OxI1 A I |an

n=-oo n n=-»
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feedback system in Fig. 9(a) has a periodic solution of frequency co and

fundamental amplitude A such that (oj,A) e a. *

Remarks. 1. Geometrically speaking, the above proof based on degree theory

[14] consists of forming the related equation

'Bm(A,oj)\
f (A,oj) A dN(A,oj) + e( 'N'

= 0 (5.20)

Note that fQ(A,co) = 0 is precisely the determining equation (4.15), and
f,(A,co) = 0 is precisely (5.19). As e varies between 0 and 1, the two curves

in Fig. 10 will vary continuously. Hypothesis 2(c) then guarantees that the

intersection Q will not leave the rectangle A as £ changes from 0 to 1.

2. Theorem 1 provides sufficient conditions for the validity of the

method described in Section 2. The hypotheses 2(b) and 2(c), however, are

rather complicated to check. The significance of Theorem 1 is therefore mainly

theoretical—it serves as a foundation for the method in Section 2.

3. In practice one would resort to Theorem 1 only when the answer is in

doubt. In such cases, the following two theorems provide more practical conditions

for checking Hypotheses 2(b) and 2(c).

Theorem 2: Checking Hypothesis 2(b)

For each (ojq,Aq) e A, the corrector equation (5.14) has a solution
x, (Aq,ojq) which depends continuously on A and oj,if it is possible to find a real
constant y > 0 such that the following hold:

0) PI {"H"; • I K?) • [IxJ,]""1 Y1"1} <a (5.21)
n=2 n i=l 1 L '

(2) pI lHnr {[Ixjl^]" - [Bxzll1]n} +IC(0)I1 <Y
n=2

where

0 < a < 1

p A sup l-H-,(jnoj0)

DHn"«^ ,^ Ju\ ^ iHn^^O'J^O'-'-'^n^o'l
1 2 n'—

(5.22)

(5.23a)

(5.23b) ,

(5.23c)

and (^) denotes the binomial coefficients. Moreover, if (1) and (2) are satisfied,
then the solution is bounded by y:
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Bx?z(A0,oJ0)ni <y (5.24)

Proof. Consider any x-j Axz + x^ and x2 Axz + xfe such that Ilx^ ^ <y and
I Cm •

Ox. 0, < y. Substituting x1 and x2 for x, +x, in the corrector equation (5.14),

we obtain

0C(xft )-C(xft)l1 < Hp(I-T2N)(I-P)[FNL(x1)-FNL(x2)]01

<p I DHnIli Ul-T^Xx^-x^l^ (5.25)
n=2

•Expanding (xz+x, )n and Uz+x, )n, we obtain

-1 (?K*r1xvxr\2> <5-26)
Observe that

Ix^-^l -xn-\l I. <Ix^xJ -x"-1xh1x. I,I h-, I ?i2 1 — Z h-, I ft-, «2 1

+Ix^xJ-V -x"-1xl"2^ »i +'x?-1xJ"ZxSI h-, rt« t «2 «2 ' t «•• «2

+ + lx""1x. xj^-x"-1^ I.

+ + Ax?"1xi"10- Ix. -x, B,I «2 1 rt-j «2 1

< iDx-l^V"1 »x, -x. 0, (5.27)— M ' ai-j «2 1

Substituting (5.26) -(5.27) into (5.25) and using (5.21), we obtain

,c<y-c<V'i' "W1 (5'28)
Moreover,
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Dc(V»i • '(i-FL^d-va-p) 'Wvy"1
<P? t»HnO; j (Jjlxjl"-1!^ I1}* 110(0)0,

n=2 i=l 1

ip I {«Hnii;[(nxzii1+Y)n-(iixzii1)n]} +110(0)14 <Y (5,29)
n=2

Equations (5.28) and (5.29) imply that the operator C(») is a contraction mapping

from the ball of radius y into itself and so has a fixed point x, (Aq,ojq) [15].
To show that x, A xt,(AqjOj0) depends on (A,oj) continuously, it suffices to show
that xv depends on xz and oj continuously. Given xz and co-,, let x, be the
corresponding fixed point. Let x, be the fixed point corresponding to

2

x- = x- + 6„ and oj„ = co, + 6 . We want to show that x, + x, as 6„ and 6f% + 0.In t"l x 2 1 co «2 «1 x oj

