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ABSTRACT

The decreasing costs of minicomputers, coupled with recent improve

ments in performance, may make these machines ideal to meet the circuit

simulation needs of the integrated circuit (IC) designer. An investigation has

been made concerning the performance limits of circuit-level IC simulation

on a dedicated microprogrammable minicomputer system.

Two types of factors limit simulation performance. First, extended pre

cision (usually 64 bits) is customarily needed and therefore used in all

floating-point calculations in circuit simulators. This precision requires twice

the memory and twice the execution time of single-precision arithmetic.

Second, the functional units available in the computer are not used

efficiently because there is not a good match between the minicomputer

instruction set and the types of operations that are needed for the simula

tion.

This investigation shows that circuit analysis can be performed success

fully with single precision (32-bit) arithmetic through the use of a combina

tion of numerical pivoting, sparse matrix techniques, a generalization of the

indefinite admittance matrix, and voltage thresholds in the algorithms con

trolling convergence. The use of microcode to extend the computer instruc

tion set greatly improves simulation speed by directly and efficiently



performing several of the most time-consuming portions of the analysis.

These special instructions, coupled with the smaller wordsize of the minicom

puter, reduce the memory requirements of the circuit simulator by as much

as two-thirds compared to the memory needs on larger computers.

One result of this investigation has been the development of a new IC

simulation program, SPUDS, which has been designed to obtain the best pos

sible performance from a specific minicomputer system. The analysis

results from SPUDS using 32-bit floating-point computations for a wide range

of both analog and digital, bipolar and MOSFET circuits are almost identical

with solutions based on the more common 64-bit arithmetic. Overall simula

tion speeds of the same order as the DEC VAX 11/780 computer are achieved

using a 16-bit minicomputer. Conclusions are made concerning the suitabil

ity of several microprocessor systems for circuit-level simulation.
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CHAPTER 1

INTRODUCTION

The decreasing costs of minicomputers, coupled with recent, substantial

improvements in performance, make these machines ideal candidates to

perform the circuit simulations needed by each integrated circuit designer.

For $25 to $30K, 16-bit wordlength minicomputer-based systems such as the

Hewlett-Packard 1000 F-Series [HP78F] are available with floating-point

arithmetic instruction execution times on the order of 5 microseconds

(within a factor of 2 of larger computers such as the VAX 11/780 [DEC78V]).

But when the mainframe version of a simulation program is implemented in a

straightforward manner on the minicomputer, the execution speed is slower

by factors of 10 or more. Clearly, this speed degradation cannot be attri

buted simply to the difference in arithmetic operation speeds.

Several minicomputer IC simulators [Youn76] [Bieh74] [Barh73] have

been in the public domain for some time. These efforts to date have essen

tially transferred mainframe circuit simulator codes to the small computer

system with minimum changes to the program structure. These simulation

programs use basically the same solution algorithms as large-scale simula

tion programs such as SPICE2 [Nage75]; numerical problems are avoided by

using extended precision (typically 64 bits) for floating-point variables. It is

desirable to avoid such extended precision calculations, both because of the

increased cpu time such calculations require and because of the additional

memory required.



One result of investigating the performance limits of circuit-level IC

simulation on a dedicated microprogrammable minicomputer system is the

development of SPUDS, a new integrated circuit (IC) simulation program. In

SPUDS, a better match between the basic computer hardware and the

analysis algorithms and data structures is obtained with a combination of

numerical pivoting, sparse matrix techniques, a straightforward generaliza

tion of the indefinite admittance matrix, and a set of specially-tailored

microcoded instructions. The program successfully performs the circuit

analysis with single-precision (32-bit) floating-point variables. Freret and

Dutton [Frer78] reported some of these methods; SPUDS incorporates a

different numerical pivoting algorithm, similar to the one in Program MICE

[Cohe78] which is better suited to sparse-matrix techniques. As a result, the

penalties associated with multi-word memory references (for floating-point

variables) and with tracing through iinked-list pointers to manipulate the

linear equation coefficient matrix are essentially eliminated. Both the

analysis algorithms and the 'effective' computer hardware (through micro

coding) have been modified as part of the synthesis of a fast, effective IC

simulation tool for the circuit designer.

Chapter 2 compares the strengths and weaknesses of different computer

architectures and programming languages in terms of the problem of IC

simulation. To obtain the fastest possible simulation requires the use of

shorter-precision arithmetic than is used on the larger mainframe comput

ers; Chapter 3 describes the algorithm modifications and performance

trade-offs involved. Memory costs are dropping continually; however, it is

still desirable, especially for a personal design system, that the memory

required to perform the simulation be minimized. Chapter 4 describes the

data structures used in SPUDS and the strategies adopted which reduce



main-memory needs.

Optimal performance in a simulator is obtained when the algorithms

used and the hardware available are well-suited to each other. The effects of

such special-purpose hardware are modelled with microcoded instructions

added to a user-microprogrammabie minicomputer. Chapter 5 describes the

development of these instructions and the resulting improvements in simula

tion performance.

A summary of the conclusions reached based on this research is given in

Chapter 6. A brief evaluation of the suitability of several currently-available

processors is also presented, and some suggestions are made for future work

in the development of dedicated IC-design systems.

Appendix 1 describes the implementation of the SPUDS program. Infor

mation concerning a complete listing of SPUDS is given in Appendix 2.

Appendix 3 lists the input files describing each of the benchmark circuits

referenced in this report.



CHAPTER 2

PERFORMANCE OVERVIEW

The actual execution speed of circuit simulation programs such as

SPICE2 [VladSl] is far less than is implied by the potential performance of

present-day computer hardware. Although this failure to achieve potential

machine performance often arises for other types of computer programs it is

especially troublesome for simulation codes. These codes are characterized

by the nearly ideal computational characteristics of little I/O, small

working-set size, and well-defined computational kernels. A good example of

this lack of optimal performance is a carefully-constructed LU factorization

algorithm [Cala79] written specifically for the CRAY-1 computer [CRAY76].

Although the asymptotic achievable execution speed on the CRAY-1 is 140

million floating-point operations/second (140 MFLOPS), this algorithm can be

expected to achieve a maximum execution rate of only 35.8 MFLOPS. How

ever, for the typical sparse systems of equations which arise in integrated

circuit simulation the actual LU factorization speed is roughly 2.2 MFLOPS.

This large ratio between potential and actual performance applies not only to

large 'super-computers' such as the CRAY-1 but also to small minicomputers.

Although the floating-point arithmetic execution times for the Hewlett-

Packard 1000 F-Series 16-bit minicomputer and the Control Data 6400 60-bit

mainframe are within a factor of 2 or 3 of each other, the equation solution



time for the UA741 operational amplifier1 is 8.3ms on the CDC 6400 but

252ms (in FORTRAN) on the HP 10002. Clearly, machine hardware resources

are not utilized effectively at either end of the computer spectrum.

The reasons for the large discrepancy between optimal and achieved

performance can be divided into two categories. First, virtually none of the

'high-level* programming languages allow effective direct access to, utiliza

tion of, or control over machine hardware. Second, most computer hardware

architectures are poorly suited to the existing algorithms used in circuit

simulation.

Effective methods which reduce this performance gap utilize one or

more of three basic ideas. First, the high-level programming language can

be changed (or a new language developed) to give the programmer better

access to, and explicit control over, the machine hardware. As a result,

many of the difficulties in attempting to achieve 'optimal' code with a com

piler can be avoided. For computers which are microprogrammed, this

approach also includes the possibility of generating microcode directly with

a language compiler. The current state-of-the-art is succinctly summarized

[Cala79]:

Overall it appears that for the near future only 1/ 4 to 1/3 of the ultimate
machine speed may be routinely available through a high-level language.

A second approach changes existing algorithms to take advantage of the

special properties of available machine hardware. Existing pipelined, vector,

and multiprocessor computer systems are the objects of considerable

research, and major algorithm speedups may be possible [Bane79] [Towl76]

[Wolf73] [Sang79] [KachSl] [Lela].

xall referenced circuits are described in Appendix 3
2data from Cha-oters 3 and 5
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The third approach modifies machine hardware to implement existing

algorithms more effectively. For a given set of algorithms, the fastest execu

tion speed results when a direct implementation of those algorithms is util

ized. Developments in VLSI technology may make it practical to construct

such a hardware implementation specifically for IC simulation needs. How

ever, the construction and verification of systems of that size is beyond

presently-available methodologies. Therefore, applications of this approach

take the form of either special-purpose instructions utilized as part of the

standard code-generation phase of a compiler, or special-purpose pro

cedures invoked explicitly at the high-level language.

This chapter describes several strategies for obtaining better perfor

mance from computers. This presentation provides a perspective on the

hybrid approach developed in this report. There are both potential advan

tages and real difficulties for each approach towards achieving the perfor

mance that is theoretically possible. Emphasis is placed, in the comparis

ons, on the kinds of operations and algorithms that are typical of IC circuit-

level simulation programs. Section 2.1 describes some relevant characteris

tics of main memory and presents data on the relative importance of

memory access time on overall simulation speed for a minicomputer. A

description of pipelined vector computers is made in Section 2.2. Section 2.3

details the use of multiple processors to exploit parallelism. The potential

use of auxiliary special-purpose array processors is described in Section 2.4.

Finally, Section 2.5 presents the approach investigated in this report.

2.1. Main Memory

Both the pattern of references and speed of access to main memory are

critical factors in the determination of overall simulation speed. The order



in which different words of memory are accessed is important because most

computer main memories are interleaved. Interleaving utilizes multiple

banks of memory, arranged so that consecutive memory addresses are in

different banks; if a four-way interleaved memory is used and consecutive

memory addresses are referenced, the effective memory access time is

improved by a factor of four. Worst-case behavior occurs if a program con

secutively accesses every fourth memory location. Clearly, the ways in which

data are stored can affect execution speed. However, it is not always possi

ble to take good advantage of interleaving. Most circuit-level simulation pro

grams assemble a two-dimensional matrix of equation coefficients. Such a

matrix can be stored such that accesses along only rows or only columns of

the matrix will use different memory banks. For some kinds of row-and-

column access, a skewed storage allocation technique [Kuck77] can be used.

But for integrated circuits, this coefficient matrix is very sparse and is usu

ally stored as a compressed, one-dimensional vector. In terms of memory

addresses, accesses to terms in this vector are made in a very nearly ran

dom manner.

Table 2.1 shows the effects of different memory access times on overall

simulation speed. The simulation code is written entirely in FORTRAN and is

adapted from Version E.3 of Program SPICE23. Two HP 1000 E-Series 16-bit

minicomputers which differ only in memory cycle time are used. The typical

cycle time of the 'standard' memory is 665ns (read or write); the 'high'

speed memory requires 420ns to read and 350ns to write. The E-Series mini

computer performs all 32-bit floating-point calculations by firmware (micro

code); 32-bit floating-point arithmetic execution times are »20/as for addition

Reference is made frequently in this report to Version 3.3 ofSPICE2 because the initial oro-
gramming for SPUDS is derived from SPICS2."



Numerical
precision

Memory
speed

CPU

Model

DIFPAIR UA741 M0SAMP2

DCX TRAN DCX TRAN DCOP TRAN

32 bits

32 bits

32 bits

standard

high
high

E

E

F

26.6

21.4

18.3

— —

—

— —

48 bits

48 bits
48 bits

standard

high
high

E

E
F

30.4

24.7

20.1

44.9

37.0

26.8

202.5

166.0

131.4

250.1

206.6

148.0

94.3

78.1

52.8

718.8

600.1

379.3

64 bits

64 bits

64 bits

standard

high
high

E

E

F

103.8

81.6

21.4

197.0

150.7

27.9

747.6

585.6

136.7

1119.0

855.7

154.2

459.0

352.9

56.4

3781.0

2876.0

399.7

Table 2.1. Effects on Performance of Different Memory Cycle Times



and 40/xs for division. According to the manufacturer [HP77E] the depen

dence of floating-point calculation times on memory speed is less than 3%

(the time required to perform the floating-point calculations is much greater

than the time spent accessing operands in memory).

The analysis times for three representative circuits are shown in

Table 2.1. The 'DCX' column gives the central processing unit (CPU) time

required to perform a dc transfer curve analysis, in which a dc operating-

point computation is made repetitively as an independent source is swept

across a range of values. The 'DCOP' and 'TRAN' columns show the CPU time

needed to evaluate the dc operating point and perform a transient analysis,

respectively. The CPU times in the table are in seconds; a value of '—' indi

cates that the particular run did not converge. When convergence is

obtained, the number of iterations required depends only on the circuit and

not on the numerical precision used.

The data show that the effects of memory access time on simulation

speed depend strongly on the floating-point precision used. The reduction in

memory access time by 33% reduces the total simulation time by 25% for

four-word (64-bit) precision. The reductions for three-word (48-bit) and two-

word (32-bit) precision are 18% and 15%, respectively.

Table 2.1 also shows the corresponding simulation times when an

HP 1000 F-Series minicomputer with 'high' speed memory is used. The F-

Series machine has hardware which directly implements floating-point arith

metic operations for 32-bit, 48-bit, and 64-bit precision operands. These CPU

times show that a hardware implementation of floating-point arithmetic is

most important when extended precision is used. For the 64-bit precision

transient analysis of the M0SAMP2 circuit, the hardware increases simulation
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speed by a factor of 7; when only 32-bit precision is used, the speedup due to

hardware is only *15%.

2.2. Pipelined Vector Computers

Hardware speedup is obtained either 'horizontally' by replication of

instruction or data streams, or 'vertically' by segmenting (or pipelining)

those streams [Flyn72] [Kuck78]. Section 2.3 describes multiprocessor

machines; this section concerns single-processor 'vector' computers.

Vector processors, such as the CRAY-1 or CYBER 205, have instructions

which operate on vectors. This design reduces significantly the number of

references to main memory for processor instructions. Also, since vector

elements are frequently stored in consecutive memory locations, interleav

ing of memory banks can be best utilized. Of greater importance for proces

sor speed is the capability to pipeline the arithmetic calculations. Pipeline

computation decomposes a complex, time-consuming task such as floating

point multiplication into a sequence or 'pipe' of simpler and faster opera

tions, e.g. fixed-point multiplication. Part of the increase in speed is due to

the concurrent execution of these operations as the operands pass between

segments in the pipeline. For an n-segment multiplier, this hardware archi

tecture can evaluate up to n multiplications concurrently, although any par

ticular result is not available until n clock cycles after the multiplication is

started. The speed advantage of vector processors is due primarily to the

potential of pipelining, although some additional performance is obtained

from multiple functional units.

The extent to which vector instructions can be used effectively in a

simulation program depends on the definition of 'vector' used by the

manufacturer. For example, after the linearized component values for the
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semiconductor device models are evaluated, those values are incrementally

loaded into a matrix of equation coefficients. An indexing scheme [McCa7l]

is used to access these elements because the matrix is usually 85% to 95%

sparse [Berr7l]. As much as 22% of the total simulation time can be spent

performing this matrix load operation4. In order to cast this load process in

a form suitable for vectorization, it must be possible to define a vector

indirectly; rather than using a contiguous block of memory to store vector

element values, the memory block is used to store the addresses of those

values. "With such a capability the load operation can be expressed as

DO 10I=1.N
MATRDC (INDEX(I)) = MATRDC (INDEX(I)) + TERMS(I)

10 CONTINUE

and can execute at vector operation speed. Instructions which allow vectors

to be defined indirectly are not part of the repertoire of the CRAY-1 com

puter, although such instructions do exist for the CYBER 203 [Kasc79]

[CDC80].

2.2.1. Vector Algorithms

Algorithms suitable for vector machines require both a series of identi

cal operations that can be performed concurrently and a set of data

arranged so it can be streamed into the ALU. This last arrangement usually

requires that a linear indexing function be used to address the data. As a

result, vector machines are especially well-suited to finite-difference algo

rithms for simulation of physical systems (such as weather modelling) in

which banded matrices are used to solve systems of differential equations.

Circuit simulation, however, raises special problems.

4Chaoter 5
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The algorithms used in circuit simulation are described in detail in

Chapter 3. Briefly, circuit simulators predict circuit behavior by manipulat

ing mathematical models relating branch voltages and currents for the cir

cuit elements. For circuits containing elements with nonlinear branch rela

tions, an iterative algorithm is used. A 'guess' is made of the actual operat

ing point for each of the nonlinear branches in the circuit. Each branch is

then linearized about that presumed operating point and the resulting linear

system is then solved. If the solution does not agree sufficiently well with the

•guess', a new estimate of the actual operating point is calculated and the

linearization and solution steps are repeated.

In a typical circuit simulation program such as SPICE2, the equations

describing the behavior of each semiconductor device are generally

expressed in terms of the most recent iteration's 'guess' at the device

operating point. The particular device equations which apply to that region

of operation are then evaluated. Thus, rather than

conductance = f(argl,arg2,arg3)

the logical flow of the model evaluation code resembles

if (device is in saturation)
conductance = f1 ( argument list)

else if (device is active)
conductance = f2 ( argument list )

else "device is off"
conductance = f3 ( argument list )

The efficient implementation of this type of code on a vector computer

is made difficult by the logic branches in the equation formulation. Typical

vector instructions for a computer such as the CYBER 200-series perform

operations on ordered scalar quantities, reading operands from consecutive
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storage locations, performing some designated operation(s), and possibly

storing the result back in memory. No provision is made for conditional

changes in the flow of control, since in order to keep the pipeline full, n-way

branching hardware would have to be available to evaluate all the possible

values and extract the desired number. Automatically performing this iooka-

head requires much more logic in the computer, and such a method

becomes prohibitive as soon as more than one or two conditional actions are

introduced into the computation [Toma67].

Solutions to this implementation problem generally compute all possible

results using vector-mode instructions and then select the desired value

(with another vector-mode instruction). For the sample given above of dev

ice model evaluation, all three expressions are evaluated and the results

stored in temporary vectors. The final result vector of conductances is

assembled by selecting each entry from the appropriate temporary vector,

using a vector merge instruction. The amount of reduction in total CPU time

that this approach offers depends on many factors, including the extent of

pipelining, the number of equivalent functional blocks in the ALU, and the

relative probability that each of the different device operating points will

occur (and require evaluation).

Clearly, such a technique is worthwhile only if the potential savings in

total computation time is large. Detailed timing measurements of a carefully

optimized simulation program are presented in Chapter 5. The data show

that only 10% to 15% of the total simulation time is spent evaluating the

model equations represented by the above code fragment. This evaluation

effort does not include the execution time required to load the contributions

from each semiconductor device into the coefficient matrix. Since the best



14

possible vectorization could not eliminate totally that part of the computa

tion, the possible savings in CPU time are nomore than 5% to 10% of the total

simulation time. To be effective, vector instructions must be used for the

majority of the simulation code, not just for model evaluation. Ahigh-level

language is needed, however, to keep the programming effort within reason.

2.2.2. Programming Languages

The ability to express both vector operations and potential parallelism

in arithmetic operations is important if the vector instructions and multiple

functional units in a high-speed vector computer such as the CRAY-1 or

CYBER 203 are to be used effectively. Alanguage such as APL, which is.basi

cally vector oriented, is quite suitable. However, the most widely-available

high-level language for vector processors is FORTRAN; for the most powerful

computers of this type, the FORTRAN language is the only one (other than

assembler) supported by the manufacturer. Many of the difficulties that

arise in automatically generating effective vector-mode instructions with a

FORTRAN compiler are due to limitations of the language. Some of these

constraints are relaxed by the manufacturer through extensions to the FOR

TRAN language. For example, on the CYBER 203 the FORTRAN compiler

recognizes a 'vector descriptor' which is used to specify explicitly that a vari

able be treated as a vector. Rather than coding a vector summation as

DO 100I=1.N

B(I)=C(I)+D(I)

100 CONTINUE

in which form the FORTRAN compiler may or may not generate vector

instructions, one can instead use



BD = descriptor of vector B(*)
CD = descriptor of vector C(*)
DD = descriptor of vector D(*)

BD = CD + DD

15

and force the FORTRAN compiler to generate vector-mode instructions.

If extensions to ANSI-standard FORTRAN are not used, the compiler must

recognize situations for which vector instructions are suitable. Although the

FORTRAN 'DO-loop' can be taken as a hint by the compiler, many heuristics

become important when the costs of initiating vector operations are

included. Algorithms which speed up FORTRAN-like programs for array

machine computation have been well-developed [Kuck72] [Bane79] [Kuck78].

Nevertheless, many available compilers impose severe coding constraints on

program loops in order for effective vector-mode instructions to be gen

erated by the compiler.

An example illustrating some of these constraints is given below.

Although the example is specific to the FORTRAN compiler for the CRAY-1

computer, the constraints are representative of other machines such as the

CYBER 203. The FORTRAN compiler for the CRAY-1 tries to utilize vector

operations whenever appropriate loop structures are detected. In particu

lar, inner-most DO-loops are candidates for vectorization. However, vector-

mode code generation is totally disabled if the loop contains any input, out

put, procedure call, IF, or GOTO statements. If any array subscript expres

sions are not linear functions of the DO-loop index variable, are

parenthesized, or use a scalar temporary variable, vectorization is inhibited.

Also, vector dependencies (loops in which operands are needed in a different

order than generated by the vector hardware instructions) can inhibit vec-
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torization. These constraints severely limit the extent to which vector-mode

instructions are generated for a program module. Major restructuring of

analysis algorithms may be necessary to make the program code suitable for

vectorization. Some built-in vector functions are provided which can replace

IF statements and permit the use of vector-mode operations in some situa

tions. An example of such a built-in vector function for the CRAY-1 is the

function

CVMGP ( XI, X2, X3 )

which takes three vector-element arguments and returns

XI IF ( X3 .GE. 0.0 )
X2 IF ( X3 .LT. 0.0 )

However, use of such functions can incur substantial penalties in unneces

sary computation. Consider the loop

DO 10 1=1,N
IF ( V(I) .GE. 0.0 ) V(I) = EXP ( V(I) )

10 CONTINUE

which can arise as part of the model evaluation code for a device with a p-n,

junction. This loop is not vectorized by the CRAY-1 FORTRAN compiler due to

the presence of the IF statement. However, the code can be rewritten as

DO 10 1=1,N
V(I) = CVMGP ( EXP(V(I)). V(I), V(I) )

10 CONTINUE

which is vectorized.

For a large digital circuit many of the devices may be 'off', correspond

ing to a situation in which most of the elements in the voltage vector V are

less than 0.0. For such a case the first code fragment above is faster, even
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though it is not vectorized, because the vectorized code evaluates the

exponential function for every element of V (even though the values are

immediately thrown away). Orders-of-magnitude improvement in simulation

speed have been obtained by not evaluating 'dormant' portions of large digi

tal systems (using event-driven analysis [Szyg76] [Newt78]); vectorization of

the model evaluation code alone cannot accomplish as great an improvement

in speed.

2.3. Multiprocessor Computers

Multiprocessor computers obtain greater performance through

hardware replication of instruction and/or data streams. If n parallel pro

cessors are applied to a problem, an ideal speedup by a factor of n is possi

ble. At least three factors constrain the potential speedup. First, the degree

of parallelism in almost any program is not uniform; therefore, all the pro

cessors cannot be kept busy. Second, if resources are shared (main

memory), contention between processors degrades overall performance.

Finally, transforming serial algorithms into parallel ones does not necessarily

result in a theoretical speedup factor of n.

The potential improvement in simulation performance of such comput

ers is considerable. Circuit simulation can be decomposed into the two tasks

of constructing a set of simultaneous linear equations and solving those

equations. The evaluation of the nonlinear device model equations for each

circuit element does not depend on the state of any other circuit elements if

direct equation solution techniques are used; all the evaluations theoretically

can be performed in parallel. Interactions between devices occur only

through the solution of the total circuit equations. For state-of-the-art simu

lators and circuits which require up to several hundred equations,
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approximately 10% of the total CPU time is spent solving those equations.

Suppose that 100 processors are applied in parallel to evaluate the equation

coefficients (the remaining 90% of the total). If the algorithms are parti

tioned such that each processor evaluates the model for one device and if

memory access contention does not degrade overall system performance,

* , * 0.1 + 0.9 ~Qthe total analysis time can be reduced by a factor of 0 i + (0 9/ 100) °r

A major problem with such an architecture is the need for inter-processor

communication to ensure that the computations are performed in the

correct sequence. The time required for the communication may greatly

exceed the execution time needed for the desired computations.

2.3.1. Multiprocessor Algorithms

The effective use of more than* one processor requires that some inter

mediate parts of the computation be evaluated concurrently. Such parallel

ism is present in virtually all programs, at least at the level of arithmetic

expressions. For example, in evaluating the statement

T = (AxB) + (CxD)

both multiplications can be performed at the same time. Algorithms have

been investigated [Kuck78] which identify the ordering of arithmetic expres

sion operations to obtain maximum parallelism with multiple processors.

The extent to which such parallelism can be exploited depends on the inter

connection network of the processors.

Multiprocessor computers are potentially much faster than vector

machines for code that contains many IF-THEN-ELSE decision trees. The

speedup is due to the ability to evaluate possibilities in parallel. The extent

to which code evaluation speed increases depends upon the relative probabil

ity that the different control paths in the decision trees are taken during
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execution. The best case is for equal probabilities for all paths of control.

Multiprocessor machines also have the potential to be faster than vector

computers for code with nonlinear recurrences or with subscripted sub

scripts [PaduSO] because memory addresses may be more uniformly distri

buted. (On the CYBER 203 vector processor, the 'subscripted subscript'

problem is circumvented by 'gather' and 'scatter' instructions. These

instructions take an indexing vector INDEX and directly implement

DO 10I=1,N
B(I) = A(INDEX(I))

10 CONTINUE

and

DO 10I=1,N
A(INDEX(I)) = B(I)

10 CONTINUE

at the rate of one data transfer every 1.25 clock cycles, or essentially at

vector-operation speeds.)

2.3.2. Programming Languages

Programming multiprocessor computers revolves around the expression

of parallelism in the computation. Ideally one would like to have the com

piler detect possible concurrency and automatically produce an 'optimal' set

of machine instructions. However, theoretical problems make such

automatic code generation difficult. Even with simple .programs, the prob

lem of translating sequential programs into parallel ones of minimal execu

tion time is NP-compiete [Ullm76]. A considerable amount of research has

been published on improving the parallelism of programs and on the inter

connection problems of multiprocessors [Haie79] [Wen76].
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An alternative to automatic recognition of parallelism is explicit pro

gram control of concurrency. Dennis and Horn [Denn66] have suggested

FORK, JOIN, and QUIT as primitives to initiate and control multiple processes;

other suggestions [Tsic74] [Hans77] have included the use of PARBEGIN and

PAREND for bracketing of iterated control blocks which can be evaluated in

parallel.

2.3.3. Dataflow Machines

Dataflow computers take the greatest advantage of all possible con

currency in programs by close examination of the data dependencies among

the program statements. These machines differ from the traditional

von Neumann machines which are driven by some control mechanism (sys

tem clock and program counter). Rather, dataflow machines initiate activi

ties asynchronously based on the availability of the information needed for

each activity.

The dataflow concept is currently the subject of considerable research.

New high-level languages are under development [McGrBO] [Comt79] and pro

totype computers have been constructed or are in development [Davi77]

[McGrSO]. It remains to be seen what ultimate speeds these machines can

achieve. However, it is clear that major improvements in performance will

result from the use of dataflow to reduce the complexity of inter-processor

communications.

2.4. Array Processors

Array processors are special-purpose computers designed to allow vec

tors (contiguous blocks of numbers) to be processed efficiently. These

machines are particularly well-suited for problems which have a 'setup'
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phase that can be separated from the main computation (and need high

speed arithmetic). The more sophisticated array processors are user pro

grammable, are capable of speeds in excess of 10 MFLOPS, and may run in

parallel with the host computer system. There are three basic types of data

formats: integer, block floating-point, and true floating-point Integer or

fixed point machines require the programmer to do any necessary normaliz

ing or scaling of the data in order to retain accuracy. Only true floating

point processors are described in this section because of the dynamic range

requirements of circuit simulation.

For 'true' floating point representations, each element has its own

exponent. The Floating Point Systems AP-120B [FPS] uses a 28-bit mantissa

and a 10-bit exponent, while the Computer Signal Processing Inc. MAP-300

[CSPI] uses 25 and 7 bits respectively. Potential conversion problems can

arise when these processors are joined to a host computer because of

differences in the formats of floating-point numbers. For example, neither of

these formats are the same as the Hewlett-Packard 1000 floating-point

representation, which uses a 24-bit mantissa and an 8-bit exponent. The AP-

120B uses software for conversion to the HP format, while the MAP-300 pro

vides hardware translation on the interface.

Two different design philosophies have been used to achieve comparable

processing speeds on the AP-120B and MAP-300. The AP-120B uses a pipe

lined arithmetic logic unit (ALU); the time per stage is fixed at 167ns. Addi

tion requires two stages; multiplication requires three stages. The MAP-300

uses a parallel architecture to achieve its processing speed; two multiplier-

adder units operate in parallel with an address processor, a control proces

sor, and one or more I/O processors. Arithmetic routines can thus be writ-
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ten without regard to buffer control or I/O processing.

Several non-obvious factors affect the evaluation of the relative speeds

of different array processors. Operating system overhead may limit

throughput; additional memory often relieves this problem. Processor and

memory options can affect computation times by a factor of four or more;

for example, changing from MOS to bipolar memory can double the speed,

price, and power consumption of an array processor such as the MAP-300.

2.4.1. Programming Languages

The programming of array processors requires very high-level skills

because very low-level timing-dependent control must be specified. Although

the manufacturers generally provide a library of utility routines, special-

purpose codes must be written by the user. A FORTRAN compiler is available

for the APS-120B machine, but the compiler generates rather inefficient

code. In addition, the APS processor limits to 4K words the size of program

code that can be downloaded from the host computer. This constraint

corresponds to roughly 200 lines of FORTRAN. For comparison, the length of

the subroutines in Program SPICE2 which evaluate the MOSFET device model

is more than 1500 lines of FORTRAN.

2.5. Hybrid Approach

The strategy explored in this report examines the potential of several

techniques mentioned in this chapter to obtain maximum performance in a

dedicated, minicomputer-based circuit simulation system. Conceptually, the

computer hardware is modified to perform most effectively the time-

consuming parts of the circuit analysis. These modifications are modelled

with instructions that are implemented in microcoded procedures. The



23

speedup factor for the resulting dedicated hardware and software system is

as much as 20 on major portions of the calculations. This increase in perfor

mance is obtained in part by using to the fullest extent all available hardware

in the computer and by overlapping arithmetic calculations and memory

references asynchronously. Since the microcoded instructions directly

implement higher-level operations, fewer instructions (and correspondingly

fewer memory references) are used, which also increases program speed

[Tann78]. Finally, the simulation algorithms are modified to make calcula

tions using 32-bit floating-point give accurate answers, so that extended pre

cision computations are not required.



