

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SYNTAX ORIENTED ANALYSIS OF THE

RUN TIME PERFORMANCE OF PROGRAMS

by

Luis Felipe Cabrera

Memorandum No. UCB/ERL M81/30

13 May 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Syntax Oriented Analysis of the Run Tine Performance of Prograa

By
Luis Felipe Cabrera

Crad. (Catholic University of Chile) 1973
M.S. (Catholic University of Chile) 1975

H.A. (University of California) 1979
C.Phil. C^^^UJ^ifot-i^ "78

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Applied Mathematics

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA. BERKELEY

Approved: flkw^vLw*..* (*»W ft/A?!
1^''chairman v *Date

i - i

Syntax OrientedAnaJysla of the RunTime Performance of Programs

Copyright • 1981

by

Luis Felipe Cabrera

Syntax Oriented Analysis of the RunTimePerformance of Programs

Luis Felipe Cabrera

ABSTRACT

In this thesis we consider the problem of finding efficient ways to deter

mine, given the values for the Input variables, the values ofvarious performance

Indices associated with a program. For most purposes, we may ooncenlrateon

reproducing efficiently the dynamic profile ofthe program. Le.. onobtaining the

exact profile for any runof the program asa function of the values of the Input

variables. Using the profile togetherwith a data base of program performance

Information enables us lo find the actual values of most of the desired perfor

mance Indices.

To achieve this, we describe several kinds of psr/ormoncs rsprssenfoMons

of programs which express the profile equations of the program we are analyz

ing. We show that It is often possible lo represent the profile equaUona by pro-

prom ptr/ormanes formula; whose evaluation time Is linear In the length of

theirexpressions. This Iseasily seenlo be Ihebest onec in hope to obtain. We

also delimit the cases In which an optimal performance representation ean be

found, andproposesome alternativemethods for the other cases.

In fact, ourt ftslefon procedure can always bo used. Inthe caseof sequential

programs, to represent the profile equations of a program. It is seen that, for

compute bound sequantlal programs, Ihe running time of the skeleton eanbe

substantially shorter than that of running an Instrumented version of the origi

nal program. Nevertheless, wealso present examples which show that the run-

e

nlng time of the skeleton need not be linear In the length of Its text and In some

cases Is very close to the running time of the actual program.

A variety of solutions, and theoretical results which guide their usage, are

presented to overcome the different problems due to the possible slowness of

the skeleton, on the one hand, and to the non-appllcabllity of the program per

formance formulae, on the other hand. It Is recognized that most of the da/ma-

MIfly problems are caused by the iterations (loops). In particular, alternations

(conditional statements) within Iterations often cause a program not lo exhibit

en optimal performance representation. We examinein full detail the easewhen

the actions on the control variables of an Iteration are linear functions. In this

case, we see that at run time we are even able lo determine the exact pattern of

truth values that a predicate has.

We have yel to Implement a system which can build performance represen

tations for us. However, we have discovered that known techniques used In data

flow analysis suffice to obtain all the Informationwe need about the variablesin

a program. Performance representations could be built by en "Intelligent pro

gramming environment" while a program Is being edited.

Our methods can also be used lo obtain traces of programs efficiently. In

fact, with minor modifications, the skeleton approach can be used to generate

Instruction traces of programs. A further refinement yields data traces. More

over, those of our techniques which find faster performance representations can

also be utilized to generate condensed traces, which can then be analyzed using

a postprocessor. Once the trace rasrsssnlorfon of a program Is built,obtaining

several traces (corresponding to dlfferenl sets of Input data values) should be

much more economical than actually running an appropriately Instrumented

version of the program several times.

When analyzing parallel programs, the problem ofdetermining performance

indices ismuch more complex since modeling the computational environment of

the program is much harder. However, we show bow our techniques for sequen

tial programs can be used to aidthis study.

fprofessor yomenico Ferrari
Computer|Science Division

Chairman of Thesis Committee

TABLE OF CONTENTS

Acknowledgements

Chapter 1 Introduction

1.1 Our Fundamental Problem

1.2 The Default Procedure

1.3 Some Related Work

1

3

6

13

Chapter 2 A Program Performance Language and Its Semantics 20

2.1 Program Performance Formulae 21

2.2 Semantics for Program Performance Formulae 24

2.3 Representation of Programs 26

2.4 Program Performance Formulae for D-charts 29

2.6 Definable Programs 40

2.6 Summary 51

Chapter 3 An Extended Program Performance Language 62

3.1 On Counting Functions §<p 52

3.2 On Traversal Independent Actions of Iterations on Variables 60

3.3 Algorithmicaly Definable Counting FuncUons 65

3.4 A Solution to the Limitations of Lemmas 2.4.3 and 2.4.4 69

3.5 Analyzing a Larger Class of Programs 74

3.0 Some Issues Concerning Unrestricted GOTO's 77

3.7 Summary 79

Chapter 4 The Linear FunctionCase

4.1 SomeProperties of Special Families of Linear Functions

4.8 A Reel Valued Function Approach

4.3 Iteration Definability

4.3.1 Case Where ROis not * .

4.3.1.1 More Hypotheses WhichYield Definability

4.3.8 Case Where BOis * .

4.4 Stability of Predicates

4.6 Halting Conditions

4.6 Summary

Chapter 5 Finding Closed Forms

5.1 Irreducible Iterations end Recurrence Relations

6.8 Three Decision Procedures for Finding Closed Forms

6.2.1 Moenck's Procedure

6.2.8 Gosper's Procedure

6.8.3 Kerr's Procedure

6.3 Table-Driven Methods for Finding Closed Forms

6.4 On Iterations With Multiple Inner Paths

5.6 On Nested Iterations

6.6 Summary

Chapter 6 On Recursive Programs

6.1 Procedures as Basic Blocks

6.8 Recursive Procedures

6.3 Two Examples

6.4 Summary

u

BO

61

66

90

90

65

68

97

102

108

107

108

112

113

116

119

121

123

131

135

137

137

139

143

144

IU

Chapter 7 A System for the Microanalysis of Programs 146

7.1 Non Linear Actions of Iterations on Variables 146

7.8 On Finding Roots at Run-time or by User Supplied Factorizations 161

7.3 On Non-Numeric Control Variables 152

7.4 The Automatic Verification of Hypotheses 153

7.5 An Interactive System for Microanalyzing Programs 157

7.6 Summary 160

Chapter B Microanalysis of Parallel Programs 161

6.1 The Loss of Sequentlality 182

B.8 Some Modela of Parallel Computations 164

8.8.1 Automata Models 185

6.8.8 Petri Nets 168

6.2.3 Operating Systems Theory Models 167

6.2.3.1 The Actor Model 189

6.2.3.2 Communicating Behaviora 169

6.2.3.3 Process Networks 170

8.3 A Particular Case: Concurrent Pascal 172

Chapter B Conclusions and Further Research 175

Bibliography 178

Appendix A 1B7

To Marcelie end Valentina

Acknowledgements

1 am deeply indebted to Professor Domenico Ferrari, my thesis advisor.

More than just introducing me to this area of Computer Science, he also pro

vided an environment in which working was a pleasure, both here at Berkeley as

well as in Pavia. Italy. 1 thank him specially for patiently and thoroughly reading

and suggesting improvements to this thesis.

I thank Professor Richard Fateman and Professor John W. Addison, for valu

able discussions concerning the research and for serving on my thesis commit

tee.

I thank the members of the PROGRES group for their patience and willing

ness to discuss and suggest ideas. In particular, Ozalp Babaogtu, Newton Feller.

Jehan-Francols Paris and Juan Porcar have provided me with numerous insights.

Together we shared life. Fondue Fred. Hotel Basque and SOGESTA. many

moments of unforgettable comradeship.

The most memorable efforts ere joint efforts, throughout these years as a

student, my wife Marcelie has excelled in making my studies our project. Her

attitude end support have been invaluable. Last but not least, the enthusiasm

and cheerfulness of our young daughter Valentina have been a guiding force in

these last months of intense work.

Financial Sponsors

1gratefully acknowledge the financial assistance reoelved throughout my

studies from the following sources:

Marcelie Stagno de Cabrera

Damenloo Ferrari's NSF Grant MCS7B-2461B

Domenlco Ferrari's NSF Grant MCSB0-12900

Fulbrighl Foundation Fellowship 33711/1550016B

Organization ofAmerican StateaFellowship PRA-49330

Mario Italianl's Italian National Research Council Grant CNR-78.0254B.07

CHAPTER 1

Introduction

The performance of softwaresystems Is becoming a centra] Issue In the

Implementation andutilization of novel Ideas andtechniques in various fields

of computer science. With hardware costs constantly decreasing, the availa

bility of systems with a relatively large amount of main memory has become

more widespread. However, these systems are now normally operated in a

multiprogramming mode. Thus, they are very frequently utilized by meny

users at a time, creating contention for the Installation's resources. For

each of n users, service In a multiprogramming environment Is often sub

stantially Inferior than it would be In a uniprogramming system of compar

able (1/n) power. In fact, the behavior of any program In a multiprogram

ming system differs from that of the same programin a uniprogramming one

because of the effects of the actions of other users as well as of the operating

system. Programs almost always exhibit performance degradation, in terms

of turnaround time. In multiprogramming systems.

It is not surprising then that the efficiency of software which Is highly

utilized (including In this category the operating system, whiohoontrols the

activity of an installation) Is beoomlng the objeotof an Increasing numberof

performance evaluation studies. The purpose of these studies Is to assess.

and determine ways to increase, the productivity of an installation as well as

lo decrease the cost of processing certain important applications.

It has long been recognized that II Is not enough to have very fast cpu's

In order to complete a task In a predetermined amount of time, or to havean

extremely efficient I/O subsystem: a system's performance depends onellof

the aspects of its hardware and software configuration and onits workload.

It is thus necessary to have software which usesappropriate algorithms and,

mostimportant, that makes suitable usage of the resources available in the

installation. Unfortunately, today there ore no software design tools, or

methodologies, which allow us to analyze a aymblosis of this kind between a

program and the Installation inwhich Itwill run. Not enough work has been

done in this area, although there is interest and need. In [Smi79. Smi80.

BooBO].' for example, we see discussions, implementations of methodologies

and proposals on some ofthe issues that need be resolved to find a solution

for this problem.

In the case of an existing program, when trying to analyze and/or

predict its performance In a given Installation, it is necessary lo be able to

determine exactly what resources and In what proportions the program

requires to run. Itwould be veryconvenient if one could obtain this Informa

tionInanefficient way, Le., faster than by actually running the program and

measuring it We would like lo have a ptr/ormoncs description of the

behavior of the program as a function of the values of Its Input variables,

which would allow us to obtain efficiently the desired performance Informa

tion. If audi performance descriptions for programs were available, prob

lemslike compering distinct software packages, or distinct implementations

of a given algorithm, would become easier and less resource andtime con

suming.

Indeed, one can alsoenvision that an Intelligent operating system could

use this performance description in its scheduling decisions, andthus allow

for a better utilization of the available resources. Global optimization of

resource allocation beoomes feasible if the resource demands can be

predicted with reasonable accuracy. When a program Is to run. the operat

ing system Is presented with the program and the input data; If it also were

to get a performance description of the program of Ihe type described

above, allocations of resources could be madein a less uncertain situation,

hence with a higher probability of success.

These representations could also aid us substantially In the study of the

performance characteristics ofagiven program. Substantial execution time

savings can occur for large numerical programs. Moreover, they could also

be used to generate traenefficiently, and lo assess program restructuring

algorithms. Another eppllcatlon Is In the detection of"dead code". Le.. code

which Is never executed.

1.1. Our Fundamental Problem

The behavior of a program means different things to people with dif

ferent objectives. For example, one may be Interested inthe 1/0 activity, in
the cpu requirements. In the number and type ofarithmetic operations per
formed. In theamount ofpaging activity generated (in thecontext ofa paged

virtual memory system) or inthe total running time. Each of these perfor

mance aspects of the execution ofa program is normally a function ofthe
value ofthe inputs tothe program. It then becomes clear that the objective
of the performance study must be established beforehand. Nevertheless,
there exists aperformance Index which enables us tounify most ofthese stu

dies. This Index is a countof what gets executedIna run of a program.

A basic block is a linear sequence of program statements having one

entry point (the first statement executed) and one exit point (the last state
ment executed). The proprom pro/Ue Is avector whose elements express the

number of times each basloblock Is executed In a givenrun [Knu71b). We

shalloften uss tba term profUt to mean programprofile. Thus, our profiles

will be oounls of baslo block executions in a given run of the program.

Given a profile. It Is rather simple to obtain several of the above men

tioned performance aspects. The only one that may not be oblelnable.

depending on how intricate Ihe flow of controlstructure la. Is the dynamics

of the memory demands produced by Ihe program. As for all tha other per

formance aspects, all that Is necessary Is some Information which normally

needs lo be gathered only once per program-Installation combination. In

fact, what Is required is Just a map from the names associated with the basic

blocks to the basic blocks of Instructions, and then different maps from the

basic blacks Into tables of specialized Information which occasionally may be

installation dependent, although It does not necessarily have to be so.

For example. If we are Interested In eounling the different kinds of

elomio operations that the program performs, then the map we need Is one

that associates with each baslo block en Itemised description of ail the

etomlo operations performed by the statements In the baslo block. Then,

once we obtain the profile for baslo blocks, we only have to multiply the value

associated with a specific baslo block by the number of times each atomlo

operation Is performed in that baslo block lo obtain the counts of the opera

tions executed. This procedure Is certainly Installation Independent, but,

once the necessary maps have been constructed for a program, they need

never be recomputed.

However, If we are Interested In estimating the running lime of a pro

gram when executed with a given set of Inputs, we need Installation depen

dent Information. In parUoular. If we assume a uniprogramming environ

ment, what we need to find out Is the (average) time each atomlo operation

takes as well'as the execution lime of eaoh kind of branching statement

appearing In the program.

For machine and assembly language programa this Information may be

obtained from tables supplied by the hardware manufacturer. If we ere deal

ing with a program written in a high level language, then we need Information

which Is both compiler and system dependent, because what we are really

Interested In Is the (average) lime a compiled atomlo operation takes. This

can be achieved by classical benchmarking techniques which call for per

forming the same operation a large number of times end then determining

tha (averege) unit lime. It should be dear that each lime a new compiler is

installed or a new system considered, a new table has to be obtained for the

atomic operations we are Interested In. Thus, estimating Ihe running lime of

a program In different Installations requires a different table for eech Instal

lation.

A whole spectrum of subtler problems appear when we also want to con

sider the effect that an optimizing compiler for a high level language may

have on the running time of a program. Our tablea should now Include con

test dependent Information for the different kinds of oode optimizations

used by the compiler. In this case It Is not a straightforward matter to

determine the "coat" of an alomio operation. Conventional benchmarking

techniques need to be applied carefully.

We shall call pro/Us eguafton* of a program those expressions which

express the frequency counts of basic blocks as functions of the input data.

Thus. If we had an appropriate representation for the profile equations, we

would be able to obtain the profile of the program In an efficient way. The

e

best achievable is to have an evaluation cost linear In the length of the

representation of the profile equations.

The purpose of our study is precisely to explore different alternatives

which will enable us to obtain profiles for programs in an efficient manner.

In fact, we will describe automatic ways of representing the profile equations

for a program and conditions under which they will yield the profiles with

linear time evaluation cost. These methods will allow us to obtain profiles

much faster than by actually running (a properly instrumented version of)

the programs.

In Chapter 2 we introduce a "Program Performance Language". We

define with it some syntactic objects which will represent (parts of) pro

grams and others which will describe the values of variables at different

points of a program. This willenable us to find the limits to our goals (within

that formalization) as imposed by the topological complexity of the D-charts

associated with programs, by the algebraic complexity of the modifications

done to certain variables in a basic block, by the algebraic complexity of the

predicate which governs a loop and by the interrelationships existing

between distinct parts of the programs.

1.2. The Default Procedure

When we are interested in a count of the basic blocks as a function of

the values of the input variables of a program and all we have is the program

to work with, we will normally find that the program has many statements

which do not play any role in this process. We shall norr make this observa

tion more precise.

Given a variable name z, we shall say that x is a control variable If Its

value affects the flow of control of the progrem. It Is clear, then, that all

statements In the program which do not modify control variables may be

excluded from an analysis whose sole purpose is to find the profile of a pro

gram.

We have thus found a first approach to our problem of efficiently gen

erating program profiles. Given a program P we construct a program P\ and

suitable tables T\, ... , rn, which will, we hope, enable us to obtein perfor

mance information about P much more rapidly than by actually running an

instrumented version of P. This can be done in the following way:

(1) P| Is obtained by deleting from P all those statements which do not

effect the flow of control of P. Le., those statements which do not modify

control variables or variables which will appear In statements modifying

control variables. Moreover in each basic block, i. we add a statement

of the form B% := Bi ♦ 1, where the variable B\ does not appear In the

original program, has not been used before in P\ and is associated with

the basic block in a unique way. We also add, at the very beginning of

Pi. statements which initialize each and every one of these new vari

ables B\ to zero.

(2) The tables Tx, ..., Tm. represent mappings between these names Bt end

different kinds of information required for our performance studies.

For example, one of these mappings will always be the one which

matches the names Bt and the actual sequences of statements which

constituted the corresponding basic block.

We shall call Pt the (flow-of-conlrol) skaltton of P.

We notice that in the first clause defining Pt we need not Introduce so

many new variables 0< to describe the profile of P. because in any program

there Is redundancy of flow-of-control Information which one cen use

6

advantageously [Knu73j. All oneneeds Is to haveone variable counting the

executions of eaob Independent path. Baslo blooks which willalwaysexecute

Sequentially may be accounted for by tha uss of only one variable. Figure

1.2.1 Illustrates a simple Instance of this, where wa see that the value of B%

cen be derived from (in this case coincides with) the count for B\.

Discoveringwhich statements affect lbs flowof control of a program can

be done In an automated way by the global data flow analysis methods used

for code optimisation [Aho79]. The methods essentially consist of a mul

tipass procedure where. Inthe first passthroughthe code,data flow Informa

tion Is gathered and suitable data structures that willkeep this Information

for further processing are built. In subsequent passes the Information is

appropriately used. Several Implemented optimizing compilers gather ell

the information which Is needed to perform step (1) of our procedure during

their first pass through the code.

X

T

Flfura 1.8.1 Two variables Bt suffice.

As for the tables required, eome of them can also be generated automat

ically quite easily. For exemple, while parsing the program, the compiler can

Identify all the baslo blocks when they are encountered and count the dis

tinct types of atomic operations which appear In each block. However. It

should be clear that some other tables require extra effort to obtain. For

exemple, suppose we are interested In determining the page trace of a run of

a program: then, we need to know the physical layout of a oompiled version

of the program to determine which pages correspond to a given basio block.

This has to be done after the actual machine code haa been produced.

To illustrate the form, effectiveness and usage of the skeleton of a pro

gram, as well as Its limitations, we shell present three examples. Two of

them ere taken from a large FORTRAN program end the third ia the well

known Warshall's algorithm. Warshall's algorithm computes the cost of

traversing a labeled directed acyclic graph to go from one vertex to another.

When appropriately Interpreted. It yields the trensitlve closure of a matrix.

SPICE Is a large FORTRAN program [Coh76b. Nag75](11000 linea of code)

whloh analyzea Integrated circuits to determine their electrical and thermal

properties. We have ohosen to analyze (parte of) It because It is an example

of a large program which la frequently used at Berkeley and whose behavior

has been analysed using only conventional techniques.

For our immediate purposes we have chosen two parts of Ihe code, the

subroutine TMPUPD and the subroutine MATLOC. of which we will build the

skeletons. The analysis of each one of them will point lo advantages and limi

tations of the method. However, In both cases we will see thai obtaining the

profile from the skeleton is muoh faster than from the original code.

10

Appendix A contains the original FORTRAN code for each of these two

portions of SPICE, as well as their flowgrephs In D-chart form.

Example 1.8.1

In Table 1.2.1 we show the code for the skeleton of the subroutine

TMPUPD. We see that all the statements are very simple and thus of quick

SUBROUTINE TUPUPD
IMPLICIT DOUBLE PRECISION (A-H.0-Z)
BlcBI+1
IP (rrEMNOiBVe) go to e
B2«B2«-1

»B3oBJ*t
LOC«LOCATB(1)
mTLE«0

I0tF(LOCEQ,0)GOTDJ00
B4=B4*I
LOCV«N0DPLC(LOC*l)
TC1«VALUE(L0CV*3)
TC2»VALUE(LOCV-m)
IF (TCI.NE.0.000) COTOCO
IFCTC2.EQ.O.OD0) GOTO40

BOIF0TITLEJIR0) GOTO90
B3«BM-1
rnTLE«l

90BSCB84-1
4010C«N0DPLC(10C)

B7«>B7*1
CO TO 10

10OL0C>LOCATBfjei)
B8=Bb*l
if(u>c.eq.o)ootosoo
b»»B9+i

110 ip (loc.eq.0) co to 200
Bl0"Bl0+l
IF (ITEMN0.1&t)GOTO ISO
BllfBlHl

ISO B12*812+1
LOC=NODPLC(LOC)
COTOltO

»0OLOC«L0CATE(22)
Bl3aBl3*>l
IF(LOC.EQ.0) 00 TO300
BI4«B14+1

tlOBlBaBlB+I

IF(TTEI0I0.L&8) CO TO£20
BlSaBlOfl

Z20Bl7*8l7+l
IF(JTEMN0.1RS) COTO00
BlBeBlBt)

C30BlP*Bl8*l
LOC=N0DPLC(L0C)
CO TO 210

aooLoc-iocATWa)
B20=120*l
IF(LOt.BQ.0}GOTO400
B2I<>B2I*1

810 IF(LOC.EQ.0) GOTO400
B22»B22+1
IF(ITEMN0.L&S) COTO320
B23»B23+I

S20B24=B24*1
IOONODPICOOC)
G0TO310

40010C»L0CATE(24)
B2S»B23+I
IPRNTvi

410 IP(LOC.EQ.0) GOTO 1000
B2C=B20+1
IF(IPRNT.NE.O) B27«B27*1
B28«B28*1
IPRNTeO
IF (ITEIOfO.L&8) GOTO418
B20*B2B+1

418B30=B30*1
IF(ITEMN0.LEJ) GOTO420
B3Ib83I*1

420B32=B32*1
430L0CoN0DPLC(L00

GO TO 410
1000 RETURN

END

Table 1.2.1 Skeleton of TMPUPD

11

execution. We could save more processing time by deleting redundant

counters and later, when analyzing the results, reconstruct the full profile by

taking into account the interdependences used to eliminate statements

from the original code.

In fact, 0g, Bf. Bu, Bn and B& are always traversed the same number

of times as B\ is. Similarly. By Is traversed the same number of times as Bt.