We will use the notation Cv to indicate the mapping C with x7 = x7 and
XZ,,0J1 L n

co = co-,. Since C depends on x- and co continuously,

c- x^,^ h} xz^oj1 h1 1

as 6V + 0 and 6+0.
X CO
*

But x, is a fixed point of C„
*1 \ s0)l

0cx m (xfe )"xfc °l = 6c (5'31)

Since Cv is a contraction mapping in the ball of radius v» by continuity,

Cv is also a contraction mapping in the ball of radius y + 6 for sufficiently
hf2 Y
small 6 and 6^. Furthermore, 6 + 0 as 6 and 6^ + 0.

*

Hence, for sufficienty small 6 and 6 . the fixed point x, of c ,. satisfiesX CO Yij \ jtUp

•v*,'-*^ 2 <5-32>
where a. is the Lipschitz constant of C„ ,,. • Hence, xt + x7 as 6

Z '2 2 1

6 and 6+0 which implies continuity.

Theorem 3: Checking Hypothesis 2(c)

Given any (oj,A) and ilx£(A,co)II, <3,
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II(I-T2N+1)PF(VX^!I1 < I |H„lJ(lxzl1+6)n-(lxlll,n]

+ il(I-T2N+1)PF(xz)H1 (5.33)

where

"HB A sup |Hn(jk1oj,jk?oj,---jknco)| (5.34)
n k k ••• k *KrK2, ,Kn

Proof. See Appendix B

C. Remarks Concerning Theorems 2 and 3

1. In order to*apply Theorem 2, it is necessary to calculate fHntlJo, p,
UxJL, and 110(0)11, for each (oJq,Aq) e a. Although in principle we must check
(5.23c) for all possible k-.+k2+««»+kn f +1, in most practical oscillators,
|Hn| is negligible for large k.. Hence, HHnIl<Jo can usually be estimated by
checking |H |for only a few number of "small" kj,k2»***»kn*

2. The value of p can be estimated by the same procedure.

3. The value of IlxJL can be calculated from (5.2), which in turn is

generated using the recursive algorithm in Appendix A.

4. To calculate Hc(0)H,, we first generate the algebraic expression for

(I-T2N)(I-P) Fmi(xz) an<* tnen substitute it into (5.14). This is the most
time-consuming part.

5. The next step is to find the "smallest" y> 0 satisfying (5.21) and (5.22),

This can be found by a line-search procedure; i\e., starting with an initial guess

for y» reduce it if (5.21)-(5.22) holds (assume a = 1). Otherwise, increase it.

Our experience shows that y usually fails to satisfy (5.22) but not (5.21).

6. Using analogous procedure as above, we can also estimate NH^i^ for
Theorem 3.

D. How to find the Rectangle A

With the help of Theorems 2 and 3, we can find a rectangle A satisfying

Theorem 1 as follow:

(1) Make an initial guess of A about (ojq,Aq).
(2) Use Theorem 2 to check hypothesis 2(b) for a reasonable number of sample

points (co,A) G a.

(3) Use Theorem 3 to check hypothesis 2(c) for a reasonable number of sample

points (co,A) lying in the boundary of A. Note that |A dN(A,oj)| is known and
Theorem 3 therefore provides an upper bound for the right-hand-side of (5.16).

The following procedure can be used to obtain a reasonable initial guess

for A:
-28-



(a) Try (ojqjA^), where A-j > AQ.
Otherwise, increase A,.

(b) Try (ojq,A2), where A2 < Aq.
Otherwise decrease A2.
(c) Try (oj-j,Aq), where co, >coq.
Otherwise, increase oj,.

(d) Try (oj2»Aq), where co2 < ojq.
Otherwise, decrease oj2.
(e) Choose A2 <.A < A, and co2 <_co <_co, as the initial rectangle A. Our
experience shows that it is usually much harder to find a suitable A-j than the
other 3 points defining A.

