Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PERFORMANCE LIMITS OF INTEGRATED CIRCUILIT

SIMULATION ON A DEDICATED MINICOMPUTER SYSTEM

by

E. Cohen

Memorandum No. UCB/ERL M81/29

22 May 1981

Performance Limits
of Integrated Circuit Simulation

on a Dedicated Minicomputer System

by

Ellis Cohen

Memorandum No. UCB/ERL M81/29

22 May 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Performance Limits of Integrated Circuit Simulation

on a Dedicated Minicomputer System
" Ellis Cohen

ABSTRACT

The decreasing costs of minicomputers, coupled with recent improve-
ments in performance, may make these machines ideal to meet the circuit
simulation needs of the inteérated circuit (IC) designer. An investigation has
been made concerning the performance limits of circuit-level IC simulation

on a dedicated microprogrammable minicomputer system.

Two types of factors limit simulation performance. First, extended pre-
cision (usua-xlly 84 bits) is customarily needed and therefore used in all
floating-point calculations in circuit simulators. This precision requires twice
the memory and twice the execution time of single-precision arithmetic.
Second, the functional units available in the computer are not used
efficiently because there is not a good match between the minicomputer
instruction set and the types of operations that are needed for the simula-

tion.

This investigation shows that circuit analysis can be performed success-
fully with single precision (32-bit) arithmetic through the use of a combina-
tion of numerical pivoting, sparse matrix techniques, a generalization of the
indefinite admittance matrix, and voltage thresholds in the algorithms con-
trolling convergence. The use of microcode to extend the computer instruc-

tion set greatly improves simulation speed by directly and efficiently

performing several of the most time-consuming portions of the analysis.
These special instructions, coupled with the smaller wordsize of the minicom-
. puter, reduce the memory requirements of the circuit simulator by as much

as two-thirds compared to the memory needs on larger computers.

One result of this investigation has been the development of a new IC
simulation program, SPUDS, which has been designed to obtain the best pos-
sible performance from a specific minicomputer system. The analysis
results from SPUDS using 32-bit floating-point computations for a wide range
of both analog and digital, bipolar and MOSFET circuits are almost identical
with solutions based on the more common 684-bit arithmetic. Overall simula-
tion speeds of the same order as the DEC VAX 11/780 computer are achieved
using a 16-bit minicomputer. Conclusions are made concerhing the suitabil-

ity of several microprocessor systems for circuit-level simulation.

ACKNOWLEDGEMENTS

I would like to thank my research advisor, Professor D. 0. Pederson, for
the support and encouragement that he has given me throughout the course

of this research.

This work was furthered by many helpful discussions with, and program-
ming help from, G. Boyle, R. Dowell, S. P. Fan, L. W. Nagel, A. R. Newton, and
A. Vladimirescu. The assistance of J. Deutsch, J. Kleckner, A. Lachner, T.
Quarles, and the other members of the Integrated Circuits Group at the

University of California, Berkeley, is gratefully acknowledged.

The financial support and generous equipment grants provided by Cor-
porate Engineering at Hewlett-Packard Company, and the encouragement
provided by M. Brooksby, R. Smith, and W. McCalla is gratefully ack-
nowledged. This research has also benefited from the support of the U.S.
Army Research Office under grant DAAGR29-81-K-0021.

I would especially like to thank my parents, Mel and Rose, for all the gui-

dance, love, and encouragement they have given me.

TABLE OF CONTENTS

CHAPTER 1: I0EPOAUOLION vvvrrreseseeeeersessossersveessessssnerereesessesssses 1
CHAPTER 2: Performance OVerview.....c.ccccceeeeenncereceroresecocnccsccensses 4
2.1 Main MemMOTY iicreeiiiieeeuicieriieemmeisseiieseirsnmtessassesssssisssssssssessssssanssssens 8
2.2 Pipelined Vector COmPULErScccciiiiiinserienssnnisnnitanranmesienieiineiiniae 10
2.2.1 Vector Algorithms «cciccieeeeceinmiiieieinenneeniiiiiiiiossniitenesieasesaennae 11
2.2.2 Programming Languages......ccceermerrnmsiseiiicrenessiinianisisenaia 14

2.3 Multiprocessor CompPULers...cccciviiieiiieininiicitiinniniiinicieniieieinsanne. 17
2.3.1 Multiprocessor AlgorithImseursereereessssesess eeeeeeeseaeesnsesssans 18
2.3.2 Programming Languages...; ... 19
2.3.3 Dataflow MacChines ...ccccciiiiieicirierniiniiiiunnieneneiinincisioniieeissnceenses 20

2.4 ATTaY ProCEeSSOrS..icciiiiiiieiuuitiiniiiinisssisseesssessssnaseetsanisesnsssssassns 20
2.4.1 Progfamming Languages.....cccrvernnnrsrsrneenenneniorsraanns reornsrearenrsse 22

2.5 Hybrid AppProach.....cccccveeiiiermmitunsncecainiinianiesiiesiicameoiaietes oo 22
CHAPTER 3: Algorithms......ccccuvemcenimmrrercieceriscneanceiencosiosensenaencacsees 24
3.1 Overview of Existing Minicomputer-Based Simulators..........ccccee 25
3.2 Summary of SPICE2 Analysis Methodscouciiiinnnnninineniciineeae 26
3.3 Accuracy-Enhancing Methods ...cccccciiiiiiniiieriiiinii. 30
3.3.1 Equation Reordering ..o, 32
3.3.2 Augmented MNA ... JOTPITS 48
3.3.3 Absolute and Delta Iterationccovvemierninciiiiiiinniiniiana. 49
3.3.4 Convergence COMPAriSONSccciiiumiiisriiriniiiiriiiiiiineeiie. 53

3.4 Convergence-Enhancing Methods.....cciiiiiniiiiniinin. 57
3.4.1 pn Junction Conductance Limit....ccccviiieiniiiiiiiiiin. 57

3.4.2 Node-Voltage Limitingcccevremunninieiiniemniianiin 80

D)

3.4.3 pn Junction Voltage Thresholdingcccccveenricnnnnianiiniicinaneenes 81
3.4.4 ‘Delta’ Iteration Thresholdcccceeeriireeniinniciteiernicnnncinesiineninneee 83
3.4.5 Prediction and Bypass...ccccciinniiieiiiniiiniiieniiene. 84
3.5 Conclusions: 32-bit vs 84-bit A.rithmg'tic 71
CHAPTER 4: Data Structures.....cccccccveeeeverienenncnnnenroeccemeniesensiscsanes 73
4.1 Matrix Structures............ L LOTRTPRSITPLRNR 74
4.2 Storage Reduction Techniques.....ccoviiiiiiiiiiiininiiiinn. 82
4.3 Comparison of Memory Requirementscocueeiinniniinininnniiiienniinnans 88
CHAPTER 5: Dedicated Hardware.......cccceeivimnniiimniciciincienncenceecanes 92
5.1 Performance Measurement......ccciiiiiiiiiinnienniennnensreniionnicineicincnna 94
5.2 MIiCrocode ACCESS .ciiuiiiieiiuisruistunceruiertoiersseenternesrasearerastssasescsassenses 98
5.3 Equation Solution..ccccveiieiiiiimiieicniiniiiiinenien. eessesransensrans 98
5.3.1 Machine IdioSyncracies ...c.cvuieiiiiiiiicreeiiniiearieeeieniecieeeisenenne 101
5.3.2 Optimal Implementation ...cccccciiiinieiniiniiniiiiinn . 104
5.3.3 SOLULION MACKINE tuuvueverseerereeeererersmsesesscsssessmsmsessrenimssssasasnssssens 107
5.3.4 Speed COMPATiSONScccirviiissieeiisrrtrinmeiisiereintaiestaseonsssisencnnsns 110
5.3.5 Code Generation Costs eeeee e see et e e setsetaeen st sasesen st eas 115
5.3.8 Growth Rates ...ccccciiiiiiiiiiiiniiiiiiiiiiiiinicenicnseseneraieienenseessienees 118

5.4 ‘Gather’ and Matrix Loading....c.ccvvciiiiiiiiiiiininininiioniinicne. 123

> T 300 R U4 « 1= USRI 123
5.4.2 Matrix Load...ccceiiiiiiiiiiiiiiiiiiiiiiiiii i sesssssssenassen e 125
5.4.3 Matrix Initialization.....cccvviviiiiiiiiiiin e 130
6.5 Revised CPU Times and CONCIUSIONSueuervsesssnnssssssessesssesesseens 132
CHAPTER 8: ConcluSionsccceveeiieiiiieieienreeiieneseecoroncrecrencessocensenns 140
6.1 Key Results...cccciveiiuiiieniiiniiniiniiiiininenenn, ettt etsesaesons 141
6.2 Existing ProcCessors...cciiiviiiiiiiiiiiiiiiinicniesine s e csae e e 143

B.2.1 BOBB.iuiuiiiiiniiiiretiniiieniiiiietiareati it iestra s e s e e s e s narasansnranaes 143

ii

B.2.2 TI 990/ 12.uuiuiiitieiiiecrientnrniisneesnesaensesneessesesassnesneessssessssnean 145

B8.2.3 MBBOOD......cccitiiriiiiiiiniiieientieirertesresseeecsnesssssssnesssessosssensaesnnns 148
B.2.4 INtel 432 ..uuiiiiiiiiii ittt st aae s s sne e 147

8.3 Limitations and Further Research.......ccccccoevueeeeereinerceerceeresessnenne 148
APPENDIX 1: SPUDS Program Structurec.cccceevveeevenneemnnnnnn.. 150
APPENDIX2: SPUDS Program LiSting.......c.cccceeeeeveveenneeeennnnnseenennnn. 153
APPENDIX3: Listing of Benchmark Circuitscccceeeeveeeennn..... 154

w'

CHAPTER 1

INTRODUCTION

The decreasing costs of minicomputers, coupled with recent, substantial
improvements in performance, make these machines idgal candidates to
perform the circuit simulations needed by each integrated circuit designer.
For $25 to $30K, 18-bit wordlength minicomputer-based systems such as the
Hewlett-Packard 1000 F-Series [HP78F] are available with foating-point
arithmetic instruction execution times on the order of 5 microseconds
(within a factor of 2 of larger computers such as the VAX 11/780 [DEC78V]).
But when the mainframe version of a simulation program is implemented in a
straightforward manner on the minicomputer, the execution speed is slower
by factors of 10 or more. Clearly, this speed degradation cannot be attri-

buted simply to the difference in arithmetic operation speeds.

Several minicompute.r IC simulators [Youn78] [Bieh74] [Barh73] have
heen in the public domain for some time. These efforts to date have essen-
tially transferred mainframe circuit simulator codes to the small computer
system with minimum changes to the program structure. These simulation
programs use basically the same solution algorithms as large-scale simula-
tion programs such as SPICE2 [Nage75]; numerical problems are avoided by
using extended precision (typically 64 bits) for floating-point variables. It is
desirable to avoid such extended precision calculations, both because of the
increased cpu time such calculations require and because of the additional

memory required.

2

One resuit of ‘investigating the performance limits of circuit-level IC
simulation on a dedicated micropr;granunable minicomputer system is the
development of SPUDS, a new integrated circuit (IC) simulation program. In
SPUDS, a better match between the basic computer hardware and the
analysis algorithms and data structures is obtained with a combination of
numerical pivoting, sparse matrix techniques, a straightforward generaliza-
tion of the indefinite admittance matrix, and a set of specially-tailored
microcoded instructions. The program successfully performs the circuit
analysis with single-precision (32-bit) floating-point variables. Freret and
Dutton [Frer78] reported some of these methods; SPUDS incorporates a
different numerical pivoting algorithm, similar to the one in Program MICE
[Cohe78] which is better suited to sparse-matrix techniques. As a result, the
penalties associated with multi-word memory references (for floating-point
variables) and with tracing through linked-list pointers to i'nanipulate the
linear equation coefficient matrix are essentially eliminated. Both the
analysis algorithms and the ‘effective’ computer hardware (through micro-
coding) have been modified as part of the synthesis of a fast, effective IC

simulation tool for the circuit designer.

Chapter 2 compares the strengths and weaknesses of different computer
architectures and programming languages in terms of the problem of IC
simulation. To obtain the fastest possible simulation requires the use of
shorter-precision arithmetic than is used on the larger mainframe comput-
ers; Chapter 3 describes the algorithm modifications and performance
trade-offs involved. Memory costs are dropping continually; however, it is
still desirable, especially for a personal design system, that the memory
required to perform the simulation be minimized. Chapter 4 describes the

data structures used in SPUDS and the strategies adopted which reduce

"”w

main-memory needs.

Optimal performance in a simulator is obtained when the algorithms
used and the hardware available are well-suited to each other. The effects of
such special-purpose hardware are modelled with microcoded instructions
added to a user-microprogrammable minicomputer. Chapter 5 describes the
development of these instructions and the resulting improvements in simula-

tion performance.

A summary of the conclusions reached based on this research is given in
Chapter 6. A brief evaluation of the suitability of several currently-available
processors is also presented, and some suggestions are made for future work

in the development of dedicated IC-design systems.

Appendix 1 describes the implementation of the SPUDS program. Infor-
mation concerning a complete listing of SPUDS is given in Appendix 2.
Appendix 3 lists the input files describing each of the benchmark circuits

referenced in this report.

CHAPTER 2

PERFORMANCE OVERVIEW

The actual execution speed of circuit simulation programs such as
SPICE2 [Vlad81] is far less than is implied by the potential performance of
present-day computer hardware. Although this failure to achieve potential
machine performance often arises for other types of computer programs it is
especially troublesome for simulation codes. These codes are characterized
by the nearly ideal computational characteristics of little 1/0, srhall
working-set size, and well-defined computational kernels. A good example of
this lack of optimal performance is a carefully-constructed LU factorization
algorithm [Cala79] written specifically for the CRAY-1 computer [CRAY78].
Although the asymptotic achievable execution speed on the CRAY-1 is 140
million floating-point operations/second (140 MFLOPS), this algorithm can be
expected to achieve a maximum execution rate of only 35.8 MFLOPS. How-
ever, for the typical sparse systems of equations which arise in integrated
circuit simulation the actual LU factorization speed is roughly 2.2 MFLOPS.
This large ratio between potential and actual performance applies not only to
large ‘super-computers’ such as the CRAY-1 but also to small minicomputers.
Although the floating-point arithmetic execution times for the Hewlett-
Packard 1000 F-Series 16-bit minicomputer and the Control Data 8400 80-bit

mainirame are within a factor of 2 or 3 of each other, the equation solution

'S

time for the UA741 operational amplifier! is 8.3ms on the CDC 6400 but

252ms (in FORTRAN) on the HP 1000%. Clearly, machine hardware resources

are not utilized effectively at either end of the computer spectrum.

The reasons for the large discrepancy between optimal and achieved
performance can be divided into two categories. First, virtually none of the
‘high-level’ programming languages allow eflective direct access to, utiliza-
tion of, or control over machine hardware. Second, most computer hardware
architectures are poorly suited to the existing algorithms used in circuit

simulation.

Effective methods which zjeduce this performance gap utilize one or
more of three basic ideas. First, the higb-level programming language can
be changed (or a new language developed) to give the programmer better
access to, and explicit control over, the machine hardware. As a result,
many of the difficulties in attempting to achieve 'optimal’ code with a com-
piler can be avoided. For computers which are microprogrammed, this
approach also includes the possibility of generating microcode directly with

a language compiler. The current state-of-the-art is succinctly summarized

[Cala79]:

Overall it appears that for the pear future only 1/ 4 to 1/ 3 of the ultimate
machine speed may be routinely available through a high-level language.

A second approach changes existing algorithms to take advantage of the
special properties of available machine hardware. Existing pipelined, vector, *
and multiprocessor computer systems are the objects of considerable
research, and major algorithm speedups may be possible [Bane79] [Towl76]

[Wolf78] [Sang79] [Hach81] [Lelal.

1ell referenced circuiis are descrited in Appendix 3
2data from Chapters 3aand 5

The third appt‘oach modifies machine hardware to implement existing
algorithms more effectively. For a given set of algorithms, the fastest execu-
tion speed results when a direct implementation of those algerithms is util-
ized. Developments in VLSI technology may make it practical to construct
such a hardware implementation specifically for IC simulation needs. How-
ever, the construction and verification of systems of that size is beyond
presently-available methodologies. Therefore, applications of this approach
take the form of either special-purpose instructions utilized as part of the
standard code-generation phase of a compiler, or special-purpose pro-

cedures invoked explicitly at the high-level language.

This chapter describes several strategies for obtaining better perfor-
mance from computers. This presentation provides a perspective on the
hybrid approachvdeveloped in this report. There are both potential advan-
tages and real difficulties for each approach towards achieving the perfor-
mance that is theoretically possible. Emphasis is placed, in the comparis-
ons, on the kinds of operations and algorithms that are typical of IC circuit-
level simulation programs. Section 2.1 describes some relevant characteris-
tics of main memory and presents data on the relative importance of
memory access time on overall simulation speed for a minicomputer. A
description of pipelined vector computers is made in Sect.ion 2.2, Section 2.3
details the use of multiple processors to exploit parallelism. The potential
use of auxiliary special-purpose array processors is described in Section 2.4.

Finally, Section 2.5 presents the approach investigated in this report.

2.1. Main Memory

Both the pattern of references and speed of access to main memory are

critical factors in the determination of overall simulation speed. The order

7

in which different wo.rds of memory are accessed is important because most
computer main memories are interleaved. Interleaving utilizes multiple
banks of memory, arranged so that consecutive memory addresses are in
different banks; if a four-way interleaved memory is used and consecutive
memory addresses are referenced, the effective memory access time is
improved by a factor of four. Worst-case behavior occurs if a program con-
secutively accesses every fourth memory location. Clearly, the ways in which
data are stored can affect execution speed. However, it is not always possi-
ble to take good advantage of interleaving. Most circuit-level simulation pro-
grams assemble a two-dimensional matrix of equation coefficients. Such a
matrix can be stored such that accesses along only rows or only columns of
the matrix will use different memory banks. For some kinds of row-and-
column access, a skewed storage allocation technique [Kuck77] can be used.
But for integrated circuits, this coefficient matrix is very sparse and is usu-
ally stored as a compressed, one-dimensional vector. In terms of memory
addresses, accesses to terms in this vector are made in a very nearly ran-

dom manner.

Table 2.1 shows the effects of different memory access times on overall
simulation speed. The simulation code is written entirely in FORTRAN and is
adapted from Version E.3 of Program SPICE23. Two HP 1000 E-Series 16-bit
minicomputers which differ only in memory cycle time are used. The typical
cycle time of the ‘standard’ memory is 665ns (read or write); the ‘high’
speed memory requires 420ns to read and 350ns to write. The E-Series mini-
computer performs all 32-bit floating-point calculations by firmware (micro-

code); 32-bit floating-point arithmetic execution times are ~20us for addition

Reference is made frequently in this report to Version £.3 of SPICE2 tecause the initial pro-
gramming for SPUDS is derived from SPICE2.

Numerical| Memory| CPU | DIFPAIR UA741 MOSAMP2
precision | speed | Model| DCX |[TRAN | DCX | TRAN | DCOP| TRAN
32 bits |standard| BE 268 | - - - - -
32 bits high E 21.4| - - - - -
32 bits high F 183 | - - - - -
48 bits |standard E 30.4{ 44.9 | 202.5| 250.1 94.3| 718.8
48 bits high E 24.7] 37.0 | 166.0| 208.6 78.1| 600.1
48 bits high F 20.1| 28.8 | 131.4| 148.0 52.8| 379.3
684 bits [standard E 103.8(/197.0 | 747.6{1119.0 | 459.0{3781.0
84 bits high E 81.81150.7 | 585.6| 855.7 | 352.9|2876.0
84 bits high F 21.4] 27.9 | 136.7| 154.2 58.4| 399.7

Table 2.1. Effects on Performance of Different Memory Cycle Times

and 40us for division. According to the manufacturer [HP77E] the depen-
dence of floating-point calculation times on memory speed is less than 3%
(the time required to perform the floating-point calculations is much greater

than the time spent accessing operands in memory).

The analysis times for three representative circuits are shown in
Table 2.1. The ‘DCX' column gives the central processing unit (CPU) time
required to perform a dc transfer curve analysis, in which a de operating-
point computation is made repetitively as an independent source is swept
across a range of values. The '‘DCOP’ and ‘TRAN’ columns show the CPU time
needed to evaluate the dc operating point and perform a transient analysis,
respectively. The CPU times in the ta.ble are in seconds; a value of '=' indi-
cates that the particular run did not converge. When convergence is

obtained, the number of iterations required depends only on the circuit and

not on the numerical precision used.

The data show that the effects of memory access time on simulation
speed depend strongly on the floating-point precision used. The reduction in
memory access time by 33% reduces the total simulation time by 25% for
four-word (B4-bit) precision. The reductions for three-word (48-bit) and two-

word (32-bit) precision are 18% and 15%, respectively.

Table 2.1 also shows the corresponding simulation times when an
HP 1000 F-Series minicomputer with ‘high’' speed memory is used. The F-
Series machine has hardware which directly implements floating-point arith-
metic operations for 32-bit, 48-bit, and 64-bit precision operands. These CPU
times show that a hardware implementation of floating-point arithmetic is
most important when extended precision is used. Fcr the 84-bit precision

transient analysis of the MOSAMPR2 circuit, the hardware increases simulation

10

speed by a factor of 7; when only 32-bit precision is used, the speedup due to

hardware is only ~157.

2.2. Pipelined Vector Computers

Hardware speedup is obtained either ‘horizontally’ by replication of
instruction or data streams, or ‘vertically’ by segmenting (or pipelining)
those streams [Flyn72] [Kuck78]. Section 2.3 describes multiprocessor

machines; this section concerns single-processor ‘vector’ computers.

Vector processors, such as tine CRAY-1 or CYBER 205, have instructions
which operate on vectors. This design reduces significantly the number of
references to main memory for processor instructions. Also, since vector
elements are frequently stored in consecutive memory locations, interleav-
ing of memory banks can be best utilized. Of greater importance for proces-
sor speed is the capability to pipeline the arithmetic calculations. Pipeline
computation decomposes a complex, time-consuming task such as floating-
point multiplication into a sequence or 'pipe’ of simpler and faster opera-
tions, e.g. fixed-point multiplication. Part of the increase in speed is due to
the concurrent execution of these operations as the operands pass between
segments in the pipeline. For an n-segment multiplier, this hardware archi-
tecture can evaluate up to n multiplications concurrently, although any par-
ticular result is not available until n clock cycles after the multiplication is
started. The speed advantage of vector processors is due primarily to the
potential of pipelining, although some additional performance is obtained

from multiple functional units.

The extent to which vector instructions can be used eﬁectivelly in a
simulation program depends on the definition of ‘vector’ used by the

manufacturer. For example, after the linearized component values for the

11

semiconductor devic‘e models are evaluated, those values are incrementally
loaded into a matrix of equation coefficients. An indexing scheme [McCa71]
is used to access these elements because the matrix is usually 857 to 957

sparse [Berr71]. As much as 22% of the total simulation time can be spent

performing this matrix load operation*. In order to cast this load process in
a form suitable for vectorization, it must be possible to define a vector
indirectly; rather than using a contiguous block of memory to store vector
element values, the memory block is used to store the addresses of those

values. With such a capability the load operation can be expressed as

DO 10 I=1,N
MATRIX (INDEX(1)) = MATRIX (INDEX(I)) + TERMS(I)
10 CONTINUE

and can execute at vector operation speed. Instructions which allow vectors
to be defined indirectly are not part of the repertoire of the CRAY-1 com-
puter, although such instructions do exist for the CYBER 203 [Kasc79]
[CDCs0].

2.2.1. Vector Algorithms

" Algorithms suitable for vector machines require l;oth a series of identi-
cal operations that can be performed concurrently and a set of data
arranged so it can be streamed into the ALU. This last arrangement usually
requires that a linear indexing function be used to address the data. As a
result, vector machines are especially well-suited to finite-difference algo-
rithms for simulation of physical systems (such as weather modelling) in
which banded matrices are used to solve systems of differential equations.

Circuit simulation, however, raises special problems.

“Chapter 5

12

The algorithrils used in circuit simulation are described in detail in
Chapter 3. Briefly, circuit simulators predict circuit behavior by manipulat-
ing mathematical models relating branch voltages and currents for the cir-
cuit elements. For circuits containing elements with nonlinear branch rela-
tions, an iterative algorithm is used. A ‘guess’ is made of the actual operat-
ing point for each of the nonlinear branches in the circuit. Each branch is
then linearized about that presumed operating point and the resulting linear
system is then solved. If the solution does not agree sufficiently well with the
’gﬁess'. a new estimate of the actual operating point is calculated and the

linearization and solution steps are repeated.

In a typical circuit simulation program such as SPICE2, the equations
describing the behavior of each semiconductor device are generally
expressed in terms of the most recent iteration’s ‘guess’ at the device
operating point. The particular device equations which apply to that region

of operation are then evaluated. Thus, rather than
conductance = f(argl,arg2,arg3)
the logfcal flow of the model evaluation code resembles

if (device is in saturation)
conductance = f1 (argument list)

else if (device is active)
conductance = f2 (argument list)

else "device is off"
conductance = f3 (argument list)
The efficient implementation of this type of code on a vector computer
is made difficult by the logic branches in the equation formulation. Typical
vector instructions for a computer such as the CYBER 200-series perform

operations on ordered scalar quantities, reading operands from consecutive

13

storage locations, ‘performing some designated operation(s), and possibly
storing the result back in memory. No provision is made for conditional
changes in the flow of control, since in order to keep the pipeline full, n-way
branching hardware would have to be available to evaluate all the possible
values and extract the desired number. Automatically performing this looka-
head requires much more logic in the computer, and such a method
becomes prohibitive as soon as more than one or two conditional actions are

introduced into the computation [Tomaé7].

Solutions to this implementation problem generally compute all possible
results using vector-mode instructions and then select the desired value
(with anot.her vector-mode instruction). For the sample given above of dev-
ice model evaluation, all three expressions are evaluated and the results
stored in temporary vectors. The final result vector of conductances is
assembled by selecting each entry from' the appropriate temporary vector,
using a vector merge instruction. The amount of reduction in total CPU time
that this approach offers depends on many factors, including the extent of
pipelining, the number of equivalent functional blocks in the ALU, and the
relative probability that each of the different device operating points will

occur (and require evaluation).

Clearly, such a technique is worthwhile only if the potential savings in
total computation time is large. Detailed timing measurements of a carefully
optimized simulation program are presented in Chapter 5. The data show
that only 10% to 15% of the total simulation time is spent evaluating the
model equations represented by the above code fragment. This evaluation
effort does not include the execution time required to load the contributions

from each semiconductor device into the coefficient matrix. Since the best

14

possible vectorizati;m could not eliminate totally that part of the computa-
tion, the possible savings in CPU time are no more than 5% to 10% of the total
simulation time. To be effective, vector instructions must be used for the
majority of the simulation code, not just for model evaluation. A high-level

language is needed, however, to keep the programming effort within reason.

2.2.2. Programming Languages

The ability to express both vector operations and potential parallelism
in arithmetic operations is important if the vector instructions and fnult.iple
functional units in a high-speed vector computer such as the CRAY-1 or
CYBER 203 are to be used effectively. A language such as APL, which is. basi-
cally vector oriented, is quite suitable. However, the most widely-available
high-level language for vector processors is FORTRAN; for the most powerful
computers of this type, the FORTRAN language is the only one (other than
assembler) supported by the manufacturer. Many of the difficulties that
arise in automatically generating eflective vector-mode instructions with a
FORTRAN compiler are due to.limitat.ions of the language. Some of these
constraints are relaxed by the manufacturer through extensions to the FOR-
TRAN language. For example, on the CYBER 203 the FORTRAN compiler
recognizes a ‘'vactor descriptor’ which is used to specify explicitly that a vari-

able be treated as a vector. Rather than coding a vector summation as

DO 100 I=1,N
B(1)=C(1)+D(1)
100 CONTINUE

in which form the FORTRAN compiler may or may not generate vector

instructions, one can instead use

15

BD = descriptor of vector B(*)
CD = descriptor of vector C(*)
DD = descriptor of vector D(*)

BD = CD + DD

and force the FORTRAN compiler to generate vector-mode instructions.

If extensions to ANSI-standard FORTRAN are not used, the compiler must
recognize situations for which vector instructions are suitable. Although the
FORTRAN 'DO-loop’ can be taken as a hint by the compiler, many heuristics
become important when the costs of initiating vector operations are
included. Algorithms which speed up FORTRAN-like programs for array
machine computation have been well-developed [Kuck72] [Bane79] [Kuck78].
Nevertheless, many available compilers impose severe coding constraints on
program loops in order for effective vector-mode instructions to be gen-

erated by the compiler.

An example illustrating some of these constraints is given below.
Although the example is specific to the FORTRAN compiler for the CRAY-1
computer, the constraints are representative of other machines such as the
CYBER 203. The FORTRAN compiler for the CRAY-1 tries to utilize vector
operations whenever appropriate loop structures are detected. In particu-
lar, inner-most DO-loops are candidates for vectorization. However, vector-
mode code generation is totally disabled if the loop contains any input, out-
put, procedure call, IF, or GOTO statements. If any array subscript expres-
sions are not linear functions of the DO-loop index variable, are
parenthesized, or use a scalar temporary variable, vectorization is inhibited.
Also, vector dependencies (loops in which operands are needed in a different

order than generated by the vector hardware instructions) can inhibit vee-

18

torization. These ;zonstraints severely limit the extent to which vector-mode
instructions are generated for a program module. Major restructuring of
analysis algorithms may be necessary to make the program code suitable for
vectorization. Some built-in vector functions are provided which can replace
IF statements and permit the use of vector-mode operations in some situa-
tions. An example of such a built-in vector function for the CRAY-1 is the

function
CVMGP (X1, X2, X3)

which takes three vector-element arguments and returns

However, use of such functions can incur substantial penalties in unneces-

sary computation. Consider the loop

DO 10 I=1,N
IF (V(1) .GE. 0.0) V(I) = EXP (V(1))
10 CONTINUE

which can arise as part of the model evaluation code for a device with a p-n
junction. This loop is not vectorized by the CRAY-1 FORTRAN compiler due to

the presence of the IF statement. However, the code can be rewritten as

DO 10I=1,N
V(1) = CVMGP (BEXP(V(1)), v(1), V(1))
10 CONTINUE

which is vectorized.

For a large digital circuit many of the devices may be ‘off’, correspond-
ing to a situation in which most of the elements in the voltage vector Y are

less than 0.0. For such a case the first code fragment above is faster, even

17

though it is not \;ectorized. because the vectorized code evaluates the
exponential function for every element of V (even though the values are
immediately thrown away). Orders-of-magnitude improvement in simulation
speed have been obtained by not evaluating ‘dormant' portions of large digi-
tal systems (using evént-driven analysis [Szyg76] [Newt78]); vectorization of
the model evaluation code alone cannot accomplish as great an improvement

in speed.

2.3. Multiprocessor Computers

Multiprocessor computers obtain greater performance through
hardware replication of instruction and/or data streams. If n parallel pro-
cessors are applied to a problem, an ideal speedup by a factor of n is possi-
ble. At least three factors constrain the potential speedup. First, the degree
of parallelism in almost any program is not uniform; therefore, all the pro-
cessors cannot be kept busy. Second, if resources are shared (main
memory), contention between processors degrades overall performance.
Finally, transforming serial algorithms into parallel ones does not necessarily

result in a theoretical speedup factor of n.

The potential improvement in simulation performance of such comput-
ers is considerable. Circuit simulation can be decomposed into the two tasks
of constructing a set of simultaneous linear equations and solving those
equations. The evaluation of the nonlinear device model equations for each
circuit element does not depend on the state of any other circuit elements if
direct equation solution techniques are used; all the evaluations theoretically
can be performed in parallel. Interactions between devices occur only
through the solution of the total circuit equations. For state-of-the-art simu-

lators and circuits which require up to several hundred equations,

18

approximately 107 ‘of the total CPU time is spent solving those equations.
Suppose that 100 processors are applied in parallel to evaluate the equation
coeflicients (the remaining 90% of the total). If the algorithms are parti-
tioned such that each processor evaluates the model for one device and if

memory access contention does not degrade overall system performance,

< s 0.1+ 0.9
N
the total analysis time can be reduced by a factor of 0.1 + (0.9, 100) or N9.

A major problem with such an architecture is the need for inter-processor
communication to ensure that the computations are performed in the
correct sequence. The time required for the communication may greatly

exceed the execution time needed for the desired computations.

2.3.1. Multiprocessor Algorithms

The eflective use of more tham one processor requires that some inter-
mediate parts of the computation be evaluated concurrently. Such parallel-
ism is present in virtually all programs, at least at the level of arithmetic
expressions. For example, in evaluating the statement

T = (AxB) + (CxD)
both multiplications can be performed at the same time. Algorithms have
been investigated [Kuck78] which identify the ordering of arithmetic expres-
sion operations to obtain maximum parallelism with multiple processors.
The extent to which such parallelism can be exploited depends on the inter-

connection network of the processors.

Multiprocessor computers are potentially much faster than vector
machines for code that contains many IF-THEN-ELSE decision trees. The
speedup is due to the ability to evaluate possibilities in parallel. The extent
to which code evaluation speed increases depends upon the relative probabil-

ity that the different control paths in the decision trees are taken during

19

execution. The besi‘. case is for equal probabilities for all paths of control.
Multiprocessor machines also have the potential to be faster than vector
computers for code with nonlinear recurrences or with subscripted sub-
scripts [PaduB0] because memory addresses may be more uniformly distri-
buted. (On the CYBER 203 vector processor, the ‘subscripted subscript’
problem is circumvented by ‘gather’ and ‘scatter’ instructions. These

instructions take an indexing vector INDEX and directly implement

DO 10 I=1,N
B(1) = A(INDEX(I))
10 CONTINUE

and

DO 10 I=1,N
A(INDEX(T1)) = B(1)
10 CONTINUE

at the rate of one data transfer every 1.25 clock cycles, or essentially at

vector-operation speeds.)

2.3.2. Programming Languages

Programming multiprocessor computers revolves around the expression
of parallelism in the computation. Ideally one would like to have the com-
piler detect possible concurrency and automatically produce an ‘optimal’ set
of machine instructions. However, theoretical problems make such
automatic code generation difficult. Even with simple programs, the prob-
lem of translating sequential programs into parallel ones of minimal execu-
tion time is NP-complete [Ullm78]. A considerable amount of research has
been published on improving the parallelism of programs and on the inter-

connection problems of multiprocessors [Haie79] [Wen76].

20

An alternative to automatic recognition of parallelism is explicit pro-
gram control of concurrency. Dennis and Horn [Denn66] have suggested
FORK, JOIN, and QUIT as primitives to initiate and control multiple processes;
other suggestions [Tsic74] [Hans77] have included the use of PARBEGIN and
PAREND for bracketing of iterated control blocks which can be evaluated in

parallel.

2.3.3. Dataflow Machines

Dataflow computers take the greatest advantage of all possible con-
currency in programs by close examination of the data dependencies among
the program statements. These machines differ from the traditional
von Neumann machines which are driven by some control mechanism (sys-
tem clock and program counter). Rather, dataflow machines initiate activi-
ties asynchronously based on the availability of the information needed for

each activity.

The dataflow concept is currently the subject of considerable research.
New high-level languages are under development [McGr80] [Comt79] and pro-
totype computers have been constructed or are in development [Davi77]
[McGr80]. It remains to be seen what ultimaté speeds these machines can
achieve. However, it is clear that major improvements in performance will
result from the use of dataflow to reduce the complexity of inter-processor

communications.

2.4. Array Processors

Array processors are special-purpose computers designed to allow vec-
tors (contiguous blocks of numbers) to be processed efficiently. These

machines are particularly well-suited for problems which have a ‘setup’

21

phase that can be‘separated from the main computation (and need high-
speed arithmetic). The more sophisticated array processors are user pro-
grammable, are capable of speeds in excess of 10 MFLOPS, and may run in
parallel with the host computer system. There are three basic types of data
formats: integer, block floating-point, and true floating-point. Integer or
fixed point machines require the programmer to do any necessary normaliz-
ing or scaling of the data in order to retain accuracy. Only true floating-
point processors are described in this section because of the dynamic range

requirements of circuit simulation.

For ‘true’ floating point representations, each element has its own
exponent. The Floating Point Systems AP-120B [FPS] uses a 28-bit mantissa
and a 10-bit exponent, while the Computer Signal Processing Inc. MAP-300
[CSPI] uses 25 and 7 bits respectively. Potential conversion problems can
arise when these processors are joined to a host computer because of
differences in the formats of floating-point numbers. For example, neither of
these formats are the same as the Hewlett-Packard 1000 floating-point
representation, which uses a 24-bit mantissa and an 8-bit exponent. The AP-
120B uses software for conversion to the HP format, while the MAP-300 pro-

vides hardware translation on the interface.

Two different design philosophies have been used to achieve comparable
processing speeds on the AP-120B and MAP-300. The AP-120B uses a pipe-
lined arithmetic logic unit (ALU); the time per stage is fixed at 167ns. Addi-
tion requires two stages; muitiplication requires three stages. The MAP-300
uses a parallel architecture to achieve its processing speed; two multiplier-
adder units operate in parallel with an address processor, a control proces-

sor, and one or more I/0 processors. Arithmetic routines can thus be writ-

22

ten without regard to buffer control or 1/0 processing.