Bn is traversed the same number of times as Bl9. Bn and Bn are traversed

the same number of times as Bn, Btt is traversed the same number of times

as Bn. and B& ^ss> Bn oro traversed the same number of times as Bn.

So we see thet from the skeleton depicted we could still eliminate 13

statements of the form Bi=Bl+l . where 1 is an integer. We notice that 7 of

these statements are within loops, so their deletion certainly increases even

more the running time savings.

Example 1.8.8

Table 1.2.2 depicts the skeleton for the subroutine MATLOC of SPICE, its

very simple structure permits, if desired, the further elimination of 17 state

ments of the Bi=Bl+l type, where I is an integer. Four of these statements

are within loops. What we should notice in this example is that, since we have

nested loops, the execution time of the skeleton would Improve substantially

if we could "linearize" them. In fact, from analyzing the code we see that

each of the Inner nested loops, i.e., those corresponding to variables B\\, Bu,

Bn and Fes, are traversed NDIM times each lime the T-branch of their

respective outer loop Is taken. NDIM is a variable which is not modified

within MATLOC, it is an input value for this subroutine. Linearizing these

loops Is then a fairly straightforward matter. After the count for the

corresponding outer loop Is found, one multiplies It by NDIM and obtains the

SUBROUTINE IUTlOC_M#i M-_
DIPUCIT DOUBLE PRECISION (A-B.O-I)
Bl*8l*l _ %
LOC-LOCATEO)

tOO 07 (LOC.EQ.0) GOT0100
B2«B2*I _
LOC-N0DPLC(L0C)
C0T0680 —.

TOOLOC-LOCATEpJ)
B3>B3*I

TIOIF(LOCEQ.0) 00TO710

LOC>N0DPtC(L0C)
00 TO TIO

720 LOC-LOCATEO)
Ba>B3*l _ ,

730 IFILOC.EQ.0) GO TO740
B6-88*l „ ^
LOC«N0DPl£(L0C)
COTO730

740L0C-LOCATB(4)
B7«B7+1

TOO IP(LOCEQO) GOTOTOO
BB-B8+1 _
LOCnNODPVitOC)
COTO750

T©0LOC«LOCATE(B)
B9*B0»I

T82IF(LOC.EQ.0) 00 TO »4
B10«B10«-I
D0783I-1.NDQ1
BlI'Bll*!

tea CONTINUE
1OC-N0DPIC0OC)
Bl2>B)2*l
cotot« #-l

7MIXK>10CATJ(B)
BI3-B13+I ^^^^.

TOO IF(LOC.EQ.0) GOTO TtB
BI4>B14*I
D07S7I«1.NDDJ
B1S*B1S+I

tar CONTINUE
L0ON0DPLC(l0C)
BlOeBlO+l
CO TO TOO

TMLOC-LOCATEfl)
Bl7"B17*l

TTO IF(LOCEQ.0) 00TO TTt
BI8«B1B>1
D0ml-I,MDOI
BIO'BIO+I

mCONTDIUI

UNXfODPICOOC)
B20>B20*t
GO TO 770

778L0C»L0CATE(B)
B21-B2I4-1

774 IF(LOCEQO) GOTOTOO
B22»B22*1
D077ftl«l.NDDJ
B23*B23*I

770 CONTINUE
UX>NODPLC0JOC)
B24-B24+I
CO TO 774

T80LOC-LOCATK9)
B»»828+l

TOO IF(LOC.EQ.0) GOTO800
B26>B2e>l
10C«N0DPLC(L0C)
C0T07B0

•OOLOC«LOCATE(I1)
B27f>B27*l

•1017 (LOC.EQ.0) COTO620
B2S«B2e*l
LOC-N0DPLC(LOC)
CO TO 010

•20L0C-L0CATE(1S)
B20»82»*-I

•30 IF(LOC.EQ.0) GOTO840
B30aB30fI
LOC-N0DPLC(L0C)
CO TO 030

•40L0C-L0CATE(tS)
B3!"831*l

•00 07(LOCEQO) GOTOMO
B32«B32+1
L0C«N00PLC(LOC)
COTOeao

•eOlOC-LOCATBXM)
B33-B33+1

•70 D7 (LOCEQO) GOTO«00
B34"B34*I
LOC-NO0PLC(LOC)
CO TO 870

•00LOC-LOCATE(17)
B33-B33+1

•IOTP (LOCEQO) GOTO1000
B30>B36>1
IOC-N0DPLC0OC)
GO TO 010

1000 RETURN
END

Table 1.8.8 Skeleton of MATLOC

12
13

oounl for the Inner loop.

m

Example 1.8.3

We present In Table 1.2.3 Warshall's algorithm, taken from [Aho74], to

illustrate why we must try lo find better approaches than building the skele

ton representation of programs. We have expressed It in a pseudo Pascal

language for belter readability.

We see that all loops are traversed a fixed number of times and thus, as

In Example 1.2.2. linearization of them Is not only desirable but possible. It

takes a moment's reflection to see that In this ease the straight forward

skeleton would not run much faster than the aotual routine.

•

1.9. Soma Related Work

Donald Knuth has pioneered the area of the mathematical analysis of

algorithms [Knu71a. Knu71b, Knu7B]. In this analysis, for the exeoutlon time

for I:« 1 onto ndo^:»l + l(v,.w4);

for 1* U * n and1»«J do C$:«\tv,.vty,

fork:* 1 until n do

for1* L.J * n do C$:« C$-' 4 CfxCeV1) "^sV's
for 1* 1Jssn do cfo.vj):« CTJ;

I Is a labeling function between nodes

C0 Is the sum of the labels of all paths from v4 to vj suohthat all
vertices on the path, except possibly tha end points, are In the set
|wi.ws *»!•

c(t>|. Vf) la the cost fromV| to vj.

Table 1.8.3 Warshall's Algorithm

14

ofa given algorithm orprogram, one attempts to determine the four quanti

ties

<maximum, minimum, average, standard deviations

The fourth quantity refers lo the standard deviation of the distribution of

execution times around the overage. Knutb's frequent contributions to this

area have not only been a source of inspiration for many researchers but

theyhave also shown how difficult the analysis may become even for rela

tively simple algorithms.

In [Knu7B] we can seethatthecomplete analysis ofarather simple algo

rithm may require complex methematical knowledge and expertise. It then

becomes quiteclear that analyzing large real-life programs may be en enor

mous teak. The required amount of sophistication and level of reasoning

about the program seems to go beyond the current level of what can be

automated.

Nevertheless there have been efforts to understand the nature and com

plexity of this process. In a recent Ph.D. dissertation. Knuth'a student Lyle

H. Ramshaw [Ram79] exJomatizes a part of the process of analyzing pro

grams. His efforts ere directed towards the understanding of the reasoning

behind the mathematical analysis of an algorithm.

With a different approach, since 1974 Jacques Coben end his collabora

tors havebeen micronnolyting structurallysimpleprogrems. Le., determin

ing the ebove mentioned four quantities as functions of each elementary

operation involved in the program. In [Coh74] Cohen presented a system

which would acoept programs In a restricted Pascal-like programming

language and would return anexpression of Itsexecution lime as a function

of the processing time ofelementary operations. However, the evaluation of

15

this expression requires the user to specify the number of times the body of

a loop would be traversed and the branching probabilities of conditional

statements. These two conditions make this approach very difficult to use

when one Is trying to pain knowledge about the behavior of a program.

Nevertheless. Cohen's interactive system Includes many features for the

algebraic simplification of expressions, for finding closed forms for some

kinds of summations and for solving some finite difference equations. These

features have to exist In any system that will perform a task of this kind.

The simple structure of many algorithms has proved that the method

can yield interesting results. In [Coh7Ba] we see an analysis of Strassens's

matrix multiplication algorithm. A non recursive version of the algorithm

has all loops traversed a fixed number of times and no conditional state

ments within loops. This allows the authors to find a closed form expression

for the processing time of the algorithm whose evaluation does not lead to

inconsistencies. In their expression, specifying the number of times a loop Is

to be traversed Is given by the dimension of the matrices. Then, as all the

bodies of the loops ere basic blocks, the evaluation yields the exact profile or

the run.

However, it Is not clear from the presentation in [Coh76a] how much of

the mathematical deductions were carried out automatically by the system,

the article seems to suggest that these deductions were presented to the

system for further symbolic processing and evaluation, but had been

obtained by the authors.

We shall call Cohen's approach the rfsferministio microanalysis of pro

gramsbecauseof the requirementthat the user provide the numberof times

a loop will be exeouted end a conditional branch will be taken. A big draw-

18

back ofthis method Is that. In any relatively complex program, theInterrela

tionships between statements may beoome very obscure and Involved. It is
unreasonable to expect that a user will master them and provide consistent

daU for the evaluation of the expressions. Tha fact lhat Ihese expressions

donotdepend on the Input variables of the analysed algorithm or program

appears toberesponsible for most ofthemethod's deficiencies.

It Is quite easy losee lhat all programs which are syntactically correct

In the language accepted by the analysing system are delermlnistically

mlcroanalyzabte. As the control structures of this language Include while

loop statements and Ifthen else branching statements, because ofthe result
of B3hm and Jacoplni regarding the functional completeness of this class of

programs [B6h88], IIwould bevery nioe If for such a class of programs one

could produce expressions which described the behavior of the program asa

funoUon of the Input variables and of the elementary operations. We shall

seeinChapter 8 that this IsImpossible lo do. evenIfweassume lhat ourpro

grams halt.

Adifferent approach can be found In Ferrari's work. [Fer7B). where pro

grams are viewed asD-eharts and formulae are built In abottom up fashion

taking Into account all the data dependencies. Unfortunately, the methodol

ogy used there did notclarify when ona could obtain such expressions. Only

very simple examples were found to be manageable. However, the expres

sions obtained were functions of Ihe Inputvariables and thus when supplied

with values for them a correct profile was obtained. The task of finding

expressions became more complicated but their evaluation required nothing

from the user, and the answer obtained was always correct.

17

To obtain the four quantities desired using Ferrari's expressions, one

has to find suitable input data that would exercise the program in such a way

as to achieve its minimum and its maximum: then, making some probabilis

tic assumptions on the nature of the Input data, one Is able to determine the

average and standard deviation with some predetermined degree of statisti

cal confidence by measuring enough samples of the Input data. In fact, it la

worth noting that Cohen's approach requires the same kind of hypothesis

with the additional problem that, for a given assignment of values to the

number of limes loops are traversed and branches taken, one may not obtain

valuea which represent the exeeulion of Ihe program under a given set of

inputs.

Avery interesting system. Metric. Is presented In[Weg75]. With Ita very

limited class of Lisp programs can be correctly mlcroanalyzed. The

highlights of Wegbrelt's system are thai It knowabow to find olosed form for

mulae for recursive programs(In Its restricted Lispenvironment), deala with

algebraic simplifications and expresses the execution behavior as a function

of tha size of the Input. Moreover. Metric also allows several measures of

performance to coexist. This provides a degree of flexibility that Cohen's

system does not have. However, when computing the maximum and

minimum execution time of a program, as In Cohen's system, several "sim

plifying" hypotheses are made which yield bounds not necessarily tight. In

other terms, there may be no set of Inputs which would make the program

attain these bounds.

The very fertile area of Symbolic Evaluation or Symbolio Execution of

programs hasundisputed relevance to ourproblem. In[Che7B. Che76, Che7B.

Kin76.How7B] we read about different systems which attempt to express in a

IB

symbolic way the results of the computations performed by a program.

Common to all of them, and to any system which performs such a task, is the

problem ofdealing with loops. The effect that such aconstruct has on the
valueof a variableU central to the analysis In ell epproaches.

All of these authors are primarily concerned with the correctness of the

enelyzed programs, although performance Is mentioned in apaper byCheat
ham [Che78]. Systems like DISSECT [How78] are designed lo evaluate FOR
TRAN programs. EFFIGY [Kin78] is intended to evaluate simple PL/I pro
grams, and the system developed by Cheatham and his colloboralora [Che79]
to analyze ELI programs. The output normally consists of an expression
describing the effect ofa program path on a variable and the aequence of
predicates whose truth value uniquely determines the execution path taken.
The ability ofeach of these systems to find such expressions rests inthe sim
plicity of the progrema submitted for analysis. The iimitetions of eech
methodology ore never discussed in a formal way.

However, in [Che79] we find for the first time a decision procedure for

solving a restricted cless of recurrence relations [Kar79]. The result by
Gosper [Gos7B] gives us more tools towork with in this area. Gosper's result
isimplemented in MACSYMA [Mat77j. which Is a powerful algebraic manipula

tion system originally Implemented at MIT to run on PDP-10's. However,
today there Is a Berkeley version of MACSYMA ("vexlma"). [Fal79]. which
runs onVAX computers. MACSYMA as a tool In symbolic evaluation appears

to have no rivels. In Chepter 6 we shall deal with the problem of finding

closed forms and describe how a systemlike MACSYMA mayhelpe userdoing

It.

19

The only reference known to us that uses an idea similar to the skeleton

is in [Pra79]. where programs are decomposed into a control part (a subset

of our skeleton) and a kernel part (which Is only concerned about computing

output values). Then the author uses this idea to study program equivalence,

termination And code optimization. He introduces several models of pro

grams, the most general of which formalizes the notion of equivalence of con

trol structures. It should be clear that any two programs which share con

trol structures will behave identically in their profile equations, and more

over, from the viewpoint or their termination, one will halt if and only if the

whole class of programs with the same control structure halts.

The notion of Data Fiowgraphs and Flowcharts [Kod7Ba. Kod78b] has

been used to analyze the behavior of programs. However, there are many

problems with this essentially static approach. Some of the problems are

well stated in [DavBO]. where the author apecifically criticizes alleged analo

gies between fiowgraphs and electric circuits, but his solution does not go

very far in solving the main objections to the approach. The main problemis

that all of the dynamic aspects of the program are totally lost. Devices must

be introduced to describe, for example, the number of times a given loop will

be traversed. In fact, what la missing, once again, ia the dependence of the

representation on the input data.

In tha following two chapters we shall study families of representations

for programs which improve on our skeleton apprpach (by having a faster

running time) end which will always be dependent on the Input data. To

achieve this we first Introduce pertinent formalisms in the next chapter.

CHAPTER 2

AProgram Performance Language and Its Semantics

We shall now Introduce a formal language which will be used to express

our symbolic representations of programs. Its spirit Is similar to that of

languages used In first order logic. However, a symbol which adequately

enables us to deal with control structures has been Introduced In our

language. For a simple Introduction to first order logic languages we refer

the reader to [End72].

We assume we have an Infinite set of symbols which Is partitioned as fol

lows:

Logical Symbols

1 parentheses: (,)

2 sentential connective symbols: -,0B

3 variables (one foreachnon-negative Integern): m%. X|..... x*....

4 equality symbol:*».

Non Logical Symbols

x 1 one binary predicate symbol: <

2 two constant symbols: 0,1

3 function symbols: the unary function symbol log, the binary function

symbols +, ».mod. and, for eaob positive integer n, somesets (possibly

empty) of symbols, called n-plaoo function symbols.

80

81

4 the four-place special symbol: DTHENELSEFI.

8 the special denotation symbols (one for each non-negative Integer n):

B& B\ Bm,...

The constant symbols are sometimes also called 0-plece function sym

bols. This allows for a uniform treatment when we specify the semantics of

the language.

Our intended Interpretation of most of these symbols should be quite

clear. All ths unary and binary operation symbols desorlbe the basic real

valued algebraio operations and the constants 0 end 1 are to mean sero and

one. The special denotation symbols B\ will ha used to represent the belie

blocks (of Instructions In a program). We shall make all the meanings expli

cit after we Introduce Ihe syntax for the language.

8.1. Program Performance Formula*

An expression is any finite sequence of symbols. The simplest kind of

meaningful expressions are the farms. They are the expressions which are

interpreted as naming numerical objects. The two kinds of objects we are

going to be eoncerned with arc the baslo blocks (of instructions In a pro

gram) and numerical values.

Normally In mathematical logic terms ere all those expressions which

can be built up from the constant symbols and the variables by prefixing the

function symbols. Formally, for each n-place function aymbol /. one defines

an n-placeterm-building operation1/ on expressions:

I>(«|. tf.... t„) • fiti. Sg,.... e„)

and uses It to generate the set of terms. However, we shall adopt a more res

tricted definition In that not all function symbols will be used to build up our

terms.

22

Definition 2.1.1

The set of farms is the set of expressions generated from the constant

symbols and variables by the operations I*^, !*•. I\ and Food-
si

From now on, whenever we refer to an n-place function symbol /. / will

not be one of log, +, * or mod. However,if we say "any n-place function sym

bol/" then the above four function symbols are also Included.

Definition 8.1.8

An atomic formula Is an expression of the form F(ie>f i)> where P is

either the equality symbol « or the binary relation symbol < and ff f i are

terms. We shall abbreviate atomic formulae by writing f e s <i and f0 < *i-

•

Informally, sentential formulae are those expressions which can be built

up from the atomic formulae by use of the sentential connective symbols.

This can be made precise by using the following two aententiel-formula-

bullding operators on expressions:

r.(e)M-e).

WefSg) b («, or es).

Definition 2.1.3

The set of atntontial formula* (formulae, for short) is the set of ell

expressions generated from the atomic formulae by the operations T. and

*«r
•

Definition 8.1.4

We define our set of program performance formulae by recursion on the

length of expressions. We let A denote the empty string.

23

(i) A Is a program performance formula.

(11) Special denotation symbols B& Bt. ... are program performance formu

lae.

(ill) If ft end ft ere two program performance formulae then fift la a pro

gram performance formula.

(tv) If f Is a formula. / any n-place function symbol, f t fn terms, end f%,

•ft t*o program performance formulae, then

rPTHBNBLSEFl(f./(f i O.fi.fl)

la e program performance formula.

Program performance formulae will be, under suitable conditions to be

described later, symbolic expressions for the profile equations of programa

es functions of the input variables. Their linear time evaluation oost Is what

makes them very desirable for performance evaluation studies.

As is customary when describing formal languages the number end

kinds of primitive symbols have been kept to a minimum to avoid redundan

cies. However, to make the language practical, we introduce abbreviations

for commonly used relations and operations.

We thus introduce the following three binary relation symbols: *. >. at.

The longest definition in terms of « and < Is for >:

l, >felff-((*, = I,) OR (!,<!,))

where f, and f«areterms andIffIsanabbreviation for "if andonlyIT*.

We also introduce the rest of the binary logical connective symbols: *. ••

and •. The exponential function symbol exp(x.y), also denoted es *», and

the binarydivision function symbol / (Inwhose definitionweexcludethe pos

sibility ordividing by zero) ere eiso defined in termsofourprimitive function

24

symbols In the usual way.

From now on the program performance formula

mHENEUEn(f./(fi (»).fWa)

will be written

IPf./(li *»)THEN *| ELBE ftPl.

8.8. BemanUM for Progjam Performance Formula*

We shall now define the (canonical) Interpretation of the syntactic

objects Introduced In the previous section. As no quantifiers exist In our

language, all variables which appear In aprogram performance formula (ppf)

are free. This will enable us lo evaluate any ppf In a one-pass left-to-rlght

manner. This can not bs achieved when quantifiers are present

As a full (mathematical loglo) model theory for this language does not

seemto play a role Inour problem, weshall not develop It here. Indeed, our

(standard) universe will be the set of real numbers, eventhough therewill be

cases when some variables willonly range over Integer values.

Let i: V * R be an assignment function from the set V of all variables

Into the set of real numbers. We define an extension 4 of i to the set of all

expressions denoting numerical values as follows:

1 for each variable c, 4(x) « if».

8 4(0)8 0 and <(1)b1.

3 lfit. ••• • 'a *" terma and/ laone of log,mod, +, •, then

it/Xi «.)>« f*W.Ul.».««.)).

where f* lathe operation defined In the realnumberswhich Is denoted

by/. In particular, x denotes themultiplication operation. La., * is* .

25

4 |f 11 tm are terma and/ laann-placsfunction aymbol different from

log, mod, •*•, •, then

«/<«. •.))• j"(«(<ik«(*•».

where/* : (R u |-j)" •* R w M 1* »uchthat If any argumentla - then

the value Is •.

Having defined the Interpretation for terms, we now proceed to define satis

faction for formulae. Given a formula # andanassignment function i. p[i]is

the result of assigning values, via i. to all (free) variablesIn s>.

With atomlo formulae,

for any two terma (, and «,. (t, « tt)[i) Is trueiff4(1,) Is equal to 4(1,).

Ui <<s)M l« fa™ m<('i>la (atrietly) less than 4(1,).

With sentential formulae e>,

(- f)W I" true IffIt Is notthe case that p[i] Is true. («, OR fi)[ij Is true

iff •i(i) •»true or ftM l»true.

The Interpretation of a ppf will yield a (finite) sequenoe of symbols which Is

meant to represent the profile of a program when the program Is run with

the Inputs used to evaluate the ppf.

Definition 8.8.1

We define the tnlsrprsfoften function I by Induction on ths complexity

of ppfs:

1 for anyspecial denotation symbol B\,\{Bx)[i\ = 1£«.

8 for any performance formula f. where f Is fift>

«7.*.)M = i(t-.)MK*)[<].

3 For any formula s>. n-plece funollon symbol /, terms ft t* andpprs

*|.*s.

' 28

I(IP f. fit i t»)THBN f i ELSE f, Fl)M l»equalto

f*W i) Ht*)) x ft,)[i] If p[i]is true andequalto

/"M*,) <(0) * K*,)[i) If »[i]Is false.

where for anyc e R u |-{. -xt =ix-n.. If fj Is A. forJc |1.2|. then we

say that/*(<(!,) 4(«J) x «>,)[<] is A.
•

Proposition 8.8.1

Let f be a program performance formula and<an assignment function

ofV intoR Then K>)[4] «= SoS,... s, . where (a)s0e R u \-\. (•») for 0 <I

< n, s< € R u H wWf c «> (c)"•« e Ru M then*«♦, c \Bt\i c 0.

Proof

By induction on the complexity of program performance formulae.

8.3. Representation of Programs

We shall first study non recursive polo-leas programs. It is well known

[Boh88] that any computation can be carriedout by a program orthis kind.

As done in [Fer78], we shall represent this kind or programs by single-entry

single-exit directed graphs called D-cbarta.

A D-cbart has five types of vertices end three rules of formation. The

five types of vertices are: rectangular boxes, which are used to represent

basic blocks of statements in series or more complicated D-charta; diamond

thapwd vertices, which represent decisions; circular vertices, which

represent junctions; and the two triangularvertices, representing entry end

exit points. The rules of formation are: composition, alternation, end Itera

tion.