E. Examples

We have applied the preceding procedure to several examples and in each case

obtained a small rectangle Aabout the solution (ojq»Aq) of the associated
determining equations. We then compare the results with those obtained by

numerical simulation [11]. The following table gives a summary of the results

obtained with the earlier Example 4 (Van der Pol Oscillator), Example 6

(Tunnel-diode Oscillator, and Example 7 (Wien-bridge oscillator):

Table 1. Summary of Solutions

If Theorems 2-3 are satisfied, decrease A-j

If Theorems 2-3 are satisfied, increase A2

If Theorems 2-3 are satisfied, decrease co
T

If Theorems 2-3 are satisfied, increase a>2,

van der Pol
oscillator

Tunnel-diode
oscillator

Wien-bridge
oscillator

solution of the
determining
equation

An = 1.998
ojq = 0.9975

AQ =0.301
ojq =99.99x106

AQ =0.384
ojq =0.996

the rectangle

A

1.95 < A < 2.05

0.992 < co < 1.005

0.335 < A < 0.28

98x106 <oj < lO.lxlO6
0.37 < A < 0.42

0.985 < co < 1.008

Classical solution
or numerical
simulation result

A = 2

co = 0.9975

A = 0.3

oj = 99.7xl06
A = 0.385

oj = 0.987

6. CONCLUDING REMARKS

The determining equation approach presented in this paper is novel in the

sense that it represents the first rigorous application of Volterra series to

nonlinear oscillation. It is a frequency-domain approach applicable to any single-

loop time-invariant nonlinear feedback system with dynamics of any order. Even

distributed elements are allowed. The only assumption is that the associated

open-loop system has a convergent Volterra series. Although the mathematical

proof for validating our approach requires some advanced mathematics, the method
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itself is simple and requires only algebra.

Like the Krylov, Bogoliubov and Mitropolsky's averaging method, the frequency

and amplitude can in principle be calculated to any desired accuracy by choosing

a high enough order for the determining equation. However, the most powerful

aspects of this approach is often revealed by using only a first-order determining

equation (second-order if the nonlinearity is odd symmetric). Higher-order

determining equations are extremely complex and are practical only if a computer

is used.

It must be emphasized, however, that like the averaging method, the main

application of our method is not to calculate an accurate frequency or amplitude.

Rather it is most advantageously used to ascertain whether a feedback system will

oscillate, and if so, to determine the approximate frequency and amplitude. Such

information is most easily obtained with a first-order determining equation.

In the event that more accuracy is desired, it is better to resort to a computer-

simulation method [11] using the above approximate frequency and amplitude as

the initial guess.

Finally, we note that answers obtained using our approach is often more

accurate than those obtained by the harmonic balance or describing function

approach of the same order. This is because although our approach neglects

contributions from alj_ harmonics — including the fundamental ~ those neglected

components came from higher-order nonlinearities which are usually small in

comparison to those that were retained. Consequently, our approach is somewhat

more selective with regards to which components to neglect.

It is also important to note that our determining equation approach is an

analytical approach — in contrast to numerical techniques. Since the

determining equation is defined in symbolic form, it is possible to derive design

criterion in terms of system parameters. In particular, the sensitivity of the

frequency and amplitude to various circuit parameters can be derived in analytic

form.

Finally, we remark that our determining equation approach is quite general

and is applicable to many related problems in nonlinear mechanics [3-5].
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APPENDIX

A. Recursive Generation of Higher-order transfer Functions

Given the higher-order transfer functions of each element in a system, we

can formally generate the overall higher-order transfer functions of that system.

A recursive algorithm for generating these transfer functions for nonlinear

circuits is given in [10]. In this appendix, we will apply this algorithm to the

nonlinear feedback system used in the derivation of determining equations. We

will begin with the cascade connection of two nonlinear systems.

A.I. Composition of transfer functions

Let us derive the higher-order output components of a nonlinear system whose

input is the output of another nonlinear system and therefore consists also of

higher-order components. In particular, consider the cascade connection of two

nonlinear systems as shown in Fig. 12. Let

p.t p«t
u(t) =A^ ] +A2e Z (A.l)

Assume f is such that

Pit (P"i+Po)t
x(t) =f(u(t)J =A^ ' +A^e • L (A.2)

Pit
That is, the input to h contains one first-order term (A-.e ) and one second-

(Pi+Po)*
order term (A,A2e ) when the input u of f is given by (A.l). Let

h(x) =± (x2) (A.3)

substituting (A.2) into (A.3) we obtain

f > a Pit (Pi+Po)t 2h(x) =h[f(u(t))I =̂ (Aie ]H-A^e ] 2 )
d r p,t p,t pnt (Pt+PoH (P-i+PoH p,t