CHAPTER 3

ALGORITHMS

The algorithms used in circuit simulation directly affect simulation

speed, accuracy, and convergence. A brief summary of existing

minicomputer-based circuit simulators is presented in Section 3.1. The cir

cuit analysis methods used in Program SPICE2 [Nage75] are reviewed in Sec

tion 3.2, since those methods are representative of the ones used in

presently-available simulators running on a wide variety of large-wordsize

computers. Virtually all of the arithmetic calculations in these simulators

are performed using 80 to 64 bits for each floating-point variable.

It is desirable to use fewer bits per variable for floating-point arithmetic,

because such a change leads to a significant reduction in both computation

time and memory requirements. The algorithms presented in this chapter

have been found to be useful in improving simulation speed and/or accuracy

in the context of 32-bit floating-point arithmetic. These algorithms are

divided into two categories: methods which enhance the numerical accuracy

obtained with 32-bit floating-point arithmetic, and methods found necessary

for convergence of the iterative solution process with shorter wordlength

(regardless of accuracy considerations). Methods for improving accuracy

include numerical pivoting [Isaa66], use of an augmented Modified-Nodal-

Admittance (MNA) matrix [Idle71] [Nage7l] [Jenk7l] [Ko75], and combining

together both absolute and incremental forms of iteration [Frer76] [Cohe78].

These techniques are described in Section 3.3.

24
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Effective convergence for a wider range of test circuits has been

obtained by introducing constraints on the per-iteration change in selected

circuit unknowns and by adding several threshold parameters. Section 3.4

describes in detail these parameters and their effects on convergence.

The last section in this chapter presents a comparison between the con

vergence and accuracy characteristics of these methods and constraints,

when used with 32-bit floating-point arithmetic, and the convergence proper

ties of 60- to 64-bit floating-point arithmetic.

3.1. Overview of Tftnating Minicomputer-Based Simulators

Several simulation programs exist which run on 16-bit wordsize mini

computers. Programs BIASD [Bieh74] and MSINC [Youn76] were initially writ

ten for longer wordlength machines; the minicomputer versions of these pro

grams use extended-precision (48- or 64-bit) arithmetic to avoid numerical

difficulties. Program BIASM [Barh73] ran on the IBM 1130 and IBM 1800 16-

bit minicomputers and used 32-bit floating-point arithmetic. R. Barham

added a convergence test which stopped the iteration when no further

decrease was observed in the norm of the iteration-to-iteration change in

node voltages, | |<5V| |, (indicating that the numerical precision of the mini

computer had been reached). This modification extended the range of cir

cuits for which the program found a solution. An experimental minicom

puter version of Program SPICEl [Nage73] was developed by P. Freret

[Frer76]. This program utilized the indefinite admittance matrix, numerical

pivoting, a two-stage Newton-Raphson iteration algorithm, and 32-bit arith

metic. The simulation results agree well with those of SPICEl running with

64-bit precision on an IBM 370/168 computer. MICE [Cohe78] is another

simulation program developed as a result of an investigation of ideas which
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reduce memory requirements or cpu time in 16-bit minicomputers. Pro

gram MICE successfully utilizes a combination of numerical pivoting, sparse

matrix techniques, the use of the indefinite admittance matrix, and both

absolute and incremental voltage iteration to perform the circuit analysis

with single-precision (32-bit) floating-point arithmetic.

3.2. Summary of SPICE2 Analysis Methods

Program SPICE2 uses the Modifled-Nodal-Admittance (MNA) matrix for

mulation of the circuit equations. The MNA formulation simplifies the pro

cessing of circuit branches which are voltage-defined (voltage sources) or

current-controlled (current-controlled current sources). For a circuit con

taining N nodes and B voltage-defined branches, the N-l non-ground node vol

tages and the B voltage-defined branch currents are chosen as the. unknown

circuit variables.

An circuit example is shown in Figure 3.1. For this circuit, the unknown

variables are the node voltages Vlt V2, and V3, together with the current I(VS)

flowing through the voltage source VS. The circuit equations are formulated

by writing Kirchhoff's Current Law (KCL) for each unknown voltage and

including the branch relation for VS. For the example circuit the system of

equations is

1 -1

Rl Rl

-1 J. J. J
Rl Rl R2 R3 R3

0 R3~ R3~
0 0 10

0 0

-1 0

1

v, IS

va 0
X

v3
=

0

J(VS). VS

(3.1)

This system of linear equations is solved by LU factorization [Cala72]

(which requires the same computational effort as Gaussian elimination
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[Rals65].) Note that if no reordering of the circuit equations is performed,

the value of the i1* pivot (diagonal) entry in the coefficient matrix for the

node-voltage unknowns is equal to the sum of the conductances connected to

the Ith.circuit node.

This one-step process is sufficient to And the quiescent (dc) operating

point of a linear circuit. To determine the dc solution of a nonlinear circuit,

the iterative algorithm shown in Figure 3.2 is used. A 'guess' is made of the

actual operating point for each of the nonlinear branches in the circuit.

Each branch is then linearized about that presumed operating point and the

resulting linear system is then solved. If the solution does not agree

sufficiently well with the 'guess', a new estimate of the actual operating point

is calculated and the linearization and solution steps are repeated.

The two other frequently-used analyses, small-signal frequency-domain

(AC) and large-signal time-domain (transient), build on the dc solution pro

cess. AC analysis is performed by solving a set of linear equations at each

frequency point. The only difference between this analysis and the equation

solution part of the dc analysis is that the matrix coefficients in general are

complex-valued. Transient analysis is performed as a series of quasi-dc ana

lyses in which energy-storage elements are modelled as timestep-dependent

conductances and current sources [Cala72].

For all of these analyses the solution of a set of simultaneous linear

equations is fundamental. Accuracy of the solution is critical, not only for

accurate simulation results, but for stable convergence properties as well.

The next section describes several methods for improving the accuracy of

the equation solution.



guess at
operating point

linearize nonlinear

devices about guess

formulate linear

equations

solve linear

equations

convergence obtained
(solution « guess)?

compute new guess
for operating point

->- STOP
yes

Figure 3.2. Iterative Algorithm for Solution of Nonlinear Circuit
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3.3. Accuracy-Enhancing Methods

For the problem here, the algorithms used to solve the set of simultane

ous linear equations must be examined carefully in the context of 32-bit

floating-point arithmetic. Typically 20 to 23 bits of coefficient are available

in those 32 bits [PRIME] [HP78F] [DEC77V] which means that - -->1Q.

6.8 significant digits are used in the computation. Pessimistically, roundoff

error in a well-conditioned set of equations can reduce the number of

significant digits in the solution by a factor of l+2xlogl0(N), where N is the

number of equations [Rals65]. If at least 3 significant digits of accuracy are

desired in the output, then at least 3+(l+2xlog10(100)) or 8 significant digits

are needed for a system of 100 equations1. Fortunately, the roundoff error

actually incurred is usually much less than this pessimistic estimate.

To obtain the maximum precision possible with a given number of

significant digits requires that the circuit equations not be ill-conditioned. A

polynomial p(x) is termed ill-conditioned if a small change in one of its

coefficients causes a large change in the value of one or more of its zeros. If

the coefficient error is due to the finite machine representation, the use of

multiple-precision arithmetic can decrease the round-off error and increase

the accuracy of the zeros. In an analogous manner, for the system of linear

equations

Axx = b

the matrix A of equation coefficients is said to be 'ill-conditioned' if 'small*

changes in elements of the matrix cause 'large' changes in x, the computed

23
or

lThi3 formula implies that the 64-bit (14 significant digit) precision used on mainframe com
puters is sufficient for three-digit accuracy in systems of 100,000 equations. Systems of over
1000 equations are solved accurately ?rith 64-bit precision [NageSO]; the solution of much larger
systems is limited by the computer time required.
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solution vector. One measure of the extent of ill-conditioning of a matrix A is

the magnitude of | |A_1| | after the elements of A have been normalized so

that | |A| | is approximately unity [Rals65]. A large value for | |A_1| | indi

cates an ill-conditioned system. Another measure is the 'condition number'

^t(A) s | |A"11 |x| |A| |; it can be shown [Isaa66] that small perturbations <5Ain

the coefficient matrix and <5b in the right-hand side cause small relative

changes in the solution z if

M
1 - /2*II<5A||/||A||

is not too large.

Several theoretical treatments of the propagation of roundoff errors in

the linear equation solution process have been published [Rals65] [Isaa66]

[Fors67] [Wilk64]. Unfortunately, the upper bound on the rate of growth of

pivot terms in the matrix is unrealistically large. The theory does indicate,

however, that the use of pivoting keeps that upper bound small. A 'complete'

pivoting strategy takes as pivot the element of maximum magnitude in the

submatrix of remaining equations. Partial pivoting considers only elements

in the same column or row. (The use of numerical pivoting to reorder the

circuit equations is described in detail in Section 3.3.1.)

Iterative schemes, such as those of Jacobi and Gauss-Seidel [Isaa66], can

be used for calculating the solution of a set of linear equations or for improv

ing the accuracy of a previously derived solution. Three factors make these

algorithms unsuitable for the high-speed solution of the equations which

arise in integrated circuits. First, convergence of these iterative processes

is assured only when the coefficient matrix has certain rather stringent pro

perties such as positive definiteness. Second, although the roundoff error in

an iterative method does not propagate (since each iteration 'starts over'



32

with the same coefficient matrix), the roundoff error can be a serious prob

lem for a ill-conditioned system of equations [Rals65]. Finally, for a linear

system the use of an iterative process to improve the accuracy of a solution

obtained by direct methods is not desirable simply because of the increased

computational effort required. It is preferable to obtain directly a

sufficiently accurate solution.

The use of an augmented MNA coefficient matrix can improve the accu

racy of intermediate terms calculated during a direct solution of the system

of equations. This extension requires little additional memory or computa

tional effort and extends the accuracy in pivot values to nearly that of double

precision. A detailed description of this modification is presented in Sec

tion 3.3.2.

It is possible for the overall iteration process, of which the linear equa

tion solution is just a part, not to converge due to the presence of numerical

'noise' in the direct solution [Frer76]. Iterative refinement of the solution

may be used to circumvent this difficulty. The resulting two-stage iteration

process combines 'absolute' and 'delta' iterations and is described in Sec

tion 3.3.3.

Several overall observations on the accuracy-enhancing methods previ

ously mentioned are presented in Section 3.3.4.

3.3.1. Equation Reordering

One factor in the execution time of simulation programs is that the cir

cuit equations are usually solved using 64-bit precision in floating-point cal

culations. This extended precision may require 2 to 3 times more references

to words in memory than does the single-precision case, although on

machines such as the UNIVAC 1108 [Univ70], memory access has been
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optimized for double-word memory references. The extended precision, how

ever, always requires more time in the arithmetic logic unit (ALU) to perform

the actual calculation. The speed penalty for double precision compared to

single-precision arithmetic is typically a factor of 2 to 3. This speed penalty

applies even when the ALU always performs the calculation in double preci

sion regardless of the particular machine instruction, such as the

UNIVAC 1108 or the CYBER 175.

Extended precision is used both for inherent accuracy requirements and

because the set of circuit equations is frequently ill-conditioned. The ill-

conditioning problem can be resolved in at least two different ways. If the

pivot terms of the coefficient matrix are not identically zero, an accurate

solution can be obtained if a sufficiently large number of significant digits

are carried along in the computation. From the middle 1960s through the

1970s the principal scientific computer at the Berkeley campus of the

University of California was the CDC 6400, which has a wordsize of 60 bits

(corresponding to 14 significant digits). As a result, the simulation programs

developed, e.g. SPICEl. SPICE2, SINC [Fan75], and SLIC [Idle71], do not need

to use double precision, since single-precision arithmetic on the CDC 8400

already provides sufficient accuracy. For the shorter-wordlength minicom

puter, however, the use of extended precision as a way of obtaining the

desired accuracy causes a significant increase in both cpu time and memory

requirements.

A second way to resolve the ill-conditioning problem is to use methods

which reorder the rows and/or columns in the coefficient matrix, either

before or during the equation solution process. These reordering techniques

are divided into two categories according to the type of information utilized.
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Topological methods rely on information regarding the specific interconnec

tion of individual circuit elements; these methods are applied once, before

any actual solution is calculated. Numerical methods depend on the actual

values in the coefficient matrix; these techniques apply once values have

been determined for the matrix elements and may be utilized many times as

the analysis proceeds.

A circuit example for which topological reordering is useful is shown in

Figure 3.3 [Nage75]. For dc analysis the MNA equations are

v, 0

v2 0
X

v„ =
0

I(VS) vs
• 1

1

R2

-1

R2
0 1

-1

R2 R2 R4

-1

R4
0

0
-1

R4

1

R4
0

1 0 0 0

(3.2)

If these equations as shown are solved by LU decomposition, at least one of

the pivot (diagonal) entries becomes identically zero and the solution pro

cess aborts. However, if the first and last rows are exchanged, the set of

equations becomes well-conditioned and all of the pivot entries remain

nonzero during the solution process. The resulting system of equations is

shown below:

1 0 0 0

-1 1 1 ±0
R4

V! vs

R2 RJP*R4 v2 0

-1 1 -
X

v3
=

0
o w

R4 R4 i(vs). 0

1 -1
0 1

R2 R2

(3.3)

The row-exchange algorithm considers each voltage-defined branch in

the circuit. If the nodes to which these branches are connected are all dis

joint, the algorithm simply exchanges the current equation of each branch
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Figure 3.3. Circuit Example for Topological Reordering



36

with the row corresponding to the positive node of that branch. If some of

the branch nodes are coincident then the algorithm orders the row-exchange

process based on a mapping between the voltage-defined branches and cir

cuit nodes which are the negative node of some voltage-defined branch. (This

mapping can always be constructed unless the circuit contains a loop of

voltage-defined branches [Nage75].)

Early versions (through Version F) of Program SPICE2 used only a topo

logical reordering of the circuit equations to improve the conditioning of the

system. No numerically-based reordering was used because of concern

about the overhead of rebuilding the sparse-matrix pointer structure each

time reordering was necessary. Also, the program was designed to run on

the CDC 6400, which provided enough significant digits even with single-

precision arithmetic to avoid most numerical difficulties.

It is not always straightforward to establish a valid mapping between cir

cuit nodes and voltage-controlled branches which avoids the zero-valued

pivot difficulty. The algorithm used in SPICE2 to establish that mapping is

shown in Figure 3.4. The method 'walks' along any trees of voltage-defined

branches and only swaps 'leaf' branches of the tree. However, the algorithm

fails for the circuit in Figure 3.5. The initial set of MNA equations for this cir

cuit are (where Gx = -—):
KX

Gl -Gl 0 0 0 0

-Gl Gl 0 0 1 0

0 0 G2 -G2 -1 0

0 0 -G2 G2 0 1

0 1 -1 0 0 0

, 0 0 0 1 0 0

(3.4)

Vi

v2
-IS'

0

X

v3

v4
=

0

0

KLl)
,KVS)(

0

.vs,

In the absence of any reordering, the (2,2) and (4,4) elements become identi-



while (there exists an unswapped voltage-defined branch (VDB)) (
for (each unswapped VDB) j

if (positive node of VDB != ground)
if (number of VDBs at positive node < 2)

if (diagonal term in equation for VDB current != 0)
save (+ node, VDB) for possible swap

else

save (+ node, VDB) and exit 'for' loop
if (negative node of VDB != ground)

if (number of VDBs at negative node < 2)
if (diagonal term in equation for VDB current != 0)

save (- node, VDB) for possible swap
else

save (- node, VDB) and exit 'for' loop

if (any (node, branch) pair was saved)
perform swap and mark branch 'swapped'

else
error " loop of voltage-defined branches in circuit "

i

Figure 3.4. Mapping Algorithm for Row Swap

37



38

*' © U ®iff. ©©—^/^^u^LvvV^

JS(t) l0s)\U Vs

X

Figure 3.5. Circuit Example Showing Reordering Problem
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cally zero during the LU decomposition2. The topologically-based reordering

algorithm in SPICE2 fails for this circuit because it does not detect properly

the fact that resistance R2 connects two voltage-defined branches. After

applying the SPICE2 algorithm and a Markowitz reordering step to maintain

sparsity, the coefficient matrix becomes:

10 0 0 0 0

G2 1 0 0 0 -G2

0 0 Gl -Gl 0 0

0 0 -Gl Gl 1 0

-G2 0 0 0 -1 G2

.00 0 10-1

Even after this reordering, the (4,4) element of Equation (3.5) becomes zero

(3.5)

during the LU decomposition. An improved algorithm has been reported

recently [Hajj8l] which partitions and orders the circuit variables and equa

tions so that zero-valued pivots are always avoided and the occurrence of

singular submatrices is prevented (assuming that the entire circuit matrix is

nonsingular).

A reordering strategy based solely on topological considerations, how

ever, is unable to resolve all the numerical difficulties which can arise. These

difficulties are either due to the dynamically changing behavior of the circuit

as the analysis proceeds, or due to topological problems which are very

difficult to identify before analysis. An example of a dynamic problem is

shown in the MOS sample-and-hold circuit of Figure 3.6. The voltage V^ is

sampled and held at node (l). Unless independent row or column exchanges

are made in the coefficient matrix, the magnitude of the pivot element (on

the matrix diagonal) for any node in the circuit is equal to the sum of the

magnitudes of the conductances connected to that node. During the sam

pling clock phase, the total conductance at node (1) is reasonably large.

described in Chaster 5
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Figure 3.6. MOS Sample-and-Hold Circuit
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During the hold phase, however, the conductance at the sampling node (and

hence the magnitude of the pivot value) is determined by leakage terms

which are nearly zero. In the absence of any numerical pivoting, a simulation

program encountering such a circuit attempts to divide by an essentially

zero-valued pivot and aborts. This difficulty exists regardless of the numeri

cal precision used, but is especially aggravated for short-wordlength compu

tations.

An example of the type of numerical problem which is topological in

nature but very difficult to identify before analysis is illustrated by the cas

caded gain stages shown in the circuit of Figure 3.7 [Frer76]. The submatrix

for nodes 1-3 of this circuit is

•grr 0

»m

1 ,
R+gn

W gm R-'s*

The nonzero off-diagonal entries in Equation (3.6) are equal to the gm of the

devices, while the diagonal entries are essentially the g„ values (which are

smaller by a factor of 0p). Without pivoting, the diagonal entries are divided

by powers of 0F during the LU decomposition with a significant loss of preci

sion in the computation.

To resolve these numerical problems, SPUDS uses both a preliminary

reordering of the circuit equations based solely on topological factors and

then employs a form of numerical pivoting. Classical 'full' numerical pivoting

[Isaa66] which always chooses that element of the remainder matrix with

maximum magnitude, is not acceptable since it totally ignores any con-

(3.6)
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K'loK JL.

Figure 3.7. Cascaded Gain Stages
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siderations of matrix sparsity3. Instead, SPUDS uses the strategy developed

in Program MICE: the maximum value in the remainder matrix, MAXVAL, is

determined and then all remaining elements with magnitude of at least

PIVRELxMAXVAL are considered as potential pivot candidates. The default

value of PIVREL is 10"3 in SPUDS (A default value of 10"Q is used in MICE; the

larger value in SPUDS makes the system of linear equations more well-

conditioned.) Diagonal matrix elements are considered first to minimize

pivot search time, since those entries are usually large enough in an MNA

matrix. Full pivoting (rather than partial pivoting) is performed since no

increase in execution time is observed for systems of up to several hundred

equations.

During the LU decomposition, elements in the matrix which are zero

may become nonzero. These 'fill-in' terms can change greatly the sparsity of

the matrix. The simplest strategy to minimize the number of fill-ins by

reordering the elements in the matrix is due to Markowitz [Mark57]. The

maximum number of fill-in terms that can be generated in a single step of

the LU decomposition is equal to the product of the number of terms in the

upper triangle row and lower triangle column. The Markowitz algorithm

chooses the row-column pair with the minimum row-column product as the

next pivot. Ties are resolved by choosing the row-column pair with the smal

lest number of column elements4.

The use of this pivot strategy is always forced on the first iteration in

both dc and transient analyses. Pivoting is forced at the beginning of tran-

3Freret's thesis describes the use of a full NxN matrix to store the equation coefficients.
Matrix sparsity is mentioned only in relation to data structure modifications "out not with respect
to the effects of different pivoting strategies on matrix sparsity.

^e coding of the pivoting strategy in SPUDS is adapted from the implementation in Pro
gram SPIC22 by A. Vladimirescu and G. 9oyle.
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sient analysis because conductances for charge-storage elements, which can

modify the numerical conditioning of the matrix, are not present for the dc

analysis. Thereafter, pivoting is performed only if the magnitude of any

value on the matrix diagonal becomes smaller than parameter PIVTOL, which

has a default value of 10~13, empirically chosen for 32-bit accuracy. Typi

cally, only one pivoting step is performed during any particular analysis.

In many cases the use of just numerical pivoting to reorder the circuit

equations is sufficient to avoid numerical problems. Neither Freret's simula

tor nor Program MICE, both of which use Nodal Analysis, use any

topologically-based reordering scheme. The advantage of using

topologically-based reordering is simply that most of the necessary row- and

column-swaps in the modified-nodal matrix can be done before the actual

equation solution is begun.

Some pivoting results are shown in Table 3.1. The two columns headed

'#terms(SPUDS)' present, respectively, the number of nonzero matrix ele

ments after all circuit elements are loaded and the number of such elements

after LU decomposition and pivoting is performed for Program SPUDS. The

next column to the right displays the number of nonzero matrix elements

after solution for Version E.3 of Program SPICE28. The last two columns show

the number of matrix operations necessary to find the equation solution for

the two programs. As shown in the table, the matrix sparsity obtained using

both topological and numerical data (SPUDS) is very close to that obtained

when only topological data is used (SPICE2). The number of matrix terms

shown for SPUDS includes terms added as part of the implementation of the

augmented MNA equations described in the next section. As a result, the

Vhich only performs the topoiogically-based reordering step. The present version of
SPICE2, G.2, uses e'ssenuaily the same numerical pivoting strategy as does SPUDS.
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Circuit #eqns
#terms(SPUDS) jjfterms

SPICE 2E

#matrix ops

>load > pivot SPUDS 1 SPICE 2E

DIFPAIR 17 68 73 58 94 94

KTEST 9 36 66 41 188 80

RCA3040 33 149 187 142 304 275

UA709 44 218 301 287 643 653

UA727 62 306 400 356 746 796

UA733 25 131 156 136 290 293

UA741 52 262 342 299 640 666

RTLINV 13 42 46 35 53 53

TTLINV 29 108 137 111 211 211

TTL74 29 108 135 111 205 211

TTL74S 34 131 172 142 290 290

TTL74L 29 108 135 111 205 211

TTL9200 31 121 148 125 224 242

ECLGATE 39 153 195 160 306 312

MECLIII 51 211 294 241 521 498

SBDGATE 57 215 290 244 500 500

CCSOR 13 55 60 49 102 94

DCOSC 15 75 88 76 159 161

CFFLOP 15 68 74 61 102 102

STCRC 5 13 13 10 13 13

CHOKE 8 24 26 18 30 25

ECLINV 20 77 89 67 133 121

SCHMITT 19 77 90 73 140 140

ASTABLE 13 46 60 49 92 92

SATINV 6 27 27 21 30 23

DEPLINV 6 16 16 12 15 15

RATLOG 15 77 77 64 100 93

INVCHN 11 56 56 47 82 82

BOOTINV 10 42 43 35 52 49

MOSMEM 14 60 60 48 70 72

MOSAMP1 25 165 188 166 288 316

M0SAMP2 25 168 204 183 348 374

Table 3.1. Pivoting Effects on Matrix Sparsity
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average number of terms used in SPUDS for all of the circuits is 19% greater

than the number required for Version E.3 of SPICE2. However, the number of

matrix operations, which relates directly to the total analysis time, is only

0.2% greater for SPUDS.

3.3.2. Augmented MNA

Numerical round-off problems can cause the coefficient matrix to be

singular even when the circuit has a unique solution. Consider two conduc

tances Gl and G2 connected as shown in Figure 3.8a. The submatrix for this

circuit fragment is shown below:

Gl -Gl 0l
-Gl G1+G2 -G2 (3.7)

0 -G2 G2

Notice that the computed value of the (2,2) element should be equal to the

sum of the two conductances. However, if G1»G2 and the number of

significant digits carried in the computation is not sufficiently large, the

actual numerical value of the (2,2) element is just that of Gl. (For example,

if Gl=1.000xl04, G2=l, and only 4 significant digits are used, then

(Gl+G2)=1.000xl04, not l.OOOlxlO4.) Such a dynamic range of element

values occurs commonly in an integrated circuit. Consider for example the

resistive load with an 'off' driver transistor of Figure 3.8b. The 'off' transistor

is modelled with a conductance (G2) which is very small compared with the

conductance of the resistive load (Gl). As a result, the submatrix effectively

becomes

Gl -Gl Ol
-Gl Gl -G2 (3.3)

0 -G2 G2,

The (2,2) pivot element becomes zero during the LU decomposition and the

equation solution aborts.
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©«—W—-—VM—»®

Figure 3.8a Two Conductances

©

Figure 3.8b. Resistive Load
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The indefinite admittance matrix (IAM) [Deso69] is obtained by adding a

row and column for the ground node to the reduced admittance matrix3.

This matrix Y has the invariant property that

i J

The zero row-summation property of the IAM matrix is utilized to deter

mine with greater accuracy the true value of a pivot value by calculating

PIVOTVAL = -J(off-diagonals in the same row)

with the sum accumulated in double precision (64 bits) even though the

coefficient matrix is stored in single precision (32 bits). This IAM formulation

is used both in the work of Freret and in Program MICE.

Freret's dissertation presents examples in which algebraic cancellation

in computing matrix elements can lead to an incorrect solution to the circuit

equations. To alleviate this difficulty he uses

MAX (PIVOTVAL, pivot entry in matrix)

as the pivot value in the decomposition step. This method is also used in Pro

gram MICE. No significant difference in analysis results are found in Program

SPUDS with this modification. The variable PIVOTVAL is used as the pivot

value in the LU decomposition step.

For the modified-nodal-admittance matrix, the above technique must be

modified slightly. The MNA matrix may be partitioned as:

T B

c dI x lb

where Vn is the vector of node voltages and It, is the vector of voltage-defined

branch currents. To preserve the zero row-summation property in the MNA

8!n practice only the column corresponding to the ground equation is added to the matrix;
no additional numerical information is obtained from the addition of an extra equation (row).
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matrix, terms which arithmetically cancel the nonzero entries in the B, C

and D submatrices are added to the column representing the ground node.

3.3.3. Absolute and Delta Iteration

The process of convergence to a solution can present special difficulties

with short wordlength computations because the error in node voltages may

be amplified by an exponential device characteristic. The symptoms of this

problem are a rapid convergence to near the correct solution followed by

numerical oscillation about that solution. To prevent these numerical

difficulties from affecting the convergence process, a combination of 'abso

lute' and 'delta' (or 'incremental') iteration is implemented in SPUDS.

In 'absolute' iteration, SPUDS solves directly for the total node voltages

y°*1 at iteration n+1 in terms of the linearized equivalent circuit determined

at iteration n.

In 'delta' iteration, the system of circuit equations is modified to solve

for the incremental change in node voltages between iterations. Figures 3.9a

and 3.9b compare the two forms of iteration for the case of a simple diode.

As shown in the figures, the value of the incremental conductance, g, loaded

into the coefficient matrix is the same for both types of iteration. The

equivalent current changes, however. For a given branch current I and

branch voltage V, the equivalent current for 'absolute* iteration is

Ieq = I-gxV
and the equivalent current for 'delta' iteration is

i.„ = i.
Once the solution dV0*1 at iteration n+1 has been determined, the new node

voltages are calculated from



v/vt
I = I9 x e

+

= gxV + I8q

I,q = I-gxV

Figure 3.9a Absolute Iteration

yn+l — yn + flyn+1

I=I, x a1"4**"'

=gx(v+av) + ie,

i„ = i

Figure 3.9b. Delta Iteration
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-yn+l = yn^.xyn+1

The necessity for 'delta' iteration is also supported by the data in

Table 3.2, which shows three sets of node voltages found for the dc operating

point of the UA741 operational amplifier test circuit7. The first two columns

show results from Program SPUDS. Both analyses use the 'augmented' MNA

matrix and numerical pivoting, but only the analysis for the second column

utilizes 'delta' iteration. The third column shows results from Version E.3 of

SPICE2 running on the CDC 6400 computer; the last column displays the vol

tage difference, in millivolts, between the second and third columns. As

shown in the table, there is a marked improvement in the accuracy of the

solution for some of the nodes when 'delta' iteration is used although for

most of the circuit nodes the additional iteration step makes no difference.

To extract the greatest numerical advantage from the 'delta' iteration,

two node voltage vectors are needed: a solution vector in single-precision and

a 'reference' vector in double-precision. During 'absolute' iteration, the con

tents of the two vectors are the same (the single-precision vector is copied

into the double-precision storage). During 'delta' iteration, all the significant

digits available in the single-precision format are used to represent the

incremental voltage change, which is then added to the double-precision

reference voltage8.

SPUDS always begins by using 'absolute' iteration; the change to 'delta'

iteration is made when no junction-limiting methods are necessary to con

strain the per-iteration change in nonlinear device operating points. A delay

in switching to 'delta' Iteration assures that the maximum benefit from the

'described in Appendix3
8The implementation in SPUDS uses only one single-precision (32-bit) nodevoltage vector to

store the linear equation solution, since the use of a double-precision reference vector made no
significant difference in the circuit solution.



UA741 Operational Amplifier

Node
SPUDS

SPICE 2E.3 error (mV)
DVTHRS=0.0 DVTHRS=1.0

1 -.0001 -.0001 -.0001 0.00

2 .0008 .0004 .0004 0.00

3 14.4445 14.4446 14.4446 0.00

4 -.5355 -.5356 -.5356 0.00

5 -.5352 -.5353 -.5353 0.00

6 -1.0699 -1.0700 -1.0700 0.00

7 -13.9212 -13.9211 -13.9210 0.10

8 -13.7729 -13.7728 -13.7728 0.00

9 -14.4484 -14.4483 -14.4483 0.00

10 -14.9882 -14.9881 -14.9881 0.00

11 -14.9881 -14.9881 -14.9881 0.00

12 -14.9103 -14.9103 -14.9103 0.00

13 -15.0000 -15.0000 -15.0000 0.00

14 -14.3167 -14.3166 -14.3166 0.00

15 -14.3523 -14.3523 -14.3522 0.10

17 14.3563 14.3563 14.3563 0.00

18 -14.9601 -14.9601 -14.9601 0.00

20 -.5059 -.5517 -.5493 2.40

21 .1425 .0968 .0991 -2.30

22 .7025 .6567 .6591 -2.40

23 .1030 .0573 .0596 -2.30

24 .0955 .0498 .0521 -2.30

25 .0917 .0460 .0484 -2.40

26 -15.0000 -15.0000 -15.0000 0.00

27 15.0000 15.0000 15.0000 0.00

30 0.0000 0.0000 0.0000 0.00

Table 3.2. Effects of Delta Iteration on UA741 Node Voltages
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junction-limiting methods is obtained. The point at which the change to

'delta' iteration is made is also controlled by the threshold parameter

DVTHRS by requiring that

MAX(V* - V1""1) < DVTHRS

for all nodes before changing to 'delta* iteration. The default value for

DVTHRS is 1 volt.