Several non-obvious factors affect the evaluation of the relative speeds
of different array processors. Operating system overhead may limit
throughput; additional memory often relieves this problem. Processor and
memory options can affect computation times by a factor of four or more;
for example, changing from MOS to bipolar memory can double the speed,

price, and power consumption of an array processor such as the MAP-300.

2.4.1. Programming Languages

The programming of array processors requires very high-level skills
because very low-level timing-dependent control must be specified. Although
the manufacturers generally provide a library of utility routines, special-
purpose codes must be written by the user. A FORTRAN compiler is available
for the APS-120B machine, but the compiler generates rather inefficient
code. In addition, the APS processor limits to 4K words the size of program
code that can be downloaded from the host computer. This constraint
corresponds to roughly 200 lines of FORTRAN. For comparison, the length of
the subroutines in Program SPICE2 which evaluate the MOSFET device model

is more than 1500 lines of FORTRAN.

2.5. Hybrid Approach

The strategy explored in this report examines the potential of several
techniques mentioned in this chapter to obtain maximum performance in a
dedicated, minicomputer-based circuit simulation system. Conceptually, the
computer hardware is modified to perform most effectively the time-
consuming parts of the circuit analysis. These modifications are modelled

with instructions that are implemented in microcoded procedures. The

23

speedup factor for t:he resulting dedicated hardware and software system is
as much as 20 on major portions of the calculations. This increase in perfor-
mance is obtained in part by using to the fullest extent all available hardware
in the computer and by overlapping arithmetic calculations and memory
references asynchronously. Since the microcoded instructions directly
implement higher-level operations, fewer instructions (and correspondingly
fewer memory references) are used, which also increases program speed
[Tann78]. Finally, the simulation algorithms are modified to make calcula-
tions using 32-bit floating-point give accurate answers, so that extended pre-

cision computations are not required.

: ' CHAPTER 3

ALGORITHMS

The algorithms used in circuit simulation directly affect simulation
speed, accuracy, and convergence. A brief summary of existing
minicomputer-based circuit simulators is presented in Section 3.1. The cir-
cuit analysis methods used in Program SPICE2 [Nage75] are reviewed in Sec-
tion 3.2, since those methods are representative of the ones used in
presently-available simulators running on a wide variety of large-wordsize
computers. Virtually all of the arithmetic calculations in these simulators

are performed using 80 to 84 bits for each floating-point variable.

It is desirable to use fewer bits per variable for floating-point arithmetic,
because such a change leads to a significant reduction in both computation
time and memory requirements. The algorithms presented in this chapter
have been found to be useful in improving simulation speed and/or accuracy
in the context of 32-bit floating-point arithmetic. These algorithms are
divided into two categories: methods which enhance the numerical accuracy
obtained with 32-bit floating-point arithmetic, and methods found necessary
for convergence of the iterative solution process with shorter wordlength
(regardless of accuracy considerations). Methods for improving accuracy
include numerical pivoting [IsaaB6], use of an augmented Modified-Nodal-
Admittance (MNA) matrix [Idle71] [Nage?l] [Jénk?l] [Ho75), and combining
together both absolute and incremental forms of iteration [Frer76] [Cohe78].

These techniques are described in Section 3.3.

25

Effective convergence for a wider range of test circuits has been
obtained by introducing constraints on the per-iteration change in selected
circuit unknowns and by adding several threshold parameters. Section 3.4

describes in detail these parameters and their effects on convergence.

The last section in this chapter presents a comparison between the con-
vergence and accuracy characteristics of these methods and constraints,
when used with 32-bit floating-point arithmetic, and the convergence proper-

ties of 80- to 64-bit floating-point arithmetic.

3.1. Overview of Existing Minicomputer-Based Simulators

Several simulation programs exist which run on 18-bit wordsize mini-
computers. Programs BIASD [Bieh74] and MSINC [Youn78] were initially writ-
ten for longer wordlength machines; the minicomputer versions of these pro-
grams use extended-precision (48- or 64-bit) arithmetic to avoid numerical
difficulties. Program BIASM [Barh73] ran on the IBM 1130 and IBM 1800 16-
bit minicomputers and used 32-bit floating-point arithmetic. R. Barham
added a convergence test which stopped the iteration when no further
decrease was observed in the norm of the iteration-to-iteration change in
node voltages, ||d6V]|, (indicating that the numerical precision of the mini-
computer had been reached). This modification extended the range of cir-
cuits for which the program found a solution. An experimental minicom-
puter version of Program SPICE1 [Nage73] was developed by P. Freret
[Frer78]. This program utilized the indefinite admittance matrix, numerical
pivoting, a two-stage Newton-Raphson iteration algorithm, and 32-bit arith-
metic. The simulation results agree well with those of SPICE1l running with
84-bit precision on an IBM 370/168 computer. MICE [Cohe78] is another

simulation program developed as a result of an investigation of ideas which

.28

reduce memory réquirements or cpu time in 16-bit minicomputers. Pro-
gram MICE successfully utilizes a combination of numerical pivoting, sparse
matrix techniques, the use of the indefinite admittance matrix, and both
absolute and incremental voltage iteration to perform the circuit analysis

with single-precision (32-bit) floating-point arithmetic.

8.2. Summary of SPICE2 Analysis Methods

Program SPICE2 uses the Modified-Nodal-Admittance (MNA) matrix for-
mulation of the circuit equations. The MNA formulation simplifies the pro-
cessing of circuit branches which are voltage-defined (voltage sources) or
current-controlled (current-controlled current sources). For a circuit con-
taining N nodes and B voltage-defined branches, the N-1 non-ground node vol-
tages and the B voltage-defined branch currents are chosen as the unknown

circuit variables.

An circuit example is shown in Figure 3.1. For this circuit, the unknown
variables are the node voltages V,, V,, and Vj, together with the current I(VS)
flowing through the voltage source VS. The circuit equations are formulated
by writing Kirchhofl’'s Current Law (KCL) for each unknown voltage and
including the branch relation for VS. Fc'n' the example circuit the system of

equations is

1 -1
R1 R1 0 0 Vo
-1 1., 1.1 =1, \f IS
Rl R1 R2 R3 R3 Va 0 (3.1)
X =
0 -_1. i 1 V3 0
R3 R3 I(VS) S
| 0 0 1 0

This system of linear equations is solved by LU factorization [Cala72]

(which requires the same computational effort as Gaussian elimination

R
O

@

R3

®

Is CD R2. ; I(VS)K)i VS

Figure 3.1. Example Circuit

27

28

[Rals65].) Note that if no reordering of the circuit equations is performed,
the value of the i*! pivot (diagonal) entry in the coefficient matrix for the
node-voltage unknowns is equal to the sum of the conductances connected to

the it? circuit node.

This one-step process is sufficient to find the quiescent (dc) operating
point of a linear circuit. To determine the de solution of a nonlinear circuit,
the iterative algorithm shown in Figure 3.2 is used. A ‘guess’ is made of the
actual operating point for each of the nonlinear branches in the circuit.
Each branch is then linearized about that presumed operating point and the
resulting linear system is then solved. If the solution does not agree
sufficiently well with the ‘guess’, a new estimate Sf the actual operating point

is calculated and the linearization and solution steps are repeated.

The two other frequently-used analyses, small-signal frequency-domain
(AC) and large-signal time-domain (transient), build on the dc solution pro-
cesS. AC analysis is performed by solving a set of linear equations at each
frequency point. The only difference between this analysis and the equation
solution part of the dc analysis is that the matrix coeflicients in general are
complex-valued. Transient analysis is performed as a series of quasi-dc ana-
lyses in which energy-storage elements are modelled as timestep-dependent

conductances and current sources [Cala72].

For all of these analyses the solution of a set of simultaneous linear
equations is fundamental. Accuracy of the solution is critical, not only for
accurate simulation results, but for stable convergence properties as well.
The next section describes several methods for improving the accuracy of

the equation solution.

(]

guess at
operating point

)

4

s-| linearize nonlinear

devices about guess

N

[

formulate linear
equations

solve linear
equations

convergence obtained
(solution ™ guess)?

Y

compute new guess
for operating point

N

4

yes

> STOP

Figure 3.2. Iterative Algorithm for Solution of Nonlinear Circuit

29

30

3.3. Accuracy-Enhancing Methods

For the problem here, the algorithms used to solve the set of simultane-
ous linear equations must be examined carefully in the context of 32-bit

floating-point arithmetic. Typically 20 to 23 bits of coefficient are available

in those 32 bits [PR1IME] [HP78F] [DEC77V] which means that lﬂ’;?_m)i or
2

8.8 significant digits are used in the computation. Pessimistically, roundofi
error in a well-conditioned set of equations can reduce the number of
significant digits in the solution by a factor of 1+2xlog,o(N), where N is the
number of equations [Rals85). If at least 3 significant digits of accuracy are

desired in the output, then at least 3+(1+2xlog;¢(100)) or 8 significant digits

are needed for a system of 100 equations!. Fortunately, the roundoff error

actually incurred is usually much less than this pessimistic estimate.

To obtain the maximum precision possible with a given number of
significant digits requires that the circuit equations not be ill-conditioned. A
polynomial p(x) is termed ill-conditioned if a small change in one of its
coefficients causes a large change in the value of one or more of its zeros. If
the coeflicient error is due to the finite méchine representation, the use of
multiple-precision arithmetic can decrease the round-off error and increase
the accuracy of the zeros. In an analogous manner, for the system of linear
equations

AXxx=Db
the matrix A of equation coefficients is said to be ‘ill-conditioned’ if ‘small’

changes in elements of the matrix cause ‘large’ changes in x, the computed

1This formula implies that the 84-bit (14 significant digit) precision used on mainirame com-
puters is sufficient for three-digit accuracy in systems of 100,000 equations. Systems of over
1000 equations are soived accurately wita 84-bit precision [Nege80]; the soiution of much larger
systems is liimited bty the computer time required.

[

31

solution vector. One: measure of the extent of ill-conditioning of a matrix Ais
the magnitude of | |A™}|| after the elements of A have been normalized so
that ||A|| is approximately unity [Rals65]. A large value for ||A™!|]| indi-
cates an ill-conditioned system. Another measure is the ‘condition number’
y;(A) = | |A™}| | %] |Al |; it can be shown [Isaa86] that small perturbations §Ain
the coeflicient matrix and éb in the right-hand side cause small relative

changes in the solution x if

I
1 — px||6All/||Al]
is not too large.

Several theoretical treatments of the propagation of roundoff errors in
the linear equation solution process have been published [Rals65] [Isaa68]
[Fors67] [Wilk64]. Unfortunately, the upper bound on the rate of growth of
pivot terms in the matrix is unrealistically large. The theory does indicate,
however, that the use of pivoting keeps that upper bound small. A ‘complete’
pivoting strategy takes as pivot the element of maximum magnitude in the
submatrix of remaining equations. Partial pivoting considers only elements
in the same column or row. (The use of numerical pivoting to reorder the

circuit equations is described in detail in Section 3.3.1.)

Iterative schemes, such as those of Jacobi and Gauss-Seidel [Isaa68], can
be used for calculating the solution of a set of linear equations or for improv-
ing the accuracy of a previously derived solution. Three factors make these
algorithms unsuitable for the high-speed solution of the equations which
arise in integrated circuits. First, convergence of these iterative processes
is assured only when the coeflicient matrix has certain rather stringent pro-
perties such as positive definiteness. Second, although the roundoff error in

an iterative method does not propagate (since each iteration ‘starts over'

32

with the same coeﬁicient matrix), the roundofl error can be a serious prob-
lem for a ill-conditioned system of equations [Rals85]. Finally, for a linear
systemn the use of an iterative process to improve the accuracy of a solution
obtained by direct methods is not desirable simply because of the increased
computational effort required. It is preferable to obtain directly a

sufficiently accurate solution.

The use of an augmented MNA coefficient matrix can improve the accu-
racy of intermediate terms calculated during a direct solution of the system
of equations. This extension requires little additional memory or computa-
tional effort and extends the accuracy in pivot values to nearly that of double
precision. A detailed description of this modification is presented in Sec-

tion 3.3.2.

It is possible for the overall iteration process, of which the linear equa-
tion solution is just a part, not to converge due to the presence of numerical
‘noise’ in the direct solution [Frer78]. lterative refinement of the solution
may be used to circumvent this difficulty. The resulting two-stage iteration
process combines 'absolute’ and ‘delta’ iterations and is described in Sec-

tion 3.3.3.

Several overall observations on the accuracy-enhancing methods previ-

ously mentioned are presented in Section 3.3.4.

3.3.1. Equation Reordering

One factor in the execution time of simulation programs is that the cir-
cuit equations are usually solved using 64-bit precision in floating-point cal-
culations. This extended precision may require 2 to 3 times more referehces
to words in memory than does the single-precision case, although on

machines such as the UNIVAC 1108 [Univ70], memory access has been

(/]

r

33

optimized for doubie-word memory references. The extended precision, how-
ever, always requires more time in the arithmetic logic unit (ALU) to perform
the actual calculation. The speed penalty for double precision compared to
single-precision arithmetic is typically a factor of 2 to 3. This speed penalty
applies even when the ALU always performs the calculation in double preci-
sion regardless of the particular machine instruction, such as the

UNIVAC 1108 or the CYBER 175.

Extended precision is used both for inherent accuracy requirements and
because the set of circuit equations is frequently ill-conditioned. The ill-
conditioning problem can be resolved in at least two different ways. If the
pivot terms of the coefficient matrix are not identically zero, an accurate
solution can be obtained if a sufficiently large number of significant digits
are carried along in the computation. From the middle 1960s through the
1970s the principal scientific computer at the Berkeley campus of the
University of California was the CDC 8400, which has a wordsize of 60 bits
(corresponding to 14 significant digits). As a result, the simulation programs
developed, e.g. SPICE1, SPICEZ2, SINC [Fan75], and SLIC [Idle?1], do not need
to use double precision, since single-precision arithmetic on the CDC 8400
already provides sufficient accuracy. For the shorter-wordlength minicom-
puter, however, the use of extended precision as a way of obtaining the
desired accuracy causes a significant increase in both cpu time and memory

requirements.

A second way to resolve the ill-conditioning problem is to use methods
which reorder the rows and/or columns in the coefficient matrix, either
before or during the equation solution process. These reordering techniques

are divided into two categories according to the type of information utilized.

34

Topological method; rely on information regarding the specific interconnec-
tion of individual circuit elements; these methods are applied once, before
any actual solution is calculated. Numerical methods depend on the actual
values in the coefficient matrix; these techniques apply once values have
been determined for the matrix elements and may be utilized many times as

the analysis proceeds.

A circuit example for which topological reordering is useful is shown in

Figure 3.3 [Nage75]. For dc analysis the MNA equations are

1 -1
oOR |
-1 1.1 =1, Vil Tol |
R2 R2 R4 R4 Va 0 (3.2)
o =L Lo[Y|Va|T|0
R4 R4 I(vs)] VS
1 0 0 0

If th.ese equations as shown are solved by LU decomposition, at least one of
the pivot (diagonal) entries becomes identically zero and the solution pro-
cess aborts. However, if the first and last rows are exchanged, the set of
equations becomes well-conditioned and all of the pivot entries remain
nonzero during the solution process. The resulting system of equations is

shown below:

1 0 0 O

R2 R2 R4 R4 Va 0

o L L7V |70 (33)
R4 R4 I(VS) 0

1 -1

ER

The row-exchange algorithm considers each voltage-defined branch in
the circuit. If the nodes to which these branches are connected are all dis-

joint, the algorithm simply exchanges the current equation of each branch

"

‘ R2 R4
O —2 A —®

VS+ () J’I(VS) (3—— (5 ==

-~

Figure 3.3. Circuit Example for Topological Reordering

35

38

with the row corr.espondi.ng to the positive node of that branch. If some of
the branch nodes are coincident then the algorithm orders the row-exchange
process based on a mapping between the voltage-defined branches and cir-
cuit nodes which are the negative node of some voltage-defined branch. (This
mapping can always be constructed unless the circuit contains a loop of

voltage-defined branches [Nage75].)

Early versions (through Version F) of Program SPICEZ2 used only a topo-
logical reordering of the circuit equations to improve the conditioning of the
system. No numerically-based reordering was used because of concern
about the overhead of rebuilding the sparse-matrix pointer structure each
time reordering was necessary. Also, the program was designed to run on
the CDC 8400, which provided enough significant digits even witﬁ single-

precision arithmetic to avoid most numerical difficulties.

It is not always straightforward to establish a valid mapping between cir-
cuit nodes and voltage-controlled branches which avoids the zero-valued
pivot difficulty. The algorithm used in SPICE2 to establish that mapping is
shown in Figure 3.4. The method ‘walks' along any trees of voltage-defined
branches and only swaps ‘leaf’ branches of the tree. However, the algorithm

fails for the circuit in Figure 3.5. The initial set of MNA equations for this cir-

i = 1.
cuit are (where Gx = B)

G1-G1L 0 ©0 00
-Gt Gt 0 0 10
0 0 G2 -G2 -1 0 Vg 0 (3.4)
01
00

0 0 -G2 G2
0 1 -1 0 I(L1) 0
0 0 0 1 00 I(VS)] VS

In the absence of any reordering, the (2,2) and (4,4) elements become identi-

while (there exists an unswapped voltage-defined branch (VDB)) §
for (each unswapped VDB) {
if (positive node of VDB != ground)
if (number of VDBs at positive node < 2)
if (diagonal term in equation for VDB current != 0)
save (+ node, VDB) for possible swap
else
save (+ node, VDB) and exit ‘for’ loop
if (negative node of VDB != ground)
if (number of VDBs at negative node < 2)
if (diagonal term in equation for VDB current != 0)
save (- node, VDB) for possible swap
else
save (- node, VDB) and exit ‘for' loop

if (any (node, branch) pair was saved)
perform swap and mark branch 'swapped’

else
error " loop of voltage-defined branches in circuit ”

Figure 3.4. Mapping Algorithm for Row Swap

- 37

38

Figure 3.5. Circuit Example Showing Reordering Problem

/]

39

cally zero during the LU decomposition®. The topologically-based reordering
algorithm in SPICER2 fails for this circuit because it does not detect properly
the fact that resistance R2 connects two voltage-defined branches. After
applying the SPICE2 algorithm and a Markowitz reordering step to maintain

sparsity, the coefficient matrix becomes:

10 0 0 0 ©

G2 1 0 0 0 -G2

00 Gi1 -G1 O 0

00 -GiI Gi1 1 0 (3.5)
-G2 0 0 0 -1 G2

00 0 1 0 -1

Even after this reordering, the (4,4) element of Equation (3.5) becomes zero
during the LU decémposition. An improved algorithm has been reported
recently [Hajj81] which partitions and orders the circuit variables and equa-
tions so that zero-valued pivots are always avoided and the occurrence of
singular submatrices is prevented (assuming that the entire circuit matrix is

nonsingular).

A reordering strategy based solely on topological considerations, how-
ever, is unable to resolve all the numerical difficulties which can arise. These
difficulties are either due to the dynamically changing behavior of the circuit
as the analysis proceeds, or due to topological problems which are very
difficult to identify before analysis. An example of a dynamic problem is
shown in the MOS sample-and-hold circuit of Figure 3.8. The voltage Vi, is
sampled and held at node (1). Unless independent row or column exchanges
are made in the ccefficient matrix, the magnitude of the pivot element (on
the matrix diagonal) for a2ny node in the circuit is equal to the sum of the
magnitudes of the conductances connected to that node. During the sam-

pling clock phase, the total conductance at node (1) is reasonably large.

2described in Chapter 5

VIN

40

Figure 3.6. MOS Sample-and-Hold Circuit

41

During the hold ph.ase. however, the conductance at the sampling node (and
hence the magnitxide of the pivot value) is determined by leakage terms
which are nearly zero. In the absence of any numerical pivoting, a simulation
program encountering such a circuit attempts to divide by an essentially
zero-valued pivot and aborts. This difficulty exists regardless of the numeri-
cal precision used, but is especially aggravated for short-wordlength compu-

tations.

An example of the type of numerical problem which is topological in
nature but very difficult to identify before analysis is illustrated by the cas-
caded gain stages shown in the circuit of Figure 3.7 [Frer76]. The submatrix

for nodes 1-3 of this circuit is

1
'ﬁ“l‘gfr 0 Em
1
Bm [TEn 0 (3.8)
1
. 0 Em R_"gn |

The nonzero off-diagonal entries in Equation (3.6) are equal to the g of the
devices, while the diagonal entries are essentially the g, values (which are
smaller by a factor of gp). Without pivoting, the diagonal entries are divided .
by powers of fp during the LU decomposition with a significant loss of preci-

sion in the computation.

To resolve these numerical problems, SPUDS uses both a preliminary
reordering of the circuit equations based solely on topological factors and
then employs a form of numerical pivoting. Classical ‘full’ numerical pivoting
[1saa68] which always chooses that element of the remainder matrix with

maximum magnitude, is not acceptable since it totally ignores any con-

Figure 3.7. Cascaded Gain Stages

42

43

siderations of matri;: sparsity’. Instead, SPUDS uses the strategy devel_bped
in Program MICE: the maximum value in the remainder matrix, MAXVAL, is
determined and then all remaining elements with magnitude of at least .
PIVRELXMAXVAL are considered as potential pivot candidates. The default
value of PIVREL is 1078 in SPUDS (A default value of 1078 is used in MICE; the
larger value in SPUDS makes the system of linear equations more well-
conditioned.) Diagonal matrix elements are considered first to minimize
pivot search time, since those entries are usually large enough in an MNA
matrix. Full pivoting (rather than partial pivoting) is performed since no
increase in execution time is observed for systems of up to several hundred

equations.

During the LU decomposition, elements in the matrix which are zero
may become nonzero. These ‘fill-in' terms can change greatly the sparsity of
the matrix. The simplest strategy to minimize the number of fill-ins by
reordering the elements in the matrix is due to Markowitz [Mark57]. The
maximum number of fill-in terms that can be generated in a single step of
the LU decomposition is equal to the product of the number of terms in the
upper triangle row and lower triangle column. The Markowitz algorithm
chooses the row-column pair with the minimum row-column product as the
next pivot. Ties are resolved by choosing the row-column pair with the smal-

lest number of column elements?*.

The use of this pivot strategy is always forced on the first iteration in

both dc and transient analyses. Pivoting is forced at the beginning of tran-

SFreret's thesis describes the use of a full NXN matrix to store the equation coeflicients.
Hatrix sparsity is mentioned only in relation to data structure modifications tut not with respect
to the effects of different pivoting strategies on matrix sparsity.

4The coding of the pivoting stretegy in SPUDS :is adapted from the implementation in Pro-
gram SPICZ2 by A. Vladimirescu and G. Soyvle.

44

sient analysis becé.use conductances for charge-storage elements, which can
modify the numerical conditioning of the matrix, are not present for the dc
analysis. Thereafter, pivoting is performed only if the magnitude of any
value on the matrix diagonal becomes smaller than parameter PIVTOL, which
has a default value of 10™!3, empirically chosen for 32-bit accuracy. Typi-

cally, only one pivoting step is performed during any particular analysis.

In many cases the use of just numerical pivoting to reorder the circuit
equations is sufficient to avoid numerical problems. Neither Freret's simula-
tor nor Program MICE, both of which use Nodal Analysis, use any
topologically-based reordering scheme. The advantage of using
topologically-based reordering is simply that most of the necessary row- and
column-swaps in the modified-nodal matrix can be done before the actual

equation solution is begun.

Some pivoting results are shown in Table 3.1. The two columns headed
‘#terms(SPUDS)' present, respectively, the number of nonzero matrix ele-
ments after all circuit elements are loaded and the number of such elements
after LU decomposition and pivoting is performed for Program SPUDS. The

next column to the right displays the number of nonzero matrix elements

after solution for Version E.3 of Program SPICE2%. The last two columns show
the number of matrix operations necessary to find the equation solution for
the two programs. As shown in the table, the matrix sparsity obtained using
both topological and numerical data (SPUDS) is very close to that obtained
when only topological data is used (SPICE2). The number of matrix terms
shown for SPUDS includes terms added as part of the implementation of the

augmented MNA equations described in the next section. As a result, the

Swhich only performs the topoiogically-based reordering step. The present version of
SPICEZ, G.2, uses essentiaily the same numericel pivoting strategy as does SPUDS.

>

o #terms(SPUDS) || #terms #matrix ops
Circuit ! #eans =573 | >pivot || SPICE 2E || SPUDS | SPICE 2E
DIFPAIR 17 88 73 58 94 94
KTEST 9 38 66 41 188 80
RCA3040 | 33 149 187 142 304 275
UA709 44 || 218 301 287 843 853
UA727 62 || 308 400 358 748 796
UA733 || =25 131 158 138 290 293
UA741 52 || 262 342 299 640 666
RTLINV 13 42 46 35 53 53
TTLINV 29 108 137 111 211 211
TTL74 29 108 135 111 205 211
TTL74S 34 131 172 142 290 290
TTL74L 29 108 135 111 205 211
TTL9200 31 121 148 125 224 242
ECLGATE | 39 153 195 180 306 312
MECLII 51 211 294 241 521 498
SBDGATE | 57 215 290 244 500 500
CCSOR 13 55 60 49 102 94
DCOSC 15 75 88 76 159 161
CFFLOP 15 68 74 81 102 102
STCRC 5 13 13 10 13 13
CHOKE 8 24 26 18 30 25
ECLINV 20 77 89 67 133 121
SCHMITT | 19 77 90 73 140 140
ASTABLE | 13 46 80 49 92 92
SATINV 8 | 27 27 21 30 28
DEPLINV 8 16 18 12 15 15
RATLOG 15 77 77 84 100 93
INVCHN 11 58 56 47 82 82
BOOTINV 10 42 43 35 52 49
MOSMEM 14 60 80 48 70 72
MOSAMP1 || 25 165 188 168 288 316
MOSAMP2 || 25 168 204 183 348 374

Table 3.1. Pivoting Effects on Matrix Sparsity

45

46

average number of terms used in SPUDS for all of the circuits is 197 greater
than the number required for Version E.3 of SPICE2. However, the number of
matrix operations, which relates directly to the total analysis time, is only

0.2% greater for SPUDS.

3.3.2. Augmented MNA

Numerical round-off problems can cause the coefficient matrix to be
singular even when the circuit has a unique solution. Consider two conduc-
tances G1 and G2 connected as shown in Figure 3.8a. The submatrix for this

circuit fragment is shown below:

[G1 -G1 ol
-G1 G1+G2 —-G2
0 -G2 G2

Notice that the computed value of the (2,2) element should be equal to the

(3.7)

sum of the two conductances. However, if G1»G2 and the number of
significant digits carried in the computation is not sufficiently large, the
actual numerical value of the (2,2) element is just that of G1. (For example,
if G1=1.000x10%* G2=1, and only 4 significant digits are used, then
(G1+G2)=1.000x10% not 1.0001x10%) Such a dynamic range of element
values occurs commonly in an integrated circuit. Consider for example the
resistive load with an ‘off’ driver transistor of Figure 3.8b. The 'off’ transistor
is modelled with a conductance (G2) which is very small compared with the

conductance of the resistive load (G1). As a result, the submatrix effectively

becomes
[G1 -Gt ol
-G1 Gl -G2 . (3.8)
0 -G2 G2

The (2,2) pivot element becomes zero during the LU decomposition and the

equation solution aborts.

Figure 3.82a Two Conductances

Figure 3.8b. Resistive Load

47

48

The indefinite admittance matrix (IAM) [Deso69] is obtained by adding a

row and column for the ground node to the reduced admittance matrix8.

This matrix Y has the invariant property that
LYy =Yy =0
i i
The zero row-summation property of the JAM matrix is utilized to deter-
mine with greater accuracy the true value of a pivot value by calculating
PIVOTVAL = -} (off-diagonals in the same row)
with the sum accumulated in double precision (64 bits) even though the

coefficient matrix is stored in single precision (32 bits). This IAM formulation

is used both in the work of Freret and in Program MICE.

Freret's dissertation presents examples in which algebraic cancellation
in computing matrix elements can lead to an incorrect solution to the circuit

equations. To alleviate this difficulty he uses
MAX (PIVOTVAL, pivot entry in matrix)

as the pivot value in the decomposition step. This method is also used in Pro-
gram MICE. No significant difference in analysis results are found in Program
SPUDS with this modification. The variable PIVOTVAL is used as the pivot

value in the LU decomposition step.

For the modified-nodal-admittance matrix, the above technique must be

modified slightly. The MNA matrix may be partitioned as:

-4

where V, is the vector of node voltages and I is the vector of voltage-defined

fy Bl
X

branch currents. To preserve the zero row-summation property in the MNA

8n prectice only the column corresponding to the ground equation is added to the matrix;
10 additional numericeal information is ottained ‘rom the addition of an extra equation (row).

49

matrix, terms which arithmetically cancel the nonzero entries in the B, C,

and D submatrices are added to the column representing the ground node.

3.8.3. Absolute and Delta Iteration

The process of convérgence to a solution can present special difficulties
with short wordlength computations because the error in node voltages may
be amplified by an exponential device characteristic. The symptoms of this
problem are a rapid convergence to near the correct solution followed by
numerical oscillation about that solution. To prevent these numerical
difficulties from affecting the convergence process, a combination of ‘abso-

lute' and ‘delta’ (or ‘incremental’) iteration is implemented in SPUDS.

In ‘absolute’ iteration, SPUDS solves directly for the total node voltages
Vot! at iteration n+1 in terms of the linearized equivalent circuit determined

at iteration n.

In 'delta’ iteration, the system of circuit equations is modified to solve
for the incremental change in node voltages between iterations. Figures 3.9a
and 3.9b compare the two forms of iteration for the case of a simple diode.
As shown in the figures, the value of the incremental conductance, g, loaded
into the coefficient matrix is the same for both types of iteration. The
equivalent current changes, however. For a given branch current I and

branch voltage V, the equivalent current for ‘absolute’ iteration is

loq = 1-gxV

and the equivalent current for ‘delta’ iteration is

lq = .

Once the solution §V**! at iteration n+1 has been determined, the new node

voltages are calculated from

' +
\/A/
I =L,xe ™
: IlSZV
= gxV + Igq -
lgg=1-gxV eq

50

Figure 3.9a Absolute Iteration

yutl = YR 4 symtl

I=Igx MM

= gx(V+6V) + Igq

Figure 3.2b. Delta Iteration

51

v+ = gyt
The necessity for ‘delta’ iteration is also supported by the data in

Table 3.2, which shows three sets of node voltages found for the dc operating

point of the UA741 operaticnal amplifier test circuit’. The first two columns
show results from Program SPUDS. Both analyses use the ‘augmented’ MNA
matrix and numerical pivoting, but only the analysis for the second column
utilizes ‘delta’ iteration. The third column shows results from Version E.3 of
SPICEZ running on the CDC 8400 computer; the last column displays the vol-
tage difference, in millivolts, between the second and third columns. As
shown in the table, there is a marked improvement in the accuracy of the
solution for some of the nodes when ‘delta’ iteration is used although for

most of the circuit nodes the additional iteration step makes no difference.

To extract the greatest numerical advantage from the ‘delta’ iteration,
two node voltage vectors are needed: a solution vector in single-precision and
a ‘reference’ vector in double-precision. During ‘absolute’ iteration, the con-
tents of the two vectors are the same (the single-precision vector is copied
into the double-precision storage). During ‘delta’ iteration, all the significant
digits available in the single-precision format are used to represent the
incremental voltage change, which is then added to the double-precision

reference voltage®,

SPUDS always begins by using ‘absolute’ iteration; the change to 'delta’
iteration is made when no junction-limiting methods are necessary to con-
strain the per-iteration change in nonlinear device operating points. A delay

in switching to 'delta’ iteration assures that the maximum benefit from the

"described in Appendix 3

8The implementation in SPUDS uses only one single-precision (32-bit) node voltage vector ‘o
store the Lnear equation solution, since the use of a doutle-crecision reference vector made no
gignificent diference in the cireuit solution.

UA741 Operational Amplifier

SPUDS
Node DVIERS=0.0 | DVTHRS=1.0 SPICE 2E.3 | error (mV)
1 -.0001 -.0001 -.0001 0.00
2 .0008 .0004 .0004 0.00
3 14,4445 14.4448 14.4448 0.00
4 -.5355 -.5356 -.5356 0.00
5 -.5352 -.5363 -.5353 0.00
8 -1.0899 -1.0700 -1.0700 0.00
7 -13.9212 -13.8211 -13.9210 0.10
8 -13.7729 -13.7728 -13.7728 0.00
9 -14.4484 -14.4483 -14.4483 0.00
10 -14.9882 -14,9881 -14.9881 0.00
11 -14.9881 -14.9881 -14,9881 0.00
12 -14.9103 -14.9103 -14.9103 0.00
13 -15.0000 -15.0000 -15.0000 0.00
14 -14.3167 -14.3168 -14.31686 0.00
15 -14.3523 -14,3523 -14.3522 0.10
17 14.3563 14,3563 14,3563 0.00
18 -14.9601 -14,9601 -14,9601 0.00
20 -.5059 -.5517 -.5493 2.40
21 .1425 .0968 .0991 -2.30
22 7025 .8587 .8591 -2.40
23 .1030 .0573 .0596 -2.30
24 .0955 .0498 .0621 -2.30
25 .0917 .0460 .0484 -2.40
28 -15.0000 -15.0000 -15.0000 0.00
27 15.0000 15.0000 15.0000 0.00
30 0.0000 0.0000 0.0000 0.00

Table 3.2. Effects of Delta Iteration on UA741 Node Voltages

52

53

junction-limiting methods is obtained. The point at which the change to
‘delta’ iteration is made is also controlled by the threshold parameter
DVTHRS by requiring that

MAX(V® — V2~!) < DVTHRS
for all nodes before changing to ‘delta’ iteration. The default value for

DVTHRS is 1 volt.

3.3.4. Convergence Comparisons

The effects on convergence of the different accuracy-enhancing tech-
niques are presented in this section. When the iterative solution process
does converge, the simulation results using these methods agree well with
each other and with the results obtained using Version E.3 of Program
SPICEZ2 running on the 60-bit wordsize CDC 6400 computer. The results are
identical to three significant digits and frequently identical even to four
places. As a result, the emphasis of the data presented in this section is on

factors associated with whether or not convergence was obtained.

The use of numerical pivoting is essential for convergence in the analysis
of most integrated circuits. Table 3.3 compares the number of iterations
necessary to perform dc transfer curve and dc operating point analyses for
five different combinations of floating-point precision and the use of numeri-
cal pivoting, an augmented MNA matrix, and 'delta’ iteration. The columns
headed ‘NOGO’ show for each combinaticn whether or not the analyses ter-
minated without errors. A nonzero value marks a failure to converge in some
analysis. Not all circuits require all analyses; such an omission is indicated
when all five iteration counts are zero. A nonzero value of ‘NOGO' when the
dc operating point analysis does converge indicates that a subsequent tran-

sient analysis failed to converge.

54

Circuit NGGO dc transfer curves dc operating point
Case | #1 #2 #3 #4 #5{#1 #2 #3 #4 f#5 |[#1 #2 #3 #4 #5
DIFPAIR 0 1 0 O 0229 229 228 227 227|186 16 16 16 18
KTEST 0 00 0O 0 0 0 0 of ¢4 4 4 4 4
RCA3040 0 1 1 0 0239 238 238 238 238|186 18 168 16 186
UA709 0 1 0 O 0301 342 308 297 29726 26 26 26 =26
UA727 c 1 0000 1223 555 375 217 217|128 0 28 26 26
UA733 coooo0o0flo o o o of8 8 8 8 8
UAT41 0 1 0 O 0303 308 351 273 27226 0 28 26 26
RTLINV 0 1 0 O 0240 240 235 235 235(10 10 10 10 10
TTLINV 0 1 1 0 0289 187 541 258 258|115 0 19 15 15
TTL74 0 1 0 O 0277 100 509 269 269(18 0 15 14 14
TTL74S 0 1 1 0 Ofl|285 100 177 265 265|117 0O O 17 17
TTL74L 0 1 1 0 O0}[300 148 220 314 31421 0 0 20 20
TTL9200 1 1 1 0 0301 100 222 348 3481 0 0 O 13 13
ECLGATE 0 1 1 0 0227 227 227 227 227 8 8 8 8 8
MECLIII 0 1 1 0 0}[243 245 240 241 24113 13 13 13 13
SBDGATE 0 1 1 0 0}[271 100 514 297 329}21 0 0 20 20
CCSOR 0 0 00O 0 0 0 0 0§13 13 13 13 13
DCOSC 0 0 00O 0 0 0 0 0{/13 13 13 13 13
CFFLOP 0 0 0 0 O 0 0 0 0 of 7 8 8 8 8
STCRC 0 0 0 0O 0 0 0 0 ol 2 2 2 -2 2
CHOKE 01 0 00O 0 0 0 0 of o o 0o 0 O
ECLINV 01100 0 0 0 0 oy 8 8 8 8 8
SCHMITT 01 00O 0 0 0 0 oj 8 8 7 7 7
ASTABLE 0 01 0O 0 0 0 0 0{§10 10 10 10 10
SATINV 0 0 0 0 O[89 B0 843 643 643|151 6 30 30 30
DEPLINV 0 0 0 0 0]}[223 202 214 214 21411 2 10 10 10
RATLOG 01 000 0 0 0 0 oj 8 2 8 8 8
INVCHN 0O 0 00O 0 0 0 0 0{{13 2 13 13 13
BOOTINV 0 0 00O 0 0 0 0 off12 4 12 12 12
MOSMEM 01 000 0 0 0 0 off 8 2 8 8 8
MOSAMP1 | 0 0 1 O 0282 202 8 274 271424 2 0 24 24
MOSAMP2 | 0 1 0 0 O 0 0 0 0 0190 2 66 66 66
Case precision | numerical | augmented ‘delta’
(bits) pivoting MNA iteration
#1 64 no no no
#2 32 no no no
#3 32 yes no no
#4 32 yes yes no
#5 32 ves yes yes

Table 3.3. Pivoting Convergence Comparisons

55

The first case in Table 3.3 shows the use of 84-bit floating-point precision
without the use of numerical pivoting, the augmented MNA matrix, or ‘delta’
iteration. No convergence difficulties are present, with the exception of the
TTL9200 circuit (for which convergence is particularly difficult even with 60-
bit precision [Nage75]). More than half of the benchmark circuits (and all of
the TTL ones) do not converge for the second case, which uses 32-bit
floating-point precision b;.lt is otherwise the same as Case #1. The combina-
tion of 32-bit floating-point precision and numerical pivoting, shown in
Case #3, is slightly more effective, especially for linear circuits. The UA741
and MOSAMP2 circuits are sirmulated without difficulty, but the TTL circuits
still fail to converge. Case #4 adds the use of the augmented MNA matrix to
Case #3; as shown in the table, all the circuits converge without difficulty.
The addition of ‘delta’ iteration, in Case #5, does not make any noticeable
improvement in convergence when compared with Case #4. The only
significant change is a 10% increase in the number of iterations for the dec
transfer curve analysis of the SBDGATE circuit. The analysis results for the
Cases #4 and #5 differ in the fourth significant digit by at most one, and both
sets. of results agree to 3.5 significant digits with those of Version E.3 of

SPICE2 running on the CDC 6400 with 60-bit precision.