= eft V Ale +Ale AlA2e + AlA2e Ale
(Pi+PoH (Pi+Pp)t

+^/\2e ' c A-^e ' c
(Pi+PiH (Pi+Pi+PoH (Pn+Po+Pl)'

=A^gfp^pgje +A^Agfp^+PgJe ' c +A^^ (p^Pp+p^e c '*

(Pi+Po+Pi+PoH
+A^A^^+p^+p^e ' (A.4)

Equation (A.4) illustrates several facts concerning the higher-order outputs of

a nonlinear system contributed by a particular second-order transfer function

(H2(s-j,s2) = s,+s2). We can generalize these facts to nth-order transfer functions
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(n>2) as follows:

(a) The output generated by an nth-order transfer function will be at least

nth-order. Thus, every term in (A.4) is at least second order.

(b) Every nth-order output term generated by the nonlinear part of a system

(i.e., transfer functions with order higher than 1) is made of product of input

terms with order less than n. This is because any product of two input terms

will increase the order by at least one. Thus, in (A.4), the second-order term

(Pi+Pi)^
AlAi(pi+pi)e 1#s the resu,,t of the product of two first-order terms

Pit
(A,e and itself), multiplied by the second-order transfer function

(H^P^) =P-j+P-,).
(c) The contribution of the mth-order transfer function to the nth-order output

consists of the sum of all possible products of the following form

H_
m Us1+~+\ >—"(%+.. .+Vl+1+,"+$k1+-+km))\(Xl'"',Sk1)S(Skl+1'*",Skl+k2)

VV¥-"+kn,-l+r''',Vk2+-'-+kn,) (A'5)
where '<1+k2+«*»«+k = n, and

Xk * Xk ,-#**Xk are klth' k2th,,,"' kmth order term of input. Equation
12 m

(A.5) means that an nth-order output term is obtained by the product of m input

terms with order kn.ko.-'-.k .
\ d ' m

( (Pi+Pi+Po)tIn (A.4), the two 3rd-order terms A1A1A2(p1+p,+p2)e 1 and
. . (Pi+Po+Pi)*}

AlA2Arpl+p2+pl'e are tne two Possible products of a first-order
pit f (Pi+Po)t*\

term (A^ )and asecond-order term A-^e ' ,multiplied by the second-
order transfer function. Using the notation of (A.5), the two 3rd-order terms

can be expressed as

Y3(sTs2,s3) =MVy^' Xl(sl} X2(s2jS3} <A-6a)
and

2
Y3(s1,s2,s3) =H2(s1+s2,s3) X2(srs2) X1(s3) (A.6b)

We can identify the following terms from (A.6) with corresponding terms from
(A.4):

s,t

Vs!) = Ale (A.7a)
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(s1+s2)t
X2(s-,,s2) =A^e (A.7b)

H2(s-j,s2) = St + s2 (A.7c)
Pit

Since there is only one first-order term A,e and one second-order term

(P-,+P2)t
A.|A2e . in x(t), we can see that X-.Cs,) =0 except when s, = p,, and
X2(s-j,s2) =0 except when s-j = p, and s2 = p2- Hence the only nonzero Y3 and
2 1/ 2 IPi+Pi+P?)*Y3 are Y3(p1,p1p2) and Y3(p1 ,p2,p.|), which are exactly A^A^p-j+p-j+p^e

(Pi+Pp+PiJt
and A^gA^p^Pg+p^e ' .

In general, it is not obvious on how to express all possible products as we

did in (A.6a) and (A.6b) for the simple system described by (A.2) and (A.3). The

following section will present a recursive procedure for finding such products.

A.2. Generation of higher-order output terms

(a) Notation
A list S is an ordered collection of finite number of objects,.denoted by

(s-|,s2,--» »sn). A contiguous part of a list S, i.e. (s^s^i »••• »si+k)» is
called a segment of S. A segment of a list is itself a list; A list of segments
of the form ((s-, ," .s^), (ski+1.—.s^+^J. •— •(sk1+k2+--+knHW '•"'sn))
is called a partition of the list (s-i ,s2,,#,,sn). For example, let
5=^ ,s2,s3,s4), then (s-j), (s^Sg) and (s2»s3,s4) are segments of S and
((s-|),(s2,s3),(s4)) 1S aPetition of S. Note that the index increases towards
the right and each integer occurs exactly once.