By

Bz

T
Figure 8.3.1 Figure 8.3.8

27

o-

<&-*
Figure 8.3.3

Definition 8.3.1

(i) If | B | represents abasic block of statements in aprogram, then

is an elementary D-chart.

(il) (CbmpojiUon) If Bx and |gg| ere elementary D-charta. then Figure

2.3.1 Is an elementary D-chart

(ill) (Alternation) If |#i| and £g are elementary D-eherts and • a formula

(see Def. 2.1.2) then Figure 2.3.2 is an elementary D-chart We call the

two branches the T-branch and the F-branch respectively. For example

in Figure 2.3.2 we have the left brench es the T-branch end the right

brench as the F-branch.

(iv) (Iteration) If \B \ la an elementary chart and • a formula, then Figure

2.3.3is an elementary D-chart We cell the two branches the T-branch

and the F-branch respectively. In Figure 8.3.3the T-branch is the right

branch and the F-breneh is the down branch. The T-branch of an Itera

tion will always be the "loop back" branch.

Definition 8.3.8

A D-chart Is a graph of the form

chart

nSj ,where [IT] Is

88

an elementary D-

Given an elementary D-chart | B | we shell distinguish two points in It:

the miry faint a and the exit poinl fi. which are located just before entering
the rectangle Band Just after exiting the rectangle B(see Figure 8.3.4). A
check poinl 7 In an elementary D-chart DIs any entry or exit point ofan ele

mentary D-chart D* contained InD.

Bach path through aD-chart corresponds loa possible flow ofcontrol or

run, through the original program. In alternations and Iterations, the T-

branoh is taken if the evaluation of the formula p Is true. Otherwise the F-

braneh la taken. Runs begin with the first statementof a program. wUb Ihe

triangular vertex representing the entry point (assumed tobe unique),

The input variables of • run ore variables which are referenced inthe

path before Ihey arc assigned values. The explicit control variables ofe run

£

a —

29

are those variables which occur In at least one predicate (formula) of en

alternation or Iteration in Ihe path. Arunnoils If. given the sel of inputvari

ables, the corresponding execution terminates. We saythai a program balla

If all of its runs halt

8.4. Program Parformanea Formulae forD-ch«xta

We shall now associate In a unique way ppfs to D-charls by inductively

assigning pprs to Ihe baslo components ofelementary D-charts.

Given aD-chart D. the ppf fD associated with DIs obtained asfollows:

(1) For each Indecomposable elementary D-chart | B\. (Le.. \B \
represents abaslo block ofInstructions), we assign to the beslc block a

special denaleUon symbol Bt (never tobe used again for any other basic

block) andthe ppf 10t to the elementaryD-chart

(2) If \Bt\ and \B\\ are elementary D-oharts with assigned pprs f, and f,
respectively, thenftft l» the ppfassigned lo their composition.

(3) Given an alternation construct where Dt and D% •*• the elementary D-
charls associated with the T and F branches respectively end f is the

predicate, the ppfassociated withIt Is

IPf. 1 THEN*, ELSE r*FL

where ft and ft are pprs associated with Dx and Dt respectively, and 1

represents the real valued constant function whose value Is 1. Le.: l(x) a

1 for all x c R

(4) Given en Iteration construct Dwhere Dt isthe elementary D-chart asso
ciatedwith the T-branch and f Is Ihe predicate having n variables, the

ppf associated with It Is

r/f ./THENf, ELBE API.

30

where f, la theppf associated with Dt and / Is ann-place function sym

bolwith the samevariables as 0 which, whenevaluated withthe value of

the variables et the entrance point a. yields the number of consecutive

times lhat 0 would evaluate to true in the corresponding run. We shall

denote such a function / associated with 0 by #0.

If D* is the elementary D-chart obtained from Dby removing the twotriangu

lar vertices and f Is the ppfassociated with D' by the ebove rules. Ihen f is

tV

Theorem 8.4.1

Assume that Pis a program represented by the D-charl D, and f0 has f

as variables. Then P halts iff. for all assignment functions, i . - does not

appear in I(f0(*))[i].

rTOOi

P will not bait Iff a run enters an Iteration and never exits It We eiso

have that for any program and for each Iteretion with predicate 0, #0 will

have - in its range Iff there is a set of inputs which makes the run enter the

Iteration and never exit It We finally notice that In Ihe evaluation or a ppr

the only place where « can be Introduced la when evaluating §<p tor some

predicate 0.

Thus, if P balls, for no assignment i will any f 0 eveluate lo - and so •

will not appear In I(f)[ij. Conversely, If - never appears for anyassignment

i , then no f o>'s ever evaluateto • and so allruns terminate.

From now on, we shall assume that our programs halt

Given a D-chart Dand an assignment functioni for Its Inputvariables f.

the sequence

31

acfl0a,F, • ' • **Bn

Is the pro/Us of P under Input i iff. for 0 * J < n. the run with Inputs i

traverses oj times theelementary block ofinstructions represented by£j.

Given e D-chart D. f prsprasenfs the profile equations ofP if. for every

assignment i. Hf0)[iJ le the profile ofPunder Input i. If f„represents the

profile equations of P. we denote It by f9.

We shall now determine conditions on D-charts under which f D« fr

There ta one construct which presents no problem: composition. If fD is

f*tfD, "»* *Bt s trv r** s *>.•then MW BK*»i> 1(W we ,n»medltttely
have f0» fp Moreover, alternations and iterations where all the elementary

D-charts appearing are basic blocks, also represent the profile equations of

theircorresponding programs. Inthe case ofiteretlons thisisguaranteed by

the definition of f 0.

Problems arise with the nesting of non primitive constructs.

Theorem 8.4.8

For eny elementary D-chart Dwhere there are neitherelternatlons nor

iterations -slthln an Iteration. fD= fr

Proof

We prove Itby Induction on thekind ofpermissible constructs. Let i be

an assignment function.

Clearly for an elementary D-chart of the form B where [Bj is en

Indecomposable elementary D-chart. f0 « fP (» IF, where Bt is the special

denotation symbol assigned loB). Assume now that Dx and D, are two ele

mentary D-charts satisfying our hypothesis for which fp, =fP% and fDt =fP§.

32

Composing them we already know preserves reprcsentability. Say we have

an alternation with f as predicate. D% as T-branch and Dt as F-branch. The

ppf f which represents It is

V 0, 1THEN fpt ELSE fo, PL

•nd I(d)[i] Is 1x lift)[i) If f[i) istrue, and Is 1x \{fa)[4] If p[i] Is false. Thus.

In either case, wa obtain lhat f0 » fr because ofourInduction hypothesis on

Dx and Df As for Iterations, our hypothesis only allow them to have basic

blocks as T-branohes and for these we know they represent lht» profile equa

tions.

Lemma 8.4.3

Let D be an elementary D-chart and. In particular, an Iteration with

predicate p* Let D's bodyconsistof an alternation Dt with predicate p(. T-

brench Dlx end F-branch Dxt> where f*„ a f »M and fpu« f?# (see Figure

8.4.1). Then. fo% » fpt Iff the same branch of the alternation la traversed

each time the T-branch of the Iteration is traversed.

Proof

Let i be an assignment function. We prove the "only U" part first

IfPefi] Is true, tha T-branch of the Iteration Is traversed fpet'l times.

So If. say. f>u Is always traversed, the correct profile la given by #s»oR£*) *

I(*p„)W- As by hypothesis fDu « fpu. we have f0% • *»,In this case. Simi

larly. If H|t were the branch alwaya traversed, using f0%M « ffa we would

obtain f0l a frt.

Now for tha "U" part weargueas follows. The ppf f corresponding to D

Is

33

Figure 8.4.1 Figure 8.4.8

IP f0. fVo THEM fBt ELSE APt

Thus. K*)W I" #*>*[<] " Hiou)U) » fJ«l»»truo.ondAU poti) to false. We

then see that f D* f p implies that the same branch of the alternation Is

taken each time the T-branch of the Iteration Is taken.

Lemma 8.4.4

Let D be an elementary D-chart and. In particular en Iteration with

predicate *> Let D's body consist of another Iteration with predicate ft and

body He. (see Figure 2.4.8). Wo assume further lhat«>pf a f^. Then.tB=ff

Iff there exists en integer n such that each lime the T-branch of the outer

Iteration Is traversed the T-branch of the inner iteration is traversed n limes.

34

Proof

First we deal with the "only V" part

If *>„[»] is true, the T-branch of the outer iteration Is traversed fpotij
times. If0|[i] Is true and we are traversing the outer loop's T-branch. then

the Inner one will be traversed #p,R[iJ times. Thus. #p0RM * l»iBW x
Hfon)H) is the correct profile tor Din this case, since fj>„ =ff„ and since

the inner Iteration will always traverse the same number of times Its T-

brancb each time the outer Iteration's T-branch Is traversed, if fi Is false,

theevaluation yields fp^i] x Ax Hf»tt)[i). which isequal toAbyour defini

tion. So ineither case we seethat fDa fp. The lest cose iswhen pa is false

but then A is again the correct answer.

Now we dealwiththe "IT' part The ppf f corresponding to Dis

IP *0• ffo THEN IP ft. fPiTHEN fB% ELSE API ELSE API.

The two interesting cases of I(f)[i] are when both poM and p,[i] are true,

and when p0W ««true and p,[i] is false. In Ihe latter case Hf)[i] isA and so

this forces the inner iteraUon to satisfy the condition that If pi was false the

first time the T-branch of the outer iteraUon was traversed, then pt will

remain false for ell consecutive traversals.

If 0O[i] end 0,[il ere both true, then I(f)[i] Is fpo^i] * frM *
KtaJM' ^lchrepresents Ihe profile equations of Donly If fg0 « fPo end the

inner iteration's T-brench is always traversed Ihe seme number of times

each time the T-branch of the outer iteration is taken. This number of times

corresponds to lhat traversed the first time the outer iteration's T-branch

was taken.

35

it Is worth mentioning that even though the last twoLemmas are quite

discouraging, in our Examples 1.3.1. 1.3.2 and 1.3.3 all nested loops satisfy

the hypothesis of Lemma 2.4.4. In fact as noted In SecUon 1.3. the

hypotheses of the Lemmas 2.4.3 and 2.4.4 have been Implicitly made in ell

the literature we know about

As for the hypotheses or Lemma 2.4.3. theyereonly relevant inour first

exemple end there Ihey hold for six of the eight existing cases. In the two

cases in which they fail, one branch Is taken the first lime the T-branch of

the Iteration is taken(to print headlines) and the other branch is taken for

ell successive traversals.

In a D-chart whenever alternations within Iterations satisfy the

hypothesis of Lemma 2.4.3. we say that altrmations arm ii»U bsnovsd. Simi
larly if nested Iterations satisfy the hypothesis ofLemma 2.4.4 we say that

titrations an tuatt behoved.

Theorem 8.4.5 Representabillty of Profile Equations

fv =fpUt tor all assignments i ell alternations and iterations are well

behaved.

IT—-if
rTOOT

Letus deal Bret with the"only U" part The proor isby induction onthe

complexity of elementary D-charts. Clearly the symbols Bt represent the
profile of the basic blocks of InstrucUons which they are associated to. We
have already remarked that

alternations and Iterations with irreducible D-charts as branches represent

the profile of their associated programs. The other two building steps make
use of Lemma 2.4.3 or Lemma 2.4.4. and the hypothesis that alternetions and

38

Iteretlons areweU behaved. Thus, whenever a possible oonflleUng construct

occurs, Le., an allernaUon or en Iteration within an Iteration, our well

behavedness hypothesis allows ustoconclude thatwa still represent the pro

file equaUons of the largerelementaryD-chart

Now we deal with the "If part As In the proofs of Lemmas 8.3.3 and

8.3.4. we must analyse theeffect fp• f, has on D-chart constructs. Wc only

haveto lookat twocases:alternaUons withinIterations and iteraUons within

ItereUons. because tha all other cases cause no problems.

Assume wehave analternaUon D% withpredicate pt within an Iteration D

with predicate p> Tha Iteration may be located aa In Figure 8.4.1 or there

may exist an elementary D-chart between the entrance of the alternaUon

and the entrance of the T-branoh of the Iteration. By the composition rule.

In any of these two cases we will have that when evaluating the ppf

corresponding to D. f ftHi) * Kf0,)I4 *"» »PPewr u roM »» *""»• Bul then«

this to as In Lemma 8.4.3. so wo must have that this alternation to well

behaved. In the samewaywe argue that ell alternaUons In the D-chart muat

be well behaved.

Similarly, using Ihe proof of Lemma 8.4.8. we argue thai all iterations

appearing In the D-chart muat be wellbehaved.
•

Theorem 8.4.5 shows thai our goal of SecUon 1.1. that of obtaining pprs

representing profile equaUons evaluable efficiently. La., In a one-pass left-

to-right procedure In linear time(asa funotlon oftha number of characters

In the ppf). forces ralher strong topological and/orsemantic constraints on

the programs that these pprs represent

37

A natural quesUon to ask then Is whether this Is due to our inability to

formalise the problem or to an essential characteristic of computations

which does not allow us lo "linearise" all of them. What would seem to be

missing Inour evaluaUon procedure Isa way of takingIntoaccountthe inter-

dependencies between control variables of nested constructs. Perhaps we

mightgain from trying to capture moresemenUce InL Our assertion to that

there Is not much mora that one can do In full generality, and thus eompli-

caUng I Isnot worth it InChapter 3 we present an approach which wethink

to the most appropriate to deal with this problem.

Example 8.4.1

In Figure 8.4.3we show the D-chart corresponding to a program which

reads an array A of N numbers and then stores in S the sum of all the posi

tive entriesof the array. Thus, to Figure 8.4.3 ft is IcN andp, Is A[l]*0

. In this exampleweeee that the selectionof the brenchInthe alternation Is

exclusively dependent on the input data, and that In order to establish the

correct profile for a run, one has to reed all Inputvaluea and compute the

cardinality of the aetsof"trues" and "falses" of the Inner predicate. Thus,

even though we know that the T-branch of the Iteration will be traversed

exactly N consecutive times, one has to evaluate the allernaUon predicate

eaoh time. This precludes the evaluaUon In linear time of the ppfof this D-

chart

Example 8.4.8

Figure 8.4.4 depicts the flowchart of a program which reads an Nby M

array ofnumbers Aand then odds all the positive elements In the j°» column

up lo the A[14ja' one In the J* entryof the array S. Thus, the outer predi-

38

Figure 2.4.3 Figure 8.4.4

cete. po. to l* M. f, Is J£ A[l.l] endf, is A[lj]* 0. In thisexample we see

that both the number of Umes the inner loop will be traversed and which

branchof the alternationla to be token ere absolutely input data dependent

p, and pihave tobeevaluated every time. Thus, there cen benopurely syn

tactic interpretation function which cancapturethiabehavior.
•

Let L = <B, p. a, fi> be an iteration with T-branch bodyB. predicate p.

entry point a and exitpoint 6. Let s be a variable appearing to the D-chart

We denote by x£a] the value of the variable x at the entry point of the Itera

tion; byaO] Its value attheexit point ofthe iteration end byx(k] the value It

has Immediately after Ihe k* traversal of the T-branch B; note that x[0] Is

assumed to be x(o] , Le.. the value of* at the entrance to the IteraUon. We

extend this notation inthe natural way to n-tuples or variables **: thus «[a]

39

abbreviates <x([a] 2„[a]>. k, when used as above, will be called the

iteration wuisx.

The hypothesis or Lemma 2.4.3 can also be characterized by a logical

condition on the predicates p0 *nd pi:

Theorem 8.4.6

Let D be an iteraUon with predicate pg. whose body consists of an alter

nation D\ with predicate p(, T-branch fplt end F-branch pf|(. (see Figure

2.4.1). Then, the same branch of the alternaUon to traversed each lime the

T-branch of the iteration to traversed iff for ell assignment functions i. when

ever the T-branch of the iteraUon Is traversed. (1) (p0(*e[<*]) ~* ri(*iM))

true implies (po(*c[k]) -• -fii*\W)) to raise for ell positive integers k as

#p0«(foIal) or (2) (peCoM) - -nfiM)) true implies (p0(*o[k]) -

p,(f ,[kj)) is false for allpositive integersk « #PoB(*ota])-

Proof

Let i be en assignment function. We prove the "IT* part first

Given that the same brench of the alternaUon to traversed each time the

T-branch or the iteration Is traversed, then exactly one or (1) or (2) is true.

Indeed, if the T-branch of the alternaUon is traversed, then (po(*o[k]) •*

ri(*i[k])) would be true for ell integers k. 0 < k < f>eR(*o[a]). Thus.

(ro(*ofk]) * ,p,(f,[k])) would be false for all Integers k. 0<k * f>oR(*o[a]).

For the "only U" part we'argue as follows. Say (1) to true. Then

(pe('o[k]) * -pi(«i[k])) being false for all positive Integers 1 < k <

f ro"(*o[o]) means that the F-branch at the elternatlon is never teken IT the

T-branch has been taken the first time. We argue to an analogous manner If

(2) is true. So. for the run which corresponds to the Inputs i. e unique

40

branch of the alternaUon win alwaye be traversed eaoh time the T-branch of

the ileretion Is traversed.

•

The advantage of this new charaoterlsaUon to Its syntaoUo orientation.

One can now hope that with tha aid of a theorem proves, this eondlUon could

be checked during a syntactic analysis of the code. In fact. If the predicetes

pe and p(are of the form sROy , where BO is one of <. *. > or as,some ceses

(depending on the action of the IteraUon on the oontrol variables) can be

analysed automaUcally without much difficulty.

8.5. Definable Programs

We now deal with the necessary and sufficient condiUons to obtain pprs

which represent the profile equaUons and to which no n-place funoUon sym

bols / appear. These pprs will be symbolic expressions for the profile equa

Uons of programs.

The set of syntacUoal objects which denote numerical values needs lo be

expended so as to reflect the effect of alternations and IteraUons on vari

ables. This amounts to formalising tha symbolic evaluaUon of program vari

ables.

DefinlUon 8.6.1

The set of special farms is defined by recursion on the length of expres

sions by the following clauses:

1 any term I Is a speolal term;

8 if T|... TaMMti are special terma, p(x(.... ,x„) a formula (Def. 8.1.8) and /

en m-place function symbol, then

fP r(r rn) ,/(rAfi T„m) then t„,„m slss %♦*♦,n

Is a special term;

41

3 the set of special terms to closed under the operations I^g, r^, T*and

rv

•

Special terms oen be eveluated using the same toterpretelion function 1

Introduced to Section 2.2.

ProposiUon 8.6.1

Foreny special term r and assignment functioni, I(T)[i] c R w \-\.

Proof

By induction on Use complexity of special terms.

•

We notice, as In Theorem 8.4.1. that a special term r evaluates to » Iff

some f p appearing to r evaluates to •». Thus, when dealing with balUng pro

grams, the evaluation of any specie] term to finite (recall that our definlUon

of / does not allow division by sero).

DefinlUon 8.6.8

Given an Iteration L a <B, p(f). a. p>. we say that L Is ds/tnabfs if there

exists a spadel term 8(f) which does not contain n-place funcUon symbols

/. such that. If p(f[ol) is true, then

TiiM)-ir*i*W).
m

This last definition Is central in what follows. r to nothing else but an

effective descripUon of fp. When evaluated It yields, as a function of the

values of the control variables at tha entranca of Ihe IteraUon L. tha number

of consecutive times that the T-branch of L will be traversed.

We shall deal later with the Important problem of automatic recogniUon

end construction of special terma r dlrecUy from the syntax of programs.

Now, we remark that there may not be a simple relationship between the

42

values of $ and -'p. Their ranges of validity are disjoint

Control variables will henceforth be assumed to be of numeric type. Le..

type integer or type real. We also assume that the basic operations which

can be performed (by our programming languages) on variables are: subtrac

tion, addiUon, multiplication, division. exponenUeUon, modulo arithmetic,

logarithm evaluation and n** root extraction. It should be clear that our set

or terms suffices to represent each one or these actions on variables. For

example, if the assignment statement X\ :a xj • c< occurs In a basic block,

then the term xj * x« represents it

We now want to define expressions representing variables which, when

evaluated with the values or the Input variables at a check point 7, will yield

the value or the veriable which they represent at 7. Moreover we want these

expressions to be special terms. This last requirement forces a constraint

common to all systems dealing with symbolic evaluaUon: that there be a way

of expressing (In whatever formal language Is used) the effect of an Iteration

on a variable.

Example 2.6.1

Assume that we have an IteraUon such that to Its T-branch Dt the vari

able x la only modified by the assignment x := a*x + b , where a and b are

names of variables whose value does not change to Di, and a[0] 1* 1. Then

x[k]can beexpressed by a^Ol +bl—~ I.

The algebraio expression for x[k] depicted in the above example plays a

central role in Chapter 4.

43

DefinlUon 8.6.3

For any variable r. apecld term r and check point 7, we say that r

rfsscrioss x at 7 If. for any assignment function i , I(r)[i] is equd to x[y) in

the corresponding run.

•

DefinlUon 8.6.4

For any variable x end any IteraUon L we say that r(x,y) is a clossd

form for x to L ir r(x,y) to a spectol term such that for any Integer k .

r[x[0].k] toequallo x[k).
•

We noUce that, without loss of generdlty. y can be assumed to be of

type integer. Example 2.5.1 depicts a closed form for x in the associated

iteretion L. Determining the existence orclosed forms will be the subject or

Chapter 5.

For the rest or this chapter, we shall assume that closed forms exist for

every variable and iteraUon we consider.

DefinlUon 8.5.6

For anyD-chart D. variable xj, end check point 7, the canonical spscial

Urm (est) Tj.T associated with xj at7 is defined es follows:

(1) II xt to en input variable at 7 or an elementary D-chart with entrance

point a. thenrt.7 - riM. Moreover, Ifthe entrance point to the entrance

to the D-chart D. then Tj#7 a xj ;

(2) for any Irreducible elementary D-chart see Figure 2.5.1, tjj to symboli

cally expressed to termsof riM es the term representing the result or

the sequence or symbolic evaluations or theassignment statements lox,

occurringin B, wherexj is used to denote riM 1

44

(3) for any alternation, see Figure 8.5.8. ri$ Is

D? r . 1THEN Ti#|(a,/o| ELBE Tj,,la«/a| PI

where, for k C|1.8|,TMJa»/a| Is the expression obtdned by replacing

InTj4 eachoccurrence ofx^ by Tj*;

(4) for every Iteration, see Figure 8.5.3. Tjj Is

IP p. I THEN T(T|^,fp) ELSE T,M PI

where r(xj,yj) toa closed form for xf In L.
•

So, for any elementary D-chart D, any variable Xj and any checkpoint 7 in D.

the est rj.T exists Iff there exist closed forms for xf to all Intervening itera

tions.