Table 3.4 compares simulation costs (in terms of iteration counts) when
32-bit precision, numerical pivoting, and 'delta’ iteration are used. The only
variable in the data is the use (or non-use) of the augmented MNA matrix.
The first 4 columns of each set of data show, respectively, the value of the
‘NOGO' flag and the total number of iterations for the dc transfer curve, dc
operating point, and transient analyses. The remaining two columns show

the total number of timepoints and the number of rejected timepoints for

the transient analysis.

Circuit ‘standard’ MNA augmented MNA

N | XCI{DCI|TRI|TTP|RTP|| N DCI| TRI RTP
DIFPAIR 0 [228{18 | 243107 | O | O 16 239 0
KTEST 0 0 4 | 394197 (31 | O 4 836 2
RCA3040 1 (23816 {103 12| 9 | O 16 3814 0
UA709 0O | 3081268 | 2481107 | O || O 26 248 0
UA727 0 | 375(26 | 247107 | 0 | O 28 241 0
UA733 0 o 8 0 0j 00 8.1 0 0
UA741 0 | 351|268 | 214107 | 0 || O 28 214 0
RTLINV 0 | 23510 | 418141 | 9 ¢ O 10 {394 8
TTLINV 11373 0 o0 o0joyj O 15 594
TTL74 0 | 530{15 | 649{187 (25 || O 14 858
TTL74S 11177 0 o0 ofojo 17 23
TTL74L 11220 0 o o0} oO 20 547
TTL9200 11223 0 o0 ojoOo¢yoO 13 823
ECLGATE 1 {227 8 | 140 19 (11 | O 8 492
MECLIII 1 | 240113 | 1514 19 |11 || O 13 480
SBDGATE 1 |1349 O o ol 0} O 20 481
CCSCR 0 013 o0 ojoffoy} 0f13 0
DCOSC 0 0{13 o0 ojojo 0 (13 0
CFFLOP 0 c 8 o0 ojoffo| 0}8} 0
STCRC 0 Of 2 |23g118| 1 | O 0| 2 1238
CHOKE 0 O 0 286112 | 1 | O 0| 0 1266
ECLINV 1 00 8 [124 15|10 || O | O | 8 K34
SCHMITT 0 Of 7 |358[148| 9 || O 0| 7 368
ASTABLE 0 010 [10001259 |38 | O 010 90°
SATINV 0 | 84330 o ojO¢foO 30 | O 0
DEPLINV 0 | 21410 o0 00} O 10 0 0
RATLOG 0 Of 8 (413180 7 | O 8 413 7
INVCHN 0 0[13 o040 oy oy o0 13 0 0
BOOTINV 0 0|12 {23119 | 0 || O 12 [g38 0
MOSMEM 0 Of 8 | 335184 9 || O 8 [835 9
MOSAMP1 1 g O o oo} o 24 0 0
MOSAMP2 0 088 | 4861178 |20 || O 66 503 24

Table 3.4. Augmented MNA Convergence Comparisons

57

The use of the ‘augmented MNA matrix has most effect in the simulation
of the TTL circuits, which do not converge, or converge very slowly, unless
this extension to the matrix is used. The need for the apgmented matrix can
be explained readily by the fact that the TTL circuits typically have a greater
range in magnitude of branch conductances than do the other circuits. The
additional column in the matrix for these circuits improves the solution

accuracy when such a spread in values occurs.

A comparison of iteration counts for de transfer curve and dc operating
point analyses, in which the only variable is the use of ‘delta’ iteration, is
shom in Table 3.5. Both analyses are performed using 32-bit precision,
numerical pivoting, and the augmented MNA matrix. As shown iﬁ the table,
no significant differences in iteration count are observed whether or not

‘delta’ iteration is used.

3.4. Convergence-Enhancing Methods

The likelihood and rate of convergence to a solution can be improved by
incorporating several control parameters into the iteration process. These
control parameters are of even greater importance when limited numerical
precision is used in the calculations. Some of these parameters constrain
the per-iteration change in selected circuit unknowns; other parameters
determine certain threshold levels. Each of these parameters is described in
the following subsections. Of these methods, only prediction and bypass

(Section 3.4.5) are used in Program SPICEZ2.

3.4.1. pn Junction Conductance Limit

The assumed value of p-n junction bias can be much greater during the

iteration process than the final solution value. As a result, the equivalent

iterations

Circuit DC Xfer DCOP
with § | without § | with § | without &

DIFPAIR 227 227 16 18
KTEST 0 0 4 4
RCA3040 238 238 16 16
UA709 297 297 268 26
UA727 217 217 268 26
UA733] 0 8 8
UA741 272 273 28 26
RTLINV 235 235 10 10
TTLINV 258 258 15 15
TTL74 269 289 14 14
TTL74S 285 285 17 17
TTL74L 314 314 20 20
TTL9200 348 348 13 13
ECLGATE 227 227 8 8
MECLIII 241 241 13 13
SBDGATE 329 297 20 20
CCSOR 0 0 13 13
DCOSC 0 0 13 13
CFFLOP 0 0 8 8
STCRC 0 0 2 2
CHOKE 0 0 0 0
ECLINV 0 0 8 8
SCHMITT 0 0 7 7
ASTABLE 0 0 10 10
SATINV 643 643 30 30
DEPLINV 214 214 10 10
RATLOG 0 0 8 8
INVCHN 0 0 13 13
BOOTINV 0 0 12 12
MOSMEM 0 0 8 8
MOSAMP1 271 274 24 24
MOSAMP?2 0 0 88 66

Table 3.5. ‘Delta’ (§) Iteration Comparison

58

58

conductance loaded into the coefficient matrix to model the junction can be
much too large, accentuating roundofl errors and slowing the rate of conver-
gence to a solution. Limiting the exponential characteristic is important for
another reason as well. The internal representation for 32-bit floating-point
variables typically uses 7 bits for the exponent field [HP78F] [PRIME]; the
largest value which can be represented is therefore ~2'?8 or 3x10%, This
maximum value can be exceeded easily during the iteration process due to
the presence of exponential functions. Without limiting several analog and
digital circuits, such as the UA709 and ECLGATE benchmarks, fail to converge

on the minicomputer due to numerical overflow.

In Program MICE, this difficulty is overcome by deflning a maximum

value for the p-n junction conductance, GDMAX, with a default value of
10mhos (Tlo—ohms). For each device at each iteration, the junction voltage

VMAX corresponding to this conductance is determined from

VMAX = V,xIn{GDMAXx r\::ﬁ
where V, is the thermal voltage and I,,, is the junction saturation current. If
the assumed junction, voltage V is less than VMAX, the equivalent linear cir-
cuit which models the junction is computed using the usual exponential

characteristic. If V is greater than VMAX, MICE models the junction charac-

teristic using a linear extrapolation tangent to the exponential curve at VMAX

with slope GDMAX.

In the SPUDS program a different implementation of this exponential-
limiting idea is used to reduce the computational effort required. Rather
than limiting the junction conductance, the assumed junction voltage is con-
strained to be less than or equal to the parameter PNVMAX. The default

value of PNVMAX is chosen to be approximately equivalent to the default

60

GDMAX value of MICE. Since the equivalent conductance g is determined

from

g =08ly/adVy
V7V,
= 3[Lyx(e'’ *=1)1/8V4
we have
Iq = gxVy
Therefore, the current at which the equivalent conductance is 10mhos is
approximately 260mA. If the saturation current Iy, is taken as 10~!% amps

then

PNVMAX = 0.026xIn(10x0.028/ 10~14)

= 0.8V
The default value for this parameter in SPUDS is 0.9V to allow for variations

in saturation current and circuit temperature.

This limiting scheme prevents premature abortion of the iteration pro-
cess due to overflow during the evaluation of p-n junction exponentials. The
use of this form of limiting does not change the number of iterations

required for convergence.

3.4.2. Node-Yoltage Limiting

The values of the circuit unknowns (node voltages and voltage-defined
branch currents) can become very large (>>108) during the iteration process.
For sufficiently large values of these unknowns, the intermediate computa-

tions (such as device model evaluation) can fail due to numerical overflow.

One method which avoids this numerical problem is to limit the magni-
tudes of the node voltages to an appropriate value, such as twice the magni-

tude of the greatest independent voltage source in the circuit. (Circuits

61

which exhibit "bootstrapping” can have transient node voltages which exceed

the magnitudes of the independent power supplies.)

A comparison of the eflects of node-voltage limiting is shown in Table 3.8
which displays four sets of data, corresponding to two different limiting
values for node voltages and for p-n junctions. Each set of three columns of
data shows the value of the 'NOGO' flag and the total number of iterations for
the dc transfer curve and dc operating point analyses. All the analyses use

the ‘augmented’ MNA matrix and numerical pivoting.

For the majority of the benchmark circuits the rate of convergence to a
solution is not changed sigr_xiﬁcantly by the use of node-voltage limiting,
regardless of whether or not p-n junction voltages are also limited. The ana-
lyses for both the KTEST and CHOKE circuits fail to converge because the

solutions for these two circuits have node voltages on the order of 200 volts.

Considerable convergence problems have been observed with the other
circuits for which convergence is not obtained [Nage75]. For the TTL circuits
TTL74L and TTL9200, the dc operating-point analyses do not converge when
the node voltages are constrained to be less than even 50 volts, althcugh the
value of the largest independent voltage source in these circuits is +5 volts.
The dc operating point analysis of the MOS amplifier circuit MOSAMP2 does
not converge with 50-volt limiting, even though the largest independent vol-
tage source magnitude is 20 volts. The limiting of circuit unknown values
reduces the effectiveness of the p-n junction updating algorithms, leading to

nonconvergence for these circuits.

3.4.3. pn Junction Voltage Thresholding

One reason for difficulty in converging to a solution is the granularity of

node voltage values. The minimum change in any floating-point number is

62

Cirouit PNVMAX=0.9 PNVMAX=100
|VLIM| =20 | |VLIM| =50 | |[VLIM| =20 | |VLIM| =50
N | XCI | DCI | N | XCI | DCI | N] XCI | DCL || N | XCI | DCI
DIFPAIR | O | 228 | 16| 0 | 227 | 16 0 | 228 | 1680|227 | 18
KTEST 1 o| af1 o| 4|1 o| 41 0| 4
RCA3040 | 0 | 238 | 160|236 | 16/ 0|243| 18 0| 238 18
UA709 0|343| 280|321 28 0|3=20]| 26 ‘ 0| 308 | 28
UA727 o|217]| 26{o|215| 28| 0217 28 « 0| 217 28
UA733 0 ol sfo| ol 8fo ol 8o o| 8
UA741 0o|287| 26[0|2v1| 268(0|287| 260|273 | 26
RTLINV ol|235| 10fl0 |25 10lo|=23| 10f0}23| 10
TTLINV o|2s9| 160 |259| 180|259 1680|259 | 18
TTL74 ol274| 180 |274| 19| 0 |274| 160|274 | 19
TTL74S o|287| 18J0|265| 15[0|267| 18| 0|285]| 15
TTL74L 1|305| 1001|100} of1|305|100f1]10]| O
TTL9200 | 1|100| of1|100| of1}100| oOft]10) O
ECLGATE | 0 | 227| 8| o|=227| 8f|ojfj27| 80|27 8
MECLII | 0| 244| 130|244 13} 0| 244 13} 0| 244 | 13
SBDGATE | 0 | 329 | 20 0| 329| 20| 0320 20| 0|32 | 20
CCSOR 0 o| 13)o0 o| 1340 o] 13fo0 o| 13
DCOSC 0 ol 13| o ol 130 o| .13 0 0| 13
CFFLOP | 0 o| 8o o| 8fo ol 8o o| 8
STCRC 0 ol 20| ol 2|0 of 2o o| 2
CHOKE 1 o] of1 o| of1 o| of1 ol o©
ECLINV 0 o| 8o ol 8fo o| s8fo o| 8
SCHMITT | 0 ol 7|o ol 710 ol 7o o| 7
ASTABLE | 0 ol 9fo o| 9fo ol 9fo ol 9
SATINV 0|/643| 300|643 30| 0!643| 300|843 | 30
DEPLINV | 0 | 214| 10 0{214| t0}l0|214| 10} 0| 214 10
RATLOG | O o| 8fo o| 8fo o| 8o o| 8
INVCEN | 0 o| 13|o of 9fo ol 13f0 o| ¢
BOOTINV | 0 ol 120 o| 120 of 120 0| 12
MOSMEM | 0 o 8ol ol sllo| ol 80 ol 8
MOSAMPL | 0 | 285 | 250|351 | 25|/ 0|285| 250|269 | 25
MOSAMP2 | 1 0| 1001 ol 100l 1 ol 100 1 0| 100

Table 3.68. Convergence Comparison:

Voltage Limiting

83

approximately one ;;lace in the least significant digit. If 84 bits of precision
are utilized, more than 14 significant digits are stored and the minimum
representable change is less than one part in 104, When only 32-bit preci-
sion is used in the calculations, however, approximately 6.5 significant digits
are represented; for a node voltage of one volt, this granularity is approxi-

mately 0.5uV.

A junction voltage is computed as the difference between two node vol-
tages. The numerical uncertainty in the calculation is therefore on the order
of 1uV. If the simulation program attempts to make the junction voltages
converge to within a tolerance less than 14V, the iteration process frequently
does not terminate. This problem is especially true for TTL circuits. which
have great variation in the magnitudes of the coefficient matrix terms. This
variation increases the actual change in node voltages between iterations

because of increased roundoff errors.

This difficulty is overcome in Program SPUDS with the parameter
DVPNJN. Changes in junction voltages less than DVPNJN in magnitude are
considered as zero for purposes of convergence checking. The default value
for this parameter is 0.1uV; for several of the TTL benchmark circuits, con-
vergence is obtained only when DVPNIJN is increased to 1-3uV. In all cases,
the simulation results from the dc transfer curve, dc operating point, and
transient analyses agree to 3.5 significant digits with the results obtained

by running Version E.3 of Program SPICE2 on the 80-bit CDC 8400 computer.

3.4.4, 'Delta’ Iteration Threshold

The decision to switch from ‘absolute’ iteration to 'delta’ iteration is
made when no junction-limiting methods are necessary to constrain the per-

iteration change in nonlinear device operating points and when the maximum

64

per-iteration char;ge in any node voltage is less than DVTHRS. Table 3.7
shows the effects of different values of DVTHRS. For each value, the value of
the ‘NOGO' flag and the number of iterations for the dc transfer curve, dc
operating point, and transient analyses are given. The data in the columns
headed '‘DVTHRS=0.0V’ are for analyses which do not use ‘delta’ iteration at
all.

Since the switch to ‘delta’ iteration is not made until junction-limiting
methods are not necessary, the eflect of different values for the DVTHRS
parameter is relatively small. As shown in the table, a too-large or too-small
value can increase the number of iterations required for convergence.
Empirically, the best value for DVTHRS is found to be 1V, and this number is
the default in SPUDS.

3.4.5. Prediction and Bypass

Algorithms which predict the solution to the next point in a multi-point
analysis and which bypass the evaluation of the nonlinear-device models can
reduce the computational effort to perform an analysis considerably
[Newt77]. Both of these methods also impact significantly the number of
iterations required for convergence. The following paragraphs describe the

convergence effects in SPUDS of each method.

For multiple-point analyses, the solution to the ‘next’ point can be
predicted from the solution to previous points. SPUDS uses the same first-
order predictor as Program SPICEZ2. For example in transient analysis this

predictor takes the form

hp,
) D £ ﬁ‘-(xl-x,-l)

Table 3.8a shows the number of iterations and required cpu execution times

12

65

Cirouit DVTHRS=100V | DVTHRS=1.0V | DVTHRS=0.1V || DVTHRS=0.0V
ireut N XCI DC TRI] N XCI DC TRI] N XCI DC TRI| N_XCI DC _TRI
DIFPAIR 0 227 16 238| 0 227 18 238| O 227 18 238]| 0 227 16 239
KTEST 0O o0 45680(0 0 4 560[0 O 4 5800 O 4 6386
RCA3040 0 238 16317] 0 238 16 317| 0 238 16 317/ 0 238 18 314
UA709 0 305 26249| 0 29726 249| 0 32526 249 0 297 26 248
UA727 0 217 268242 0 21726 242| 0 21726 242| 0 21726 241
UA733 o 0o 8 olo o8 ojo o8 of0 08 O
UA741 0 272 28214| 0 27226 214 0 27228 214/ 0 27326 214
RTLINV 0 235 107384| 0 23510 364 0 235 10 384/ 0 235 10 394
TTLINV 0 258 15525| 0 258 15 536 0 258 15 536/ 0 258 15 594
TTL74 0 289 14827 0 269 14 827 0 289 14 827 0 289 14 658
TTL74S 0 265 17508| 0 26517 508| 0 265 17 511|| 0 285 17 523
TTL74L - | 0 314 20584 0 31420 584| 0 31420 584| 0 314 20 547
TTL9200 0 348 13563| 0 348 13 563| 0 348 13 563 0 348 13 623
FCLGATE | 0 227 8430 0 227 8 490/ 0 227 8 490 0 227 8 492
MECLII 0 241 13460| 0 241 13 460| 0 241 13 460 0 241 13 480
SBDCATE | 0 329 20476] 0 32920 476] 0 32920 478 0 297 20 481
CCSOR o o013 ofo o013 ofo 013 oo 013 0O
DCOSC o 013 ofo o013 ofo 013 oo o013 O
CFFLOP o o 8 o/lo o8 ofo o8 ofo o8 o0
STCRC o o0 22380 o0 2230 0 22380 0 2 236
CHOKE o o o0281j0 o0 0261/ 0 ©0 O 2810 O O 266
ECLINV 0 O 8345/ 0 O 8 345/ 0 0 B8 345/ 0 0 8 434
SCHMITT | o O 73850 o0 7 385]/0 o0 7 385/0 0 7 368
ASTABLE | 0 o 9880 o0 9 88| o0 0 9 8860 010 909
SATINV 0 651 37 0| 0 64330 Of 0 64330 O 0 64330 O
DEPLINV 0 214 10 0| 0 21410 of 0 21410 oOf 0 21410 ©
RATLOG 0O o0 8364/ 0 0 8364/ 0 0 8 384/ 0 0 8 413
INVCHN o 013 ofo 013 ofo o013 oo 013 0O
BOOTINV | 0 0 20238/0 o012 238j0 o012 238/ 0 012 238
MOSMEM | 0 O 8331]0 o0 8 3310 o0 8 3310 0 8 335
MOSAMP1 | 0 271 24 o0l 0 27124 0] 0 27124 of| 0 27424 ©
MOSAMP2 | 1 0100 Ol 0 066 494] 0 066 494§ 0 066 488

Table 3.7. Convergence Comparison: ‘Delta’ Threshoid

No B

Circuit YPASS and No PREDCT PREDCT but No BYPASS
XCI | TRI XClI TRAN || XCI | TRI XCI TRAN
DIFPAIR 320 321 | 10.87 14.86 | 228 | 242 8.30 12.17
KTEST 0 560 0.00 15.89 0 | 560 0.00 15.70
RCA3040 | 331 126 | 24.32 14.12 || 238 | 312 | 18.82 35.02
UA709 378 313 | 42.02 49,85 || 318 | 248 | 36.74 42.10
UA727 _77 322 | 45.20 71.03 || 217 | 243 | 37.97 57.61
UA733 0 0 0.00 0.00 0 0 0.00 0.00
UA741 298 314 | 43.21 85.45 || 272 | 214 | 40.90 49.24
RTLINV 284 418 6.33 11.68 || 235 | 349 5.58 10.30
TTLINV 317 556 | 18.12 36.37 || 258 | 544 | 13.83 36.08
TTL74 318 521 | 16.16 34.29 || 270 | 525 | 14.33 34.82
TTL74S 338 503 | 20.62 40.43 || 265 | 509 | 17.08 41.23
TTL74L 389 557 | 19.32 36.38 || 339 | 560 | 17.43 36.84
TTL9200 397 572 | 21.35 40.23 || 348 | 542 | 19.33 38.80
ECLGATE | 264 510 | 19.36 47.48 || 227 | 448 | 17.43 42.98
MECLIII 293 524 | 28.75 88.96 || 241 | 446 | 24.82 60.85
SBDGATE | 343 506 | 35.41 85.98 | 321 | 484 | 33.99 64.13
‘CCSCR- 0 0 0.00 0.00 0 0 0.00 0.00
DCOSC 0 0 0.00 0.00 0 0 0.00 0.00
CFFLOP 0 0 0.00 0.00 0 0 0.00 0.00
STCRC 0 236 0.00 3.90 0 | 236 0.00 3.86
CHOKE 0 303 0.00 7.00 0 261 0.00 6.48
ECLINV 0 481 0.00 23.42 0| 799 0.00 34.34
SCHMITT 0 418 0.00 20.89 0| 388 0.00 19.89
ASTABLE 0 920 0.00 28.72 0| 917 0.00 28.83
SATINV 726 0 | 21.05 0.00 || 644 0| 19.30 0.00
DEPLINV | 225 0 8.39 0.00 | 214 0 8.19 0.00
RATLOG 0 397 0.00 39.67 0 | 364 0.00 37.39
INVCHN 0 0 0.00 0.00 0 0 0.00 0.00
BOOTINV 0 247 0.00 22.41 0| 238 0.00 21.85
MOSMEM 0 373 0.00 61.20 0| 325 0.00 54.87
MOSAMP1 | 310 0| 7121 0.00 || 304 0 | 70.48 0.00
MOSAMPZ2 0 ! 1504 0.00 | 565.66 0 | 480 0.00 | 182.14

Table 3.8a. Effects of Prediction on Convergence

68

67

for dc transfer curvé and transient analyses of the benchmark circuits. The
columns headed ‘No BYPASS and No PREDCT' display the results for ‘refer-
ence' analyses using neither prediction nor bypass methods. The remaining
columns display the analysis results when the first-order prediction method
(but not bypass) is employed. All the analyses use 32-bit floating-point arith-

metic, numerical pivoting, and the augmented MNA matrix.

More cpu time per iteration is required if the prediction method is used.
As shown in the table, for the DIFPAIR circuit the time per iteration in the dc
transfer curve analysis is 33.3ms without prediction and 36.4-rx‘13 with predic-
tion. The difference, a 9% increase in the cpu time per iteration, is the time
required to compute the predicted circuit variables. But the total cpu exe-
cution time for this analysis decreased by 22% because of an even greater
percentage reduction in the required number of iterations. This decrease in
cpu time holds true for all the benchmark circuits in the dc transfer curve
analysis, although the percentage savings in cpu execution time is as little as

1% for some circuits.

For transient analysis Table 3.8a shows a similar reduction in overall cpu
time except for the RCA3040 and ECLINV circuits, for which both the total
cpu time and the number of Newton iterations required for the analysis
increase by 50% or more. Since the data presented in [Nage75] on the use of
this first-order prediction method with 60-bit floating-point arithmetic does
not show this anomalous behavior for these two circuits, this increase in

analysis time probably is due to numerical roundoff error in the values of the

predicted circuit variables.

The bypass algorithm saves computational effort by evaluating each non-

linear branch relation and its derivative only if the difference in the argu-

68

ments to that branch relation is significant [Nage75]. Table 3.8b compares
the analysis results when the bypass method is used with the results of the
same ‘reference’ analysis from the previous table. For the dc transfer curve
analysis, the savings in cpu execution time for all the benchmark circuits is
small ‘(at most 9% for the MOSAMP1 circuit). For the TTL74S circuit, the
transfer curve analysis fails to converge. For most of the benchmark cir-
cuits, the transient analysis results are of a similar nature. The reduction in
cpu time at best is small, and for some circuits the analysis time increases

slightly.

The combination of both the prediction and bypass algorithms results in
analysis times which are smaller, for almost all the benchmark circuits, than
when either method is used alone. Most of the reduction in cpu time is due
to the prediction method; the computation necessary to determine whether
to bypass the evaluation of a particular nonlinear-device model is approxi-
mately offset by the savings in not having to perform those evaluations.
Table 3.8¢c compares the analysis results when both prediction and bypass
are used against the results of the ‘reference’ analysis of the last two tables.
On the average for all the benchmark circuits, for the dc transfer curve
analysis, the two methods together reduce the iteration counts and cpu
times by 11.4% and 12%, respectively. The iteration counts and cpu times for
transient analysis are reduced by 11% and 31% respectively. (If the very-
large (and singular) reductions in transient analysis times for the MOSAMP2
circuit are removed from the comparison, the decrease in transient itera-

tions and cpu times is only 2% and 4.5%, respectively.)

On the average, the reduction in cpu execution time with both the pred-

iction and bypass methods is of the same order as the savings described by

Circuit No BYPASS and No PREDCT BYPASS but No PREDCT
XCI | TRI XCI TRAN || XCI | TRI XCI TRAN
DIFPAIR 320 321 | 10.67 14.86 || 320 | 316 | 10.54 14.52
KTEST 0 560 0.00 15.69 0 | 580 0.00 15.69
RCA3040 | 331 128 | 24.32 14.12 || 331 | 339 | 24.18 37.67
UA709 378 313 | 42.02 49.85 || 386 | 314 | 42.49 48,29
UAT727 277 322 | 45.20 71.03 | 277 | 320 | 43.82 68.18
UA733 0 0 0.00 0.00 0 0 0.00 0.00
UA741 298 314 | 43.21 85.45 || 300 | 313 | 43.16 61.69
RTLINV 284 418 6.33 11.86 || 283 | 434 6.35 12.00
TTLINV 317 556 | 18.12 36.37 || 317 | 696 | 186.20 43.68
TTL74 318 521 | 16.16 34.29 || 319 | 529 | 16.24 34.63
TTL74S 338 503 | 20.62 40.43 | 290 0| 18.29 0.00
TTL74L 389 557 | 18.32 36.36 || 364 | 546 | 18.32 35.32
TTLS200 397 572 | 21.35 40.23 || 398 | 6810 | 21.39 41.90
ECLGATE | 284 510 | 19.36 47.48 || 264 | 506 | 18.09 48.92
MECLIII 293 524 | 28.75 68.98 || 293 | 575 | 28.30 73.49
SBDGATE | 343 508 | 35.41 65.98 || 330 | 511 | 34.32 65.53
CCSOR 0 0 0.00 0.00 0 0 0.00 0.00
DCOSC 0 0 0.00 0.00 0 0 0.00 0.00
CFFLOP 0 0 0.00 0.00 0 0 0.00 0.00
STCRC 0 236 0.00 3.90 0 | 238 0.00 3.87
CHOKE 0 303 0.00 7.00 0 | 303 0.00 7.01
ECLINV 0 481 0.00 23.42 0| 355 0.00 17.99
SCHMITT 0 418 0.00 20.89 0| 419 0.00 20.56
ASTABLE 0 820 0.00 26.72 0| 833 0.00 27.11
SATINV 726 0| 21.08 0.00 || 725 0| 2111 0.00
DEPLINV 225 0 6.39 0.00 || 225 0 8.386 0.00
RATLOG 0 397 0.00 39.87 0| 397 0.00 38.86
INVCHN 0 0 0.00 0.00 0 0 0.00 0.00
BOOTINV 0 247 0.00 22.41 0 | 247 0.00 22.06
MOSMEM 0 373 0.00 61.20 0| 371 0.00 80.21
MOSAMP1 | 310 0} 71.21 0.00 || 305 0 | 65.01 0.00
MOSAMP2 0 | 1504 0.00 | 565.68 0 ! gs8 0.00 | 358.78

Table 3.8b. Effects of Bypass on Convergence

68

Circuit

No BYPASS and No PREDCT

BYPASS and PREDCT

XCl | TRI XCI TRAN || XCI | TRI XCI TRAN
DIFPAIR 320 321 | 10.87 14.86 | 227 | 238 8.21 11.97
KTEST 0 560 0.00 15.69 0 | 560 0.00 15.88
RCA3040 | 331 126 | 24.32 14,12 || 238 | 317 | 18.56 34.88
UA709 378 313 | 42.02 49.85 || 297 | 249 | 34.45 41.11
UA727 277 322 | 45.20 71.03 || 217 | 242 | 37.02 56.93
UA733 0 0 0.00 0.00 0 0 0.00 0.00
UA741 298 314 | 43.21 85.45 || 272 | 214 | 40.87 48.46
RTLINV 284 418 6.33 11.68 || 235 | 364 5.60 10.68
TTLINV 317 556 | 16.12 36.37 || 258 | 536 | 13.84 35.18
TTL74 318 521 | 16.16 34.29 || 269 | 627 | 14.32 40.08
TTL74S 338 503 | 20.82 40.43 || 265 | 508 | 17.10 40.48
TTL74L 389 557 | 19.32 36.36 || 314 | 584 | 18.30 37.79
TTL9200 397 572 | 21.35 40.23 || 348 | 563 | 19.35 39.48
ECLGATE | 284 510 | 19.38 47.48 || 227 | 490 | 17.12 48.13
MECLIII 293 524 | 28.75 68.96 || 241 | 460 | 24.52 60.73
SBDGATE | 343 506 | 35.41 65.98 || 329 | 476 | 34.55 62.18
CCSOR 0 0 0.00 0.00 0 0 0.00 0.00
DCOSC 0 0 0.00 0.00 0 0 0.00 0.00
CFFLOP 0 0 0.00 0.00 0 0 0.00 0.00
STCRC 0 238 0.00 3.90 0 | 236 0.00 3.87
CHOKE 0 303 0.00 7.00 0| 261 0.00 8.46
ECLINV 0 481 0.00 23.42 0 [345 0.00 17.88
SCHMITT 0 418 0.00 20.89 0| 385 0.00 19.74
ASTABLE 0 920 0.00 26.72 0 | 886 0.00 26.54
SATINV 728 0 | 21.05 0.00 || 643 0| 18.86 0.00
DEPLINV | 225 0 8.39 0.00 || 214 0 8.02 0.00
RATLOG 0 397 0.00 39.67 0 | 384 0.00 36.49
INVCHN 0 0 0.00 0.00 0 0 0.00 0.00
BOQOTINV 0 247 0.00 22.41 0| 238 0.00 21.03
MOSMEM 0 373 0.00 61.20 0| 331 0.00 53.47
MOSAMP1 | 310 0] 71.21 0.00 j 271 0 | 57.80 0.00
MOSAMP2 0 | 1504 0.00 | 565.66 0 | 494 0.00 | 178.49 |

Table 3.8c. Effects of Prediction and Bypass on Convergence

70

“w

71

[Nage75] for Progra:.n SPICE2 with 80-bit floating-point arithmetic. For some
of the test circuits, however, the percentage reduction for SPUDS (with 32-
bit floating-point arithmetic) is 2-3 times greater. For example, transient
analysis cpu time reductions of 12%, 12%, and 8% are reported in [Nage75] for
the UA709, UA727, and ECLINV circuits; the savings in SPUDS are 17.5%, 20%,
and 247, respectively. Moreover, for the MOSAMP2 circuit, the transient
analysis time for SPUDS is reduced by 68% when both prediction and bypass
methods are employed. This major reduction definitely warrants the inclu-

sion of these methods in a minicomputer-based simulator.

3.5. Conclusions: 32-bit vs 84-bit Arithmetic

As mentioned earlier in this chapter, when the iterative solution process
does converge the results of running a simulation with SPUDS agree well with
the results obtained from running Version E.3 of Program SPICE2 on the 80-
bit wordsize CDC 6400 computer. The node voltages are identical to three
significant digits and frequently identical even to four places. Overall conver-
gence data are presented in Table 3.9. For each of the benchmark circuits,
the number of equations is shown, followed by the number of iterations for
the dc transfer curve, dc operating point, and transient analyses for SPUDS

and Version E.3 of Program SPICE2.

Program SPUDS converges for all of these circuits, and the number of
iterations required is comparable to the number required by SPICE2. The
coupling of 32-bit floating-point arithmetic with numerical pivoting, an aug-
mented MNA matrix, incremental refinement of the iterative solution, and
the threshold parameters describgd in Section 3.4 results in an effective cir-

cuit simulation tool.

Cirouit soqns |SEUDS (32-bit) || SPICE 2E (B0-bit)

ans I™%C1 | DC | TRI | XCI | DC | TRI
DIFPAIR 17 || 227 | 16 | 238 | 229 | 16 | 252
KTEST 9 o| 4560 o 4| =48
RCA3040 93 | 238 | 18 | 317 | 239 | 16 | 298
UA709 44 | 297 | 28 | 249 || 301 | 26 | 303
UA727 62 | 217 | 26 | 242 | 223 | 28 | 312
UA733 25 ol 8 ol ol 8 0
UA741 52 |l 272 | 268 | 214 || 303 | 28 | =289
RTLINV 13 | 235 | 10 | 364 || 240 | 10 | 378
TTLINV 29 | 258| 15 | 536 269 | 15 | 599
TTL74 29 | 269 | 14 | 827 | 277 | 18 | 534
TTL74S 34 || 285 | 17 | 508 265 | 17 | 558
TTL74L 29 || 314 | 20 | 584 [300 | 21 | 651
TTL9200 31 | 348 | 13 | 563{ 340 | 13 | 558
ECLGATE | 39 [227 | 8 |490 227 | 8 | 428
MECLII 51 | 241] 13 |460(243 | 13 | 389
SBDGATE | 57 | 320 | 20 | 476|271 | 21 | 484
CCSOR 13 ol 13 o ol 13 0
DCOSC 15 ol 13 off ol 13 0
CFFLOP 15 o| 8 ol o} 7 0
STCRC 5 ol 2|23 o 2| =246
CHOKE 8 o| o] 281 ol o | 357
ECLINV 20 ol 8|345)] o| 8| 381
SCHMITT 19 ol 7|38 ol 8| 384
ASTABLE 13 ol 9/ess| o 10| 1011
SATINV 8 | 843 | 30 0| 689 | 51 0
DEPLINV 8 |l 214 10 0l 223 | 11 0
RATLOG 15 o| 8 {3sel o 8| 441
INVCHN 11 ol 13 ol o 13 0
BOOTINV 10 0|12 {238 o 18| =238
MOSMEM 14 o| 8|33t o| 8| 334
MOSAMP1 | 25 | 271 24 ol 282 | 18 0
MOSAMP2 | 25 0l 66 |494] ol 90| 463

Table 3.9. Convergence Comparison: 32/84 Bit Precision

72

©.

CHAPTER 4

DATA STRUCTURES

The choice of data representations and structures has a major impact
on circuit simulation speed. The design of these structures is motivated
towards obtaining the maximum possible simulation speed since this
research is concerned, in part, with the development of a dedicated, inex-
pensive desktop simulation tool capable of producing analysis results for the
design engineer in a few minutes. A secondary goal is to minimize the
amount of high-speed memory required for the analyses, both in order to
minimize the cost of the overall system and to increase the size of circuit

which can be simulated within a given address space.

The coeflicient matrix for the system of linearized equations that is
repetitively solved during the analyses is very sparse; typically, more than
- 85% of its entries are zero. The internal representation for this matrix is

described in detail in Section 4.1.

The data structures which represent the input circuit description and
analysis 'state’ information required by SPUDS are a set of linked lists and
‘tables’ of contiguous memory, similar to the structures used in Program
SPICE2. Significant savings in memory requirements are obtained by data
restructuring, by some algorithmic changes, and by taking advantage of the
smaller wordsize of the minicomputer. These improvements are described in

Section 4.2.