(b) Basic Approach

Let S= (sj,s2 ,«-«,sn). If we compare the partitions of Swith (A,5),
we note that tnere is a one-to-one correspondence between all possible forms

of (A.5) and all possible partitions of S. For example, if S= (s-| »s2,s3»s^)»
then the product H3(s1 ,s2+s3,s4) X^(s-j) X2(s2,s3) X-|(s4) corresponds to

((s-|),(s2,s3),(s4)). Thus, the problem of finding .all possible products reduces
to finding all possible partitions of a list. That is, given a list S= (s-|»s2»
•••»sn), find all partitions of S which contain m segments.

(c) Partitioning Procedure

It is clear that when m=1the only possible partition is ((s-j >s2»,*'»sn)).
For m > 1, we will show below that the partitioning can be obtained by solving

a series of similar problems but with m reduced to m-1. This partitioning procedure

will then be invoked recursively until m = 1.

Consider all possible choices of the first segment in a partition. It may
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be one of (s-j), (s^Sg),*-*, up to (si»s2»#,,»sn-m+l^ Tne reason that it
contains at most n-m+1 elements is that the remaining m-1 segments take at

least m-1 elements.

For a particular choice of the first segment S, = (s,,s2, •••, s.),we solve
a reduced problem which consists of finding all partitions containing m-1 segments,

of the remaining list (s1-+-|>,,*»sn)' This reduced problem is solved by the
same partitioning procedure with the number of segments equal to m-1. Solving

the reduced problem, we obtain many partitions of the form (S2,S3',,,,Sm^ wnere
S2'"",Smare se9ments. Inserting S, into each of these partitions, we obtain
partitions of the original list with the first segment equal to S,.

Repeating the above process for all possible choices of S,, we obtain all

possible partitions,

(d) Illustrative Example

As an example, let S = (s-j ,s2,s3,s4) and m=3. Applying the partitioning
procedure, the first segment denoted by S, (the superscript 3 indicates that

this is the first of 3 segments) may be either (s-i) or (si,s2).
(1) Let S, = (s-j), then the reduced problem 2 (2 indicates that this is a problem
with m=2) consists of finding all possible partitions of (s2,s3,s4) with 2
segments. Invoking the same partitioning procedure, we find the possible choices

2
of the first segment S, are (s2) and (s2,s3).

(1.1) For S, = (s2), the reduced problem 1consists of finding partitions of
(s3,s4) with one segment. The result is clearly ((s3,s4)). Inserting S-j into
((s3,s4)), we obtain ((s2),(s3,s4)).

•0

(1.2) For sf = (s2,s3), the solution of reduced problem 1is ((s-)). Inserting
S, into it, we obtain ((s2,s3),(s4)),

Since (s2) and (s2,s3) are all the possible choices of S,, we have solved
the reduced problem 2with the pair of partitions ((s2,(s3,s4)) and ((s2,s3),(s4))
as its solution.

(2) Inserting S? into each partition obtained by (1.1) and (1.2), we obtain

((s1),(s2),(s3,s4)) and ((s1),(s2,s3),(s4)) as the two possible partitions
with the first segment equal to (si).

(3) Repeating (1) and (2) for the other possible S-j, i.e. (s.j,s2), the reduced
problem 2 becomes finding partitions of (s3,s4) with 2 segments. The only
possible S2 is (s3) so the only solution is ((s3),(s4)). Inserting S-j into it,
we obtain ((s^,s2),(s3),(s4)) as the partition.

All together, we obtain ((s1),(s2),(s3,s4))f ((s1),(s2,s3),(s4)) and
((s1>s2)>(s3)»(s4)) as the three possible partitions.
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A.3. Feedback Systems

Consider the systems in Figs. 9(a) and 9(b). We will present an algorithm

for obtaining higher-order transfer functions from u to z. Since P is only an

ideal filter, it suffices to find the nth-order output Yn(s1,*-«,sn) at y in
Fig. 9(b). The associated higher-order transfer functions can then be trivially

obtained by suppressing all terms rejected by the ideal filter.

For simplicity, we will find the higher-order outputs by assuming a unit

input amplitude i.e., u(t) = eJa)t + e"Ja)t. Thus, the nth-order output will
coincide with the nth-order transfer function.