3.3.4. Convergence Comparisons

The effects on convergence of the different accuracy-enhancing tech

niques are presented in this section. When the iterative solution process

does converge, the simulation results using these methods agree well with

each other and with the results obtained using Version E.3 of Program

SPICE2 running on the 60-bit wordsize CDC 6400 computer. The results are

identical to three significant digits and frequently identical even to four

places. As a result, the emphasis of the data presented in this section is on

factors associated with whether or not convergence was obtained.

The use of numerical pivoting is essential for convergence in the analysis

of most integrated circuits. Table 3.3 compares the number of iterations

necessary to perform dc transfer curve and dc operating point analyses for

five different combinations of floating-point precision and the use of numeri

cal pivoting, an augmented MNA matrix, and 'delta' iteration. The columns

headed 'N0G0' show for each combination whether or not the analyses ter

minated without errors. A nonzero value marks a failure to converge in some

analysis. Not ail circuits require all analyses; such an omission is indicated

when all five iteration counts are zero. A nonzero value of 'N0G0' when the

dc operating point analysis does converge indicates that a subsequent tran

sient analysis failed to converge.
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Circuit
NOGO dc transfer curves dc operating point

Case #1 £2 #3 #4 #5 #1 §Z #3 #4 #5 #1 12 £3 #4 #5

DIFPAIR
KTEST
RCA3040

UA709
UA727

UA733

UA741

RTLINV

TTLINV

TTL74
TTL74S
TTL74L
TTL9200

ECLGATE
MECUII
SBDGATE
CCSOR
DCOSC
CFFLOP

STCRC
CHOKE
ECLINV

SCHMITT
ASTABLE
SATINV

DEPLINV

RATLOG
INVCHN
BOOTINV

MOSMEM
MOSAMPl

M0SAMP2

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

0

0

0

1

0

0

1

0

1

0

0

1

0

0

0

0

0

1

0

1

1

1

1

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

229

0

239

301

223

0

303

240

269

277

265

300

301

227

243

271

0

0

0

0

0

0

0

0

689

223

0

0

0

0

262

0

229 228

0 0

238 238

342 308

555 375

0 0

306 351

240 235

167 541

100 509

100 177

146 220

100 222

227 227

245 240

100 514

0 0

606 643

202 214

0 0

0

0

0

202

0

227 227

0 0

238 238

297 297

217 217

0 0

273 272

235 235

258 258

269 269

265 265

314 314

348 348

227 227

241 241

297 329

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

643 643

214 214

0 0

0 0

0 0

0 0

274 271

0 0

16

4

16

26

26

8

26

10

15

18

17

21

0

8

13

21

13

13

7

2

0

8

8

10

51

11

8

13

12

8

24

90

16 16

4 4

16 16
26 26

0 26

8

26

10 10

0 19

15

0

0

0

8

13 13

0 0

13 13

13 13

10 10

6 30

10

8

13

12

8

0

66

Case
precision numerical augmented 'delta'

(bits) pivoting MNA iteration

#1 1 64 no no no

#2 32 no no no

#3 I 32 yes no no

#4 1 32 yes yes no

#5 1 32 yes yes yes

Table 3.3. Pivoting Convergence Comparisons

16 18

4 4

16 16

26 26

26 26

8 8

26 26

10 10

15 15

14 14

17 17

20 20

13 13

8 8

13 13

20 20

13 13

13 13

8 8

10 10

30 30

10 10

8 8

13 13

12 12

8 8

24 24

66 66
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The first case in Table 3.3 shows the use of 64-bit floating-point precision

without the use of numerical pivoting, the augmented MNA matrix, or 'delta'

iteration. No convergence difficulties are present, with the exception of the

TTL9200 circuit (for which convergence is particularly difficult even with 60-

bit precision [Nage75]). More than half of the benchmark circuits (and all of

the TTL ones) do not converge for the second case, which uses 32-bit

floating-point precision but is otherwise the same as Case #1. The combina

tion of 32-bit floating-point precision and numerical pivoting, shown in

Case #3, is slightly more effective, especially for linear circuits. The UA741

and M0SAMP2 circuits are simulated without difficulty, but the TTL circuits

still fail to converge. Case #4 adds the use of the augmented MNA matrix to

Case #3; as shown in the table, all the circuits converge without difficulty.

The addition of 'delta' iteration, in Case #5, does not make any noticeable

improvement in convergence when compared with Case #4. The only

significant change is a 10% increase in the number of iterations for the dc

transfer curve analysis of the SBDGATE circuit. The analysis results for the

Cases #4 and #5 differ in the fourth significant digit by at most one, and both

sets, of results agree to 3.5 significant digits with those of Version E.3 of

SPICE2 running on the CDC 6400 with 60-bit precision.

Table 3.4 compares simulation costs (in terms of iteration counts) when

32-bit precision, numerical pivoting, and 'delta' iteration are used. The only

variable in the data is the use (or non-use) of the augmented MNA matrix.

The first 4 columns of each set of data show, respectively, the value of the

'N0G0' flag and the total number of iterations for the dc transfer curve, dc

operating point, and transient analyses. The remaining two columns show

the total number of timepoints and the number of rejected timepoints for

the transient analysis.
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The use of the augmented MNA matrix has most effect in the simulation

of the TTL circuits, which do not converge, or converge very slowly, unless

this extension to the matrix is used. The need for the augmented matrix can

be explained readily by the fact that the TTL circuits typically have a greater

range in magnitude of branch conductances than do the other circuits. The

additional column in the matrix for these circuits improves the solution

accuracy when such a spread in values occurs.

A comparison of iteration counts for dc transfer curve and dc operating

point analyses, in which the only variable is the use of 'delta' iteration, is

shown in Table 3.5. Both analyses are performed using 32-bit precision,

numerical pivoting, and the augmented MNA matrix. As shown in the table,

no significant differences in iteration count are observed whether or not

'delta' iteration is used.

3.4. Convergence-Enhancing Methods

The likelihood and rate of convergence to a solution can be improved by

incorporating several control parameters into the iteration process. These

control parameters are of even greater importance when limited numerical

precision is used in the calculations. Some of these parameters constrain

the per-iteration change in selected circuit unknowns; other parameters

determine certain threshold levels. Each of these parameters is described in

the following subsections. Of these methods, only prediction and bypass

(Section 3.4.5) are used in Program SPICE2.

3.4.1. p^n Junction Conductance Limit

The assumed value of p-n junction bias can be much greater during the

iteration process than the final solution value. As a result, the equivalent



Circuit

# iterations

DC Xfer DCOP

with 6 without o* 1 with 6 without 6

DIFPAIR 227 227 16 16

KTEST 0 0 4 4

RCA3040 238 238 16 16

UA709 297 297 26 26

UA727 217 217 26 26

UA733 0 0 8 8

UA741 272 273 26 26

RTLINV 235 235 10 10

TTLINV 258 258 15 15

TTL74 269 269 14 14

TTL74S 265 265 17 17

TTL74L 314 314 20 20

TTL9200 . 348 348 13 13

ECLGATE 227 227 8 8

MECLIII 241 241 13 13

SBDGATE 329 297 20 20

CCSOR 0 0 13 13

DCOSC 0 0 13 13

CFFLOP 0 0 8 8

STCRC 0 0 2 2

CHOKE 0 0 0 0

ECLINV 0 0 8 8

SCHMITT 0 0 7 7

ASTABLE 0 0 10 10

SATINV 643 643 30 30

DEPLINV 214 214 10 10

RATLOG 0 0 8 8

INVCHN 0 0 13 13

BOOTINV 0 0 12 12

MOSMEM 0 0 3 8

MOSAMP1 271 274 24 24

M0SAMP2 1 o 0 66 66

Table 3.5. 'Delta' (<5) Iteration Comparison

58
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conductance loaded into the coefficient matrix to model the junction can be

much too large, accentuating roundoff errors and slowing the rate of conver

gence to a solution. Limiting the exponential characteristic is important for

another reason as well. The internal representation for 32-bit floating-point

variables typically uses 7 bits for the exponent field [HP78F] [PRIME]; the

largest value which can be represented is therefore w2l2a or 3xl038. This

maximum value can be exceeded easily during the iteration process due to

the presence of exponential functions. Without limiting several analog and

digital circuits, such as the UA709 and ECLGATE benchmarks, fail to converge

on the minicomputer due to numerical overflow.

In Program MICE, this difficulty is overcome by defining a maximum

value for the p-n junction conductance, GDMAX, with a default value of

lOmhos (—r-ohms). For each device at each iteration, the junction voltage

VMAX corresponding to this conductance is determined from

VMAX =Vtxln(GDMAXx ^-)
where Vt is the thermal voltage and Isat is the junction saturation current. If

the assumed junction, voltage V is less than VMAX, the equivalent linear cir

cuit which models the junction is computed using the usual exponential

characteristic. If V is greater than VMAX, MICE models the junction charac

teristic using a linear extrapolation tangent to the exponential curve at VMAX

with slope GDMAX.

In the SPUDS program a different implementation of this exponential-

limiting idea is used to reduce the computational effort required. Rather

than limiting the junction conductance, the assumed junction voltage is con

strained to be less than or equal to the parameter PNVMAX. The default

value of PNVMAX is chosen to be approximately equivalent to the default
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GDMAX value of MICE. Since the equivalent conductance g is determined

from

g =aid/avd

=-a[Wx(ev/Vt-i)]/avd

= Id/Vt

we have

Id = gxVt
Therefore, the current at which the equivalent conductance is lOmhos is

approximately 260mA. If the saturation current 1^ is taken as 10"l4 amps

then

PNVMAX = 0.026xln(10x0.026/ 10"14)

= 0.8V

The default value for this parameter in SPUDS is 0.9V to allow for variations

in saturation current and circuit temperature.

This limiting scheme prevents premature abortion of the iteration pro

cess due to overflow during the evaluation of p-n junction exponentials. The

use of this form of limiting does not change the number of iterations

required for convergence.

3.4.2. Node-Voltage Limiting

The values of the circuit unknowns (node voltages and voltage-defined

branch currents) can become very large (»108) during the iteration process.

For sufficiently large values of these unknowns, the intermediate computa

tions (such as device model evaluation) can fail due to numerical overflow.

One method which avoids this numerical problem is to limit the magni

tudes of the node voltages to an appropriate value, such as twice the magni

tude of the greatest independent voltage source in the circuit. (Circuits
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which exhibit "bootstrapping" can have transient node voltages which exceed

the magnitudes of the independent power supplies.)

A comparison of the effects of node-voltage limiting is shown in Table 3.6

which displays four sets of data, corresponding to two different limiting

values for node voltages and for p-n junctions. Each set of three columns of

data shows the value of the 'NOGO' flag and the total number of iterations for

the dc transfer curve and dc operating point analyses. All the analyses use

the 'augmented' MNA matrix and numerical pivoting.

For the majority of the benchmark circuits the rate of convergence to a

solution is not changed significantly by the use of node-voltage limiting,

regardless of whether or not p*n junction voltages are also limited. The ana

lyses for both the KTEST and CHOKE circuits fail to converge because the

solutions for these two circuits have node voltages on the order of 200 volts.

Considerable convergence problems have been observed with the other

circuits for which convergence is not obtained [Nage75]. For the TTL circuits

TTL74L and TTL9200, the dc operating-point analyses do not converge when

the node voltages are constrained to be less than even 50 volts, although the

value of the largest independent voltage source in these circuits is +5 volts.

The dc operating point analysis of the MOS amplifier circuit M0SAMP2 does

not converge with 50-volt limiting, even though the largest independent vol

tage source magnitude is 20 volts. The limiting of circuit unknown values

reduces the effectiveness of the p-n junction updating algorithms, leading to

nonconvergence for these circuits.

3.4.3. p^n Junction Voltage Thresholding

One reason for difficulty in converging to a solution is the granularity of

node voltage values. The minimum change in any floating-point number is
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approximately one place in the least significant digit. If 64 bits of precision

are utilized, more than 14 significant digits are stored and the minimum

representable change is less than one part in 1014. When only 32-bit preci

sion is used in the calculations, however, approximately 6.5 significant digits

are represented; for a node voltage of one volt, this granularity is approxi

mately 0.5/,iV.

A junction voltage is computed as the difference between two node vol

tages. The numerical uncertainty in the calculation is therefore on the order

of 1/aV. If the simulation program attempts to make the junction voltages

converge to within a tolerance less than 1/zV, the iteration process frequently

does not terminate. This problem is especially true for TTL circuits, which

have great variation in the magnitudes of the coefficient matrix terms. This

variation increases the actual change in node voltages between iterations

because of increased roundoff errors.

This difficulty is overcome in Program SPUDS with the parameter

DVPNJN. Changes in junction voltages less than DVPNJN in magnitude are

considered as zero for purposes of convergence checking. The default value

for this parameter is 0.1/zV; for several of the TTL benchmark circuits, con

vergence is obtained only when DVPNJN is increased to 1—3/zV. In all cases,

the simulation results from the dc transfer curve, dc operating point, and

transient analyses agree to «3.5 significant digits with the results obtained

by running Version E.3 of Program SPICE2 on the 60-bit CDC 6400 computer.

3.4.4. 'Delta'Iteration Threshold

The decision to switch from 'absolute' iteration to 'delta* iteration is

made when no junction-limiting methods are necessary to constrain the per-

iteration change in nonlinear device operating points and when the maximum
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per-iteration change in any node voltage is less than DVTHRS. Table 3.7

shows the effects of different values of DVTHRS. For each value, the value of

the 'NOGO' flag and the number of iterations for the dc transfer curve, dc

operating point, and transient analyses are given. The data in the columns

headed 'DVTHRS=0.0V are for analyses which do not use 'delta' iteration at

all.

Since the switch to 'delta* iteration is not made until junction-limiting

methods are not necessary, the effect of different values for the DVTHRS

parameter is relatively smalL As shown in the table, a too-large or too-small

value can increase the number of iterations required for convergence.

Empirically, the best value for DVTHRS is found to be IV, and this number is

the default in SPUDS.

3.4.5. Prediction and Bypass

Algorithms which predict the solution to the next point in a multi-point

analysis and which bypass the evaluation of the nonlinear-device models can

reduce the computational effort to perform an analysis considerably

[Newt77]. Both of these methods also impact significantly the number of

iterations required for convergence. The following paragraphs describe the

convergence effects in SPUDS of each method.

For multiple-point analyses, the solution to the 'next' point can be

predicted from the solution to previous points. SPUDS uses the same first-

order predictor as Program SPICE2. For example in transient analysis this

predictor takes the form

^i+i = ^n"*" u 0*n""^-i)

Table 3.8a shows the number of iterations and required cpu execution times
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Circuit
DVTHRS= 100V DVTHRS=1.0V | DVTHRS=0.1V DVTHRS=0.0V

N XCI DC TRI N XCI DC TRI! N XCI DC TRI N XCI DC TRI

DIFPAIR 0 227 16 238 0 227 16 238 0 227 16 238 0 227 16 239

KTEST 0 0 4 560 0 0 4 560 0 0 4 560 0 0 4 636

RCA3040 0 238 16 317 0 238 16 317 0 238 16 317 0 238 16 314

UA709 0 305 26 249 0 297 26 249 0 325 26 249 0 297 26 248

UA727 0 217 26 242 0 217 26 242 0 217 26 242 0 217 26 241

UA733 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0

UA741 0 272 26 214 0 272 26 214 0 272 26 214 0 273 26 214

RTLINV 0 235 10 364 0 235 10 364 0 235 10 364 0 235 10 394

TTLINV 0 258 15 525 0 258 15 536 0 258 15 536 0 258 15 594

TTL74 0 269 14 627 0 269 14 627 0 269 14 627 0 269 14 658

TTL74S 0 265 17 508 0 265 17 508 0 265 17 511 0 265 17 523

TTL74L 0 314 20 584 0 314 20 584 0 314 20 584 0 314 20 547

TTL9200 0 348 13 563 0 348 13 563 0 348 13 563 0 348 13 623

ECLGATE 0 227 8 490 0 227 8 490 0 227 8 490 0 227 8 492

MECLIII 0 241 13 460 0 241 13 460 0 241 13 460 0 241 13 480

SBDGATE 0 329 20 476 0 329 20 476 0 329 20 476 0 297 20 481

CCSOR 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0

DCOSC 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0

CFFLOP 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0

STCRC 0 0 2 236 0 0 2 236 0 0 2 236 0 0 2 236

CHOKE 0 0 0 261 0 0 0 261 0 0 0 261 0 0 0 266

ECL1NV 0 0 8 345 0 0 8 345 0 0 8 345 0 0 8 434

SCHMITT 0 0 7 385 0 0 7 385 0 0 7 385 0 0 7 366

ASTABLE 0 0 9 886 0 0 9 886 0 0 9 886 0 0 10 909

SATINV 0 651 37 0 0 643 30 0 0 643 30 0 0 643 30 0

DEPLINV 0 214 10 0 0 214 10 0 0 214 10 0 0 214 10 0

RATLOG 0 0 8 364 0 0 8 364 0 0 8 364 0 0 8 413

INVCHN 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0

BOOTINV 0 0 20 238 0 0 12 238 0 0 12 238 0 0 12 238

MOSMEM 0 0 8 331 0 0 8 331 0 0 8 331 0 0 8 335

MOSAMP1 0 271 24 0 0 271 24 0 0 271 24 0 0 274 24 0

1MOSAMP2 1 0 100 0 0 0 66 494 0 0 66 494 0 0 66 488

Table 3.7. Convergence Com parison: 'Delta' Thre shold
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Circuit
No BYPASS and No PREDCT PREDCT but No BYPASS

XCI TRI XCI TRAN XCI TRI XCI TRAN

DIFPAIR 320 321 10.67 14.86 228 242 8.30 12.17

KTEST 0 560 0.00 15.69 0 560 0.00 15.70

RCA3040 331 126 24.32 14.12 238 312 18.62 35.02

UA709 378 313 42.02 49.85 318 248 36.74 42.10

UA727 " 277 322 45.20 71.03 217 243 37.97 57.61

UA733 0 0 0.00 0.00 0 0 0.00 0.00

UA741 298 314 43.21 65.45 272 214 40.90 49.24

RTLINV 284 418 6.33 11.66 235 349 5.58 10.30

TTLINV 317 556 16.12 36.37 258 544 13.83 36.08

TTL74 318 521 16.16 34.29 270 525 14.33 34.82

TTL74S 338 503 20.62 40.43 265 509 17.08 41.23

TTL74L 389 557 19.32 36.36 339 560 17.43 36.84

TTL9200 397 572 21.35 40.23 348 542 19.33 38.80

ECLGATE 264 510 19.36 47.48 227 448 17.43 42.98

MECLIII 293 524 28.75 68.96 241 446 24.82 60.65

SBDGATE 343 506 35.41 65.98 321 484 33.99 64.13

CCSOR 0 0 0.00 0.00 0 0 0.00 0.00

DCOSC 0 0 0.00 0.00 0 0 0.00 0.00

CFFLOP 0 0 0.00 0.00 0 0 0.00 0.00

STCRC 0 236 0.00 3.90 0 236 0.00 3.86

CHOKE 0 303 0.00 7.00 0 261 0.00 6.48

ECLINV 0 481 0.00 23.42 0 799 0.00 34.34

SCHMITT 0 418 0.00 20.89 0 386 0.00 19.89

ASTABLE 0 920 0.00 26.72 0 917 0.00 26.83

SATINV 726 0 21.05 0.00 644 0 19.30 0.00

DEPUNV 225 0 6.39 0.00 214 0 6.19 0.00

RATLOG 0 397 0.00 39.67 0 364 0.00 37.39

INVCHN 0 0 0.00 0.00 0 0 0.00 0.00

BOOTINV 0 247 0.00 22.41 0 238 0.00 21.85

MOSMEM 0 373 0.00 61.20 0 325 0.00 54.87

MOSAMPl 310 0 71.21 0.00 304 0 70.48 0.00

M0SAMP2 0 1504 0.00 565.66 0 480 0.00 182.14

Table 3.8a. Effects of Prediction on Convergence
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for dc transfer curve and transient analyses of the benchmark circuits. The

columns headed 'No BYPASS and No PREDCT' display the results for 'refer

ence' analyses using neither prediction nor bypass methods. The remaining

columns display the analysis results when the first-order prediction method

(but not bypass) is employed. All the analyses use 32-bit floating-point arith

metic, numerical pivoting, and the augmented MNA matrix.

More cpu time per iteration is required if the prediction method is used.

As shown in the table, for the DIFPAIR circuit the time per iteration in the dc

transfer curve analysis is 33.3ms without prediction and 36.4ms with predic

tion. The difference, a 9% increase in the cpu time per iteration,- is the time

required to compute the predicted circuit variables. But the total cpu exe

cution time for this analysis decreased by 22% because of an even greater

percentage reduction in the required number of iterations. This decrease in

cpu time holds true for all the benchmark circuits in the dc transfer curve

analysis, although the percentage savings in cpu execution time is as little as

1% for some circuits.

For transient analysis Table 3.8a shows a similar reduction in overall cpu

time except for the RCA3040 and ECLINV circuits, for which both the total

cpu time and the number of Newton iterations required for the analysis

increase by 50% or more. Since the data presented in [Nage75] on the use of

this first-order prediction method with 60-bit floating-point arithmetic does

not show this anomalous behavior for these two circuits, this increase m

analysis time probably is due to numerical roundoff error in the values of the

predicted circuit variables.

The bypass algorithm saves computational effort by evaluating each non

linear branch relation and its derivative only if the difference in the argu-
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ments to that branch relation is signiflcant [Nage75]. Table 3.8b compares

the analysis results when the bypass method is used with the results of the

same 'reference' analysis from the previous table. For the dc transfer curve

analysis, the savings in cpu execution time for all the benchmark circuits is

small (at most 9% for the M0SAMP1 circuit). For the TTL74S circuit, the

transfer curve analysis fails to converge. For most of the benchmark cir

cuits, the transient analysis results are of a similar nature. The reduction in

cpu time at best is small, and for some circuits the analysis time increases

slightly.

The combination of both the prediction and bypass algorithms results in

analysis times which are smaller, for almost all the benchmark circuits, than

when either method is used alone. Most of the reduction in cpu time is due

to the prediction method; the computation necessary to determine whether

to bypass the evaluation of a particular nonlinear-device model is approxi

mately offset by the savings in not having to perform those evaluations.

Table 3.8c compares the analysis results when both prediction and bypass

are used against the results of the 'reference' analysis of the last two tables.

On the average for all the benchmark circuits, for the dc transfer curve

analysis, the two methods together reduce the iteration counts and cpu

times by 11.4% and 12%, respectively. The iteration counts and cpu times for

transient analysis are reduced by 11% and 31% respectively. (If the very-

large (and singular) reductions in transient analysis times for the M0SAMP2

circuit are removed from the comparison, the decrease in transient itera

tions and cpu times is only 2% and 4.5%, respectively.)

On the average, the reduction in cpu execution time with both the pred

iction and bypass methods is of the same order as the savings described by



0
5

C
O

OOWOJO

C
O

C
O

moQP
uojz;§C
O

C
O

&mo

3a

N
O

)
N

O
)
C

O
O

O
)
O

C
O

C
O

O
W

O
C

y
iO

)
C

O
O

O
O

N
'-

iO
)
C

D
H

O
O

C
O

O
C

O
H

O
in

c
o

c
o

w
H

O
C

D
O

c
o

c
o

o
o

o
)
0

)
^
iD

O
O

O
(
D

O
O

)
iO

H
q

q
(
O

O
O

w
q

T
j*

ir
i^

c
D

c
d

o
r
H

C
M

c
o

^
o

ir
iT

H
c
d

c
o

if5
o

b
o

c
o

^
^

rH
T

H
C

O
-^

C
O

C
O

'H
^
C

O
CO

t}«
tH

l>
CO

iH
C

M
C

M
CO

C
M

C
O

T
f'O

C
O

O
S

C
M

O
C

O
m

O
T

H
O

C
M

O
C

O
O

C
M

O
O

O
O

O
O

O
O

m
O

'-
«

T
fc

o
O

'H
c
o

c
M

C
M

C
M

c
o

q
q

q
q

q
q

q
q

q
q

q
q

o
o

T
p

c
M

c
o

o
c
o

c
o

'c
d

c
o

c
o

c
o

^
o

S
c
O

T
j'o

o
o

o
o

b
o

o
t-4

C
M

"<*
"<*

rj*
H

H
H

H
W

H
W

C
O

t
H

C
O

O
O

O
O

t
H

O
«

H
c
o

o
o

o
o

q
o

H
t
d

d
d

c
i
d

i
f
i
o

C
M

C
O

C
O

O
C

J
3

T
j«

O
O

C
O

T
j<

C
O

O
>

O
C

D
O

C
O

m
'H

O
O

O
C

O
C

O
m

O
)C

O
O

O
t^

O
t^

'-H
O

C
O

H
tO

C
O

H
W

i-h
CO

CD
CM

tJ«
tH

o
t-

»-«
C

O
O

in
H

C
O

CO
T

f»
r-

03
c
o
i
n
c
o
c
o
c
o

c
o
-
^
c
o
i
n

m
c
o
m

i
n
m

c
m
c
o
c
o
•
*
o
j

c
o

c
m
c
o

o
>

o
o

T
H

C
D

r
*

-
o

o
c
o

t
^

o
>

0
'«

*
c
D

T
f
«

c
o

o
o

o
o

o
o

o
o

o
m

m
o

o
o

o
m

o
C

M
C

O
C

O
ts

-O
C

O
»

H
»

H
O

)C
0

0
5

C
D

0
5

C
O

CM
CM

O
C

O
C

O
C

O
C

M
C

O
C

M
C

O
C

O
C

M
C

O
C

O
C

M
C

M
C

O
t^

CM
CO

tD
0

)
N

in
n

O
in

C
0

N
0

)
C

0
C

0
C

0
C

0
C

D
(
D

O
O

O
O

O
W

Q
N

O
O

N
O

H
p

O
C

0
C

O
C

D
rH

C
O

O
O

T
h

C
O

C
O

C
M

T
}
«

C
O

C
M

T
»

«
0

)0
>

0
0

0
0

>
O

T
}
'C

O
t^

O
O

C
O

O
T

}
«

C
M

O
C

O

t|«
m

rj*
o

j
th

*H
tH

y-4
-*J«

fr-
o

i
n

C
O

(
D

T
f
O

C
O

O
N

C
O

l
O

O
O

O
C

O
C

O
C

O
T

fC
O

T
f^

C
O

C
O

N
C

O
O

t
O

O
O

O
l
O

W
H

O
l
O

C
M

C
M

C
M

C
O

C
M

C
D

C
O

m

N
O

N
N

O
O

H
n

W
(
D

W
W

lfitO
jp

H
O

O
O

O
O

O
O

O
in

C
»

0
^

c
o

o
n

o
N

O
N

c
o

H
H

c
o

c
o

c
o

n
N

^
o

o
q

q
q

q
o

q
q

n
q

q
q

q
w

q
b

b
^
c
M

in
b

c
o

c
d

c
D

*
c
d

b
o

)»
H

r-i
C

M
^
T

f
T

j*
tH

^
H

C
M

'^
C

M
o

c
o

i
n

o
o

o
o

o
o

o
o

T
H

c
o

-rH
C

M
C

O
C

M
O

O
O

O
tH

o

^
O

C
D

C
O

C
M

O
^
C

O
C

O
'H

C
O

r
-C

M
O

T
j'C

O
O

O
O

C
O

C
O

r
H

C
O

O
O

O
t^

O
t^

C
O

O
^

cm
co

cm
t-icm

H
H

in
ty

jo
iO

N
H

iM
o

^
S

0
?
^

^
55

;$
£

;
9

,
c
o

m
»

H
c
o

c
o

c
o

^
m

m
m

m
i
n

m
i
n

m
cm

co
-^

-<*
o>

co
cm

co
in

0
0

»
H

C
O

I
>

O
C

O
'*

r
*

-
C

O
C

0
0

3
tv

-
'^

C
O

C
O

O
O

O
O

O
O

O
O

C
D

m
O

O
O

O
O

O
c
M

c
o

c
k
-r

-0
3

c
o

*
H

«
H

c
o

c
o

o
3

c
o

o
>

T
t'

r^fM
1^

C
O

C
O

C
O

C
M

C
M

C
M

C
O

C
O

C
O

C
O

C
O

C
M

C
M

C
O

1>
CM

CO

3
H

o
o

>
c
-c

o
»

H
g

e
^

^
J
^

!
P

-.

w
S

m
u

p
u

n

C
M

o
fc

u
g

a
S

B
B

S
^

g
o

|g
|

p
u
u
E
h
W
u
o
w
^
w
^
g
o
o
o
o

c
o

oC
J

c
u

t»
n

uc
u

go

Ocoin
V

I

m

oQ
)

It!
Wx

i
c
o

c
oC
D

—
*

x
>



70

Circuit
No BYPASS and No PREDCT 1 BYPASS and PREDCT

XCI TRI XCI TRAN XCI TRI I XCI TRAN

DIFPAIR 320 321 10.67 14.86 227 238 8.21 11.97

KTEST 0 560 0.00 15.69 0 560 0.00 15.68

RCA3040 331 126 24.32 14.12 238 317 18.56 34.88

UA709 378 313 42.02 49.85 297 249 34.45 41.11

UA727 277 322 45.20 71.03 217 242 37.02 56.93

UA733 0 0 0.00 0.00 0 0 0.00 0.00

UA741 298 314 43.21 65.45 272 214 40.87 48.46

RTLINV 284 418 6.33 11.66 235 364 5.60 10.66

TTLINV 317 556 16.12 36.37 258 536 13.84 35.19

TTL74 318 521 16.16 34.29 269 627 14.32 40.08

TTL74S 338 503 20.62 40.43 265 508 17.10 40.46

TTL74L 389 557 19.32 36.36 314 584 16.30 37.79

TTL9200 397 572 21.35 40.23 348 563 19.35 39.48

ECLGATE 264 510 19.36 47.48 227 490 17.12 46.13

MECLIII 293 524 28.75 68.96 241 460 24.52 60.73

SBDGATE 343 506 35.41 65.98 329 476 34.55 62.18

CCSOR 0 0 0.00 0.00 0 0 0.00 0.00

DCOSC 0 0 0.00 0.00 0 0 0.00 0.00

CFFLOP 0 0 0.00 0.00 0 0 0.00 0.00

STCRC 0 236 0.00 3.90 0 236 0.00 3.87

CHOKE 0 303 0.00 7.00 0 261 0.00 6.46

ECLINV 0 481 0.00 23.42 0 345 0.00 17.88

SCHMITT 0 418 0.00 20.89 0 385 0.00 19.74

ASTABLE 0 920 0.00 26.72 0 886 0.00 26.54

SATINV 726 0 21.05 0.00 643 0 18.86 0.00

DEPLINV 225 0 6.39 0.00 214 0 6.02 0.00

RATLOG 0 397 0.00 39.67 0 364 0.00 36.49

INVCHN 0 0 0.00 0.00 0 0 0.00 0.00

BOOTINV 0 247 0.00 22.41 0 238 0.00 21.03

MOSMEM 0 373 0.00 61.20 0 331 0.00 53.47

xMOSAMPl 310 0 71.21 0.00 271 0 57.80 0.00

M0SAMP2 0 1504 0.00 565.66 0 494 0.00 178.49

Table 3.8c. Effects of Prediction and Bypass on Convergence
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[Nage75] for Program SPICE2 with 60-bit floating-point arithmetic. For some

of the test circuits, however, the percentage reduction for SPUDS (with 32-

bit floating-point arithmetic) is 2-3 times greater. For example, transient

analysis cpu time reductions of 12%, 12%, and 8% are reported in [Nage75] for

the UA709, UA727, and ECLINV circuits; the savings in SPUDS are 17.5%, 20%,

and 24%, respectively. Moreover, for the M0SAMP2 circuit, the transient

analysis time for SPUDS is reduced by 68% when both prediction and bypass

methods are employed. This major reduction definitely warrants the inclu

sion of these methods in a minicomputer-based simulator.