73

74

Section 4.3 presents a breakdown of the total memory requirements of
SPUDS based on the functional needs of the program. A comparison is made

with the total main memory required by Version E.3 of Program SPICEZ2.

4.1. Matrix Structures

The coefficient matrix for the system of linearized circuit equations
corresponding to an average IC is very sparse [Berr71] [Nage75]; typically,
85% to 90% of the matrix entries are zero. Significant savings in both compu-
tation time and storage requirements can be achieved if advantfage is taken

of this sparsity.

Two basic types of o.perations are performed on this coefficient matrix.
First, rows and/or columns of the matrix are interchanged either as part of
the numerical pivoting described in Chapter 3 or in order to maintain spar-
sity. Second, matrix entries are modified as the system of linear equations is
solved. Hence, the data structure representing the coefficient matrix must
facilitate both rapid changes in matrix structure and fast access to any par-

ticular coefficient in the matrix.

In Version E.3 of Program SPICEZ, two different ways of representing the
matrix are used. Initially, as the structure of the coefficient matrix is esta-
blished by scanning over the input circuit description, the matrix is
represented in memory using an array of singly-linked lists, each of which
stored the nonzero column locations of a row in the matrix (see Figure 4.1).
Once the initial matrix structure is established, row- and column-reordering
is performed using the Markowitz criteria [Mark57] to maintain matrix spar-
sity. A mock, symbolic equation solution step is then performed to identify
all ‘fill-in’ matrix entries (terms which, though initially zero, become nonzero

as a result of the equation solution process). The ease with which these

75

AxX =D
11 0 o o o X [
0 8 0 o0-68 [Xe| |3
0 -2 8 -1 -3|xiXg|=15
-4 0 0 5 0 fx| I
o 0-5 0 7] x| I4
Row Pointer Links
1 [- 0
1
2 | - - 0
2 5
3 I - - > - 0

4 | - 0
1 4
5 | - - 0
3 5

Figure 4.1. Singly-Linked List Matrix Representation

76

changes in the structure of the matrix can be performed using the linked-list

representation motivated the use of this data structure.

Considerable overhead can be incurred, however, by always dealing with
the matrix using this linked-list representation. The FORTRAN programming
language is particularly ill-suited to high-speed manipulations of linked-list
structures. Since numerical pivoting is not used in Version E.3 of SPICEZ,
the structure of the matrix is determined once and for all after the circuit
description has been read and before any analysis is performed. Therefore,
once the final matrix structure is determined, the linked-list representation
is converted to a packed ‘row-column indexing’ notation which requires less
memory [Nage75]. Of equal importance is the fact that the ‘row-column
indexing’ notation allows immediate retrieval of the next nonzero row-
element in the upper triangle of the matrix and of the next nonzero column-
element in the lower triangle part. Both of these elements are precisely the
ones required to perform efficiently the LU decomposition step of the linear
equation sclution. However, with the row-column notation it is much more
difficult to make changes to the matrix organization. Figure 4.2, adapted
from [Nage75] shows a small example matrix with the row-column indexing
scheme included. Since the diagonal and right-hand-side terms are
presumed to be nonzero, no sparse-matrix pointers are used to access these
elements. All off-diagonal terms are stored in the AQ array, which is paired

with the I0 array. These two arrays are accessed with the aid of the two

index arrays IUR (Upper triangle Rows) and ILC (Lower triangle Columns).

The I row matrix elements are stored in locations AO(IUR(I)) through
AO(IUR(I+1)-1). If IUR(1)=IUR(I+1) there are no upper-triangle row terms in
the I** row. The column position is determined by the corresponding 10 array

value. For example, in the second row there is one off-diagonal entry since

AxX =D

11 0 0o o o Ky I
0 8 0 0 -8 [|3
0 -2 6 -1 -3|xXg|=15
-4 0 0 5 O X, 2
| 0 05 0 7 Xs 4
Otf-diagonal term storage
. matrix
index §| JIUR | ILC | I0 | AO term
1 1 4 5| -6 Aos
2 1 5 4 | -1 Agy
3 2 6 5| -3 Ags
4 4 B | 4| 4 Ay
5 4 8 3| -2 Aga
8 5 -5 Agq

Figure 4.2. Row-Column Pointer System

78

IUR(3)-IUR(2)=1; the column number of that entry, 5, is contained in
10(IUR(2)). The lower-triangular terms are accessed in an identical manner,

using the ILC array (instead of IUR) to index IO.

The use of numerical pivoting during analysis means that the structure
of the matrix may change at any time. In Program SPUDS the matrix is
therefore always stored using a linked-list representation. Chapter 5
describes the manner in which the extra overhead of manipulating the
matrix due to this representation is eliminated. The data structures are pat-
terned after the ‘threaded list' technique used in the SLIC [Idle71], NICAP
[Cerm71], and MICE [Cohe78] simulation programs. The example and
description of the method presented here is taken from McCalla [Mc;Ca]. The
formulation is illustrated in Figure 4.3. Unique storage locations are pro-
vided for each nonzero matrix term in the array VALU. The arrays IROW and
JCOL record the (i,j} coordinates of each nonzero term in the system of equa-
tions. The arrays IRPT and JCPT indicate, respectively, the row, i, of the next
nonzero element in a column (scanning down the matrix), and the column. j,
of the next nonzero element in a row (scanning to the right across the
matrix). The end of a column or row is indicated by a zero value for IRPT or
JCPT. Consider column one: IRPT(1)=6 indicates that the first nonzero entry
is at location 8, where IROW(8)=1 and JCOL(6)=1 indicate coefficient A,;. The
next entry in the column is pointed to by IRPT(6)=7; at location 7, IROW(7)=4
and JCOL(7)=1 indicate coefficient A,;. Finally, IRPT(7)=0 indicates that A4
is the last nonzero term in column one. Similarly, to scan across row 3 one

would begin at JCPT(3)=9, where IROW(9)=3 and JCOL(9)=2 indicate Aga, etc.

Note that this threaded list scheme is bi-directional. From any element,

one can immediately proceed to the element below it via array IRPT and to

o

AxX =b
11 o0 o o ol ¥ I
0 8 0 0-8/ Xz |3
0 -2 8 -1 -3|x[Xs|=15
-+ 0 0 5 of x| 2
[0 05 0 7 iy, 4

array matrix

index IRPT | IROW | JCOL | JCPT | VALU coefficient
1 8 - - B 1 b,
2 8 - - 8 3 by
3 11 - - 9 5 bg
4 13 - - 7 2 b,
5 10 - - 12 4 ba
8 7 1 1 0 11 Ay,
7 0 4' 1 15 ‘4' A41
8 9 2 2 10 8 Agp
9 0 3 2 1 1 ‘2 Asz
10 14 2 5 0 -6 Ags
11 12 3 3 13 6 Aag
12 0 5 3 16 -5 Asq
13 15 3 4 14 -1 Agy
14 16 3 5 0 -3 Ags
15 0 4 4 0 5 Ay
16 0 5 5 0 7 Ass

Figure 4.3. Threaded-List Matrix Representation

79

80

the element to the right of it via array JCPT. This capability, as noted previ-
ously, greatly facilitates the implementation of Gaussian elimination for

equation solution.

The actual representation used for solving the linearized system

Axx=Db (4.1)
is shown in Figure 4.4. The right-hand-side vector b is appended to the
coefficient matrix A as column N+1, so that A; x4 = by, Agxsy = ba, ete. The
order of the overall matrix is then Nx(N+1). In SPUDS, an additional ‘ground’
column is also added to this system as column N+2 to implement the zero
row-summation property of the matrix. This additional column is added at
the far right-hand side of the matrix, rather than at the left-hand side,
because the elements must be included in the steps taken as part of the
Gaussian elimination to ensure that the sum of the values in any row of the
augmented matrix remains zero during the solution step. This last column is
other‘wise ignored; in particular, it has no effect on the sparsity or reordering

computations.

Each time a numerical pivoting step is performed, new matrix fill-in
terms must be identified and allocated a location in the appropriate linked
list. The effects of a subsequent row/column reordering can include the
elimination of the need for previously-allocated fill-ins. These unnecessary
terms could be eliminated only by starting over from the original matrix
structure and re-establishing the positions of all required fil-ins. For-
tunately, in practice, more than one numerical pivoting step is not usually
required. Therefore, no search for or re-use of such fill-ins is performed by
SPUDS. The matrix structure at the end of the dc analysis, including any

fill-in terms which may have been added, is used as the starting structure for

o

1
2
3
: A X X = b
N
123..N

Actual linear system

g

r

o

A b 0

n

d

123..N N+1N+2

Figure 4.4. Augmented Matrix Representation

81

82

a subsequent tranéient analysis of the same circuit. Once an element is
added to the coeflicient matrix for any analysis, the term remains for the

rest of the program execution.

4.2. Storage Reduction Techniques

1t is desirable to reduce the high-speed memory requirements of a simu-
lation program. Since accesses to memory require more time than do typi-
cal operations in the CPU, a reduction in data structure sizes can mean a
reduction in the number of r;afetences to memory and hence an increase in
program speed. Also, smaller usage of memory for a given circuit means
that larger, more complex circuits may be analyzed in a given amount of

memory.

The data structures used to represent the input circuit description in
Program SPUDS are a set of linked lists similar to those used in SPICE2
[Cohe78]. Savings in the amount of memory required by these lists in SPUDS
is due primarily to the smaller wordsize of the minicomputer, which permits
input circuit variables to be stored easily in a smaller number of bits of
memory than on larger-wordsize computers. Significant savings in memory
requirements relative to SPICE2 have been obtained by data restructuring,
by some algorithmic changes, and by taking advantage of the smaller word-

size of the minicomputer.

In Program SPICER, intermediate analysis results and state information
for energy-storage elements are stored in the 'LXi' (LX0, LX1, ...) tables.
Each ‘'table' is a dynamically-allocated contiguous region of memory. Fig-
ure 4.5 shows the contents of the LX0 table for a MOS transistor; both dc
operating-point information, e.g. drain current and transconductance, and

charge-storage information (capacitor charges and currents) are stored.

"

++4+ ++++

+

+
r++
QOO

+11:

+12:
+13:
+14:
+15:
+16:
+17:
+18:
+19:
+20:
+21:

by QOh GBEO

(bulk-drain voltage)

(drain current)
(bulk-source diode current)
(bulk-drain diode current)

{(drain-source conductance)

(bulk-drain conductance)
(bulk-source conductance)

(charge on bulk-drain capacitance)
(current flowing through Cyq)

Figure 4.5. SPICE2 LXO Table Contents for MOS Transistors

83

84

The number of these blocks of memory is determined by the type of analysis
and, for transient analysis, by the type and order of method used for numeri-

cal integration.

For the multi-point analyses such as transient analysis, the LXO table
contains the results of the current iteration while the other tables (LX1,
LX2....) contain copies of previous contents of the LX0 vector (the solutions
found at previous sweep points). All of this information together is sufficient
to ‘back-up’ to the previous sweep point if the solution at the current point is
rejected (perhaps due to excessive local truncation error). The initial guess
at the solution to a new sweep point is obtained by linear extrapolation from
the two previous points, in the same manner as the case of dc transfer curve
analysis. For example, if h;4 is defined as the ratio of the timesteps used at
the current and previous timepoints in transient analysis, the initial guess
for the solution to the new timepoint is obtained from

LX0 = (1+h,4)xLX1 = h,, xLX2 (4.2)
Therefore, a complete ‘back-up' requires the solutions from the two previous
sweep points, which are stored in the LX1 and LX2 tables. Finally, if at least a
second-order method for numerical integration is used in transient analysis,
three previous values of the energy-storage element data (LX1, LX2, and LX3)
are required in order to estimate the local truncation error effectively.

Therefore, Program SPICEZ2 keeps four 'LXi’' tables (LXO through LX3) when

transient analysis is performed.

_ In Program SPUDS, the LXi tables are split into two parts. The
operating-point information is stored in a separate set of tables, LQPTi, and
only the data pertaining to energy-storage elements is retained in the LXi

tables. Figure 4.6 shows the revised LXi and LQPTi table contents for MOS

LQPTi +0: Vyq (bulk-drain voltage)
+ 10 Vy
+2: Vg
+ 3: Vsd
+4: 14 (drain current)
+ 5 Ly (bulk-source diode current)
+8: L4 - (bulk-drain diode current)
+ 7 8gm
+8: g4 (drain-source conductance)
+9: Zmbs
+10: gpa (bulk-drain conductance)
+11: gy (bulk-source conductance)
LXi +1: Cpg: q (charge on bulk-drain capacitance)
+2: Cug:i (current flowing through Cyy)
+3: Cpeiq
+4: Cypgi
+5 Cu,iq
+68: Cpli
+ 7 Ceaiq
+8 Cpgi
+9: Cpigq
+10: Cgb‘ 1

Figure 4.6. SPUDS LXi and LQPTi Table Contents for MOS Transistors

86

transistors. Memoz:y requirements are reduced due to two factors. First, the
copy of the operating-point information that was part of the LX3 table but
was never referenced is no longer stored. Conceptually, this change elim-
inates the need for an LQPT3 table. Second, the LQPT2 table can be omitted
after careful examination of the prediction step. Just after the analysis at a
particular sweep point has converged and before the analysis of the following
point has begun, the LQPTO table contains the device operating-point infor-
mation for the sweep point just solved. Tables LQPT1 and LQPT2 contain the
corresponding data for previous sweep points. If the new sweep point has
been accepted, the contents of LQPT2 are replaced by the contents of LQPT1,
the contents of LPQT1 are replaced by the contents of LPQTO, and the predic-
tion step

LQPTO = (1+h.q)XLPQT1 = h,,,xLPQT2 (4.3)
is used to compute the initial guess for the solution to the following sweep
point. If the new sweep point is not accepted, the timestep is adjusted and a

new prediction calculation is made.

The need for the third copy of the device operating-point i.nfolrmation
(the LQPT2 table) is eliminated by a small algorithmic change in this predic-
tion step. If the new sweep point is accepted, the contents of the LQPTO and
LQPT1 tables are exchanged. This swap puts the information from the sweep
point just solved into LQPT1 and the preceding sweep point data into LQPTO.
The prediction step then becomes

LPQTO = (1+hp)XLQPT1 = hpexLQPTO (4.4)
which is equivalent to the formulation using LQPT2 in Equation (4.3), since
the right-hand-side of Equation (4.4) is eva.luated before any assignment is
made to the left-hand-side of the statement. The only difficulty with this

modification arises if the newly-predicted sweep point is subsegquently

[#]

87

rejected; since the twice-removed sweep-point data is no longer stored, the
prediction step of Equation (4.4) cannot be applied. An additional flag,
PREDCT, keeps track of this situation. If the newly-predicted sweep point is

rejected, the initial guess is simply taken to be the value of the previous

sweep point, and no linear extrapolation calculation is performed!. No
change in analysis iteration counts is observed when this change in the pred-

iction algorithm is used.

One aspect of designing data structures for a specific task is the trade-
ofl between memory requirements and program performance. In one area,
however, element storage requirements in SPUDS have been reduced with
virtually no effects on simulation speed. Each input element contributes cer-
tain values to different locations in the equation coefficient matrix. For
example, a conductance g connected between nodes a and b in a circuit adds
to the matrix coeflicients in the (row, column) positions (a,a), (a,b), (b.a),
and (b,b). Since the matrix is sparse, only the nonzero entries are stored, in
a one-dimensional vector A In a high-level language it is a relatively time-
. consuming process to determine the location in the A-vector which
corresponds to some (i,j) matrix entry. Therefore, in most circuit simula-
tors, e.g. SLIC, SINC, SPICEZ2, MSINC, this mapping is performed exactly once,
after the matrix structure has been established. Memory space is allocated
for each circuit element to hold pointers to each location in the one-
dimensional vector to which the element contributes. The number of such
locations is a significant part of the total per-element storage; for the MOS
device model in SPICE2 (and SPUDS), there are 22 such locations for each

MOS transistor. In SPUDS, the special instructions deveioped for incremental

IThis simple prediction methed, in which the soiution at the previous sweep point is used as
the initial guess for the new sweep point, is the method used in Program SPICEL.

88

loading of the coefficient matrix evaluate this mapping function for each
matrix element loaded, at a negligible overhead. As a result, this matrix

pointer space is eliminated from the input element storage in SPUDS.

Finally, memory savings also arise as a byproduct of the smaller word-
size of the minicomputer. Circuits for which a dedicated small computer is
suitable are usually small enough that a single 16-bit integer is sufficient to
represent node numbers, matrix locations, and most memory addresses.
The memory in several large mainframe computers [CRAY76] [CDC79] can be
accessed only as 80- or' 84-bit words, which means that the storage require-
ments for these values are much larger than for the minicomputer.
Significant savings also result, for the same reason, from the use of 32-bit

floating-point arithmetic.

4.3. Comparison of Memory Requirements

It is difficult to compare memory requirements of different circuit simu-
lation prograins because differences in device model complexity and pro-
gram organization can radically alter storage needs. An additional obstacle
to any comparison is the difficulty of _'deter'mining what the actual memory
requirements are for a particular simulation program. For example, Version
D.0 of Program MSINC prints its memory requirements only for the dc
operating-point analysis. MSINC requires 4755 16-bit words of data space to
perform a dc operating point analysis of the MOSAMP2 benchmark circuit;
SPUDS requires only 4137 words for the same analysis. However, 1042 words
of the total for SPUDS contain the instructions for the Linear Equation Solu-
tion Machine; if this space is not inciuded. the data space requirements of
SPUDS are 35% less than those of MSINC. In order to minimize the effects of

device model and structural differences between programs, the principal

1]

89

comparisons made in this section are between SPUDS and Version E.3 of

SPICE2, which have similar program structures and identical device models.

A breakdown by function of the memory requirements of SPUDS is
shown in Table 4.1. The table shows the number of 8-bit bytes of memory
required to store the information required to perform transient analyses on
several representative test circuits. The ‘storage type' column identifles the
purpose of each type of information. ‘Input elements' is the memory
required to store the input circuit description; ‘Swap data’ records the row-
and column-swaps performed on the coeflicient matrix. ‘LXi tables’ refers to
the energy-storage element data necessary for transient analysis, and
‘LQPTO+LQPT1' is the nonlinear-device operating-point information. Finally,
‘MACINS' is the memory required for the generated instructions of the Linear
Equation Solution Machine (LESM) described in Chapter 5. Also shown in the
table is the memory required for the same circuits in Version E.3 of SPICE2

running on the CDC 8400 computer (which has a 60-bit wordsize).

Several factors should be noted in iooking at this table. First, the device
models in SPUDS and Version E.3 of SPICE2 are identical and require the
same number of device parameters and circuit nodes. Second, the version of
SPICE2 referenced uses the ‘row-column indexing' scheme for storing the
sparse matrix structure, which requires less memory than the linked-list
approach in SPUDS. Finally, SPUDS stores all output variables to be printed
and/or plotted in a disc file, while SPICE2 stores them in memory. For the
test circuits, however, no more than two thousand bytes (2KB) of memory on

the CDC 6400 are used for output variable storage.

On average, SPUDS requires only a third as much memory as SPICE2 for

the same analyses of the same circuits. The data indicate that the 32000 16-

Storage type DIFPAIR ‘ UA741 | MECL3 | BOOQTINV | MOSAMP2
Program SPUDS:
Input elements 1208 2472 1958 1052 2584
Swap data 218 638 824 132 312
Matrix pointers 728 3160 2768 432 1840
.| Matrix values 364 1580 1384 216 920
LXi tables 384 2144 1184 896 4384
LQPTO+LPQT1 256 1408 800 480 2592
MACINS 578 3596 2964 340 2084
Total 4488 160684 | 12712 4418 15584
w
Program SPICE2:
Total | 13005 | 43125 | 31035 | 14025 42660

Table 4.1. Memory Usage (Bytes) for Transient Analysis

80

[

91

bit words of data s;;ace available on the minicomputer are suflicient for the
analysis of 100-200 device circuits (depending on circuit complexity and type
of analysis), which is enough for the analysis of building-blocks or cells in
VLSI design. Since this research is aimed at providing simulation response

times in at most several minutes, the amount of memory available is not a

consiraining factor.

CHAPTER 5

DEDICATED HARDWARE

The optimal performance from a computer-based simulator results
when the algorithms used and the hardware available are well-suited to each
other. More than one order-of-magnitude improvement in the ‘speed of
several sub-tasks in IC simulation can be achieved through the use of
special-purpose instructions tailored for those parts of the analysis which are

especially time-consuming.

For a given set of algorithms implemented in a simulation program, a
performance measurement tool is necessary to determine accurately those
parts of the simulation task in which the majority of the total computation
time is spent. Section 5.1 describes the SPY program, which is used to
obtain data on just where a program spends its time. The SPY program is
the source of all measurement data in this chapter regarding the relative
importance of different parts of the circuit analysis task. In order for the
comparisons of CPU time to be unambiguous, all percentage breakdowns
given in this chapter of CPU time during analysis are fractions of the total

time spent in analysis, unless explicitly stated otherwise.

The design and construction of the dedicated computer hardware neces-
sary to implement the special high-level operations described in this chapter
are presently very time-consuming processes. In order to evaluate the

effects of such hardware in a short time period, a user-microprogrammable

g2

[/ 3

83

minicomputer is uéed to examine the eflects of providing certain special-
purpose instructions for the use of the simulation program. The use of
microcode to emulate the dedicated hardware allows great flexibility and
speed in changing the instruction set and data formats of the basic com-
puter. Changes in these formats are made based on the conclusions reached
in previous chapters regarding computer architectures, simulation algo-
rithms, and data structures. The architectural aspects of the use of micro-
code for the minicomputer used as a test vehicle for this research are

described in Section 5.2.

Analysis of the overall simulation time for code written solely in FOR-
TRAN shows that on the minicomputer, the linearized equation solution step
is the single most CPU-time-consuming part of the entire analysis. Particu-
lar attention is therefore given to this task, and special data structures and
machine instructions are presented which significantly increase the overall
solution speed. Section 5.3 describes this equation solution portion of the

analysis problem.

Other tasks performed during analysis increase in relative importance
once the equation solution time is reduced, Section 5.4 describes several of
the more time-consuming portions of the problem, such as incremental load-
ing of terms in the coefficient matrix. The improvements obtained by adding

appropriate special-purpose instructions to the minicomputer are detailed.

Finally, Section 5.5 presents a2 summary of the improvement in sirmula-
tion performance obtained by using all of the special-purpose instructions
and data formats described previously in this chapter. Although the actual
magnitudes of CPU times for analysis reflect the limitations of the physical

hardware of the minicomputer used for this investigation, the relative

94

improvements are representative of the speedup possible for any compar-

able computer system.

The first version of SPUDS is used throughout this chapter as a refer-
ence against which speed improvements are measured. This version is writ-

ten solely in FORTRAN and uses 84-bit precision for all floating-point arith-

metic and data storage!. The starting point for this version of SPUDS is Ver-
sion E.3 of Program SPICEZ2, with only those changes minimally required so
that the code executes successfully on the minicomputer. No changes to
device model equations are made in SPUDS so that simulation accuracy can
be verified readily. All improvements in simulation speeds are stated rela-

tive to this original version of SPUDS.

5.1. Performance Measurement

The cost effectiveness of IC simulation depends to a large extent on the
amount of computer resources required. Because the simulation task
involves relatively little input or output but a large amount of computation,
the amount of CPU time required is a good measure of simulation cost.
Compute-bound programs usually spend the majority of their CPU time in
performing the computations of relatively small parts of the program code.
A program analyzer which identifies those small parts efficiently helps to

focus effectively efforts to improve program performance.

Three different methods are used commonly to determine where in the
code a program spends its CPU time. First, the source code may be aug-
mented so as to record the elapsed CPU time just before and just after each
section of code to be monitored; the difference in readings is used to esti-

mate the time spent in each section. This method is effective for obtaining

la 32-bit version of SPUDS is used in eerlier chapters of this report

r

85

data on large secti;:ms of code (hundreds of statements) but two factors
prohibit the use of this method for obtaining finer detail. First, even if the
insertion of statements to record the elapsed CPU time is automated, the
accuracy of the system (hardware) clock is usually insufficient to measure -
precisely the CPU time needed to execute individual program statements.
Second, the finer the measurement interval the greater the total CPU time

required, since CPU time is itself required to record the elapsed CPU time.

A second way to ascertain where a program spends its time is to trace
or simulate program execution one instruction or statement at a time and to
keep record of how.many times each instruction/statement is executed.
This simulation is performed by another program which emulates the actions
of a computer executing the program of interest. However, this method is
practical only for very small amounts of program code, since the typical
CPU-instruction simulator is two to three orders-of-magnitude slower than
the actual computer being simulated. For large circuit simulation programs

this tracing of large sections of code is too expensive to be practical.

A third approach to monitoring program execution is to sample the
value of the program counter (PC) of the CPU while the program is in execu-
tion. The PC contains the memory address of the current instruction. This
statistical approach can be as accurate as either of the two methods
described previously as long as enough samples are taken. In addition, since
actual program execution is°monitored, the PC samples are weighted
- automatically by the relative instruction execution times. This weighting is
desirable since what is sought is not just how many times a given instruction
is executed but rather the product of the number of executions of each

instruction and the cost (CPU time) of its execution.

96

The SPY program?® implements the third (statistical) monitoring tech-
nique in an efficient manner. SPY executes concurrently with the program
being r:rionitored. but at a higher scheduling priority. Every 10ms (the reso-
lution of the hardware time-of-day clock) SPY reads the PC of the program of
interest and records the data by incrementing the appropriate histogram
bucket in memory. The execution of the SPY program itself does modify the
CPU time available to the program that SPY monitors, but since SPY uses a
negligible amount of CPU time itself and does access any peripheral equip-
ment (such as disc), the disturbance is small. Repetitive SPY runs yield
statistics which agree with each other within 1%. SPY can display interac-
tively the histogram data on a graphics terminal or write the gathered statis-

tics to a disc file for later output on a line printer or 4-color pen plotter.

5.2. Microcode Access

The Hewlett-Packard 1000 F-Series.ls-bit minicomputer is used as a test
vehicle for the investigation of special-purpose computer instructions
tailored to the analysis tasks because its microprogramming structure is
well documented, and the use of the machine with user-written microcode is
supported by Hewlett-Packard with translation and utility programs. This
section describes the characteristics of this minicon;puter which are

relevant to the work presented in the rest of this chapter.

All instructions on the HP 1000 are implemented through the use of
microcoded subroutines. Conceptually, therefore, there is no difference
between those instructions provided by the manufacturer (the ‘base’ instruc-

tion set) and those instructions which are developed by a user.

2deveiored by the author in 1978

r

g7

The micro-inséruction cycle time for the HP 1000 ranges between 175ns
and 280ns when no reference is made to main memory. If 'high-speed’
memory is used, memory references can require as much as 420ns. Typical
assembly-language level instructions which reference main memory require
Nius for execution. The F-Series minicomputer has an asynchronous
hardware floating-point arithmetic unit which is read and written directly by

the microprocessor. All data paths are 16 bits wide.

The base instruction set supports user-written microcode through a spe-
cial form of the subroutine call instruction. For example, a new instruction
NEW can be developed first as a FORTRAN subroutine and can be invoked as

CALL NEW (argument list).
When the microcoded version of NEW is available, the loader can be directed
to replace all occurrences of subroutine call instructions which reference

the symbol NEW by the appropriate micro-subroutine call instruction.

The nominal overhead required by the base instruction set to pass con-
trol to a user-written micro-subroutine is 1.3us. A much greater additional
overhead arises as a side-effect of circumventiné the memory mapping
hardware limitations of the HP 1000. The minicomputer has a dynamic
memory-mapping system which allows up to a total of 2 million bytes (2MB)
of main memory to be addressed. However, all non /0 memory references
go through one of two sets of map registers called SYS and USR, each of
which permits access to a 64 thousand byte (64KB) portion of the 2MB total.
Access to an arbitrary location in the 2MB address space is performed by
changing one of the sets of mapping registers to include the desired location

within the mapped 85KB portion of memory. The standard HP operating sys-

98

tem? uses the SYS i’nap for the memory-resident part of the operating sys-
tem and the USR map for the memory needed by a user program. In order
to have sufficient data space to permit simulation of circuits with 100-200
devices, the micro-subroutines developed for SPUDS which implement
special-purpose instructions first save the SYS mapping registers and then
change the SYS map to address a separate 65KB data area in main memory.
The SYS map is restored to its original condition just before the micro-
subroutine exits back to the microcode which implements the base instrue-
tion set. The time required to save, modify, and finally restore the SYS map-

ping registers is 883us.

A smaller number of more powerful special-purpose instructions have
been designed as a result of this large overhead, rather than a larger number
of simpler instructions. In all cases, an attempt is made to limit the number
of times that a special-purpose instruction must be invoked. In several
instances, instructions are designed to accept an arbitrary number of argu-

ments in a single call to achieve this goal.

5.3. Equation Solution

The data obtained by running the SPY program as a monitor of the
behavior of SPUDS with all-FORTRAN code and either 84- or 32-bit floating-
point operations is summarized in Table 5.1. The total CPU time spent in
transient analysis can be identified as 30% in solving the linearized system of
circuit equations, 15% in estimating the local truncation error (LTE), and 50%
in the 'device modelling’' routines. These ‘device modelling’ routines i:erform
several functions for each nonlinear device in the circuit. The device param-

eters are gathered together from different locations in memory for fast

SRTE-IVB

[/ 4

W

Transient analysis CPU time breakdown

Percentage

Task

50£10
20
15
15

30+10

15+5

Device modelling
gather model parameters
evaluate model equations

incrementally load matrix

Linear equation solution

Estimate Local Truncation Error (LTE)

Table 5.1. SPY Data: All-FORTRAN SPUDS

99

100

model equation evéxlual;ion. A ‘bypass’ calculation is performed to determine
whether device /equation evaluation is in fact necessary. After model evalua-
tion, the linearized model components are saved for possible use in a later
‘bypass’. Finally, the coeflicient matrix is incrementally loaded with the con-
tributions from the device. Of the total analysis time, approximately 207 is
spent gathering parameters, 15% in model evaluation, and 15% in matrix

loading.

The percentage variation shown in the table is due primarily to
differences in device model complexity. For example, although the MOS dev-
ice model is considerably more complex than the bipolar model, an MOS cir-
cuit usually does not have significantly more nodes than does a bipolar cir-
cuit. Therefore, relatively more time is spent in the device modelling rou-

tines for MOS circuits than for bipolar ones.

This data indicates that the analysis task which requires the most CPU
time and which cannot readily be decomposed into simpler operations is that
of linear equation solution. This section presents the modifications to the
solution code which increase solution speed through the use of special com-

puter instructions.

Section 5.3.1 describes two preliminary test analyses which measure the
extent to which the minicomputer simulation speed‘depends on idiosyn-
crasies of the software or hardware machine architecture for one particular
computer. The derivation of an optimally fast implementation of the equa-
tion solution task is presented in Section 5.3.2. The resulting ‘equation solu-
tion' machine is detailed in Section 5.3.3, and various measures of machine
speed are presented in Section 5.3.4. The costs of using this solution

machine are noted in Section 5.3.5. Finally, the dependence of solution tim-

"

101
ings on the number of circuit equations is examined in Section 5.3.8.

5.3.1. Machine Idiosyncracies

Two test runs are described in order to measure possible speed penal-
ties inherent in the softv«fare and hardware architecture of the HP minicom-
puter, so as to distinguish those speed improvements which can be attri-
buted to peculiarities of one particular minicomputer from those improve-
ments due to more effective use of available hardware. First, Table 5.2 shows
the CPU time requirements when all-FORTRAN LU decomposition and
forward- and backward-substitution routines are re-written in assembly
language. This modification measures the extent to which poor code genera-
tion from the FORTRAN compiler supplied by Hewlett-Packard contributes to
less-than-optimal performance. The columns in the table headed '‘DCX' and
‘TRAN’ give the CPU time, respectively, for the dc transfer curve and tran-
sient analyses. On the average, only a 107 reduction in analysis time is

obtained from this recoding of the solution routines.

Part of the base instruction set supports the use of an 'Extended
Memory Area' (EMA) data area distinct from regular user memory ﬁrhich can
be used as a block of auxiliary storage by an application program. SPUDS
uses a 32000-word block of EMA to hold all data needed for its circuit ana-
lyses. Access to EMA data normally requires the use of special microcoded
instructions supplied by Hewlett-Packard. The costs of this access are shown
in Table 5.3, which presents the results of adding special EMA-access micro-
coded instructions tailored to the memory referenced behavio;:' of SPUDS.
These special microcoded access routines for the assembly-language level

references to EMA reduce the total analysis time by 257.

102

Equation solution with
Circuit FORTRAN assembly language
DCX TRAN DCX TRAN
DIFPAIR 21.37 27.94 19.87 26.19
KTEST 0.00 12.40 0.00 11.21
RCA304 52.52 84.99 48.02 78.62
UA709 114.64 | 140.33 || 100.23 125.68
UA727 105.23 | 198.68 94.23 179.74
UA733 0.00 0.00 0.00 0.00
UA741 136.71 | 154.22 | 121.53 141.81
RTLINV 14.42 25.06 13.47 23.42
TTLINV 41.28 | 114.33 37.14 103.19
TTL74 42.68 99.55 38.41 90.48
TTL74S 50.88 | 132.84 45.47 119.38
TTL74L 48.39 | 123.75 41.53 112.04
TTL920 54.13 0.00 47.88 0.00
ECLGATE 47.18 | 118.60 42.59 106.21
MECLIII 73.81 | 150.53 65.67 135.92
SBDGATE 84.94 | 193.47 75.20 174.15
CCSOR 0.00 0.00 0.00 0.00
DCOSC 0.00 0.00 0.00 0.00
CFFLOP 0.00 0.00 0.00 0.00
STCRC 0.00 7.57 0.00 7.35
CHOKE 0.00 16.88 0.00 16.28
ECLINV 0.00 47.95 0.00 44.61
SCHMITT 0.00 52.63 0.00 48.82
ASTABLE 0.00 88.73 0.00 80.38
SATINV 40.43 0.00 38.59 0.00
DEPLINV 13.15 0.00 12.70 0.00
RATLOG 0.00 95.30 0.00 | - 91.18
INVCHN 0.00 0.00 0.00 0.00
BOOQOTINYV 0.00 44,72 0.00 43.18
MOSMEM 0.00 | 115.99 0.00 111.82
MOSAMP1 | 150.19 0.00 j| 139.77 0.00
MOSAMP2 0.00 | 399.89 0.00 379.45

Table 5.2. Solution Speedup Due to Assembly Language

(A

Equation solution with

N Special EMA
Circuit assembly language microcode
DCX TRAN DCX TRAN

DIFPAIR 15.87 26.19 18.34 24.47
KTEST 0.00 11.21 0.00 9.89
RCA304 48.02 78.82 43.00 71.87
UA709 100.23 125.68 82.36 | 108.29
UA727 94.23 179.74 81.40 | 158.37
UA733 0.00 0.00 0.00 0.00
UA741 121.53 141.81 103.39 | 128.27
RTLINV 13.47 23.42 12.48 21.70
TTLINV 37.14 103.19 32.48 91.68
TTL74 38.41 90.48 33.44 80.56
TTL74S 45.47 119.36 39.28 | 104.18
TTL74L 41.53 112.04 36.00 99.15
TTL920 47.68 0.00 40.14 0.00
ECLGATE 42.59 108.21 37.43 94.83
MECLIII 85.87 135.92 56.41 | 119.44
SBDGATE 75.20 174.15 64.01 | 151.80
CCSOR 0.00 0.00 0.00 0.00
DCOSC 0.00 0.00 0.00 0.00
CFFLOP 0.00 0.00 0.00 0.00
STCRC 0.00 7.35 0.00 7.12
CHOKE 0.00 16.28 0.00 15.28
ECLINV 0.00 44.61 0.00 41.20
SCHMITT 0.00 48.62 0.00 44.48
ASTABLE 0.00 80.38 0.00 71.29
SATINV 38.59 0.00 37.38 0.00
DEPLINV 12.70 0.00 12.53 0.00
RATLOG 0.00 91.19 0.00 89.18
INVCHN 0.00 0.00 0.00 0.00
BOOTINV 0.00 43.18 0.00 42.78
MOSMEM 0.00 111.82 0.00 | 111.03
MOSAMP1 | 139.77 0.00 134.10 0.00
MOSAMP2 0.00 379.45 0.00 | 387.87

Table 5.3. Time Reduction Due to EMA Microcode

103

104

5.3.2. Optimal Implementation

The algorithmic steps needed to perform the LU decomposition part of
the equation solution step is shown in Figure 5.1. Because the two-
dimensional matrix is stored as a non-sparse one-dimensional vector, the Ay
coeflficients cannot be accessed directly. For each arithmetic operation in
each iteration, the j"h row must be searched for the jk"ll entry. (If the
coeflicient is in the upper-triangular part of the matrix the k*t column may
be searched instead since the average search length is reduced.) This
‘LOCATE' effort may require searching through linked lists, bit maps, or row;
column indexing schemes, and this searching requires a considerable
amount of CPU time. .Alternatively. the locations of all the Ay coeflicients
can be found once and stored in an auxiliary MEMO array, at the cost of addi-

tional memory.