We first separate F into linear and nonlinear parts F, and ¥„. . We will

redraw the system as in Fig. 13 where Wn is the nth-order output generated by
F»,. By facts (a) and (b) of Section A.l, we know that W is generated by
second-order to nth-order transfer functions and only input terms with order less

than n have an effect on W . Thus, Wn can be calculated by the procedure in

Section A.2 if all xi»X2'"*',Xn-l are known- Because the linear part FL does
not alter the order of terms, Xn must satisfy the linear subsystem in the dotted
box of Fig. 13. Since the output of F... is at least second-order, we have W-j = 0.
Also, all terms in u(t) is considered first order. Hence Xn must satisfy the

+
following equations:

X7 =U+ (I-P) F^) (A.8a)

Xn = (T-P)(Wn+FL(Xn)) (n > 2) (A.8b)

where U is the frequency-domain representation of u(t). We can solve X-, from

(A.8a) and WR, Xn from (A.8b) recursively by the procedure in Section A.2.
Having Wn and Xn, Hn is easily found by

Hn = P(VFLxn) (A-9)

Note that the higher-order transfer functions needed for x* are automatically

generated in the process of generating ^N+l*
This algorithm can be implemented on a digital computer either as a

"numerical" function which calculates the value of an nth-order transfer function,

or as an "operator" which generates the explicit "symbolic" expression for the
"X

Here we treatF^ as an operator on higher-order terms in the frequency domain.
Its input and output relationship is defined by the corresponding input and output
relationship in the time domain.
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transfer function with the aid of some symbolic algebra management system such as

Macsyma [12]. In either case, it should be noted that only one program is
necessary for generating a]J_ of the transfer functions. With certain data

representation technique, the algorithm can be implemented in a straight-forward

manner. To improve efficiency, some ad hoc techniques should be included to

avoid repeating the same operation.

A.4. Explicit expressions for some higher-order transfer functions

In this section, we will, as an illustration for Section A.3, derive the

expression for H^ and Hg as given in the paper. An odd-symmetric nonlinearity
is assumed for Kg.
(1) Third-order transfer functions

From the algorithm in Section A.3, since X3 does not contain any first
harmonic component we obtain

H3(jio,jco,-joj) = W3(jco,joj,-jto) (A. 10a)

Applying the procedure in Section A.2, we obtain

W3(j(0,joj,-jco) =H2(2jco,-jco) X2(joj,jco) X^-jto) + H2(jco,0) X^joj) X2(joj,-jco)

+ H3(joj,joj,-jco) X-,(jco) X^jco) X^-jto) (A. 10b)

Solving the linear system, we obtain

Wo(joj.joj)X2(joj,joj) =1.2Hi(2ja)) (A.lOc)
W«(jco,-joj)

X2(joj,-jco) = f.H (0) (A.lOd)

Applying Section A.2,

W2(joj,joj) = H2(jco,jto) X^jco) X^jto) (A.lOe)

W2(jaj,-joj) = H2(jco,-joj) X-,(jaj) X^-Joj) (A.lOf)

Because we assumed u(t) = eJajt + e"Ja)t and since I-P rejects the first harmonic
components, it follows that X^jco) and X^-jco) are both equal to 1. Combining
(A.lOa)-(A.lOf), we obtain

Macsvma is a system which allows symbolic expressions as its data and performs
mathematical operation on them. It also allows the definition of recursive
function on these data. Hence the symbolic implementation of our algorithm is
feasible.
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H2(JoJ9joj) H2(joj,-joj)
W3(Joj,joj,-joj) =H2(2joj,-jco) 1-H ^j^j +H2(jco,0) ^H ^— +H3(joj,joj,-jco)

(A.lOg)

Similarly,

H3(jco,-jco,joj) - W3(jco,-jco,joj)

= H2(0,jco) X2(joj,-joj) X^jco) +H2(joj,0) X^jco) X2(-joj,jco)

+ H3(joj,-joj,joj) X^jto) X^-jco) X-, (joj) (A. 11a)

W9(-jco,joo)
X9(-joj,joj) = — (A.llb)
d 1-^(0)

W2(-joj,jco) =H2(-j(o,jco) X-j (-jco) X1 (jco) (A.lie)

