

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PROGRAM RESTRUCTURING IN A MULTILEVEL VIRTUAL MEMORY

Edwin J. Lau and Domenico Ferrari

Memorandum No. UCB/ERL M81/26

May 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

c

Program Restructuring in a Multilevel Virtual Memory!

Edwin J. Lauff
Bell Laboratories

Naperville, Illinois 60566

V" N

v „ Domenico Ferrari
Computer Science Division

and Electronics Research Laboratory
University of California

Berkeley, California 94720

ABSTRACT

Program restructuring techniques have proven successful in two-level
automatically managed memory hierarchies. The possibility of extending them to
multilevel environments is investigated. The performance of strategy-oriented
restructuring algorithms in a three-level linear hierarchy managed by sampled
working set policies or by a combination of sampled working set and local LRU
policies is studied both analytically (assuming an independent reference model of
program behavior) and by trace-driven simulation. The results of the study show
that, for most programs, strategy-oriented restructuring may be as beneficial in a
virtual memory with three levels as it is in one with two levels.

Key Words and Phrases: virtual memory, multilevel memory hierarchy, program restructuring,
restructuring algorithms, working set policy, LRU policy, page replacement, independent
reference model.

1. Introduction

Virtual memory is the computer system feature which makes the storage space at the disposal
of a programmer independent of the main memory space assignable to a process. Its
implementation requires, besides a hardware mechanism for virtual to real address mapping, at
least two levels of memory and a policy for their automatic management. Sometimes, however,
two levels are not sufficient, or a multilevel solution is more convenient than a two level one
[GECJ74]. The latter would be the case for a system with so large a virtual address space and
so large a number of processes that providing for their storage in level II would either be
uneconomical or degrade system performance intolerably. This would be the normal case if we
considered file space an indistinguishable part of a process' address space instead of treating
files as external entities to be explicitly bound to that address space when needed.

A multilevel solution is unavoidable when the system itself has a multilevel control structure.
One example is that of systems which support virtual machines, where the global operating
system implements virtual memory for the various machines, each of which may offer virtual

t The work reported here was supported in part by the National Science Foundation. Grants DCR74-18375 and
MCS78-24618.

tt Work performed when this author was with the Computer Science Division and the Electronics Research
Laboratory, University of California. Berkeley. California.

p.

memory facilities to its users [GOLR74]. Another example is found in systems programs like
data base management systems, which run with other applications under a general operating
system, thereby exploiting its virtual memory feature, and at the same time support the virtual
memories of their users [TUEW76]. In these two examples, the level II memory does not have
to be (and generally is not) physically distinct from level I or level III. However, from the
conceptual viewpoint as well as from a number of practical viewpoints, there is no difference
between a three level hierarchy mapped onto a two level physical hierarchy and one
implemented by three physical levels. To improve the performance of two level virtual
memories, the program restructuring approach has been proposed and proved to be successful
(see, for example, [FERD76b]). This paper studies the possibility and the effectiveness of
applying the same approach to memory hierarchies with more than two levels. Before
describing the study and its results, we shall in Section 2 discuss the principles of restructuring
and present in Section 3 an analytic investigation of the properties of two restructuring
algorithms which have been quite successful in two level hierarchies.

2. Program Restructuring Principles

Program restructuring consists of relocating various portions of a program (both code and data)
with respect to one another to alter the program's locality. Dynamic restructuring refers to
those approaches which, in some way, utilize the actual execution time addressing
characteristics of the program in order to determine its new layout in the virtual address space.
Off-line restructuring procedures are those which are not performed while the program is in
execution, but as an entirely separate operation. In the sequel, off-line dynamic restructuring
will simply be referred to as program restructuring.

Program restructuring is typically performed in the following five steps:

1. The program, both code and data, is partitioned into blocks. Natural blocks occur in
programs in the form of procedures, functions, rows of arrays, and so on. Typically, the
size of a block should be less than that of a page.
2. A trace of the program is then collected. The trace may be a full address trace or only a
trace of the references to the blocks described in step 1. The trace represents the dynamic
addressing characteristics of the program.
3. Utilizing a restructuring algorithm which works on the trace gathered in step 2, a graph
containing information about the desirability of placing blocks together is generated. The
graph is known as the restructuring graph. The nodes of the graph represent the blocks and
the edge weights represent the cost of placing two blocks together. The restructuring
algorithm determines the edge costs.
4. A mapping of blocks into pages is determined by a clustering algorithm. The
restructuring graph is clustered with the objective of minimizing the sum of the inter-
cluster costs under the constraint that the sum of the block sizes in a cluster not exceed

the page size.
5. Finally, the blocks are reloaded according to the layout determined in step 4 and the
restructured program is ready for execution.

It has been shown [LAUE79] that, if each page is allowed to contain an arbitrary number of
blocks, the clustering problem is NP-complete. Hence, for a large number of blocks, the cost
to determine an optimal mapping may be extraordinarily high. However, assuming at most two
blocks per page, the problem becomes a weighted matching problem, which may be optimally
performed in 0(/i2-5), where n is the number of blocks in the program [EVES75].

Even though it would be advantageous to obtain the optimal ordering, this is not essential.
Typically, there is a small number of blocks which, if clustered, will produce a very substantial
improvement, and only slight additional improvement usually results from optimal clustering
with respect to any suboptimal solution which properly clusters these crucial blocks. Empirical
investigations [FERD74,FERD75,FERD76,FERD77] showed that substantial improvement can
indeed be obtained using a non-optimal "greedy" clustering algorithm which runs in linear time.
This algorithm combines the pair of nodes with the largest edge weight between them into a

single node, whose size is less than or equal to the page size. The weights of the edges
connecting other nodes to the combined node are set equal to the sums of the weights the same

(< edges had before the two nodes were combined.
Given a program's address trace, let us assume that the memory policy under which the
program will run is known and is such that the blocks which will necessarily be in memory at a
given point of the trace can be determined from the knowledge of the trace. In other words,

{ the amount of memory space allotted to a program at each instant of its virtual time is assumed
10 be unaffected by the behavior of the other programs in the system. Examples of these
policies are all the fixed partitioning schemes and the working set and page fault frequency
policies. Under this assumption, the effects of restructuring on program behavior and
performance can be studied by restricting one's attention to individual programs (for instance,
by running uniprogramming experiments). This assumption will be made throughout the rest
of this paper.

3. The Critical Working Setand Critical LRU Restructuring Algorithms

Critical set restructuring algorithms [FERD74b] attempt to reduce page faults by clustering
blocks which often cause block faults with blocks which are most often in memory when the
block fault occurs. This approach is likely to be effective since every page fault correspondstoa
block fault and reducing the latter can be expected to reduce the former. Note that the
converse is not true, i.e., there are block faults which do not become page faults. Note also
that we assume for simplicity that, when a reference to a block is made, the entire block is
always brought into memory. In other words, blocks do not cross page boundaries. Two
critical set algorithms which are of particular interest in this paper are the critical working set
(CWS) algorithm [FERD74a] and critical LRU (CLRU) algorithm [FERD74b].