None of these approaches, however, leads to an optimally fast equation
solution because of the additional machine operations that are required. A
substantial part of the computation expressed in Figure 5.1 has nothing
directly to do with the desired result of obtaining the LU factorization of the
coefficient matrix. Consider the normalization step '

Ay = Ay / Ay
For a typical register-architecture computer, the minimum instruction

sequence to accomplish this operation is

LOAD Ay into R1 (register #1)
DIVIDE R1 by Ay (with quotient in R2)
STORE R2 into Afi

The time required by these few instructions is completely overshadowed by

the time necessary to perform all the bookkeeping actions (incrementing k

N

for (i=1;i<=N-1; i=i+1) {
for (j=i+1; j<=N; j=j+1){

LOCATE jit? and ii*® entries
in coefficient matrix A

Ay=Ay /Ay

for (k=i+1; k<=N; k=k+1) {
LOCATE jkt, jith, and ik*® entries

in coefficient matrix A

Ape = Ape — ApXAy

Figure 5.1. LU Decomposition Algorithm

(v

105

106

and comparing witl; N, searching for Ay, etc.) of the LU decomposition. The
number of references to memory is an especially critical parameter, since
central memory is much slower than the CPU speed. The bookkeeping
operations require many more memory references than are needed to per-

form the actual LU factorization.

The fastest possible equation solution for a typical register-architecture
computer is obtained when a set of machine instructions are executed which
do nothing other than solve the linear system of equations. Such a set of
instructions can be produced by generating FORTRAN source code in which
the loops are unravelled and all array references use constant subscripts.

Such code has the form

LI

A(23) = A(23)—A(4)xA(8)
A(10) = A(10)/ A(7)

..

where the constant subscripts (23, 4, etc.) reflect the locations of the
appropriate Ay terms. This generated code can then be processed by a FOR-
TRAN compiler to obtain the desired machine instructions. Alternatively,
because the structure of the arithmetic operations is quite simple and lim-
ited in scope, the desired machine instructions can be generated directly,
avoiding the CPU time necessary for a compilation step. The generated code
can be viewed as an extension of the MEMO array concept. Rather than just
storing the location of each Ay in MEMO, the arithmetic operations as well as

the location of the matrix elements are stored together (as machine instruc-

tions).

3

107

This ‘code gene;'ation' technique was first suggested by Gustavson, et al
[Gust87]. The principal difficulty with this method is its potentially large
requirements for memory. The special-instruction format described in the
next section is designed specifically to provide a very high instruction den-

sity.

5.3.3. Solution Machine

In view of the need for high instruction density and the relatively large
overhead incurred as part of invoking any micro-subroutine implementing a
‘special’ instruction, a ‘Linear Equation Solution Machine' (LESM) is
described which has its own program counter and instruction set. Once the
structure of the matrix is established, the FORTRAN subroutine CODGN gen-
erates a loop-free and location-independent sequence of instructions for the
LESM by performing a symbolic Gaussian elimination. Whenever the circuit
equations need to be solved, the LESM is invoked by a single subroutine call
and is passed the locations of the matrix pointer structures and the gen-
erated instructions. Upon completing the solution process, the LESM exits
back to the microcode which simulates the nominal base set instructions of

the minicomputer.

The LESM has 4 operation codes, corresponding to the four operations
performed during the equation solution process. Generically, these opera-

tions are:

108

(0) IF (ABS(PIVOT) .LT. EPSILON)
<error: force new pivot>

(1) A=A/B

(2) A=A-XxC
(X = most recently computed quotient)

(3) A=A-BxC

Operation (0) tests whether the matrix coefficient about to be used as a pivot
value is large enough to avoid numerical ill-conditioning difficulties. Opera-
tions (1) and (3) perform the indicated arithmetic operations. Operation ()
is included for the sake of efficiency; during the inner-loop iteration in the

LU decomposition step

for (k=i+1; k<=N; k=k+1) {
Ap = Apj—AyxAg
]
the value Ay (X) is stored in a high-speed register to avoid numerous
unnecessary references to memory. A fifth operation, HALT, which tells the
LESM to exit back to the nominal machine base-instruction-set microcode, is

encoded as Operation (3) with an invalid operand address.

The instruction format for the LESM is shown in Figure 5.2. The four
operation codes require two bits of encoding. There is a maximum of 32K
16-bit words of data space for SPUDS, due to the limitations of the dynamic
mapping addressing hardware on the HP 1000 computer. Since a minimum
of 32 bits (2 words) is used for floating-point arithmetic, the maximum real-

valued array index, I, for any matrix coefficient is

1=232768/2

= 16384

which can be represented in the 14 bits remaining in a single 16-bit word.

Operation (0): IF (ABS(PIVOT) < EPSILON)

error: force new pivot

15 14 13 12 11 10 9 8 7 B S5 4
| o 0 | < address of PIVOT >
Operation (1): A=A/ B
15 14 13 12 11 10 9 8 7 6 5 4
0 1| < address of A>
<address of B >
Operation (2): A=A-XxC
15 14 13 12 11 10 9 8 7 B8 5 4
1 0] < address of A >
<address of C >
Operation (3): A=A-BxC
15 13 12 11 10 9 8 7 B8 5 4

—
[O

| < address of A >

<address of B >

<address of C>

Figure 5.2, LESM Instruction Format

109

110

Therefore, the inst;-uction length of Operation (0) is a single 16-bit word.
Operations (1) and (2) have a second operand address and therefore have
instruction lengths of two words. Operation (3) is the only one which has
three operand addresses; the format for this instruction requires three 16-

bit words.

The number of memory references needed to fetch the LESM instrue-
tions required for a given set of equations is more than one order of magni-
tude less than the corresponding number for the base-set instructions of the
minicomputer. This reduction is due to the higher-level primitive operations
defined in the LESM and these savings contribute substantially to the
increased solution speéd of the LESM. (The generation of equivalent loop;
free machine instructions based on the nominal instruction set of the mini-
computer is not described because the instructions would not fit in the avail-

able data space.) .

5.3.4. Speed Comparisons

In order to measure accurately the performance improvement in equa-
tion solution time due to the LESM, the exact sequence of instructions ‘which
solve the dc equations of the benchmark UA741 circuit, and the values in the
coefficient matrix just before the solution step were extracted from SPUDS
and used as input for an accurate timing comparison. For the 52 equations
required by this circuit, the LESM instructions consist of 51, 179, 240, and
247 instances of Operations (0) through (3), respectively. The results of the
timing comparison between a FORTRAN version of the CODEX ('CODe EXecu-
tion') subroutine which emulates the behavior of the LESM and the actual
LESM are shown in Figure 5.3. As the figure presents, the solution speed is

improved by a factor of approximately 18. An even greater speed-up factor

dc transfer curve analysis of UA741
(303 iterations)
Code execution with
FORTRAN microcode

Reference

do i=1,303 § do i=1,303 § do i=1,303 §
load matrix load matrix load matrix
CALL CODEX CALL CODEX

! J 3

16.3 seconds !r 89.6 seconds 20.3 seconds
-16.3 -18.3

73.3 seconds 4.0 seconds

Speedup factor:
microcode / FORTRAN
=73.3/4.0
= 18.3

Figure 5.3. Measurement of Microcoded Solution Speedup

111

112

applies if the comparison is made between the LESM and FORTRAN code

which performs the equation solution using the nested loops of Figure 5.1.

A measure of the optimality of the equation solution machine is the
extent to which unnecessary references to main memory and irrelevant
arithmetic operations are eliminated. Figure 5.4 shows part of the eflective
hardware architecture of the HP 1000 computer; note that data paths are
only 18 bits wide. Consider operation (1):

A=A/B
The timing for an optimal execution of this operation is summarized in Fig-
ure 5.5 for B4-bit fAoating-point operands. The minimum time needed by the
HP 1000 hardware to fetch the values of A and B, transfer them to the Float-
ing Point Processor (FPP), retrieve the quotient from the FPP and store it
into A is 7.14us.” The time required by the FPP to perform a 64-bit divide is
approximately 7us. The FPP hardware on the HP 1000 is asynchronous;
transfers from main memory to the microprocessor can also overlap in time
with transfers from the microprocessor to the FPP. Therefore, depending on
the extent to which the operations can overlap, the minimum time to per-
form this operation is between 7us and 14us. The microcode which evaluates
Operation (1) requires ~15.21us; 5.3us of the 7us divide time is overlapped
with other micro-operations. This data indicates that the microcoded LESM
executes within a factor of 2 of the optimal hardware speed for this particu-
lar minicomputer and that substantial concurrency of memory references
and floating-point computation is possible in the linear equation solution pro-

cess.

On the average, use of the LESM reduces dc transfer curve and transient

analyses times for the benchmark circuits by 25-40%. SPY data show that

*

¥y

113

Micro-
Processor

A

//16

A

Floating-
Point
Processor

Figure 5.4, Part of Schematic of HP 1000 F-Series Eardware

Operation (1): A=A/ B

Transfer A from main memory to up 1.88us
4 18-bit words @ 420ns

Transfer B from main memory to up 1.68us
4 18-bit words @ 420ns

Transfer Afrom up to FPP 0.70us
4 18-bit words @ 175ns

Transfer B from up to FPP 0.70us
4 16-bit words @ 175ns

Perform floating-point divide 7.00us
(typical time for operation)

Transfer quotient from FPP to up 0.70us
4 16-bit words @ 175ns

Transfer quotient from up to main memory 1.40us
4 18-bit words @ 350ns

(6.88us + 7us divide time) 13.88us

Actual microcoded implementation 15.21us

Note: 5.3us of 7us divide time overlapped
with instruction fetch and decoding

Figure 5.5. Optimal Timing for Operation (1)

114

i

115

the time spent in the LESM is approximately 3% of the total analysis CPU

time.

5.3.5. Code Generation Costs

'The use of code generation has two costs associated with it. First, the
instructions for the LESM require additional memory: second, each time a
pivoting step is performed additional setup time is required to generate the

LESM instructions. Each of these costs is detailed below.

The LESM commands require space in main memory in order that the
instruction fetch cycle of the LESM be fast. The minimum space required for
the LESM instructions is that memory needed for the MEMO array, which con-
tains the location of each matrix coeflficient in the order it is referenced in
the equation solution process. The instruction set for the LESM achieves this
minimum by encoding the operation code in the most-significant, unused bits
in each word. Table 5.4 shows the total memory requirements and the
memory needs for the LESM instructions for several representative bench-
mark circuits. The ‘total’ memory needs shown in the table are for transient
analyses of the indicated benchmark circuits, with 32-bit floating-point arith-
metic. The LESM instructions require an average of 187% of the total memory

needs of SPUDS.

The second cost of using code generation is the CPU time required to
generate the code. A symbolic Gaussian elimination is performed, and at
each step the LESM operation which performs the desired arithmetic func-
tions is added to an array of ‘machine instructions’ for later execution by the
LESM. This generation time is relatively small, due to the si.mple. regular
structure of the LESM instructions. Table 5.5 shows, for the benchmark cir-

cuits, the code generation time and the total CPU time required for dec

Circuit sziy instl;ﬁiﬁons Perlc':EeiBt&agg_
DIFPAIR 2364 289 12
UA741 8152 1798 22
MECLIII 6476 1482 23
BOOTINV 2328 170 7
MOSAMP2 7912 1042 13

Table 5.4. Transient Analysis LESM Memory Requirements

118

>

Circuit ‘Code gen' | DCX | DCOP | TRAN

DIFPAIR 0.73 8.21 1.01 11.97
KTEST 0.78 0.00 0.68 15.68
RCA304 1.83 18.58 1.82 34.88
UA709 . 3.82 34.45 3.50 41.11
UA7R7 5.03 37.02 4.83 56.93
UAT733 1.08 0.00 3.71 0.00
UA741 3.97 40.87 4.60 48.46
RTLINV 0.45 5.60 0.36 10.66
TTLINV 1.42 13.84 0.80 35.19
TTL74 1.39 14.32 0.86 40.08
TTL74S 1.80 17.10 1.19 40.48
TTL74L 1.39 16.30 1.11 37.79
TTL920 1.66 19.35 0.88 39.48
ECLGATE 1.99 17.12 0.79 46.13
MECLIII 2.99 24.52 1.45 60.73
SBDGATE 3.54 34.55 2.12 62.18
CCSOR 0.32 0.00 1.56 0.00
DCOSC 0.44 0.00 2.05 0.00
CFFLOP 0.35 0.00 1.49 0.00
STCRC 0.12 0.00 0.18 3.87
CHOKE 0.26 0.00 0.07 6.46
ECLINV 0.86 0.00 1.52 17.88
SCHMITT 0.88 0.00 1.80 19.74
ASTABLE 0.60 0.00 1.08 26.54
SATINV 0.14 18.86 1.40 0.00
DEPLINV 0.08 8.02 0.47 0.00
RATLOG 0.77 0.00 1.51 36.49
INVCHN 0.26 0.00 2.16 0.00
BOOTINV 0.41 0.00 1.47 21.03
MOSMEM 0.54 0.00 1.52 53.47
MOSAMP1 1.34 57.80 5.85 0.00
MOSAMP2 2.19 0.00 | 16.96 ! 178.49

Table 5.5. Costs to Generate LESM Code

117

118

transfer curve, dc.operat.in\g point, and transient analyses. In almost all
cases the code generation module is invoked twice, once when the de
transfer curve analysis is begun and a second time at the start of transient
analysis. The data in the table indicate that the code generation time is a
negligible part of the total CPU-time requirements as long as any muilti-point
analysis is performed. Only in the case of a single dc operating-point
analysis (for example, the UA733 benchmark circuit) is the code generation
time as much as 30% of the total. If code generation is not used in the simu-
lation of the UA733, the execution time for a dc operating point analysis is
3.73 seconds (compared to 3.71 seconds with code generation). The total
simulation time is not increased by the code generation step even when oqu

a short analysis is performed.

5.3.8. Growth Rates

The growth rate for the number of terms in the coefficient matrix and
the number of arithmetic operations necessary to perform Gaussian elimina-
tion is greater than linear in terms of the number of circuit equations. A
sampling of statistically generated coefficient matrices reported in [Nage75]
shows that for N equations the number of nonzero matrix elements (includ-
ing fill-in terms) is generally proportional to N!! and the number of arith-
metic operations is proportional to N!-?¢, Since the remainder of the analysis
effort is directly proportional to the number of circuit elements, it is clear
that for a sufficiently large circuit the equation solution time can become the

dominant part of the analysis.

The effects of defining the Linear Equation Solution Machine in micro-
code do not change this power law for the arithmetic needed to solve the cir-

cuit equations; however, the constant of proportionality is reduced

119

significantly. Table‘5.6 presents the results of several transient analyses
which measure the importance of this power law for circuit sizes of interest.
In all cases, the only variable which changes among the different analyses is
the number of circuit equations. This change is e&ected by changing the
number of nonzero extrinsic device-model'resistances used to model the
bipolar junction or MOS transistors in the circuits. Since the device model
evaluation and matrix loading code evaluates and loads these resistances
into the coefficient matrix regardless of whether or not the resistances are
nonzero, the only change in computational effort is directly related to the

differing number of equations.

The 'DDCMP’ column in the table gives the CPU time req:uired for the
very first LU decomposition of the coeflicient matrix. The determination of
fill-in terms in the matrix and any equation reordering (pivoting) is per-
formed at this time; code generation time is included in the DDCMP total. As
shown in the table, the matrix setup time grows approximately as N? pri-
marily due to the full numerical pivoting which is performed as part of the
ix;itial determination of the matrix structure. However, once setup is
finished, the time per Newton iteration (‘CPU/NI') increases by only a few
percent as the number of equation is increased by as much as a factor of

three.

Several SPY results obtained by examining the execution of SPUDS are
shown in Table 5.7. The data show the percentage of the total analysis CPU
time spent in the ITERS and CODEX subroutines during a dc transfer curve
analysis of the UA741 and transient analyses of the UA741 and MOSAMP2
benchmark circuits with differing numbers of nodes (circuit equations). The

ITER8 subroutine controls each Newton iteration. The only part of the itera-

Circuit # eqns | DDCMP | TRAN | CPU/NI | % incr
UA741 52 6.08 48.45 0.198
74 9.92 54.11 0.207 4.5
96 14.24 59.44 0.211 6.6
MOSAMP2 25 2.80 187.15 0.357
52 6.83 194.88 0.388 3.1
79 12.27 230.31 0.379 6.2
MOS AMP 3 42 B.70 89.21 0.498
77 13.93 82.12 0.512 3.2
112 23.12 98.57 0.517 4.2

Table 5.8. Effect of Number of Equations on Solution Time

»

o Number of % of analysis time
Circuit equations DC Xfer Tran
ITER8 | CODEX | ITER8 | CODEX

UA741 52 18 8 8 3
74 24 10 10 4
96 32 13 12 5

MOSAMP2 25 3 1
52 8 3
79 7 3

Table 5.7. Equation Solution Time with LESM

121

o122

tion work performe.d directly by this subroutine is the node-voltage test .for
convergence. (The loading of the coeflicient matrix is performed by other
subroutines and the load time is not included in the ITERS time.) The equa-
tion solution is determined by the CODEX subroutine (in microcode); the CPU
time for solution is also not part of the ITER8 time in the table. The data
show that the node-voltage convergence test accounts for as much as 32% of

the total analysis time when the number of equations is large compared with

the number of semiconductor devices in the circuit. This large fraction is

due to the strategy adopted as part of the implementation of numerical
pivoting. The effect of column-swapping in the coefficient matrix is to change
the order of the circuit unknowns. Two methods can be used to keep track of
this reordering. First, a ‘swap vector’ can be maintained which records the
‘new' location of each circuit unknown, and the vector obtained from the
equation solution step can be reordered based on the ‘swap vector' after
each iteration. In this way, if an element is connected to node number two,
and the equation for that node is initially assigned as equation number two,
the program can fetch the node voltage from the second location in the solu-
tion vector regardless of any pivoting. The second method to keep track of
reordering is to go through the entire element list and replace equation

numbers appropriately every time pivoting is performed.

The first method (use of a 'swap vector’) is used in SPUDS based on the
assumption that pivoting is performed frequently. Empirically, only one
pivoting step is necessary per analysis; therefore, the data in the table indi-
cate that the second method is preferable because it trades off a slight
increase in setup time (to update element equation numbers) for the larger
time required to reorder the solution vector at each iteration. In either

case, however, the effect of the special equation solution machine (LESM) is

b

123

to make the time spént in solving the linearized circuit equations an almost-
negligible part of the total, at least for circuit sizes on the order of 100 equa-

tions.

5.4. 'Gather’ and Matrix Loading

After the incorporation of the special LU decomposition machine into
SPUDS, several other parts of the analysis become relatively more impor-
tant. To obtain the maximum performance from the existing minicomputer
as an approximation to the speed possible with dedicatéd hardware, several
special-purpose instructions are described which rapidly gather data
together from sc’gttered locations in memory and incrementally load terms
into the coefficient matrix using the sparse-matrix pointer system. These
instructions decrease the transient analysis time by an additional 257 over
the speedup already obtained with the microcoded LESM. Each of these

instructions is described in the following subsections.

5.4.1. Gather

For reasons of storage efficiency, device model parameters in SPUDS
are stored in linked-list data structures as described in Chapter 4. These
parameter values are retrieved from that structure and stored in local tem-
porary variableé preparatory to evaluation of the device model equations.
Figure 5.6 shows part of a typical sequence of FORTRAN statements which

perform this retrieval task.

The need for high accuracy in device modelling has lead to a large
number of device model parameters in many circuit simulators. In Version
E.3 of Program SPICE2, the bipolar junction transistor model is described

with 29 parameters and the MOS transistor model has 32 possible parame-

BETA = ARRAY (LOCM+ 8)
GAMMA = ARRAY (LOCM+ 7))
PHI = ARRAY (LOCM+ 8)
XLAMDA = ARRAY (LOCM+ 9)
COX = ARRAY (LOCM+10)
XNSUB = ARRAY (LOCM+11)
XNFS = ARRAY (LOCM+12)
Uo -= ARRAY (LOCM+13)
VEP = ARRAY (LOCM+14)
UEXP = ARRAY (LOCM+15)
UTRA = ARRAY (LOCM+16)
XD = ARRAY (LOCM+17)
VMAX = ARRAY (LOCM+18)
XNEFF = ARRAY (LOCM+19)

CALL GRESC (environment, LOCM+8, BETA, GAMMA, PHI, XLAMDA, ...)

Figure 5.6. Calling Sequence for GRESC

124

o»

125

ters. In addition, .there are several derived model parameters which are
computed by the program when the circuit description is read in order to

save calculation effort during model evaluation.

As a result of this modelling effort, a considerable amount of CPU time is
required just to ‘gather together' these parameters into local variable
storage so that the evaluation of the actual model equations is executed
efficiently. SPY monitoring of SPUDS shows that ~157% of the total analysis
time is spent in gathering together these parameter values. To put this per-
centage in perspective, the time spent in evaluation of the model eqﬁations.
e.g., the three-halves power law equation for MOSFET drain current, is only

10-207 of the total.

In order to reduce this time, the special-purpose instructions GIESC and
GRESC are used. Both instructions are invoked in the same way as FORTRAN
subroutines; Figure 5.6 also shows a typical parameter calling sequence. The
‘environment’ parameter is used to preserve the initial machine environment
for restoration when the instruction completes. The only difference between
the two instructions is that GIESC transfers integer values and GRESC
transfers real (floating-point) values. Both instructions implement an
‘indexed block transfer’ capability which copies a block of memory to scat-
tered locations in main memory under the control of a vector of destination
addresses. For the HP 1000, these instructions reduced the time required to

gather parameters together by a factor of 3.

5.4.2. Matrix Load

Once the linearized branch values have been determined as a result of
device model evaluation, the equivalent conductances must be added incre-

mentally to the appropriate locations in the coefficient matrix. In Program

126

SPICE2, this matrii load is performed with program code similar to Fig-
ure 5.7. The one-dimensional matrix storage begins at the location indicated
by the variable LVN. The per-element data storage includes the one-
dimensional offsets from LVN for the locations of each matrix coefficient to
which t;he element contributes. The number of such terms depends on the
complexity of the mathematical model for each element. A resistor contri-
butes to four matrix locations, and the bipolar junction and MOS transistor

device models contribute to 18 and 22 matrix locations, respectively.

The data obtained by running SPY show that the relative amount of time
spent in matrix loading is of the same order of magnitude as the time spent
in evaluating the device model equations. Approximately 20% of the total
analysis time is spent performing the loading task. The following paragraphs
describe several special-purpose instructions which reduce significantly the

time needed for the matrix loading part of the analysis.

The mapping from the conceptual two-dimensional coefficient matrix to
the packed, one-dimensional vector representation is performed by search-
ing through the row- and column-linked lists as described in Chapter 4. For
efficiency reasons, Program SPICE2 performs this mapping each time the
structure of the coefficient matrix is changed, and pointers to the locations
of each affected matrix entry are stored with each circuit element. This
technique avoids the mapping costs that would otherwise be incurred with
each matrix coefficient load. The first version of matrix loading microcode in
SPUDS used the same load procedure and was named MATAD; the calling
sequence is also shown in Figure 5.7. Consecutive locations in the IVAL array
contain the offsets to the affected matrix locations for each element. Speed

increases due to the much-reduced number of accesses to main memory

i

X1J3e}{ Peo] 03 8POS0IdIK SANdS "L°¢ 8IBiyg

(" *ddID- *UdED- 'UdOD- '0T+00T ‘NAT “JUsuwuoIaua) QVIVK TIVO

0D +RO+ULTD+1dD+(AD0T)INTYA=(AD0T)INTVA
(62420 T)TVAI+NAT=AD01

NKRD+IdDH+YdED+(A00T)INTYA=(AD0T)INTYA
(82+00T)TVAI+NAT=AD01

ARD-(A00T)INTVA=(XD0T)INTYA
(LT+00T)TVAI+NAT=AD01

AdED-(X00T)INTVA=(XD0T)ENTYA
(9T +D0T)TVAI+NAT=X001

09-KO-(A00T)INTVA=(A20T)INTVA
(ST+O0T)TVAI+NAT=XD01

NO+NND-(X00T)INTVA=(XD0T)INTVA
(PT+D0T)TVAI+NAT=XD01T

UdOD-(X00T)IANTVA=(XO0T)INTVA
(ET+D0T)TVAI+NAT=A001

UdFD-(A00T)INTVA=(XD0T)INTVA
(21+00T)TVAI+NAT=X00T

ddED-(XA0T)INTVA=(XD0T)INTVA
(TT+00T)TVAI+NAT=AD0T

AdoH~(200T)INTVA=(AD0T)INTVA
(0T+00T)TVAI+NAT=AD0T
o)
SHOLSISNVEL NOLLONNSL ¥VIOdIE 04 XRLIVA X QVOT D
o)

Lal

128

required by the MATAD instruction.

In order to determine the possible advantages of embedding knowledge
of the actual matrix pointer structure in hardware, a special microcoded
instruction is used to resolve an (i,j) matrix address into its one-dimensional
vector location. Careful measurement of elapsed CPU time shows that the
microcoded mapping eflort requires ®2us for each matrix link traversed.
Since the average matrix row or column contains 2-4 nonzero off-diagonal
entries [Nage?75] the average total mapping time is 4-8us (not including the

83us overhead required to invoke the special instruction).

This very small amount of time suggests a revised matrix loading
instruction, MLODA, which incorporates the matrix mapping operation as an
integral part. This instruction is invoked as shown in Figure 5.8. An argu-
ment list of indefinite length is passed to the microcode for each call. The
first argument is used to preserve the initial machine environment for later
restoration when the matrix load is completed. The next 8 arguments pass
to MLODA the addresses of the tables which contain the row- and column-
swapping pivoting information, pointers to the linked-list structure used to
represent the coefficient matrix, and the starting memory location of the
one-dimensional vector containing the matrix coefficient values. The remain-
ing arguments are interpreted as (Row, Column, Value) triples, with the
meaning that Value is to be incrementally added to the matrix coeflicient at
location (Row, Column). In order to obtain the fastest possible load, a second
instruction, MLODS, is also defined with meaning identical to that of MLODA
except that the Value is subtracted from the matrix coeflicient. The MLODA
instruction increased analysis time by less than 3% relative to the time

required with the MATAD instruction. The change is justified by the substan-

LY

129

CALL MLODA (environment, augmented_MNA_flag,

1
2

3

(9 I

IRSWPR, ICSWPR, IRPT, IROWNO, JCPT, JCOLNQ, LVN,
NODE1,NODE1, GCPR,

NODEZ2,NODEZ, GEPR,

NODE3,NODES, GEPR,

NODE4,NODE4, GMU+GO+GCPR+GCCS,
NODES,NODES, GBPR+GPI1+GMU,

NODES,NODES, GPI+GEPR+GM+GO)

Figure 5.8. Matrix Load with Mapping Incorporated

130

tial memory savings and the increase in clarity of the program code.

The right-hand-side (RHS) elements in the coeflicient matrix are loaded
with another special instruction. The RHS terms are stored as a contiguous
one-dimensional vector and are addressed directly by equation number
without the need for any mapping algorithm. The calling sequence for this
LDRHS instruction is shown in Figure 5.9. The argument list for LDRHS is also
of indefinite length. After several arguments defining the microprogramming
machine state and the location of the start of the RHS vector, the remaining
arguments are interpreted as (Number, Value) pairs, with the meaning that
each Value is to be incrementally added to the RHS term for the correspond-

ing equation Number.

5.4.3. Matrix Initialization

One further special instruction reduces part of the analysis time by a
significant amount but is a result of the software and hardware design of the
HP 1000. At the start of each Newton iteration, all of the matrix coeflicients
are initialized to zero. In SPUDS, these coeflicients are stored in the
‘Extended Memory Area' (EMA) memory region to allow a circuit containing
over 100 devices to be simulated. However, the memory addressing architec-
ture of the HP 1000 minicomputer makes access to EMA locations much
more expensive than references to main memory. The overhead factor
ranges between 5 and 20 depending on the datatype (integer, real, or
double-precision). This overhead is particularly noticeabl:a for the dc ana-
lyses. SPY data shows that matrix initialization in the de transfer curve
analysis of the UA741 requires 16% of the total CPU time. A special micro-
coded instruction, SRCBE, eliminates virtually all of this initialization time in

SPUDS through microcoded control of EMA access.

VALUE (LVN + NODE4) = VALUE (LVN + NODE4) — CEQCS + CEQBC
VALUE (LVN + NODES) = VALUE (LVN + NODES) — CEQBE — CEQBC
VALUE (LVN + NODES) = VALUE (LVN + NODE6) + CEQBE

CALL LDRHS (environment, LVN,
1 NODE4, -CEQCS + CEQBC,

2 NODES, -CEQBE - CEQBC,

3 NODES, CEQBE)

Figure 5.9. Coding to Load Right-Hand-Side Terms

131

132

5.5. Revised CPU Times and Conclusions

It is important when evaluating speed improvements to determine the
extent to which overall performance is degraded by poor code generation
from language compilers. As shown in Section 5.3.1 and Table 5.2, the FOR-
TRAN compiler for the HP 1000 produces acceptable code. Hand-written
assembly language routines for equation solution reduce total analysis time

by only 107.

The use of the special-purpose instructions described in the section
above affects two aspects of the simulation. First and most importantly, the
total analysis time is reduced by almost 70% relative to the original, all-
FORTRAN implementation of SPUDS. Second, the relative percentages
change for the different tasks within the circuit analysis. Each of these

aspects is described in detail in the following paragraphs.

Table 5.8 shows the CPU time requirements for dc transfer curve and
transient analyses of the benchmark circuits. The simulations for the first
three column pairs use 64-bit floating-point arithmetic; for the last column
pair, the simulation code utilizes 32-bit arithmetic. The columns headed
'DCX’ give the CPU time in seconds for the dc transfer curve analyses, and
the columns headed 'TRAN' contain the times for transient analyses. The
first pair of columns contain baseline data for the original, all-FORTRAN ver-
sion of SPUDS. The second column pair gives the simulation times when the
microcoded linear equation solution machine (LESM) is used in place of the
FORTRAN code. The CPU times in the third pair of columns reflect the use of
the LESM together with the GIESC, GRESC, IJTOK, MLODA, LDRHS, and SRCBE
special instructions for gathering together device model parameters, map-

ping matrix locations, loading the matrix coeficients and the right-hand-side

Looow- 84-bit arithmetic - =---- > 32-bit math

Circuit all FORTRAN| LESM |Gather, et ai| PivOting and
microcode

DCX TRAN| DCX TRAN| DCX TRAN| DCX TRAN

DIFPAIR 21.37 27.94| 18.75 22.55(11.33 16.23| 8.21 11.97
KTEST 0.00 12.40| 0.00 8.60| 0.00 7.27!1 0.00 15.88
RCA3040 52.52 B84.99| 37.96 64.64i23.59 45.80]18.58 34.88
UA709 114.84 140.33| 84.82 90.75[38.52 62.54[34.45 41.11
UA727 105.23 1968.68| 68.31 136.3140.80 95.29{37.02 56.93
UA733 0.00 0.00| 0.00 0.00{ 0.00 0.00(0.00 0.00
UA741 136.71 154.22] 85.02 114.12{50.71 81.3540.87 48.46
RTLINV 14.42 25.08| 10.71 19.38| 7.51 14.04| 5.60 10.88
TTLINV 41.28 114.33| 26.93 78.54{17.51 56.11(13.84 35.19
TTL74 42.88 99.55| 27.87 69.27|17.98 49.77|14.32 40.08
TTL74S 50.88 132.84| 32.22 87.51120.50 61.20(17.10 40.48
TTL74L 46.39 123.75| 29.82 84.64|19.07 60.37(16.30 37.79
TTL9200 54.13 0.00| 31.89 0.00120.03 0.00/19.35 39.48
ECLGATE 47.181186.680{ 31.40 81.87(19.53 57.87|17.12 46.13
MECLIII 73.61 150.53| 46.30101.54128.31 71.00124.52 60.73
SBDGATE 84.94 193.47| 51.77 133.07!32.93 92.10134.55 82.18
CCSOR 0.00 0.00{ 0.00 0.00{ 0.00 0.00| 0.00 0.00
DCQOSC 0.00 0.00(0.00 0.00§ 0.00 0.00| 0.00 0.00
CFFLOP 0.00 0.00{ 0.00 0.00| 0.00 0.00{ 0.00 0.00
STCRC 0.00 7.57| 0.00 6.18] 0.00 5.27| 0.00 3.87
CHOKE 0.00 18.86| 0.00 13.58| 0.00 11.18| 0.00 6.46
ECLINV 0.00 47.95| 0.00 38.53| 0.00 26.79| 0.00 17.88
SCHMITT 0.00 52.63| 0.00 39.04| 0.00 28.38(0.00 19.74
ASTABLE 0.00 88.73| 0.00 80.13| 0.00 43.37| 0.00 26.54
SATINV 40.43 0.00{ 34.67 0.0024.33 0.00(18.86 0.00
DEPLINV 13.15 0.00] 11.61 0.00{ 8.51 0.00| 6.02 0.00
RATLOG 0.00 95.30| 0.00 85.01} 0.00 64.13| 0.00 386.49
INVCHN 0.00 0.00{ 0.00 0.00f 0.00 0.00¢ 0.00 0.00
BOOTINV 0.00 44.72| 0.00 41.13| 0.00 32.34| 0.00 21.03
MOSMEM 0.00115.99; 0.00108.20{ 0.00 81.45(0.00 53.47
MOSAMP1 | 150.19 0.00{127.32 0.0081.80 0.0057.80 0.00
MOSAMP2 0.00399.89| 0.00351.81] 0.00 287.01} 0.00 178.49

Table 5.8. Performance Comparisons

133

134

terms, and initializing the matrix coefficients. The simulations for the last
column pair use numerical pivoting, 32-bit arithmetic, and all the special

instructions of the previous columns.

On the average, the result of all the microcoding of high-level simulation
operations is a reduction in the total analysis time of 65-70%. The impor-
tance of high-level special-purpose instructions (or hardware) is shown
further by the data in Table 5.9. All the FORTRAN code in SPUDS access the
EMA data area on the HP 1000 by using microcode supplied by Hewlett-
Packard. A more recent version of that microcode, which access EMA vari-
ables in half the time, is used for the 32-bit arithmetic SPUDS data. The
revised HP microcode does not affect the special-purpose instructions
included in SPUDS. As the data in the table show, the faster EMA microcode

is responsible for only 5% of the 85-70% overall reduction.

Another perspective on simulation speed is shown in Table 5.10, which
gives the simulation times for both the microcoded version of SPUDS and
simulation runs of Version E.3 of Program SPICEZ2 run on the CDC 8400. (The
speed of the CDC 8400 computer is comparable to that of the DEC VA&X
11/780.) Without any of the changes described in this report, transient
analysis with SPUDS on the HP 1000 F-Series minicomputer is 7 to 10 times
slower than SPICE2 on the CDC 8400. With all the modifications, the simula-
tion speed of SPUDS averages 3.6 times slower for dc transfer curve and 2.8
times slower for transient analyses than SPICE2 on the larger computer. The
speed ratio varies for different circuits. For transient analysis of the
BOOTINV circuit, SPUDS is only 1.5 times slower. Small-signal frequency-
domain ac analysis times are not included in the comparison data because

no special instructions are implemented in SPUDS for dealing with complex

135

Circuit old EMA microcode || new EMA microcode
DCX TRAN DCX TRAN
DIFPAIR 9.44 13.85 8.21 11.97
KTEST 0.00 18.37 0.00 15.68
RCA304 21.20 39.684 18.58 34.88
UA709 39.43 48.87 34.45 41.11
UATR7 42.71 84.70 37.02 58.93
UA733 0.00 0.00 0.00 0.00
UA741 48.82 54.82 40.87 48.48
RTLINV 6.47 12.20 5.60 10.68
TTLINY 16.01 40.17 13.84 - 35.19
TTL74 16.53 45.768 14.32 40.08
TTL74S 19.74 48.13 17.10 40.46
TTL74L 18.82 43.05 16.30 37.79
TTL920 22.35 45.00 19.35 39.48
ECLGATE 19.80 52.67 17.12 48.13
MECLIII 28.37 69.30 24.52 60.73
SBDGATE | 40.18 71.07 34.55 682.18
CCSOR 0.00 0.00 0.00 0.00
DCOSC 0.00 0.00 0.00 0.00
CFFLOP 0.00 0.00 0.00 0.00
STCRC 0.00 4,49 0.00 3.87
CHOKE 0.00 7.47 0.00 8.48
ECLINV 0.00 20.45 0.00 17.88
SCHMITT 0.00 22.46 0.00 19.74
ASTABLE 0.00 30.33 0.00 26.54
SATINV 21.18 0.00 18.88 0.00
DEPLINV 6.73 0.00 6.02 0.00
RATLOG 0.00 41.60 0.00 36.49
INVCHN 0.00 0.00 0.00 0.00
BOOTINV 0.00 23.85 0.00 21.03
MOSMEM 0.00 60.45 0.00 53.47
MOSAMP1 | 64.43 0.00 57.80 0.00
MOSAMP2 0.00 200.45 0.00 178.49

Table 5.9. Effects of New (Faster) EMA Access Microcode

136

Cireut SPUDS on HP 1000-F || SPICE2 on CDC 6400
ireu DCX TRAN DCX TRAN
DIFPAIR 8.21 11.97 2.13 3.92
KTEST 0.00 15.68 0.00 1.52
RCA3040 | 18.56 34.88 5.02 10.74
UA709 34.45 41.11 9.00 15.02
UA727 37.02 56.93 9.12 22.68
UA733 0.00 0.00 | 0.00 0.00
UA741 40.87 48.46 11.87 19.22
RTLINV 5.60 10.68 1.39 3.28
TTLINV 13.84 35.19 3.85 12.94
TTL74 14.32 40.08 3.78 11.70
TTL74S 17.10 40.48 4.43 14.26
TTL74L 16.30 37.79 4.02 13.91
TTL9200 | 19.35 39.48 5.03 13.14
ECLGATE | 17.12 48.13 4.08 13.44
MECLIII | 24.52 80.73 6.17 16.68
SBDGATE | 34.55 62.18 7.04 21.36
CCSOR 0.00 0.00 0.00 0.00
DCOSC 0.00 0.00 0.00 0.00
CFFLOP 0.00 0.00 0.00 0.00
STCRC 0.00 3.87 0.00 .90
CHOKE 0.00 6.46 0.00 2.10
ECLINV 0.00 17.88 0.00 5.80
SCHMITT | 0.00 19.74 0.00 6.28
ASTABLE | 0.00 28.54 0.00 9.36
SATINV 18.86 0.00 8.05 0.00
DEPLINV | 8.02 0.00 1.87 0.00
RATLOG 0.00 36.49 0.00 14.37
INVCHN 0.00 0.00 0.00 0.00
BOOTINV | 0.00 21.03 0.00 14.68
MOSMEM | 0.00 53.47 0.00 18.76
MOSAMP1 | 57.80 0.00 20.68 0.00
MOSAMP2 | 0.00 178.49 0.00 68.68

Table 5.10. Performance Comparisons: microcode SPUDS and SPICE2

137

arithmetic.