3.5. Conclusions: 32-bit vs 64-bit Arithmetic

As mentioned earlier in this chapter, when the iterative solution process

does converge the results of running a simulation with SPUDS agree well with

the results obtained from running Version E.3 of Program SPICE2 on the 60-

bit wordsize CDC 6400 computer. The node voltages are identical to three

significant digits and frequently identical even to four places. Overall conver

gence data are presented in Table 3.9. For each of the benchmark circuits,

the number of equations is shown, followed by the number of iterations for

the dc transfer curve, dc operating point, and transient analyses for SPUDS

and Version E.3 of Program SPICE2.

Program SPUDS converges for all of these circuits, and the number of

iterations required is comparable to the number required by SPICE2. The

coupling of 32-bit floating-point arithmetic with numerical pivoting, an aug

mented MNA matrix, incremental refinement of the iterative solution, and

the threshold parameters described in Section 3.4 results in an effective cir

cuit simulation tool.



Circuit #eqns
SPUDS (32-bit) SPIC]E2E( 30-bit)

XCI DC TRI | XCI DC TRI

DIFPAIR 17 227 16 238 229 16 252

KTEST 9 0 4 560 0 4 246

RCA3040 33 238 16 317 239 16 296

UA709 44 297 26 249 301 26 303

UA727 62 217 26 242 223 26 312

UA733 25 0 8 0 0 8 0

UA741 52 272 26 214 303 26 269

RTLINV 13 235 10 364 240 10 376

TTLINV 29 258 15 536 269 15 599

TTL74 29 269 14 627 277 18 534

TTL74S 34 265 17 508 265 17 558

TTL74L 29 314 20 584 300 21 651

TTL9200 31 348 13 563 340 13 558

ECLGATE 39 227 8 490 227 8 428

MECLIII 51 241 13 460 243 13 389

SBDGATE 57 329 20 476 271 21 484

CCSOR 13 0 13 0 0 13 0

DCOSC 15 0 13 0 0 13 0

CFFLOP 15 0 8 0 0 7 0

STCRC 5 0 2 236 0 2 246

CHOKE 8 0 0 261 0 0 357

ECLINV 20 0 8 345 0 8 361

SCHMITT 19 0 7 385 0 a 384

ASTABLE 13 0 9 886 0 10 1011

SATINV 8 643 30 0 689 51 0

DEPUNV 6 214 10 0 223 11 0

RATLOG 15 0 8 364 0 8 441

INVCHN 11 0 13 0 0 13 0

BOOTINV 10 0 12 238 0 18 238

MOSMEM 14 0 8 331 0 8 334

MOSAMP1 25 271 24 0 262 18 0

M0SAMP2 25 0 66 494 0 90 463

Table 3.9. Convergence Comparison: 32/64 Bit Precision
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CHAPTER 4

DATA STRUCTURES

The choice of data representations and structures has a major impact

on circuit simulation speed. The design of these structures is motivated

towards obtaining the maximum possible simulation speed since this

research is concerned, in part, with the development of a dedicated, inex

pensive desktop simulation tool capable of producing analysis results for the

design engineer in a few minutes. A secondary goal is to minimize the

amount of high-speed memory required for the analyses, both in order to

minimize the cost of the overall system and to increase the size of circuit

which can be simulated within a given address space.

The coefficient matrix for the system of linearized equations that is

repetitively solved during the analyses is very sparse; typically, more than

85% of its entries are zero. The internal representation for this matrix is

described in detail in Section 4.1.

The data structures which represent the input circuit description and

analysis 'state' information required by SPUDS are a set of linked lists and

'tables' of contiguous memory, similar to the structures used in Program

SPICE2. Significant savings in memory requirements are obtained by data

restructuring, by some algorithmic changes, and by taking advantage of the

smaller wordsize of the minicomputer. These improvements are described in

Section 4.2.
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Section 4.3 presents a breakdown of the total memory requirements of

SPUDS based on the functional needs of the program. A comparison is made

with the total main memory required by Version E.3 of Program SPICE2.

4.1. Matrix Structures

The coefficient matrix for the system of linearized circuit equations

corresponding to an average IC is very sparse [Berr7l] [Nage75]; typically,

85% to 90% of the matrix entries are zero. Signiflcant savings in both compu

tation time and storage requirements can be achieved if advantage is taken

of this sparsity.

Two basic types of operations are performed on this coefficient matrix.

First, rows and/or columns of the matrix are interchanged either as part of

the numerical pivoting described in Chapter 3 or in order to maintain spar

sity. Second, matrix entries are modified as the system of linear equations is

solved. Hence, the data structure representing the coefficient matrix must

facilitate both rapid changes in matrix structure and fast access to any par

ticular coefficient in the matrix.

In Version E.3 of Program SPICE2, two different ways of representing the

matrix are used. Initially, as the structure of the coefficient matrix is esta

blished by scanning over the input circuit description, the matrix is

represented in memory using an array of singly-linked lists, each of which

stored the nonzero column locations of a row in the matrix (see Figure 4.1).

Once the initial matrix structure is established, row- and column-reordering

is performed using the Markowitz criteria [Mark57] to maintain matrix spar

sity. A mock, symbolic equation solution step is then performed to identify

all 'fill-In' matrix entries (terms which, though initially zero, become nonzero

as a result of the equation solution process). The ease with which these
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Figure 4.1. Singly-Linked List Matrix Representation
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changes in the structure of the matrix can be performed using the linked-list

representation motivated the use of this data structure.

Considerable overhead can be incurred, however, by always dealing with

the matrix using this linked-list representation. The FORTRAN programming

language is particularly ill-suited to high-speed manipulations of linked-list

structures. Since numerical pivoting is not used in Version E.3 of SPICE2,

the structure of the matrix is determined once and for all after the circuit

description has been read and before any analysis is performed. Therefore,

once the final matrix structure is determined, the linked-list representation

is converted to a packed 'row-column indexing* notation which requires less

memory [Nage75]. Of equal importance is the fact that the 'row-column

indexing' notation allows immediate retrieval of the next nonzero row-

element in the upper triangle of the matrix and of the next nonzero column-

element in the lower triangle part. Both of these elements are precisely the

ones required to perform efficiently the LU decomposition step of the linear

equation solution. However, with the row-column notation it is much more

difficult to make changes to the matrix organization. Figure 4.2, adapted

from [Nage75] shows a small example matrix with the row-column indexing

scheme included. Since the diagonal and right-hand-side terms are

presumed to be nonzero, no sparse-matrix pointers are used to access these

elements. All off-diagonal terms are stored in the AO array, which is paired

with the 10 array. These two arrays are accessed with the aid of the two

index arrays IUR (Upper triangle Rows) and ILC (Lower triangle Columns).

The Ith row matrix elements are stored in locations A0(1UR(I)) through

A0(IUR(I+1)-1). If IUR(I)=IUR(I+1) there are no upper-triangle row terms in

the Ith row. The column position is determined by the corresponding 10 array

value. For example, in the second row there is one off-diagonal entry since
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IUR(3)-IUR(2)=1; the column number of that entry, 5, is contained in

I0(1UR(2)). The lower-triangular terms are accessed in an identical manner,

using the ILC array (instead of IUR) to index 10.

The use of numerical pivoting during analysis means that the structure

of the matrix may change at any time. In Program SPUDS the matrix is

therefore always stored using a linked-list representation. Chapter 5

describes the manner in which the extra overhead of manipulating the

matrix due to this representation is eliminated. The data structures are pat

terned after the 'threaded list' technique used in the SLIC [Idle7l], NICAP

[Cerm7l], and MICE [Cohe78] simulation programs. The example and

description of the method presented here is taken from McCalla [McCa]. The

formulation is illustrated in Figure 4.3. Unique storage locations are pro

vided for each nonzero matrix term in the array VALU. The arrays IROW and

JCOL record the (i,j) coordinates of each nonzero term in the system of equa

tions. The arrays IRPT and JCPT indicate, respectively, the row, i, of the next

nonzero element in a column (scanning down the matrix), and the column, j,

of the next nonzero element in a row (scanning to the right across the

matrix). The end of a column or row is indicated by a zero value for IRPT or

JCPT. Consider column one: IRPT(1)=6 indicates that the first nonzero entry

is at location 6, where IR0W(6)=1 and JC0L(6)=1 indicate coefficient Au. The

next entry in the column is pointed to by IRPT(6)=7; at location 7, IR0W(7)=4

and JC0L(7)=1 indicate coefficient A^. Finally, IRPT(7)=0 indicates that XAl

is the last nonzero term in column one. Similarly, to scan across row 3 one

would begin at JCPT(3)=9, where IR0W(9)=3 and JC0L(9)=2 indicate A32, etc.

Note that this threaded list scheme is bi-directional. From any element,

one can immediately proceed to the element below it via array IRPT and to
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Figure 4.3. Threaded-List Matrix Representation
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the element to the right of it via array JCPT. This capability, as noted previ

ously, greatly facilitates the implementation of Gaussian elimination for

equation solution.

The actual representation used for solving the linearized system

Axx=b («)
is shown in Figure 4.4. The right-hand-side vector b is appended to the

coefficient matrix A as column N+l, so that A1#^+i = bj, Ag^+i = b2, etc. The

order of the overall matrix is then Nx(N+l). In SPUDS, an additional 'ground'

column is also added to this system as column N+2 to implement the zero

row-summation property of the matrix. This additional column is added at

the far right-hand side of the matrix, rather than at the left-hand side,

because the elements must be included in the steps taken as part of the

Gaussian elimination to ensure that the sum of the values in any row of the

augmented matrix remains zero during the solution step. This last column is

otherwise ignored; in particular, it has no effect on the sparsity or reordering

computations.

Each time a numerical pivoting step is performed, new matrix fill-in

terms must be identified and allocated a location in the appropriate linked

list. The effects of a subsequent row/column reordering can include the

elimination of the need for previously-allocated fill-ins. These unnecessary

terms could be eliminated only by starting over from the original matrix

structure and re-establishing the positions of all required fill-ins. For

tunately, in practice, more than one numerical pivoting step is not usually

required. Therefore, no search for or re-use of such fill-ins is performed by

SPUDS. The matrix structure at the end of the dc analysis, including any

fill-in terms which may have been added, is used as the starting structure for
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a subsequent transient analysis of the same circuit. Once an element is

added to the coefficient matrix for any analysis, the term remains for the

rest of the program execution.

4.2. Storage Reduction Techniques

It is desirable to reduce the high-speed memory requirements of a simu

lation program. Since accesses to memory require more time than do typi

cal operations in the CPU, a reduction in data structure sizes can mean a

reduction in the number of references to memory and hence an increase in

program speed. Also, smaller usage of memory for a given circuit means

that larger, more complex circuits may be analyzed in a given amount of

memory.

The data structures used to represent the input circuit description in

Program SPUDS are a set of linked lists similar to those used in SPICE2

[Cohe76]. Savings in the amount of memory required by these lists in SPUDS

is due primarily to the smaller wordsize of the minicomputer, which permits

input circuit variables to be stored easily in a smaller number of bits of

memory than on larger-wordsize computers. Significant savings in memory

requirements relative to SPICE2 have been obtained by data restructuring,

by some algorithmic changes, and by taking advantage of the smaller word-

size of the minicomputer.

In Program SPICE2, intermediate analysis results and state information

for energy-storage elements are stored in the 'LXi* (LXO, LX1, ...) tables.

Each 'table' is a dynamically-allocated contiguous region of memory. Fig

ure 4.5 shows the contents of the LXO table for a MOS transistor; both dc

operating-point information, e.g. drain current and transconductance, and

charge-storage information (capacitor charges and currents) are stored.



LXi + 0: vbd
+ 1: Vba
+ 2: V

as

+ 3: V

+ 4: Id
+ 5: It.
+ 6: Ibd

+ 7: §m
+ 8: gda
+ 9: Smbs

+ 10: gbd
+11: gbs

+ 12: Cbd:q
+ 13 Cbd^i
+ 14 cb9:q
+ 15 Cb8:i
+ 16 Cg3:q
+ 17 Cgr 1
+18: Cgd: q
+ 19" <V [
+20: Cgb: q
+21 : Csh: i

(bulk-drain voltage)

(drain current)
(bulk-source diode current)
(bulk-drain diode current)

(drain-source conductance)

(bulk-drain conductance)
(bulk-source conductance)

(charge on bulk-drain capacitance)
(current flowing through Cbd)

Figure 4.5. SPICE2 LXO Table Contents for MOS Transistors
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The number of these blocks of memory is determined by the type of analysis

and, for transient analysis, by the type and order of method used for numeri

cal integration.

For the multi-point analyses such as transient analysis, the LXO table

contains the results of the current iteration while the other tables (LXI,

LX2,...) contain copies of previous contents of the LXO vector (the solutions

found at previous sweep points). All of this information together is sufficient

to 'back-up' to the previous sweep point if the solution at the current point is

rejected (perhaps due to excessive local truncation error). The initial guess

at the solution to a new sweep point is obtained by linear extrapolation from

the two previous points, in the same manner as the case of dc transfer curve

analysis. For example, if hrat is defined as the ratio of the timesteps used at

the current and previous time points in transient analysis, the initial guess

for the solution to the new timepoint is obtained from

LXO = (l+hrat)xLXl - hratxLX2 (4.2)
Therefore, a complete 'back-up' requires the solutions from the two previous

sweep points, which are stored in the LXI and LX2 tables. Finally, if at least a

second-order method for numerical integration is used in transient analysis,

three previous values of the energy-storage element data (LXI, LX2, and LX3)

are required in order to estimate the local truncation error effectively.

Therefore, Program SPICE2 keeps four 'LXi' tables (LXO through LX3) when

transient analysis is performed.

In Program SPUDS, the LXi tables are split into two parts. The

operating-point information is stored in a separate set of tables, LQPTi, and

only the data pertaining to energy-storage elements is retained in the LXi

tables. Figure 4.6 shows the revised LXi and LQPTi table contents for MOS



LQPTi + 0: VM (bulk-drain voltage)

+ 2: Vg,
+ 3: V4d

+ 4: ^ (drain current)
+ 5: Ib8 (bulk-source diode current)
+ 6: Ibd " (bulk-drain diode current)

+ 7:

+ 8: gds (drain-source conductance)
+ 9: gmbs
+10: gbd (bulk-drain conductance)
+11: gba (bulk-source conductance)

irn

LXi + 1: Cbd: q (charge on bulk-drain capacitance)
+ 2: Cbd: i (current flowing through Cbd)
+ 3: Cbs: q
+ 4: Cba: i
+ 5: Cgs: q
+ 6: Cg3: i
+ 7: Cgd: q
+ 8: Cgd: i
+ 9: Cgb: q

+ 10: Coh: i

Figure 4.6. SPUDS LXi and LQPTi Table Contents for MOS Transistors
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transistors. Memory requirements are reduced due to two factors. First, the

copy of the operating-point information that was part of the LX3 table but

was never referenced is no longer stored. Conceptually, this change elim

inates the need for an LQPT3 table. Second, the LQPT2 table can be omitted

after careful examination of the prediction step. Just after the analysis at a

particular sweep point has converged and before the analysis of the following

point has begun, the LQPTO table contains the device operating-point infor

mation for the sweep point just solved. Tables LQPTI and LQPT2 contain the

corresponding data for previous sweep points. If the new sweep point has

been accepted, the contents of LQPT2 are replaced by the contents of LQPTI,

the contents of LPQT1 are replaced by the contents of LPQTO, and the predic

tion step

LQPTO = (l+hrat)xLPQTl - hratxLPQT2 (4.3)
is used to compute the initial guess for the solution to the following sweep

point. If the new sweep point is not accepted, the timestep is adjusted and a

new prediction calculation is made.

The need for the third copy of the device operating-point information

(the LQPT2 table) is eliminated by a small algorithmic change in this predic

tion step. If the new sweep point is accepted, the contents of the LQPTO and

LQPTI tables are exchanged. This swap puts the information from the sweep

point just solved into LQPTI and the preceding sweep point data into LQPTO.

The prediction step then becomes

LPQTO =(l+hrat)xLQPTl - hratxLQPT0 (4.4)
which is equivalent to the formulation using LQPT2 in Equation (4.3), since

the right-hand-side of Equation (4.4) is evaluated before any assignment is

made to the left-hand-side of the statement. The only difficulty with this

modification arises if the newly-predicted sweep point is subsequently
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rejected; since the twice-removed sweep-point data is no longer stored, the

prediction step of Equation (4.4) cannot be applied. An additional flag,

PREDCT, keeps track of this situation. If the newly-predicted sweep point is

rejected, the initial guess is simply taken to be the value of the previous

sweep point, and no linear extrapolation calculation is performed1. No

change in analysis iteration counts is observed when this change in the pred

iction algorithm is used.

One aspect of designing data structures for a specific task is the trade

off between memory requirements and program performance. In one area,

however, element storage requirements in SPUDS have been reduced with

virtually no effects on simulation speed. Each input element contributes cer

tain values to different locations in the equation coefficient matrix. For

example, a conductance g connected between nodes a and b in a circuit adds

to the matrix coefficients in the (row, column) positions (a,a), (a,b), (b.a),

and (b,b). Since the matrix is sparse, only the nonzero entries are stored, in

a one-dimensional vector A. In a high-level language it is a relatively time-

consuming process to determine the location in the A-vector which

corresponds to some (i.j) matrix entry. Therefore, in most circuit simula

tors, e.g. SLIC, SINC, SPICE2, MSINC, this mapping is performed exactly once,

after the matrix structure has been established. Memory space is allocated

for each circuit element to hold pointers to each location in the one-

dimensional vector to which the element contributes. The number of such

locations is a significant part of the total per-element storage; for the MOS

device model in SPICE2 (and SPUDS), there are 22 such locations for each

MOS transistor. In SPUDS, the special instructions developed for incremental

1This simple prediction method, in which the solution at the previous sweep point is used as
the initial guess for the new sweep point, is the method used in Program SPICEl.
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loading of the coefficient matrix evaluate this mapping function for each

matrix element loaded, at a negligible overhead. As a result, this matrix

pointer space is eliminated from the input element storage in SPUDS.

Finally, memory savings also arise as a byproduct of the smaller word-

size of the minicomputer. Circuits for which a dedicated small computer is

suitable are usually small enough that a single 16-bit integer is sufficient to

represent node numbers, matrix locations, and most memory addresses.

The memory in several large mainframe computers [CRAY76] [CDC79] can be

accessed only as 60- or 64-bit words, which means that the storage require

ments for these values are much larger than for the minicomputer.

Significant savings also result, for the same reason, from the use of 32-bit

floating-point arithmetic.

4.3. Comparison of Memory Requirements

It is difficult to compare memory requirements of different circuit simu

lation programs because differences in device model complexity and pro

gram organization can radically alter storage needs. An additional obstacle

to any comparison is the difficulty of determining what the actual memory

requirements are for a particular simulation program. For example, Version

D.O of Program MS1NC prints its memory requirements only for the dc

operating-point analysis. MSINC requires 4755 16-bit words of data space to

perform a dc operating point analysis of the M0SAMP2 benchmark circuit;

SPUDS requires only 4137 words for the same analysis. However, 1042 words

of the total for SPUDS contain the instructions for the Linear Equation Solu

tion Machine; if this space is not included, the data space requirements of

SPUDS are 35% less than those of MSINC. In order to minimize the effects of

device model and structural differences between programs, the principal
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comparisons made in this section are between SPUDS and Version E.3 of

SPICE2, which have similar program structures and identical device models.

A breakdown by function of the memory requirements of SPUDS is

shown in Table 4.1. The table shows the number of 8-bit bytes of memory

required to store the information required to perform transient analyses on

several representative test circuits. The 'storage type' column identifies the

purpose of each type of information. 'Input elements' is the memory

required to store the input circuit description; 'Swap data' records the row-

and column-swaps performed on the coefficient matrix. 'LXi tables' refers to

the energy-storage element data necessary for transient analysis, and

'LQPT0+LQPT1' is the nonlinear-device operating-point information. Finally,

'MACINS' is the memory required for the generated instructions of the Linear

Equation Solution Machine (LESM) described in Chapter 5. Also shown in the

table is the memory required for the same circuits in Version E.3 of SPICE2

running on the CDC 6400 computer (which has a 60-bit wordsize).

Several factors should be noted in looking at this table. First, the device

models in SPUDS and Version E.3 of SPICE2 are identical and require the

same number of device parameters and circuit nodes. Second, the version of

SPICE2 referenced uses the 'row-column indexing' scheme for storing the

sparse matrix structure, which requires less memory than the linked-list

approach in SPUDS. Finally, SPUDS stores all output variables to be printed

and/or plotted in a disc file, while SPICE2 stores them in memory. For the

test circuits, however, no more than two thousand bytes (2KB) of memory on

the CDC 6400 are used for output variable storage.

On average, SPUDS requires only a third as much memory as SPICE2 for

the same analyses of the same circuits. The data indicate that the 32000 16-



Storage type DIFPAIR UA741 MECL3 BOOTINV M0SAMP2

Program SPUDS:

Input elements 1208 2472 1956 1052 2584

Swap data 216 636 824 132 312

Matrix pointers 728 3160 2768 432 1840

Matrix values 364 1580 1384 216 920

LXi tables 384 2144 1184 896 4384

LQPT0+LPQT1 256 1408 800 480 2592

MACINS 578 3596 2964 340 2084

Total 4488 16064 12712 4418 15584

Program SPICE2:

Total | 13005 43125 | 31035 14025 | 42660

Table 4.1. Memory Usage (Bytes) for Transient Analysis
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bit words of data space available on the minicomputer are sufficient for the

analysis of 100-200 device circuits (depending on circuit complexity and type

of analysis), which is enough for the analysis of building-blocks or cells in

VLSI design. Since this research is aimed at providing simulation response

times in at most several minutes, the amount of memory available is not a

constraining factor.



CHAPTER 5

DEDICATED HARDWARE

The optimal performance from a computer-based simulator results

when the algorithms used and the hardware available are well-suited to each

other. More than one order-of-magnitude improvement in the speed of

several sub-tasks in IC simulation can be achieved through the use of

special-purpose instructions tailored for those parts of the analysis which are

especially time-consuming.

For a given set of algorithms implemented in a simulation program, a

performance measurement tool is necessary to determine accurately those

parts of the simulation task in which the majority of the total computation

time is spent. Section 5.1 describes the SPY program, which is used to

obtain data on just where a program spends its time. The SPY program is

the source of all measurement data in this chapter regarding the relative

importance of different parts of the circuit analysis task. In order for the

comparisons of CPU time to be unambiguous, all percentage breakdowns

given in this chapter of CPU time during analysis are fractions of the total

time spent in analysis, unless explicitly stated otherwise.

The design and construction of the dedicated computer hardware neces

sary to implement the special high-level operations described in this chapter

are presently very time-consuming processes. In order to evaluate the

effects of such hardware in a short time period, a user-microprogrammable

92
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minicomputer is used to examine the effects of providing certain special-

purpose instructions for the use of the simulation program. The use of

microcode to emulate the dedicated hardware allows great flexibility and

speed in changing the instruction set and data formats of the basic com

puter. Changes in these formats are made based on the conclusions reached

in previous chapters regarding computer architectures, simulation algo

rithms, and data structures. The architectural aspects of the use of micro

code for the minicomputer used as a test vehicle for this research are

described in Section 5.2.

Analysis of the overall simulation time for code written solely in FOR

TRAN shows that on the minicomputer, the linearized equation solution step

is the single most CPU-time-consuming part of the entire analysis. Particu

lar attention is therefore given to this task, and special data structures and

machine instructions are presented which significantly increase the overall

solution speed. Section 5.3 describes this equation solution portion of the

analysis problem.

Other tasks performed during analysis increase in relative importance

once the equation solution time is reduced, Section 5.4 describes several of

the more time-consuming portions of the problem, such as incremental load

ing of terms in the coefficient matrix. The improvements obtained by adding

appropriate special-purpose instructions to the minicomputer are detailed.

Finally, Section 5.5 presents a summary of the improvement in simula

tion performance obtained by using all of the special-purpose instructions

and data formats described previously in this chapter. Although the actual

magnitudes of CPU times for analysis reflect the limitations of the physical

hardware of the minicomputer used for this investigation, the relative
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improvements are representative of the speedup possible for any compar

able computer system.

The first version of SPUDS is used throughout this chapter as a refer

ence against which speed improvements are measured. This version is writ

ten solely in FORTRAN and uses 64-bit precision for all floating-point arith

metic and data storage1. The starting point for this version of SPUDS is Ver

sion E.3 of Program SPICE2, with only those changes minimally required so

that the code executes successfully on the minicomputer. No changes to

device model equations are made in SPUDS so that simulation accuracy can

be verified readily. All improvements in simulation speeds are stated rela

tive to this original version of SPUDS.

5.1. Performance Measurement

The cost effectiveness of IC simulation depends to a large extent on the

amount of computer resources required. Because the simulation task

involves relatively little input or output but a large amount of computation,

the amount of CPU time required is a good measure of simulation cost.

Compute-bound programs usually spend the majority of their CPU time in

performing the computations of relatively small parts of the program code.

A program analyzer which identifies those small parts efficiently helps to

focus effectively efforts to improve program performance.

Three different methods are used commonly to determine where in the

code a program spends its CPU time. First, the source code may be aug

mented so as to record the elapsed CPU time just before and just after each

section of code to be monitored; the difference in readings is used to esti

mate the time spent in each section. This method is effective for obtaining

x& 32-bit version of SPUDS is used in earlier chapters of this report
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data on large sections of code (hundreds of statements) but two factors

prohibit the use of this method for obtaining finer detaiL First, even if the

insertion of statements to record the elapsed CPU time is automated, the

accuracy of the system (hardware) clock is usually insufficient to measure

precisely the CPU time needed to execute individual program statements.

Second, the finer the measurement interval the greater the total CPU time

required, since CPU time is itself required to record the elapsed CPU time.

A second way to ascertain where a program spends its time is to trace

or simulate program execution one instruction or statement at a time and to

keep record of how. many times each instruction/statement is executed.

This simulation is performed by another program which emulates the actions

of a computer executing the program of interest. However, this method is

practical only for very small amounts of program code, since the typical

CPU-instruction simulator is two to three orders-of-magnitude slower than

the actual computer being simulated. For large circuit simulation programs

this tracing of large sections of code is too expensive to be practical.

A third approach to monitoring program execution is to sample the

value of the program counter (PC) of the CPU while the program is in execu

tion. The PC contains the memory address of the current instruction. This

statistical approach can be as accurate as either of the two methods

described previously as long as enough samples are taken. In addition, since

actual program execution is *monitored, the PC samples are weighted

automatically by the relative instruction execution times. This weighting is

desirable since what is sought is not just how many times a given instruction

is executed but rather the product of the number of executions of each

instruction and the cost (CPU time) of its execution.
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The SPY program2 implements the third (statistical) monitoring tech

nique in an efficient manner. SPY executes concurrently with the program

being monitored, but at a higher scheduling priority. Every 10ms (the reso

lution of the hardware time-of-day clock) SPY reads the PC of the program of

interest and records the data by incrementing the appropriate histogram

bucket in memory. The execution of the SPY program itself does modify the

CPU time available to the program that SPY monitors, but since SPY uses a

negligible amount of CPU time itself and does access any peripheral equip

ment (such as disc), the disturbance is small. Repetitive SPY runs yield

statistics which agree with each other within 1%. SPY can display interac

tively the histogram data on a graphics terminal or write the gathered statis

tics to a disc file for later output on a line printer or 4-color pen plotter.

5.2. Microcode Access

The Hewlett-Packard 1000 F-Series 16-bit minicomputer is used as a test

vehicle for the investigation of special-purpose computer instructions

tailored to the analysis tasks because its microprogramming structure is

well documented, and the use of the machine with user-written microcode is

supported by Hewlett-Packard with translation and utility programs. This

section describes the characteristics of this minicomputer which are

relevant to the work presented in the rest of this chapter.

All instructions on the HP 1000 are implemented through the use of

microcoded subroutines. Conceptually, therefore, there is no difference

between those instructions provided by the manufacturer (the 'base' instruc

tion set) and those instructions which are developed by a user.

2deveioped by the author in 1978
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The micro-instruction cycle time for the HP 1000 ranges between 175ns

and 280ns when no reference is made to main memory. If 'high-speed'

memory is used, memory references can require as much as 420ns. Typical

assembly-language level instructions which reference main memory require

wi/xs for execution. The F-Series minicomputer has an asynchronous

hardware floating-point arithmetic unit which is read and written directly by

the microprocessor. All data paths are 16 bits wide.

The base instruction set supports user-written microcode through a spe

cial form of the subroutine call instruction. For example, a new instruction

NEW can be developed first as a FORTRAN subroutine and can be invoked as

CALL NEW ( argument list).

When the microcoded version of NEW is available, the loader can be directed

to replace all occurrences of subroutine call instructions which reference

the symbol NEW by the appropriate micro-subroutine call instruction.

The nominal overhead required by the base instruction set to pass con

trol to a user-written micro-subroutine is 1.3/xs. A much greater additional

overhead arises as a side-effect of circumventing the memory mapping

hardware limitations of the HP 1000. The minicomputer has a dynamic

memory-mapping system which allows up to a total of 2 million bytes (2MB)

of main memory to be addressed. However, all non I/O memory references

go through one of two sets of map registers called SYS and USR, each of

which permits access to a 64 thousand byte (64KB) portion of the 2MB total.