Let r, represent the ith reference in the trace, and B(r,) represent the block referenced at time
1. M is the matrix representing the restructuring graph and is called the CWS matrix. Mt • is
the entry in row / and column j of M. W(t,T) represents the working set of blocks at time t
with window size T. The CWS algorithm constructs the restructuring graph as follows.

1. k =0.

2. k =lc + 1.

3. If rk €W(fc-1,T), then /* rk is in the block working set */ go to 2.
4. For all J?/€ W(fc-1,T) do /* increment M by 1*/

MBl.B(rk) = MBiB{rk) + 1.
5. Go to 2.

Essentially, every time there is a block fault, the algorithm increments the entries of M
corresponding to the pairs composed of a block in the working set of blocks and the block
causing the fault.

Now let S(t,m) represent the LRU stack of blocks after time t with stack size m. (The stack
size equals the number of page frames which will be allocated to the program during its
execution after restructuring.) Let *,(t,m) represent the contents of stack position i in S(t,m).
The CLRU algorithm operates as follows.

1. k =0.

2. k = k + 1.

. 3. If rkc S(*-l,m), then /* there is no block fault */ go to 2.
4. For i = 1 to m do /* increment Mby*/

^(*-l.m).*(/*) = Msi(k-\jn).B(rk) + 1-
5. Go to 2.

In other words' everv time there is a block fault, the algorithm increments the entries of the
CLRU matrix Mconnecting the blocks in the block LRU stack with the block causing the fault.

The effectiveness of the CWS and CLRU algorithms has been shown in a number of studies
[FERD74a, FERD75, FERD76a]. Their ability to reduce the number of page faults is a result
of the reduction in the number of potential page faults. Each block fault or critical block
reference is a potential page fault. A potential page fault become real if the block which is
referenced is not linked to another block already in memory. The intent of critical set
restructuring is to reduce the frequency of these events.

3.1 An IRM Analysis of the CWS Algorithm

The Independent Reference Model (IRM) is a simple probabilistic model of program behavior.
It assumes that each block Bt (henceforth to be denoted by i to simplify the notation) is
referenced with a probability bt which is constant and independent of the previously referenced

blocks. Obviously, 2*/ = *» where N is the number of blocks in the program to be
/-i

restructured.

Let us first compute the equilibrium page fault rate as a function of the block reference
probabilities. We assume that there are exactly two blocks per page. This assumption is made
because the restructuring graph only connects pairs of blocks. The contribution of larger
clusters to the reduction of the page fault rate would require more information than that
contained in the graph. The equilibrium page fault rate under the working set policy has been

shown by Denning and Schwartz [DENP72] to be F(WS) = 2p, * U~-P/)r. where Pi is the

probability of referencing page i and N is the number of pages in the program.

Let 6(lfi) and &(lt2) denote the block reference probabilities of blocks 1 and 2 of page i.
Clearly, the equilibrium page fault rate is given by

F(TO)= £ [(*(*,„+ *(W))« (1-*>(*,,)-6(*,2))H. (1)
*-i

Under IRM and with two blocks per page, the probability that block i causes a block fault and
block j is in the block working set is given by:

BFU(WS) = bt * ((1 - bt)T - (1 - b, ~ bj)T)y (2)
since Prob(r, = i) — b{ and

Prob{itWSJtWS) = Prob{i{WS) - Prob(ijWSJtWS)

- 0-Mr-U-*/-tyr-
5Fy(WS) is proportional to the value of the (i,j) entry in the CWS matrix. The weights of
edge (i,j) in the CWS graph will be given by

EWU(WS) = BFfjiWS) + BFfi{ WS)

= b, * ((1 - b,)T - (1 - bt ~ bj)T) + bj * ((1 - bj)T - (1 - bj - b()T). (3)

Let (x,y) denote the y'h block of page x. In the clustering phase of the procedure, we find a
mapping of all pairs of blocks onto a set of pages. That mapping, which places blocks i and j
into page k so that the two blocks can be denoted by (k,l) and (k,2), is one of those which
maximize the following expression:

2 [(*(ft.l)* 0-Vl))T+V2)* (1 -*(*.2))r
*-l

- (*(*.!) + b(k*)) * (1 - *(*.!) - Na.2))7"]. (4)

Note that for a single pair of blocks expression (4) is equal to the right hand side of (3).

Theorem 1: Under IRM, maximizing (4) is equivalent to minimizing the equilibrium page fault

rate F(WS).
Proof: Maximizing expression (4) is equivalent to minimizing the following expression:

S Wou) + *(*.2))r * (1 - *(*.i) - b{kt2))Tl (5)
jfe-i

since the value of the term

S [*<*.!) * (1 - 6<*.l))r + *(*.2) * (1 - *(*.2))r]
Jk-1

is independent of the mapping chosen. Expression (5) coincides with the right-hand side of
(1), i.e., with F(WS). Q.E.D.

Thus, if an optimum clustering algorithm were used and pages were not allowed to contain
more than two blocks, the CWS restructuring algorithm would be optimum. This conclusion is
valid also under a more general Markov model of program behavior [LAUE79] and can
probably be extended to any kind of behavior (an informal proof of the latter statement was
given in [FERD74a]).

3.2 An IRM Analysis of the CLRU Algorithm

Coffman and Denning [COFE73] and King [KINW71] have presented closed form expressions
for the total page fault rate generated by local (fixed partitioning) LRU in statistical equilibrium
when the program obeys the IRM. Unfortunately, those expressions do not lend themselves
easily to an analysis of the effects of restructuring.

Let us consider the case oftwo blocks per page. Let vs denote the equilibrium probability of
stack state s, s = [/lv/2> • • • Jm], where m is the number of elements in the block stack. We
similarly define *y, which however, refers to the page stack of size m. Clearly, given a page
stack state i', a necessary condition for having a fault to a page k is that neither block (k,l) nor
(k,2) be in the block stack s corresponding to s'. This, however, is not a sufficient condition
since the block stack may contain both blocks belonging to a page and hence we may have
pages in the page stack neither of whose blocks appear in the block stack. Reference to these
pages at that time would not cause a page fault. Hence, we have
Theorem 2: An upper bound for the LRU equilibrium page fault rate under IRM is given by:

AF(LRU) = 2 Kfc<*.i) + *(*.2)1 * 2 OJ. (6)
*-l (k,\)/s

(*,2)/»

Proof: The upper bound on the probability ofa fault to page k is given by

[*(*,!) +&(*,2)1 * 2 *V
(k,\Us
(k,2Ws

Summing over all pages in the program, we have (6). Q.E.D.