A second effect on simulation performance of the use of microcoded
special-purpose instructions is a shifting in the percentages of the total
analysis time required by different parts of the simulation. Table 5.11 shows
the breakdown by function for the dec transfer curve analysis of the UA741
all-bipolar amplifier benchmark circuit. As the data show, no single function
takes as much as 20% of the total; most of the tasks require less than 10% of
the analysis time. The table also shows the time breakdown of the dc
operating-point analysis for the MOSAMP1, all-MOSFET amplifler circuit. In
spite of the considerably more-complex MOS device model, the relative time
percentages do not differ greatly, with the exception of the time required to
fetch the device model parameters. Approximately 20% of the total analysis
time is spent in fetching these parameters, even though this fetch is per-
formed with a special-purpose microcoded instruction. Table 5.12 gives the
time breakdown for transient analysis of the UA741; the single greatest
amount of time, only 18%, is spent in evaluation of the device model equa-
tions. As long as the numerical algorithms and modelling techniques remain
essentially the same as those in SPICEZ, there is no single step left in the
analysis for which special-purpose instructions (or hardware) would make
any further major improvements in performance. Small savings result from
minor rewriting of parts of the FORTRAN code. For example, rewriting the
LTE (local truncation error) estimation code so that the divided-difference
approximations are evaluated in-line rather than by iteration decreased
transient analysis time by ~5%. Performance can be improved significantly,

of course, by using faster {and more expensive) hardware.

138

Analysis task UA741 | MOSAMP1

LOAD 87% 47
(init matrix & load R's)

ITERS - 18% 47
solve linearized equations 8% 1%
check voltages for convergence 117 3%

‘Device modelling’ 727% 807%
fetch model parameters 7% 207
predict new sweep point 8% 8%
check bypass of eqn evaluation 2% 5%
compute new branch voltages 8% 9%
limit junction voltages 47 3%
evaluate model equations 147 197
check currents for convergence 6% 6%
load right-hand-side terms 3% 47
load coefficient matrix 167 167

Table 5.11. Final Breakdown of dc Analysis CPU Time

Analysis task UA741

TERR 147%
(estimate local truncation error)

ITER8 8%
solve linearized equations 3%
check voltages for convergence 5%

‘Device modelling’ 857
fetch model parameters 6%
predict new sweep point 5%
check bypass of eg'n evaluation 37
compute new branch voltages 57
evaluate model equations 187%
integrate capacitor currents 107
check currents for convergence 5%
load right-hand-side terms 2%
load coefficient matrix 11%

Table 5.12. Final Breakdown of Transient Analysis CPU Time

139

CHAPTER 6

CONCLUSIONS

The increasing size and complexity of integrated circuits have placed
great demands on the tools needed by the design engineer. Timing [Chaw75]
[Fan77] [Boyl78], logic [Beni79] [Szyg76] [Wilc76] [Newt79], and even higher-
level simulators [Barb77] [Comp74] [Hill80] [NewtB0] have been developed
which reduce the computer costs of simulation by orders of magnitude rela-
tive to circuit-level simulation, at the expense of 10-20% in solution accuracy.
At the cell or building-block level, however, the availability of accurate
circuit-level simulation is critical for the development of efficient, working
circuits. The decreasing costs of minicomputers would make these machines
attractive vehicles on which to run such simulations, were it not for their lim-
ited performance. The research results described in earlier chapters of this
report show that speeds comparable to mainframe computers are obtained
from a minicomputer when appropriate changes are made to the numerical
algorithms and data structures of the program together with modifications

to the machine instruction set.

The key results and conclusions of this report concerning those neces-
sary changes in both program and computer structures are summarized in
Section 6.1. The suitability of several currently-available microprocessors or
minicomputers is evaluated briefly in Section 8.2. Finally, several limitations
of the ideas developed in this report and areas for further research are

presented in Section 8.3.

._..
>
o

141

8.1. Key Results

One of the fundamental factors which determines overall simulation
speed is the numerical precision used in floating-point calculations. The
larger mainframe computers use ®64 bits without spe§d penalties. However,
the 18- or 32-bit word memories in minicomputers make those smaller
machines better suited to 32-bit calculations. Even though the computa-
tional effort in IC simulation involves a considerable number of floating-point
calculations, there is not a strong need for a direct hardware implementation
of floating-point arithmetic when 32-bit precision gives sufficient accuracy.
The data presented in Chapter 2 show that. the improvement in simulation
speed on the HP 1000 F-Series due to hardware floating-point arithmetic is
only 15% (although for 64-bit precision the simulation is seven times faster
than a microcoded implementation of floating-point arithmetic). Also, the
effect of memory cycle time on total simulation speed is reduced when 32-bit
precision is used. For the HP 1000, a 33% improvement in memory access
speed reduces simulation time by only 15%. (For 84-bit precision, the

corresponding reduction in time is 25%.)

Chapter 3 describes the numerical algorithms in SPUDS. Several
methods which increase the accuracy of the circuit solution are evaluated.
For the circuit sizes of interest (100 devices), the use of both numerical
pivoting and an augmented MNA matrix is essential to obtain results with 32-
bit precision that are the same as for 84-bit precision. Incremental iteration
slightly improves the accuracy of the solution. A number of techniques must
also be utilized to obtain rapid convergence to a solution. In particular, lim-
iting the maximum p-n junction conductance values and using a threshold to

reduce the sensitivity to very small changes in p-n junction bias are effective

142

at speeding the rate of convergence. The total computational effort is
reduced with the use of linear prediction and model evaluation bypass algo-

rithms; for several of the test circuits, the savings are as much as 20%.

Because of the limit on circuit size, 18 bits are sufficient to store integer
quant;.ities. e.g. node numbers. All floating-point variables (and almost all
floating-point calculations) do not require more than 32 bits. Therefore, the
main-memory-to-CPU data path for a CAD machine should be 32 bits wide
and the memory should either have a wordsize of 18 bits and support
double-word (32-bit) data transfers, or have a 32-bit wordsize and support
fast halfword data access. The total memory requirements depend on the
particular machine architecture and instruction set size. For Program
SPUDS on the HP 1000, approximately 100KB are required to store program
code (instructions); the microcode requires another 800 words of control
store. The data reorganization and associated algorithm changes described
in Chapter 4 reduce the data storage requirements of SPUDS by a factor of
three relative to Version E.3 of SPICE2. As a result, the memory needs for
data storage are quite modest; 85KB (32K 16-bit words) are sufficient for a

circuit with 100-200 semiconductor devices.

The inclusion in a general-purpose minicomputer of specially-tailored
machine instructions such as those described in Chapter 5 significantly
improves the performance of circuit simulation. It is important when
evaluating improvements in performance to determine the extent to which
poor code generation from language compilers affects overall speed. For
example, the FORTRAN compiler for the EP 1000 produces acceptable code
(hand-written aséembly language routines for equation solution reduce total

analysis time by only 10%). The development in microcode of a Linear Equa-

143

tion Solution Machine (LESM) is detailed. This LESM executes ~20 times fas-
ter than equivalent FORTRAN code and reduces the equation solution time to
only 2% of the total. Additional speedup is obtained from special instructions
which gather together device model parameters and which incrementally
load the coefficient matrix. All the microcoded special instructions together'

reduce the total simulation time by 85-70%.

8.2. Existing Processors

A wide range of processors, from micro-processors such as the 8088
[Inte79] through larger systems such as the M68000 [Moto79] and up to 16-
bit general-purpose minicomputers such as the Texas Instruments 990/12
[Texa79] [Appe79] or the HP 1000 are possible candidates on which to build a
dedicated CAD machine. This section describes the features and drawbacks
of these processors, from the perspective of obtaining good performance in

circuit simulation.

8.2.1. 8oBs

The 8086 CPU is an 8- or 16-bit general-purpose microprocessor having a
16-bit external data path. Standard parts operate with a 200ns clock cycle
time, and up to 1MB of central memory can be addressed. The megabyte of
memory is divided into logical segments of up to 84KB each. The CPU can
directly access 4 of these segments at any one time. By convention, one seg-

ment is used for code (program instructions), one for a stack, and two seg-

ments for general data storage.

Of particular interest is the ‘coprocessor’ concept of the 8086. A copro-
cessor monitors the instructions of the main CPU and can execute those

operations which it recognizes as ‘its own'. This capability can be used to

144

extend the instruction set of the main CPU. More importantly, an 8088 sys-
tem can be augmented (without significant modifications to hardware or
software) with a special-purpose coprocessor chip which performs certain

functions especially well.

The data registers may be addressed as either 8- or 16-bit storage loca-
tions. The only 32-bit datatype recognized by the processor hardware is
called ‘pointer’ and is used to address code or data that is outside the
currently-addressable segments. The 32 bits are organized as a 16-bit seg-
ment offset and a 16-bit segment base address. The address and data lines
on the chip are multiplexed together; this sharing reduces the possible over-

lap of instruction execution and operand fetch/store.

Some multiprocessor interlock and handshaking capabilities are pro-
vided. The LOCK instruction causes a ‘lock’ signal to be set high for the dura-
tion of the following instruction. The XCHG instruction (which exchanges
register contents with memory) can be combined with the LOCK instruction
to implement a semaphore [Dijk68] facility. The ESC (escape) instruction
may be used to initiate an operation in another processor, e.g. the ‘'copro-
cessor’, and simultaneously pass a B-bit quantity. Execution may then
proceed until the results of the remotely-executed operation are needed, at
which time a WAIT instruction can be executed, which causes the 8086 to

enter an idle state until a TEST input signal is active.

The instruction set of the 8088 is oriented exclusively around 8-bit bytes
and 18-bit words. However, the 8087 Numeric Data Processor (NDP) [Inte80],
a manufacturer-supplied coprocessor for the 8086, performs arithmetic and
comparison operations on 32- and 64-bit floating-point operands and in addi-

tion executes several built-in transcendental functions such as tangent, log,

145

and exponential. The NDP implements the floating-point arithmetic standard
proposed by the IEEE [Coon79]. It contains 8 80-bit registers, which may be
individually accessed or may be accessed together as a register stack. The
data path in the numeric execution portion of the NDP is 88 bits wide. With a
5MHz clock on the 8087, multiplication and division of 32-bit floating-point
numbers require approximately 19us and 39us, respectively. In addition, the
‘coprocessor’ scheme permits the 8087 to perform computations in parallel
with operations in the 8088, providing a certain amount of processor parallel-

ism which can increase overall performance.

Overall, the combination of the 8086 and 8087 processors is adequate for
the task of circuit-level simulation of small integrated circuits. The availabil-
ity of multiprocessor interlocking instructions could be used to increase the
total computation speed by using many of these processors together in an
integrated system. The absence of 32-bit data paths, however, limits the
speeds that can be achieved. If it were possible to add a second coprocessor
chip (besides the 8087) implementing the special instructions detailed in
Chapter 5, simulation speeds should be within a factor of 2 of those obtained
with the HP 1000-F. Memory requirements for the 8086 should be essentially

the same as those for the 1000.

6.2.2. TI9s0/12

The Texas Instruments 990/12 is a byte-addressable 18-bit minicom-
puter with several high-speed caches which improve its overall performance.
Instruction look-ahead is used to perform some of the memory-address map-
ping overhead before the actual memory access cycles. Up to 2MB of main
memory can be addressed, in 64KB segments. Floating-point commands on

the 990/12, implemented with microcode, support both 32-bit and B64-bit

148

arithmetic. Alt.hox.igh the ALU contains a 32-bit accumulator, most data

paths in the processor are only 18 bits wide. -

User-written microcode can be included in the control store of the’
990/12. The design of the microprocessor memory on the 990/12 can sup-
port up to 4K 64-bit words; however, only 3K words are currently supported.
The first 2K are in ROM and contain the microcode for the basic instruction
set and some diagnostics. The remaining 1K of control store are in RAM; 528
of these words are available to the user to implement special operations.
Access to microcoded operations is through the ‘XOP’ instruction, which
transfers control either to a specified location in main memory or to an
address in the microprocessor control store depending on the setting of a
processor state bit. Therefore, it is easy to develop special instructions in a
high-level language and then implement the instructions with microcode for

fast execution.

The 990/12 has several instructions which support inter-processor
bandshaking in a multiprocessor environment. The performance of circuit
simulation on this machine should be similar to the speed obtained with the
HP 1000-F, except for the relatively small differences due to the hardware

implementation of floating-point arithmetic on the 1000.

8.2.3. M68000

The M68000 [Moto79] is a general-purpose microprocessor which sup-
ports operations on individual bits, 8-bit bytes, and 18- and 32-bit words.
Both data and address registers may be 32 bits wide, but all internal data
paths are only 18 bits wide. Standard parts operate with a 125ns clock cycle
time. Up to 16MB of memory can be addressed directly (without segmenta-

tion). Both 18- and 32-bit arithmetic for address calculations is supported.

147

Overall performancé is improved with the use of an instruction pre-fetch
pipeline and by the fact that the address and data busses are not multi-
plexed. No floating-point arithmetic is presently documented, although pro-
vision for floating-point instruction opcodes has been made. (At least one-
eighth of the instruction opcodes have been reserved for future instruc-
tions.) A simple 18-bit integer addition requires 9 internal (18 clock) cycles,

or 2.25us.

Multiprocessor communication is supported with the test-and-set (TAS)
instruction, which performs a read, modifies the data in the ALU, and writes
the data back to the same address in an indivisible hardware cycle. Bus arbi-
tration logic is incorporated in the processor chip for a shared bus and

shared memory environment.

The lack of floating-point arithmetic, the inability to customize the
microcode, and the 18-bit data paths severely limit the potential analysis
speed of this processor. The simulation times for the 88000 as presently

available are likely to be 10-20 times longer than the times for the HP 1000-F.

6.2.4. Intel 432

As of the time this report is prepared, the Intel 432 chip set [LatiB1] has
just been announced. Address space is no problem, as the 432 can address
23 bytes of memory. The processor supports 32-, 64-, and 80-bit floating-
point arithmetie, with operation times on the order of 10-30us. It appears

that simulation speeds on the 432 should be within a factor of 2-3 of those on
the HP 1000-F.

148

8.3. Limitations and Further Research

The research results described in the previous chapters support the
idea of a desktop ‘CAD machine' to meet many of the circuit-level simulation
needs of the IC design engineer. If this CAD tool is to be effective, it must
provide simulation results in minutes, for circuits containing 100-200 sem-
iconductor devices. The simulation speed obtained with the HP 1000-F mini-
computer meets this criterion; therefore, the machine can be used in the

design of cells (building blocks) in VLSI circuits.

The increasing size of VLSI circuits will lead to building-blocks that are
too large for the methods described in this feport. If circuit-level simulation
is to remain a useful design tool, further research into algorithms and imple-
mentation details is needed so that the speed and power of the simulation

program keeps up with the increasing size of integrated circuits.

Without a true dataflow architecture, the problems and time delays in
communicating data and control informatioq among multiple processors,
e.g. a host and co-processor, make a multiprocessor system unattractive to
provide a dedicated fast simulation capability for the circuit designer. A
greater speed improvement can be obtained {rom a single-processor system
in which the processor instructions are tailored to the problem area of

interest.

The fastest possible execution is obtained by a direct hardware imple-
mentation of the simulation algorithms. The use of firmware (microcode) in
SPUDS to implement the special-purpose instructions compromises this
maximurn speed in favor of increased flexibility in instruction design. Even
better performance would be obtained if the microcoded tasks were per-

formed by special-purpose hardware incorporated into a processor. The

<9

149

results in this report can be used as a starting point for the development of

that hardware.

APPENDIX 1

SPUDS PROGRAM STRUCTURE

The SPUDS program is written in a combination of FORTRAN-IV, assem-
bler, and micro-assembler code. The program contains approximately 12000
FORTRAN, 400 assembler, and 1500 micro-assembler statements. SPUDS
runs on a Hewlett-Packard 1000 F-Series minicomputer operating with an
extended version of the manufacturer's RTE-IVa operating system!. The
SPUDS program code is divided into a root segment, 15 first-level overilays,
and an auxiliary helper program SPUDZ. The circuit to be analyzed is stored
in a set of linked lists to make the maximum use of available memory. Data
structures are dynamically allocated and deallocated from main memory as

the analysis proceeds.

The original coding for Program SPUDS is derived from Version E.3 of
Program SPICE2, and the logical flows of control in the two programs are
similar to one another. The changes in the numerical algorithms and data
structures of SPUDS relative to Program SPICE2 are described in the body of
this report. The basic organization of SPICE2 is described in detail in
[Nage75] and [Cohe78]. This appendix gives the structural changes in SPUDS
which have been found necessary to make SPUDS run effectively on the

Hewlett-Packard 1000 F-Series minicomputer.

1The operating system is extended with the Session Monitor software package developed by
the Automatic Measurement Division of the Hewlett-Packard Company.

150

151

The most sevére constraint imposed by the minicomputer is the very
limited address space for program code. The initial (and reference) version
of SPUDS uses B4-bit arithmetic. Although memory requirements for both
program code and data are reduced when 32-bit floating-point arithmetic is
used, substantial revisions in program structure are required to make the
84-bit version fit in the minicomputer. The 26K 16-bit words of program code
space on the HP 1000 are barely adequate for the code which implements the
dc operating point, 'small-signal frequency-domain, and large-signal time-
domain (transient) analyses. The program statements which implement the
other analysis capabilities of SPICE2 (small-signal distortion, element sensi-
tivities, etc.) are not in SPUDS both due to address space limitations and
because the computational effort associated with these other tﬁes of
analysis is small. The code for the nonlinear controlled source, transmission
line, and JFET circuit elements is also removed from SPUDS to meet the con-
straints imposed by the limited memory address space. The code has been
removed by changing the affected statements to comments, rather than by
deleting lines from the program source. Finally, the input-processing and
error-checking overlays READIN and ERRCHKX are each split‘ into two smaller

overlays, also to reduce memory requirements.

The largest program overlay in Program SPICE2 is DCTRAN, which con-
trols the dc and transient analyses. Several changes to this program struc-
ture are made in SPUDS to make the program code fit in the available
address space. First, all FORTRAN WRITE statements in this overlay are
moved to overlay DCFMT, which is invoked immediately after the analysis
completes. This change eliminates the need for approximately 2.5K words of
FORTRAN library routines in the analysis overiay. Second, the size of the dev-

ice modelling routines makes it impossible to have all the routines present in

152

memory at the saxﬁe time. Therefore, in addition to the eliminatipn of the
JFET modelling noted above, the DCTRAN overlay is replaced by the two over-
lays DCTRB and DCTRM. The DCTRB overlay controls the dc and transient
analyses for circuits whose only semiconductor devices are p-n junction
diodes and BJTs; the DCTRM overlay performs the same function for MOSFET
circuits. Circuits which contain both BITs and MOSFETs cannot be analyzed
by SPUDS.

The size of the 'LEVEL=2' MOSFET modelling routines exceeds the avail-
able memory address séace even after all these modifications. In order to
extend the address space so that the MOSFET device subroutines fit in main
memory, the subroutines are loaded as part of a second program named
SPUDZ. From the perspective of the RTE-IVa operating system, SPUDS is
actually the two programs SPUDS and SPUDZ. SPUDS begins by executing an
operating system call which locks the program in memory so that it cannot
be swapped out to disc. Then SPUDS determines which pages of physical
memory contain the values of the FORTRAN COMMON-bl'ock variables, and
which physical page begins the Extended Memory Area (EMA) used for data
storage. The SPUDS program then invokes Program SPUDZ. SPUDZ begins
by locking itself in memory and then changes the Dynamic Mapping System
(DMS) registers so that references in SPUDZ to either COMMON-block vari-
ables or EMA data reference the same physical memory locations as SPUDS.
After this initialization SPUDZ suspends itself and returns control back to
SPUDS. Whenever SPUDS needs to execute the MOSFET device subroutines,
the SPUDZ program is invoked by a call to the operating system. Since both
programs are always present in main memory, the additional execution time

incurred by this strategy is a negligible part of the total analysis time.

APPENDIX 2

SPUDS PROGRAM LISTING

Program SPUDS is written for the Hewlett-Packard 1000 F-Series mini-
computer using a combination of FORTRAN-IV, assembler, and micro-
assembler code. Persons who wish to obtain a listing of Program SPUDS

should contact the author concerning the possibility of obtaining a copy.

153

APPENDIX 3

LISTING OF BENCHMARK CIRCUITS

The effectiveness of the simulation algorithms described in this report
can be measured by how well these algorithms work for typical integrated
circuits. A mixture of both analog and digital bipolar test circuits exhibiting
simulation problems such as convergence in dc analysis is described in
[Nage75]. These circuits are part of the set of benchmarks used for Program
SPUDS. Several analog and digital MOSFET circuits are included as well to
check the effectiveness of the simulation algorithms when the circuit

response is controlled by MOSFETs.

A listing of the input for the DIFPAIR circuit is shown in Figure A3.1.
Figure A3.2 shows the output listing of SPUDS for the circuit input from
Figure A3.1. The input descriptions of the other test circuits are shown in

Figures A3.3 through A3.34.

154

14

155

DIFPAIR CKT - SIMPLE DIFFERENTIAL PAIR
.WIDTH IN=72 OUT=72

.OPT ACCT OPTS PIVTOL=1.0E-12 PIVREL=1.0E-4
.TF V(5) VIN

.DC VIN -0.25 0.25 0.005

.ACDEC 10 1 10GHZ

.TRAN 5NS 500NS

VIN 1 0 SIN(0 0.1 5MEG) AC 1

VCC80 12

VEE S 0-12

Q14 286QNL

Q25 3 8 QNL

RS1121K

RS230 1K

RC1 48 10K

RC2 58 10K

Q36 79 QNL

Q4 7 79 QNL

RBIAS 7 8 20K

.MODEL QNL NPN(BF=80 RB=100 CCS=2PF TF=0.3NS
+ TR=6NS CJE=3PF CIC=2PF VA=50)
.PRINT DC V(4) V(5)

.PLOT DC V(5)

.PRINT AC VM(5) VP(5)

.PLOT AC VM(5) VP(5)

.PRINT TRAN V(4) V(5)

.PLOT TRAN V(5)

.END

Figure A3.1. SPUDS Input Listing for Differential-Pair Circuit

sesse 03AUGCE0 essessss S$PUDS 1A. 0 (OJAUGEO) sssecsss 21:92:57 esene
DIFPAIR CXT <~ GIAPLE ODIFFERENTIAL PRIR
INPUT LISTING TERPERATURE o 2? 000 0E€G €

PCQONP IRV IHNCET 0880009000080 000C0030002C8808009808000883800000s

INe72 QUT=72
gf g TS PIVIOL=1.08~-12 PIVRELSL . 0€-4

4
N
.23
1
°
<

- .
i1
BEBEOECE =~

»
Mea AP X
*ooUnNEAN
=

[R el L e}

MOXBONRD=S
-l OCOOORMNOD=N~= ©0O<

-
ZEN =EWL

NCBFo@0 REu (100 CCIa3PF TFe0 NS [Ra6¢MS CJIESIPF CJCe2rF

e POOORRRNOSOCCE: -

vesses o;auéa;houu-u SPUDS 18 0 03JMUGBU s desassss v .2 &' saren
DIFPALIR CXT - SINPLE DIFFERENTIAL PAIR
847 RODEL PARANETERS TEMPERATURE » 27 vov bLEu

000009800800 4000000000000080080000008000090000000900800000080800008080003000
(L18

TYPE nen

(14 80.000
”n 1.900
18 1.00€-14
19 190.000
va 30 .990
TF 3 00€-10
e 6 90€-09
(131 2 00€-12
CJ€ 3 00€-12
cJC 2.00€-12

Figure A3.2. SPUDS Output for Differential-Pair Circuit (Page 1 of 7)

156

4

oo;:; 03&62‘3 ssesevss S5PUDS 1A 9 :n]gufaul IR TR R vesae
DIFPAIR CXT - SIMPLE DIFFERENTIAL PAIR
0C TRANSFER CURVES TERPERATURE o 2? 909 DEC €

90000000000 C000000CT00008000000000C050000000000008000000908040800840040000

=3 000E+09 0 000€+00 9 veukerd9
-2.900€~0 -7.013€-9 . .
*2.430€-9 «$.998E~9 . 3
©2.490€-9 -6.980E-0 . .
«2.330€~9 -$.96LE-O . 3
«2.300€-9 -6.940E-9 . .
=2.230E€~9 - 18€~9 . *
«3.200€-9 -6¢.89J€E-0 . ’
=2.130£-9 -¢.8363€-¢ . 3
*3.100€~¢ -6.93%€-9 . .
«2.930€-9 =¢.809¢€~-90 . .
=3.000€-¢ -4.276E-9 . .
*1.990€-¢ $.742€-9 .
{.900€-0 ~6.707E=0 .
o, 830€-9 - 70€-9 3
- 99E-9 “6.632E-90 *
- 30€-9 -4 90€&-9 .
- 790€~-9 6. 340€-9 .
1.430€~0 -¢.304E-0 .
*].600€-9 . 439E-9 *
-] .330€-9 “$.410E-90 *
- Q0E-9 «6.3¢1E-9 .
=] . 430€-9 -6.310E-9 .
={.400€-9 -6.233€-9 .
-§.330€-9 *6.197E~0 .
- Q0E~9 «6.130€-90 .
*1.290€~9 ~6.074€-~9 .
el .200€-9 -6.006E-9 . .
. 30€-9 «3.932E-9 . .
- 90E-9 -3.832E-9 . .
~1.030€~0 *5.261€-9 . *
- Q0E-2 -3.636&-0 . .
e 00€-9 *3.324E-9 »
- Q0E=-0 -3.J426-9 .
- 90€-9 -5, 001E~-9 . ’
=9.000€-9 =3.009€-9 B
- Q0E€-6 -1.816E~9 . *
*7.000€-9 .973E-0 .
¢ S00€-0 €9€-9 .
*6.000€-0 $90€-9 R
- 90€-o .460€=9 .
- 00E~9 . 139€+04 .
-4 S00E-9 493E+00 "
=4 000€-9 43€+00 .
=3 300€-9 L228E000 .
] 000€-9 L610€900 .
-2 300€-0 3.014€009 .
2 000€-90 3. 4306900 .
-1 390€-9 3 036E000 .
-1 900€-9 4.2096+00 .
- 00E€-0 4.727E+00 .
) V04E 04 169€+09Q R
3 000€-0 .610Ev00 R
900€-9 .048Ee00 .
300€-9 . 483E0 Q0
000€-0 L 908E+90
300€-9 329£¢99
990€-0 7. 730€44%0
.3Q0€~e . 121E+90
.Q00E~9 .494€+90
4 300€-0 94%9€+00
3.000€-0 198€+00
S §00€-04 §00€+00
» 900€-0 792E+09
6 300€-0 006E091
? 390E-0 0J1Ev01
7 SQ0E-9 033E+01
9 000E-0 072€+01
4 300€-0 980€+91
3 000€-0 983Eral
9. 900E-90 99dE*Q 1L
| 000€-0 094€+01
1 030¢€-0 Q99Q€+0 1
1 100€-0 102€v01
I 130€-01 108E091
| 200E-01 109€+01
I 2%30€-a1 J112Ee91
t 1AGE w 11eEewl
™ :
Figure A3.2. SPUDS Output for Diferential-Pair Circuit (Page 2 of 7)

157

1 0UvE

evi

LI Y

R

158

.400€-0 .123€0
.480€-¢ . 128E%0
.509€~90 .130E+0 .
30€-0 . 133Ee9
.8Q90€-9 .136E*0
.$80€-0 .139€+9
.T90E=9 .142E+9
730€-90 .143E+9
.390€-9 .148€0
S0€-¢ .131E*0
00E~0 . 134E%0
30€-9 .197E€+9
90E-9 .160€¢90
$0€-0 L1628+
90E=9 .163E*d
S0E-9 .142€%9 .
00€-9 .170€+9
S0€-9 172800 .
J00€-9 .174E4+9 .
380€-9 .126E*0 .
49060 . 179E+9
.450€-0 .180€+9
. 3006~ 103800

@ ® ® ® ® ® ® ® ® ®w @ ° o o * = =

esses 03AUGCSS sesseses SPUDS 1A 0 (OJAUGBU) sesessss :1.w2) cceee
SIFPALR CXT - SIRPLE DIFFERENTIAL PALR

SHALL SIGNAL B1AS SOLUTION TENPERATURE o 27 0090 DEG ¢
000800600000 8000000900400003000000000000000000¢400000800400008000800 0000
(114 a7 NODE voLt [] yoL? MOOE vaLt

1) 9 9009 ¢) -.007?? [- 9077 v) 5 16780
¢ 3 $.1603 {(& -. 6312 ¢ 2) =11 3401 « 12 0000
¢ 9) =12.9040

VYOLIAGE SOURCE CURRENTS

NANE CURRENT

N “7.741£-906

yee «2.3336-93

VEE 2.349€-93

T107AL POVER DISSIPATION 6.10€-02 NATTS

evese O3AUCEO ocecsvees SPUDS 1RA.0 (QJAUGEO) oesscervs 21:0di87 esaae
DIFPAIR CXT - SINPLE OIFFERENTIAL PAIR
OPERATING POINT (NFORMATION TEAPERATURE o 22 630 0€G C

.....O‘.....-................‘.‘......l...‘.‘.l...-....0....-."“ ssees

ecee QIPOLAR JUNCTION TRANSISTORS

[1] (1] CE] [L)
ROOEL aNL [L18 anL (LIS
19 ? 74€-06 7.74E-06) .42E€-03 | 42€-v19
13 6.84€-04 5 04£-04) 3I8E-9T 1 14E-07
vet 643 643 6690 60
veu -3 126 -3.17¢ -10 &89 9 ouwe
vee S.019 $ 020 11 349 (YY)
8 0C 28 .293% ¢8 289 97 103 90 002
3] 2.64€-02 2.64€-02 ' JeE-02 ¢ 40E-02
et 3 J4€003 3.34€003 | 02£+03 \ d2€ev]
ta 3 978004 9 Q7EGA4 4 JIEIS4 4 39Ce04
cP1 1 206-13 1 20€-11 &t 91€-11 1 JUE-1}
(3.1'] 8 0S€-13 @ 0%E-13 8 9S€-~13 & wvE-l4
[1 88 243 89 244 9?7 9wl 28
Fi J 236008 3 28ten8 4 S4Eevy 1 4uEr.

Figure A3.2. SPUDS Output for Differential-Pair Circuit (Page 3 of 7)

.

doveee

PR E R R

t2eseee

TVeess 03AUGCH0 sesseses SPUDS TR s (QINUGBO) sseaeses i w7 37 esees
DIFPALR CKT - SINPLE ODIFFERENTIAL PALR

AC ANALYSIS TERPERATURE * 27 000 DEGC C
0090900000000 0000008C00CS000C030C00CICITIVIINIIIIUTEN0CETCITANITEIINENSIIS
LECEND:

41 VYACS)
ot YM(S
FRES L LI B
(Pleccacccnacccccance 1.000€-904 1 0900€-02 1 000€+09¢
(')0--’-'-f-'----"' “1.3006002 “1 000€902 -5 000€+0)
.000Evd0 2€¢9 .
.299€490 7€+9 .
.383E00 J?Ee0 .
.99%E+90 2€+Q B
.312€9¢00 . 1€+0 .
.162E+90 32¢2+0 .
. 901 E+00 J7€+0
LO12E+00 J?2E+9
.310€+00 7€+0 .
43€+00 2€»0
.900€ e 2€+9
.239%€¢0 2€+0
.SQ3E0 JT€+9
.993E+0 J72€+9
.S12E9 J7€+9
.L8IE+S 37849
.90LEve J2Ee0
$.9012E% .837E¢0
.310E+e 37849
.94JE %0 .837€+9
.9Q0€+0 1Ee9Q
.239€49 7890
.3@SE 9 7€+0
.995€+9 .83J28+0
.312E+0 7€+
. 162€ %0 . 837€e0
G1E+0 37€+9
3 912€00 3728+0
6. J10€+0 J2800
?2.943€90 2€*0
.090€ 0 37€+9
S9€+9 2€+9
93E+9 7€+9
93E 9 37E+9
12E+0 7€¢9
62€ 49 J7€+Q
Q1E+0 289
3 012E 0 1€¢0
6 110€+0 [I3X]
.943E90 36E+9
00E*04 J6Er0
39€+04 §Ee0
S3E 04 ISEre
93E 04 J4E* O
12E+04 33E+9
62€+06¢ - 1EX]
J91E04 7€+0
S 912€+04 1E+0
o J10€204 312€00
7 943E£4+04 7972€+0
990€ 40 ?24E+9
2%9€10 .738E+0
383E+0 682€+9
993E+0 $9%€~0
F12€90 462E00
162€+9 284€00
981E 0 976€49
012€+9 ? 326E90
J10€+0 7 0S0€r0 .
e SR L :
M e3€e0
1 239€+¢0¢ 4 882€e0 . *
| S33E+0¢ 4 12JE+0 .
993E + 04 3 4178e01 .
2 S12L 904 2 ?9%3€~01 R
162E 404 2 263E~0t .
191 E<ve 1 824Er01 .
9 013Crué 1 463€v01 .
n J1aCe00 1 tev€rot R
Y M4lfroe 9 J19€e00 .
1 osunfien 7 4340 .