Access to an arbitrary location in the 2MB address space is performed by

changing one of the sets of mapping registers to include the desired location

within the mapped 65KB portion of memory. The standard HP operating sys-
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tem3 uses the SYS map for the memory-resident part of the operating sys

tem and the USR map for the memory needed by a user program. In order

to have sufficient data space to permit simulation of circuits with 100-200

devices, the micro-subroutines developed for SPUDS which implement

special-purpose instructions first save the SYS mapping registers and then

change the SYS map to address a separate 65KB data area in main memory.

The SYS map is restored to its original condition just before the micro-

subroutine exits back to the microcode which implements the base instruc

tion set. The time required to save, modify, and finally restore the SYS map

ping registers is *83jus.

A smaller number of more powerful special-purpose instructions have

been designed as a result of this large overhead, rather than a larger number

of simpler instructions. In all cases, an attempt is made to limit the number

of times that a special-purpose instruction must be invoked. In several

instances, instructions are designed to accept an arbitrary number of argu

ments in a single call to achieve this goal.

5.3. Equation Solution

The data obtained by running the SPY program as a monitor of the

behavior of SPUDS with all-FORTRAN code and either 64- or 32-bit floating

point operations is summarized in Table 5.1. The total CPU time spent in

transient analysis can be identified as 30% in solving the linearized system of

circuit equations, 15% in estimating the local truncation error (LTE), and 50%

in the 'device modelling' routines. These 'device modelling* routines perform

several functions for each nonlinear device in the circuit. The device param

eters are gathered together from different locations in memory for fast

3RTE-IVB



Transient analysis CPU time breakdown

Percentage Task

50x10 Device modelling

20 gather model parameters

15 evaluate model equations

15 incrementally load matrix

30±10 Linear equation solution

15=5 Estimate Local Truncation Error (LTE)

Table 5.1. SPY Data: AU-FORTRAN SPUDS
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model equation evaluation. A 'bypass' calculation is performed to determine

whether device equation evaluation is in fact necessary. After model evalua

tion, the linearized model components are saved for possible use in a later

'bypass'. Finally, the coefficient matrix is incrementally loaded with the con

tributions from the device. Of the total analysis time, approximately 20% is

spent gathering parameters, 15% in model evaluation, and 15% in matrix

loading.

The percentage variation shown in the table is due primarily to

differences in device model complexity. For example, although the MOS dev

ice model is considerably more complex than the bipolar model, an MOS cir

cuit usually does not have significantly more nodes than does a bipolar cir

cuit. Therefore, relatively more time is spent in the device modelling rou

tines for MOS circuits than for bipolar ones.

This data indicates that the analysis task which requires the most CPU

time and which cannot readily be decomposed into simpler operations is that

of linear equation solution. This section presents the modifications to the

solution code which increase solution speed through the use of special com

puter instructions.

Section 5.3.1 describes two preliminary test analyses which measure the

extent to which the minicomputer simulation speed depends on idiosyn

crasies of the software or hardware machine architecture for one particular

computer. The derivation of an optimally fast implementation of the equa

tion solution task is presented in Section 5.3.2. The resulting 'equation solu

tion* machine is detailed in Section 5.3.3, and various measures of machine

speed are presented in Section 5.3.4. The costs of using this solution

machine are noted in Section 5.3.5. Finally, the dependence of solution tim-



101

ings on the number of circuit equations is examined in Section 5.3.6.

5.3.1. Machine Idiosyncracies

Two test runs are described in order to measure possible speed penal

ties inherent in the software and hardware architecture of the HP minicom

puter, so as to distinguish those speed improvements which can be attri

buted to peculiarities of one particular minicomputer from those improve

ments due to more effective use of available hardware. First, Table 5.2 shows

the CPU time requirements when all-FORTRAN LU decomposition and

forward- and backward-substitution routines are re-written in assembly

language. This modification measures the extent to which poor code genera

tion from the FORTRAN compiler supplied by Hewlett-Packard contributes to

less-than-optimal performance. The columns in the table headed 'DCX' and

'TRAN' give the CPU time, respectively, for the dc transfer curve and tran

sient analyses. On the average, only a 10% reduction in analysis time is

obtained from this recoding of the solution routines.

Part of the base instruction set supports the use of an 'Extended

Memory Area' (EMA) data area distinct from regular user memory which can

be used as a block of auxiliary storage by an application program. SPUDS

uses a 32000-word block of EMA to hold all data needed for its circuit ana

lyses. Access to EMA data normally requires the use of special microcoded

instructions supplied by Hewlett-Packard. The costs of this access are shown

in Table 5.3, which presents the results of adding special EMA-access micro-

coded instructions tailored to the memory referenced behavior of SPUDS.

These special microcoded access routines for the assembly-language level

references to EMA reduce the total analysis time by 25%.



Circuit

liquation solution with

FORTRAN assemblLy language

DCX TRAN DCX TRAN

DIFPAIR 21.37 27.94 19.87 26.19

KTEST 0.00 12.40 0.00 11.21

RCA304 52.52 84.99 48.02 78.62

UA709 114.64 140.33 100.23 125.68

UA727 105.23 198.68 94.23 179.74

UA733 0.00 0.00 0.00 0.00

UA741 136.71 154.22 121.53 141.81

RTLINV 14.42 25.06 13.47 23.42

TTLINV 41.28 114.33 37.14 103.19

TTL74 42.68 99.55 38.41 90.48

TTL74S 50.88 132.84 45.47 119.36

TTL74L 46.39 123.75 41.53 112.04

TTL920 54.13 0.00 47.68 0.00

ECLGATE 47.18 118.60 42.59 106.21

MECLIII 73.61 150.53 65.67 135.92

SBDGATE 84.94 193.47 75.20 174.15

CCSOR 0.00 0.00 0.00 0.00

DCOSC 0.00 0.00 0.00 0.00

CFFLOP 0.00 0.00 0.00 0.00

STCRC 0.00 7.57 0.00 7.35

CHOKE 0.00 16.86 0.00 16.28

ECLINV 0.00 47.95 0.00 44.61

SCHMITT 0.00 52.63 0.00 48.62

ASTABLE 0.00 88.73 0.00 80.38

SATINV 40.43 0.00 38.59 0.00

DEPLINV 13.15 0.00 12.70 0.00

RATLOG 0.00 95.30 0.00 • 91.19

INVCHN 0.00 0.00 0.00 0.00

BOOTINV 0.00 44.72 0.00 43.18

MOSMEM 0.00 115.99 0.00 111.62

M0SAMP1 150.19 0.00 139.77 0.00

M0SAMP2 0.00 399.69 0.00 379.45

Table 5.2. Solution Speedup Due to Assembly Language
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5.3.2. Optimal Implementation

The algorithmic steps needed to perform the LU decomposition part of

the equation solution step is shown in Figure 5.1. Because the two-

dimensional matrix is stored as a non-sparse one-dimensional vector, the A^

coefficients cannot be accessed directly. For each arithmetic operation in

each iteration, the Ith row must be searched for the jk* entry. (If the

coefficient is in the upper-triangular part of the matrix the kth column may

be searched instead since the average search length is reduced.) This

'LOCATE' effort may require searching through linked lists, bit maps, or row-

column indexing schemes, and this searching requires a considerable

amount of CPU time. Alternatively, the locations of all the k^ coefficients

can be found once and stored in an auxiliary MEMO array, at the cost of addi

tional memory.

None of these approaches, however, leads to an optimally fast equation

solution because of the additional machine operations that are required. A

substantial part of the computation expressed in Figure 5.1 has nothing

directly to do with the desired result of obtaining the LU factorization of the

coefficient matrix. Consider the normalization step

Aji = A»i / Au

For a typical register-architecture computer, the minimum instruction

sequence to accomplish this operation is

LOAD Ajk into Rl (register #1)
DIVIDE Rl by Au (with quotient in R2)

STORE R2 into A^

The time required by these few instructions is completely overshadowed by

the time necessary to perform all the bookkeeping actions (incrementing k



for(i=l;i<=N-l;i=i+l) \
for(j=i+l;j<=N;j=j+l) \

LOCATE jith and ii** entries
in coefficient matrix A

Atf = A« / Aa
for ( k=i+l; k<=N ; k=k+l) i

LOCATE jk* IIth, and ik111 entries
in coefficient matrix A

Ajk = Ajk - AjiXAfc

J

Figure 5.1. LU Decomposition Algorithm
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and comparing with N, searching for A?k, etc.) of the LU decomposition. The

number of references to memory is an especially critical parameter, since

central memory is much slower than the CPU speed. The bookkeeping

operations require many more memory references than are needed to per

form the actual LU factorization.

The fastest possible equation solution for a typical register-architecture

computer is obtained when a set of machine instructions are executed which

do nothing other than solve the linear system of equations. Such a set of

instructions can be produced by generating FORTRAN source code in which

the loops are unravelled and all array references use constant subscripts.

Such code has the form

A(23) =A(23)-A(4)xA(6)

A(10) = A(10)/A(7)

where the constant subscripts (23, 4, etc.) reflect the locations of the

appropriate A^ terms. This generated code can then be processed by a FOR

TRAN compiler to obtain the desired machine instructions. Alternatively,

because the structure of the arithmetic operations is quite simple and lim

ited in scope, the desired machine instructions can be generated directly,

avoiding the CPU time necessary for a compilation step. The generated code

can be viewed as an extension of the MEMO array concept. Rather than just

storing the location of each A.k in MEMO, the arithmetic operations as well as

the location of the matrix elements are stored together (as machine instruc

tions).
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This 'code generation' technique was first suggested by Gustavson, et al

[Gust67]. The principal difficulty with this method is its potentially large

requirements for memory. The special-instruction format described in the

next section is designed specifically to provide a very high instruction den

sity.

5.3.3. Solution Machine

In view of the need for high instruction density and the relatively large

overhead incurred as part of invoking any micro-subroutine implementing a

'special' instruction, a 'Linear Equation Solution Machine' (LESM) is

described which has its own program counter and instruction set. Once the

structure of the matrix is established, the FORTRAN subroutine CODGN gen

erates a loop-free and location-independent sequence of instructions for the

LESM by performing a symbolic Gaussian elimination. Whenever the circuit

equations need to be solved, the LESM is invoked by a single subroutine call

and is passed the locations of the matrix pointer structures and the gen

erated instructions. Upon completing the solution process, the LESM exits

back to the microcode which simulates the nominal base set instructions of

the minicomputer.

The LESM has 4 operation codes, corresponding to the four operations

performed during the equation solution process. Generically, these opera

tions are:
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(0) IF (ABS(PIVOT) .LT. EPSILON)
<error: force new pivot>

(1) A=A/B

(2) A=A-Xx C
(X= most recently computed quotient)

(3) A= A-Bx C

Operation (0) tests whether the matrix coefficient about to be used as a pivot

value is large enough to avoid numerical ill-conditioning difficulties. Opera

tions (1) and (3) perform the indicated arithmetic operations. Operation (2)

is included for the sake of efficiency; during the inner-loop iteration in the

LU decomposition step

for ( k=i+l; k<=N ; k=k+l) (

Ajk = Aflt-AjjXAfc

1

the value Ajj (TT) is stored in a high-speed register to avoid numerous

unnecessary references to memory. A fifth operation, HALT, which tells the

LESM to exit back to the nominal machine base-instruction-set microcode, is

encoded as Operation (3) with an invalid operand address.

The instruction format for the LESM is shown in Figure 5.2. The four

operation codes require two bits of encoding. There is a maximum of 32K

16-bit words of data space for SPUDS, due to the limitations of the dynamic

mapping addressing hardware on the HP 1000 computer. Since a minimum

of 32 bits (2 words) is used for floating-point arithmetic, the maximum real-

valued array index, I, for any matrix coefficient is

I = 32768/2

= 16384

which can be represented in the 14 bits remaining in a single 16-bit word.



Operation (0): IF ( ABS(PIVOT) < EPSILON )
error: force new pivot

15 14 13 12 11 10 8 6

< address of PIVOT >

Operation (1): A=A/B

15 14 13 12 11 10 8 6

1 I < address of A >

<address of B >

Operation (2): A=A-XxC

15 14 13 12 11 10 8 6

< address of A >

<address of C >

Operation (3): A=A-BxC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

< address of A >

<address of B >

<address of C >

Figure 5.2. LESM Instruction Format
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Therefore, the instruction length of Operation (0) is a single 16-bit word.

Operations (1) and (2) have a second operand address and therefore have

instruction lengths of two words. Operation (3) is the only one which has

three operand addresses;, the format for this instruction requires three 16-

bit words.

The number of memory references needed to fetch the LESM instruc

tions required for a given set of equations is more than one order of magni

tude less than the corresponding number for the base-set instructions of the

minicomputer. This reduction is due to the higher-level primitive operations

defined in the LESM and these savings contribute substantially to the

increased solution speed of the LESM. (The generation of equivalent loop-

free machine instructions based on the nominal instruction set of the mini

computer is not described because the instructions would not fit in the avail

able data space.)

5.3.4. Speed Comparisons

In order to measure accurately the performance improvement in equa

tion solution time due to the LESM, the exact sequence of instructions which

solve the dc equations of the benchmark UA741 circuit, and the values in the

coefficient matrix just before the solution step were extracted from SPUDS

and used as input for an accurate timing comparison. For the 52 equations

required by this circuit, the LESM instructions consist of 51, 179, 240, and

247 instances of Operations (0) through (3), respectively. The results of the

timing comparison between a FORTRAN version of the CODEX ('CODe Execu

tion') subroutine which emulates the behavior of the LESM and the actual

LESM are shown in Figure 5.3. As the figure presents, the solution speed is

improved by a factor of approximately 18. An even greater speed-up factor



dc transfer curve analysis of UA741
(303 iterations)

Reference
Code execution with

FORTRAN microcode

do i= 1.303 |
load matrix

!

do i= 1,303 (
load matrix

CALL CODEX

i

do i= 1.303|
load matrix

CALL CODEX

1

16.3 seconds 89.6 seconds

-16.3

20.3 seconds

-16.3

73.3 seconds 4.0 seconds

Speedup factor:

microcode / FORTRAN

= 73.3 / 4.0

= 18.3

Figure 5.3. Measurement of Microcoded Solution Speedup

Ill
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applies if the comparison is made between the LESM and FORTRAN code

which performs the equation solution using the nested loops of Figure 5.1.

A measure of the optimality of the equation solution machine is the

extent to which unnecessary references to main memory and irrelevant

arithmetic operations are eliminated. Figure 5.4 shows part of the effective

hardware architecture of the HP 1000 computer; note that data paths are

only 16 bits wide. Consider operation (1):

A=A/B

The timing for an optimal execution of this operation is summarized in Fig

ure 5.5 for 64-bit floating-point operands. The minimum time needed by the

HP 1000 hardware to fetch the values of A and B, transfer them to the Float

ing Point Processor (FPP), retrieve the quotient from the FPP and store it

into A is 7.14/Lts.' The time required by the FPP to perform a 64-bit divide is

approximately 7/zs. The FPP hardware on the HP 1000 is asynchronous;

transfers from main memory to the microprocessor can also overlap in time

with transfers from the microprocessor to the FPP. Therefore, depending on

the extent to which the operations can overlap, the minimum time to per

form this operation is between 7/is and 14/zs. The microcode which evaluates

Operation (1) requires «15.21/,is; 5.3/iS of the 7jj.s divide time is overlapped

with other micro-operations. This data indicates that the microcoded LESM

executes within a factor of »2 of the optimal hardware speed for this particu

lar minicomputer and that substantial concurrency of memory references

and floating-point computation is possible in the linear equation solution pro

cess.

On the average, use of the LESM reduces dc transfer curve and transient

analyses times for the benchmark circuits by 25-40%. SPY data show that



Main
Memory

A*

Micro-

Processor

16/

Floating-
Point

Processor

Figure 5.4. Part of Schematic of HP 1000 F-Series Hardware
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Operation (1): A=A/B

Transfer A from main memory to jj,p 1.68/xs
4 16-bit words @ 420ns

Transfer B from main memory to jap 1.68/zs
4 18-bit words @ 420ns

Transfer A from up to FPP 0.70/zs
4 16-bit words @ 175ns

Transfer B from up to FPP 0.70/zs
4 16-bit words @ 175ns

Perform floating-point divide 7.00/xs
(typical time for operation)

Transfer quotient from FPP to //,p 0.70/xs
4 16-bit words @ 175ns

Transfer quotient from /xp to main memory 1.40jus
4 16-bit words @ 350ns

(6.86^s + 7/is divide time) 13.86/xs

Actual microcoded implementation 15.2l£ts

Note: 5.3/xs of 7/xs divide time overlapped
with instruction fetch and decoding

Figure 5.5. Optimal Timing for Operation (l)
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the time spent in the LESM is approximately 3% of the total analysis CPU

time.

5.3.5. Code Generation Costs

The use of code generation has two costs associated with it. First, the

instructions for the LESM require additional memory; second, each time a

pivoting step is performed additional setup time is required to generate the

LESM instructions. Each of these costs is detailed below.

The LESM commands require space in main memory in order that the

instruction fetch cycle of the LESM be fast. The minimum space required for

the LESM instructions is that memory needed for the MEMO array, which con

tains the location of each matrix coefficient in the order it is referenced in

the equation solution process. The instruction set for the LESM achieves this

minimum by encoding the operation code in the most-significant, unused bits

in each word. Table 5.4 shows the total memory requirements and the

memory needs for the LESM instructions for several representative bench

mark circuits. The 'total' memory needs shown in the table are for transient

analyses of the indicated benchmark circuits, with 32-bit floating-point arith

metic. The LESM instructions require an average of 18% of the total memory

needs of SPUDS.

The second cost of using code generation is the CPU time required to

generate the code. A symbolic Gaussian elimination is performed, and at

each step the LESM operation which performs the desired arithmetic func

tions is added to an array of 'machine instructions' for later execution by the

LESM. This generation time is relatively small, due to the simple, regular

structure of the LESM instructions. Table 5.5 shows, for the benchmark cir

cuits, the code generation time and the total CPU time required for dc



Circuit
Total

Memory
LESM

instructions

LESM
Percentage

DIFPAIR 2364 289 12

UA741 8152 1798 22

MECLIII 6476 1482 23

BOOTINV 2328 170 7

M0SAMP2 7912 1042 13

Table 5.4. Transient Analysis LESM Memory Requirements
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transfer curve, dc operating point, and transient analyses. In almost all

cases the code generation module is invoked twice, once when the dc

transfer curve analysis is begun and a second time at the start of transient

analysis. The data in the table indicate that the code generation time is a

negligible part of the total CPU-time requirements as long as any multi-point

analysis is performed. Only in the case of a single dc operating-point

analysis (for example, the UA733 benchmark circuit) is the code generation

time as much as 30% of the total. If code generation is not used in the simu

lation of the UA733, the execution time for a dc operating point analysis is

3.73 seconds (compared to 3.71 seconds with code generation). The total

simulation time is not increased by the code generation step even when only

a short analysis is performed.

5.3.6. Growth Rates

The growth rate for the number of terms in the coefficient matrix and

the number of arithmetic operations necessary to perform Gaussian elimina

tion is greater than linear in terms of the number of circuit equations. A

sampling of statistically generated coefficient matrices reported in [Nage75]

shows that for N equations the number of nonzero matrix elements (includ

ing flll-in terms) is generally proportional to N1,1 and the number of arith

metic operations is proportional to N1-24. Since the remainder of the analysis

effort is directly proportional to the number of circuit elements, it is clear

that for a sufficiently large circuit the equation solution time can become the

dominant part of the analysis.

The effects of defining the Linear Equation Solution Machine in micro

code do not change this power law for the arithmetic needed to solve the cir

cuit equations; however, the constant of proportionality is reduced
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significantly. Table 5.6 presents the results of several transient analyses

which measure the importance of this power law for circuit sizes of interest.

In all cases, the only variable which changes among the different analyses is

the number of circuit equations. This change is effected by changing the

number of nonzero extrinsic device-model resistances used to model the

bipolar junction or MOS transistors in the circuits. Since the device model

evaluation and matrix loading code evaluates and loads these resistances

into the coefficient matrix regardless of whether or not the resistances are

nonzero, the only change in computational effort is directly related to the

differing number of equations.

The 'DDCMP' column in the table gives the CPU time required for the

very first LU decomposition of the coefficient matrix. The determination of

fill-in terms in the matrix and any equation reordering (pivoting) is per

formed at this time; code generation time is included in the DDCMP total. As

shown in the table, the matrix setup time grows approximately as N2 pri

marily due to the full numerical pivoting which is performed as part of the

initial determination of the matrix structure. However, once setup is

finished, the time per Newton iteration ('CPU/NI') increases by only a few

percent as the number of equation is increased by as much as a factor of

three.

Several SPY results obtained by examining the execution of SPUDS are

shown in Table 5.7. The data show the percentage of the total analysis CPU

time spent in the ITERS and CODEX subroutines during a dc transfer curve

analysis of the UA741 and transient analyses of the UA741 and M0SAMP2

benchmark circuits with differing numbers of nodes (circuit equations). The

ITER8 subroutine controls each Newton iteration. The only part of the itera-



Circuit § eqns DDCMP TRAN CPU/NI % incr

UA741 52 6.08 48.45 0.198

74 9.92 54.11 0.207 4.5

96 14.24 59.44 0.211 6.6

MOSAMP2 25 2.60 187.15 0.357

52 6.63 194.88 0.368 3.1

79 12.27 230.31 0.379 6.2

MOS AMP 3 42 6.70 69.21 0.496

77 13.93 82.12 0.512 3.2

112 23.12 98.57 0.517 4.2

Table 5.6. Effect of Number of Equations on Solution Time
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Circuit
Number of

equations

% of analysis time

DC Xfer Tran

ITER8 CODEX ITERS CODEX

UA741 52

74

96

16

24

32

6

10

13

8

10

12

3

4

5

M0SAMP2 25

52

79

3

6

7

1

3

3

Table 5.7. Equation Solution Time with LESM
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tion work performed directly by this subroutine is the node-voltage test for

convergence. (The loading of the coefficient matrix is performed by other

subroutines and the load time is not included in the ITER8 time.) The equa

tion solution is determined by the CODEX subroutine (in microcode); the CPU

time for solution is also not part of the ITERS time in the table. The data

show that the node-voltage convergence test accounts for as much as 32% of

the total analysis time when the number of equations is large compared with

the number of semiconductor devices in the circuit. This large fraction is

due to the strategy adopted as part of the implementation of numerical

pivoting. The effect of column-swapping in the coefficient matrix is to change

the order of the circuit unknowns. Two methods can be used to keep track of

this reordering. First, a 'swap vector' can be maintained which records the

'new' location of each circuit unknown, and the vector obtained from the

equation solution step can be reordered based on the 'swap vector' after

each iteration. In this way, if an element is connected to node number two,

and the equation for that node is initially assigned as equation number two,

the program can fetch the node voltage from the second location in the solu

tion vector regardless of any pivoting. The second method to keep track of

reordering is to go through the entire element list and replace equation

numbers appropriately every time pivoting is performed.

The first method (use of a 'swap vector') is used in SPUDS based on the

assumption that pivoting is performed frequently. Empirically, only one

pivoting step is necessary per analysis; therefore, the data in the table indi

cate that the second method is preferable because it trades off a slight

increase in setup time (to update element equation numbers) for the larger

time required to reorder the solution vector at each iteration. In either

case, however, the effect of the special equation solution machine (LESM) is
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to make the time spent in solving the linearized circuit equations an almost-

negligible part of the total, at least for circuit sizes on the order of 100 equa

tions.

5.4. 'Gather'and Matrix Loading

After the incorporation of the special LU decomposition machine into

SPUDS, several other parts of the analysis become relatively more impor

tant. To obtain the maximum performance from the existing minicomputer

as an approximation to the speed possible with dedicated hardware, several

special-purpose instructions are described which rapidly gather data

together from scattered locations in memory and incrementally load terms

into the coefficient matrix using the sparse-matrix pointer system. These

instructions decrease the transient analysis time by an additional 25% over

the speedup already obtained with the microcoded LESM. Each of these

instructions is described in the following subsections.

5.4.1. Gather

For reasons of storage efficiency, device model parameters in SPUDS

are stored in linked-list data structures as described in Chapter 4. These

parameter values are retrieved from that structure and stored in local tem

porary variables preparatory to evaluation of the device model equations.

Figure 5.6 shows part of a typical sequence of FORTRAN statements which

perform this retrieval task.

The need for high accuracy in device modelling has lead to a large

number of device model parameters in many circuit simulators. In Version

E.3 of Program SPICE2, the bipolar junction transistor model is described

with 29 parameters and the MOS transistor model has 32 possible parame-



BETA = ARRAY ( LOCM+ 6 )

GAMMA =ARRAY( LOCM+ 7 )

PHI = ARRAY {; LOCM+ 8 )

XLAMDA =ARRAYS[ LOCM+ 9 )

COX = ARRAY (;locm+io)

XNSUB =ARRAY![LOCM+11)

XNFS =ARRAY![LOCM+12)

UO • = ARRAY![LOCM+13)

VBP =ARRAY!ILOCM+14)

UEXP =ARRAY![LOCM+15)

UTRA =ARRAY [LOCM+16)

XD =ARRAY (LOCM+17)

VMAX =ARRAY (LOCM+18)

XNEFF = ARRAY (LOCM+19)

124

CALL GRESC ( environment, LOCM+6, BETA, GAMMA. PHI, XLAMDA. ... )

Figure 5.6. Calling Sequence for GRESC
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ters. In addition, there are several derived model parameters which are

computed by the program when the circuit description is read in order to

save calculation effort during model evaluation.

As a result of this modelling effort, a considerable amount of CPU time is

required just to 'gather together' these parameters into local variable

storage so that the evaluation of the actual model equations is executed

efficiently. SPY monitoring of SPUDS shows that «15% of the total analysis

time is spent in gathering together these parameter values. To put this per

centage in perspective, the time spent in evaluation of the model equations,

e.g., the three-halves power law equation for MOSFET drain current, is only

10-20% of the total.

In order to reduce this time, the special-purpose instructions GIESC and

GRESC are used. Both instructions are invoked in the same way as FORTRAN

subroutines; Figure 5.6 also shows a typical parameter calling sequence. The

'environment' parameter is used to preserve the initial machine environment

for restoration when the instruction completes. The only difference between

the two instructions is that GIESC transfers integer values and GRESC

transfers real (floating-point) values. Both instructions implement an

'indexed block transfer' capability which copies a block of memory to scat

tered locations in main memory under the control of a vector of destination

addresses. For the HP 1000, these instructions reduced the time required to

gather parameters together by a factor of 3.

5.4.2. Matrix Load

Once the linearized branch values have been determined as a result of

device model evaluation, the equivalent conductances must be added incre

mentally to the appropriate locations in the coefficient matrix. In Program
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SPICE2, this matrix load is performed with program code similar to Fig

ure 5.7. The one-dimensional matrix storage begins at the location indicated

by the variable LVN. The per-element data storage includes the one-

dimensional offsets from LVN for the locations of each matrix coefficient to

which the element contributes. The number of such terms depends on the

complexity of the mathematical model for each element. A resistor contri

butes to four matrix locations, and the bipolar junction and MOS transistor

device models contribute to 18 and 22 matrix locations, respectively.

The data obtained by running SPY show that the relative amount of time

spent in matrix loading is of the same order of magnitude as the time spent

in evaluating the device model equations. Approximately 20% of the total

analysis time is spent performing the loading task. The following paragraphs

describe several special-purpose instructions which reduce significantly the

time needed for the matrix loading part of the analysis.

The mapping from the conceptual two-dimensional coefficient matrix to

the packed, one-dimensional vector representation is performed by search

ing through the row- and column-linked lists as described in Chapter 4. For

efficiency reasons, Program SPICE2 performs this mapping each time the

structure of the coefficient matrix is changed, and pointers to the locations

of each affected matrix entry are stored with each circuit element. This

technique avoids the mapping costs that would otherwise be incurred with

each matrix coefficient load. The first version of matrix loading microcode in

SPUDS used the same load procedure and was named MATAD; the calling

sequence is also shown in Figure 5.7. Consecutive locations in the IVAL array

contain the offsets to the affected matrix locations for each element. Speed

increases due to the much-reduced number of accesses to main memory



C

CLOADYMATRIXFORBIPOLARJUNCTIONTRANSISTORS
C

LOCY=LVN+IVAL(LOC+10)
VALUE(LOCY)=VALUE(LOCY)-GCPR

LOCY=LVN+IVAL(LOC+11)
VALUE(LOCY)=VALUE(LOCY)-GBPR

LOCY=LVN+IVAL(LOC+12)
VALUE(LOCY)=VALUE(LOCY)-GEPR

L0CY=LVN+IVAL(L0C+13)
VALUE(LOCY)=VALUE(LOCY)-GCPR

LOCY=LVN+IVAL(LOC+14)
VALUE(LOCY)=VALUE(LOCY)-GMU+GM

L0CY=LVN+IVAL(L0C+15)
VALUE(LOCY)=VALUE(LOCY)-GM-GO

LOCY=LVN+IVAL(LOC+16)
VALUE(LOCY)=VALUE(LOCY)-GBPR

LOCY=LVN+IVAL(LOC+17)
VALUE(LOCY)=VALUE(LOCY)-GMU

L0CY=LVN+IVAL(L0C+28)
VALUE(LOCY)=VALUE(LOCY)+GBPR+GPI+GMU

L0CY=LVN+IVAL(L0C+29)
VALUE(LOCY)=VALUE(LOCY)+GPI+GEPR+GM+GO

CALLMATAD(environment,LVN,LOC+10,-GCPR,-GBPR.-GEPR,...)

Figure5.7.SPUDSMicrocodetoLoadMatrix
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required by the MATAD instruction.

In order to determine the possible advantages of embedding knowledge

of the actual matrix pointer structure in hardware, a special microcoded

instruction is used to resolve an (i.j) matrix address into its one-dimensional

vector location. Careful measurement of elapsed CPU time shows that the

microcoded mapping effort requires «2/as for each matrix link traversed.

Since the average matrix row or column contains 2-4 nonzero off-diagonal

entries [Nage75] the average total mapping time is 4-8^s (not including the

83/xs overhead required to invoke the special instruction).

This very small amount of time suggests a revised matrix loading

instruction, MLODA, which incorporates the matrix mapping operation as an

integral part. This instruction is invoked as shown in Figure 5.8. An argu

ment list of indefinite length is passed to the microcode for each call. The

first argument is used to preserve the initial machine environment for later

restoration when the matrix load is completed. The next 8 arguments pass

to MLODA the addresses of the tables which contain the row- and column-

swapping pivoting information, pointers to the linked-list structure used to

represent the coefficient matrix, and the starting memory location of the

one-dimensional vector containing the matrix coefficient values. The remain

ing arguments are interpreted as (Row, Column, Value) triples, with the

meaning that Value is to be incrementally added to the matrix coefficient at

location (Row, Column). In order to obtain the fastest possible load, a second

instruction, MLODS, is also defined with meaning identical to that of MLODA

except that the Value is subtracted from the matrix coefficient. The MLODA

instruction increased analysis time by less than 3% relative to the time

required with the MATAD instruction. The change is justified by the substan-



CALL MLODA ( environment, augmented_MNAJlag,

1 IRSWPR, ICSWPR, IRPT, IROWNO, JCPT, JCOLNO, LVN,

2 NODE1.NODE1, GCPR,

3 N0DE2.N0DE2, GBPR,

4 NODE3.NODE3, GEPR,

5 N0DE4.N0DE4, GMU+GO+GCPR+GCCS,

6 NODE5.NODE5, GBPR+GPI+GMU,

7 N0DE6.N0DE6, GPI+GEPR+GM+GO )

Figure 5.8. Matrix Load with Mapping Incorporated
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tial memory savings and the increase in clarity of the program code.