Assuming two blocks per page and an optimal clustering, let us define the CLRU restructuring
graph in terms of IRM probabilities. When there is a reference to a block not in the block
stack, the weights of all edges connecting the requested block with those in the block stack are
to be incremented by one. Under IRM, this event occurs for each pair of blocks (i,j) with the
probability BFU(LRU) = b(* 2*, • Note that £f},(LRU) is proportional to the element (i.j)

//*
its

of the restructuring graph. Thus, the weight of the edge (i,j) is proportional to

EWtjURU) = BFU(LRU) + BF^LRU)

-*/* 2*s+bj* 2*s. (7)
Hi j/s
jts its

We observe that

2 ** = 1- 2** ~ 2^ - 2 **. (8)
'J/» its lis ijts

H* j*s

Substituting (8) into (6), we obtain

AF(LRU) = 2 [*<*,!> + bikM] * [1- 2 *,- 2 *,- 2 *J. (9)
"l <.0« (*.D/5 (Jfc.l)«5

(A ,2)/* (*.2)« (*.2)«

Finally, we have the following theorem.

Theorem 3: CLRU minimizes AF(LRU).
Proof: Expanding expression (9), we obtain

m

2 (*(*.!) + *(*,2)) * 2 *s
*-l (k,lUs

ikJHs

N

= 2 ti(k,\) + ^(Jfc.2) —*(*.!) * 2 *s ~ b(k,2) * 2 *s ~
-> (.D«* (k,l)ts

(k,2)js (k,2Us

Vn* 2 *#-*(«)• 2 »* - (*(*.d + *(*j>) * 2 *»]• (io)
(*,1)/j (Jfc.l)rfi (*,l)€j
(k,2)ts (k,2)ts (k,2Us

The following expressions are constant (i.e., independent of the block layout):

2 [*<*.!>•(2 **+ 2 ^)] = 2^(*,d* 2 *,1.
-l (.1)« (Jfc,l)« Jfc-1 (Jfc,l)«
^ (Jfc,2)* (Jfc.2)« ^

2[*(«>*(2^+2 ^)] = 2^(*.2>* 2 *J.
-l <Jfc.l)/ (Jfc.l)« Jfc-1 (Jfc.2)«
N (k,2)ts (k,2)ts N

2 [*(*.!)*(2^+2 **)]" 2 &(*.!> * 2 »J.
-l (.!)/* (Jfc.l)* Jfc-1 (Jfc,l)/j
^ (*.2)«* (Jfc.2)* N

2^(*.2>*(2 **+ 2 **)]-2^(4.2)* 2 *J.
-l (.!)« (kAWs Jfc-1 (k.2Us

(Jk,2)/* (k,2)/s

By manipulating expression (10) using the constants above, we obtain the following expression:

2 (*(*..)* 2 **+*<«)* 2 *J = 2 K*<*.i>+ *(*,»)-*(*.!)• 2*s-
-l (.1)/J (Jfc.l)cj Jfc —I (Jt.l)«

(*.2)« (Jfc.2)*

(ik,2) 2 **-(A(*.i) + *(*.2))* 2**1- no
(*.2)fJ (Jk.l)/J

(k.2)/s

By (7), finding a block order which maximizes (11) is the goal of the clustering procedure for
CLRU. We see that maximizing (11) minimizes expression (9), i.e., AF(LRU). Q.E.D.

4. Extending Strategy Oriented Restructuring

Figure 1 shows a three-level memory hierarchy. The following assumptions are made for this
hierarchy.

1. The inclusion property [MATR70] does not necessarily hold: a page which is at level I
may not be at level II for certain combinations of memory management policies. However,
we will enforce inclusion by causing that page to be loaded into the level II memory

PAGE PATHS

LEVEL I

LEVEL II

*

LEVEL III

LEVEL l/ll

MEMORY POLICY

LEVEL ll/lll

MEMORY POLICY

Figure 1. Three Level Memory Hierarchy Model

whenever it is referenced at level I.

2. Paging is performed on demand as stated in Assumption 1: a reference at level I (which
did not cause a fault at level I) may cause a fault at level II, if the data item requested is
not in level II.

3. The amount of information moved between any two adjacent levels of memory in a
transfer is one page.

In any restructuring algorithm, the block-to-page mapping must be the same at all levels.
Hence, the restructuring algorithm must create a single restructuring graph to be used at both
levels I and II.

One scheme for extending program restructuring to three levels consists of applying the two-
level techniques between each of the levels of memory using a common restructuring graph.
With this scheme, difficulties may arise from conflicts due to larger contributions to edge costs
from one of the levels of memory. If, for example, critical set restructuring algorithms are to be
applied between the levels of memory, the number of block faults to level I could be so large
that the level-II block faults would not substantially influence the weights in the restructuring
graph and the combined scheme would not necessarily reduce the number of level-II faults,
whose cost may be much higher than that of level-I faults.

Other performance indices may also be affected. For example, the space-time product (STP) of
a program is a function of the fault rate, of the memory occupancy, and of the page transfer
time. Certain types of restructuring algorithms have been known to increase the mean memory
occupancy. If using a combined scheme leaves the number of expensive faults unchanged and
increases the mean memory occupancy, then the most important part of the STP will also be
adversely affected.

The rest of this section and the next section will explore the effectiveness of applying some
two-level restructuring techniques between each level of a three-level memory hierarchy.

4.1 The CWS-CWS Algorithm

In the three level memory hierarchy illustrated in Figure 1, we assume that each pair of
adjacent levels is managed by the working set policy. This means that there are two windows
with sizes T and T\ T being the window size at level I and T the window size at level II. If
we assume that T < T\ then the inclusion property holds, i.e., every page in level I is also in
level II. When both levels I and II of memory are managed by the working set policy, we may

n

use the CWS-CWS algorithm to resturcture programs.

If r, is the i'h reference issued by the program to be restructured, B{rt) the block referenced at
time i, M^ restructuring matrix, and W(t,T) the working set of blocks at time t with window
sizeT, the CWS-CWS algorithm may be described as follows.

1. k = 0.

2. k =jfc + l.

3. If rk €W(*-l,r), then /* rk is in the level-I block working set*/ go to 2.
4. For all Bt «W(*-l,r) do /* increment the matrix by 1*/

MB,B(rk) *= MBiB(,k) + 1.
5. If rk €W(&-l,r), then /* rk is in the level-II working set */ go to 2.
6. For all B{ eW(*-l,r) do /* increment the matrix by 1*/

MBl%B{rk) = MB{ Bi,k) + 1.
7. Go to 2.

Thus, each time there is a block fault to levels II or HI, the algorithm increments the weights
of the edges connecting the blocks in the working sets with the block causing the fault. We
now assume that there are exactly two blocks per page, and that the reference string of the
program obeys the IRM. Then, the equilibrium page fault rate for a three-level memory
system with a working set policy between each level is given by:

F{WS-WS) = 2iPk * [(1 ~pk)T + (1 -p*)H),
Jfc-i

where pt represents the probability of referencing page i and N is the number of pages in the
program. F(WS-WS) is the sum of the page fault rates to all levels. Note that the definition
of F(WS-WS) assumes that all faults have the same weight.