Figure A3.2. SPUDS Output for Differential-Pair Circuit (Page 4 of 7)

139

LR g

IEEREERRERRY 3§ ¢3

~

(30 ¢ 8Beyg) 3maJl) Jred-feliusiapiq 103 anding SANdS ‘2'EV amBLg

960000000 PRt OO OROCOCPOIRPIOPROOTS

T3] onn

esoes Jf Tu:ill o

[4] [T
H [
300W

XXX 2]

d 230 ooe (2

Pnn
nee
ano
XY}
fo-

en-

-

(KX XX T N]

3el 1

32 1
e
L1

: v BN jUNAIINI)

cosanvLoe) o ¥l S0NdS

Sli¥A

v JNIVIILNIL

sot 26 Sh? 88
ert 11 ets §
RS Al 921 $-
LA tee
£6-30F t 00-308 o
So-32¢ 1 %0-3¥2 ¢
M e
£o ze

S¥01SISNBEL NOD

ovesee®

SR? 8c h LN]

¢1e ¢ kL)

! s Jea

£ee 184

ro-3v8 ¢ R}

039/ 2 -3
NG 100
10

ILONAL YUADIIR evee

NOLIVHBOINE LNIOJ DNIIVEI4N
YI¥d TIINIAISSIC VOIS -~ 1XD BIV4LLC

to-301 9 nots

WOILN0S 1K3

osINVES

ISNVEL NLAIND

d WILNILILIIQ VNS - 1XD WINdAINE

cesvsee (OBINULOY O ¥I SONdS evees OBINVEC osese
- ¢=-3220" otedooe’t
. : Lo-310¢C " 60s3EWE "
. . fo~-38L9° 60e¢301
o ©-3£90° 6043210°
. . : 16-366C " 60¢3106"
. . : [6-3642° 6043291
. . : [o-3001" 6063216
. . X fo-3€1C° 6043666
* : 6-316€° 60+360
X : 6~308L° 604368
.. : ©=-3£90° 6043000
. . : 6-319¢ " 00+3E06°
. . : °-305¢ oe3olf 9
. : o-310C sos32l0°§
: 0=-3200° [33 [N
. : ©0-3202° 0e :
. : 6-3¢08 " 18 :
o - e-31T0° 80+ :
' =322 90¢
. 6-302¢6" §0+ 365
o 0-3216" 9043000°
] ' 0-39%20 2043006
. 0=-366%" 20¢)
00e360 1" o¢ :
. © 0043819 L0 :
. 0043091 200 :
0043000 ° do¢
. 00+3619° 20
- 0043219°% uew

(& 30 g 85e{) Moy Jred-Tenjualayig J03 Iding SANJS ‘2'EV sIndLg

. avednie b 20 vy
eos3IvEe 0 ev Juh¢
C0436EL ¢ 203097
004326 # 0 3059
00e30L2 20 Jnon
00e3r6e ¢0 306§
00+3LF2 § 20- 3008
‘ ©00¢38S § so-305r
' 6003169 20 300y
' 0043816 Zo- JoSt
. ' ooe3eLl ¢6-300¢
. 004362 20- 3082
. 00+¢3y 206-3002
L 043¢ ¢0 3081
00¢31{ 20 3001
“ 00432 ¢6- 3080
. 0043606 20: 3000
¢ 00e3f 20-306¢
: ©0043£06 0. 3008
¢ 0043¢0 26- 30860
¢ 0043882 20-3000
N . 0043289 20 3082
¢ : [TXE]] 20- 3002
. : 00+3s 40 3089
' T 00e3 293009
. : I IS 6. 3066
‘ : 004326 46-3605 2
‘ 003l £0- 3080
« : 00e3092° 26- 30
0 : (I IN 40-308¢L
¢ 60439 ’ 20-300L
. : 0043089 ¥ i0-30
. 0043425 ¢ 2030
. . . 00432008 20- 3¢ 1
. : 00e390L ¥ 20-30 4
4 : 0043ENT 'V 20-3060°
¢ : 00¢3SIT » 206-3000"
¢ : 00432TZT ' H 20-3086¢"
¢ : 00eIP92Z 9 £0-300¢
¢ : 00¢IIPL P L6308
¢ : 0043080 H 46300
. : 00+3166° 0 26308
. : 0043092 ¢0+-300
¢ : 0043066° 0 26-308
¢ : 003081 £6-300
¢ : 0043868 ° 20-3065"
¢ : 00¢36L9° 26300
. : 00¢3088 " i0-3080
. : 003621 ° 40=300%"
. : 000329¢C° 20-308
. : 00e3L6E " 26300
¢ . 60e3108° £06-308
* . 0043886 ° 2406-300
‘. : 0063691 " fo=3081"
¢ : 0043182 ' 20-300
¢ : 00e306€ " t0-3080
. : 00e3lrh £6-3000
. : 0032V 80-300¢€
¢ : [IF11 806-3000
s ©00e32€0 ¢ po-3006
D : 00e298F ¢ 90-3000
N ' 00eILIT "4 $0-3005 ¢
¢ . 00e32¢01 90-3000 ¢
. * 00e3606° «32008°9
.) : 06eIrlN’ 80-30060°9
. : 06e382Y° 80-3006'§
. : 00e3LLY " 90-3000°¢
. . o0e3vL2 " 00-3065 ¢
. : o0e3gLO " g0-3000" ¢
. . 0043158 ° o-3008°¢
. : 0063229 96-3000°L
: . . 0043225 90-3008°2
. . 00+316EL " 000°2
. : 0043882 0681
. : 00¢3912" 0001
o : 00636821 006§
. : 00e¢3891 Jooe ©
‘noedonn nos3000 © 0043000 ¢ 0043000°2
roe3 s oe3e 3 CGIA WY

o0 POOOPORESPORORS RS

soPOORPODEITY [X A1 1]

Ll
J %930 oot (2 » JANIVEISNIL SISATYNY INIISNVEY

194 IIINIUISSTIQ0 3N4MIS - XD WIsdSIC
coesse (OBONBEO) O ¥! SQNIS esveevse OBINVED ooves

o laile

162

d4.990L -9? 3.331E00 .

3.930€-07 3.897€090 .

4.000€-07 J.89%0€¢90 *

4.0850€£-97 J. 9346099 ’

4.1900€-97 4.003E¢99 ’

4.130€E-97 4.198€900 '

4.200E-97 4.237€+99 ’

4,230£-97 4.396E+09 ’

4.J00E-07 4.378€+90 ’

4.330€£-07 4.779E+90 ’

4.49008-97 4.993E%900 ’

4.430€-47 3.218E+00 .

4.390€-97 S.444E990 *

4.3%30€-907 3.6638000 ’ .
4.600E~97 $.882£+99 .

4.630€-07 6.082E000 . .
4,200€-07 6.28628999 . *
¢4.2%0€-97 $.418€099 . .
4.000€-97 6.343E+00 . 3
4.030€-97 :.ﬂdl *99 .
4.9Q00€-97 .703E¢00 3
4,990€-97 6.22%9€090 .
5.000€-97 6.219E¢00 .

4 @ 8 ® ® ® & ®© ® ® ® @ e« o ® e + @ s+ @ e = e = . @ = 4 @ @ s @ s o o« o o =

400 COMCLUDED

sssee QJAUGCIO -‘QOQOOQ'O SPUDY IR # +03NUNEY) ssescrsee (1:03:353 erese
PLIFPAIR CKRT ~ SIRPLE DIFFERENTIAL PAIR
409 STATISTICS SURRARY TENPERATURE o 27 Jvd bEkw L

090800800080 6000000600000 C00T000OCTITITITINVIBOITINAENINGINSGIIIETIBINLIIGTSHS

KUNGOS NCNGOS NUANOD MUREL OI00E€S BJTS JFETS AFETS

19 1e X 12 °)] w
KURTEN ICYFLE JTRFLG JACFLG INOISE IDIST NOGO
1} 101 101 1ot [[9
LT R{ 14 nrTeR RTTAR IFILL tors PERSPH
17. se. r3. 3 £ 2} 77 469
NURTTP NUARTP NUANIT RAXUSE wosavo
197 .. 238. 2364 3. 993E004
READIN 2.4%0
SETUP L1490
Tacuav 8.210 220
ocan [Y1) 13
ACAN 13.440 191
TRANAN 11 %289 218
ourtPuT 9 4%
ococnr 20 v
COOGEN 740 N
OVERNEAD 300
T10TAL 408 TINE 7 7%

Figure A3.2. SPUDS OQutput for Differential-Pair Circuit (Page 7 of 7)

43

163

KTEST - MUTUAL INDUCTANCE TEST
.WIDTH IH=72 QUT=?2

.OPT ACCT OPTS

.AC DEC 10 { 1GHZ

.TRAN 20HS 2000NS

ISRC 1 0 SIN(O t IMEG) RC 1|

L1 1L o
L2 20
L3 3 ¢
L4 4 0
K12 Lt
K13 L1
Kid LI
K23 L2
K24 L2
K34 L3
RL t o
R2 2 0
RI 3 0
Re 4 0

tHH
t8H

{OMH

1o0MH

L2
L3

1K

L~ 2K - 2 -2 - 3 - -3

-PLOT AC YMC1) VPCL) YMC2) VPC2) VNC3) YPC(3) VYHC4) YPC(4)
LPLOT TRAN VCL) V(2) V(3) ¥(4)

.END

Figure A3.3. SPUDS Input Listing for KTEST Circuit

164

RCA3040 CKT - PRCA 3040 WIDEBAND AMPLIFIEP
LWIDTH IN=7?2 QUT=72

.OPT ACCT QOVPNJN=8 nE-6 NFTS

.0C YIN -90.23 0.25 0.003

.0P

-AC DEC 10 ! tOGHZ

.TRAN 0 SNS 50NS

VIN | 0 SINCO 0.1 SOMEG) AC 1|

vee 2 0 135.0

VEE 3 0 -15.0

RSt 30 t 1K
RS2 31 o K
R1 6 3 4.8K
R2 5 3 4.8K
RI 9 3 0.811K
R4 8 3 2.17K
RS 8 0 0.82K
R6 2 14 1,32K
R7 2 12 4.3K
R8 2 15 {.32K

R9 16 0 5.25K

Ri0 17 0 §.23K

@1 2 31 6 QNL

Q2 2 30 5 ONL

@3 10 3 7 QNL

Q4 11 6 7 QNL

Q3 14 12 10 aHL

Q6 13 12 11 QNL

Q7 12 12 13 QHL

@8 13 13 o 9NL

Q9 72 8 9 QNL

@10 2 13 16 QNL

Q11 2 14 17 QNL

.MODEL QML NPN(BF=80 RB=100 CCS=2PF TF=0.3NS TR=36NS CJEa3PF CJC=2PF
+ Ya=250)

LPRINT 0C VC(16) VC(1?)
.PLOT DC VC(I17)

LPRINT AC YNC(17) VPCL?)
.PLOT AC VYMC(L1?) VP(1?7)
.PRINT TRAN ¥C16) V(L7
.PLOT TRAN V(17)

.END

Figure A3.4. SPUDS Input Listing for RCA304 Circuit

4 4

165

Uazo9 £XT - UAR 209 NPERATINNGL ARFLIFICP
VIDTH (N=22 QiTe??

OPT ACCT QPTS PIVIOL®L "E-12 PIVREL-! oF-4
0C VYIN -0 23 0.23 2 009

.AC DEC o 1 LOGHZ

.TRAN 2 3US 2390S

VIN § 0 SINCO 0 | tOKHZ) AC 1

vee 19 o 13

VEE 20 0 -13

RS1 Jo I 1K

RS2 3t 0 1K

RF 30 t8 100K

RCOMP 2 23 1 SK

CICONP 23 4 S000PF

COCOnP 18 13 200PF

@1 2 31 3 OGNt

92 4 30 3 anL

Q3 19 ¢ 3 QWL

Q4 7 4 1 ONL
Q3 7 11 12 oML
96 6 13 12 ONL
@7 ¢ 2 13 ONL
99 19 7 21 oWt

09 19 17 18 QML

010 172 13 16 QML

Q11 3 8 22 QNL

012 8 8 20 aHL

013 14 14 12 QNL

Qle 13 12 1o oPL

Q1S 20 17 18 QPL

Rt 3 2 23x

R2 3 4 23K

RY 22 20 2.4x

R4 8 9 toOX

RS 9 12 3.6K

R6 11 14 3K

R? 19 7 19K

RS 19 6 (oK

RY 93 to Lok

R10 10 18 3ok

R11 19 17 20K

R12 13 16 10K

R13 16 20 73.0

R14 13 14 3IX

RIS 21 1o 1x

.MODEL QNL HPN(BFe80 R@%100 CCS=2PF TF=0 3INS TRagNS CJEeIPF CJCs2PF
. VAe39)

.NODEL QPL PNPC(DFe10 RB=20 TFeIHS TR320NS CJE=GPF CJCw4PF VAnSO)
CPRINT DC V(?) veis)
.PLOT 0C vC10)

LPRINT aC VYNCLB) VP(I®)
.PLOT AC YAC18) YPCLB?
PRINT TRaN V(7)) V(I8
PLOT TRaAN Vv(18)

END

Figure A3.5. SPUDS Input Listing for UA709 Circuit

UA727 CKXT - UA 727 RAPLIFIER
VIDTH [N=22 OQUT=?2

0PT ACCT OPTS RELTOLso ang
.0C VIH <0 2 0 2 0 204

AC DEC 10 1

10GH2

TRAN 0 o3US 3US

veccL 34 o0 13
veea2 33 o 13

SINCO 0 2 J00KNZ) AL

VEE 36 o -13
VIR 40 0

RS1 40 t 1K

k92 12 0o 1K

1Z1 36 9 620mA
RZ1 36 9 10

122 32 31 620M4
RZ2 32 31 1o

R1 9 31 (KX

R2 28 9 21X

3 29 19 4 8K
R4 32 36 2. 4K
RI 33 36 10
Ré 26 19 2«
"7 29 36 1.3%
R 20 36 120K
R9 11 3 60K
10 6 9 60K
RIl 34 3 3
12 8 9 Lok
R13 22 36 13K
R14 21 36 13k
R1S 23 36 13K
Ri6 17 9 10K
R17 34 15 3K
R18 16 17 60K
R19 1% 14 60K

21 24 36 120K

RTENP 33 29 330K
93 33 29 31 ONL
94 33 32 33 omL
Q3 29 33 36 ML
96 29 28 27 anL
@7 27 27 26 QHL
a8 19 19 23 aNL

Q9 34 1 2 QKL

Q10 2 19 20 QHL
@11 34 34 11 QML

012 3 2 4 QL

Q13 4 19 22 amL

Q14 ¢ 3 3 QPL
Q1S 3 ¢ 8 QNL

J& 8 to amL
10 19 21 N
34 17 18 QNL
18 19 23 QWL

Figure A3.6. SPUDS Input Listing for UA727 Circuit

[}
L]

3

.

Seos
cbote
O K
b N
J4 34
nOOFL

FAE:

ROOEL

166

16 1O ONL

14 18 0OPL

17 4 aNL

19 24 ONL

12 13 ouL

QNL NPH(DFeRO RB310N CFSe2PF [F+n INS TR-4ANS
IPF CJC22PF vazsas

QPL PHP(GFs1n QR:2N TF2INS TReINS CJIF=hPF

CiCeaPf vAS50)

PRINT

PC Ve10) Va8

PLOT DC vei8

PRINT

aC VRMC18) VPC1H)

PLOT aC VAC1B) YPCL1B)

PPINT

TRAN V10 VO1@Y

PLOT TRAN V7 IR

END

s

w'

UA?33 CXT - UA 733 VIDEO PREANPLIFIER
NIDTH IN=72 QUT=72
.0PT ACCT QPTS
vecec 11 o 8

VEE 9 0o -8

a1 3 1 4 Q1

Q2 14 2 13 Q1
23 17 14 16 Q!
Q4 18 3 té 0t
@3 11 18 19 QI
@é 11 1?7 22 Q1
@7 6 7 8 a1

@8 7 7 10 91
99 16 7 15 Q1
Qto 19 7 20 Q1
a1y 22 7 21 Q1
R1 1 0o S

R2 2 0 51

RI 11 3 2.35K
R4 11 14 2. 4K
RY 4 3 30

R6 13 12 30

R? 3 6 390

R8 12 6 9590

R9 11 7 10K
R16 11 17 1.1K
R1y 11 18 1.1K
R12 3 19 7K
R13 14 22 7K
R14 8 9 300
RIS 10 9 1. 4K
Rié6 15 9 300
R17? 20 9 4909
R18 21 9 400
.MODEL Q1 NPH(BFs=100 BR=2 [S20.9901E-15)
.END

Figure A3.7. SPUDS Input Listing for UA733 Circuit

187

Uaz4tl CKT - YA 741 NPEPQl WMLl aMFLIFIFR
VIDIH [N222 QUTs?2

0PT AaCCl oPTS

OC VIN -0 23 0 25 o o0S

AC DEC 10 1 10GH2

TRaM 2 3U3 293908
yee 27 o 19
VEE 26 0 -19
VIN 30 0 SINCO 0 It 10KkH2) AC
RS1 2 30 1K
RS2 | o 1K
RF 24 2 took
Rt 10 26 1K
R2 9 2¢ 30K

31
e |
R 1
6 2
R? 1
RO 1
R 2

R10 23 24 30

R
conp
et
Q2
Q3
[L)
Q3

ONDNWW

13
2
1

2
6
(3
L]
9

26 30«
2 3 JoPF
4 QNL
S oML
¢ QPL
S oPL
10 ONL
11 aNe

07 27 7 9 QNL
98 6 19 12 aNL
99 193 1S 26 QWL

.noo
.

3
¢

26
€L
YA

3 27 orL
3 27 ePL
17 27 aft
1?7 27 QrfL
22 21 ONL
21 20 ONL
13 26 ONL
8 14 ANy
14 18 omL
23 24 aNL
23 24 orL
22 23 am
20 23 QPL
GNL HPN(BFeBO RB=100 CCS»2PF TFe0 INS TReG¢NS CJE=3IPF CJICu2PF
=3Q)

.NOOEL QPL PHP(BFe (0 RB=20 TF=INS TR=20MHS CJEw6PF CJC=4PF vAe30)
PRINT DC V(8) V(24)

PLOT OC ve(24)

PRINT AC VMC24) VPC(24)

.PLOT AC VYRM(24) VP(24)

PRINT TRAN V(8) v(24)

PLOT TRAN V(24) V(8)

.ENOD

Figure A3.8. SPUDS Input Listing for UA741 Circuit

168

»

v

[

o

189

RTLINY CKT - CASCADED RTL I[NVERTERS
.MIDTH IN=72 QUT=2?2

.0PT ACCT ODVYPNJIN=1 O0E-6 OPTS

.DC YIN 0 0 2.5 0 025

.TRAN 2HS 200NS

YCC 6 0 5

YIN 1 0 PULSECO S 2NS 2HS 2MHS 8OMNS)
RBL 1 2 10K

RC1 6 3 1K

Q1 3 2 0 aND

RB2 3 4 oK

Q2 5 4 0 aND

“RC2 6 § 1K

.MDDEL QND MPN(BF=50 RB=270 RC=40 CCS22PF TF=0.{NS TR=10NHS CJE=0 9PF
+ CJC=1 .S5PF PC=0.85 vAa=50)

.PRINT DC V(3) V(3)

.PLOT DC Y()

.PRINT TRAN V(3) v(3)

.PLOT TRAN V¥(3) ¥(S) ¥(1)

.EHD

Figure A3.9. SPUDS Input Listing for RTLINV Circuit

170

TTLUINY CKT - 74 SERIES TTL [NYERTER
VIOTH [N=72 QUT=72

.OPT ACCT OYPNJN=1 O0E-6 APTS RELTOL=" 0402
.DC VIN 0 2 0.02

.TRAN (NS 1OONS

vec 13 o §

VIN 1 0 PULSECO 3.5 INS INS (NS 40NS)

RS 1 2 5o

@1 4 3 2 aWD

RB1 {3 3 4K

Q2 5 4 6 QND

RC2 13 § 1.4K

RE2 6 0 1K

Q3 7 5 8 aNWD

RC3 13 7 too

01 8 9 01}

Q4 3 6 0 QWD

Q3 11 10 9 QHD

RB2 13 10 4K

02 11 12 0t

03 12 ¢ 01

.MODEL D1 D(RS=240 TT=20. 1NS CJ0=0 9PF)
.MODEL QND NPH(BF=30 RB=70 RC240 CCS=2PF TF=0.INS TR=10NS CJE=0. 9PF

+ CJC=1{ .SPF PC=0.9S5 VYA=30)

PRINT DC V¥<(3) v(9)

LPLOT DC Y(9)

.PRINT TRAN Y(3) V(9)

LPLOT TRAN V(3) Y(9) V(1)

.END

Figure A3.10. SPUDS Input Listing for TTLINV Circuit

171

TTL74 CKT - SERIES 74 TTL INVERTER

.WIDTH IH=72 QUT=?2 .

*.0PT ACCT DVPNJN=1.9E-6 OPFS PIVYTOL=1 0E-12 PIVREL=! . 0FE-4
.O0PT ACCT DYPHJN=1 0E-6 OPTS

.DC VIN 0 2 0.02

.TRAN NS {OONS

YIN 1 0 O0C 1t 3 PULSE(O 3.5 1NS INS INS 4O0NSH

¥cc 13 0o 3§

RS 1 2 39

at 4 3 2 ac
@2 5 4 6 QA
Q3 7 5 8 QA
Q4 9 6 0 08
@3 11 1o 9 ac
01 8 9 DA

02 11 12 DA
03 12 0 oA
RB! 13 3 4K
RC2 13 5 1.4K
RE2 6 0 1K

RC3 13 7 100

R8I 13 10 4K

-MODEL QA NPN(BF=20 BR=] RBa70 RC=40 IS=1E-14 VYA=350 CJE=3IPF CJC=2PF)
-MODEL @B HPNC(BF=220 BR=.2 RB=220 RC=12 15z 6E-14 VYA=50 CJE=3PF CJC=2PF)
-NODEL QC NPH(BF=20 BR=.02 RB=500 RC=40 I1S3a31E-14 YA=%H CJE=3IPF CJc=2pPF)
.MODEL DA D(RS=40 TT=0.INS CdQ=0 . 2PF [5=1 0E-14)

PRINT DC VY(9) v(6) V(%)

PLOT DC V(9) VC(6) V(%)

.PRINT TRAN V(93) V(8) ¥(3)

.PLOT TRAN Y(9) ¥(6) Y(5) v(1)

.END

Figure A3.11. SPUDS Input Listing for TTL74 Circuit

172

TTL?4S CKT - SERIES 74S TTL [NYERTER

.VIDTH [N=72 0UT=?2

.OPT ACCT OYPNJN=2Y OPTS

.0C YIN 0 2.5 0.025

.TRAN (HS 100NS

VIN 1 0 DC 1.375 PULSE(O 3.5 INS (NS 1NS 4ON3)
¥CC 13 0 5

RS I 2 30

a1 4 3
RB1 1S
RC2 13
Q2 3 4
@3 7 S
@4 7 8
RC4 1S
Q3 190 t1 o0 QA

RE2 6 11 230

RCS 6 10 3500

96 9 6 0 a8

Q7 13 12 9 ac

RB? 15 12 2.4K

0f (3 14 DA

02 14 0 DA

.MODEL QA HPH(BF=29 BRx| RB=70 RC=40 [S={E-14 VYA=50 CJE=3PF CJC=2PF)
.NODEL QB NPHC(BF=20 BRa.2 RB=20 RC=12 1S=1 6E-14 YA=50 CJE=3PF CIC=2PF)
.MODEL QC HPN(BF=20 BR3.02 RB=2500 RC=49 [3=(E 14 VA=52 CJE=3IPF CJC=2PF)
.MODEL OAR D(RS240 [Sal 0E-14)

.PRINT OC V(9) ¥(6) v($)

LPLOT DC V(I) V(6> V()

LPRINT TRAN ¥(9) Vv(6) V(3)

.PLOT TRAN V(9) V(6> V(S) V(1)

.END

ac

NW DA WN
[
o

Figure A3.12. SPUDS Input Listing for TTL74S Circuit

173

TTL?4L CKT - SERIES 7T4L TVYL INYERTEFR
VIDTH [N=22 0UT=?2
.0PT ACCT 0PTS RELTOL=0 00}
.DC YIN 9.0 1.5 9.015
.TRAN 10NS 1000NS
YIN 1 0 0C 1 175 PULSECO 3.5 1ONS 10N5 1aNS 400HS

vee 13 0 S

RS 1 2 So

Q1 4 3 2 QC
Q2 3 4 6 Qn
@3 7 S 8 QR
Q4 9 6 0 @A
Qs 11 10 9 ac
D1 8 9 0aA

02 11 12 oA
03 12 0 OR

RB2 13 10 40K

.MODEL QA NPNHC(BF=20 BR=1 RBu?0 RC340 !S=1E-14 VA=50 CJE=IPF CJC=2PF)
.MODEL @B MPH(BF=20 BR= 2 RB=20 RC=12 [S=! G6E-14 YA=50 CJE=3PF CJC=2PF)
.MODEL QC NPN(BF=20 BR=.02 RB=2500 RC=4n [5=10-14 Ya=Sa CJE=s3IFFr CJC=2PF)
-MODEL DA D(RS=49 [S=1 OE-14)

LPRINT DC V(9) V(6) V(3)

LPLOT DC Y(9) V(6> V(95)

PRINT TRAN V(9) Y(6) Y(3)

.PLOT TRAN ¥(9) VY(6) ¥(3%) v(1)

.ERD

Figure A3.13. SPUDS Input Listing for TTL74L Circuit

174

TTL9200 CKT - SERIES 9200 TTL [NVEPTES®

LUIDTH IN=72 QUT=72

.OPT ACCT PIVREL=t.0E-4 PIVTOL=1.0E-1S DYPHJN=I O0E-6 NPTS
.DC YIN 0.0 2.0 ¢ 02

.TRAN NS 190HS

VIN 1 0 DC 1.3S5 PULSECO 3 3 INS LNS IN5 40NS)

¥CC 14 0 5
RS 1 2 3¢

Q1 4 3 2 ac
Q2 5 4 6 0n
Q3 7 § 8 Qn
a4 9 8 10 @B

a3 10 6 o a8

86 12 11 10 @C

0t 12 13 04

02 13 ¢ DA

RBL 14 3 4K

RC1 14 § 1.5K

RE2 6 ¢ 1.23K

RC2 14 7 150

RBd4 8 10 4K

RC4 14 9 80

RBS 14 11 4K

-MODEL QA HPH(BF=20 BRs{ RB370 RC240 IS=1E-14 VA=250 CJE=3PF CJC=2PF)
.MODEL QB NPH(BF=20 BR=.2 RB=20 RC=12 IS={ KE-14 VYA250 CJE=3PF CJC=2PF)
.MODEL QC MNPN(BF=20 BR=.02 RB2500 RC=40 IS=[E~1d4 YA=250 CJE=3PF CJC=2PF)
.MODEL OR D(RS=40 IS=1 0E-14)

.PRINT 0C ¥<10) V(6) Y(S)

.PLOT DC ¥C€10) Y¢(6) V(S)

-PRINT TRAN V(10) Y(6) ¥(S)

.PLOT TRAN YC10) VC(6) Y(3) ¥(1)

.END

Figure A3.14. SPUDS Input Listing for TTL920 Circuit

o

175

ECLGATE CKT - ECL STACKED LOSIC GARITE
LYIDTH TH=72 0UT=?72

.OPT ACCT OPTS DYPNJN=3U

.0C YIN -2 0 0 02

.TRAN 0.2NS 20NS

VEE 13 o0 -6

YIN 16 0 PULSE(-1.8 -0 8 INS INS INS»
YGATE 17 O PULSE(-9.8 -1 & SNS INS NS SN
RS1 16 1t S50

Q1 2 1 3 QND

Q2 0 9 3 QHO

RC 0 2 100
RS2 17 4 50
@3 0 4 5 QND
R1 5 6 69

R2 6 13 820
Q4 3 6 7 QND
RE 7 1S 289
Q3 0 12 7 QHD
RS 0 8 1900

a6 0 8 9 QNO
R3 9 13 2K

0t 8 10 01!

Re 10 11 60
27 0 11 12 aNo
R4 12 15 2X
02 11 13 D1

R? 13 13 720

@8 0 2 14 QND

RL 14 13 Sé0

.MODEL D! OCRS=40 TT=0. 1NS CJ0=0. 9PF)
.MODEL QND NPN(BF=30 RB=70 RC=a340 CCS=2PF TFa0 INS TR=10HS CJE=0.9PF
+ CJC=1 SPF PC=0.83 VA=50)

.PRINT DC V¥<6) v(14)

.PLOT DC V(14)

.PRINT TRAH VY(6) Vv(14)

.PLOT TRAN Y(14) ¥(16) Y(I7) V(&)
.END

Figure A3.15. SPUDS Input Listing for ECLGATE Circuit

‘o

176

MECLIII CKT - moTOROLA MECL [Il ECL GarTE
-WIDTH IN=72 QUT=p2

.OPT acCCT gPTS DYPNJIN=4y

-0C YIN -2 9 0 02

-TRAN 0.2NS 20NS

YEE 22 o -
VIN 1 0 PULSEC-0.8 -1 g 0.2HS 0.2HS 0.2NS 10NS)
RS 1 2 30

a1 4 2 6 ano

@2 4 3 6 aND

Q3 5 7 6 anp

Q4 0 8 7 aND

01 8 9 0t

02 9 16 DI

RPL 3 22 %0k .

RCt 0 4 {00

RC2 0 5 112

RE 6 22 390

R1 7 22 2x

R2 0 8 350

R3 1o 22 1958
93 0 S 11 ano

96 0 4 12 ano

RP2 11 22 360

RP3 12 22 s¢o

97 13 12 13 awp

99 14 16 15 anD

RE2 1S 22 380

RC3 0 13 100

RC4 0 14 1312

@9 0 17 16 QHD

R4 16 20 2

RS 0 17 350

03 17 18 01

04 18 19 pi

R6 19 22 1998

Q10 0 14 20 gHD

Qi1 0 13 21 aNp

RP4 20 22 3¢0

RPS 21 22 360

-MODEL DI D(RS=40 TTao. NS CJ0=0.9PF)
-MODEL QND NPN(BF=So R8=270 RC=40 ccS=2pF TF=0.1HS TR=10NS CJE=0.9pPF
+ CiC=1 . SPF PC20.85 va=509)

-PRINT pC v(12) v(21)

.PLOT DC v(12)

-PRINT TRAN v¢(12) v(21)

-PLOT TRAN v(21) v¢12) Yo

.END

Figure A3.18. SPUDS Input Listing for MECLII Circuit

177

S80GATE CKT - SCHOTTKY-BARRIER TTL [NVERTER
VIDTH [N=?72 0UT=72

.OPT ACCT OVPNJN=1. 0E-6 OPTS
DC YIN 0.0 1.1 0. 01t

.TRAN 2HS 200H3

vee 23 0 §

YLOAD 26 0 §

VIN 1 0 PULSECO.3 3.6 2NS 2NS 2NS SONS)
RS 1 2 So

RBI 23 3 15K

RB2 26 17 15K

RC1 4 35 60

RC2 6 9 30

RC3 16 15 10

RC4 18 19 60

REI 7 8 600

RE2 20 21 600

RL1 23 10 8.75K

RL2 26 23 8K

RK 23 12 1K

RS2 24 19 S0

Q1 4 3 2 QND

92 6 5 7 aND

a3 16 7 o GND

94 18 17 24 QND

@S 22 19 20 QHD

Q6 20 20 0 QND

aL2 23 23 22 KD

QE 12 10 13 aND

0C1 3 4 02

0C2 3 6 D2

0C3 7 16 D2

DC4 17 18 02

0C5 19 22 02

DE1 8 o D2

DE2 21 o D2

01 13 14 D2

012 14 28 D2

02 28 15 02

oL 10 9 D2 —

-MODEL D2 DCRS=13 CJB=0. 20PF ISa5E-10 PB=0.6)
-MODEL OND NPN(BF=50 RB=70 RC=40 CCS=2PF TF=0 {NS TR=10HS CJE=0 9PF
+ CJCuL.5PF PC=0.8S VA=50)
PRINT DC ¥C18) 1(vee)

.PLOT DC ¥(1S)

PRINT TRAN ¥(1S) 1(vCC)
PLOT TRAN ¥C15) ¥C1) ICyCe)
.END

Figure A3.17. SPUDS Input Listing for SBDGATE Circuit

CCSOR CKT - CONSTANT CURRENT S30YRCE
.WIDTH IH=72 0OUT=72

.0PT ACCT QPTS

VEE 7 0 -12

¥81as 3 ¢ -9

21 2 3 4 a1

Q2 2 4 § a1

Q3 1 6 3 a1

Q4 1 8 6 01

a3 1
Q6 i
R1 2
R2
R3 §
R4 8 7 2K

R3 10 0 107

.MODEL Q! NHPH(BF=49.35 BR=0.5 1S=0 . 9802E-15)
.ERD

Figure A3.18. SPUDS Input Listing for CCSOR Circuit

178

(L4

179

0COSC - DC PART NF 1KHZ OSCILLATOPR
.WIDTH IN=72 0UT=72

.0PT ACCT OPTS

Y¢C 2 o0 5.6

Qt 2 1 8 Qt

22 3 6 5 9t

@3 2 10 12 Q!

Q4 t! 3 7 @1

Q% 16 11.13 at

a6 2 10 9 Q1

a7 3 8 4 a1

Rt 2 3 12K
R2 4 § 300
R3I 4 0 1.3K
R4 10 1 98.603K
RS 2 11 7.5K

R6 7 0 1K

R? 12 6 5K

R8 6 ¢ 10K

R9 2 10 1.5K
R10 13 o 240

R11 9 0 147
.MODEL Q@1 NPH(BF=60 BR=0.205 1S=1.21E-1%)
.END

Figure A3.19. SPUDS Input Listing for DCOSC Circuit

180

CFFLOP CKT - SATURATING CONPLEMENTHRY FLIF-FLOP
LUWIDTH IN=72 QUT=72

.0PT
vec!
ycc2
VEEL
VEE2
Q1
Q2
Q3
Qo4
R1
R2
R3
R4
RS
Re
R?
RO
R9 3

ADWONVNOBDWHITW

ACCT OPTS
t o35
8 0 190
10 0 -§
9 0 -10
2 1 9Pt
? 1 QP
10 ANt
10 ONI
37 .2K
37 .2K
14 3K
.3K
14.3K
14.3K
37.2K
37.2X
0 1K

WOREWRNAINBWL
-
>

.MODEL QH! NPN(BF=10 BR=1{ 1520 91E-14)
.MODEL QP! PHP(BF=10 BR=! [S=0 91E-14)

.END

Figure A3.20. SPUDS Input Listing for CFFLOP Circuit

181

STCRC CKT - SPLIT TIME-CONSTANT RC CIRCHIT
.WIDTH IH=?72 QUTa?2

.OPT ACCT OPTS

.TRAN 0.1MS 10MS

VIN 1| 0 PULSECO | 0.1MS 0,.(NS)
Rt £ 2 1K

€l 2 o 1IPF

R2 2 3 1K

€2 3 0 1UF

-PRINT TRAN V(1) ¥(2) V(3
LPLOT TRAN ¥(2) ¥(3) v(1)

.ENO

Figure A3.21. SPUDS Input Listing for STCRC Circuit

CROKE CKT - FULL WAYE CHOKE INPUT
.VIDTH [NH=72 0UT=?72

.0PT

ACCT OPTS

-TRAN 0.2NS 20MS UIC

VINt
VIN2
Dt
02
R1
Lt
R2
c2

bW N e

{ 0 SINCO 100 50)
2 0 SINC(O -100 S0)

10K
2UF IC=152¢

COoO a0
-
o
x

-MODEL DIO DC(1S=1.0E~14 CJIO=10PF BY=1E8)
PRINT TRAN V(1) ¥(2) v(3) V(4)
LPLOT TRAN YC(I1) V(2) ¥(3) V(4)

.EHD

Figure A3.22. SPUDS Input Listing for CHOKE Circuit

182

<

183

ECLINY CKT - EMITTER COUPLEDL LOGIC INVERTEF
.WIDTH IN=72 QUT=72

.0PT ACCT DVPNJIN=3 O0E-~6 0OPTS

.TRAN 0.2NHS 20NS

VIN 1 0 PULSEC(-1 -1.8 INS INS INS 8NS 20HMS)
YEE 8 0 -5

YREF 6 0 -1.4

91 3 2 4 e8TD

@2 3 6 4 QST

Q3 0 5 7 usTd

Q4 0 3 7 asvTD

RIN 1 2 S0

RC1 o 3 8¢

RC2 ¢ S 138

RE 4 8 349

RTHL 7 8 2%

RTH2 ? o 83

CLOAD 7 o SPF

-NODEL QSTD NPMNCI8={ 0E-16 BR=50 BRu=0.| RB=50 RC=10 TF=20. 12NS TRa25NS
+ CJE=0 .4PF PCw0.8 NE=0.4 CJE=20.5PF PC=0 8 MC=0 333 CCS=1PF VA=50)
SPRINT TRAN V¥<C1) V(3D V(3> V(7)) I(VIN)
-PLOT TRAN VY(3) Y(3) V(7) V(1) IC(VIN)

.ERD

Figure A3.23. SPUDS Input Listing for ECLINV Circuit

184

SCHMITT CKT - ECL COMPATIBLE SCHMITT TRIGGE®R

LVIDTH [N=72 OUT=?2

.0PT ACCT OPTS

.TRAN {ONS 1000NS

VIN 1 0 PULSEC(-1.6 ~-1.2 10HS 490NS 400HS 10ONS [0000NS)
YEE 8 0 -5

RIN 1 2 30

RC1 0 3 So

R1 3 5 183

R2 3 8 760

RC2 0 6 100

RE 4 8 260

RTH1 7 8 123

RTH2 7 0 85

CLOAD 7 0 SPF

Q1 3 2 4 QSTD OFF

@2 6 3 4 aSTD

@3 0 6 ? QST

Q4 0 & 7 QSTD

.MODEL QSTD NPN(18s1 O0E-16 BF=30 BRu0 | RB350 RC=10 TF=0.12NS TR=a3NS
+ CJE=0 4PF PE=0.8 ME=0.4 CJC=0 SPF PC=0.8 NC=9 333 CCS=IPF YA=50)
LPRINT TRAH V(1) V(3D V(5) V(§)

.PLOT TRAN V(3) V(3) Y¥(6) ¥(1)

.END

Figure A3.24. SPUDS Input Listing for SCHMITT Circuit

.