Combining (A.10) and (A.ll), we obtain

H2(joj,-jco) H2(-jco,joj)
H3(joj,-jco,joj) = H2(0,jco) ^H ;Qv—+ H2(jco,0) -^ /Qi—+ H3(jco,-joj,jco) (A.lid)

W3(-jco,jco,jco) = H2(0,jto) X2(-jco,jco) X-j(joj) + H2(-jca,2jco) X^-jco) X2(joj,joj)

+ H3(-jco,jco,joj) X^-joj) X-,(joj) X^jco)

H2(jco,-joj) H2(jco,joj)
=H2(0,jco) 1_H (0) +H2(-jco,2joj) 1;H (^i +H3(-joj,jco,jco) (A.12)

(2) Fifth-order transfer function

Assuming that F in Fig. 11(b) is odd symmetric, i.e., HQ, H2, H4 are all
zero, then there will be no even-order terms. That is, X2, X4,««« are zero. Also
note that X5 does not contain first-harmonic terms, hence the fifth-order
equation is:

tfg (J k-j oj, j k2co, j k3to, j k4co, j k^oj)

=W5(jk-j(o,jk2oj,jk3oj,jk4oj,jk5co)

=H3(j(k-,+k2+k3)co,jk4oj,jk5oj) X3(jk-,co,jk2oj,jk3co) X-,(jk4oj) X^jkgco)

+H3(jk1co,j(k2+k3+k4)oj,jk5oj] X^jk^)) X3(jk2co,jk3co,jk4oj) X^jkgoj)

+H3(jk1co,jk2co,j(k3+k4+k5)oj) X^jk^) X^jkgto) X3(jk3oj,jk4oj,jk5oj)

+H5(jk1utjk2u,jk3a},jk4wfjk5a») X^j^u) X^jkgco) X^jkjw) X^j^co) X^jkgco) (A.13)
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where k,, k2, k3, k4, kg = +1 and k-j + k2 + k3 + k4 + kg

W3(jA1oj,jA2oj,jJ63oj)
y Mo ,-o to i -J l-MJUi+V^M W£3 *i1XoCj^iOJjJJo^ojjJit^oj) =/ lwv 1 2 3' '

V £l+Jl2+£3 = -

= 1

where £,, £2, JU denote k-j, k2, k3, or k2, k3, k4, or k3, k4, kg.

W3(jA-|Oj,jil2co,jJc3co) =H3(j£-jOJ,jil2oj,jJc3oj) X-|(jJc-|0j) X-|(j&2co) X-^j^)

(A.14)

(A.15)

Combining (A.13), (A.14) and (A.15), we see that the first 3 terms of (A.13)

vanish except when there are three consecutive jco arguments as in (2.17a), (2.17g)

and (2.17j). An additional term of the form (A.14) is added to the fourth term

of (A.13) in these three cases. This gives us (2.17a) to (2.17j).
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B. Proof of Theorem 3.

*

H(I-T2N+1) PFfx^)!,

1»(I-T2N+1) P[( I Hn(x,+x*)n +H^ +H^]!/ (B.l)
n=2

Since x* does not contain any first-harmonic component, and since x^ does not
contain lower-order terms, they will be anihilated by (J-^N+l^* Thus, (B.l)
becomes

<»(I-T2N+1)Pa2Hn[(x,+X*)n-xJ +x^]}ll1

<»(I-T2N+1) P{ J «Hni„(Bxz+x* iMx,!?) +Ftxj)}!,

i I ,Hn,J(,xi'i*)n" ,xi'i] +''"aw1 mh]S (B-2)n=2

This proves Theorem 3. n

C. Applications of Theorems 2, and 3.

In this appendix we will use the van der Pol oscillator as an example to

illustrate the application of Theorems 2 and 3 to justify the solution of the

secondrorder determining equation.
1 3Since f(v) =--j v ,we have

H^jk-,0)) =0 (C.la)

H^(j,k,oj,jk,,co,jk.,oj) = -T - , (C.lb)3-e+(j(k1+k2+k3)o)+3I1^pjr
Hgtj^ojjjkgcosjk^.j^ojjjkgoj) =0 (C.lc)

where k-j, k2, k3, k4, kg are integers.