Let &(*,!) and bikt2) be defined as above. Thus, the equilibrium page fault rate in terms of
block reference probabilities is:

F{ws-ws) =Jab^ +bikt2)] *[(i - b{ktl) - b{kt2)V +(i - bikA) - v2))H). (12)
The optimality result of Theorem 1can be extended to the CWS-CWS algorithm. Assuming
two blocks per .page and an optimum clustering, each element BFtJ of the CWS-CWS
restructuring matrix is proportional to:

BFtjiWS-WS) = bt * [(1 - bt)T - (1 - bt - bj)T +

0 ~ b,)r - {I - bt - bj)r), (13)
where bt and b} are the reference probabilities of blocks i and j.
The non-directed restructuring graph has weights proportional to:

EWU{WS-WS) = BFtj(WS-WS) + BFfi{WS-WS)
= bt*[{\- bt)T + (1 - bt)r] + bj * [(1 - bj)T +(1 - bj)r]

- ibt+bj) * [{\-bt-bj)r + (1 -bt -b^l (14)
In the clustering phase of the procedure, we find a mapping of ail pairs of blocks onto the set of
pages which maximizes the following expression:

N

2(*(*.» * Id - *<jfc,u)r + (i - *(jfc,,))r] + b{kt2) * [(i - b(k,2))r + (i - V2))H -

6(jfc.,) * Id - *(jfc.,) - bikt2))r + (1 - b{ktl) - b{kt2))r] +
*>ik,2) * [(1 - bikA) - b(kt2))r + (1 - biktl) - V2))H). (15)

Thus we have

~\

Theorem 4: Under IRM, the CWS-CWS algorithm minimizes the combined equilibrium page
fault rate F(WS-WS).
Proof: Maximizing expression (15) is equivalent to minimizing the following expression

2 (fo(A.D + b(k,2)1 * Id " *<*.!) - V2))r + 0 * *<*.!> - *(Jfc.2))r])^ (16)
Jfc-1

since the term

2 (*(*.» * Ul - b{ktl))r + (1 - b{ktl))r) + b{kM * [(1 - b{kt2))r + (1 - bk,2)r\)
Jfc-1

is constant, i.e., independent of the mapping. Expression (16) coincides with the right hand
side of (12), that is, with F(WS-WS). Q.E.D.

4.2 The CWS-CLRU Algorithm

A three level memory hierarchy will now be considered in which level I is managed by the
working set policy and level II by the LRU policy. The appropriate restructuring algorithm to
be used in this case is the CWS-CLRU algorithm.

If />, 6(r,), W(t,T), and M represent the same entities as in section 3.1, S(t,M) is the block
LRU stack after time t with stack size M and f/(t,M) represents the contents of position i in
stack S(t,M), the CWS-CLRU algorithm constructs the restructuring graph by the following
procedure.

1. k =0.

2. k =k + 1.

3. If rk « W(£—1,7), then /* rk is in the level-I working set */ go to 5.
4. For all Bt e W(*-l,r) do /* increment the matrix by 1*/

MBl,B{rk) = MBitB{rk) + 1.
5. If rk € S(k-1,M), then /* not an LRU block fault */ go to 2.
6. For i = 1 to N do /* increment the matrix by 1 */

^s,(k-\M),B(rk) = ^(Jfc-l.A/).5(rA) + 1-
7. Go to 2.

Each time there is a block fault at levels I or II, we increment by 1 the weights of the edges
which connect the blocks in the working set or in the LRU stack with the block causing the
fault. For this combination of memory management policies, the inclusion property is not
guaranteed to hold. In other words, a block which is at level I may not be in level II. Hence,
the destination of the conditional branch in step 3 is to step 5 instead of to step 2.

We now assume that the program to be restructured behaves according to the IRM, that there
are exactly two blocks per page, and that an optimal clustering can be obtained. The (i,j)
element in the CWS-CLRU restructuring matrix is proportional to

BFtj^bt* I2*s + 0 ~ bt)T - {I - bt - bjfl (17)

where tts is the equilibrium probability of block stack s, and T is the working set window size.
(The page stack has the same number of positions as the block stack).

Thus, the weight of edge (i,j) in the restructuring graph is proportional to

EWU(WS-LRU) = BFtj(WS-LRU) + BFfi{WS-LRU)

= bt * 2*f + bj * 2»* + * * U - bi)T + V 0 - bj)T
i4s I ts
jts }4s

-(bt+bj)* (\~bt-bj)T. (18)

C:

10

In the clustering phase of the procedure, we find amapping of all pairs of blocks onto the set of
pages which maximizes

N

2;fo<*.i> • 2 ** +*(Jk.2) * 2 ** +*(*.!) * (i - b{kA))T +
Jfc-1 (Jfc.D*

(*.2)«
(Jk.l)«
(k,2)/s

b(k,2) * (1 ~ ^(Jfc.2))7 - (*(Jfc.,) +&(jfc.2)) * (1 - b(ktl) - b{kt2))Tl (19)

Expression (19) is a sum of terms each of which is equal to the right-hand side of expression
(18), and which are chosen so as to maximize this sum. The effect ofmaximizing (19) is given
in the following theorem.
Theorem 5: Under IRM, the CWS-CLRU restructuring algorithm minimizes an upper bound for
the combined equilibrium page fault rate.
Proof: An upper bound for the combined equilibrium page fault rate F(WS-LRU) is given by
the following expression:

N

2 W(*.l) +*(Jfc,2)) * 2 ^ + (*(Jfc.l) +*<Jfc,2)) * (1 - b(k,l) " ^(Jfc.2))7"]. (20)
(k,2)4s

Expression (20) is equal to the sum of expression (5), the working set page fault rate, and
expression (9), an upper bound on the LRU equilibrium fault rate in a two-level hierarchy. By
Theorems 1 and 3, we have that maximizing expression (19) minimizes expression (20).
Q.E.D.

How distant is the upper bound from the actual fault rate? We are confined to computing the
upper bound since under LRU there is no direct relationship between the equilibrium block
fault rate and the equilibrium page fault rate.

Note that, in expression (8), the probability that blocks i and j are in the block stack s at the
same time is given by the term 2 **• If blocks i and j are in the same page, the corresponding

ijts

page stack, s', will contain pages whose blocks are not in s. (If the number of positions in the
block stack were greater than that of the page stack, we could not be sure that all blocks in the
block stack would be represented in the page stack).

The size of the difference between the upper bound and the actual fault rate is approximatly
proportional for each pair of blocks (k,l) and (k,2) to

~ 2 (V * (1 -/(2(2 *,) * " S))-
(k.ihs' y-i u.iUs
(Jfc.2)«* U.2)«

s&s

where

/(*.*)-

2 (i- 2 *;- 2 *i- 2 <*i*/<2< 2 *i)**,i))
*-l (k,\)4s (k.\)4s (k,l)4s Jfc-1 (Jfc.l)^

(k,2)/s {k.2)/s (k.2)4s (k.2)4s
(k.l)/s (k,\)*s (Jfc.l)«i (Jfc,])«j
(*.2)«i (k,l)4's (Jfc,2)«i (Jfc.2)«j if x ^ 0

0 if* =0

i is obtained from stack s by appending \x\ stack positions to the end and s* is a stack of the
same size as i.