Theorem 8.6.8

For any elementary D-chart D. any variable xt and any checkpoint 7 to

D. If the est Tj.T exists, then it describes xt at 7.

Figure 8.6.1 Figure 8.6.8

45

Proof

By Induction on the complexity of cst's, where for the Iteration con

struct (the hard one) we use our assumpUon lhat closed forma exist and that

they describe their associated variable.

As compositions and alternaUons preserve cst's, we see that all the com

plexity to building them from simpler ones lies In Iterations. It is Usenonex

istence of closed forms which limits our ability to generate cat's.

In general, making tha assumpUon that a closed form exists for an

irreducible Iteration Is the same as requiring that a given recurrence equa

tion has symbolic solution [Che70] (see SeeUon 6.1). When we assume no

nested iterations, as we are allowing dternaUons within iterations, one has

two basicallydifferent cases: (1) When consideringD-charts for which fD a fr

then the existence of the closed form reduces lo finding solutions for each of

the possible paths and then determining, based on the sole analysis of the

Input variables, which path will be token and thus which solution to use for

the run. (II) In Use generd case where distinct branches may be teken within

the aame run, no method to known for finding closed forma. In feet the

closed form In ceae (I) will to general have to allow canditiond statements lo

reflect the faot that disUnct branches may ha traversed. These Issues are

discussed to SeeUon 6.4.

If, for a check paint 7 In a D-chart D. no n-place function symbol /

appeara In ri%T we say that xt la oTs/tnabla at 7 andabbreviate this by saying

that Tj,r Isdefinable. We say that anelementary D-chart Dpreserves defina

bility forXf If,whenever Tj,. Is definable, then Ttf Is dso definable.

48

Theorem 8.5.3 DelinabUily PreservaUon for Variables

(1) If riM is definable and Dis an irreducible elementary D-chart. then

Tjf Is definable.

(ii) If TiM Is definable. Dto an alternetion Inwhich both the T-brancband

the F-branch preserve Xj's definability, and p to such that each of Its control

variables to definable at o. then rj j to definable.

(lii) If rlM is definable. Dtoa definable iteration(Def. 2.5.2) with predi

cate p such that each or its control variables to definable at a, and there

exists e closed form forXj, then rlt to definable.

Proof

(1) This is clear, because It just amounts to having terms representing

the basic operations performed on variables, and using riM as the descrip

tion of Xj at a.

(il) As in Figure 2.5.2, let ot and at denote the entrance to the T-branch

and F-broncb of the alternaUon respectively, end fit and ft denote the

corresponding exits. By assumption. tjj, and Tj,«a are definable if TjMl end

Tj^, ere. But in eny dternaUon, tj* a Tf*t « t^ . so t^j, and t/j, ore

definable. Then, tjj Is

IP p . 1 THBN ri$x ELSE TtJft FI

and. as each of the control variables is definable at a. Tjj Is definable.

(ill) For any assignment i. I(tjj)[i] Is equalto xs[j}] in the correspond

ingrun, but this is equd to X/IfpTi]]. where x[0j toI(T^^)[i]. Since wehave

e closed form for xj in the iteration, tjj Ist(t^,#p), and, since our iteration

is definable,we oanexpress this by r(T|^,3). Aa each or the control variables

to definable at a, we cen obtain our expression for Tjj with no n-place func-

47

Uon symbols/appearing andthus Ttj todefinable.
•

Each of the converses lo (i). (Ii) and (iii) toTheorem 2.5.3 deserves Indi

vidual attenUon because none ofthembolda In tall generality. For example,

definebllily may be quite easily regained otter en Irreducible elementary D-
chart D: just consider the case where the variable is essigned e constenl

vdue in D. Thus, the relationship or definability between tm and rtM Is not

as direct as the one between riMand Tjj.

Theorem 8.6.4 DefinabilityAcquisiUon forVariables

(I) If DIs an irreducible elementary D-cbart In which assignments to x$
are Independent of x,[a] and are either based on input variables, constant
values or definablevariables,then rit Is definable.

(II) HDis an alternation where (1) XjtpM axs[fo] end x^d,] end x^ft]
ere independent or xt[a] and definable, or where (2) x,[fii] Vx,[d«]. indepen
dent of x,[a]. definable end the dternaUon predicate pIs such that all of Its
controlvariablea ere definable at a, then Tjj todefinable.

(ill) If Dto en IteraUon. k an Iteretion index, and (1) x^k] is Independent
of x,[a\ end constant or (2) x,[k] to Independent of xt{a] but has aclosed
form, end the IteraUon Is definable, and dl control variables are definable at

a. then riJfIs definable.

Proof

(I) Terms preserve definabUlty.ThuB. ifthe essignments dl Involve either
definable veriables or composite terms obtained from definable ones, the

result to that Tjj Is definable.

(II) By assumpUon, t„, and TiJf are both definable. Now to case (1) we
may define ri$ as r„t and obtain definability Independently of how HI

46

behaved the control variablesof p mey be. As for case (2). since the branch

taken does effect our result we define ri9 as usudly and Just noUce that

definability Is regdned as the controlvariablesare assumed to be definable,

(ill) This case Is quite andogous to (11). In (1) we define Tjj as the

(definable) constentvalue xt[k) andin (8)we use the standard est definlUon.

Definability to regained by our assumpUons on the IteraUon.

•

Theorem 8.6.6 CharasterisaUoo of Definability for Variables

(I)For an Irreducible D-chart D. ri9 todefinable Iff the hypothesis (l) of

Theorem 8.6.3 or the hypothesis (I) of Theorem 8.6.4 hold.

(ii) For an dternaUon D, riS Is definable iff tha hypothesis (ii) of

Theorem 2.5.3 or the hypothesis (ii) of Theorem 8.5.4 hold.

(Ill) For anIteraUon D. Tjj to definable Iffthe hypothesis (ill) ofTheorem

2.5.3 or the hypothesis (ill) of Theorem 8.5.4 hold.

Proof

Theorems 8.5.3 and 8.5.4 prove the "only U" part of this theorem. We

shdl prove the "IT*part by induction on tha complexity of D-charts.

Proving (i) Is simple, because, given any irreducible elementary D-chart

D. It to dways true that there exists a term which desorlbes all the assign

ments made to xj to D, where we use the symbolxt to represent rtjm. So If

the assignmentsdepend on riM, and rjj todefinable, then tj* must be defin

able. If those assignments do not depend on Xj[a], then the variables occur

ring In this term have to either be Input variables, which are always defin

able, or definable variables because TfM Is so.

As for the proofs of (II) and (ill), we need to carry out a simultaneous

induction.

40

Say that Dto an dternaUon as In Figure 8.5.8 to which each branch is an

Irreducible D-chart We now took at the terms which describe the action of

each of the branches on xt. If they are so that their value Is equal and

Independent of x[a] for all evaluaUons 4. then the definability of ri9 forces,

as In (I). lha desired restrictions on the variables parUcipatlng In the definl

Uon. If Ibe valuea are still Independent of x\a\ but they are not equal for all

assignments4. then the definability of rt$ forces the controlvariables of p to

be definable at a and Imposes the conslrdnt that each term representing

the branches be definable as welL If (any) of the values depends on x[a).

then the definabilityof tit forces the definability of riM.

When we have an Iteration as In Figure 8.5.3 with irreducible T-branch.

then, If Xj[k) Is Independent of Xj[a] and constant. T) j will evaluate to that

value, which is. thus, obtained In a definable way. If Xj[k]depends on k but is

Independent of xt[a). then the definability of Tjj forces the existence of a

closed form for Xj. the definability of the IteraUon and that of the control

variables at o. The last dternaUve Introduces the further requirement lhat

TjM be definable.

The rest of the proof for dlernations and iterations to analogous to the

one above but an InducUon hypothesis to used to ded with branches. Instead

of using the existence of the term obtainable from straight line oode.

If T| T, are cst's and f(x„ ..., *») a ppf. then f (t, t„) Isa spe

cialprogrampsr/ormanes formula (sppf).

DefinlUon 2.6.8

For any program P. if fr Is an sppf with no special funoUon symbols /,

then P is dafinably mieroanalysabte.

50

We ere now at the point where we may characterise those programs

whose profile equaUons can be expressed without the use or any n-place

function symbol /.

Theorem 2.6.6

P is definably microanalyxable Iff (a) fD a f r (b) for dl exit polnta d to

Dand any control variable xt, Ti$ to definable, (c) dl iterations are defin

able, and (d) for every control variable and IteraUon a closed form for the

variable exists.

Proof

The "only U" part to proven by inductively constructing the cst's end the

ppf which represent P. The "if part is proven by induction; it uses the

assumption fD = fp. Theorem 2.5.5 and the observation that the exit points

of e construct ere the entry points of the subsequent one.

The theorems of this secUon suggest several toteresUng remarks about

the nature or the preservation or definability for different types of objects.

We see that proving the preservation or definability for variables is essen-

Udly a top-down process. In contrast proving the preserveUon of definabil

ity for Iteretlons is a bottom-up process, as Is the existence or closed forms

and the preservation or definability or the iterations. We have also seen that

proving the satisfiability or fD a fp may be seen as a bottom-up condition

which depends strongly on the nature or the variables appearing in predi

cates.

Unfortunately, the class or definably mlcroenalyzable programs to

rather limited. Thesole assumpUon fD a fp is quite a constraint. In the fol-

51

lowing chapter we shall see how we may ded with e wider family of programs

by changing some of our syntactic constructs. The god will still be that of

obtaining efficiently a representaUon of program profile equations, but we

shdl see thet the complexity of the evduation will no longer be linear.

2.6. Summary

In this chapter we have presented our beslc approach to the efficient

generation of program profiles. A language in which our performance

representeUons of programs can be expressed was introduced in SecUon 2.1.

Section 2.2 presented the semenUcs of it and the following three sections

dealt with issues arising from the representaUon of programs. It was seen In

Theorem 2.4.5 that to achieve optimally efficient representaUona. programs

need to satisfy conditions on the topology of> their D-charts and/or on the

behavior of the predicatea which govern iteretlons and dternations. Exam

ples 2.4.1 and 2.4.2 show that In general we cannot expect to achieve much

more than what our interpreteUon function I allows us to achieve.

CHAPTER 3

An Extended Program Performance Language

In Chapter 8 wehaveseen lhat a rather restricted eless of programs Is

definably mleroandysabla. In fact Theorem 8.4.5 shows that our problems

already begin when we are Just considering the efficient generation of the

profile equaUons for a program, Our skeleton procedure presented to Sec

tion 1.8Is guaranteed to yieldcorrect profiles for dl programs, but Its run

ning time may be unacceptable.

The purpose of this ohapter to three-fold:

(1) to presentdternaUve methods for finding f p (all of wbloh are automa-

tlsable) V

(2) to narrow tha gap between what we oan do efficiently, In terms of

evduating expressions which represent ths profile equaUona for pro-

grama, and our default procedure, and

(3) to extend our model of programsso as to capture more of the features

usudly found In programming languages.

3.1. On CounUng FuncUons fp

When dealing with an iteraUon L= <B. fit), a. p>with an n-placepredi

cate f(t), we have introduced the n-place function eymbol fp to denote a

funoUon which satisfies the following condition: for any assignment function

4. If p[i) is true, then fpfi] tothe number of consecutivetimes the T-branch

of L will be traversed until the flow of control exits the IteraUon. f p will be

sdd to be p's counting function.

62

53

So far we have not dedt with the Issue of finding fp's. This secUon will

explore this problem from two viewpoints: determining fp using our

knowledge about the counting funeUons of the (sub)predicales which form p.

and associating the value of f p with the least nonnegaUve root of certain spe

cial functions determined by the block of the IteraUon.

It should be clear that, given L as above, f p depends on both the predi

cate p and B. It dependson Bbecauseit is there where the transformations

to p's variables are made. This Is why§f end f-p are not directly compar

able, as was noted to Section 8.5. Example 3.1.1 Illustrates this point

Throughout this chapter, we shdl essume that tha control variables are

of type numeric, Le., either of type Integer or of type reaL

Example 9.1.1

Let us assume thai our programming language baa a built In definlUon

of the largest possible Integer which oan be represented. MAX1NT. Say that

we have an iteraUon L• <B,p(J.N). a. fi>. to which N Is not modified to B. end

the only statement affecting j in B Is J:» j+1. Suppose that the predicate p

Is j <N. Then -p Is J fc N. Then, f p maybe expressed by N[a] - j[a] . and

f~pbyMA»NT-j[a].

Thus we see that even though we are only dealing with a complements-

Uon operation, the definlUon of f-p may not be easily found to terma of tha

definlUon of p. We needat least to have InformeUon onthe environment In

fact In our example. If the programming language did not have a built to

definition of MAXINT. one would not be able to express f -p in It

As was remarked to Section 2.1, by introducing appropriate definitions

we mey assume that our predicates contain the following six reletiond

54

operators RO: <, >, je,*, a, * . Clearly, they form e set at operators which is

closed under negaUon. So, without loss of generdlty, we may assume that no

predicate p contains the symbol - In its expression.

This will help us deal with the probleme suggested by Example 3.1.1. In

general if p bad an occurrence of -, we would eliminate it using DeMorgan'a

rules. By appropriate elimination or double negaUons, one would move the -

signs next to expressions or the form <t RO fs . where tt and ft are terms,

and then "absorb" them by using the appropriate relaUonal operator. In

fact we shall also assume that all predicates p will be in disjunctive normd

form (with no - symbols appearing), Le., p will have the form

(pt| ft...k p«,) OR (pl§M ft:... k pl§) OR... OR (p%», fte... k p%4|)

to which each pj Is of the form f|ROfg. where tt. fg are terms and RO is one of

the six relational operators listed above.

Given a set or functions fx /„. / a min|/|,..., /»| Is defined point-

wise. Le., for every set of vdues a?, /(f) a mini,/t(f). ••• • /»(*)!• A dmilar

definition can be given for max, the potntwise maximum or a set of functions.

Given a control variable x and an elementary D-chart D with entrance

point a end exit point fi. the action of Don x to the result x[d] as a function

of x[a) and of the input values at a for dl control variables appearing In D.

Theorem 3.1.1

Given the iteration L a <B, p(f), a, d>. where p(f) a p,(f,) k ... tt

p„(fn). IT for 1< i < n, fp(, associated with <B.ptfc), a«. p\>, exists, then

fpsmlnlfp, fp„|.

Proof

We do It by Induction on the number of predicates which form p. If n = 1

there to nothing to prove. So. essume the theorem is true for ell predicates

55

whichare e eonjuncUon of n predicatesp<, and consider p(f) = Pi(*i)* ••• *

p,,(fJ k ?„♦,(*»♦,)• Let f represent p,(*,) At ... &p,»fX). Then p = f k

r**i*

For anyassignment function i. p[t] is true iff f[i] andp„M[i] are true.

Thus, in La <B. f{t), a. p>. the first (iteration index) k for which p[f[k]] is

false, toexectlythe samek for which either f[f [k]] or pnt,[f [k]] Is false for

the first time.

But then, the number or consecuUve times that p willevduate to true is

exactly the numberof consecutive times that both f and p„», will simultane

ously evaluate to true, because the body B of the origlnd iteraUon Is the

seme to all the iteretlons considered.

Thus fp a mtofff. §fn*\\-

By Induction hypothesis, if a mln(|p, fp„|: so

§f a minffpi fp„. fpft+il
•

From the proof of this theorem we see lhat dl we need to hove es

hypothesis onthe component tteraUona <Bu fti*\). at. p\> to thatthe ectlon

on±\ by thecorresponding body bethe same, under the same Input vduesat

Oi, as the action of Bon t\. We thus obtain the stronger corollary:

Corollary 3.1.8

Given the Iteration L a <B. p(«). a. d>. where p(f) a p,(f,) k ... ft:

p»(xV). If for 1si i <n fp«. associated with <Bt. pt(**). o<. ft>. "l«t9' Bnd lf
for 1ss i * n, B% performs the same acUon onx\ as B,then

fp a minflpi fp,,).

Proof

56

By the proofof Theorem 3.1.1.
•

Unfortunately the case ofdisjunctions to not as straight forward as the

one ofconjuncUons. The problem Is that a predicate may change Its trulh

vdue severd Umes while the T-branch of the IteraUon Is being consecutively

traversed. Wesbdl see examples of this behaviorIn Chapter4.

Theorem 9.1.9

Given the Iteration L » <B. p(«), a. «>. where p(f) • Pi(*i) OR ... OR

**(*»)• It for 1* 4s? n fp(associated wilh <B«. *(*«). a*. p\> exists, and If.
for 1« i < n . Bi performe the same action on t\ as B. then wa have two

(algorithmic) ways of computing f p:

(1) Let /, be the set of Indices J such lhat fti*t{n\) to true. Let nt *
max(f pjCxjtO])). Now consider p(«[n,]). If false, then fp(f[Oj) a n,.

Otherwise, let /gbe the setof Indices Jsuch that pj(xj[ntj)Istrue. Let

n, a maxifr*(*,[n,))|. If f(*[nt+n,)) Is false, then fp(f[0]) a », ♦ nt.

In generd wo may now find f p(f[0]). using tha above procedure, by:

fp(f[0]) » £n«. where k Is the first index for whioh /» « f

(2) Ut i| be the least Index 4 for which ri(*t[°l) to true. Let n, a

fn fa [°])* Now lel *« *• lh8 ,oa,tmdes * >*• (wrBPPln« •round n u
necessary) for which f?i(«|[n,)) Is true. Ut n, a fpia(a\Jn,]). Con-

Unue to this way unUl we find 4* and n» such that, for all 1 * i * n.

r<<4[£»i)> »•»»••• T080 fr<*[°i>B £**•
J»i l"i

Proof

57

Given any assignment funcUon 4, p[i] willbe true if at least one of the

P|[i) Is true. The above two methods are based onthis same fact totwo dif

ferent weys. That both methods work Is proven by InducUon on the number

of participating atomic predioates.

For the case n a 1 there to nothing to prove. Assume that the validity of

ths methods has been established for n and let p(f) a f (f) OH p»«i(f). where

f Is Ihe disjunction ofn predicates. Let usdso assume thaip(£(Oj) is true.

Method (1): We evaluate fi*[0)) andr*»i(*[°])> *nd thcn Rnd' for lnoae

which avduate to true. ff(f [0]) and fr*«i(*[°])- As p(f[0]) Is true, at least

one of the two dlsjunets must be true. Let n, be the meximum number

obtdned from the above procedure. nt came from, say, f (the other cese to

symmetrical): then f(f[n,]) la fdse. Thus, we determine whether

fr»»i(*["t]) 1* true or not If false, wa are done and, by Induction, this

method worka correeUy. Elsewe find na • fr««i(*[ni))- Now we only need

to look at the truth of f(*[n,+ng)). If fdse, we are done, else we find

#*{*(n,+n,)). and so forth. Thus, this method will correctly find fp(f [0]).

because It will only atop when all predicates become fdse simultaneously,

end then it will compute and record Ihe exact number of IteraUons that It

took for this to happen.

Method (2): This Is proven dmost Identically to the above. In fact, the

only difference Is lhat wa look at the truth of Just one predicate, end from

then on dternate to the other one as soon as the current one becomes fdse.

There is no need to consider two cases as above.

11 should be noUced that our procedures halt only because we are

assuming halting programs. It to this the hypothesis that allows us to assert

that there willbe a finite value of k for which p(*[k]) is false.

SB

Which method is more efficient? Method (2) evduates less predicates

than (1) but mustupdate the values of the control variables more often than

(1). Their efficiency will therefore be determined by the behavior of the

predicates (I.e., it will depend onwhether theychange truth value often or

not)and by the costofupdating Ihevdues of the control variables. We dso

note thatMethod (2) can never require fower IteraUons thenMethod (1).

Corollary 9.1.4

Given the iteraUon L= <B. p. a. fi> where p(f) a p,(f,) OR pt(*g). if for 1

<{<8 |p(associated with <BU p«(*i). «*. p\> exists, and 11 for 1* i < 2 .

Bt performs the same ectlon onx\ asB. and Ma max|f>|. fpt|. then:

(1) n(*itfril) »toe Implies #>= M

(2) rs(*stfril) W»e Implies f p a U

(3) (P,(*|[M]) OR rs(*s[M]» false implies f p a M.

Proof

Anyof condlUons (1) or (2) imply (3). In case(3).we see lhat the algo

rithms described In Theorem 3.1.3 yield f f a M.

In the ease whena predicate may changeits truth vdue, In the context

of en IteraUon, from true to folse at most once, then eitherhypothesis (1)or

(2) ol Corollary 3.1.4 holds. In SecUon 3.2 we shaU study thiskind ol predi

cates in some detail.

We shallnow see that for the purposesof our andysis, we may choose to

look et very simple predicates at the cost oradding some complexity to the

body ol the iteration, but preserving the counting properties which are or

interest to us.

69

Theorem 3.1.6

Given L a <B. f|ROft. a, d>. where t, and fB are terms, and given two

variables x-j. xt which donotappear to Ct. fg. or B. then L,a <D\ XjROx,. a.

d>, where B* differs from B only to that the statements xt :a I, end x, :a t,

hove been edded efter the statements located at the end or L's T-branch and

dso added just before the entrance pointa. hes the same counting funcUons

as L does, Le.,

f(tlROfg)a#(xiROxl) .

Proof

Adding xt :a f, and xj :a fBas described inthestatement ofthetheorem

preserves the truth of fiROfg In the toUowtng sense: fiROft(f[0]) Is true Iff

X|[0]roz|[0] to so, because or the code added just before a. Then, because of
the codeadded at the endof L'sT-branch wehave that f|ROfg(f[k]) is true iff

X|[k]ROx,[k] is true.
•

Now. theassignments x$:atxand x, :a t, must beunderstood appropri

ately in that they meyrepresent a very long programming language state

ment However, as we notedto SecUon 8.6.our terma always represent sym

bolic sequences In operaUona of our programming language. We ere dso

implicitly assuming thatthe evduatlon of ftROtg has noside effects.

Theorems 3.1.1. 3.1.3 and3.1.5allow us to concentrateour attention on

the simplest possible predicates, namely those ofthe form x«ROxj. Ifwe are

able to find their counting functions In the context of an Iteration, then we

can findthe counUng functionsof predicates based on them.

To conclude this aecUon. we shaU analyze the case when en equality

predicate xay occurs in an Iteration predicate p. The enalyals of Ha effect

60

on fp requires arguments different from the ones presented above. There

are two basic oases to consider.

(1) Bactsonx and y trivially, Le., there arenomodifioaUons to eithervari

able in thebody ofthe loop. Then s[a]ay[a]implies x[k]ay[k] for dl k,

and so this predicate will dways avduate to true once the T-branch of

the Iteration Is token. In this case halUng must be assured by other

atomic predicates to p and, for the purposes of determining f p. In tho

light of Theorems 3.1.1 and 3.1.3. It ean be discarded.