The right-hand-side (RHS) elements in the coefficient matrix are loaded

with another special instruction. The RHS terms are stored as a contiguous

one-dimensional vector and are addressed directly by equation number

without the need for any mapping algorithm. The calling sequence for this

LDRHS instruction is shown in Figure 5.9. The argument list for LDRHS is also

of indefinite length. After several arguments defining the microprogramming

machine state and the location of the start of the RHS vector, the remaining

arguments are interpreted as (Number, Value) pairs, with the meaning that

each Value is to be incrementally added to the RHS term for the correspond

ing equation Number.

5.4.3. Matrix Initialization

One further special instruction reduces part of the analysis time by a

significant amount but is a result of the software and hardware design of the

HP 1000. At the start of each Newton iteration, all of the matrix coefficients

are initialized to zero. In SPUDS, these coefficients are stored in the

'Extended Memory Area' (EMA) memory region to allow a circuit containing

over 100 devices to be simulated. However, the memory addressing architec

ture of the HP 1000 minicomputer makes access to EMA locations much

more expensive than references to main memory. The overhead factor

ranges between 5 and 20 depending on the datatype (integer, real, or

double-precision). This overhead is particularly noticeable for the dc ana

lyses. SPY data shows that matrix initialization in the dc transfer curve

analysis of the UA741 requires 16% of the total CPU time. A special micro-

coded instruction, SRCBE, eliminates virtually all of this initialization time in

SPUDS through microcoded control of EMA access.



VALUE ( LVN + N0DE4) = VALUE ( LVN + N0DE4 ) - CEQCS + CEQBC

VALUE ( LVN + N0DE5 ) = VALUE ( LVN + N0DE5 ) - CEQBE - CEQBC

VALUE ( LVN + N0DE6 ) = VALUE ( LVN + N0DE6 ) + CEQBE

CALL LDRHS ( environment, LVN,

1 N0DE4, -CEQCS + CEQBC,

2 NODE5, -CEQBE - CEQBC,

3 NODE6, CEQBE )

Figure 5.9. Coding to Load Right-Hand-Side Terms
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5.5. Revised CPU Times and Conclusions

It is important when evaluating speed improvements to determine the

extent to which overall performance is degraded by poor code generation

from language compilers. As shown in Section 5.3.1 and Table 5.2, the FOR

TRAN compiler for the HP 1000 produces acceptable code. Hand-written

assembly language routines for equation solution reduce total analysis time

by only 10%.

The use of the special-purpose instructions described in the section

above affects two aspects of the simulation. First and most importantly, the

total analysis time is reduced by almost 70% relative to the original, all-

FORTRAN implementation of SPUDS. Second, the relative percentages

change for the different tasks within the circuit analysis. Each of these

aspects is described in detail in the following paragraphs.

Table 5.8 shows the CPU time requirements for dc transfer curve and

transient analyses of the benchmark circuits. The simulations for the first

three column pairs use 64-bit floating-point arithmetic; for the last column

pair, the simulation code utilizes 32-bit arithmetic. The columns headed

'DCX' give the CPU time in seconds for the dc transfer curve analyses, and

the columns headed 'TRAN* contain the times for transient analyses. The

first pair of columns contain baseline data for the original, all-FORTRAN ver

sion of SPUDS. The second column pair gives the simulation times when the

microcoded linear equation solution machine (LESM) is used in place of the

FORTRAN code. The CPU times in the third pair of columns reflect the use of

the LESM together with the GIESC, GRESC, IJT0K, MLODA, LDRHS, and SRCBE

special instructions for gathering together device model parameters, map

ping matrix locations, loading the matrix coefficients and the right-hand-side
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terms, and initializing the matrix coeSicients. The simulations for the last

column pair use numerical pivoting. 32-bit arithmetic, and all the special

instructions of the previous columns.

On the average, the result of all the microcoding of high-level simulation

operations is a reduction in the total analysis time of 65-70%. The impor

tance of high-level special-purpose instructions (or hardware) is shown

further by the data in Table 5.9. All the FORTRAN code in SPUDS access the

EMA data area on the HP 1000 by using microcode supplied by Hewlett-

Packard. A more recent version of that microcode, which access EMA vari

ables in half the time, is used for the 32-bit arithmetic SPUDS data. The

revised HP microcode does not affect the special-purpose instructions

included in SPUDS. As the data in the table show, the faster EMA microcode

is responsible for only 5% of the 65-70% overall reduction.

Another perspective on simulation speed is shown in Table 5.10, which

gives the simulation times for both the microcoded version of SPUDS and

simulation runs of Version E.3 of Program SPICE2 run on the CDC 6400. (The

speed of the CDC 6400 computer is comparable to that of the DEC VAX

11/780.) Without any of the changes described in this report, transient

analysis with SPUDS on the HP 1000 F-Series minicomputer is 7 to 10 times

slower than SPICE2 on the CDC 6400. With all the modifications, the simula

tion speed of SPUDS averages 3.6 times slower for dc transfer curve and 2.3

times slower for transient analyses than SPICE2 on the larger computer. The

speed ratio varies for different circuits. For transient analysis of the

BOOTINV circuit, SPUDS is only 1.5 times slower. Small-signal frequency-

domain ac analysis times are not included in the comparison data because

no special instructions are implemented in SPUDS for dealing with complex
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Circuit
SPUDS on HP 1000-F SPICE2 on CDC 6400

DCX TRAN 1 DCX TRAN

DIFPAIR 8.21 11.97 2.13 3.92

KTEST 0.00 15.68 0.00 1.52

RCA3040 18.56 34.88 5.02 10.74

UA709 34.45 41.11 9.00 15.02

UA727 37.02 56.93 9.12 22.68

UA733 0.00 0.00 0.00 0.00

UA741 40.87 48.46 11.87 19.22

RTLINV 5.60 10.66 1.39 3.28

TTLINV 13.84 35.19 3.65 12.94

TTL74 14.32 40.08 3.76 11.70

TTL74S 17.10 40.46 4.43 14.26

TTL74L 16.30 37.79 4.02 13.91

TTL9200 19.35 39.48 5.03 13.14

ECLGATE 17.12 46.13 4.08 13.44

MECLIII 24.52 60.73 6.17 16.68

SBDGATE 34.55 62.18 7.04 21.36

CCSOR 0.00 0.00 0.00 0.00

DCOSC 0.00 0.00 0.00 0.00

CFFLOP 0.00 0.00 0.00 0.00

STCRC 0.00 3.87 0.00 .90

CHOKE 0.00 6.46 0.00 2.10

ECLINV 0.00 17.88 0.00 5.80

SCHMITT 0.00 19.74 0.00 6.28

ASTABLE 0.00 26.54 0.00 9.36

SATINV 18.86 0.00 6.05 0.00

DEPUNV 6.02 0.00 1.87 0.00

RATLOG 0.00 36.49 0.00 14.37

INVCHN 0.00 0.00 0.00 0.00

BOOTINV 0.00 21.03 0.00 14.68

MOSMEM 0.00 53.47 0.00 18.76

MOSAMPl 57.80 0.00 20.68 0.00

M0SAMP2 0.00 178.49 0.00 68.68
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Table 5.10. Performance Comparisons: microcode SPUDS and SPICE2



137

arithmetic.

A second effect on simulation performance of the use of microcoded

special-purpose instructions is a shifting in the percentages of the total

analysis time required by different parts of the simulation. Table 5.11 shows

the breakdown by function for the dc transfer curve analysis of the UA741

all-bipolar amplifier benchmark circuit. As the data show, no single function

takes as much as 20% of the total; most of the tasks require less than 10% of

the analysis time. The table also shows the time breakdown of the dc

operating-point analysis for the MOSAMPl, all-MOSFET amplifier circuit. In

spite of the considerably more-complex MOS device model, the relative time

percentages do not differ greatly, with the exception of the time required to

fetch the device model parameters. Approximately 20% of the total analysis

time is spent in fetching these parameters, even though this fetch is per

formed with a special-purpose microcoded instruction. Table 5.12 gives the

time breakdown for transient analysis of the UA741; the single greatest

amount of time, only 18%, is spent in evaluation of the device model equa

tions. As long as the numerical algorithms and modelling techniques remain

essentially the same as those in SPICE2, there is no single step left in the

analysis for which special-purpose instructions (or hardware) would make

any further major improvements in performance. Small savings result from

minor rewriting of parts of the FORTRAN code. For example, rewriting the

LTE (local truncation error) estimation code so that the divided-difference

approximations are evaluated in-line rather than by iteration decreased

transient analysis time by «5%. Performance can be improved significantly,

of course, by using faster (and more expensive) hardware.



Analysis task UA741 MOSAMPl

LOAD
(init matrix & load R's)

6% 4%

ITERS 16% 4%

solve linearized equations 6% 1%

check voltages for convergence 11% 3%

'Device modelling' 72% 90%

fetch model parameters 7% 20%

predict new sweep point 8% 8%

check bypass of eqn evaluation 2% 5%

compute new branch voltages 8% 9%

limit junction voltages 4% 3%

evaluate model equations 14% 19%

check currents for convergence 6% 6%

load right-hand-side terms 3% 4%

load coefficient matrix 16%
i

16%

Table 5.11. Final Breakdown of dc Analysis CPU Time
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Analysis task UA741

TERR 14%

(estimate local truncation error)

ITERS 8%

solve linearized equations 3%

check voltages for convergence 5%

'Device modelling' 65%

fetch model parameters 6%

predict new sweep point 5%

check bypass of eq'n evaluation 3%

compute new branch voltages 5%

evaluate model equations 18%

integrate capacitor currents 10%

check currents for convergence 5%

load right-hand-side terms 2%

load coefficient matrix 11%

Table 5.12. Final Breakdown of Transient Analysis CPU Time
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CHAPTER 6

CONCLUSIONS

The increasing size and complexity of integrated circuits have placed

great demands on the tools needed by the design engineer. Timing [Chaw75]

[Fan77] [Boyl78], logic [Beni79] [Szyg76] [Wilc76] [Newt79], and even higher-

level simulators [Barb77] [Comp74] [HU180] [NewtSO] have been developed

which reduce the computer costs of simulation by orders of magnitude rela

tive to circuit-level simulation, at the expense of 10-20% in solution accuracy.

At the cell or building-block level, however, the availability of accurate

circuit-level simulation is critical for the development of efficient, working

circuits. The decreasing costs of minicomputers would make these machines

attractive vehicles on which to run such simulations, were it not for their lim

ited performance. The research results described in earlier chapters of this

report show that speeds comparable to mainframe computers are obtained

from a minicomputer when appropriate changes are made to the numerical

algorithms and data structures of the program together with modifications

to the machine instruction set.

The key results and conclusions of this report concerning those neces

sary changes in both program and computer structures are summarized in

Section 6.1. The suitability of several currently-available microprocessors or

minicomputers is evaluated briefly in Section 6.2. Finally, several limitations

of the ideas developed in this report and areas for further research are

presented in Section 6.3.
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6.1. Key Results

One of the fundamental factors which determines overall simulation

speed is the numerical precision used in floating-point calculations. The

larger mainframe computers use «64 bits without speed penalties. However,

the 16- or 32-bit word memories in minicomputers make those smaller

machines better suited to 32-bit calculations. Even though the computa

tional effort in IC simulation involves a considerable number of floating-point

calculations, there is not a strong need for a direct hardware implementation

of floating-point arithmetic when 32-bit precision gives sufficient accuracy.

The data presented in Chapter 2 show that the improvement in simulation

speed on the HP 1000 F-Series due to hardware floating-point arithmetic is

only 15% (although for 64-bit precision the simulation is seven times faster

than a microcoded implementation of floating-point arithmetic). Also, the

effect of memory cycle time on total simulation speed is reduced when 32-bit

precision is used. For the HP 1000, a 33% improvement in memory access

speed reduces simulation time by only 15%. (For 64-bit precision, the

corresponding reduction in time is 25%.)

Chapter 3 describes the numerical algorithms in SPUDS. Several

methods which increase the accuracy of the circuit solution are evaluated.

For the circuit sizes of interest (*100 devices), the use of both numerical

pivoting and an augmented MNA matrix is essential to obtain results with 32-

bit precision that are the same as for 64-bit precision. Incremental iteration

slightly improves the accuracy of the solution. A number of techniques must

also be utilized to obtain rapid convergence to a solution. In particular, lim

iting the maximum p-n junction conductance values and using a threshold to

reduce the sensitivity to very small changes in p-n junction bias are effective
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at speeding the rate of convergence. The total computational effort is

reduced with the use of linear prediction and model evaluation bypass algo

rithms; for several of the test circuits, the savings are as much as 20%.

Because of the limit on circuit size, 16 bits are sufficient to store integer

quantities, e.g. node numbers. All floating-point variables (and almost all

floating-point calculations) do not require more than 32 bits. Therefore, the

main-memory-to-CPU data path for a CAD machine should be 32 bits wide

and the memory should either have a wordsize of 16 bits and support

double-word (32-bit) data transfers, or have a 32-bit wordsize and support

fast halfword data access. The total memory requirements depend on the

particular machine architecture and instruction set size. For Program

SPUDS on the HP 1000, approximately 100KB are required to store program

code (instructions); the microcode requires another 800 words of control

store. The data reorganization and associated algorithm changes described

in Chapter 4 reduce the data storage requirements of SPUDS by a factor of

three relative to Version E.3 of SPICE2. As a result, the memory needs for

data storage are quite modest; 65KB (32K 16-bit words) are sufficient for a

circuit with 100-200 semiconductor devices.

The inclusion in a general-purpose minicomputer of specially-tailored

machine instructions such as those described in Chapter 5 significantly

improves the performance of circuit simulation. It is important when

evaluating improvements in performance to determine the extent to which

poor code generation from language compilers affects overall speed. For

example, the FORTRAN compiler for the HP 1000 produces acceptable code

(hand-written assembly language routines for equation solution reduce total

analysis time by only 10%). The development in microcode of a Linear Equa-
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tion Solution Machine (LESM) is detailed. This LESM executes «20 times fas

ter than equivalent FORTRAN code and reduces the equation solution time to

only 2% of the total. Additional speedup is obtained from special instructions

which gather together device model parameters and which incrementally

load the coefficient matrix. All the microcoded special instructions together

reduce the total simulation time by 65-70%.

6.2. Existing Processors

A wide range of processors, from micro-processors such as the 8086

[Inte79] through larger systems such as the M68000 [Moto79] and up to 16-

bit general-purpose minicomputers such as the Texas Instruments 990/12

[Texa79] [Appe79] or the HP 1000 are possible candidates on which to build a

dedicated CAD machine. This section describes the features and drawbacks

of these processors, from the perspective of obtaining good performance in

circuit simulation.

6.2.1. 8068

The 8086 CPU is an 8- or 16-bit general-purpose microprocessor having a

16-bit external data path. Standard parts operate with a 200ns clock cycle

time, and up to 1MB of central memory can be addressed. The megabyte of

memory is divided into logical segments of up to 64KB each. The CPU can

directly access 4 of these segments at any one time. By convention, one seg

ment is used for code (program instructions), one for a stack, and two seg

ments for general data storage.

Of particular interest is the 'coprocessor' concept of the 5086. A copro

cessor monitors the instructions of the main CPU and can execute those

operations which it recognizes as 'its own'. This capability can be used to
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extend the instruction set of the main CPU. More importantly, an 8086 sys

tem can be augmented (without significant modifications to hardware or

software) with a special-purpose coprocessor chip which performs certain

functions especially well.

The data registers may be addressed as either 8- or 16-bit storage loca

tions. The only 32-bit datatype recognized by the processor hardware is

called 'pointer' and is used to address code or data that is outside the

currently-addressable segments. The 32 bits are organized as a 16-bit seg

ment offset and a 16-bit segment base address. The address and data lines

on the chip are multiplexed together; this sharing reduces the possible over

lap of instruction execution and operand fetch/store.

Some multiprocessor interlock and handshaking capabilities are pro

vided. The LOCK instruction causes a 'lock' signal to be set high for the dura

tion of the following instruction. The XCHG instruction (which exchanges

register contents with memory) can be combined with the LOCK instruction

to implement a semaphore [Dijk68] facility. The ESC (escape) instruction

may be used to initiate an operation in another processor, e.g., the 'copro

cessor', and simultaneously pass a 6-bit quantity. Execution may then

proceed until the results of the remotely-executed operation are needed, at

which time a WAIT instruction can be executed, which causes the 8086 to

enter an idle state until a TEST input signal is active.

The instruction set of the 8086 is oriented exclusively around 8-bit bytes

and 16-bit words. However, the 8087 Numeric Data Processor (NDP) [InteSO],

a manufacturer-supplied coprocessor for the 8086, performs arithmetic and

comparison operations on 32- and 64-bit floating-point operands and in addi

tion executes several built-in transcendental functions such as tangent, log,
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and exponential. The NDP implements the floating-point arithmetic standard

proposed by the IEEE [Coon79]. It contains 8 80-bit registers, which may be

individually accessed or may be accessed together as a register stack. The

data path in the numeric execution portion of the NDP is 68 bits wide. With a

5MHz clock on the 8087, multiplication and division of 32-bit floating-point

numbers require approximately 19/us and 39/as, respectively. In addition, the

'coprocessor' scheme permits the 8087 to perform computations in parallel

with operations in the 8086, providing a certain amount of processor parallel

ism which can increase overall performance.

Overall, the combination of the 8086 and 8087 processors is adequate for

the task of circuit-level simulation of small integrated circuits. The availabil

ity of multiprocessor interlocking instructions could be used to increase the

total computation speed by using many of these processors together in an

integrated system. The absence of 32-bit data paths, however, limits the

speeds that can be achieved. If it were possible to add a second coprocessor

chip (besides the 8087) implementing the special instructions detailed in

Chapter 5, simulation speeds should be within a factor of 2 of those obtained

with the HP 1000-F. Memory requirements for the 8086 should be essentially

the same as those for the 1000.

6.2.2. TI 990/12

The Texas Instruments 990/12 is a byte-addressable 16-bit minicom

puter with several high-speed caches which improve its overall performance.

Instruction look-ahead is used to perform some of the memory-address map

ping overhead before the actual memory access cycles. Up to 2MB of main

memory can be addressed, in 64KB segments. Floating-point commands on

the 990/12, implemented with microcode, support both 32-bit and 64-bit
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arithmetic. Although the ALU contains a 32-bit accumulator, most data

paths in the processor are only 16 bits wide.

User-written microcode can be included in the control store of the

990/12. The design of the microprocessor memory on the 990/12 can sup

port up to 4K 64-bit words; however, only 3K words are currently supported.

The first 2K are in ROM and contain the microcode for the basic instruction

set and some diagnostics. The remaining IK of control store are in RAM; 528

of these words are available to the user to implement special operations.

Access to microcoded operations is through the 'XOP* instruction, which

transfers control either to a specified location in main memory or to an

address in the microprocessor control store depending on the setting of a

processor state bit. Therefore, it is easy to develop special instructions in a

high-level language and then implement the instructions with microcode for

fast execution.

The 990/12 has several instructions which support inter-processor

handshaking in a multiprocessor environment. The performance of circuit

simulation on this machine should be similar to the speed obtained with the

HP 1000-F, except for the relatively small differences due to the hardware

implementation of floating-point arithmetic on the 1000.

8.2.3. M68000

The M68000 [Moto79] is a general-purpose microprocessor which sup

ports operations on individual bits, 8-bit bytes, and 16- and 32-bit words.

Both data and address registers may be 32 bits wide, but all internal data

paths are only 16 bits wide. Standard parts operate with a 125ns clock cycle

time. Up to 16MB of memory can be addressed directly (without segmenta

tion). Both 16- and 32-bit arithmetic for address calculations is supported.
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Overall performance is improved with the use of an instruction pre-fetch

pipeline and by the fact that the address and data busses are not multi

plexed. No floating-point arithmetic is presently documented, although pro

vision for floating-point instruction opcodes has been made. (At least one-

eighth of the instruction opcodes have been reserved for future instruc

tions.) A simple 16-bit integer addition requires 9 internal (18 clock) cycles,

or 2.25fis.

Multiprocessor communication is supported with the test-and-set (TAS)

instruction, which performs a read, modifles the data in the ALU, and writes

the data back to the same address in an indivisible hardware cycle. Bus arbi

tration logic is incorporated in the processor chip for a shared bus and

shared memory environment.

The lack of floating-point arithmetic, the inability to customize the

microcode, and the 16-bit data paths severely limit the potential analysis

speed of this processor. The simulation times for the 68000 as presently

available are likely to be 10-20 times longer than the times for the HP 1000-F.

6.2.4. Intel 432

As of the time this report is prepared, the Intel 432 chip set [LatiBl] has

just been announced. Address space is no problem, as the 432 can address

232 bytes of memory. The processor supports 32-, 64-, and 80-bit floating

point arithmetic, with operation times on the order of 10—30/is. It appears

that simulation speeds on the 432 should be within a factor of 2-3 of those on

the HP 1000-F.
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8.3. Limitations and Further Research

The research results described in the previous chapters support the

idea of a desktop *CAD machine' to meet many of the circuit-level simulation

needs of the IC design engineer. If this CAD tool is to be effective, it must

provide simulation results in minutes, for circuits containing 100-200 sem

iconductor devices. The simulation speed obtained with the HP 1000-F mini

computer meets this criterion; therefore, the machine can be used in the

design of cells (building blocks) in VLSI circuits.

The increasing size of VLSI circuits will lead to building-blocks that are

too large for the methods described in this report. If circuit-level simulation

is to remain a useful design tool, further research into algorithms and imple

mentation details is needed so that the speed and power of the simulation

program keeps up with the increasing size of integrated circuits.

Without a true dataflow architecture, the problems and time delays in

communicating data and control information among multiple processors,

e.g. a host and co-processor, make a multiprocessor system unattractive to

provide a dedicated fast simulation capability for the circuit designer. A

greater speed improvement can be obtained from a single-processor system

in which the processor instructions are tailored to the problem area of

interest.

The fastest possible execution is obtained by a direct hardware imple

mentation of the simulation algorithms. The use of firmware (microcode) in

SPUDS to implement the special-purpose instructions compromises this

maximum speed in favor of increased flexibility in instruction design. Even

better performance would be obtained if the microcoded tasks were per

formed by special-purpose hardware incorporated into a processor. The
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results in this report can be used as a starting point for the development of

that hardware.



APPENDIX 1

SPUDS PROGRAM STRUCTURE

The SPUDS program is written in a combination of FORTRAN-TV, assem

bler, and micro-assembler code. The program contains approximately 12000

FORTRAN, 400 assembler, and 1500 micro-assembler statements. SPUDS

runs on a Hewlett-Packard 1000 F-Series minicomputer operating with an

extended version of the manufacturer's RTE-IVa operating system1. The

SPUDS program code is divided into a root segment, 15 first-level overlays,

and an auxiliary helper program SPUDZ. The circuit to be analyzed is stored

in a set of linked lists to make the maximum use of available memory. Data

structures are dynamically allocated and deallocated from main memory as

the analysis proceeds.

The original coding for Program SPUDS is derived from Version E.3 of

Program SPICE2, and the logical flows of control in the two programs are

similar to one another. The changes in the numerical algorithms and data

structures of SPUDS relative to Program SPICE2 are described in the body of

this report. The basic organization of SPICE2 is described in detail in

[Nage75] and [Cohe76]. This appendix gives the structural changes in SPUDS

which have been found necessary to make SPUDS run effectively on the

Hewlett-Packard 1000 F-Series minicomputer.

^e operating system is extended with the Session Monitor software package developed by
the Automatic Measurement Division of the Hewlett-Packard Company.
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The most severe constraint imposed by the minicomputer is the very

limited address space for program code. The initial (and reference) version

of SPUDS uses 64-bit arithmetic. Although memory requirements for both

program code and data are reduced when 32-bit floating-point arithmetic is

used, substantial revisions in program structure are required to make the

84-bit version fit in the minicomputer. The 26K 16-bit words of program code

space on the HP 1000 are barely adequate for the code which implements the

dc operating point, small-signal frequency-domain, and large-signal time-

domain (transient) analyses. The program statements which implement the

other analysis capabilities of SPICE2 (small-signal distortion, element sensi

tivities, etc.) are not in SPUDS both due to address space limitations and

because the computational effort associated with these other types of

analysis is small. The code for the nonlinear controlled source, transmission

line, and JFET circuit elements is also removed from SPUDS to meet the con

straints imposed by the limited memory address space. The code has been

removed by changing the affected statements to comments, rather than by

deleting lines from the program source. Finally, the input-processing and

error-checking overlays READIN and ERRCHK are each split into two smaller

overlays, also to reduce memory requirements.

The largest program overlay in Program SPICE2 is DCTRAN, which con

trols the dc and transient analyses. Several changes to this program struc

ture are made in SPUDS to make the program code fit in the available

address space. First, all FORTRAN WRITE statements in this overlay are

moved to overlay DCFMT, which is invoked immediately after the analysis

completes. This change eliminates the need for approximately 2.5K words of

FORTRAN library routines in the analysis overlay. Second, the size of the dev

ice modelling routines makes it impossible to have all the routines present in
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memory at the same time. Therefore, in addition to the elimination of the

JFET modelling noted above, the DCTRAN overlay is replaced by the two over

lays DCTRB and DCTRM. The DCTRB overlay controls the dc and transient

analyses for circuits whose only semiconductor devices are p-n junction

diodes and BJTs; the DCTRM overlay performs the same function for MOSFET

circuits. Circuits which contain both BJTs and MOSFETs cannot be analyzed

by SPUDS.

The size of the 'LEVEL=2* MOSFET modelling routines exceeds the avail

able memory address space even after all these modifications. In order to

extend the address space so that the MOSFET device subroutines fit in main

memory, the subroutines are loaded as part of a second program named

SPUDZ. From the perspective of the RTE-IVa operating system, SPUDS is

actually the two programs SPUDS and SPUDZ. SPUDS begins by executing an

operating system call which locks the program in memory so that it cannot

be swapped out to disc. Then SPUDS determines which pages of physical

memory contain the values of the FORTRAN COMMON-block variables, and

which physical page begins the Extended Memory Area (EMA) used for data

storage. The SPUDS program then invokes Program SPUDZ. SPUDZ begins

by locking itself in memory and then changes the Dynamic Mapping System

(DMS) registers so that references in SPUDZ to either COMMON-block vari

ables or EMA data reference the same physical memory locations as SPUDS.

After this initialization SPUDZ suspends itself and returns control back to

SPUDS. Whenever SPUDS needs to execute the MOSFET device subroutines,

the SPUDZ program is invoked by a call to the operating system. Since both

programs are always present in main memory, the additional execution time

incurred by this strategy is a negligible part of the total analysis time.



APPENDIX 2

SPUDS PROGRAM LISTING

Program SPUDS is written for the Hewlett-Packard 1000 F-Series mini

computer using a combination of FORTRAN-IV, assembler, and micro

assembler code. Persons who wish to obtain a listing of Program SPUDS

should contact the author concerning the possibility of obtaining a copy.
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APPENDIX 3

LISTING OF BENCHMARK CIRCUITS

The effectiveness of the simulation algorithms described in this report

can be measured by how well these algorithms work for typical integrated

circuits. A mixture of both analog and digital bipolar test circuits exhibiting

simulation problems such as convergence in dc analysis is described in

[Nage75]. These circuits are part of the set of benchmarks used for Program

SPUDS. Several analog and digital MOSFET circuits are included as well to

check the effectiveness of the simulation algorithms when the circuit

response is controlled by MOSFETs.

A listing of the input for the DIFPAIR circuit is shown in Figure A3.1.

Figure A3.2 shows the output listing of SPUDS for the circuit input from

Figure A3.1. The input descriptions of the other test circuits are shown in

Figures A3.3 through A3.34.
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DIFPAIR CKT - SIMPLE DIFFERENTIAL PAIR
.WIDTH IN=72 0UT=72

.OPT ACCT OPTS PIVT0L=1.0E-12 PIVREL=1.0E-4

.TF V(5) VIN

.DC VIN-0.25 0.25 0.005

.AC DEC 10 1 10GHZ

.TRAN 5NS 500NS
VIN 1 0 SIN(0 0.1 5MEG) AC 1
VCC 8 012
VEE 9 0 -12
Ql 4 2 6 QNL
Q2 5 3 6 QNL
RSI 1 2 IK
RS2 3 0 IK
RC14 8 10K
RC2 5 8 10K
Q3 6 7 9 QNL
Q4 7 7 9 QNL
RBIAS 7 8 20K

.MODEL QNL NPN(BF=80 RB=100 CCS=2PF TF=0.3NS
+ TR=6NS CJE=3PF CJC=2PF VA=50)
.PRINT DC V(4) V(5)
.PLOT DC V(5)
.PRINT AC VM(5) VP(5)
.PLOT AC VM(5) VP(5)
.PRINT TRAN V(4) V(5)
.PLOT TRAN V(5)
.END

Figure A3.1. SPUDS Input Listing for Differential-Pair Circuit
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••••• 93AUC80 •••••••• SPUOS IA 0 (03AUC80) •••••••• 21:32 =3? •

oiffaib cxi - unrig oiffcbcmtiai. phib

IMPUT LUTING TCAPCBATUBC • 27 OOO DEC C

.UIDTH 1H-72 OUr-72

.OPT ACCT OfTI FIVT01M.08X2 PIV«fl»I.9C-4

.TF V<3> VIN

.OC VIM -4.23 0.29 9. 909

.AC OCC 10 I 196M2

. TBAjN 3N« 300*8
VIM 1 0 tIH<4 0. I SJICO AC 1
vce a o 12
VCI 9 • -12
II 4 M ant.
a2 s 3 a am.
ISl 1 2 IK
•32 3 0 IK
• CI 4 • I OK
•C2 3 a io<
93 * 7 * 9ML
84 7 7 9 4HI
••IA8 7 • 20K
.Roeci. a At NM<8**ao «a«ioo ccs«2PP tf«o m ra««its cje«3pf cjc«2pf
• VA«30>

PtlNT DC »<4) y<3)
.HOT OC V( 3)
.MINT AC VH<3> ¥P<9>
.plot ac vn<3> vp<s>
.MUr TIAM V(4) V«9>
.PLOT TBAN V<3)
.fNO

• •«•• 03AUG80 ••••••«• SPUOS IA 0 •03fitlC8<>> •••••»•• ." •> *> '

OIFPAIB CKT - SMPLK DIFFCRCMTtAL PAIB

BJT NQftCL PABAHCTCBS TCHMBArtlBC • i? uwv Otu i

TYPC MP*

• F •0 900

IB 1.900

13 1 .ooe-i4

• 8 190.900

VA 30 000

TK 3 90C-I0

TV a 90C-09

CCS 2 90C-I2

CJ€ 3 90C-I2

CJC 2 90S-12

Figure A3.2. SPUDS Output for Diflerential-Pair Circuit (Page 1 of 7)

156



O
P H a
t > t
o

2
U

O
U

»
U

»
(
>

t
O

I
)
0

0
6

C
I
>

»
0

«
f
t
«

0
0

»
0

0
«

»
l
>

«
«

«
«

»
<

»
0

«
O

O
O

O
t
«

«
a

«
U

O
U

6
l
i
«

I
I
O

U
«

U
O

U
A

l
i
O

U
«

U
»

U
«

l
l
A

U
O

U
O

U
(
)

-
o

e
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

•
I

(
I

t
•

l
l
l
.
l
t
t
t
l
t
t
t
t
l
l
l
t
l
t
l
i
t
l
l
.
i
l

C
O

O
O

«
O

O
O

C
»

0
0

»
»

«
0

«
0

6
*

f
t
<

>
0

0
»

»
0

6
«

»
«

0
(
l
(
l
«

4
«

»
»

6
0

»
»

«
<

l
«

»
«

«
»

«
«

«
«

»
«

«
«

«
»

»
«

«
«

«
«

*
4

»
»

«
«

»
»

«
*

l
>

l
l
l
l
l
l
l
l
t
l
l
l
t
l
l
l
l
t
l
l

I
I

I
I

I
I

I
I

I
«

I
I

I
I

I

I
^
W

W
I
*

W
I
H

M
r
tW

I
'l

W
M

I
^
I
^
M

I
W

I
tt

|?
ll

lt
in

l»
4

M
fl

*
M

fl
lP

%
|l

|m
i^

W
fl

ll
*

l|
t|

W
lt

||
»

tl
fl

|i
ll

^
l^

l«
l*

H
W

#
l|

ll
lf

ll
M

I
^
I
I
1

l*
I
I
^
I
H

I
*

lW
.
.
.
«

.
.
*

*
*

.
»

.
.
«

«
*

«
<

.
«

»
.
*

*
*

«
*

«
«

«
*

<
»

*
«

<
»

«
*

<
»

.
»

«
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

-<
•

•
!