11

The expression representing the difference, though quite complex, is a sum of terms of degree
/•'">• greater than 2. If the term 2 T* ls smaN» then the difference will be small, since function
v (k,l)ts

(Jfc.2)«i
(1-0 has positive values less than 1.

This discussion leads us to the conclusion that, for LRU, in addition to finding an optimal
("""••• clustering (which is generally not unique), the restructuring procedure should also minimize
v— the value of 2 *V

(*.i)«*
(*.2)«

5. Experimental Results

5.1 Experiments with the CWS-CWS Algorithm

Trace-driven simulation was used for an experimental study of the CWS-CWS algorithm's
(performance. A simulator was implemented to model a three-level memory hierarchy in which

sampled working set was the memory management policy between each level.

The sampled working set policy is defined by two parameters, namely T, the size of the
window, and S, the sampling interval. At each time instant which is an integer multiple of S,
the execution of the program is interrupted. All pages not referenced within [nS-T+l,nS] are
excluded from the working set. The size of the working set can only decrease at those fixed
intervals. For the three level case, two sampling intervals and two window sizes for the
respective levels are to be specified. The level II window was defined as an integer multiple of
the level I window.

Three address traces (APL, FFT, and WATFIV) were used in the experiments. These traces
were previously analyzed by Smith in [SMIA76,SMIA77,SMIA78b]. For each trace, a series of
12 simulations was performed. In the experiments, the level I window size T were set equal to

(10 and 20 reference sets (there are 1173 references/reference set) and the level II window size
T to 40, 60, and 80 reference sets. For each value of the window size, non-restructured and
restructured layouts of the various programs in virtual space have been considered. The
clustering algorithm placed exactly two blocks in each page.

At each sampling point t, the space-time product STPt for level i was updated as follows:

STPt =STPt + MMOt(t) * (1 + npfx{t) * TT + npf2(t) * TT')

where MMOj(t) is the level / mean memory occupancy for the interval [t-s+l,t], npft(t) is
the number of page faults at level i for the interval [t-s+l,t], and TT and TT are the page
transfer times for levels I and II respectively. In the simulation runs, TT was set equal to 10
ms and TT to 100 ms.

The results of the simulations are presented in Tables I, II, and HI. Figures 2 through 7 show
K the level I and level II STP's as a function of the level II window size for the three programs.

In all cases, the CWS-CWS algorithm reduced the page fault rate at both levels of the memory
hierarchy. The largest percent reduction occurred for the APL trace at level I for T = 20 and
T = 80. A 51 percent reduction in the page fault rate was achieved. The least amount of
improvement (only 4 percent) occurred for the level I page fault rate of the FFT trace with T
= 10 and T= 80.

The mean memory occupancy increased in many cases. This phenomenon may be explained by
/ referring to the notion of spatial locality. For programs which exhibit little spatial locality, a

critical set algorithm can decrease the mean memory occupancy by reorganizing the layout of
the program so that blocks are placed in pages which have a strong likelihood of being
referenced following each other. However, if a program is spatially local, a reduction in the
page fault rate, which is the objective of critical set restructuring, may be achieved by
decreasing spatial locality, thereby increasing mean memory occupancy.

12

^f^Sf* alS° ?ecreased in this series of experiments. The largest decrease was 34 percent
tor the APL trace in level II memory with level I window size equal to 20 and level II window
size equal to 40. As shown by Figures 2through 7, the STP's for the restructured programs are
consistently lower than or equal to the STP for the non-restructured programs.
Table III shows that, for the restructured WATFIV program, the page fault rates with T = 60
were lower than the page fault rates with T = 80. This is due to the fact that, for that
particular program, the page fault rates had almost reached, because of restructuring, their
minimal values and that a non-optimal clustering algorithm was used. (Note that the total
number of pages in the WATFIV trace was 41 and the number of level II faults for T = 60 is
44).

5.2 Experiments with theCWS-CLRU Algorithm

A series of experiments, also based on a trace driven simulator and the three address traces
APL, FFT, and WATFIV, were performed to test the effectiveness of the CWS-CLRU
restructuring algorithm. The page sizes assumed for the three programs were 2048, 1024, and
2048 bytes respectively. The simulator represented athree level memory system in which level
I was managed by a sampled working set strategy and level II by LRU. When a fault to the
level I memory occurred, a fetch from level II was attempted. If the page resided in the level
II memory, the page was brought into the level I working set. If the page did not reside in
level II, this caused alevel II fault which resulted in a fetch from the level III memory.
To insure that the inclusion property would still hold, in spite of its not being automatically
enforced by the memory policy, alevel II fault was generated when a page not present in level
II memory was referenced even if the page was found at level I. Thus, a page fault at level II
was not necessarily a result ofa fault at level I. Note, however, that this event may occur only
when the level I working set is larger than the level II LRU stack.

For each string, 12 simulations were performed. They exhaustively encompassed the
combinations of the values of T (10 and 20 reference sets), of those of the level II stack size
(25, 30 and 40 pages), and of the two layouts (non-restructured and restructured) of the three
programs. Page transfer times were chosen to be 10 and 100 milliseconds for level I and II
respectively.

The main results of the simulation experiments are presented in Tables IV, V, and VI, and
some of them are plotted in Figures 8 through 13. In most cases, the effect of restructuring on
the page fault rate was to reduce it. However, in some cases, and in particular in the level II
faults for the FFT trace, the opposite effect was obtained. This can be attributed to the
behavior of the FFT program, which is characterized by cyclic and sequential referencing, and
to the fact that the non-restructured FFT program may be operating very close to its optimal
performance in the WS-LRU environment. For traces other than FFT, an increase in the fault
rate only occurred in level II memory with stack size 40. These small increases could be due to
the near minimal number of page faults and to the non-optimality of CLRU and the clustering
algorithms. The exceptionally large level II page fault rate of WATFIV with a stack size of 25
pages was due to the fact that the mean memory occupancy for the level I memory was larger
than the amount allocated for the level II fixed partition. Hence, many useful pages which
were relegated to level III because of insufficient room in level II were subsequently referenced
at level I and were then forced back into level II.

As in the CWS-CWS experiments, the level I mean memory occupancy increased in a number
of cases. However, a substantial number of restructured layouts resulted in a mean memory
occupancy reduction.

For the APL and WATFIV traces the space time product was generally reduced or increased
very slightly. The STP of the FFT trace increased in all cases. This was primarily a result of
the small reduction in the number of page faults and of the substantial increases in the mean
memory occupancy.

'~\

13

The effect of restructuring on the combination of page fault rates and mean memory occupancy
was excellent for the APL trace. In most cases, the mean memory occupancy increased very
slightly while the number of page faults was dramatically reduced over the non-restructured
cases (see Figure 9). As a result, the level I STP was reduced, as shown in Figure 8.