(2) B acts on x and/or y nonlrivteUy. Thiscase presents more difficulUes.

beceuse. even though B mey act differently on each variable, for some

Initial vdues the equality may be preserved throughout several consecu

tive traversals of the T-branch. For example, we may have the assign

ments x:ax*x and y:«2*y as the only modifications to x end y in B.

but if x(a]ay[a]*2. then x[l]»y[l]a4. Other examples can be given to

which the equdity Is preserved an arbitrary prespecified number of

traversals of the T-branch. These examples are obtained by using poly

nomials whose vdues coincide at a predetermined number of consecu-
«

live integer coordinates.

Thus, we see> that to ease Use algebraic IransformaUons to x and y to B are

not en idenUty. we will need to evduate the predicate at the end of each

traversd.

3.2. OnTraversd Independent AcUons of IteraUons on Variablea

DefinlUon 9.8.1

Given an IteraUon L a <B, p(f), a. fi>. we call p atablt If for any run of

the program, after the flow of control has gona through a. p changes truth

61

vdue at most once before the flow of oontrol goes through fi.

m

Stable predicates have pleasantly predictable behavior, after they are

evaluated with tha vdues of the control variableaat a. their truth vdue will

change at mostonce before we exit the iteration. Thus, once the ehenge of

truth value has occurred, one need not evaluate the predicate eny more.

Stability to a properly which depends exclusively onthe acUon of the body of

the Iteration on the conlrol variables.

Given a real valued function /". a real for It Is any element r of its

domain for which /*(r) a 0. Counting functions may be defined pointwise by

non negeUve roota of functions to a way we shall make precise below. This

connecUon will help us find definable countingfunctions, as describedInSec

tion 8.5. and will also set some absolute limits as to how much we mey

accomplish to this respect

The sign of a red number r. to defined as follows:

[1 If r>
sign(r) « I 0 If r=

Ui If r<

r>0

=0

r<0

Given a function symbol / and two pointsrt and rt. wa say that / changes

sign If/"(r.) and /"(rg) have distinct signs. For function symbols / which

represent continuous red-vdued functions, a change of sign Implies that a

root exists In the closed Interval determined by the points used for the

evaluaUon.

From now on we shall omit the dislinoUon between function symbols /

and the red valued function /• which they represent, unless the ambiguity

may prove misleading.

62

We shall now make explicit an assumpUon about programs which

becomes relevant: programs are assumed not to be self-modifying. In fact,

this assumpUon has been ImpliclUy made throughout our discussion of pro

file equations. We may then assert that, given en iteration La <B. xROy. a.
B>, the action of B on a control variable the first time lis T-branch Is
traversed to a fixed function ofthe Input variables. Le.. eny two Umes Uie T-
brancb or L to entered with the same valuea for the input variables, the

action of B onx andy during Uie firat traversd tothe same.

Ut usessume that the action ofBon thecontrol variablea x. y Is also

Independent of the order of traversal. Le.. any two Umes the T-branch of L=
<B. xROy. a. B>. is taken, the action or Bon x (and y) to described by the
same function. We shall denote the ectlon ofBonx by f. end the action on y

byg.

Under all of these hypotheses, we have that x[k] a f*(x[a]) end y[k) =

gk(v[a]), where I* (gk) Is Uie function obtained by composing f(respecUvely
g) with itself k times. We define anew function h as follows:

h(k)af*(x[o])-gk(v[o]).

Tha changes of sign orh willhelp us find fxROy.

Theorem 3.8.1

Let La <B, xROy, o. B> be en iteration and suppose that x[a]ROy[a] is
true. Assume further that the action ofBon x to f and on y to g. and that

theseactions areindependent of the orderof traversd.Let

Mandn~(fH*[«])MBfc(v[«l)>.

Then

Ma

min h(k)=0

min »ign(h(k-l)) + stgn(h(k))

min algn(h(k-l)) »• sign(h(k))

minsign(h(k-l)) Hsign(b(k)) + 1 if RO e \<,*\ enda holds

Proof

We assume lhat x[a]R0y[a] to true end (because of the essumpUon that
the iteration hdts) that there extols ak such that -x[k]ROy[k] to true.

(1) Case when RO to <: we ere looking for the first ksuch that x[k] *y[k]
and. for all J<k . x[J) <VU1- This vdue or k to exactly that for which b
changes sign, because under the above conditions, for all j<k.h(j) <0
and h(k) * 0. Thus Ma k. An andogous argument works tor the cose

when RO to >.

(2) If RO Cl<.*| and the minimum kfor which h(k) changes sign Is such that
b(k) * 0. l.e.. aign(h(k-l))xaign(h(k)) a -1. then the equality clause of
these predicates will not hold (to this run) end so we are back to the
case of atrict Inequelitlea. However. If RO C\<*\ and the least k tor
which h(k) changes sign is such that h(k) a0. then the T-branch of Lis
traversed a(k+1)* lime. Thus our formula to dso correct for these two

cases.

(3) If RO to .«. we have lhat x[a] *y[«], end then the least kfor which x[k]
=y[k] will be exactly the least k for which h(k) a0. Thus MIs exactly
equal to this k.

•

We remark that when RO is *. our condlUon is much harder to deter
mine from asyntacUo andysi. than to dl the other cases. As we shdl see In
Chapter 4. there are many Instances where change, to the sign of bcan be

63

If ROis i*

it RO e l*.*J
if RO e |s:.a: j end a never holds

64

determined with some ease. However. Uie existence of an Integer root may

not bo possible to determine just from Uie syntax of the expressions defining

the function h.

In fact there are Instances where real solutions may be determined

andyUcally but integer solutions donotedst Consider the function sto(x);

we may easily determine In what Intervds It changes sign, but unless an a

priori andyUo argument to given for Uie non edstence of Integer roots, one

may ba led to searoh Indefinitely for a non edstent Integer root

It should ba clear that under the above oondiUons, fx[a]ROy[a] to Uie

ceiling of the least nonnegative root of b. where Uie oelling of any red

numberr, Irl. IsUie least Integer n suohthat n*r.

Stable predicates have a very simple characterisaaon In terms of their

associated funcUons h. We recdl that • red vdued function h Is called

tnonafenieotfy non decrsasino If. for anytwovdues x, y. x <y Implies h(x) si

h(y). Analogously, b la called menefoniootly non increasing If. for any two

vdues x. y. x < y Implies h(x) at h(y). Finally h to called monotonts If It to

either monolodeatly non decreasing or monotonlcdly non Increasing. We

then have:

Theorem 8.8.8

Let p be xROy. Then p to stable In L Iff the associated function h Is

monolonlo.

Proof

Monolonlo functions have the property that once a change of sign

occurs, the previous sign will never appear again. If It did, one would have a

revered In the Inequalities. Thus, to the case of funcUons h associated with

predicatee RO, by Theorem 3.2.1 this oondiUon desorlbes precisely the

65

stability oondiUons.

•

Theorem 9.8.9 A.Geometric CharacterisaUon of an IteraUon's AcUon

Let L a <B. fit), a. fi> be an iteration whose action on the variablex to

Uie function f, for all traversals. Then, the value of x after k consecutive

traversals of the T-branch of Lis determined by Uie Intersection of the verU-

cel line y a x[a] withthe function I*.

Proof

This to proven by Induction on the iteraUon Index k. By hypothesis we

obtdn x[lj a f(x[a]) . Assume that Uie property holds for k consecutive

traversals, then we have: x[k+l) a f(x[k]). beceuse the action of Lon x Is t,

and so, by Induction,

xtk+llaf^xWWa^'^Co]).

It tekes a moment's thought to realise that the sequence of polnte

IfM'faDlVcw corresponds exactly to the y-coordlnates of Uie points to Uie

plane determined by Uie Intersection of Uie vertical line y a c[a] and Uie

family of functions |r*|kItf.

9.9. AlgortlhmlcaUy Definable Counting FuncUons

Using the results of our last two sections, we shall nowanalyse the case

of defineble component predioates. We shall begin by studying same abso

lute limitations on definability Imposed by ThaWlm 3.2.1.

In SeoUon 2.5 we have seen that in order to find definable fp's. we need

lo have closed form expressions for Uie valuaof Uie k** Iterationof the con

trol veriables. Moreover, Theorem 3.8.1 tells us that we must also be able to

solve for k.

66

In the particular case when the expressions found for the vdues or the

control variables after the ktb traversd of Uie T-branch of an iteraUon are e

polynomid in k. our problem then amounts to knowing whether we may find

an (algebraic) expression involving radicds which would yield the first nonne-

gative root of this polynomid.

The fundamental Theorem of Cdois theory [Art71] elates that quintics

are unsalvable to radicds. However, our knowledge of Uie existence of e non-

negative root for those polynomlds we are interested In may lead us to think

that a formula for f p could exist Unfortunately this to not Uie case.

Theorem 3.3.1

U all polynomials with raUonal coefficients and a nonnegative root were

solvable, then all polynomials would be solvable.

Proof

Let p(x) be e polynomial with rational coefficients. Let r be its red root

with the largest absolute vdue, and K be a raUond number larger than Uie

absolute value of r. Then p,(x)=p(x-K) is also a polynomial withrational coef

ficients all of whose red roots are nonnegaUve. But then by hypothesis one

would be able to find a splitting field F for p,. However, as Kbelongs to Uie

base field. Fwould eiso be a splitting field for p. given that p,(s) a 0 iff p(s-K)

a o. and s e Fimplies that s-K e F.

We shall now see two examples whloh illustrate the ebsolute algebraic

limitetions on the definability of counUng funcUons. The first to a generic

exemple exhibiting Uie limitations imposed by the unsolvability or higher

order equations, and Uie second illustrates a different problem, that of

exponenlid equations.

67

Example 3.3.1

Consider L a <B, xROn, a. B>, where In B the only assignment which

modifies x to x:ai,*tg*ig*i«*ie. and where each of the variables if is modified

once in B by the statement ijt=ij+Tj. where no rs to modified In B. and n to

dso not modified to B.

With tb^se conditions it Is clear that

X[k] a (i.IOl+k'T.J^irtOJ+k'TgJ^isIOl+k-TgJ^iJOj+k'Tj^iolOl+k*TB)

and the test performed to see IT Uie T-branch Is to be traversed again is

x[k]ROn[0].

A sufficient condition for L to be a halUng iteraUon is that all Ti's be

posiUve. But then, es x[k] is a quinUc in k which can be transformed, by giv

ing appropriate values to the t/s end ij[a]'s, into a particular non solvable

quintic: we cannot expect L to be definable.

Example 3.3.1 is quite ad hoc. Rarely transformations made to control

variables ere or such dgebralc complexity [Knu71. HenBO]. Our next exam

ple ahows that even when we assume very simple eondltlons. definability

may not be achievable.

Example 3.3.2

Consider L a <D. x<y. a. d> end say that Uie acUon or B on x is n*x+b.

the action on y is c*y+d. and lhat a. b, c, d are not changed by B. After

traversing k times the T-branchof L. one has (assuming a * 1 * c)

h(k) a(a"*[«] +bj£ff]) -(c«y[dj +d(£ff]).
This is an exponential equation on the IteraUon index k which does not have a

symbolic expression for its roots, even when using logarithms, unless a = c .

Thus L is nol definable even though it has a very simple predicate end simple

68

actions on its oontrol variables.

•

The following theorem gives us one Instanoe when definability for an

IteraUon with a composite predloate can ba obtdned from Uie definability of

some iterations with atomic predicates.

Theorem 3.3.8

Given the IteraUon L « <B. fit), a, fi>, where p(f) a p((fi) At ... ft

fmitn). If for 1*;I ssn each <Bt. r«(*t)> ««• f»> li definable and B* aols on t\

in the same way as B does, then the evaluaUon cost of fp a mlnf? , p„| is

(still) linear on the length of Uie IteraUon's descripUon.

Proof

By Uie assumpUon of definability. Uie avduaUon of each p\ to done to

linear time. Then, evaluating f p lakes at most n Umes the longest evaluation

time for an individud 9(.

Thus we see that, even though we need to apply an dgorithm to obtain

if, we can sUll achieve Uie god of linear avduaUon lime. However, this to

not Uie ease for disjuneUons.

Theorem 3.9.9

Given Uie IteraUon L a <B. fit), a. fi>, where p(f) a p,(f,) OR ... OR

p»(*„). if tor 1 st 1ss n each <Bt. p((x\), a«. (U> Is definable and Bt acts on ±\

to the same way as B does, then the evaluation cost of f p Is proportional to

the number of Iterations of Uie algorithms described to Theorem 3.1.3.

Proof

In either method described to Theorem 3.1.3 we may bound Uie cost

Incurred el eeoh Iteration by looking at Uie cost of evaluating eech individud

69

ri. As these last costs are constant, we obtain the desired bound.

•

In the last two cases, fp may ba called oisorifnmicafly de/mabte. We

observe that, as In the case of disjuneUons one does not hsve an a priori

upper bound on the number of cycles that the algorithm will perform, we no

longer have a lineer Ume eveluation cost However, different empirical stu

dies [HenBO, WooTB, KnuTi] have consistently shown that long predicates

hardly ever occur in praoUce. When p Is solely composed of stable atomic

predicates, Uie number of them In p bounds the number of Umes Uie algo

rithm will cycle.

3.4. A SduUon to the UmltaUons of Lemmas 8.4.9 and 8.4.4

In our Examples 2.4.1 and 2.4.2 we showed lhat even atructurally simple

programs can arbitrarily misbeheve. thereby meking the successive evalua

tion of their predicates Uie only woy to obteln correct profiles. It to also true

that the hypotheses of Lemmas 2.4.3 and 8.4.4 are quite strong and they mey

be difficult to check automaUcdly. (The automaUc verification or these end

other hypotheses will be explored In Chapter 7.)

We thus need ways to approach this problem more efficlenUy than by

the skeleton procedure. As our examples show that the evaluaUon of inner

predicates may ba unavoidable, we shdl not try to do better than that, but to

do it as rapidly as possible. For this purpose we shell introduce a new three-

plaoe specld symbol.

The new three-piece special symbol to be added to our program perfor

mance language is PORTODOOD. The inductive rule of usage lo obtain ofpo-

rifnmic pp/v to Uie following:

70

if / is ann-place function symbol, f an dgoriUimlc ppf, and k a symbol

not appearing in f, then

F0RTOD00D(kal,/,f)

Is en algorithmic ppf.

As done with our other specid symbol, we shall alwayswrite the above in the

form

FORkalTO/ DOf-OD .

The interpretation of this new symbol will be defined after we associate

algorithmic pprs with D-charts. Otherwise the definlUon of Uie interpreta

tion funcUon becomes unnecessarily complex.

This new special symbol will only be used when we encounter certain

patterns to the D-charts. namely, alternations within iterations or Iterations

within Iterations.

The Case of AlternaUons Within IteraUons

Assume we have a situaUon like that to Figure 3.4.1. where 0, and D, are

elementary D-charts represented by the ppFs fBt and fBt respectively, end

where fx is Uie ppf whichrepresents Bt, ft the one for Br The ppf associ

ated with this elementary D-chart Is

IF Po. fro THEM fot IF ps* 1THEN ft ELSE ft PI fc, ELSE AFI.

The elgorilhmic ppf associatedwith this elementary D-chart, where we have

token care of the elternatlon with predicate p» which was within the iteration

with predicate p0. to:

IF Po. fro THEM fotfBt BLSB AFI FOR ka1TO #pe DO IF p*. 1THEH ft ELSE fgFI 00

In fact the transformation "pull out of the IteraUon" should be applied

once simultaneously to all those dternaUons within Uie IteraUon with predi-

71

cate pe which do not satisfy the hypothesis of Lemma 2.4.3. It should be

clear that an Inductive definition using the above criterion will enable us lo

handle ell Instances of dternaUons within IteraUons.

The Case of IteraUone Within IteraUons

Assume we have a situation like that to Figure 3.4.2, where Dt and Dt are

elementary D-charta represented by the pprs f D| and fB% respectively, end

where f tothe ppfwhich represents B. The ppr associated with this elemen

tary D-chart to

IF 0o. froTHEM fBt IF ft • fr* THEN f EISB AFl fB, ELBE AFI.

The elgorilhmic ppr associated with this elementary D-chart. where we have

! D2

m^zr

<£>*

Figure 3.4.1 Figure 9.4.8

72

taken cere of Uie IteraUon with predicate p» which was within Uie Iteration

with predicate p0. Is:

IF Po. froTHEN fO.fP, RUB AFt FOR kal TO fp0 DO IF p*. f pa THBH f ELSE AFI OD

As In the case of alternations Ibis transformation should be applied once

simultaneously to all those Iterations within Uie Iteration with predicate p0

which do not aaUsfy Uie hypothesis of Lemma 8.4.4. Again, It should be clear

that en Inductive definition using this criterion will enable us to handle all

Instances of iterations within IteraUons.

We extend our Interpretation function I to handle dgorllhmio ppfo. Its

definition, however, will be algorithmic In nature, and only definability

assumptions may allow faster evaluaUonUme than that of running Uie akele-

ton.

InterpretaUon of AlgoriUimle ppf'a

(1) Case of an dternaUon with Irreducible branches and predlcete pt(£t)

within an IteraUon with predicate pa(<e)'> ftoen *" assignment funcUon

i:V-R,

Kfor kai to f po do rrr(. i thbn bx sue b, n oo)[i]

Is the following procedure: for k equd to 1 up to fpo[i)« evduete

Pi(fi[k-l]). keep appropriate counters Ct, C% for Uie T-branch and the

F-branch respecUvely, and update Uie vdues of the control variables.

When done, Uie find counters Cx and Ct must satisfy Ct ♦ Cn « f rotO-

Theoutput of I tothe string Cx*BtCt*Ba.

(2) Cass of an IteraUon wiUi an Irreducible T-branch Bx, and predicate

pi(£i). wiUiin an Iteration with predicate po(*o): |toen an assignment

function i:V-»R

Kfor k=i to #>0do if p,. f p, them 0, else An oo)[i]

73

is the following procedure: for k equal to one up to ifj[i], evduale

pi(f|[k-l)), update the vdues of the control variables, and keep a sum

fvjJO
of the vdues In the counter Cx. When done, C% must be equal to £

kai

fp,(tf,[k-l]). Theoutput of I is the string CX*BX.

(3) Other eases. They ere analogous to the above two. The only difference

Is that Uie counters Cx and Cgnow apply to subformulae and not to basic

blocks. Cx and Cawill be profile coefficients multiplying the evaluation

of the corresponding (sub)formulae.

Theorem 9.4.1

Algorithmic program performance formulae dwaya represent the profile

equaUons.

By a simple induction on the compledty of algorithmic program perfor

mance formulae. noUng that Uie "dgorlthmie" specid symbol Is only Intro

duced when the orlglnd ppf does not represent the profile equations.

Example 3.4.1

We shall now show bow we are able to ded with our Exemple 2.4.1. (see

Figure 2.4.3). In this cese one applies case (1) of the rules for interpreting

elgorilhmic pprs. The algorithmic ppf for this case Is

FOB k=l TO N DO IF A[k] * 0. 1 THEN Bx ELSE A FI 0D

where Bx to the basic block corresponding to the alternation's T-branch In

which the sum S Is performed.

The InterpretaUon Is as follows: for k equal to 1 up to N. eveluate the

predicate A[k]fc 0. If true, record this by IncremenUng Cx. If false,do noth-

74

Ing (because theELSE branch to A). When finished, output CX*BX.
•

Introducing Uie new specid symbol FORTODOOD has certainly solved our

problem of finding symbolic representations for Uie profile equaUons of D-

charts. but the drawback to that we have ended up with an algorithmic defini

tion for L whose evduation time may be es bed as that of running the skele

ton.

We present two cases where Uie expected cost of evaluating the algo

rithmic ppf to smaller than that of running the skeleton:

(1) When weare given a definable Iteration Lwith predicatep0(*o). an alter

naUon within this IteraUon with predicate pi(*i). and closed form

expressions for pi's control variables tx.

(2) When we ere given a definable IteraUon L with predicate p0(*o) and

another definable iteraUon pt(fi) within it for which we have closed

form expressions for its control variables tt.

in both of these cases, when evaluating Uie algorithmic ppf. we expect to out

perform the running tune of Uie skeleton because Uie truth of predicates

need not be established each time a T-branch to to be teken. The fact that

we have closed forms for Uie control variables of Uie inner predicate allows

us to "update" them in one (possibly complex) evduation. The skeleton will

be updating them each time Uie corresponding branch Is traversed. If the

iterations are to be traversed a substantial number of Umes. then running

the skeleton should take much longer than evaluating the algorithmic ppf.

3.6. Andyxlng a Larger Class of Programs

We have adopted, for Uie purposes of our study, the representation or

programa based onD-charts. From Uie work orB6bm and Jacoplnl [BShBS].

75

we know that any computational flowchart ean be converted, perhaps at the

expense or adding some extra boolean variablea. Into a D-chart which will

preserve the functionality of the original program. Moreover, it is also known

[Led75] that one needs to introduce euxlilary booleen variables only when

"untangling" a loop which has more than one exit. It to Uie presence of

blocks which are not one-to one-out which forces Uie InlroducUon or auxiliary

variables.

Most modern programming languages have a richer set or control struc

tures than those naturaUy represented by our program performance formu

lae, which saUsfyUie property of single-entry single-exit points. We shallnow

see how to ded with them. Once we exhibit Uie eppropriate reducUons to

our formulae, ell our definability results will apply.

In particular, we shall ded with Uie ao-cdled D*-charts [Led75]. which

are D-charta with two additlond rules of formation. They ere depicted in Fig

ures 3.5.1 end 3.5.2.

i-4
B

lr<2>

Figure 3.6.1

—0-

H3-1
Figure 3.6.8

78

Figure 3.5.1 to celled a rspsaftinii! Iteration, and Figure 3.5-2is a ease

sfafsmtnt for 1 ss 1* n. In Figures 3.6.3 and 3.5.4 we give their equivalent

reprcsentaUons In terms of our D-charts.

We may 'then treat these control structures using the depicted

equlvdences. We may perform similar reductions withany construct reduci

ble to a D-chart

So far our methods have not dealt with control variables whose type is

not numeric. There to a good reason tor It and It to because Uie behavior

characteristics of those programs are very difficult to determine from their

JT<k>
B< jf<£>

Ba

fit.

f-1

-r

I Q I

Figure 9.6.9 Figure 9.6.4

77

syntax. In Chapter 7 we shall present some examples of these programs.