£.
1

«
-

*

-^
1



1.4448-41 1.1238*41
1.4346-41 I.12*6*41
1.3446-41 JJl'l**!
I.3396-91 I I33E*4t
1.(446-41 1.1348*41
1.8398-41 1.1296*41
1.7906-41 1.1426*01
1.7306-01 1. t<5f*«
1.8006-01 1.1496*01
1.8306-41 1.1316*01
1.9006-41 1.1346*0}
1.9306-01 1.1376*01
2.9996-41 1.1846*41
2.9396-91 1.1826*91
2.1996-91 1.1836*91
2.1396-91 1.1*76*4!
2.2946-01 1.1706*41
2.2306-01 1.1726*41
2.3006-01 1.1746*41
2.3306-91 !•!££§*?!
2.4996-41 1.1796*91
2.4396-01 1.1806*01
2.300C-OI l.liafM! ;
••••• 93AUC80 •••••••• SPOOS T»"o vOJAUC8oi ••«••••• .'I -»2 *•'
IIFPAIB CXT • IIRPL6 0IFF6B6NTIAt PAIB

3NALL SI6NAL 81AS 80LUTI0N T6RP6BATUae • 27 449 06C C

\ \\ 1 t«|3 < 8) -8312 < 7) -11 3441 ( l» 12 4404
< 9) •12.9400

V0LTA8C 90U8CC CUB86NTS
MANS CUB86MT
VIN -7.7416-4*
VCC -2.3336-43

TOTAL POMSl'llHlPATION 8.146-92 UATTS
••••• 93AU699 •••••••• SPOOS 1A 9 (93AUG89) •«•••••• i\-»i-*f •»•«•

OtFPAll CXT • SIMPLE 0IFFCX8NTIAL PAIB

0PC8AUMC POINT INF08HATI0N r8(IP6BArUB8 • 27 449 068 C

•••• IIP0LA8 JUNCTION T8AN81ST0IS

01 02 03 04

BOOtL am 9NL ONL ONL

ta 7 746-4* 7.746-9* 1 426-93 I 426-«1

u * 846-44 8 846-94 1 386-93 1 146-4J

vet 843 843 8*9 8*9

vac -3 178 •3.17* •19 889 9 9U4

VCC 3 819 3 829 11 349 k»4

a oc 88 283 88 283 »7 193 94 492

CR 2 846-92 2.846-42 3 346-92 4 AOi-Oi

IPt 3 346*43 3.346*43 1 926*93 1 126*»]

80 a 476*94 S 478*44 4 396*94 4 396*04

CPI i 206-11 1 296-11 1 • IC- 11 1 816-11

CAU a 936-13 a 936-13 3 936-13 *> •Kit' 1 i

i *r 8a 243 88 244 17 9b3 .** '*.l

r i i :«€••>« i m»»e 4 J4fc.*1 .1 4M£..•

Figure A3.2. SPUDS Output for Differential-Pair Circuit (Page 3 of 7)
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• •••• 03AUC90 ••••••«• SPUOS 1A •» <03miC80> •••«.*•• ;• •• > •)? •

01FPA1B CXT • 8IHPLS 01FF6B6MTIAL PAIS

AC ANALYSIS TEAPEBUfUat • 27 999 t»£C C

CSXOi
Vfl(9)
»P<3>

FI60

>- — - — -•

.4446*44

.2396*44

.3836*00

.9996*00

.3126*49
. 1*28*99
.9816*44
.4126*44
.3196*99
9436*90

.9996*41
2396*41

.3836*41

.9936*41
9126*41

. 1836*41

.9818*41

.9126*9!
3196*41

.9436*41

.4446*42

.2396*42

.3936*42

.9936*42

.3126*42

.1*36*42
9816*42
4126*42
3196*92

.9436*92

.9996*93

.2396*93
3896*93
1996*43

.3126*93
1*26*43
1816*43
4128*43
3146*43

.9436*43
4446*44
2396*44
383E*44
1938*44
3126*44
1(26*44
9816*44
4I2£*44
JI46«44
1436*44
4496*43
2316*43
3836*03
1936*43
3126*43
1*28*43
18IE»93
4126*43
1196*43
1436*43
9006*0*
2316*4*
3836*4*
1136*4*
3I2C»4«
l*2E*4*
•»8I £«o»

0|JC*«*
J lOC*o%
14 Jr. *o*
.«...!• *..'

VN<3)

8376
8376
8376
8376
8376
8376
S376
8376
9376
8376
8376
8376
8376
9376
8376
1376
8376
8376
6376
8376
8376
9376
8376
8376
8376
8376
8376
9376
8376
8376
8376
8376
8376
8376
8376
8376
9376
9376
83*6
33*6
83*6
83*6
3336
8346
8336
8396
8376
8216
a 126
7976
7746
7386
(826
J136
4*26
2*46
17*6
37(6
9306
4936
«»36
887E
I236
4I7E
7136
2*36
824E

I 4(36
1 l»?€

3 196
«04£

I.9906-94

'1.3446*42

I 4996-92

'1 9996*92

I 9996*44

•3 0446*41

Figure A3.2. SPUDS Output for Differential-Pair Circuit (Page 4 of 7)
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J •Ji»«iL •«»/ 3. 1316*00

3 9396-97 3.9976*44
4 9496-97 3.8996*44
4 9306-07 3.9346*44
4 1006-07 4.4436*40
4 1306-97 4.1036*44
4 2906-47 4.2376*40
4 2306-47 4.39*6*90

4 3006-47 4.3786*90
4 3306-47 4.7796*40
4 4006-47 4.9936*00
4 .4306-07 9.2186*00
4 .3006-07 3.4446*00
4 3306-47 3.((96*94
4 8006-47 3.8926*40
4 8306-47 8.4826*49
4 7448-0 7 8.2826*44
4 7306-47 (.4186*40
4 8406-47 8.3436*00
4 •346-47 «.(416*44
4 9046-47 8.7436*40
4 9906-07 * 7296*44
9 •008-4 7 8.7196*00

JOS) C0NCLU060

• •«•• 43AUC80 ••«••••'• SPUO* 1A " •»3mUi;89> ••

8IFPA1B CXT • 8IRPL8 0IFF6B6HT1AL PAIB

.98 STATISTICS SONNABY TEHF6RArUB6

XUNQ9S NCHOOS NttNNOO HURCL OIOOCS 8JTS JF6TS AF6

to 18 14 12 9 4 9

Kimrcji ICVFLfi JTIFL6 4ACFLC INOISC IOIST NOCO

i 101 101 101 9 9 9

N8T0P NTTII ATTAR IFI LL 10PS PCBSPA

17 80. 73. 3 94 77 4*9

NURTTP NURBTP NUHNIT RAXUSC hoshvo

107 0. 230. 2384 3.1136*04

B6A0IN 2.4I9

S6TUF 749

TBCUBV a 219 22.'

OCAN 1 920 !•

ACAN 13 444 101

TBANAN 11 980 2U

OUTPUT 9 490

OCOCRP 920 ii

C006CN 749 2

0VCBN6A0 399

TOTAL JOB TIR6 4 7 799

i\ :03:53

Owl (tfct. I

Figure A3.2. SPUDS Output for Differential-Pair Circuit (Page 7 of 7)
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KTEST - MUTUAL INDUCTAHCE TEST

.WIDTH IH=?2 0UT=?2

.OPT ACCT OPTS

.AC DEC 10 1 1GH2

.TRAN 20NS 2000NS

ISRC 1 0 SIN(0 1 1HEG) AC 1
LI 1 0 1MH

L2 2 0 1HH

L3 3 0 10MH

L4 4 0 tOOMH

K12 LI L2 0.99

K13 LI L3 0.993

K14 LI L4 0.99

K23 L2 L3 0.995
K24 L2 L4 0.99

K34 L3 L4 0.995

Rl 1 0 IK

R2 2 0 IK

R3 3 0 IK

R4 4 0 IK

.PLOT AC VH<1> VP<1) VH<2> VP<2> VN<3) VP<3) VM(4) VP<4)

.PLOT TRAH V( I ) V( 2 ) V( 3 ) V( 4 )

.EHO

Figure A3.3. SPUDS Input Listing for KTEST Circuit
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WIDEBAND AMPLIFIER

OPTS

RCA3040 CKT - RCA 3040 W

.WIDTH IN = 72 0UT=72

.OPT ACCT 0VPNJN=8 OE-6 i

.DC VIN -0.23 0.25 0.003

OP

AC DEC 10 1 10CHZ

.TRAN 0

VIN

VCC 2 0 15.0

VEE 3 0 -13.0

RSI 30 1 IK

RS2 31 0 IK

Rl 6 3 4 .8K

R2 5 3 4.8K

R3 9 3 0.81 IK

R4 8 3 2. 17K

RS 8 0 0.82K

R6 2 14 1.32K

R7 2 12 4.5K

R8 2 13 1.32K

R9 16 0 5.25K

RIO I? 0 5.23K

Ql 2 31 6 QNL

02 2 30 3 QNL

03 10 5 7 QNL

Q4 11 6 7 QNL

Q3 14 12 10 QNL

Q6 13 12 11 QNL
Q7 12 12 13 QNL

Q8 13 13 0 QNL

Q9 7 8 9 QNL

Q10 2 IS 16 QNL

Qll 2 14 17 QNL

N 0 3NS 50NS

1 0 SINCO 0.1 30NEG ) AC 1

2 0 15.0

164

Ull Z 14 17 QNL

.HODEL QNL NPN<BF«80 R8M00 CCS-2PF TF=0.3NS TR»6NS CJE»3PF CJC=2PF
♦ VA*50)

.PRINT DC V<16) V(17).rnini wv T\ IO / TV If ^

. PLOT DC V< 17 )

.PRINT AC VN(17) VP<17)

.PLOT AC VH<17) VP(17)

. PRINT TRAN V< 16 ) V<17)

.PLOT TRAN V<17)

.END

Figure A3.4. SPUDS Input Listing for RCA304 Circuit



119709 Cr T • us 709 qperb r i onui. Ann.rriCP

WIDTH IN«72 0UT-72

OPT ACCT OPTS PIVTOLM «£•12 PIVBEl-l «F-4

OC VIN -0 23 0 23 * 001

AC DEC 10 I I0GH2

TRAN 2 3US 234US

VIH t 0 SIM(0 0 I I0KH2) AC t

VCC 19 0 13

VEE 29 0 -IS

RSI 39 I IK

9S2 31 0 IK

RF 39 18 I0OK

RCONP 7 23 I 3K

CICOHP 23 4 S009PF

COCOHP 18 13 200PF

01 2 31 3 OHL

02 4 39 3 OHl

93 19 « 3 OHL

0 4 7 4 t| OHt

03 7 1 I 12 QNL

0* * 13 12 QNL

07 4 2 13 QNL

08 19 7 21 QNL

Q9 19 17 18 OHL

010 17 13 1* QNL

Oil 3 8 22 ONI

012 8 8 29 QML

013 14 14 12 QNL

014 19 12 19 QPL

QI3 29 17 18 QPL

Rl 3 2 23K

R2 3 4 23K

R3 22 20 2.4K

R4 8 9 I8K

93 9 12 3 «K

R« II 14 3K

R7 19 7 IOK

RO 19 « IOK

99 9 tO IOK

RIO 19 18 3 OK

Rtl 19 17 20K

912 13 I* IOK

R13 IC 29 73 9

RI4 13 14 3K

RI3 21 10 IK

.MODEL QNL HPH<BF«80 99«I00 CCS-2PF TF»0 3NS TR«6NS CJE-3PF CJC«2PF

♦ VA*30>

HODEL QPL PNP<8F»10 RB»20 TF-IHS TR»20MS CJE»«PF CJC*4PF VA-50 )

PRINT DC V<7) V<!8>

PLOT OC V< 18)
.PRINT AC VH<18) VP<18)
. PLOT AC VIH 18) VP( 18 >

PRINT THAN V< 7) V< 19 )

PLOT TRAN V<18)

END

Figure A3.5. SPUDS Input Listing for UA709 Circuit
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166

UA727 CK T - UA 727 AHPLIFIEB «.'•• |S | •, I ,• OHL

WIDTH IN-72 OUT-72 <». I I <. |4 19 QPL

OPT ACCT OPTS RELTOl** "M n;,- |4 II 4 OHL

. OC VIN -92929 <X»4 a;j 13 19 24 (JHl

AC OEC 19 I 19CH2 n."4 34 12 13 9HL
IRAN 0 03US 3US "OOFL OHL MPH<9F>90 »9*10<1 CTS-2PF TF»n JMS IB-*HS

VCCl 34 0 13 • r,if»3PF CJC*2PF VAtsm

VCC2 33 0 13 HOOCl OPl PMPf9F«|0 »«*,?« TF»IH< TR.;*OH<8 C.T-'fcPF
VEE 38 9 -13 ♦ CJC.4PF VA«10»

VIH 49 9 SIH<9 0 2 !OOKHZ> AC I PRINT pr «l|Oi V(|9>

RSI 40 I IK PLOT C>C Vf IB >

R32 12 9 IK POINT AC VN(IB) VP<|8»
IZ1 36 9 (29HA PLOT AC VHMdl VP<18>

RZl 36 9 10 PPIHT TRAH VtlO> V< 1f> »

IZ2 32 31 629NA PLOT TRAN vm9>

922 32 31 10 MO

Rl 9 31 IK

82 28 9 218
83 28 19 4 9K

R4 33 3* 2.4K

83 33 3* 19

8* 2* 19 2K

87 23 3* I 3K

R8 29 3* I29K

89 II 3 *9K

RIO « 8 69K

Rll 34 3 3K

912 8 9 19K

R13 22 3* I3K

R14 21 3* 13K

BIS 23 3* I3K

Rl* 17 9 I9K

R17 34 13 3K

818 1* 17 (OK

R19 It 14 *9K

831 24 3* 1208

BTENP 33 29 330K

03 33 29 31 QNL

04 33 32 33 QNL

03 29 33 3* OHL
8* 29 28 27 QHL

07 27 27 2* QHL

08 19 19 23 OHL

09 34 I 2 OHL

010 3 19 29 QHL

Bit 34 14 II QHL

012 3 2 4 OHL

013 4 19 22 OHL

014 ( 3 3 OPL

013 3 « 8 OHL

016 34 8 19 QNL

Q17 19 19 21 QHL

018 34 17 19 QHL

QI9 18 19 23 QHL

Figure A3.6. SPUDS Input Listing for UA727 Circuit



UA733 CKT - UA 733 VIDEO PREAMPLIFIER

.WIDTH IN=72 0UT=72

OPT ACCT OPTS

VCC 11 0 8

VEE 9 0-8

Ql 3 1 4 Ql

Q2 14 2 13 Ql

Q3 17 14 16 Ql

Q4 18 3 16 Ql

Q3 11 18 19 Ql

06 11 17 22 Ql

Q7 6 7 8 Ql

Q8 7 7 10 Ql

Q9 16 7 15 Ql

QIO 19 7 20 Ql

Qll 22 7 21 Ql

Rl 1 0 51

R2 2 0 51

R3 11 3 2.SK

R4 11 14 2.4K

R5 4 5 50

R6 13 12 50

R7 5 6 590

R8 12 6 590

R9 11 7 IOK

RIO 11 17 1 .IK

Rll 11 18 1 .IK

R12 3 19 7K

R13 14 22 7K

R14 8 9 300

R1S 10 9 1.4K

R16 13 9 300

R17 20 9 400

R18 21 9 400

.MODEL Ql NPH(BF>100 BR»2 IS»0.990 1E-15 )

END

Figure A3.7. SPUDS Input Listing for UA733 Circuit
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UA74I CKT - UA 741 IP EPO II'!Nui anr( irifP

WIDTH [H*72 OUT.,'2

OPT ACCT OPTS

OC VIH -0 23 0 23 •> 003
AC DEC 10 I IOCHZ

TRAN 2 3US 230US

VCC 27 0 13

VEE 2* 0 -13

VtH 39 0 SIH(9 0 1 tOKHZ) AC 1

RSI 2 30 IK

RS2 1 0 IK

RF 24 2 100K

Rl 19 2* IK

92 9 2* 30K

R3 II 26 IK

94 12 26 3K

R3 13 17 39K

Rt 21 20 40K

R7 14 2* SOK

R8 18 2* 30

R9 24 23 23

RIO 23 24 30

Rtl 13 26 SOK

COHP 22 8 30PF

Ql 3 I 4 QHL

03 3 2 3 QHL

03 7 6 4 QPL

04 8 6 3 QPL

03 7 » to QNL

06 8 9 11 OHL

07 27 7 9 OHL
00 6 13 12 OHL

09 13 13 26 OHL
010 3 3 27 QPL

Qll 6 3 27 QPL

012 17 17 27 QPL
014 22 17 27 QPL

013 22 22 21 QHL

Q16 22 21 20 QHL

Q17 13 13 26 QNL

018 27 8 14 QHL
019 20 14 19 QHL

020 22 23 24 QNL

921 13 23 24 QPL

022 27 22 23 QHL

023 26 20 23 OPL
.NOOEL ONL NPH<8F •80 RB'IOO CCS-2PF TF»0 3H3 TR-4HS CJE-3PF CJC«2PF

♦ VA-39)

NOOEL OPL PHP<BF •19 RB-20 TF»INS TR»20HS CJE"6PF CJC*4PF VP1-30 )

PRINT DC V<8> V<24)
PLOT OC V<24)

PRINT AC VH(24> VP<24)

PLOT AC VH(24 ) VP< 24 )
PRINT TRAH V(Q) V( 24 1

PLOT TRAN V(24> V( 8)

EHO

Figure A3.8. SPUDS Input Listing for UA741 Circuit
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RTLINV CKT - CASCADED RTL INVERTERS
WIDTH IN=72 0UT=?2

.OPT ACCT OVPNJN=l OE-6 OPTS

.DC VIN 0 0 2.50 025

.TRAH 2HS 200HS

VCC 6 0 5

VIH 1 0 PULSE<0 5 2NS 2HS 2HS 80HS)
RBI 1 2 IOK

RC1 6 3 IK

Ql 3 2 0 QND

RB2 3 4 IOK

02 5 4 0 QND

RC2 6 5 IK

.HODEL QND HPN<BF»50 RB»70 RC=40 CCS*2PF TF=0 IHS TR«10HS CJE=0 *PF
♦ CJC»1 5PF PC»0.8S VA=50)
.PRINT DC V<3 ) V<5)
.PLOT DC V< 3)

.PRINT TRAN V< 3) V< 5)
-PLOT TRAH V( 3) V( 3 ) V( I )
.EHD

Figure A3.9. SPUDS Input Listing for RTLINV Circuit
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TTLINV CKT - 74 SERIES TTL INVERTER

WIDTH IN=72 0UT=72

OPT ACCT 0VPNJH=1.OE-6 OPTS RELT0L=0 002
.DC VIN 0 2 0 02

TRAN INS 100NS

VCC 13 0 5

VIH 1 0 PULSE<0 3.5 1HS INS INS 40NS)
RS 1 2 SO

Ql 4 3 2 QND

RBI 13 3 4K

Q2 5 4 6 QND

RC2 13 5 1 4K

RE2 6 0 IK

Q3 7 5 8 QNO

RC3 13 7 100

01 8 9 Dl

Q4 9 6 0 QNO

03 11 10 9 QHD

RB2 13 10 4K

02 11 12 Dl

D3 12 0 01

.HODEL Dl D<RS»40 TT»0.1HS CJ0°O 9PF)

.HODEL QHD NPN(BF»30 R8»70 RC»40 CCS=2PF TF=O.INS TR»|0NS CJE=0.9PF
♦ CJC»1.5PF PC»0.85 VA»50)

.PRINT DC V<5) V<9)

PLOT DC V<9)

.PRINT TRAN V<5) V<9)

.PLOT TRAN V( 5 ) V< 9 ) V( 1 )

.ENO

Figure A3.10. SPUDS Input Listing for TTLINV Circuit



TTL74 CKT - SERIES 74 TTL INVERTER
WIDTH IH=?2 0UT»?2

• .OPT ACCT DVPNJNst .OE-6 OPTS PIVTOLM OE-12 PIVREL»1 OE-4
OPT ACCT OVPNJN = t . OE-6 OPTS

.DC VIN 0 2 0.02

.TRAN INS 100HS

VIN 1 0 DC I 3 PULSE(0 3 3 INS INS 1HS 40NS'
VCC 13 0 5

RS 1 2 50

Ql 4 3 2 QC

02 5 4 6 QA

Q3 7 5 8 QA

Q4 9 6 0 QB

171

Q3 11 10 9 QC

01 8 9 DA
02 11 12 DA
03 12 0 DA

RBI 13 3 4K

RC2 13 5 1.4K

RE2 6 0 IK

RC3 13 7 100
RB3 13 10 4K

• HODEL QA NPH<BF«20 8RM R8=70 RCMO IS =1E-14 VA*30 CJE=3PF CJC=2PF)
.HODEL QB HPH<BF»20 BR»2 R8=»20 RCM2 13=1 6E-14 VA =50 CJE=3PF CJC=2PF)
.HODEL QC HPH<8F«20 BR=.02 R8=500 RC=40 IS*IE-14 VA=?> CJE=3rF CJC=2PF)
.HOOEL DA D<RS=40 TT=0 INS CJ0=O.?PF 15=1 OE-14)
.PRINT DC V<9 ) V(6) V<5)
. PLOT DC V< 9) V< 6) V< 5)
.PRIHT TRAN V< 9) V<6) V(3)
.PLOT TRAN V( 9 ) VC 6 ) V( 5 ) V( t )
. EHD

Figure A3.11. SPUDS Input Listing for TTL74 Circuit
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TTL74S CKT - SERIES 74S TTL IN''ERTER
.WIDTH IH=?2 0UT»72

.OPT ACCT DVPHJH=2U OPTS

DC VIN 0 2.5 0.025

.TRAN INS 100NS

VIN 1 0 DC 1.375 PULSE(0 3.5 INS INS INS 40N3>
VCC 15 0 5

RS I 2 50

Ql 4 3 2 QC

R81 IS 3 2.4K

RC2 IS 5 800

Q2 3 4 6 QA

Q3 7 5 8 QA

Q4 7 8 9 QB

RC4 13 7 60

Q3 10 11 0 QA

RE2 6 11 230

RCS 6 10 300

Q6 9 6 0 QB

Q7 13 12 9 QC

RB7 IS 12 2.4K
01 13 14 DA

02 14 0 DA

.HODEL QA HPH<BF»20 8R*l RB-70 RC=40 IS-IE-M VA»50 CJE=3PF CJC=2PF)

.HODEL QB NPH<BF«20 BR» . 2 RB=20 RCM2 IS*l 6E-M VA=50 CJE =3PF CJC =2PF)

.HOOEL QC HPN(BF*20 BR».02 RB*500 RC=4« 13= t E 14 VA'50 CJE =3PF CJC =2PF)

.HODEL DA D<RS»40 IS»1.0E-14)

.PRINT DC V<9 ) V<6 ) V(3 )

.PLOT DC V( 9) V( 6) V( 3)

.PRINT TRAN V< 9) V(6) V(5)

.PLOT TRAN V<9) V( 6 ) V< 5 ) V< 1 )
END

Figure A3.12. SPUDS Input Listing for TTL74S Circuit



173

TTL7 4L CKT - SERIES 74L TVL INVERTER
WIOTH IN=72 OUT=72

.OPT ACCT OPTS RELTOL=0 ool

.DC VIH 0.0 1.5 0.015

.TRAH IONS 1000NS

VIN I 0 OC 1 175 PULSE(0 3 5 IONS 10N3 1*N3 4'.«0NS»
VCC 13 0 5

RS 1 2 50

Ql 4 3 2 QC

Q2 5 4 6 QA

Q3 7 5 8 QA

Q4 9 6 0 QA

QS 11 10 9 QC

Dl 8 9 DA

02 11 12 DA

03 12 0 DA

RBI 13 3 40K

RC2 13 5 20K

RE2 6 0 12K

RC3 13 7 500

RB2 13 10 40K

.HODEL QA HPH<8F-20 BRM R8«70 RC=»40 IS=1E-14 VA =50 CJE»3PF CJC=2PF)

.HODEL Q8 HPH<8F*20 BR» 2 R8=20 RC=12 ISM 6E-14 VA =50 CJE=3PF CJC=2PF)

.HODEL QC NPN<8F=20 BRa.02 R8=500 RC=4rt [3=tCl4 Va - ^ -•« CJE»3rr CJC =2PF)

.HODEL DA D<RS»40 I S«1.OE-14 >

.PRINT DC V<9) V<6) V<5)

.PLOT DC V<9) V<6) V<5)

.PRINT TRAN V< 9) V< 6) V< 5)

.PLOT TRAN V< 9 ) V< 6 ) V( 5 > V( t )

. END

Figure A3.13. SPUDS Input Listing for TTL74L Circuit
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TTL9200 CKT - SERIES 9200 TTL INVERTED
.WIDTH IN=?2 0UT=72

.OPT ACCT PIVREL=t .OE-4 PIVTOL=1.OE-1 5 DVPHJN=1 OE-6 OPTS

.DC VIH 0.0 2.0 0 02

TRAN INS 100NS

VIN 1 0 DC 1.35 PULSECO 3 3 INS INS INS 40NS)
VCC 14 0 5

RS 1 2 50

Ql 4 3 2 QC
Q2 5 4 6 QA

Q3 7 5 8 QA

Q4 9 8 10 QB
Q3 10 6 0 QB
Q6 12 11 10 QC
Dl 12 13 DA
02 13 0 DA
R81 14 3 4K

RC1 14 3 1.3K '
RE2 6 0 1.23*

RC2 14 7 ISO
R84 8 10 4K
RC4 14 9 80

RB6 14 11 4K

.HODEL QA HPH(BF«20 BR«1 R8»70 RCMO ISME-14 VA»50 CJE=3PF CJC =2PF)

.HOOEL QB NPH(BF»20 8R«2 R8»20 RC=12 13=1 6E-14 VA*50 CJE=3PF CJC=2PF)

.HODEL QC NPN(8F»20 8R» . 02 R8»500 RC=40 IS=»IE-14 VA'50 CJE'3PF CJC =2PF)

.HODEL DA D(RS>40 IS>1.0E-14)

.PRINT DC V< 10 ) V( 6 ) V< 5 )

.PLOT DC V< 10 ) V<6) V<5)

.PRINT TRAN V< 10 ) V<6) V<5)

.PLOT TRAN V(10) V<6) V(5) V<1)

.END

Figure A3.14. SPUDS Input Listing for TTL920 Circuit
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ECLCATE CKT - ECL STACKED LOGIC GATE

.WIDTH IN=72 0UT=72

.OPT ACCT OPTS 0VPNJN=3U

.DC VIH -2 0 0 02

.TRAN 0.2NS 20HS

VEE 15 0 -6

VIN 16 0 PULSEC-1.8 -0 8 INS INS INS*

VCATE 17 0 PULSEC-0.8 -1 3 5NS 1H3 1N3 5NS^

RSI 16 I 50

Ql 2 1 3 QNO

Q2 0 9 3 QHD

RC 0 2 100

RS2 17 4 50

Q3 0 4 5 QHD

Rl 5 6 60

R2 6 15 820

Q4 3 6 7 QHD

RE 7 13 280

Q3 0 12 7 QHD

R3 0 8 100

Q6 0 8 9 QHO

R3 9 13 2K

Dl 8 10 Dl

Rb 10 11 60

Q7 0 11 12 QNO

R4 12 13 2K

02 11 13 Dl

R7 13 IS 720

Q8 0 2 14 QNO

RL 14 13 560

.HODEL Dl D(RS-40 TT-0.1NS CJ0=O 9PF)

.HODEL QHD NPN<BF»50 RB=70 RC=40 CCS=2PF TF»0 INS TR=10HS CJE=0.9PF
♦ CJC*1.5PF PC=»0 83 VA*30>

.PRINT DC V<6) V<14)

.PLOT DC V< 14 )

.PRINT TRAH V<6) V<14)

.PLOT TRAN V<14) V<16) V<17) V(6)

.END

Figure A3.15. SPUDS Input Listing for ECLGATE Circuit
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"?m,iN"!a".;;.i!r''nECL «""^"«
OPT ACCT OPTS DVPNJN=4U
OC VIN -2 0 0 02
TRAN 0.2NS 20NS

«s\73VSE<"'' '•'•* •"S ••"» ••"» IONS,
Ql 4 2 6 QNO
Q2 4 3 6 QND
83 3 7 6 QNO
Q4 0 8 7 QND
01 8 9 Dl
02 9 10 Dl
HP1 3 22 SOK
BC1 0 4 100
RC2 0 5 112
RE 6 22 380
Rl 7 22 2K
R2 0 8 350
R3 10 22 1958
83 0 3 11 QHO
8« 0 4 12 QND
RP2 11 22 360
RP3 12 22 360
87 13 12 13 QND
88 14 16 13 QHD
RE2 13 22 380
RC3 0 13 100
RC4 0 14 112
89 0 17 U QND
R4 16 20 2K
R3 0 17 330
03 17 18 Dl
04 18 19 Dl
R* 19 22 1938
810 0 14 20 QND
811 0 13 21 QND
RP4 20 22 360
RP5 21 22 360

.HODEL Dl 0<RS«40 TT=0.1HS CJ0=0.9PF)

i*,0*;ie:7?s?;"j?:;!,:a":;:s0-c-- ««•»' "•...., «.,.„ „....,„
PRINT DC V<12) V(21)

.PLOT DC V< 12)
•PRIHT TRAN V< 12) V<21)
• PLOT TRAN VC21) V< 12 ) V< I )
. END

Figure A3.16. SPUDS Input Usting for MECLUI Circuit



S8DCATE CKT - SCHO TTKY-B ARR IE P. TTL INVERTER
.WIDTH IN=?2 OUT=72

.OPT ACCT OVPNJH=l.OE-6 OPTS

.DC VIH 0.0 I.1 0.011

. TRAN 2HS 200NS

VCC 21t 0 3

VLOAD 26 0 5
VIH 1 0 PUL3E(0.