The effectiveness of restructuring was also evident for the WATFIV trace. A significant
reduction in page fault rate and a small decrease in the mean memory occupancy was obtained,
except when the stack size was 40 pages, in which case the reduction only occurred in the page
fault rate. The effect on the STP as reflected in Figure 12 was favorable. The restructured
program consistently outperformed the non-restructured one. Figure 13 shows the
effectiveness of restructuring at level II. For a given level II memory size, the page fault rate
was consistently lower in the restructured case, except at stack size 40. Again, this may be the
result of a near-optimum performance in the non-restructured case and of the perturbations
introduced for this level II size by the non-optimality of the restructuring and clustering
algorithms.

6. Concluding Remarks

Program restructuring has been studied in the context of memory hierarchies with three levels.
In particular, the WS-WS case and the WS-LRU case were considered. Three-level extensions
of the well known two-level strategy-oriented critical set restructuring algorithms for these two
cases were studied theoretically as well as experimentally.

In general, the effectiveness of critical-set program restructuring in reducing the page fault rate
has been demonstrated for a three-level hierarchy. This was especially true for the APL and
WATFIV traces used in the simulation experiments. For the FFT trace, the results were less
satisfactory, since the page fault rate for LRU management increased and for working set
management decreased only slightly. This behavior may be attributed to the peculiar (cyclic
and sequential) referencing characteristics of the program.

The analytic results of our investigation confirm the effectiveness of the CWS-CWS
restructuring algorithm. Aside from the FFT trace, the CWS-CLRU algorithm also performed
well in spite of the weaker analytic results. This weakness of the CWS-CLRU algorithm may
be an additional factor responsible for the poorer results obtained for the FFT trace in the
CWS-CLRU experiments.

As in a two-level hierarchy, mean memory occupancy was generally increased by restructuring.
However, the increases in many cases were less than those due to increasing the level I window
size from 10 to 20 reference sets.

Finally, the space-time product was generally reduced. In the experiments, the transfer time
from level III to level II was assumed to be 10 times that of a transfer between level II and
level I. This leads to a very high cost for a level II fault when compared with the cost of
memory. Some experiments resulted in a minor decrease in level II page fault rate
corresponding to an increase in mean memory occupancy. In most cases, FFT being the
exception, the STP was reduced anyway.

The effectiveness of program restructuring has been clearly demonstrated for programs with
behaviors similar to the APL and WATFIV traces. For programs which behave like the FFT
trace, restructuring cannot be expected to be very effective (even though, for the FFT trace in
the working set environment, the page fault rate and the STP were reduced). The improvement
of performance in cases of sequential referencing behavior has been explored by a number of
investigators [SMIA78a,SMIA78b,TRIK76]. Their approach, based on prefetching policies,
seems to be more fruitful than restructuring for FFT-like programs.

14

References

O [COFE73] Coffman, E. G. and P. J. Denning, Operating Systems Theory, Prentice Hall
v- Englewood Cliffs, 1973.

[DENP72] Denning, P. J. and S. C. Schwartz, "Properties of the Working-Set Model," Comm.
ACM 15, 3 (Mar. 1972) 191-198.

[EVES75] Even, S. and O. Kariv, "An 0(n") Algorithm for Maximum Matching in General
Graphs," Proc. 16th Symp. on Found. ofComp. Sci. (1975) 100-112.

k [FERD74a] Ferrari, D., "Improving Locality by Critical Working Sets," Comm. ACM 17 (Nov
1974) 614-620.

[FERD74b] Ferrari, D., "Critical-Set Algorithms for Program Locality Improvement," Proc.
12th Atherton Conf. on Circuit and Systems Theory, Montecello, ILL (Oct. 1974)
641-648.

[FERD75] Ferrari, D., "Tailoring Programs to Models of Program Behavior," IBM J. Res.
Develop. 19, 3 (May 1975) 244-251.

[FERD76a] Ferrari, D. and E. Lau, "An Experiment in Program Restructuring for Performance
Enhancement," Proc. 2nd Int. Conf. on Software Engineering. San Francisco (Oct
1976) 146-150.

[FERD76b] Ferrari, D., "The Improvement ofProgram Behavior," Computer 9, 11 (Nov. 1976)
39-47.

[FERD77] Ferrari, D. and M. Kobayashi, "Program Restructuring Algorithms for Global LRU
Environments," Proc. Int. Computing Symp. 1977, Liege, Belgium (Apr. 1977)
277-283.

[GECJ74] Gecsei, J., "Determining Hit Ratios for Multilevel Hierarchies," IBM J. Res Develop,
18, 4 (July 1974) 316-327.

[GOLR74] Goldberg, R. P. and R. Hassinger, "The Double Paging Anomaly," AFIPS Conf
Proc. (NCC 1974) 195-199.

[KINW71] King, W. F., Ill, "Analysis of Demand Paging Algorithms," Proc. IFIP Congress 71,
Ljubljana, Yugoslavia (Aug. 1971) TA-3-155 to TA-3-159.

[LAUE79] Lau, E. J., Performance Improvement of Virtual Memory Systems by Restructuring and
Prefetching. Ph.D Dissertation, U. C. Berkeley, 1979.

[MATR70] Mattson, R. L., J. Gecsei, D. R. Slutz, and I. L. Traiger, "Evaluation Techniques
'... for Storage Hierarchies," IBM Sys. J. 9,2(1970) 78-117.

[SMIA76] Smith, A. J., "A Modified Working Set Paging Algorithm," IEEE-TC C-25, 9 (Sept.
1976) 907-914.

[SMIA77] Smith, A. J., "Two Simple Methods for the Efficient Analysis of Memory Address
Trace Data," IEEE-TSE SE3, 1 (Jan. 1977) 94-101.

15

[SMIA78a] Smith, A. J., "Sequentiality and Prefetching in Data Base Systems," ACM Trans.
,' DBS 3, 3 (Sept. 1978) 223-247.

[SMIA78b] Smith, A. JM "Sequential Program Prefetching in Memory Hierarchies," Computer
11, 12 (Dec. 1978)7-21.

O [TRIK76] Trivedi, K. S., "Prepaging and Applications in Array Algorithms," IEEE-TC C25, 9
(Sept 1976) 915-921.

[TUEW76] Tuel, W. G., Jr., "An Analysis of Buffer Paging in Virtual Storage Systems," IBM J.
Res. Develop. 20, 5 (Sept 1976) 518-520.