9.6. Soma Issues Concerning Unrestricted GO-TO**

The controversy on Uie usage of unrestricted GO-TO's In programming is

a subject which has a long history. There have been dozens of euthors con

tributing their ideas to tba subject Weshell not present en In-depth enalysis

of the pros and cons of unrestricted GO-TO's but just meke some remarks es

to how their eppearanoe In programs affecta our methods and goals. In

[Knu74. D1J72. Led75] Uie interested reader may get eequatoted with some of

the Issues end arguments to this controversy.

For us. the basic problem with unrestricted GO-TO's is that they destroy

the one-in one-out flow of control properly of D-charta. This is troublesome

when determining the definability of a variable. With the one-in one-out pro

perty, one can naturally order Uie basic blocks so that a basic block B is not

processed until all of its predecessors Bt are processed; Le., the nodes £?t

ere always traversed before B In any run.

When Uie one-to one-out properly Is not satisfied, as to Figure 3.6.1. one

can no longer do this. The Immediate problem to that one needs several

passes through Uie graph to determine Uie edsUng dependencies. This

Increeses the running Ume needed to find Uie performance representation of

Uie program [AI176]. In Figure 3.6.1 we may also see that B9 Is both a prede

cessor and a successor of ffg, because there are runs which traverse B9

before Bt and olhera which traverse Bt before B+

A different aspect of this same problem to that finding defineble ttera

Uona (regardless of the fact that iterations era semantically different from

those in D-charts. In lhat they may have several entry and exit points)

becomes much harder. In Figure 3.6.1. we see that Bt is dso part of Uie

7B

Figure 3.6.1

iteraUon which has pi as Uie governing predicate. If pi's control variables

are modified in the IteraUon with predicate p* then Uie mere existence of a

closed form for pi's control variables is already a difficult problem. In tact, a

closed form for them can never exist as a pure algebraic expression, because

of the dependence on pe's truth vdue.

Thus, even though our methods may handle unrestricted GO-TO's, the

cost of doing it to normally felt at all levels. Building a performance

representaUon will take longer, because multiple passes through the code

will be needed. Iterations, which now have to be defined es cycles In the

directed graph representing the flow of control of Uie program, will be less

likely to be definable. It then becomes more probable that fewer iterations

79

to a program will be "linearlsable" end so Uie evaluation cost of our perfor

mance representation will tend to be close to that of running the skeleton.

3.7. Summary

In this chapter we have deelt with several shortcomings ol our program

performance language introduced to Chapter 2. We have firat studied how to

obtain the (crucid) counting functions fp for nonatomic predicates p. We

have then analysed a specid kind of predicates, the stable ones, which help

us evaluate f p to an efficient manner. Stability was dso characterized In

terms of Uie behavior of a red valued funcUon which can be determined

from Uie text of the program.

We have then introduced a new 3-place specid symbol which dlowa us to

represent Uie profile equations of arbitrary D-charts. The toterpretation

function I was expanded accordingly, but now. to deal correctly with this new

symbol, one has to define I in en algorithmic form. Which method, the algo

rithmic ppf or Uie akeleton. will have a shorter execution Ume depends on

the definability hypotheses satisfied in e given cese. Finally, we have noted

how Uie violation or the one-in one-out property or D-charts by arbitrary G0-

TO's makes our analysis more oostly.

CHAPTER 4

The Linear Function Case

In severd empirlcd studies of programs [Knu71b, Woo7B. HenBO], It has

been observed thet most modlfloaUans made lo conlrd variables to Uie body

of IteraUons are, dgebraically. very simple. This has moUvated our detdled

aludy of the counting funoUons of Iterations to which Uie control variables

are modified according to linear functions. Wa shdl see that under these

hypotheses one can efficiently obtain, always at run Ume. sometimes at com

pile time, oil Uie charaeterisUcs of the counUng funcUons.

Throughout Una chapter we shdl consider exclusively an IteraUon L a

<B, xRoy. a. fi>, where Uie actions of B on x and y are linear funcUons. We

assume Uie eoUonof B on s to be /(x) a ax ♦ b . and the aotlon on y to be

p(y) s cy + d . where a, b, o end d are names of variables whoso value does

nol change to B.

Under these hypotheses Uie closed forms for x[k] and y[k] are (recdl

Example 3.3.2):

r[k]

y[k)

x(a]+ kb

y[a] 4- kd

c*x[a)*d[£fi| ItcUl

Ifaal

Ifai* 1

Ileal

We shall use the function h(k) a x[k] • y[k] to andyse Uie behavior of

xROy In L. However. It proves useful to extend Uie definition of h to all red

numbers r, even though, from the viewpoint of fxROy, the function b Is

60

81

Interesting only at Integer points. The following section analyzes some useful

properties of certain apeeid famlliea of linear functions. For any real

number f and funcUon f, we define l°(f) a f .

4.1. Some Properties of Specid Famlliea of Linear FuncUons

Consider Uie real valued linear funcUon f(t) a at 4- b , where a and b are

two real numbers. The composition of f with Itself k times yields

Ifaal

!*(«)
t +kb

a*! ♦bl^ff"] U**1
Theorem 3.2.3 tells us thai the family fPl^g deserves study. When f Is a

linear funcUon. It turns out that |f*|M0 possesses one charaolerisUc which

aceounte for most of Uie family'a good behavior: either all Uie straight lines

which represent the elements of Uie family are parallel or they meet el a sin

gle point

Theorem 4.1.1

Let f be Uie linear funeUon f(t) a at + b. If a a l, then the funcUons P

to Uie family Ifl^Qt represent parallel lines In the plene. Otherwise, the

—— ——' belongs to eaoh member of [PLpolm^*i^r

Froof

We have given above Use expressions for f*. From them, one cen see

lhat Ifaa 1. f*(t) • t ♦ «b. and. for k, * kg. UNO • f*»(t)| •|k| - kt|b. which

Is independent of t. Thus, Uie two straight lines are parallel.

When a * 1 we have

1-B | ~ 1 -a ' " a - 1

SSrTa"(bafc-b(,lk"1,)

a -JL-(bak-bak+b)

.k-JL_-b2*Z±

b

1-a

62

So, Uie point Ir—-. ?-—Ibelongs to eaoh ofUie strdght lines represented

by functions to \t°l
B»0'

The point |~-. ^j-l will be cdled Uie infBrssefion point of JPJ^ .
end playa an important role when determining hdttog conditions. When r is

linear, Uie family IPf^ will be called a spsciolfamily of functions.

The value of Uie coefficient a determines all the essential characteris

tics of Uie behavior orUie family JPJ^. to particular, when weconsider the

intersection of jPJ^ with the vertled fine y a x[a] . Thereere only seven

cases to consider.

bLet A a x[a] +

(l)a>l

a-1 *

Urn P(x[o]) a Urn ak(A) ♦ t-*-
•••• k*» l — i

slgn(A)oo •• l-a

otherwise

l-a

(2)a=l

(3) 0 < a < 1

(4)a = 0

Urn P(x[a]) a fim (x[a) + kb) a .]|n (b)*>

Urn f*(x[a]) a lim ak(A) ♦ •——
k— * l " k— * ' l-a

•rh-

lim P(x[a]) a b

63

For two of Uie eases when a Is negative. It Is convenient to Introduce two aux

iliary functions: fm and f . They give us bounds on Uievdues that the family

fP)^ takes. Consider a given value x[a). We define ournew funcUons by:

(Index m stands for minus and Uie p for plus).

When a < 0 and a * -1 , we can easily Bee that ftk(x[a]) a f^(2k) and

!***'(*M) a fm(2k+l) . So the vdues of (P)^ . when evduated at the point

x[a], oscillate betweenthose or fm and f . We must dso notice that under

these hypotheses, fB and f_ are monotonie funcUons. This to most clearly

seen when one observes that the only change to Uie vdues of fm end tp is

givenby tha change of vdue to |a|k. As Uiered valuedexponentialfunctions

are monotonie, f_ and f are monotonie.
a p

Table 4.1.1 summarizes the monotonlcity properties orfn end tf.

funcUon asxumpUons behavior

'. A«0 * |a|>l monotonledly nonlnereastog

'. AatO It |a]<l monolonlcally nondecreaslng

tm AsSO At |a|>l monolonlcaUy nondecreaslng

'• A SCO at |a|<l monotonically nonlnoreastng

\ AkO It |a|>l monolonlcaUy nondecreaslng

\ A«0 At |a)<l monotonically nonlncreaalng

fs AstO It |a)>l monolonlcally nonlnereastog

'a AssO * |a|<l monolonlcaUy nondecreaslng

Table 4.1.1 Behavior of f^andf^.

64

There Is another property of these functions which is of Interest to us.

InUie semlplane (<x.y> :c at 1), Ibeyaresymmetried (I.e., mirror Images)

with respect tothe horizontd line x a —^—. Away tosee this Is to perform
1 *"* ft

e displacement along Uie vertlcd axisof ~— units. This transforms fa(k)

Into t'Jk)» -|a|kA and f,(k) Into f"f(k) a |alkA. Thus T'Jk) a-r,(k). Clearly

then, fnand f are symmetriedwith respeot to Uie horizontal linex a . a*

85

(5)-Ka<0

HmUkJaUmH.I^Af^.^.
In this case. Uie values |P(x[aj)JMr0 form a sequence which convergea to

•j-=—. Moreover, to Uie plane, dl even Indexed elements of this sequence

are on thesame side ofthe Une x a —fe—. On the other side ofthis line are
l — a

aU of Uie odd Indexed elements. Thus the values of Uie sequence cross over

theUne x a •—£— every time. This says thath wUI change sign an Infinite

number of times Iff b a 0.

(fi)na-i

This case toquite peculiar, to that the whole family |P|M0reduces to two

funcUons: f(0 =-I +b end f*(0 « <. Thus, for dl k * 0. f^iM) a x[ct]

and r**'(*[a]) "*(«] +»•

(7)a<-l

b

Umf,(k)-

limfB(k)«
k-M»

slgn(A)- >r*W-T^T

b

l-a

otherwise

-.ign(A)oo "'W-rrr

otherwiseb

l-a

Tha sequence |P(x[a])|M0 diverges. Moreover. Uie ebsolute vdue of the

elements increases monotonically. The values of Uie odd Indexed elements

wiU diverge with signs different from those with even Indices. As to (6). Ihey

88

will also be on different sides of the Une x a
l-o

Figures 4.1.1 through 4.1.6 depict typical situations of [H^e 'or each

case. We have omitted tbe case for a « 1, where parallel lines making a forty

five degree angle with the borlzontd axis end d units apart from each other

would be obtdned.

4.8. A Red Vdued FuncUon Approach

In Section 3.2 the function h(k) a x[k] - y[k] was introduced and used

to characterize Uie stability properties of an iteration predicate. Moreover.

Theorem 3.2.1 gave us a relaUonship between Uie least nonnegaUve root of h

and the eounUng funcUon of Uie Iteration.

When analyzing an IteraUon. Uie vdues x[a) and y[a] can be viewed as

parameters. In fact once we fix them, h becomes a function or the IteraUon

index k only. For the purposes or finding the roots or h. it Is better to con

sider b to be defined for aU red values. When using the hypotheses of this

chapter, if a and e are nonnegaUve. viewing h as a red vetoed function

presents no problem. Inthe othercasesweshall see that using f^, fm. gp and

ga, where e and gB are Uie equlvdente of f . fM for y. will allow us to per

form our analysis.

Under the hypotheses of this chapter, the analysis or the counting func

Uons for IteraUons to reduced to Uie study of only four kinds of functions h.

We ody need to find Uie nonnegaUve roots for Uie foUowing four types of

functions:

I h(r) = rA + B-(rC + D)

II h(r)aarA*B-D

Figure 4.1.1

Figure 4.1.4

87

Figure 4.1.8 Figure 4.1.3

a = 0

Figure 4.1.5 Figure 4.1.6

63

III h(r)aarA+B-(rC + D)

IV h(r)a«»"A + B-(brC*D)

where a. A. B. Cand Dare assumed constant A. C non sero. and a positive.

FuncUons of Type I

b(r)aO Iff rA + B =rC + D Iff r(A-C)»D-B

In order to find the root we must divide by (A - C), thus we musl have thai A

r> C. i.e., the two straight lines must not be perdleL Thus:

root edstence condlUoiu A H C

D-B
root expression: r a • .

FuncUons of Type n

b(r) a0 iff arA ♦ BaD Iff ar a P~B
D — BAs ar is dways positive, we must have lhat sign(—^—) a l, Le.. that Uie

exponenUal funcUon y a arA+ Bcrosses the horizontal linei«D. Thus,

Id-b
root existence condition: sign

log

rool expression: r a

D-B

A

togTaT

• 1.

FuncUons of Type HI

h(r)aO iff arA-rC + (B-D) = 0.

In this case we wiU have nonnegaUveroots Iff the strdght Une determined by

y a rC♦ D, and Uie exponenUd funcUon determined by y a arA♦ B, meet

In the posiUve semlplane. The necessary analytic oondiUons for this to hap

pen ere not as elegant as Uie ones above.

69

The fonaenf stops Is that vdue of the slope ol y a rC + D , Le., that

vdue of C. whioh mekes the exponenlld funcUon and the straight line meet

to exactly one point It Is determined by the unique soluUon r of the follow

ing equation:

Aar -r B a ln(a)Aarr ♦ D .

There tono generd way of expressing the root r of this equation Inan dge-

brdo way. Hence, r needsto be found using somenumericd method. Thus,

root edstence conditions: see Table 4.2.1

root expression: doesnot exist (in generd)

FuncUons of Type TV

b(r)aO iff arA-brC +(B-D)aO .

In this case we wlU have nonnegaUveroots Iff both exponenliels meet In eny

such case, we wUl only have one root Thus,

root existence conditions: Bee Teble 4.2.2

root expression: does not exist (in generd)

condlUona property

A>0 It D>A + B It anyC one root

A>0 It D<A+B le C> tangent slops one or two roots

A<0 It D<A + B It anyC one root

A<0 It D>A4-B It C < tangent slope ona or two roots

Table 4.8.1 Root Edstence for FuncUons of Type Dl

eondlUons

A>0 k OO It (A* B)« (C + D) It A>C

A>0 k OO It (A* B)* (C + B) k A<C

A>0 at C<0 st (A* B)< (C ♦B)

A<0 It OO at (A4 B)a (C ♦D)

A<0 k C<0 k (A* B)* (C + D) It A>C

A<0 k C<0 It (A + B)k (C + D) at A<C

RO

Table 4.8.8 Root Existence for FuncUons of Type W

4.3. IteraUon Definability

Table 4.3.1 summarizes Uie basic definabiUty results or this chapter. In

this section we shdl determine for which cases L is definable, end give en

expression for the least nonnegaUve root of h. In the nondefinable cases, we

present some specid assumpUons which yield definability. Not all or these

oondiUons can be estabUshed et compUe Ume. some need to be checked at

run Ume.

4.3.1. Case When RO Is not v*

Definability to determined by our abUity or finding expressions for the

least nonnegaUve root orh. From SecUon4.2 we know that only when h is of

type 1or of type II we haveexpressions for the roots. This sets the limits or

01

a<-l a«-l -Ka<0 a»0 0<a<l 1*1 a>l

c<-l ND D*s ND UN ND ND ND

eo-i D** D D* D D** D JpH

-1< c < 0 ND D,a> ND

D

ND .

M

e = 0 D>*i D D D D* D D1*

0<c<l ND D^i ND D»«s ND ND ND

eel ND D ND D ND D ND

Ol ND

-

ND UN ND ND

m

Table 4.3.1 Definabilily Properties of L.

ND means non definable. D>« means definableusing logarithms.
D means defineble without using logarithms.

definabiUty for L.

Theorem 4.3.1

The definableeases are those corresponding to a I or a II entry InTebie

4.3.2. The entry indicates the type of h for each case.

Proof

By observing Uie funcUons which describe x[k]end y[k].

62

a<-l aa-i -1< a < 0 1 = 0 0<a<l a«l a>l

c<-l II 11

ca-1 II 1 n 1 n 1 n

-1< 0 < 0 n n

c = 0 D 1 n i n 1 n

0<e< 1 11 u

oaf 1 i 1

e>l 11 ii

Table 4.3.8 Types of DeflnabUlly

Theorem 4.3.8

The expressions arising from type Icases areUiose represented inTable

4.3.3.

Proof

Allof Ihe expressions shown to Table 4.3.3are establishedby analyzing

Uie effect of Uie acUons of L on the vdues of Uie variables x and y. As an

IllustraUve ease, we shaU showhow lo derive the expression for e a 1 and a a

-1. The other coses neither require more work nor different methods.

When o • 1 and a a -1 we have x[0j a x[a). x[lj a -x[a] ♦ b. x[2] a

x[a]. and in generaL for any Integer k. *[2kJ a *[ol x[2k+l) a -js[a) ♦ b.

For y. however. Uie values are: y[0] a y[a). y[l) a y[a) ♦ d. y[2] a y[a)+

2d.and In generaL for eny Integer k. y[k) a y[a] ♦ kd. Cleariy. a change of

sign In h will ocour for either anevenoranodd k. The eases arerespecUveiy

described by

h(2k)a x[2k) - y[2k) t0» x[a) - y[a] - 8kd and

h(2k+l) a s[2k+l]-v[2k+lj« 0a -*[o] +b - (2k+l)d a -x[a]+b - d - 2kd.

The smallest root of h(k) is given by

a»0

1 UbRO(-v[a]+d)
Is falsa

8 otherwise

fxRoy

«1
fxRoy

fxRoy

a*-l

1 lf(-x[a)*b)Rod
Isfdss

8 oUierwise

• «-l

03

e»l

roto(|*ral2bfftHl'raH-8bHb"J|)
a=l

fxROyal «i«H

>«0 a=l

mln|[»Mg?M||-«r«Hf«Ub-dj| p-vM »[«hrM
b-d

««o

ft fxBOy •
-Ka<0

1 tf(ax[a]+b)R0d
Is falsa

8 otherwise

MO

* fxRoy
•1< c < 0

1 ffbR0(cx[a]+d)
Is false

8 otherwise

Table 4.9.9 Expressions From Type I Casss

,»[»M-tM.-M-ftl»»-«[.
•

When ta) > 1. let f, be that function among f, end tm which to Increasing,

and f4 that which decreases. Similarly we define g, and g4. These symbols

are used In Table 4.3.4.

Theorem 4.9.9

The expressions arising from type II eases are those represented to

Table 4.3.4.

Proof

94

lfc[a]a
l-aceo It 0<a<l

ixaoy a
otherwise

eao Ac a> 1

ibO It 0<c<l
ixaoy

a«0ft c>1

hJ _«fa-l>*»

tof

logTeT

b(c-l) +d 1
,v[e](o-l)4dJ

log(c)

"vw-rh-

oUierwise

-0fca<-l f,(r)-d Ifdfcj^- f4(r)«d lfd<yfT-

•«ofte<.i •»«b ttbfcr=T «.<r)"b Ub<T^r
ca-1 ft a<-l

or

ca-i ft -i<a<0

• a-1 ft e>i

or

e«-l ft 0<a<l

• 3-1 ft C<-1

or

a«-l ft -Ko<0

i«-l ft e>l
or

»-l ft 0 < c < 1

n^njfjr) a -y[«] +d. f,(r) ay[tt] f

intojf^r) a -y[«] +d. f,t» a y[aJI

njn(la(r) • -«M ♦ d. g/r) ax[a] |

ngtofg,(r) a-x[a] 4- d.g,(r) a«[a] |

Table 4.9.4 Expresdons from Type fJ Cases

05

All of the above expressions are established by analyzing the effect of

Uie actions of L on Uie values of the variables x and y. As an Uluatratlve case

we shall show how lo derive Uie expressions for Uie cese c a -1 and a < -1.

In this cose we have x[0] =x[a] a fp(0). x[l]a fn(l). x[2j =1,(2). x[3] =

fm(3). and ingeneral, for dl Integers k. x[2k] a f^(2k). x[2k+l] a fB(2k+l).

For y. however. Uie vdues aregiven by y[0]a y[a), y[l] a -y[a]+d, y[2]a

y[o]« v[3] s *v[a) + d, and to generd. for dl Integers k, y[2k] a y[a],

y[2k+l] a -y[a] + d. As boUi |f | end |fj are unbounded monotenlcdiy

increasing funcUons, there wUl be at leastonesolution r for fB(r) =-y[a]+

d or fp(r)ay[a].

Ifro has aroot r. we find Uie least odd integer (2k +1) fc r . If tp has a

root r. we find Uie least even Integer 2k Str . We then find fxROy according

to Theorem 3.2.1. using Uie minimum of Uie above two numbers. If only one

root exists, we use Uie corresponding minimum Integer found and Theorem

3.2.1.

4.3.1.1. More Hypotheses Which Yield DefinabiUty

In all cases when h to of type III or ol type IV. there are some Instances

to whichit to possible to obtato an expression for the roots. They arise either

from specid vdues that Uie control variables x, y have when entering Uie

Iteration L, or from relationships between a end c. The result or these sim

plifications to that functions of type 1or IIare obteined.

FuncUona of Type ID

In this case h(r) a arA+B-(rd +y[oJ) where Aa g[a] +^-j-and Ba

—-—. There are only two simplifications which may occur:
1 •" ft

86

(1) «M»
a-1

Then. h(r)«-rd ♦ B- y[a]. whichIs of type I.

(2) d a o

Then. b(r) a aTk♦ B - y[o). which toof type II.

FuncUons of Type IV

In Ihis case. h(r) aarA +B-(crC +D) .where Aax[a) 4 j^-p B*

. P—, Ca y[a) 4 ••$ ••, end Da —=—. The only four slmpUficatlons
I — a o — l l — o

which may occur are Uie foUowing:

(1) «W«
a-1

Then. h(r) a -orC ♦ B - D. whiohto of type II.

(2) yW-^^T
Then. b(r) » ar A ♦ B - D. which to of type 11.

(3) a a o

Then. h(r) a ar(A - C) 4 B - D. which Is of type II.

(3) BaD

Then, h(r) a «rA - crC. and Uie root r for h(r) a 0 to given by r a
log

log

4.9.8. Case When to Iss1

As was pointed out In SeeUon 3.2. when analysing Uie easa of s> we are

required to find an Integer root of b. When baiting to being assumed, this

amounts to searching through tha distinct roots of h, at least one of which

97

wUl be Integer. In Section 4.2 we sawthat to aU definablecases for IteraUons

satisfying the hypotheses of this chapter, b has at most two roots. This cer

tainly limits the amountof searching ona needs to do. Moreover, In SecUon

4.5 we shdl give oondiUons whichdelimit the Uie range of Uie search to be

performed.