RS 1 2! 50

RBI 23: 3 15K

RB2 26 17 15K

RC1 4 5 60

RC2 6 9 30

RC3 16 15 10

RC4 18 19 60

RE1 7 8 600

RE2 20 21 600

RL1 23 10 8.75K

RL2 26 25 8K

RK :23 12 IK

RS2 24 15 50

Ql •4 3 2 QND

Q2 i6 3 7 QND

Q3 16 7 0 QND
Q4 18 17 24 QND
Q3 ;22 19 20 QHD
Q6 i20 20 0 QND

QL2 23 25 22 QHD
8E 112 10 13 QHO

0C1 3 4 02

0C2 3 6 D2

0C3 7 16 D2

DC4 17 18 02

DC5 19 22 02

0E1 8 <0 02

DE2 21 0 02

Dl 13 14 02

5 3.6 2NS 2HS 2NS SONS J

177

012 14 28 D2
02 28 IS 02

OL 10 9 D2

HOOEL D2 D<RS=15 CJ0»O 20PF IS-5E-10 PB=0 6)
.HODEL QHD HPH(BF»50 RB =70 RC =40 CCS =2PF TF =0 INS TRMOHS CJE =0 9PF
♦ CJCM.5PF PC»0.85 VA =50)
.PRIHT DC V<13 ) K VCC)
.PLOT OC V< 15 )

.PRIHT TRAH V( 15) KVCC)

.PLOT TRAN V<15) V<1) IC VCC)

. END

Figure A3.17. SPUDS Input Listing for SBDGATE Circuit



CCSOR CKT - COHSTAHT CURRENT 30'JRCE

.WIDTH IH=72 0UT=72

.OPT ACCT OPTS

VEE 7 0 -12

VBIAS 3 0-6

Ql 2 3 4 Ql

Q2 2 4 5 Ql

Q3 1 6 S Ql

84 1 8 6 Ql

Q3 10 1 9 Ql

Q6 10 9 8 Ql

Rl 2 0 2K

R2 1 0 2K

R3 5 7 2K

R4 8 7 2K

R3 10 0 107

.HODEL Ql NPH<BF«49.5 BR =0.5 IS =0.9802E-15 )

.END

Figure A3.18. SPUDS Input Listing for CCSOR Circuit
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OCOSC - OC PART OF 1KHZ OSCILLATOR

.WIDTH IN=72 0UT=72

.OPT ACCT OPTS

VCC 2 0 5.6

Ql 2 1 8 Ql

Q2 3 6 5 Ql

Q3 2 10 12 Ql

Q4 11 3 7 Ql

Q3 10 11.13 Ql

Q6 2 10 9 Ql

Q7 3 8 4 Ql

Rl 2 3 12K

R2 4 5 300

R3 4 0 I.3K

R4 10 1 98.603K

R3 2 11 7.3K

R6 7 0 IK

R7 12 6 5K

R8 6 0 IOK

R9 2 10 1.5K

RIO 13 0 240

Rll 9 0 147

.HODEL Ql NPN<BFa60 BR=0.205 IS=1.21E-15)

.END

Figure A3.19. SPUDS Input Listing for DCOSC Circuit
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CFFLOP CKT - SATURATING COUP L EHEH T nf> Y FLIP-FLOP

.WIDTH IN=72 0UT=72

.OPT ACCT OPTS

VCC1 I 0 5

VCC2 8 0 10

VEEl 10 0 -3

VEE2 9 0 -10

Ql 3 2 1 QPl

Q2 6 7 1 QPl

Q3 6 3 10 QN1

Q4 3 4 10 QHl

Rl 8 2 57.2K

R2 8 7 37.2K

R3 2 6 14 3K

R4 7 3 14.3K

R3 6 4 14. 3K

R6 3 3 14.3K

R7 4 9 57. 2K

R8 3 9 57.2K

R9 3 0 IK

.HODEL QHl HPH(BF>10 BR»! IS=0 91E-14)

.HODEL QPl PHP(BF«10 BR=1 IS=0 91E-14)

.EHD

Figure A3.20. SPUDS Input Listing for CFFLOP Circuit
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STCRC CKT - SPLIT TIHE-CONSTANT RC CIRCUIT
.WIDTH IH=?2 0UT=72
.OPT ACCT OPTS

.TRAH 0.IHS 10HS

VIH 1 0 PULSECO 1 O.IHS 0. IHS)
Rl 1 2 IK

CI 2 0 1PF

R2 2 3 IK

C2 3 0 1UF

.PRINT TRAN V< 1) V<2) V<3)

.PLOT 1TRAN V<2 ) V<3) V< 1 )

END

Figure A3.21. SPUDS Input Usting for STCRC Circuit
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CHOKE CKT - FULL WAVE CHOKE INPUT
.WIDTH IH=72 0UT*72
.OPT ACCT OPTS

.TRAN 0.2HS 20HS UIC
VIH1 1 0 SIN<0 100 50)
VIN2 2 0 SIH<0 -100 50)
Dl 1 3 DIO

02 2 3 DIO
Rl 3 0 IOK

LI 3 4 5.0

R2 4 0 IOK
C2 4 0 2UF IC»132V
.HODEL DIO D<IS=l.0E-14 CJ0-10PF BV=IE8)
.PRINT TRAH V<1) V<2) V<3) V<4)
.PLOT TRAN V< I > V< 2 ) V( 3 ) V( 4 )
.END

Figure A3.22. SPUDS Input Listing for CHOKE Circuit
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ECLINV CKT - EHITTER COUPLED LOGIC INVERTER
.WIDTH IN=72 0UT=?2

.OPT ACCT DVPNJN=3 OE-6 OPTS

.TRAN 0.2NS 20HS

VIH 1 0 PULSE<-1 -18 INS INS INS 8NS 20NS)
VEE 8 0-5

VREF 6 0 -1.4

81 3 2 4 QSTD
Q2 3 6 4 QSTD

Q3 0 3 7 QSTD
Q4 0 5 7 QSTD
RIN 1 2 30

RC1 0 3 80

RC2 0 5 135
RE 4 8 340

RTHl 7 8 123

RTH2 7 0 83

CLOAD 7 0 3PF

-HODEL Q3TD NPH<18-1 . OE-16 BR»30 BR-O.l RB-30 RC»10 TF=0.12NS TR»5HS
♦ CJE-0.4PF PC»0.8 HE»0.4 CJE»0.5PF PC=0 8 HC =0 333 CCSMPF VA=50)
.PRINT TRAH V< 1 ) V(3) V<5) V<7) KVIH)
.PLOT TRAN V<3) V( 3 ) V( 7 ) V( 1 ) KVIH)
.END

Figure A3.23. SPUDS Input Listing for ECLINV Circuit
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SCHHITT CKT - ECL COMPATIBLE SCHHITT TRIGGER
.WIOTH IN = 72 0UT=?2

.OPT ACCT OPTS

.TRAN 10HS lOOOHS

VIH 1 0 PULSE<-1.6 -1.2 IONS 4'JONS 400HS lOONS lOOOONS)
VEE 8 0-5

RIH 1 2 50

RC1 0 3 50

Rl 3 3 183

R2 5 8 760

RC2 0 6 100

RE 4 8 260

RTH1 7 8 123

RTH2 7 0 83

CLOAD 7 0 3PF

Ql 3 2 4 QSTD OFF
Q2 6 3 4 QSTD
Q3 0 6 7 QSTD
Q4 0 S 7 QSTD

.HODEL QSTD HPH(I8«1.OE-16 BF»30 BRoO 1 RB»50 RC«10 TF=0.12NS TR=5NS
♦ CJE«0.4PF PE»0.8 HE«0.4 CJC=0 5PF PC=0.8 HC=0 333 CCS=tPF Vrt=50)
.PRINT TRAN V<1> V<3) V<5) V<6)
.PLOT TRAN V<3) V< 5 ) V( 6 ) V< I )
.END

Figure A3.24. SPUDS Input Listing for SCHMITT Circuit



ASTABLE CKT - A SIMPLE ASTUBLE HULTI VIBP«TOP
.WIDTH IN=72 0UT=?2

.OPT ACCT OPTS RELTOL=0 003

.TRAN 0.1US 10US

0 I US 1US 100US 100US)VIN 3 0 PULSE(0 3
VCC 6 0 5

RC1 6 I IK

RC2 6 2 IK

RBI 6 3 30K

RB2 3 4 30K

185

CI 1 4 150PF

C2 2 3 150PF

81 1 3 0 QSTO
Q2 2 4 0 QSTD

•HODEL QSTD NPN< I3«1.OE-16 BR-50 BR=0 1 RB«50 RC»10 TF=0 12NS TR =5NS
♦ CJE-0.4PF PC-0.8 HE»0.4 CJE=0.5PF PC=0.8 HC=0 333 CCS=1PF VA=50)
•PRINT TRAN V<1) V<2) V<3) V<4)
.PLOT TRAN V<2) V< 3 ) V< 4 ) V< 1 )
.END

Figure A3.25. SPUDS Input Listing for ASTABLE Circuit



SATINV - SIHPLE SATURATED MOS INVERTER
.WIDTH IN = ?2 0UW2

.OPT ACCT OPTS

.DC VS 0 10 .1

.OP

.TEMP 0 27 70

HI 1 1 2 4 HOSEH W»3U L = 50U
H2 2 3 0 4 NOSEN W= 5U L = 5U
VBB 4 0 DC -4

VDO 1 0 OC 10

VS 3 0 PULSE<0,10)

.HODEL HOSEH NH03<LEVEL»2 NSUBMEIS HFS=2E11 UEXP»13 XJ»tE-6
♦ UO-700)

.PRINT DC V<2) KVDD)

.PLOT OC V<2) KVDD)

.END

Figure A3.26. SPUDS Input Listing for SATINV Circuit
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DEPLINV - SIHPLE DEPLETION HOS INVERTER
.WIDTH IN=72 OUT=72
.OPT ACCT OPTS
.OC VS 0 2 .02
.OP

HI 1 2 2 0 HOSDN W-5U L=30U
H2 2 3 0 0 HOSEH W= 5U L = 5U
VS 3 0 PULSE<0,3)
VDO 1 0 DC 10

.HODEL HOSEH HrtOSCLEVEL-2 NSU8=4E15 NFS-2E11 U0»700 UEXP=0 13 XJ-1E-6)

.HOOEL HOSDN NH0S(LEVEL»2 NSUB=4E13 NSS»8Ell U0»700 UEXP»0 13)

.PRINT DC V<2) KVDO)
•PLOT DC V(2) I(VDD)

END

Figure A3.27. SPUDS Input Listing for DEPLINV Circuit
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RATLOG - RATIOLESS DYNAHIC LOGIC CIRCUIT

.WIDTH IH=72 0UT=72

.OPT ACCT ABST0L»IU OPTS

.TRAN 2.5N 250H

HI 9 11 2 10 HHOS W =20U L-7U AD = IH AS=1H
H2 9 12 4 10 HHOS W=20U L=7U AD = 1H AS»IH
H3 2 1 0 10 HHOS W=20U L=7U AO = lH AS-1H
H4 4 3 0 10 HHOS W-20U L»7U AD^IH ASMN
H3 3 12 2 10 HHOS W*20U L-7U AD»1N AS»IH
H6 1 11 3 10 HHOS U=20U L=7U A0«1H AS=IH
CI 1 0 0.03PF

C2 2 0 0.03PF

C3 3 0 0.05PF

C4 4 0 0.03PF

C3 3 0 0.03PF

VIH 3 0 PULSECO 10 10H 3H ION 33H SOON)
VP1 11 0 PULSECO 12 ION 3N 5H 3SN 120N)
VP2 12 0 PULSECO 12 70N 5H SN 3SN 120N)
VDD 9 0 DC 12
VBB 10 0 DC -3

.HODEL HHOS HHQSCLEVEL"! HSUB»8E14 TOX=» 113U LD =0 1H HGATEME20
♦ HSS»4E10 UEXP»0.36 UTRA=0.3 CBD=97U C8S=97U>
.PLOT TRAM V<4) V(3 )

.PLOT TRAN V< I ) V< 2 ) V( 3 ) V< 4 )

.END

Figure A3.28. SPUDS Input Listing for RATLOG Circuit
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INVCHH - FIVE-STAGE SATURATED INVERTER CHAIN
•WIDTH IN=72 OUT=72
• OPT ACCT ABSTOL=»SOU OPTS
.OP

HI 7 7 2 8 HHOS W«10U L»8U
H2 2 1 0 8 HHOS W»70U L=9U
H3 7 7 3 8 HHOS WMOU L-8U
H4 3 2 0 8 HHOS W«70U L =8U
H3 7 7 4 8 HHOS W-iOU L»8U
H6 4 3 0 8 HHOS W>70U L>8U
H7 7 7 3 8 HHOS U-lOU L-8U
H8 5 4 0 8 HHOS U-70U L»8U
H9 7 7 6 8 NHOS W-IOU L«8U
HIO 6 3 0 8 HHOS W-70U L-8U
VIN I 0 PULSECS 0 0.2H IH IN SN 12N)
VDD 7 0 DC 6

•HODEL HHOS NHOSUEVEL-2 HSU8-3E13 T0X«».1373U U£XP*0 36 NSSME10
• LD-0.1M XJ-1U C80-84U CBS»84U)
.PLOT TRAN VC 6) VC I )
.PLOT TRAH VC2) VC 3 ) VC 4 > VC 3 > VC 6 )
.END

Figure A3.29. SPUDS Input Listing for INVCHN Circuit
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B00TIHV - BOOTSTRAPPED DOUBLE INVERTER CIRCUIT

.WIDTH IN»72 0UTa?2

.OPT ACCT A8ST0L»10U OPTS

OP

.TRAN 0.2NS 20HS

HI 1 1 3 6 HHOS W-10U L»7U AD«0.02P AS=0.02P

H2 3 2 0 6 HHOS W»30U L = 7U AD»2P AS = 0 02P

H3 1 1 4 6 HHOS W-10U L-7U AO'OZP AS«0 2P

H4 1 4 3 6 HHOS W"10U L"7U AD"0.02P AS=0.02P

H3 3 3 0 6 HHOS W»30U L = 7U A0»2P AS=0.02P

CL3 3 0 O.IPF

CL2 3 0 O.IPF

CB4 4 3 O.IPF

VOO 1 0 DC 12

VBB 6 0 DC -4

VIH 2 0 PULSEC10 0.4 IMS 2NS 2NS 13HS 20HS)

HODEL HHOS HHOSCLEVEL-3 HSU9 =3E13 TOX» 1373U UEXP°0.15 HSS=4E10

♦ LD-0.1H XJ-1U C8D-84U C8S*84U)

.PLOT TRAN VC3) VC2)

.PLOT TRAH VC2) VC 3 > VC 4 ) VC 5 )

.END

Figure A3.30. SPUDS Input Listing for BOOTINV Circuit
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HOSHEH - MOS MEMORY CELL

.WIDTH IH=?2 0UT=?2

.OPT ACCT A8ST0L=1U OPTS <

.TRAN 20NS 2US

VDD 9 0 DC 5

VS 7 0 PULSEC2 0 520HS 20HS 20HS 500NS 2000NS)
VW 1 0 PULSECO 2 20HS 20HS 5COHS 200HS )
VWB 2 0 PULSEC2 0 20HS 20HS 20NS 200ONS 2000NS)
HI 3 1 0 0 HOD W»230U L=3U
H2 4 2 0 0 HOD W-230U L°3U
H3 9 9 3 0 HOD W»5U L»3U
H4 9 9 4 0 HOO W*SU L>3U
H3 3 7 3 0 HOD W-50U L-5U
H6 6 7 4 0 HOD W'SOU L»3U
H7 5 6 0 0 HOD W»250U L=5U
H8 6 5 0 0 HOD W-2SOU L»5U
H9 9 9 3 0 HOD W-3U L-3U
HIO 9 9 6 0 NOD W-3U L>3U
Hll 8 4 0 0 HOD W-230U L«5U
H12 9 9 8 0 HOD W-3U L-5U

.HODEL HOO HHOSCVTO-0.5 PHI-0.7 KP-l.OE-6 GARHfl-1.83 LAH8DA=0 115
♦ LEVEL-1 CGS-1U CGD-IU C8D-0.3 C8S»0 5)
.PRINT DC VC5) VC6)
.PLOT DC VC6)

.PRINT TRAH VC3) VC6) VC7) VC1) V(2)
PLOT TRAH VC6) VC 3 ) VC 7 ) VCD VC 2 )

.EHD

Figure A3.31. SPUDS Input Usting for MOSMEM Circuit
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MOSAHPl - MOS AMPLIFIER - DC/AC

WIDTH IH=72 0UT=72

.OPT ACCT A8ST0LM0H VNTOL = 10N OPTS
DC VIH -60HV +6HV 0.66HV

.OP

.AC OEC 10 100 10HEG

HI 15 IS 1 32 H U=88 9U L-25.4U

H2 1 1 2 32 H WM2.7U L-266.7U
H3 2 2 30 32 H W»88.9U L=23 4U

H4 13 5 4 32 H WM2.7U L=106 7U

H3 4 4 30 32 H W»88.9U LM2.7U

H6 13 13 3 32 H W»44.5U L=25.4U

N7 5 0 8 32 H W»482.6U L=12.7U

H8 8 2 30 32 H W*88.9U L=25.4U

H9 15 IS 6 32 H WM4.5U L=25.4U
H10 6 21 8 32 M W-482.6U L=»12.7U

HU IS 6 7 32 H W-12.7U LM06.7U

H12 7 4 30 32 H U-88.9U LM2.7U
H13 13 10 9 32 H W-139.7U L»12.7U

H14 9 11 30 32 H W-139.7U L=12.7U

HIS 13 13 12 32 H W-12.7U L=207.8U

H16 12 12 11 32 H W-34.1U L-12.7U

N17 11 11 30 32 H W-34.1U LM2.7U

H18 IS 13 10 32 H W-12.7U L»43.2U
H19 10 12 13 32 M W-270.3U LM2.7U

H20 13 7 30 32 H W-270.5U L-12.7U

H21 13 10 14 32 H U-234U L»12.7U
H22 14 11 30 32 M W-241.3U L»12.7U

H23 13 20 16 32 H W-19U L*38.1U
H24 16 14 30 32 M W-406.4U L-12.7U
H23 13 13 20 32 N W-38.1U L-42.7U
H26 20 16 30 32 N W-381U L»23.4U
H27 20 13 66 32 H W-22.9U L»7.6U
CC 7 9 40PF

CL 66 0 70PF

VIH 21 0 DC -30HV AC 1
VCCP 13 0 DC +13

VCCN 30 0 DC -15

VB 32 0 DC -20

.HODEL H NHOSCNSUB-2.2E15 U0»575 UCRIT»49K UEXP«0.l TOX=O.MU XJ»2.95U
♦ LEVEL"2 CGS»1.SN CGDM.5N C8D-43U CBS»43U LD»0 83 NSS«3.2E10>
.PLOT DC VC20)

.PRIHT AC VD8C20) VPC20) VDBC66 ) VPC66 )

.PLOT AC VDBC20) VPC20 ) V0BC66) VPC66 )

.END

Figure A3.32. SPUDS Input Listing for MOSAMPl Circuit



M0SAMP2 - MOS AMPLIFIER - TRANSIENT
.WIDTH IN=72 OUT»72

.OPT ACCT A8ST0L=10N VNTOLMON GMIN=I OE-9 OPT:
-TRAN 0.1US 10US

193

RKLG 8 0 130HEG

Ml IS IS 1 32 H W»88 9U L=25 4U
H2 1 1 2 32 H W=12.7U L=266.7U
H3 2 2 30 32 H W=88.9U L=25 4U
H4 15 3 4 32 H W=12.7U L=106.7U
M3 4 4 30 32 H W=»88. 9U L=12.7U
H6 IS 13 3 32 H W =445U L=25.4U
H7 5 20 8 32 H W»482.6U LM2.7U
H8 8 2 30 32 H W»88.9U L"25.4U
H9 IS IS 6 32 H W=44.5U L=25.4U
H10 6 21 8 32 H W-482.6U LM2.7U
Hll 15 6 7 32 H W-12. 7U L=106 7U
H12 7 4 30 32 M W-88.9U L»12.7U
H13 IS 10 9 32 M W-139.7U L-12.7U
H14 9 11 30 32 H W-139.7U L-12.7U
HIS 13 13 12 32 H Y-12.7U L-207.8U
H16 12 12 11 32 N W-34.1U L-12.7U
H17 U 11 30 32 H W-34.1U L»12.7U
H18 13 13 10 32 N W»12.7U L-45.2U
H19 10 12 13 32 H W»270.5U L»12.7U
H20 13 7 30 32 H W»270.5U LM2.7U
H21 13 10 14 32 H W«254U L-12.7U
H22 14 11 30 32 H W =241.3U L-12.7U
H23 13 20 16 32 N W»19U L»38.1U
H24 16 14 30 32 H W-406.4U L-12.7U
H23 13 13 20 32 H W»38. 1U L-42.7U
H26 20 16 30 32 H W-381U L-25.4U
H27 20 13 66 32 H W«22.9U L»7.6U
CC 7' 9 40PF

CL 66 0i 70PF

VIN 21 0 PULSECO 3 IHS INS INS 5US 110US)
VCCP 13 0 DC +16
VDDN 30 0 DC -14
VB 32 0 DC -20

.HODEL H HH0SCH3UB-2.2E13 UO-373 UCRIT-49K UEXP-O.l T0X=O 11U XJ=2 93U
♦ LEVEL»2 CCS-1.5H CGDM.5H CBD»45U CBS»45U LD»0.83 NSS=3 2E10)
.PRINT TRAN VC20) VC66)
.PLOT TRAH VC20 ) VC66)
.END

Figure A3.33. SPUDS Input Listing for M0SAMP2 Circuit



N0SAHP3 - CORE ANP

Nl 6 3 3 2 8 8-23t OE-i L«9 OE-t HO" I 2E-9 ASM 2E-9
N2 7 4 3 2 8 U*23i OE-6 L«9 OE-t AO-t 2E-9 AS*I 2E-«
H3 I « 4 2 0 8-8 OE-t L-tO OE-« AO-9 OE-to AS«9
N4 | 7 7 Z 0 8-8.OE-t L-60.0£-f AO-9 OE-IO 0S>4
N3 » 7 3 2 H 8-472.OE-f L«8.0E-f AO-2 «E-9 AS»2
N« 10 ( 8 2 H 8-472.OE-t 1-8.OE-i AO-2 4E-9 AS-2 4E-»
»7 I 9 9 2 0 8-32.06-f L-tO OE-i 00-4 OE-to AS-4 OE-tO
N8 I 10 10 2 0 8-32.06-i L-iO OE-i AO-4 OE-IO AS-4 OE-IO
HI 3 8 20 2 N 8-23i.0E-f L-9 OE-t AO-I 2E-9 ASM 2E-9
NtO 8 17 20 2 H ¥-944 OE-f L-9 OE-t AO-4 8E-? AS-4 8F-"
"II 7 7 IJ 2 0 H-48 OE-t L-8 OE-i AO-3 OE-IO as-3 OE-IO
NI2 t t 14 2 0 tl.48.0E-t L«8 OE-i A0«3 OE-IO AS«3 OE-IO
CI 14 10 3.OE-12
C2 13 9 3.06-12
C3 9 17 2.OE-12
C4 10 17 2 OE-12
.SU8CKT 3AHPL6 2
HI 72 7t 81 2 8 8-9 OE-t
»2 73 77 81 2 8 8-9 OE-t
N3 74 7t 82 2 8 8-9 OE-t
84 73 77 82 2 8 8-9.OE-t
CI 81 82 t OE-12
C2 82 2 1.06-13
••ENDS

.EH8 SAMPLE
N2t 28 19 29 2 V
022 29 28 20 2 N
N23 28 28 20 2 N
N24 19 29 20 2 N
N29 I 2t 28 2 N 8

82t I 19 19 2 0 8-lt.OE-t L-iO OE-t AO-4 OE-IO ASM OE-IO
N27 t 2i 2t 2 0 8-8.OE-t L-iO OE-t AO-9 OE-IO AS«9 OE-IO
X2 2 23 17 27 10 19 It 91 92 3ANPLE
X3 2 29 17 29 9 13 It 93 94 SAMPLE
X4 2 19 3 18 0 (3 it 99 •< SAHPLE
XS 2 19 4 38 0 13 It 97 98 3ANPLE
CIA 10 4 S.OOE-12
CIS 9 3 3.006-12
C2A 10 0 3 006-12
C2B 9 0 3.006-12
C3A 3 0 3.0OE-12
C3B 4 0 S.OOE-12
VOO 1 0 OC -3.0 PULSE(-3.0
VBS 2 0 OC -3.0
VS3 20 0 OC -3.0

PULSE(-3

P0LSE<-3

PULSE< 0

PULSE< 0

-3 3

3 3

VIS 13

Vlt It

V18 18

V38 38

V27 27

V29 29

OE- I 0

OE-IO

«E-9

72 73 74 73 78 77 81 92
1-8.OE-t AO-I IE - 10 03-1
1-8.OE-i AO-1

1-9.OE-i AO-I

L-S.OE-i AO-I

IE-10

IE - 10 AS-| IE-10
IE-10 AS-I IE-10
IE-10 OS-I IE-10

8-23t OE-i 1-9.OE-i AO-I
8-118 06-4 L-9.OE-t AO-I
8-118 0£-i L-9 OE-t AO-I
8-23t.0E-t L-9.OE-t AO-I
-118.Of-t L-9 OC-t AO-I

2E-9

2E-9

2E-9

2E-9

2E-9 AS-t 2E-9

AS-I 2E-9

AS-I 2E-9

AS-I 2E-9

AS-l 2E-9

3.0 0 OUS 23.OHS 23 OHS 1.0*5 2 OHS )

3.0

3.0

3 3

0.0008 23.OHS 23 OHS 1900 OHS 4000 0H8>
2.0909 29.OHS 29 OHS 1900 OHS 4000 OHS)
30.008 23 OHS 23.OHS 300 OOS 1000 OUS)

3 3 30.OUS 23 OHS 23 OHS 300 OUS 1000 OUS)

•EHHAHCEHEHT TRAHSISTOR

194

NOOEL N HHOS«lEVCl-2 CCS'I 40E-IO CCO-I 40F-I0 MSS.-2 3E&I
♦ RS»0 RO-0

♦ fOX»0 .*E-7 P8*0 8t HSU8»? 72EI4 XJ-3 36-7 LO-0 J
♦ U0-784.9O4 UCRIT-2 337E4 UEXP»« 00828 UTRA-0 23 TPS-M
♦ HCATE-t 0E20 HFS-I OOE I I CCB-I 6 EC- I t )
•OEPLETIOH TRAHS1ST0R

NOOEL 0 HHQS<LEVEL«2 CCS-t 40E-IO CCO-I 40E-I0 NSS-9 3EIA
♦ BS«0 RO-0 ™
♦ TOX-0 7E-7 P8-0 8t HSUB-7 ttE14 XJ-3 3E-7 LO-0 3
♦ U0-7|«.999 UCRIT-l.32tE3 0EXP--O t08 UTRA-0 23 ?P3-.|
♦ NCAIE-t 0E20 NFS-I OOE II CCB-I tE-ll)
•LOU THRESHOLO ENHANCEMENT

NOOEL 8 NN0S(LEVEL'2 CCS*I 40E-10 CCO-I 40E-I0 NSS--2 OEIO
♦ 8S'0 »o-o

♦ TOX-0 7E-7 PB-0 8t HS0B-7 72EI4 XJ-3 36-7 LO-0 3
♦ 00-784 904 UCRIT-2.337E4 UEXP-0 00828 UTRA-0 23 TPS-»I
♦ HCAtE-l 0E20 HFS-I 00611 CCB-I tE-ll)
•L0HC CHANNEL EHHAHCEHEHT

NOOEL N HN0S(LEVEL-2 CCS-t.40E-I0 CCD-1.40E-I0 H8S--3 OEM
♦ RS-0 RO-0

♦ TOX-0 7E-7 P8-0 Bt HSUB-8 BtEI4 XJ-3 3E-7 LO-0 3
♦ U0-t42 999 UCRir-l.39tE3 UEXP-0 188 OTRA-O 23 TP9--I
♦ HCATE-I.0E20 HFS-I.OOEII CCB-I tE-ll)
•SHORT CHAHHEL OEPLETIOH

NOOEL P HH0S<LE»EL«2 CCS-I 40E-10 CC0-L40E-I0 HS8-9 30E1 1
♦ RS-0 RO-0

♦ TOX-0 7E-7 PB-O.84 HSUB-9 274EI4 XJ-3.36-7 LO-0 3
♦ UO-393 387 UCR1T-t.13tE4 UEXP--0 141 UTRA-0 23 TPS-*I
♦ HCATE*! 0E20 HFS-I OOEII CCB-I tE-ll)
•«• TRAH rtquirtd 3hr I2n*n on VAX
•••TRAH 100 0N8 to OUS 43 OUS

TRAH IOHS 70HS

PLOT TRAH V<9.10> V< 9 ) V< 13 ) V(3.4) V<3)
PRIHT TRAX V(91) V<92) V< 93 ) V<94) V(93) V<9t> V<97> V< 98)
PRIHT TRAN KVOO) V<9.I0) V< 9 ) V(3.4) V< 3) V(3) V(8) V(I7)
OPTIOHS LIHPTS-0 ITL3-0 HOHOO ACCT LVLC00-2
EHO

Figure A3.34. SPUDS Input Listing for M0SAMP3 Circuit
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