Non-Restructured Restructured

2ND LVL

WIN=40

2ND LVL

WIN=60

2ND LVL

WIN=80

2ND LVL

WIN=40

2ND LVL

WIN=60

2ND LVL

WIN=80

(1ST LVL WIN 10)

1ST LVL FAULT RATE

2ND LVL FAULT RATE

1ST LVL MMO (A%)
2NDLVLMMO (A%)
1ST LVL STP X 103 (A%)
2ND LVL STP X 103 (A%)

.3057

.1214

22.56

29.39

662

1008

.3057

.0694

22.56

32.70

393

705

.3057

.0616

22.56

34.18

358

697

.1727

.0813

25.77

29.14

498

736

(14)
(-D

(-25)
(-27)

.1727

.0662

25.82

31.21

382

660

(14)
(-5)
(13)
(-6)

.1630

.0603

25.57

32.20

344

631

(13)
(-6)
(-4)
(-9)

(1ST LVL WIN 20)

1ST LVL FAULT RATE

2ND LVL FAULT RATE

ISTLVLSTPMMO (A%)
2ND LVL MMO (A%)
1ST LVL STP X 103 (A%)
2ND LVL STP X 103 (A%)

.2119

.1214

25.50

29.39

776

952

.2119

.0694

25.50

32.70

438

644

.2119

.0616

25.50

34.18

392

634

.1119

.0696

31.04

32.95

531

631

(22)
(12)

(-32)
(-34)

.1075

.0550

30.83

34.32

384

545

(21)
(5)

(-12)
(-15)

.1031

.0503

30.69

35.07

348

548

(20)

(3)
Ml)
(-14)

TABLE I. APL SIMULATION RESULTS

(1ST LVL WIN 10)

1ST LVL FAULT RATE
2ND LVL FAULT RATE
1ST LVL MMO (A%)
2ND LVL MMO (A%)
1ST LVL STP X 103(A%)
2ND LVL STP X 103 (A%)
(1STLVL WIN 20)

1ST LVL FAULT RATE
2ND LVL FAULT RATE
1ST LVL MMO (A%)
2ND LVL MMO (A%)
1ST LVL STP X 103(A%)
2ND LVL STP X 103 (A%)

Non-Restructured

2ND LVL

WIN=40

.1275

.0649

13.60

16.55

208

278

.0852

.0649

14.89

16.55

231

259

2ND LVL

WIN=60

.1275

.0516

13.60

18.00

173

258

.0852

.0516

14.09

18.00

185

238

2ND LVL

WIN=80

.1275

.0419

13.60

19.16

152

247

.0852

.0419

14.89

19.16

159

226

2ND LVL

WIN=40

.1203

.0512

16.18

18.92

203

2551

.0728

.0476

17.74

19.24

209

223

(19)
(14)
(-2)
(8)

(19)
(16)

(-10)
(-14)

TABLE II. FFT SIMULATION RESULTS

Restructured

2ND LVL

WIN=60

.1191

.0374

16.48

20.27

173

232

.0736

.0358

17.77

20.39

170

205

(21)
(13)
(0)

(-10)

(19)
(13)
(-8)

(-14)

2ND LVL

WIN=80

.1223

.0310

16.58

21.29

154

227

.0736

.0302

17.65

21.03

146

194

(22)

(11)
(1)

(-8)

(19)
(10)
(-8)

(-11)

Non-Restructured Restructured

2ND LVL

WIN=40

2ND LVL

WIN=60

2ND LVL

WIN=80

2ND LVL

WIN=40

2ND LVL

WIN=60

2ND LVL

WIN=80
(1ST LVL WIN 10)

1ST LVL FAULT RATE

2ND LVL FAULT RATE

1ST LV MMO (A%)
2ND LVL MMO (A%)
1ST LVL STP X 103(A)
2ND LVL STP X 103 (A%)

.2404

.1000

26.43

31.23

250

338

.2404

.0810

26.43

32.07

203

273

.2404

.0784

26.43

33.73

206

295

.1551

.0625

34.55

37.04

210

253

(31)
(19)

(-16)
(-25)

.1438

.0524

33.84 (28)
36.14 (13)

167 (-18)
198 (-27)

.1517

.0602

34.70

38.09

203

248

(31)

(13)
(-0

(-16)
(1ST LVL WIN 20)

1ST LVL FAULT RATE

1ST LVL FAULT RATE

1ST LVL MMO (A%)
2ND LVL MMO (A%)
1ST LVL STP X 103(A%)
2ND LVL STP X 103 (A%)

.1614

.1000

28.64

31.23

278

316

.1614

.0810

28.64

32.07

215

252

.1614

.0784

28.64

33.73

214

271

.1045

.0568

40.29

41.77

225

226

(41)
(34)

(-19)
(-28)

.1000

.0536

38.39 (34)
39.57 (03)

192 (-11)
197 (-22)

.1091

.0551

40.20

42.35

213

232

(40)
(26)

(0)
(-14)

TABLE III. WATFIV SIMULATION RESULTS

Non-Restructured Restructured

2ND LVL

STKSIZ=25

2ND LVL

STKSIZ=30

2ND LVL

STKSIZ=40

2ND LVL

STKSIZ=25

2ND LVL

STKSIZ=30

2ND LVL

STKSIZ=40

(1STLVL WIN 10)

1ST LVL FAULT RATE
2ND LVL FAULT RATE

1ST LVL MMO(A%)
1ST LVL STP X 103(A%)

.4203

.3715

22.46

2178

.4203

.1897

22.46

1228

.4203

.0514

22.46

504

.2468

.1937

24.68 (10)
1121 (-49)

.2227

.0927

23.50 (15)
663 (-46)

.2358

.0452

24.98 (11)
430 (-15)

(1ST LVL WIN 20)

1ST LVL FAULT RATE
2ND LVL FAULT RATE

1ST LVL MMO(A%)
1ST LVL STP X 103 (A%)

.2600

.8715

25.33

2326

.2600

.1897

25.33

1298

.2600

.0514

25.33

486

.2086

.2033

22.08 (-13)
1275 (-45)

.1489

.0909

24.56 (-3)
682 (-47)

.1603

.0549

28.82 (14)
510 (5)

TABLE IV. APL SIMULATION RESULTS

c

c

Non-Restructured Restructured

2ND LVL

STKSIZ=25

2ND LVL

STKSIZ=30

2ND LVL

STKSIZ-40

2ND LVL

STKSIZ=»25

2ND LVL

STKSIZ-30

2ND LVL

STKSIZ=40

(1ST LVL WIN 10)

1ST LVL FAULT RATE

2ND LVL FAULT RATE

1ST LVL MMO (A%)
1ST LVL STP X 103 (A%)

.1528

.0318

13.61

191

.1528

.0238

13.61

164

.1528

.0163

13.61

134

.1437

.0345

15.89

230

(17)
(20)

.1509

.0294

16.44 (21)
212 (29)

.1437

.0163

15.66 (15)
155 (16)

(1ST LVL WIN 20)

1ST LVL FAULT RATE

2ND LVL FAULT RATE

1ST LVL MMO (A%)
1ST LVL STP X lO3 (A%)

.1020

.0318

14.85

185

.1020

.0238

14.85

158

.1020

.0163

14.85

126

.0929

.0345

17.02

223

(15)
(4)

.0945

.0302

17.53 (18)
205 (30)

.0925

.0163

17.09 (15)
146 (16)

TABLE V. FFT SIMULATION RESULTS

Non-Restructured Restructured

2ND LVL

STKSIZ=25

2ND LVL

STKSIZ=30

2ND LVL

STKSIZ-40

2ND LVL

STKSIZ=25

2ND LVL

STKSIZ-30

2ND LVL

STKSIZ=40

(1ST LVL WIN 10)

1ST LVL FAULT RATE

2ND LVL FAULT RATE

1ST LVL MMO (A%)
1ST LVL STP X 103 (A%)