In many of the nondefinable cases the funcUon h has Infinitely many

roots. In faot this condition may also ba dependent on Uie values of x[a]

and y{aj. In Section 4.4 we see several cases where this occurs. What

Interests us now Is Uie fact that If h changes sign Infinitely meny Umes.

unless one has an a priorimethod to determine if h wUl have an integer root

a search for It may be endless. This is the main difficulty when dealing with

the relationaloperator s>. Aano expressions for the roots of systems of two

exponenUal equaUons extol to general, only a case by case analysis can pro

vide an answer about Uie existenee of integer roots. Determining f p In this

way Is not acceptable. Given our hypothesis that programs halt «• would

use the skeleton approach to deal with this case.

4.4. Stablllly of Predlcatea

Changes of truth values of xROy are associatedwith changes to the sign

of h. Thus Uie study of h's behavior win dso determine Uie sequences of

truth values which mey occur in IteraUons saUsfying the hypotheses or this

chapter. Theorem 3.2.8 tells us that the monotonicity of h to the condition

which yields steblUty. Given the monotonlcity of Unear functions. It Is not

surprising thon that manycaseswUl have stable predicates. However, non-

Bleble cases do exist but they have remarkably dmpla patterns of truth

values. This Information can be used advantageously when evaluating if for

non atomie predicates p. There are severalcases wherethe behavior of the

68

predlcatea ean be determined et compiletime.

Table 4.4.1 depicts abbreviated versions ol Ihe patterns of truth vdues

which may occur when the predicate xROy is notx * y. The Justification or

each entry la, once egeln. based on an andysls or thebehavior or theessocl-

ated function h. The behavior or b ia determined by the relative growths or

the functions f and g.

Let us nowendyze one enlry ol Uie teble to complete deteil.

Case when a a -| end -1< e < 0.

Inthis case we have x[2k) a x[a], endx[2k+l]=-«[o] +b . The vetoes

for y[k). on the other hand, are given by: y[2k] a g^(2k) and y[2k+l) =

g (2k+l). We know that both g^ and gB are monotonie and have Umits, when

It -. oo, equal to ~—. We then have that

x[a]ROg,(k) when k is even

(-x[a] ♦ b)ROgm(k) when k to odd.

As g end g eremonotonie. the sequences oltruthvdues generated by

them will be stable. Le.. there wiU be at most one change to Uie truth value.

Aswe essume that L's T-branch wUl be traversed at least once, we hove lhat

x[o]Roy[al to true. Thus, the possible sequences ol truthvalues generated

byx[a]ROg,(k) are:

x[k]ROy[k] a

true

false

Jttt••• »* *M*° i-Te~ to
]pFF ... tf *[o]RO-r-~- is

The possible sequences oftruth values generated by (-x[o] +b)ROgB(k) con

be obtained as follows. Let P a (-x(o] +b)ROgm(l) and Q a

(-x[a] ♦ b)RO-~c- : then.

2 & i
i
£

is £

i i
£

i
£

4
i
£ 4*4

£

1
£

i i
£

•• :

• 1
e i i

I 1
lb £ £

i
•>

£

: I k
44

i i 1
£

a .|

1*
i

Ik

ft
1

£

i ii
4

i.
£

i 1
i
£

i
•I

4
1

£

i
i—•

|
ft

a > a > I-

I
£

0-»

I
ft

£

t>»>0

j i

69

i s

100

TTT • • • If P Is true and Q Is true

FFF • • • If P Is true and Q to fdse

JTT • • • If P to fdse and Q Is true

FFF • • • If P to falsa and Q Is false.

All the sequences of truthvdues which b may produce are obtelned by

an appropriate selection of alternaUve truth values from these two

sequences. As we are assuming halUng programs, there to only one case

excluded from Uie eight eombinaUons, namely, that which produces Uie

sequence TTT • • • . Thus, Uie halUng oondlUon for this oase, Le., when a a

-1 and -1< e < 0, is that

(xlnlROyf^ It ((-«[«] ♦ b)R0(cy[o] ♦ d)) ft «-x[«] ♦ bJiuKy^)
to fatae. where we have made useofUie equality gB(l) a cy(n]♦ d. This con-

diUon will be used to SecUon 4.6.

Before analysing Uie rematolng seven cases, we shdl Indicate how one

determines Uie lengths of the initial sequenoes of "trues" or "fotoes"

obldned from g and g_. The whole Idea to that we are dealing with funcUons
mP **EB

of type n. and aa we may find an expression for Uie root. The floor of this

rootgives us Uie lengthof Uie IniUal sequenceof truth values.

In particular, let us analyse the case ofgf. We assume that x[a]R0 f _c

to false and we want to determine Use number of consecuUve times

x[a]R0g,(k) wiu .vduste to true. As we assume that x[a]R0g,(0) to true,
recdling lhat g (0) a y(a), our problem Is equlvdent to finding the leastk

for which the funcUon gfi) -x[k] changes sign. The root for this funcUon to

given by

101

log

r a

«Wi~

log(|c|)
Thus. Uie number of successive Umes that x[a]R0g,(k) will evaluate to true

to H- An andogous analysis ean be earrled out for gn.

We now analyse Uie remaining seven alternatives: let Pa (x[a]R0 | _-).

Qa- ((-x[oJ 4b)R0(-j4e-» and R- ((-x[a] ♦ b)R0(cy[o] 4d)>.

(i) P Is true. Q Is true. R to fdse

we obtain: TFTF • • • TFTTT • • •

(ii) P is true. Q is fdse. R to fdse

we obtain: TFTFTF

(iU) P is true. Q is false. R Is true

we obtain: T • • • TTFTFTF • • •

(iv) P is Ialae. Qto true. R is false

we obteln: TFTF...#
• FFTFTFT

• TFTFTFT

TFTFTFT••

(v) P to fdse. Q to false. R to false

we obtato: TFTF - • • TFFFF • • •

(vl) P is fdse, q Is true. R Is true

we obtain: T • • • TFTFTFT • • •

(vtt) P to fdse. q is fdse, R Is true

we obtato:

\TF • • • TFFFF • • •

\TF • - • TFFFF •• •
rpF-.>

The above seven cases can be summarized as follows:

TTT •

'FFJfT/T •••/tLj
*\FTFTFT • -'

102

With these techniques, one oan determine, at run Ume. Uie exact pat

tern of truth vdues that h wul have, even to Uie nonsteblecoses. Thereduc

tionto subcases involving funcUons of type IIis whatallows us to doso.

We should remark that whenthe relational operator to not *. all stable

cases are those where b has exacUyone root It needs to have one beceuse

olhalUng. and it can't have more than one because or Uie change or sign. On

the other hand, whenthe relationd operator Is s>. the conditionon the roots

ol h is that there exist exacUy one integer root Nonlnteger roots may edst

to abundance.

4.6. HdUng CondiUons

In SecUon4.2 we Usted Uie cases where h would have roots. The eases

were given to terms of oondiUons for the coefficients A. B, Cand D. These

conditions naturaUy translate themselves into oondiUons involving x[a],

y[o], o.b. c end d. From them, aswe have Just done to SecUon 4.4. we may

deduce conditions onx[aj andy[o] which would insure halting, given that a.

b, c and d ore assumednot to changetheir value In L.

Moreover, It should also beclear that, when Uie vdues ofx[a] end y[a]

are available, some nondefinable cases beoome definable, as seenin Section

4.3.1.1, and so, even inthose oases, the expression of fxROy con beobldned

at run time.

103

When our relationd operator ia not*, there ere severd eases when halt

ing can be established at compile Ume. For Instance, assume a <-1. We

know that the valuea of x[k) (when x[a] - j^-) will be unbounded. More
over. consecuUve vdues wUl have, for k sufficlenUy large, opposite signs.

Then. If e * -1. all olthese iterations wUl hdl because ellher the values or
y[k] are bounded or they all have, for k eufflclenUy terge. the same algn.
This argument isdso valid, with the roles of x and y Interchanged, for the

case when e < -1 and a > -1.

The two moat difficult oases for hdttog conditions are encountered when

dealing with functions bof lype 111 and ol type IV. We shdl now give criteria
which reduces Uie scope ol a search tor Uie roots.

Let us analyse the case a>1and ca 1. Our function hto given by b(r)
aa'"A+B-(rd +D).whereAa«[«]4rbrrBaTbrrandD =y[ol. We

have seen that this case la non defineble. However, we may bound the smd-
lest nonnegaUve root using the following observoUon: it at the origen the
strdght Une to obove the exponenUd, then 0la alower bound. Otherwise, the
straight Une y ard +Dmust Intersect Uie exponenUd function y aorA +B
for the first time at a point where the exponential's growth rate is smdler
than the dope of the line. This observaUon to true because. If they have not
met by that lime, the growth of the exponential will be larger than lhat of
the straight line and thus the values or the latter wlU never be eble to reach

those of Uie exponential.

An upper bound on the least nonnegaUve root of hto given by aformall-
saUon of the above remark. The derlvaUve of h(r) to h'(r) aln(o)Aar . The
slope of the strdght Une Is d. So we find r such thai h'(r) ad. and this to our

upper bound forUie least nonnegaUve root of h. Thisr togiven by

dlog
ln(a)A

104

log(a)

This r may have to be determined at run time, because A depends on

x[aj. If x[a] were known at compUe time, then r could be determined at

compile Ume. Moreover, Ifr is smell, instead of finding aU the corresponding

roots for our funcUons, one msy deolde to use Uie skeleton approach for the

iteraUon.

Consider now Uie ease a > 1 and « > 1. Wa have

h(r) a BpA +B-(crC ♦ D). where Aa x[a) 4 ~y, Ba y—-. Ca y[a) +

», and D

Le.. when

-. When we are not to one of Uie four oondiUons listed
c-l i_c

in SecUon 4.3.1.1, we have lo bound the root We look for upper bounds as

tight as possible. When we have Uie upper bound, we perform a "midpoint

search" lo find Uie roots. This search Is much faster than a sequential

search.

Equation arA-crC aD-Bto equivalent to ^JJ-J • 1♦ ~r~. As c>
D — B

1, we have lhat Urn _ . •• 0. There are two oases to consider:
r-M. Ccr

(I) ^-<o
In this case Uie smaUest vdue which may ba achieved by Uie left hand

D — Bside ofourequivalence Is14 c •. Thus, wewlU be passed Uie rootwhen

105

Hfr*1**
Hr

(u) 2^2->o

In this ease Uie smallest vdue whioh may be achieved by the left hand

A fa
side of our equivelenee Is 1. Thus we will be passed Uie root when tH-

log

1, Le.. when r a

log

Tighter bounds mey be found by using better values for the right band

side of our equivdence.

There to yet another oonsideration to ba made ebout non definable

cases. The range of values that their underlying exponential functions may

take to quite restricted. As most programming langueges ody support a fin

ite number of distinct valuea for variablea of type numeric, once they ere

exceeded, overflow (or underflow) condlUons wiUhdt the compulaUon. As

we assume bona fid* halting programs, Uie valuea of Uie variables should

always stay within Ihe predetermined ranges.

Let us consider g(r) a Aar 4 B when r Is of typo Integer. Assume

further that the underlying hardware has 38 bit words. Then, Uie largest

unsigned integerwemey represent Is 8** - 1.

The funcUon g will grow at lis slowest rate when A to smallest, and B to

the largest possible negative number. Assuming these oondiUons, g is

transformed to g(r) a &*&r - 3s* and we may easily find the value of r, as a

108

function of a, for which g(r) a2*. Namely, ra5^2g3L. So. when afe 2, we
have that r < 65. That is. en iteraUon under these hypotheses does not

traverse consecutively its T-branch more than 65 Umes.

This hardware dependent information, together with compile tune Infor

mation about Uie nestedness of iterations, should be used when determining

what strategy to follow in the analysis or a given program.

4.6. Summary

In this chapter we have seen how to determine ell Uie information

needed for our analysis to the case or an iteration in which the acUons on the

control variables are Unear functions. For example, we determined ell the

definable cases. We have given expressions for h which eilow us to find f p in

aU the nondeftoable cases. We have also given bounds for Uie Interval of

numbers to which Uie search for Uie roots of h must be made. Moreover,

halting conditions for aUcases were eiso given. We were even able to find the

sequences or truth values that predicates have when Uie acUons or the itere

tion on the control variablea are linear functions.

CHAPTER 5

finding Closed Forms

In Section 2.5. Uie subject of closed forms for variables in Iterations was

first Introduced. It wes seen thai closed forms must exist for all control vari

ables in a program If we are to find our best possible performance represen

taUon of Uie program. Moreover, for definable programs, the special terms

describing the closed forms cannot contain any occurrence or n-place func

tion symbols /. We shall call thia latter type of dosed forms dtfinable

closed form*. In Chapter 4. we have analyzed a case where finding closed

forms for control variables to no problem. Indeed, they always were defin

eble closed forms.

The purpose or this chapter is five-fold:

(1) to reduce Uie problem of finding closed forms for Irreducible iterations

to that of solving recurrence relations;

(2) to describe, discuss and andyxe three known decision procedures for

finding defineble closed forms for some famlliea of recurrence relations;

(3) to present table-driven methods for finding definable closed forms:

(4) to discuss Uie problem of closed forms In the contextof Iteretlons with

multiple inner paths: and

(5) to discuss Uie problem of closed forms in the contextof nested Itera

Uons.

107

106

6.1. Irreducible IteraUons and Recurrence RelaUons

AnIrreducible IteraUon IsaniteraUon La <B. p. a. B> whose bodyBis a

baslo block of statements. As our programs are assumed not to be self

modifying, theocUon ofLon avariable x may bedescribed bya fixed func

Uon g. The specific form ofgwill depend on Uie kind ofacUon Lperforms on

x.

We let x[0] denote the vdue that tha variable x haswhen entering the

Iteration L for the firstUme. Le.. «[0j a x[aj\ Then. x[k+l). Le.. Ihe value x

haaafter Uie T-branch of k has been traversed k+1 consecuUve times, can

be written es xfk+lj a c(x[k). k). g Is determined In a unique way by the

statements in B.

The triple <x[0). x(k). x{k+l]>. constitutea a firat order recurrence

relationwith boundaryconditionx(0j.

In Chapter 4.we studied Uie caae where, for ail control variables x. Uie

relationship between x[k+l] end x[k]does notdepend onUie IteraUon Index

k end. moreover. Uie relaUonship between x[k4l) and x[k] tolinear. In this

ease, definable closed forma are eaay to obtain.

Whenever we have that Uie relaUonship between x[k+l] and «[kj does

not depend on theIteraUon index k. we may express x[k4l] to the following

woy:

x[k+l] =g(x[k])=gk(s[0]).

In this case, finding definable closed forms to the same as finding a term

r(x,k) whioh describesgh(*)>

In Uie workof Cheatham [Che7B], we see that there are situations when

one wenta to find dosed forms for parametricrecurrence relaUons. In their

mostgeneral form, parametria recurrence relaUons eanbe expressed by.

109

\.i<*> • •(\("(«.k»' •• k> •wnere k >° •
In Uie seme paper It Is proven that solving recurrence relaUons of this kind

maybe reduced to solving at most two parametric recurrence relations of

Uie form

A,M(x) • g(A„(x). x. k). where k >0.

Relations of Uie latter type are eesler to solve because Uie "parameter" s

does not ohange throughout the iterations. A pattern-matching table-lookup

method for sdving this type of recurrence was proposedby Cheatham.

First order recurrence relations have been studied dnce Uie last cen

tury. The first treatise on the subject was written by C. Boole to 1672

[BooS7). The mathematical methods proposed for solving them have pord-

leled those for differential equations. In fact it haa been shown that systemi

of Unear recurrence relatione with constant coefficients cen alwaya be

reduced to a single recurrence relation with oonstant coefficients to one

variable [Levfil]. The reduction ean be accompUabed In an automatic way

using Cramer'a rule for solving systems of linear equaliana.

Onceone to dedlng with a single recurrence relationwith oonstant coef

ficients, there are baslodly two methods for sdving tt:

(1) Determine the aolutlon of an associated homogeneous recurrence rela-

Uon by a weU definedalgorithm. Thendeterminea particular solution of

the full recurrence relation by guessing Its form. As In the cese of dif-

ferentld equations, the sum of these two soluUons Is the generd solu

tion.

(8) Find a generating funcUon whose coefficients represent Uie sequence

defined by the recurrence relation. The expression for the ku coeffi

cient to the desired solution.

110

Unfortunately, there to no known way of finding, to on automatic way.

expressions for the kft term of a generating function. Thus, both of the

above methods require some kind ofhuman intervention ortable look-up.

Recurrence relations with voriable coefficients present a whole new

spectrum ofcomplicaUons. As to Uie case ofdifferenUol equations with vari

able coefficients. Uiere are no generd methods for finding solutions. We

shall now analyze a ease which covers more than 90* or Ihe modifications

made to control variablea to Uie studies orprograms wehave seen. We shdl

then see how the decision procedures presented in the next secUon help us

find closed forms for this case.

We assume lhat the value of the variable x Is modified by the Iwo func-

Uons f end g as follows: x(k+l] a g(k)x[k] + f(k) . Chapter 4 dealt with Ihe

specid casewhen both funcUons. f end g. were constant.

Lemma 6.1.1

If. for aU integersk * 0. x[k+l] = g(k)x[k] + f(k) . then

*[k+l] =ftg(<)x[0] 4ftg«)f<0) 4 ••4 ft B(i)f(k-2) 4ft g(Of(k-l) ♦ r(k)
<«0 4-1 tmk-l «•«

Proof

By InducUon on k. For k a 0 we have

X[l] ag(0)x[0] 4f(0) =ftg(t>[0] 4f(0)

endso our expression holds. Assuming that our expression Is true for J. we

have

*D+i] = gO)«D] + »0)

"!<J)(lrtB<i>*[0] 4flg(t)t(0) 4•••4 fl g«)f(j-3) ♦ fl i(i)«>e> ♦ «>1>
l«.0 «•! *"!-• •"I-1

111

4t0)

=lW)*[0j 4ftg«)f(0) 4 ••• 4 ft g(4)f(j-2) 4ft|(i)f(|-l) 4fO) .
•

Theorem 5.1.8

If. for aUnonnegaUve Integers n, g(n) as 1. then the edstence of a closed

form for £f(i) yields an alternative expression for x[k] whose evaluaUon

cost is linear to k.

Proof

g(J) fc 1 Implies that

fti«) * ft l(i) •
«-) «-|»i

By rearranging terms to the expression obtained forx[k] in Lemma5.1.1 and

using this fact about g. one obtains:

x[k4lj =ftg(i)x[0] 4lftg(i) - ftg(i)]£t(0 4•••
«-o y>i <-s J«-o

♦ fc(0 - ft t(i>]gr(0 4.• 4(ftg(i) -1 fgiw ♦ hii) •
^.j iifii j«To |i-k Ji-o t-o

This equality can be verified easily by induction. The closed form hypothesis

for the sum allows us to obtdn each sum with one evduation. To efficiently

obtdn the products, one evaluates them from the "last" down to the "first",

Le., shorter products are computed before longer ones. We notice that to

our expression fors[k4l], we need to haveonly two adjacent productsof this

kind at Uie time. Thus, Uie total evduation cost to linear to k.

•

The expressions obtained for x[k4l] to Lemma 5.1.1 and to Theorem

5.1.8 provide oomputatlonal dternatives. The more closed forms one has,

Uie faster the evaluation ean get In feet It we were dso to have e closed

112

form for ftg(i) . tho eveluation Ume might be even ahorler. depending on

the complexity of the closed form.

Corollary 6.1.9

If, forell integers n, g(n) a m, where m « 1, Le.. g IsUie constant func

tion m and m Is at least one. then the expression for x[k4l] simplifies to:

s[k4l) amk»'x[0l 4fn* - mk-»)t(0) 4 ••• 4

Lft-|»i - m*-»)S'(0 4 ••• 4(ro - 1)^1(4) 4 fcf(i)

Proof

By using Uie expression derived In Theorem 5.1.8.

Thus, definable dosed formulae for flgii) *nd £'(*) allow us lo evdu-
i-| i«s

ete x[k4l] with cost Unear to k. Depending on Uie compledty of the closed

forms, evaluating x[k4l] may be done fester using Ihe skeleton. Finding a

closed form for x[k], however. Is much harder. We remark that we have

mode* no assumpUona on f.

When dealing with product forms, the usage of logarithms may help us

obtain closed forms. If it a ftg(i). then log(n) <* £log(g(i)) . If there Is
i-o «•»

a dosed form for Uie latter, then the value of Uie former may be obleined to

a poinlwtoe manner by using anUlogerlUims.

6.8. Three Decision Procedures for Finding Closed Forma

The three procedures we shall analyse present different approaches to

the problem. One of Uie differences has to do with how Uie closed form to

expressed. Moenck's procedure makes use of a set of funotlons, the

113

polygamma functions, to express closed forms [Moe77]. Kerr's procedure

requires Uie specification of which formal aymbol(a) should be used to

express the closed form [Kar7B], and then It decides If the sum to a rational

function of these symbols or not.

On Uie other hend, Gosper's procedure does not do anything of this sort

but Uie answers It provides may contain expressions which require iteraUve

methods to evduate [Cos78].

6.8.1. Moenck's Procedure

Moenck considers the problem of summing polynomials and raUonal

functions. His approach Is to foUow. as closely aa possible, the techniques

and approach used for integration of polynomids of raUond funotlons. He

notices that the correct analogy to difference algebra of Uie differentiation

operator Dto differential algebra (l.e.: Dx* anx*1) to Uie difference operator

a acUng onUie the tectorial funcUon [x)m. Factorial funcUona aredefined es

UJn s *(*-l)(*-2)'*' (x-n4l). Thedifference of a factorial Is

AlxLanlxJ.., .

Mocnck'e approach for finding sums of polynomids to to represent them

to terms of faotorld functions and then use this new representaUon to find

their sum. If

then

'W«fi~Lo«f(o)
<ao *'

To actuaUy oompule the expression for a given polynomid, one first

needs to compute the difference table tor all appropriate entries (es deter-

114

mined by Uie vdue oln In6_,f(x)) endthen. Ifonewonta a power representa

tion instead of a foctorld representation, one needs to use the explicit defin

itions of Uie factorial functions to terms of polynomids. As far as summing

polynomials, this method reqdres more work than thestraightforward one or

distributing Uie sums across the powers orUie variables and using Uie well

known recurrence relations which express £x* toterms or thesums oflower

degree. However. Moenck's techniques provide a way to generaUze this pro

cedure to raUond functions.

The factorial operator on a function f, [ffr)^. todefined by

W*)lfc • f(*)f(«-l> *'' «*-"+D 'or k>0 .

Then, It Is extendedto allIntegers k by defining [f(x)]c a l andasserting that

[f(*)Jk*M*)],M*-0]M

Is an IdenUty.