THere the notation H represents the output generated by the nth-order transfer
function.
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C.l. Application of Theorem 2

Given A and co, we need to find p and IIH IM. They can usually be found by

choosing a few small numbers for kl9-«-,k5. In the case of the van der Pol
oscillator, it is clear that p = 1, IlHJI' = 0 and IlHJI' = 0. Also, IlHJI'

| 00 J 00 J CO

should occur at the smallest possible k, + k2 + k3. In this case, since there
is no second harmonic component, it is 3. Thus,

. - i 1IlHJI

300 3 -**♦£'

Applying Appendix A and noting that H-, = 0, we found the only nonzero third-order

transfer functions are

X3(joj,jco,joj) = H3(joj,joj,joj) (C.3)

and its complex conjugate. Thus, from (C.3) and (5.2), we obtain

h=*J. ,>t +̂ e-Jcot +£e3>t +he-3j»t (c.4)
1 3 1 £

where A, = A and Ao = x HJjoj,joj,joj)A = - j? ?—

Clearly, we have

lxll1 = (A-, 1+ |A3|

The last terra to be found is C(0). In this case, C(0) contains the terms

generated by H, with order higher than 4 and excludes the first-harmonic
component. Note that A, is of order 3. From (C.4) it can be seen that these

terms are given by

6H3(alo,-jo),a3a))(-J-)(-^)(-^)eJ3a)t (C5a)

3H3(ju,jU)o3ta)(^)(^)(^)ej5')t (C.5b)
3H3(-jo),j3lo,j3a))(^-)(-^)(-^)ej5ut (CSc)

3H3{*ii.J3k»,j3to) (-J-)(^)(-^)ej7o)t (C.5d)

3H3(-j3a,,j3a.,j3o))(^)(^)(^)ej3o)t (C.5.)

H3(j3U,j3a),j3<I))(^)(-^)(^)ej9a)t (C.5f)
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and their complex conjugates. The constant coefficient in front of each term

results from all possible permutations of the arguments of H3.
With all these terms, we can check the conditions of Theorem 2 in a straight

forward way.

C.3.. Application of Theorem 3

We .first find DHJ^. In this case, only DHjB^ is non-zero and occur at
k-j+k2+k3 = 1, i.e.

iH3D-= l-T T£-T-\ <C-6)

Then, a(*-T2N+1) Pf^)^ can be found by direct substitution of x-. In this
case, (J-T^i) PF(x^) contains all terms with order higher than 5and corresponds
to the first-harmonic component. They are given by

6H3(ja),-j3vO,j3oj)(J-)(^)(^)eja,t (C.7) •

and its complex conjugate.

Since Dx^II-j and $ have already been found while carrying out Section C.2,
we can check (5.33) directly.

The remaining task consists of going through the procedure described in
Section 5.D of the paper. This is usually done numerically with the aid of
computer.
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FIGURE CAPTIONS

Fig. 1. A single-loop nonlinear feedback system.

Fig. 2. (a) A closed-loop nonlinear feedback system

(b) Open-loop nonlinear system

Fig. 3. (a) Circuit containing one 2-terminal nonlinear resistor R.

(b) Equivalent feedback system for voltage-controlled resistor.

(c) Equivalent feedback system for current-controlled resistor.

Fig. 4. (a) Circuit containing one 2-terminal nonlinear inductor £.

(b) Equivalent feedback system for flux-controlled inductor.

(c) Equivalent feedback system for current-controlled inductor.

Fig. 5. (a) Circuit containing one 2-terminal nonlinear capacitor C.

(b) Equivalent feedback system for charge-controlled capacitor.

(c) Equivalent feedback system for voltage-controlled capacitor.

Fig. 6. Nonlinear RLC circuit described by van der Pol equation.

Fig. 7. Nonlinear RLC circuit described by Duffing1s equation.

Fig. 8. (a) Wien-bridge oscillator circuit (b) Control!ed-source circuit

model of Wien-bridge oscillator (c) Equivalent feedback system.

Fig. 9. (a) Equivalent representation of single-loop feedback system in

Fig. 2(a). (b) Associated open-loop system consists of cascade

connecting of two subsystems S-, and S2.

Fig. 10. Each intersection Q between the two curves Re dM(A,co) =0 and

Im dN(A,oj) =0 gives a solution of the determining equation

dN(A,co) = 0.

Fig. 11. The symbolic model used to derive the Nth^order determining

equation.

Fig. 12. Cascade connection of two systems.

Fig. 13. System decomposed into a linear and nonlinear subsystem.
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