.3714

1.0101

26.52

2223

.3714

.1499

26.52

410

.3714

.0593

26.52

209

.2897

.1879

22.93 (-14)
4351 (-80)

.2204

.1264

25.70 (-3)
344 (-16)

.2293

.0593

30.74 (16)
202 (-3)

(1ST LVL WIN 20)

1ST LVL FAULT RATE

2ND LVL FAULT RATE

1ST LVL MMO (A%)
1ST LVL STP X 103 (A%)

.1957

1.0101

28.74

2280

.1957

.1499

28.74

404

.1957

.0593

28.74

186

.1902

.1823

25.11 (-13)
436 (-81)

.1443

.1230

26.98 (-6)
337 (-17)

.1141

.0604

32.66 (14)
188 (1)

TABLE VI. WATFIV SIMULATION RESULTS

n

O

800

700-

600-

500-

£ 400-1
I-
co

300-

200-

100-

20 30
—r

40

N. ••- \

—r-

50

RX = RESTRUCTURING

NRX = NO RESTRUCTURING

X IS LEVEL I WINDOW

NR20

R10

60
"T"

70
"1

80

2ND LVL WINDOW

APL First Level Space Time Product vs Second Level Window Size

FIGURE 2
M02256013

1100-,

1000-

n

O

900-

800-

x 700-

CO

600-

500-

400-

300

30 40

RX = RESTRUCTURING

NRX = NO RESTRUCTURING

X IS LEVEL I WINDOW

-i 1 r-

50 60 70

2ND LVL WINDOW

NR10

NR20

R10

R20

80 90

APL Second Level Space Time Product vs Second Level Window Size

FIGURE 3

*«AS\S%P0S\4 O

260 -i

240 -

C

o

Q.

co

220 "

200 "

180 -

160 H

140

120 -

100 *

30

R20

R10 V.
NR20

NR10

40

RX = RESTRUCTURING

NRX = NO RESTRUCTURING

X IS LEVEL IWINDOW

•-.>*v

-i 1 r
50 60 70

2ND LVL WINDOW

^»^ ^NR20
V^R10

NR10

»R20

"T"

80

n

90

FFT First Level Space Time Product vs Second Level Window

280-i

260-

240-

220-

o

x 200 H
£L
I-
co

190-

180-

170-

150

30

M02256010

NR10

R20.

40
—r-

50 60

2ND LVL WINDOW

FFT Second Level Space Time Product vs Second Level Window

FIGURE 5

RX

NRX

70

RESTRUCTURING

NO RESTRUCTURING

X IS LEVEL I WINDOW

NR10

••R10

NR20

*• R20

80 90

o

o

X

a.

co

280-1

260-

240-

220-

\

200-

180-

160-

140-

120

30 40

RX = RESTRUCTURING

NRX = NO RESTRUCTURING

X IS LEVEL I WINDOW

NR20

.• R20

"*•• v ^•***- ..NR10

v *• ••*

• ••

V

n 1 r
50 60 70

2ND LVL WINDOW

/

80

"I

90

WATFIV First Level Space Time Product vs Second Level Window

FIGURE 6

n

O

340-i

320-

300-

280-

£ 260
co

240-

220-

200-

M02256008

180

30 40 50 60 70

2ND LVL WINDOW

WATFIV Second Level Space Time Product vs Second Level Window

40
T"

50

RX = RESTRUCTURING

NRX = NO RESTRUCTURING

X IS LEVEL I WINDOW

^ NR10

NR20

R10

. R20

/ ..••

60

FIGURE 7

80

i

90

o
o

O

X

I-
CO

M02256007

3000

2000-

1000-

NR20.25

NR10.25

R20'2\ nrioVVNR2030
R10,25V *•

% #.
\%

RXY = RESTRUCTURING
NRXY = NO RESTRUCTURING

X IS LEVEL I WINDOW
Y IS LEVEL II STACK SIZE

<y R20.30
R10,30%**V|«.##. ^

R20.40

NR 10.40

NR20.40

R10.40

15 20
"T"

25 30
T-

35
"T"

40 45

2ND LVL STKSI2

APL First Level Space Time Product vs Second Level Stack Size

FIGURE 8

.40-1

.35-

u.
Q.

M02256006

.30-

.25"

.20-

15-

.10

.05-

15 20

NR10.25

NR20.25

R 10.25

RXY

NRXY

NR10.30

NR20.30

w

A R10.30
).30 •5^^

-I 1 r-

25 30 35

2ND LVL STKSIZ

RESTRUCTURING

NO RESTRUCTURING

X IS LEVEL I WINDOW

Y IS LEVEL II STACK SIZE

R20.40

NR10.40

NR20.40

R10.40

—r

40 45

APL Second Level Page Fault Rate vs Second Level Stack Size

FIGURE 9

300 h

275-

250-

225-

o

X

£ 200
CO

175-

150-

125-

100

R10.25
V

R20.25 - N

NR10.25

NR20.25. v

w
v\

NR20.30 *• %

RXY = RESTRUCTURING

NRXY = NO RESTRUCTURING

X IS LEVEL I WINDOW

Y IS LEVEL II STACK SIZE

NR20.40

15
"T"

20 25 30 35

2ND LVL STKSIZ

—r~

40

—I

45

M02256005

FFT First Level Space Time Product vs Second Level Stack Size

FIGURE 10

V..

.05

.04-

E .03
Q_

.02-

.01

15 20

NR10.25

NR20.25

—T"

25

••N R20.30
\\

R10.30 • \

\

NR10.30

NR20.30

30

RXY = RESTRUCTURING
RXY = NO RESTRUCTURING

X IS LEVEL I WINDOW
Y IS LEVEL II STACK SIZE

i

35

NR10.40
NR20.40
R10.40

40
—I

45

2ND LVL STKSIZ

Second Level Page Fault Rate vs Second Level Stack Size

FIGURE 11

2000-

c

1750-

n

O

1500-

1250-

x 1000
Q.

750-

c 500-

250-

15

M02256003

20

NR10.25 »| NR20.25

T"
25

R20.30

R20.30

30

RXY

NRXY

35

RESTRUCTURING

NO RESTRUCTURING

X IS LEVEL I WINDOW

Y IS LEVEL II STACK SIZE

NR10.40

R10.40

NR20.40

R20.40

40

"I

45

2ND LVL STKSIZ

WATFIV First Level Space Time Product vs Second Stack Size

FIGURE 12

c

v..

C

LL

Q.

R20.25 .

.15-

.10-

.05-

NR20.25
NR10.25

RXY

NRXY

RESTRUCTURING

NO RESTRUCTURING

X IS LEVEL I WINDOW

Y IS LEVEL II STACK SIZE

R20.40

NR10.40
NR20.40

R10.40

15

i

20 25

"T"

30

—r

35

"T"

40

"1

45

2ND LVL STKSIZ

WATFIV Second Level Page Fault Rate vs Second Level Stack Size
c\m IDC i o

	Copyright notice 1981
	ERL-81-26