185

ASTABLE CKT - A SIMPLE ASTABLE MULIIVIBFATLP
.MIDTH IN=?72 QUT=?2
.O0PT ACCT OPTS RELTOL=0 003

.TRAN 0.1US 10US

VIN 3 0 PULSECO 5 0 1US 1US 100US tooUs)
YCC 6 0 S

RC1 6 { 1K

RC2 6 2 1k

RB1 6 3 30K

RB2 3 4 30K

Cl 1 4 130PF

€2 2 3 1S0PF

Q1 §{ 3 0 asTO

Q2 2 4 5 @sSTD

-MODEL QSTD NPN(ISm=f 0E-16 BR=50 BR=0.1 RB8=50 RCm={o TFa0 t2NS TR=SNS
+ CJE30.4PF PC=0.8 NE20.4 CJUE=0. SPF PC=0.8 MC=0. 333 CCS=1PF vA=50)
-PRINT TRAN V(1) V(2) v(3) v(4)

.PLOT TRAN ¥(2) Y(3) ¥(4) v(1)

.END

Figure A3.25. SPUDS Input Listing for ASTABLE Circuit

SRTINY -~ SIMPLE SATURATED MOS INVERTER
.WIDTH IN=?2 0UT=?2

.OPT ACCT OPTS

.DC ¥5 0 10 .1

.TENP 0 27 70
{ 2 4 NOSEN Va3U L=500
M2 2 3 0 4 NOSEN WaSU L=5SU
V88 4 o0 0C -4
Y00 1t o DC 10
¥S 3 o PULSE(0,10)
.MODEL MOSEN HMOSCLEYEL=2 NSUB=4E13 NFS=2E11 UEXP=2.1S XJ=1E-¢
+ U0=700)
.PRINT 0C ¥¢2) I¢YDD)
.PLOT OC ¥¢2) I(VOD)
.END

Figure A3.26. SPUDS Input Listing for SATINV Circuit

188

)}

14>

187

DEPLINY - SINPLE DEPLETION MOS INVERTER

.WIDTH IN=72 0OUyT=?2

.OPT ACCT OPTS

.0C ¥ 0 2 .02

. 0P

M1 1 2 2 0 MOSDN U=5U L=50uy

N2 2 3 0 0 MOSEN W23y L=5U

V8 3 0 PULSE(0,3)

Y00 i o DC 10

-MODEL MOSEM NMOSC(LEVEL=22 NSUB=4E!S NFS=2€11 UQ0=700 UEXP=20.13 XJ=1E-6)
-MODEL AOSDM NMOSC(LEVEL=2 NSUB=4E1S NSS=8E1l UQa700 UEXP=0.15)
-PRINT DOC ¥(2) 1¢(VyDD)

.PLOT DC V(2) 1C(YDD)

.EHD

Figure A3.27. SPUDS Input Listing for DEPLINV Circuit

RATLOG

.0PT ACCT ABSTOL=1U OPTS

.TRAN 2
Nt 9 11
M2 9 12
N3 2 1
M4 4 3
ny 3 12
Hé 1 11
C1 t o
2 2 ¢
C3 3 0
C4 4 0
€S 5 o
VI S
yePt1 11
yP2 12
yoo 9
ves 1o
.MODEL

.END

RATIOLESS DYNAMIC LOGIC CIRCUIT
.WIDTH IH=3?72 0UT=22

.3N 250N

4
9

2
3

Q0000 O0COOCOO

1¢ NMOS
10 NMOS
10 NMOS
10 NNCS
10 NNOS
10 HMOS

¥=200
¥=200
¥=200
¥a200
¥=200
¥=200

PULSECO 10 LON
PULSECO 12 {oN
PULSECO 12 70N

bC 12
pC -3

L=7U0 AD=1IN
L=7U0 AD=1N
L=70 A0=1LN
L=78 AD=1H
L=7U AD=tN
L=70 AD=tN

SN 10N 3SH
SN 3N 33N
SH SN 33N

AS=1N
AS=1N
AS=1N
AS=1N
ASa 1N
AS=1N

So0N)
120N)
120H)

NHOS NMOSCLEVEL=! WMSU3=8E14 TOX=
+ NSS=4E10 UEXP=0.36 UTRA30.3 CBD=9?U CBS=97U)
.PLOT TRAN V(4) Y(3)
LPLOT TRAN V(1) V(2) Y(3) v(4)

188

1130 LD=0.18 HGATE=1E20

Figure A3.28. SPUDS Input Listing for RATLOG Circuit

<

(A}

INYCHN - FIVE-STAGE SATURATED INVERTER CHARIN

-VWIDTH TH=?2 0QUT=72

.0PT ACCT ABSTOL=50U OPTS

. 0P

M1 7 72 2 8 NNOS U=1o0U
N2 2 1 0 8 NNOS W¥a7ou
N3 7 7 3 8 NNOS UsloU
M4 3 2 0 8 NMOS ¥=?0y
N3 7 7 4 8 NNOS U=tou
N6 4 3 0 8 NMOS U=?70U
N7 7 72 3 8 NNOS U=10U
M8 5 4 0 9 NMOS U=70u
M9 7 7 6 8 NNOS W=toUu

Hi0 6 5 0 8 NNOS ¥Us70U L=gU
YIN 1 0 PULSE(S 0 0.2N LN IN SN i2N)

Yyob 7 ¢ OC &6

L=8U
L=8y
L=8y
Lasgy
L=8y
L=8y
L=8y
L=80
L=28y

189

-MODEL HMOS HMOSCLEVEL®=2 HSUB=3EL!S TOX=.137%U UEXP=0.36 NSS=4E10

+ LD=0. 1M XJ=s{l CBO=84lU CBS=840)

PLOT TRAN v(6) V(1)

-PLOT TRANH ¥(2) YC(3) ¥(4) V(S) V(&)

.END

Figure A3.29. SPUDS Input Listing for INVCEN Circuit

190

L4~

BOOTINY - BOOTSTRAPPED DOUBLE [NVERTER CIRCUIT
L.WIDTH INH=72 QUT=?2

.O0PT ACCT ABSTOL=10U OPTS

. QP

.TRAN 0.2NS 20NS

M1 1 1 3 6 HNOS U=10U L=7U AD=0.02P AS=0.02P
M2 3 2 0 6 NMOS UsS0U L=7U AD=2P AS=0 02P

H3 1 1 4 6 NNOS U=10U La7U AD=0.2P AS=0 2P
N4 1 4 5 6 NNOS UoioU L=7U ADa0 . 02P AS=0.02P
M3 5 3 0 6 NMOS UsSoU L=7U AD=2P AS=0.02P
CLS 3 0 0.1PF

CL2 3 0 0.1PF

CB4 4 S 0.1PF

voo 1 o0 DC 12

ves 6 ¢ DC -4

VIN 2 0 PULSE(10 0.4 NS 2NS 2NHS {3NS 20RS)

.NODEL HMOS HMOSCLEVEL=»3 HSUB=3JEL!3 TOX= 13?350 UEXP=0.13 NSS=4El0
+ LO=0 . IN XJ={U CBO=B4U CBS=284U)

.PLOT TRAN ¥(S) ¥(2)

.PLOT TRAN Y(2) Y(3)> V(4) ¥(3)

.EHD

Figure A3.30. SPUDS Input Listing for BOOTINV Circuit

MOSNEN -

.WIDTH IN=?2 OUT=?72
.OPT ACCT ABSTOL=1U OPTS
.TRAN 20HS 2US
Vo0 9 o DC §

¥YS 7 0 PULSE(2 0 S20HS 20HS 20NHS SO0ONS 2000NS)
YV 1 0 PULSECO 2 20NS 20NS SCONS 200NS)
YUB 2 0 PULSE(2 0 20NS 20HS 20HS 2000HS 2000NS)

Nt

0

WVOARUBUNRO O S W
WUN NI DDA -
NOOCALrWAEAWOO
0000000

Hoo

¥=230U
¥=2300
yaly
y=3U
U=30U
¥=3o0U
=250
¥=230U
¥aly

NOS NENORY CELL

L=3y
L=3¢
L=3y
L=3U
L=3U
Lasy
L=5U
L=5U
L=3y

M10 9 9 6 0 MOD UsSU Lu3y

Hil 8 4 0 0 MOD U=230U L=5U
N12 9 9 8 0 NOD U=3U
-MODEL MOD NMOS(VTQO®0.5 PHI=0.? KP={ 0E-6 GAMMA={ B3 LAMBDA=0 (1%

+

LEVEL=1 CGS=1U CGD=1U CBD=0.3 CBSz0.3)

.PRINT DC V(S) V(6)
.PLOT OC ¥<¢6)

SPRINT TRAN V(S) VC(6) VC7) V(1) v(2)
.PLOT TRAN V(6) V(S) ¥(7) V(1) v(2)

.END

Figure A3.31. SPUDS Input Listing for MOSMEM Circuit

L=3U

191

HOSAMP1 - MOS AMPLIFIER

.WIDTH I[H=?2 0UT=?2
.OPT ACCT ABSTOL=10N YNTOL=10N OPTS
.DC VIN -60MY +6MY 0.66MY

AC DEC 10 100 1OMEG

Mt 13 13
M2 1
n3 2
ne 1S

N27 20 1S

1
2
30
4
30
-]
8
30
6
8
7
30
9
3o
12
11
30
i0
13
30
14
30
16
30
290
30
66

CC 7 9 4oPf
CL 66 0 70PF
YIN 21 0 DC -3oMy

VCCP 13 0 OC +18
YCCN 30 0 0OC ~18

ve 32 0 pC -20
.RODEL M NMOSC(NSUB=2 2E1S UO=3573 UCRIT=49K UEXP=0.l TOX=0.11U XJ=2.93U
+ LEVEL=2 CGS=1.3N CGD=1.3N C8D=45U CBS=45U LDP=0 83 NSS=3 2E10)

LPLOT DC VvC20)
.PRINT AC Y08(C20) VYP(20) VOB(66) YP(66)
.PLOT AC Y0BC20) YP(20) YDB(66) YP(66)

.END

TXTXXIXIXAAXAXTAXIXTZTIEAXIXZTTXAXZIXIXIIXIEI T X

U=88.9U
¥=12.7Y
U=88.90U
¥=12.7V
U=88.9Y
U=d4 3SU
V=482 .60
¥=88.9Y
Usd4q SU
U=482.60
U=12.7Y
U=g88.9y
y={39.70
¥=139.70
=12 .20
=34, U
Ua34. 1Y
Us12.27V0
U=270.30
U=270.30
U=2340
U=241.30
=19y
U=406. 40
U=38.10
U=38840
¥=222.94

AC 1

192

- DC/AC

1)

L=25.4Y

L=266.7U
L=23 4u

L=106. 7V
L=12.70

L=23.4U

L=12.7y¢

L=225.4U

L=25.4U

L=12.7V

L=106.7V
L=12.7U

L=12.7U

L212.74

L=207.80
L=12.7U

L=12.74

L=43.20

L=12.2y

L=12.72V

L212.7V

L=12.70

L=38.10

L=12.7Y

L=42.7U0

L=225.4U

L=?.6U

"<

Figure A3.32. SPUDS Input Listing for MOSAMP1 Circuit

(L]

193

MOSANP2 - MOS AMPLIFIER - TRANSIENT

.4IDTH [N=72 QUTa?2

.0PT ACCT ABSTOL310N YNTOL=10ON GHIN=| 0E-9 OPTH
.TRAN 0.1US 10US
RKLG 8 0 130MEG
ML 135 1S5 1 32
"2 1 1 2 32
n3 2 2 30 32
Hé 13 3 4 32
ns 4 4 30 32
M6 13 13 3 32
n? 3 20 8 32
L1] 8 2 30 32
H9 15 13 6 32
M10 6 21 8 32
X1l 1S 6 7 32
Mi2 ? 4 30 32
M13 15 10 9 32
Ni4 9 1t 30 32
H1S 13 15 12 32
Mi16 12 12 11 32
M17 11 1t 30 32
Mig8 13 13 t¢ 32
Ni9 10 12 13 32
M20 13 7 30 32
N2l 13 10 14 32
M22 14 11 30 32
23 13 20 16 32
M24 16 14 30 32
23 13 15 20 32
M26 20 16 30 32
N2?7 20 13 66 32
CC 7 9 40PF

CL 66 0 70PF
VIR 21 0 PULSECO S INS INS INS SUS loUS)

YCCP 13 0 DC +16

YOON 30 0 DC -14

¥8 32 ¢ pC -29

-MODEL M NMOS(HSUBw2.2E1S UO=35?S UCRIT249K UEXP=0.l TOX=0.11U XJ=2,93U0
+ LEYEL=22 CGS=1.3N CGD=1.5N CBD=43U CBS=45U LD=0.83 NSS=3.2E10)
-PRIHT TRAN ¥(20) V(66)

.PLOT TRAN V(20) Y(66)

.END

V=288 9U L=25.4U

¥=12.7U0 L=266.7Y
¥=88.9U =25 4U

¥=12.70 L=106.7U
V288.9U L=12.7U

¥=44.3U0 L=25.40

V2482 .60 L=12.7¢

V=288.9U L=25.4y

V=44 .50 L=25.4U

Uad482.6U0 L=t2.70

¥=212.7Y L=106.7U
Ve88.90 L=12.7V

$=139.720 L=t12.7V

U=139.70 L=12.7U

U=12.70 L=207.8Y
U=34.1U L=32.70

U=34 1U L=12.70

U=12.70 L=45. 2V

¥=2270.350 L=12.7Y

¥=2270.350 La12.7v

¥2234U L=12.70

¥=241.30 L=12.70

¥y=190 L=38.10

U=406 .40 L=12.7V

U=38.1U L=42.70

U=3810 L=25. .40

U=222.90 La7.6U

ZXAXAXTAXTXAEAXIZIXTXIXXNXTXRXLXERX T ZT X XXX

Figure A3.33. SPUDS Input Listing for MOSAMP2 Circuit

MOSANPY - CORE ANP

At 6 3 3 2 9 Um236 0E-6 L=9 0E-C A0=1 2E-9 ASs| 2€-9
M2 7 4 3 2V Us236.0€-6 L=9 O0E-6 ADst 2E-9 ASey 2g-9
A3 L 6 6 20 Ve 0E-6 L®60 OE-§ ADeY OE-10 ASe9d 9Ff-{0
Me 1 7 7 20 UeB.0E-6 Lo6O0.0E-¢ AD=9 O0E-10 AS*a 9F-10
N3 9 72 8 2 N Ved?2.06-6 Le® . 0E-6 ADv2 4E-9 ASz2 4E-9

A6 10 6 8 2 N Vo472 0E-6 Le8 0E-6 AD=2 4E-9 ASs2 4E-Y

N7 19 9 20 Ved2.0€-6 L*60 0E-6 ADe4 0E-10 AS=4 OE~-10
R 1 10 10 2 0 Us32.0€-6 L=¢0 0E-6 AD=¢ OE-10 ASsq O0E-10
N9 3 8 20 2 N U®236.0€-6 L=9 0E-¢ ADe] 2E-9 AS=| 2€-9
R1O 8 17 20 2 N Vs944 O0E-6 Le9 0E-6 AD»4 GE-9 ASed 9E-O
RIL 7 7 13 2 0 Wedd 0€E-6 L*8 0E-6 AD=9 OE-10 aSwy O0E-10
12 6 6 14 2 0 Vedd . 0E~-6 L+0 0E-6 AD=T O0E-10 AS:Y 2€-10
€t 14 10 S.0E-12

€2 13 9 3. 0€-12

€3 9 17 2.0€-12

€4 10 17 2.0€~12

-SUBCKT SAWPLE 2 72 73 74 73 78 27 o1 82

Ml 72 76 81 2 V Ue9 0E-6 Le8.0E-6 AD®| 1E-10 A8y |E-10
N2 73 77 81 2 ¥ V=9 0E-6 Le8.0E-6 ADw1. |E-10 AYs 1E-10
M3 74 76 B2 2 ¥ U=9 0E-6 Le0.0E-¢ ADwY . 1E~-10 ASe| 1tE-10
R4 73 27 82 2 ¥ We9 . 0E-6 Le0.0E-6 AD=]| 1E~-10 ASal JE-10
Ct 01 82 1.0E-12

€2 02 2 1.0€-13

oo ENOS

.ENB SANPLE

R21 26 19 23 2 ¥ ¥e236.0€-¢ Lv9, 0€-6 ADwt 2E-9 ASsw) 2€-9
N22 23 20 20 2 N Vo110 0E-6¢ Lw9 0E-6 AD={ 2€-9 ASay 2€-9
A23 20 20 20 2 N Ve 118 0E-6 L=9 OE-6 AD=| 2E-9 ASe! 2E-9
N24 19 23 20 2 W ¥®236.0E-6 L9 0E~-6 ADel 2E-9 ASwy 2€-¢
23 1 26 28 2 M U=110.0€~6 Lv9 0C€-6¢ ADey 2€-9 Agey 28-9
N26 1 19 19 2 0 Vel6.0€-¢ L60 0E~-6 AOv4 OFE-10 ASed 0€E-10
H27 1 26 26 2 O UwB.0E-¢ Le¢0 OE-6 AD=9 0E-10 ASe=9 0E-10
X2 2 23 17 27 10 13 16 91 92 SamPLE

X3 229 17 29 9 13 16 93 %4 sanpLE

X4 2 19 3 18 0 13 16 93 %6 SanPLE

X3 219 ¢ 39 0 1S 16 97 98 SamPLE

ClA 10 4 S, 00E-12

€10 9 3 9.00E-12

€2A 10 0 $.006-12

€28 9 9 3 00€-12

€lA 3 0 3.00E-12

ClB 4 0 3.00€E-12

V00 1 0 0C -3.0 PULSE(-3.0 3.0 ¢ OUS 23.0MS 25 OM3 1 . ONS 2 oms)

v8S 2 0 oC -35.0

V83 20 o pC -9.0

Y13 15 0 PULSE(-3.0 3.0 0.00U8 23.0MS 29 ONS 1900 ONS 4000 0N8)
Y16 16 0 PULSE(-3.0 3.0 2.030U8 29.0NS 23 ONS (900 ONS 4000 ONS)
V18 18 0 PULSEC 0.0 3.3 30.008 23 ONS 23 0NS Soo oUsS 1600 ouUS)H
V38 38 0 PULSEC 0 0 -3 S 30.0US 23 ONS 23 ONS So0 oUsS 1000 ouUs)
V27 27 0 -3.9

¥29 29 0 3 3

.
SENHANCEMENT TRANSISTOR

194

MODEL W MNMOSCLEVELZ2 CGS+t 40E-19 CCDel 40F-10 NSSs-2 SEP!
4 RS0 RO=0

¢ TOX20 TE-7 PO*0 B6 NSUB=? 72614 XJw) SE-7 LDs0 I

¢ U0=284.904 UCRITe2 SI7E4 UEXP*A 00829 UTRA=0 23 TPSesy

¢ NGATE~l 0E20 HFSe1 00€Il CGBe1 6E-11)

COEPLETION TRANSISTOR

MOOEL 0 NWOSC(LEVEL®*2 CGS=1 40E-10 CGOe| 40E-10 NSSeg IE1H
¢ RS0 ROwO =
¢ TOX®0 7E-7 PBeO 06 NSUDB®? $4E14 XJeo3 3E-7 LDwo 3

* UD=2716.999 UCRIT®| 3I26E3 UEXP=-0 108 UTRASG 29 TPSes]

¢ NGATEet 0E20 NFS=| O0OE!l CGBetl $E-11)

*LOV THRESHOLD EMHANCEMENT *

MODEL V NMOSCLEYEL®2 CGSe) 40E-10 CGOvwY. 40E-10 NSS=-2 O0E10
¢ AS=0 R0=0

* TOX20 7E-7 PB=0 06 NSUB®? 72614 XJ=J SE-? LDsw0.3

¢ UQs704 904 UCRIT®2.537E4 UEXPe0. 00828 UTRA®0 .23 TPSwey

¢ NGATEel O0E20 MFSe| 00E1l CCB®1.6E-11)

PLONG CHANNEL ENMAMCENEMT

MODEL M MMOSCLEVELe2 CGCSv1 . 40€-10 CGOwl. 40E-10 N8Se-3 OFE1!
¢ R5%0 RDwo

¢ TOXeO0 7E-7 PDe0 86 NSUBwS 06EJ4 XJe3 3JE-? LDmo.3

¢ UD=642 999 UCRITe(. J96ES UEXP=0 199 UTRA®0 29 TPeeey

¢ MGATEe={ .0E20 NFSw|, 00E1l CGCB=l 6E-11)

*SHORT CHANMEL DEPLETION

MODEL P NMOSCLEVEL®2 CGS»1 40€-10 CGDe{. 40E-10 NSBe9 SOE]!]
¢ RS=0 RDeo

¢ TOKXe0 7E-7 PB=0. 06 WSUB®9 274El14 XJe3 SE-7 LDe0.3
¢ U0=393 397 UCRIT=6.136E4 UEXPe-0 141 UTRAwO 23 TPEsey
¢+ NGATEe1 O0E20 MFSel 00E11 CGBet $E-11)
oee TRAN required Ihr 12ain on VAX
*ee TRAN 100 ONM3 60 OUS 49 0US

TRAN 1OMS ?70NS

PLOT TRAN V(9,10) V(9) V(I1S) ¥(3,4) V(1)

PRINT TRAN VC91) Y(92) V(I3) V(94) VC9I3) V(96) Y(97) V(98)
PRINT TRAN TC(V00) V(9,10) V(9) V(3. 4) Vv(I) v(3) Y(8) Yo
OPTIONS LINPTS=0 [TLSe0 HOMOD ACCT LYLCODe2

.END

Figure A3.34. SPUDS Input Listing for MOSAMP3 Circuit

[Appe79]

[Bane79]

[Barb77]

[Barh73]

[Beni79]

[Berr71]

[Bieh74]

REFERENCES

D. R. Appelt, "Making it compatible and better: designing a new

high-end computer,” Electronics, October 11, 1979, pp. 131-138.

U. Banerjee, S.-C. Chen, D. J. Kuck, and R. A. Towle, "Time and
Parallel Processor Bounds for FORTRAN-like Loops," IEEE
Trans. Camput., vol. C-28, September 1979, pp. 860-870.

M. Barbacci, "The ISPL Language,” Carnegie Mellon University,

Department of Computer Science, 1977.

R. Barham, E. Cheung, and E. Cohen, "BIAS-M, An Experimental
Circuit Simulator for the IBM 1800," Integrated Circuits Group,

University of California, Berkeley, June 1973.

L.Bening, "Developments in computer simulation of gate level
physical logic,” Proc. 16th Design Automation Conference, San

Diego, California, June 1979, pp. 561-567.

R.D. Berry, "An Optimum Ordering of Electronic Circuit Equa-
tions for a Sparse Matrix Solution,"” JEEE Trans. Circuit Theory,

vol. CT-18, January 1971, pp. 40-50.

B.L. Biehl, "BIAS-D: A Semi-Interactive Circuit Analysis Program
for Desktop Calculators and Minicomputers,” Proc. Fighth Asi-

lomar Conf. on Circ., Syst., and Computers, December 1974,

195

[Boy178]

[CDC79]

[cDC8o]

[CRAY 78]

[CsPI]

[Cala72]

[Cala79]

[Cerm71]

—_—

198

pp. 387-372.

G.R.Boyle, "Simulation of Integrated Injection Logic,” ERL Memo
No. ERL-M78/13, University of California, Berkeley, March 1978.

COMPASS Version 3 Reference Manual for the CYBER 170 Series,

(L]

Publication Number 60492600, Control Data Corporation, St.

Paul, Minnesota.

CDC CYBER 200 MODEL 203 Computer System Hardware Refer-
ence Manual (Preliminary Edition), Publication Number
80256010, Control Data Corporation, St. Paul, Minnesota, May,

1980.

CRAY-1 Computer Systems Hardware Description Manual, Publi-
cation Number 2240004, CRAY Research, Incorporated, Mendota

Heights, Minnesota, 1976.
CSP], Billerica, Massachusetts.

D. A. Calahan, Computer-dided Network Design, New York:
McGraw-Hill, 1972.

D.A. Calahan and W.G. Ames, "Vector Processors: Models and
Applications,” J/EEE Trans. Circ. and Syst., vol. CAS-28, Sep- ,
tember 1979, pp. 715-726.

I. A. Cermak and D. B. Kirby, "Nonlinear Circuits and Statistical
Design,"” Bell System Technical Journal, vol. 50, April 1971, pPP.
1173-1197.

[Chaw75]

[Cohe78]

[Cohe78]

[Comp74]

[Comt79]

[Coon79]

[DEC77V]

[DEC78V]

[Davi77]

197

B. R. Chawla, H. K. Gummel and P. Kozak, "MOTIS - An MOS Tim-
ing Simulator,” JEEE Trans. Circ. and Syst., vol. CAS-22, no. 13,

December 1975, pp. 901-909.

E. Cohen,'Program Reference for SPICEZ, Memo No. ERL-M592,
Electronics Research Laboratory, University of California,

Berkeley, June 1978.

E. Cohen, L. Jensen, A. Vladimirescu and D.0. Pederson, "MICE -
A Minicomputer Integrated Circuit Emulator,” Proc. Twelfth

Asilomar Conf. on Circ., Syst., & Computers, 1978, pp. 1685-1868.

A number of references may be found in JEEE Computer, vol. 7,

No. 12, December 1974.

D. Comte, N. Hifdi, LAU Multiprocessor: Microfunctional Descrip-
tion and Technological Choices, First Furopean Conference on
Parallel and Distributed Processing, IFIPS, AFCET, CNRS, 1979,

pp. 8-15.

J. Coonen, W. Kahan, J. Palmer, T. Pittman, and D. Stevenson, "A
Proposed Standard for Binary Floating Point Arithmetic,” ACH
SIGNUM Newsletter, October 1979.

VAX 11/780 Architecture Handbook, Digital Equipment Corpora-

tion, Maynard, Massachusetts, 1977.

VAX 11/780 Hardware Handbook, Digital Equipment Corpora-

tion, Maynard, Massachusetts, 1978.

A. L. Davis, "The Architecture of DDM1: A Recursively Structured

Data-Driven Machine,” Computer Science Department,

[Denn68]

[DesoB89]

[Dijk68]

[FPS]

[Fan75]

[Fan77]

[Flyn72]

[Fors67]

198

University of Utah, Technical Report UUCS-77-113, 1977.

J. B. Dennis and E. C. Van Horn, "Programming Semantics for
Multiprogrammed Computations,” Comm. ACHM, March 1968, pp.
143-155.

C. A. Desoer and E. S. Kuh, Basic Circuit Theory, New York:
McGraw-Hill, 1969.

E. W. Dijkstra, Cooperating Sequential Processes, in F. Genuys
(ed.), Programming Languages, New York: Academic Press,

1968.
Floating Point Systems, Incorporated, Portland, Oregon.

S. P. Fan, "SINC-S: A Computer Program for the Steady-State
Analysis of Transistor Oscillators,” Ph.D. dissertation, Depart-
ment of EECS, University of California, Berkeley, September,
1975.

S. P. Fan, M. Y. Hsueh, A. R. Newton and D. O. Pederson,
"MOTIS-C: A New Circuit Simulator for MOS LSI Circuits,” Proc.
IEEE Int. Symp. Circ. and Syst., April 1977, pp. 700-703.

M. J. Flynn, "Some Computer Organizations and Their
Effectiveness,” /EEE Trans. Comput., vol. C-21, no. 9, Sep-

tember 1972, pp. 948-960.

G. Forsythe and C.B. Moler, Computer Solution of Linear Alge-

braic Systems, New Jersey: Prentice-Hall, 1967.

feo

[Frer76]

[GustB7]

[HP77E]

[HP78F]

. [Hach81]

[Haie79]

[HajjB1]

199

J.P. Freret, Jr., "Overcoming Wordlength Limitations in Mini-
computer Aided Circuit Analysis,” Ph.D. Dissertation, Stanford

University, Stanford, California, May 1976.

F. Gustavson, W. Liniger, and R. Willoughby, "Symbolic Genera-
tion of an Optimal Crout Algorithm for Sparse Systems of Linear
Equations,” IBM Report RC 1852, IBM Thomas Watson Research

Center, Yorktown Heights, New York, June, 1967.

21MX E-Series Computer Operating and Reference Manual, Pub-
lication No. 02109-90014, Hewlett-Packard Company, Cupertino,

California, August 1977.

HP 1000 F-Series Computer Operating and Reference Manual,
Publication No. 02111-90001, Hewlett-Packard Company, Cuper-

tino, California, June 1978.

G. Hachtel and A. Sangiovanni-Vincentelli, "A Survey of Nonstan-
dard Simulation Techniques”, /EEE Proc., Sept. 1981, invited

paper.

D.A.P. Haiek, "Multiprocessors: Discussion of Some Theoretical
and Practical Problems,” Ph.D. Thesis, University of Illinois at
Urbana-Champaign, Report No. UIUCDCS-R-79-990, November
1979.

I. N. Hajj, P. Yang, and T. N. Trick, "Avoiding Zero Pivots in the

Modified Nodal Approach,” /EEE Trans. Circ. and Syst., vol.

[Hans77]

[Hill80]

[Ho75]

[1dle71]

[Inte79]

[Inte80]

[1saa686]

[Jenk71]

200

CAS-28, April 1981, pp. 271-279.

P. B. Hansen, The Architecture of Concurrent Programs, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1977.

D. D. Hill and W. M. Van Cleemput, "SABLE: Multi-Level Simula-
tion for Hierarchical Design,” Proc. J[EEE Int. Symp. on Circ.

and Syst., Houston, Texas, April, 1980, pp.431-434.

C.W. Ho, A.E. Ruehli, and P.A. Brennan, "The Modified Nodal
Approach to Network Analysis,” J/EEE Trans. Circ. and Syst.,
vol. CAS-22, no. 6, June 1975, pp. 504-509.

T. Idleman, F. Jenkins, W. McCalla, D. 0. Pederson, "SLIC — A
Simulator for Linear Integrated Circuits,” /EEE J. Solid-State

Circ., vol. SC-8, August 1971, pp. 188-203.

The 8086 Family User's Manual, Publication No. 9800722-03,

Intel Corporation, Santa Clara, California, October 1979.

The 8086 Family User's Manual -- Numerics Supplement, Publi-
cation No. 121586-001 Rev.A, Intel Corporation, Santa Clara, Cal-

ifornia, July 1980.

E. Isaacson and H.B. Keller, Analysis of Numerical Methods, New
York: John Wiley & Sons, Inc., 1966.

F. 8. Jenkins and S. P. Fan, "TIME: A Nonlinear DC and Time-
domain Circuit Simulation Program,"” /EEE J. Solid-State Circ.,

vol. SC-8, August 1971, pp. 182-188.

s

[Kasc79]

[Kuck72]

[Kuck77]

[Kuck78]

[LatiB1]

[Lela]

[Mark57]

[McCa71]

201

M. J. Kascic, Jr., Vector Processing on the CYBER 200, Infotech
State of the Art Report "Supercomputers,” Infotech Interna-
tional Limited, Maidenhead, UK, 1979.

D. J. Kuck, Y. Muraoka, and S.-C. Chen, "On the Number of
Operations Simultaneously Executable in FORTRAN-like Pro-
grams and their Resulting Speed-Up,"” /EEE Trans. Comput.,

vol. C-21, December 1972, pp. 1293-1310.

D. J. Kuck, "A Survey of Parallel Machine Organization and Pro-

gramming," ACM Computing Surveys, vol. 9, no. 1, March 1977.

D.J. Kuck, The Structure of Computers and Computations,

Volume 1, Wiley: New York, 1978.

W. W. Lattin, J. A. Bayliss, D. L. Budde, S. R. Colley, G. W. Cox, A.
L. Goodman, J. R. Rattner, W. S. Richardson, and R. C. Swanson,
"A 32b VLSI Micromainframe Computer System,” Digest of Tech.
Papers, IEEE International Solid-State Circ. Conf., New York,

February 18-20, 1981, pp. 110-111.

E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, "The
Waveform Decoupling Relaxation Method", IBM Technical Disclo-

sures Bulletin, to appear.

H.M. Markowitz, "The Elimination Form of the Inverse and Its
Application to Linear Programming,” Management Science, vol.

3, April 1957, pp. 255-259.

W. J. McCalla and D. O. Pederson, "Elements of Computer-Aided

Circuit Analysis,” /EEE Trans. Circuit Theory, vol. CT-18,

[McCa]

[McGr8o]

[Moto79]

[Nage71]

[Nage73]

[Nage75]

[Nage80]

[Newt77]

202

January 1971, pp. 14-26.

W. J. McCalla, Computer-Aided Circuit Simulation Techniques,

pre-publication manuscript.

J.R. McGraw, "The VAL Language,” Lawrence Livermore Labora-

tory, Preprint UCRL-83251 Rev. 1, December 1980.

Preliminary MC68000 18-bit Microprocessor User's Manual, Pub-
lication No. MC68000UM(AD), Motorola Inc., Austin, Texas, Sep-
tember 1979,

L. W. Nagel and R. Rohrer, "Computer Analysis of Nonlinear Cir-
cuits, Excluding Radiation (CANCER)," JEEE J. Solid-State Circ.,
vol. SC-8, August 1971, pp. 188-182.

L. W. Nagel and D. 0. Pederson, "Simulation Program with
Integrated Circuit Emphasis,” Proc. 16th Midwest Symp. Circ.
Theory, Waterloo, Canada, April 1973.

L.W. Nagel, "SPICE2: A Computer Program to Simulate Semicon-
ductor Circuits,” Memo No. ERL-M520, Electronics Research

Laboratory, University of California, Berkeley, May 1975.

L. W. Nagel, "ADVICE for Circuit Simulation,” presented at 1980
IEEE International Symposium on Circuits and Systems, Hous-

ton, Texas, April 28-30, 1980.

A.R. Newton and D.0. Pederson, "Analysis Time, Accuracy, and
Memory Requirement tradeoffs in SPICE2," Proc. Eleventh Asi-

lomar Conf. on Circ., Syst., and Computers, Pacific Grove, Cali-

[Newt78]

[Newt79]

[Newt80]

[PRIME]

[Padu80]

[Rals65]

[Sang79]

[Szyg76]

203

fornia, November 1977.

"The Simulation of Large-Scale Integrated Circuits,” Memo No.
UCB/ERL-M78/52, Electronics Research Laboratory, University
of California, Berkeley, July 1978.

A. R. Newton, "Techniques for the Simulation of Large-Scale
Integrated Circuits," /EEE Trans. Circ. and Syst., vol. CAS-28,

no. 9, September 1979, pp. 741-749.

A. R. Newton, "Timing, Logic, and Mixed Mode Simulation for
Large MOS Integrated Circuits,” NATO Advanced Study Institute
on Computer Design Aids for VLSI Circuits, Sogesta-Urbino,
Italy, July 1980.

The FORTRAN-IV Programmer's Guide, Publication Number

3064-001, Prime Computer, Inc., Framingham, Massachusetts.

D. A. Padua, D. J. Kuck, and D. H. Lawrie, "High-Speed Multipro-
cessors and Compilation Techniques," JEEE Trans. Comput.,

vol. C-29, September 1980, pp. 763-776.

A. Ralston, A Pirst Course in Numerical Analysis, New York:

MceGraw-Hill, 1965,

A. Sangiovanni-Vincentelli, "On the Decomposition of Large-
Scale Systems of Linear Algebraic Equations”, Proc. of the 1979
Joint Automatic Control Conference, Denver, June 1979, invited

paper.

S. A. Szygenda and E. W. Thompson, "Modeling and Digital Simu-

lation for Design Verification and Diagnosis,” /EEFE Trans.

[Tane78]

[Texa79]

[TomaB7]

[Towl76]

[Tsic74]

[Ullm786]

[Univ70]

[Viads1]

204

Comput., vol. C-25, no. 13, December 1976, pp. 1242-1253.

A. S. Tanenbaum, "Implications of Structured Programming for
Machine Architecture,” Comm. ACH, vol. 21, no. 3, March 1978,

pp. 237-2486.

Model 990/12 Computer Assembly Language Programmer's
Guide, Part No. 2250077-9701, Texas Instruments, Inc., Austin,

Texas, May, 1979.

R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” /BM Journal Res. and Dev., vol. 11, no. 1,

January 1967, pp. 25-33.

R. A. Towle, "Control and Data Dependence for Program
Transformations,” Report No. UTUCDCS-R-76-788, Department of
Computer Science, University of Illinois, Urbana-Champaign,

March 1978.

D. C. Tsichritzis, Operating Systems, New York: Academic
Press, 1974.

J. D. Ullman, "Complexity of Sequencing Problems,” pp. 139-184
in E.G. Coflman (ed.), Computer and Job-Shop Scheduling
Theory, Wiley: New York, 1978.

UNIVAC 1108 Processor and Storage Programmers Reference,
Publication Number UP-4053, Univac Division of Sperry Rand

Corporation, St. Paul, Minnesota, 1970.

A. Vladimirescu, K. Zhang, A. R. Newton, and D. 0. Pederson,

SPICE Version 2G.2 User's Guide, Department of EECS,

[Wen76]

[Wile76]

[Wilk64]

[Wolf78)

[Youn78]

205

University of California, Berkeley, April 1981.

K. Y. Wen, "Interprocessor connections — Capabilities, exploita-
tion and effectiveness,"” Ph.D. dissertation, Department of Com-
puter Science, University of Illinois, Urbana-Champaign, Report

76-830, March 19786.

P. Wilcox and A. Rombeck, "F/LOGIC - An Interactive Fault and
Logic Simulator for Digital Circuits,” Proc. 13th Design Automa-
tion Conf., 1976, pp. 68-73.

J. H. Wilkinson, Rounding Errors in Algebraic Processes, Engle-

wood Cliffs, N.J.: Prentice-Hall, Inc., 1964.

M. J. Wolfe, “"Techniques for Improving the Inherent Parallelism
in Programs,” Report No. UIUCDCS-R-78-929, Department of
Computer Science, University of Illinois, Urbana-Champaign,

July 1978.

T.K. Young and R.W. Dutton, "Mini-MSINC - A Minicomputer
Simulator for MOS Circuits with Modular Built-in Models,” [EEE

J. Solid-State Circ., vol. SC-11, no. 5, October 1978, pp. 730-732.

	Copyright notice 1981
	ERL-81-29 (1 of 2)
	ERL-81-29 (2 of 2)