To carry on Uie endogy with parUd fracUon decomposition and integra

tion by parts. Moenck needs to find "shift free" decompositions of rational

funcUons. "shift free" means that Uie members to a product of functions

are not shifts, to any power, of another member or Uie product

Thus, Moenck'B procedurebeginswith the foUowing algorithmwhich pro

duces shin-free rational expressions: Given aratlond function gV-j-

1) FormS(x4k). where k is a new variable.

2) Compute theresultant with respect to k:Res(S(x4k). S(x)) a R(k) .

3) Test for integer roots of R(k); these will disclose eny k's with nontriviel

GCD's or the form GCD(S(x), EkS(x)).

115

4) Apply Stirling's method to convert the rational funcUon ^|*4_ into afac
torial denominator: this to done by multiplying the numerator by

appropriate factora of the factorld function which are missing in Uie

denominator.

5) Proceed lo form a complete ahlft-free partid fraction decomposition,

i.e., AfeL= £ £ Vi**"» "h«re each M to AW-free. and is found by
St*) «a| Ja| Wif

the above steps.

Then the elgoriUim proceeds to usesummaUon by parts, applied lo each

term ol the shift-free partial fraction decomposition. To express the result

for the terms of Uie form . _* ^ . Le.. Ihe transcendental part, the

polygamma functions t>0(x) oreintroduced. We reedl that

«>«(*> a B°log(r(x4l)). m >0 .

Polygamma functions behave nicely with thedifference operator A. since

Therefore, if

A(x) ft «t
B(x) SJ,(i-b1P '

where J(i) to the multiplicity or Uie root b*. using the polygamma fonctions

the summaUon can be written as

With this expression, one can find pointwiae valuee by evaluating

appropriately the polygamma functions. It should be noticed, however, that
the evaluation may be quite expensive If Ihe transcendental part is long.

ue

Moreover, one is not able to determine whether a transcendental part exists

until Uie fuU shift-free parUd function decomposiUon has been carried out

This procedure provides us with a method to find closed forms for Uie

ectlon of en IteraUon Lon a variable x of the following kind:

x[k4l)as[k]4f(k).

where f is a rationd funcUon. In SecUon 6.1 we have also seen how closed

forms for sums can ba used In more general actions of Iterations on vari

ables.

It should be pointed out Uiat most of Moenck's procedure ean be traced

back lo Jordan's book on Finite Differences [JorSO].

6.8.8. Gosper's Procedure

Given a summand oj , Uie"indefinite sum" S(n) is determined (within an

additive constant)by Jja, a S(m)«S(0) , or. equlvelenUy. by

a(aS(0-S(4-l) [1]

When S(n) has the addlUond properly that _P°L to araUonal funcUon ofn.

Gosper's procedure finds S(n).

Gosper's technique consists of performing a particular change of vari

ables which reduoes a« a S(l) - S(i-1) to a system of Unear equaUons. This

system is oonsistent It &f «i ^ *ral,ona' function of n. When the aystem is

eonsistent by solving It one can find Uie coefficients of a polynomial which

yields the closed form for S(n). The essence of the change of variablea to

that as to Moenck'a algorithm, a shift-free factor la sought to edal in a

decomposiUon of a rational function. We shall now describe Uie method In

some detdL

117

Assume that our aummanda aa are aU nonzero. Then, when gAyc-to a

rational funcUon of n,

lows:

a, u S(n)-S(n-1)
a.., S(n-l)-S(n-2) . _ S(n-2)

1 S(n-l)
must also be a rational funcUon of n. Wewant to express Uie ratio [2] as fol

[2]

a»

eB-i

S(n)

Pa <h

Pa
f(n)a..

n. r i3]
where p . q^ and ra are polynomials ton subject toUie condition that q^ end

ra are shift free relatively prime. Thus, we require that CCDfq^. rM|) a l for

dl nonnegaUve Integers J. We have eeen to SecUon 6.2.1 that this cen be

achieved by computing the nonnegaUve roots of Uie resultant of q^ and rB

and by performing a change of veriables.

In fact If GCD(qfl, raf.) a g(n) , then this common factor ean be elim

inated with Uie transformation

P'.-PjKnWn-l) •g(n-j4l) .

which leaves ratio [3] unchanged.

One now expresses S(n) by

[4]

where f(n) toto be determined. ByusingequaUon [1],

Kn)
PaPa S(n)

q,*, S(n)-S(n-1) q,., . _ S(n-l)
S(n)

S(n)thus. f(n) is a raUonal function of n whenever g/,)./^ to. By substituting

116

equation [4] into [1], one gets

^s S£iLf(n)aB - Jfe-ffo-Da,,., .
Pa Pn-I

Multiplying thisby — and using equaUon [3]. onehaa
a«

PB"W(n)-rBf(n-l) . [5]
Uie functional equaUon for f.

Theorem 6.8.8.1 (Gosper)

]f SfeL-i, e raUonal function ofn. then f(n) la apolynomid.
S(n-l)

Proof

See [Gos78l
•

Then, because orequaUon [4], dl that remains to be doneis to look for a

polynomial r(n) aatlsrytog equation [5], given pB. q.. end ra. Thia to done by

considering two coses according to the relaUonship between the degrees or

Uie polynomials (qBf, 4 rB) and (q^, - ra).

The closed forms which this procedure finda may contdn expressions

that require iterative methods for their evaluation. Nevertheless. Uie

expressions make no use of funcUons Uke the polygamma ones. The dossof

Indefinite sums for which this procedure produces dosed forms contains

many families which can notbe solved using Moenck's procedure. For exam

ple, Gosper's procedure can sum

Tl[(tf8 ♦*;•♦*;+*)

••,ft(sy84bif4c<4e)
while Moenck's procedure cannot However, given that Moenck's procedure

expresses part of its answers using polygamma functions, it produces

119

expressions for some sums which Gosper's procedure considers unsumm-

able. One example of thisis the case of £ 7-.
«»i*

These differences arise from Uie basic hypotheses needed by the pro

cedures. In fact, from this viewpoint Uie two procedures are very different.

Moenck'a procedure yields solutions for certain kinds of summanda. In con

trast, Gosper's procedure yields soluUons when Uie sought closed form satis

fies certain conditions. Thus, Gosper's hypotheses are based on the form of

the soluUon to Uie problem.

Another difference between the two procedures Is that, when applying

Gosper's prpcedure, one does not know, by Just looking et the summand,

whether there will be a closed form or not One has to carry out the whole

procedure to know this. Moreover, while executing Moenck's algorithm, one

can know whether the result will be e definable closed form when one deter

mines whether there exists e transcendental part or not.

6.8.3. Kerr's Procedure

This procedure to different to its approach from Uie previous two. It

uses a field-theoreUc moUvation. It poses the problem to an algebraic way,

and then derives conditions for summabillty. Starting with a field of con

stant!, larger fields ere constructed by Uie formal edjuncUon of symbols

which behave like solutions to first order linear equations. Then, in these

extension fields, the difference equations are posed and solutions are sought

The final criterion for summabUity towhether a cerleln elgebraic extension is

exactly of degree two.

Given a set of formal symbols and a sum, the procedure will determine

when the aum to a rational function of the given symbols. For example, it will

120

yield that H a J i- Is not arational function of n. Its algebraio nature

dlows us to find formulae, as rallond funotlona of n and Uiesymbol Ha. for

£rl, and fiiH, .
However. It Is not possible to handle sums In which one of the limits dso

appears In Uie summand.

Thus, none of the three methods Is uniformly more powerful than Uie

other two. Theonlywaywemayobtdn an expressionfor Ha towith Moenck's

procedure. Gosper's procedure does handle dl Uie elementary sums that

Karr'a procedure does, but Karr'a procedure provides a way of dealing with

Bums of Uie kind £iH< . which are not handled by Gosper'a procedure. On

Uie other band. Gosper's procedure ia able to work with certain auma to

which the summation limit appears in Uie summand.

The basis of Karr'a algorithm are the difference field*. Their definition

toquite elegant* A dlfferenoe field to a fieldF together with an automorphism

o of F. Finding a sum to "finite terms" can nowbe described as:given f, and

a difference field F of which f is an element, we look for solutions g of

og -1 • t

only In F. Thus, Uiechoice of field F toUiemeans by which"to finite terms"

is given a'precise meaning.

To present a complete sketch of Uie procedureone needs to Introduce

end develop several concepts whioh wouldrequire meny pages. They cen all

be found In [Kar79j. The essence of the procedure, however. Is that one may

symbolically extend Uie storting field and check, algorlthmlcelly. that cer

tain necessary condlUons hold. Once this is accomplished, a vector space

121

basis is explicitly computed end Ite expression yields the desired closed

form.

Knowing bow to compute answers to questions about the homogeneous

group and solutions for first order Unear difference equaUons toa JlE-field F.

Karr'a procedure

(1) algorlUimlcally determines, given a. Bc F. whether F(l) with ct a at 4 B

Is a lie-extension of F

(8) is able to Uft to F(t) the computations concerning Uie homogeneous

group and dlfferenoe equaUons If F(t) described In(1) to indeed a ITE-

exlenslon of F.

The construction starts with a oonstant field, in which certain compula

tions are possible, and is guided solelyby Uie successive choices of the pairs

a. B from ever longer fields.

It seems plausible, although we have not been able lo prove It. that

there should be en algebraic method In the apirlt of Karr'a which would

totelly Include Gosper'a procedure. This conjecture to based on Uie striking

andogiea lhat exiat between Uie two approacbea. After dl. the automor

phismo in the differencealgebra laan abstraction of the shift operator.

6.9. Table-Driven Methods for Finding Closed Forma

These are procedures which, dter modifying the data Into appropriate

forms, require a look-up facility to proceed. We ahall briefly Indicate two

paperswhichhavededl with the problemInthis way.

Cohen and Katcoff [Coh77]. present a program which finds solutions for

some systems of linear finite difference equaUons. The method used to a

modification of the second method presented In SecUon 5.1. The authors

122

show that It is possible to express Uie solutionof a Unear difference equation

with constant coefficients as a formula which contains a finite summation.

This dlows them to delay the look-upof generating functions to a later stage.

Another characteristic or this approach to that if Uie program cannot find a

closed form for the resulting summation, a formula with the sum displayed

symbolically oan be made available to the user. The user may then provide

the system with a closed form.

Ivie [M7B], presents some programs written In Uie MACSYMA program

ming language which find closed forms for single variable recurrence rela

tions with oonstant coefficients aa weU ea some variable coefficient

recurrences. As systems of recurrence relaUons with constant coefficients

mey be reduced to a sequence of single variable recurrence relations with

constant coefficients. Ivie's programs may also be used In this more general

setting.

The constant coefficient case ia treated to Uie standard way. making

extensive use of MACSYMA's facilities. One very Interesting aspect of this

paper to the epproach taken to deal with Uie variable coefficientcase. The

method of exponential generating functions Y(x) to used. It to shownthat an

Ordinary Differentid EquaUon. ODE. la obtained for Y(x). Thus. Uie method

converts Uie solution of a recurrence relation to the solution of a differential

equation. OfaU Uie procedureswe have seen, tills is the only Instancewhen

auch a reduction ia used. Using Uie MACSYMA commands 0DE2 and POWER-

SERIES, this method can be programmed. It la then tort to tbe abilities or the

system to find tbe desired solutions.

123

6.4. On IteraUons With Multiple Inner Paths

So far we have been concerned with the problem of rinding closed forms

in Uie context or iterations with an irreducible body. We shall now anelyze

Uie ease when there ere alternations within an Iteretion L.

The presence or alternations within an Iteration Implies that there are

multiple paths which the flow of control may foUow once the T-branch or the

iteration L has been taken. Tbe relevance or this to that control variables

mey be modified differently to each edsltog path. So. the task of finding

definable IteraUons becomes more complex.

Throughout this secUon. we assume that Uie iteration L a <B. p. a. B>

has n alternations and no Iteration within its body B. It to easy to see that,

under these conditions, there witt edst at leest n+1 end at most 2" paths.

Let P P be an enumeration ol Uie paths within L, where n41 aim < 2".
I Ett

Letus saythat ft ia the predicate which, when true, cause the flow ofcontrol

to traverse P,. Tbe predicate ft can be obtained byUie conjuncUon ofaU Uie

predicates whose truth determines a given path within Uie iteretion. More

over, let B.be the sequence of statements executed in the path P,,called the

body ofPr Figure 5.4.1 depicta an example ofan IteraUon with six lnternd

patha and Table 5.4.1 Usta ths associated information. As we assume no

Iterations exist within B. aU bodies B, may be viewed es basic blocks or

instructions.

In Example 2.4.1 we presented en alternation with two inner patha to

which tbe selection ol branch to the dternaUon was dependent exclusively on

Uie toputdata. Thus, the traversdorder ofUie distinct paths could be made

arbitrary by an appropriete oholoe orvaluea for Uie toputvariables. It Isnot

*T| *8T^vjeT
Bo

bT 1

<^
figure 6.4.1

124

path eradicate ft body

P. •.*-, W.B,

«. --,*rt BaB,BaB,

• "i-••*•, WM

• -f|-pafte, B,BtB4B,Bf

'. »i*-ff.*-fa WM

P. -P,*-Pt*-fs B0BaBgBaBy

Table 5.4.1 Patha of Figure 6.4.1

difficult to generalise Uils example to one where therearem patha within an

IteraUon andsuchthat the flow of controlwUl successively traversebranches

to any predetermined order. As these cases are quite hopeless, and the

skeleton approach Is the ody viable allernaUva to foUow. they will not worry

123

us. We shell concentrate on eases when one can apply either the techniques

ofUie previous sections orthe ones to beIntroduced tothissection.

The strongest condition which may occur Is that, for a given run. only

one path P, Is traversed each lime Uie T-branch of LIs traversed. Le.. that

thehypotheses ofTheorem 2.4.5 ore satisfied. We thusobteln

Theorem 6.4.1

LetL• <B. p.a. fi> be anIteraUon with n alternaUons and noiterations

within Its body B. Assume that these n dternaUons determine m disUnct

paths within B. eech with body Br and that f, is Uie predicate which, when

true, will determine the traversd of path By Ifall the alternaUons within L

areweU behaved (seeTheorem 8.4.5). then, for anyvariable x. a closed form

for x exists InLiff there exist closed forms for x to eachiteraUon <Br p* fe

a, p>, where lscistm.

Proof

If we havea closed form t forx InL. then the specialterm T wiU Induce

a closed form for x for each IteraUon <B,, f k fr a. p>. Namely, the one

which to used In runs whore Uie predicate p * f t Is true every time Uie T-

branch of Lis taken.

As for Uie "only If part assume that rt *•». era the closed forms

for x to <B|t p k fv a, B> <B„. p* fm. o. B> respecUveiy. Then, a

closed form t for x In Lean be expressed by Uie special term

IPpfcf,. 1THEN T| BISB IF p ft fs. 1THEH TtEL8B ... V f k f„. 1THEN T„

Bi*EAn...nn .

126

CoroUary 6.4.2

Under Uie same hypotheses ol Theorem 5.4.1. t to e definable closed

form Iff all the t« ere definable closed forms.

Proof

If t has no n-place function symbols /. then none ofthe T« constructed

from it wiU contdn eny such symboL On the other hand. Ifnone ofthe n hos

n-place funcUon symbols /. then Uie construction oft we exhibited In Uie

proof ofTheorem 5.4.1 has non-place funcUon symbols /.

Asin SecUon 2.4. we obtain the following result eboutthe predicates p k

fr

Corollary 6.4.9

The dternaUons within L ore well behoved Iff for dl assignment func

Uons i. and aU pairs Jt. Jt< m. where Ji s< Ja.

((•-*!,) « (p-»V>[i]

is fdse.

Proof

Like lhat of Theorem 2.4.6. The condition etoted on Uie predicatespre

cludes thepossibility thattwo distinct bronchea betraversed In agiven run.
•

When these conditions are not met we know that our performance

representations are not optimum. Some kind ol Iterative procedure must be

used to correctly represent Uie profUe equations of the program. However,

therearetwo situations in which one canexpectto outperform the skeleton

approach. The first Is based on acondition on the predicates and the second
on a condition on the actions of the paths on the variables.

127

Theorem 6.4.4

If all predicates f. are atabie (see Def. 3.2.1). and there exist closed

forms for all control variables to dl patha, then Uie foUowing algorithm out

performs tbe skeleton end should be used to find Uie action of tbe iteration

on any variable x tor which closed forms exist In ell paths:

(i) determine which fj Is true,cdl it ft;

(ii) update f'e control variablea, reevduate, and record Uie number of

Umes f. evduates to true until it becomes false;

(IU) when ft becomes false, update Uie value ofdl control variables appear

ing in the other predicates using the closed forms andthe current value

ofx;

(iv) go to (I).

Proof

By their definition, the predicates ft ere pairwise incompatible, Le.. ft k

fk is never true, when J »« k. Thus, at mostone of them wUl be true at any

given time. Bytbe stabiUty assumption, once ft becomes false it wilt never

become true egdn. (Stable to used to Uie same sense es to Def. 3.2.1 if one

views Uie predicate ff to tbe context of Uie IteraUon <B. f k fya. B>. Other

wise we redefine predicate steblUty. allowing Ihe predicates f, lo have

exacUy twochanges in their truth vdues). Thesavings in running time occur

because we eveluate less times than to the skeleton different control vari

ables, because once e predicate becomes false thoseoontrol variables which

only appear in It are never updated egein. and because the variable x is

updated less times than In the skeleton. The hypothesis of existence of

closed forms is needed to perform Uieupdatea in an efficient way.

126

Corollary 6.4.6:

Under the hypotheses for Lglven to Theorem 6.4.1 and those of Theorem
3.4.4. if dl the Iteration. <B. f ft ff a. B> are definable, then if, for La<B.
p. a.d>. can be obldned to linear Ume.

Proof

Using the dgorllhm described to Theorem 5.4.4. Once we discover which
predicate f. true, because of tbe dcfmabUlty of the corresponding IteraUan
we only need to do one evduation to find the number of consecuUve time,
lhat tbe branch is to be traversed, and one update of all variable, to reflect
Ihe consecuUve traversd.. This is done exactly mtimes, and the cost is
linear in Uie number of paths.

•

So. when we have definability of <B. f koy o. B> and ateblUty of f k fx.
we obtain thai |p can be computed to Unear Ume. This re.dt can be
exploited to .void using the full skeleton when no closed form, oan be found
for avariable ofinterest which lemodified toL .

We .h.U use the symbolo to denote funcUon composition. Given avari
able s and two bodies B, and Br wa s.y thai the action, fof B, and gof B, on x
commute, if t* « got (Le.. the order to which the evaluaUon to performed to
irrelevant). The commutatlvlty hypothesis has Ibe property lhat It can be
checkedby an elgebrdo manipulation program.

Theorem 6.4.6

Let L» <B. p. o. B> be an IteraUon with ndternaUons and no Iterations
within Its body B. Assume that these n alternations determine mdlsllncl
path, within B. each with body B, and that *, 1. the predicate which, when

129

true, will determine that path B, to trevereed. Assume further lhat there

exist closed forma for all actions onx. and that all the ectlons on x com

mute. Then. x[fp[i)] can bedefined byasequence or mevaluations.

Proof

Consider tbe following method:

(I) run the skeleton of L:

(II) update x using the closed form for It to each branch B,. 1* I*m.

That Ihe correct value for x[#p[4]] Is obtained isaconsequence ofthe com-

muletivlty assumpUon.
•

Theorem 6.4.7

Under the hypotheses of Theorem 6.4.6. If dl the Iterations <B. p* f,.

«. fi> are definable, then x[*>[<)) may be obtained without using the skele

ton for L.

Proof

The algorithm that dlows us todo this Is the one described in Theorem
3.1.3 for predicates that were adisJuncUon of other predicates. We only need
to ndUee that LwiU be traversed as long as if k*,) OR if k f,) OR • • OR (p

It fa) totrue.
•

In (Che7Bj conditional recurrence relaUons were introduced. They were
formulated as recurrence relationsof tha form

\>XM a caxa

p,(k. x) -• f,(k. x. VM"' k»>

130

P.(k.x)-»f„(k.x.Ak(ha(x.k)))

end

where no two predicates p, could be simultaneously true. The method pro

posed for solving them was algorithmic to nature and required, es we do.
closed forms for each "erm" of Uie recurrence to edst Moreover. Ihe only

time Ihey could assure an answer was when a speclel case ofour hypothesis

of stability fordl predlcateap, held.

In essence, the way one attempts to find a (conditional) closed form

which to Uie solution to a conditional recurrence relation to by reducing the

problem lo that of finding a aequence of closed forms for the component
recurrence relations, where Uie boundary eondltlons depend on the solution

of a previousarm orthe recurrence relation.

There isone particular case or Iterations with multiple toner paths which

is rather common and reducea verynicely to Uie standard cose. Consider en

iteraUon Lwlth only two patha toit That to. there exists only one elternatlon

within the iteration. Lettheae two paths be P, end P, . end assume further

that every Ume Uie flow of control traverses L's T-branch tor Uie first N
times, where Nis fixed, branch P, Is executed. All other traversals of L'sT-

branch result In the execution or branch P, . Then the conditional

recurrence relation for L can be expressed by the foUowing two recurrence

relaUons:

<x[0], x[k], x[k4l]> for l*k*N

<x[N].x[kJ.x[k4lJ> fork>N .

The first of these relaUons wUl describe the action that Pg effectsonx and

the second that of P. on x .

131

Two Instances of this case can be aeen in our Example 1.2.1. where N Is

equd to 1. In both of these cases, branch P, prints a headline andbranchP,

computes and prints Uie valuea of a table.

6.6. On Nested IteraUona

We shall now study Uie problem of Uie existence of olosed forms to tbe

presence ornested IteraUons. The symbolic actionorone iteretion on a vari

able can be expressed as foUowr let r(x, k) be a closed form for x to La <B.

p. a. 6>. Then, for any execution of the program, the expression forx at d Is

the specid term

IP p. 1 THEM T(x. i fit [a])) ELSE X FI .

The effect of multiple nested iterations on variables becomes quite

involved. We shall illustrate this by presenting the ease of two nested itera

tionsandusing Figure 5.5.1 asreference. Given avariable x. we let x[k. yt].

fe

!>• i Bqi

*10

«3

132

wherey c (a. B\, denote Uie valueUiatx has at Uie point ft after traversing

Uie corresponding Iteration k consecuUve Umes. We shdl assume that for 4

c |0. 1). the entriesof vectort\ are p«'s control variables. Moreover, for 4.4

c JO. 1|. the action of B« onx. to the (vector) funcUon /$. and that onx to

the function po-

With tills notation wa may derive Uie expression for x[k. yt\, wherey €

|a. B\ andt c (0, lj. We let r0(*o. k). F,(f(. k) be vectors of closed forms for

f 0 end tx in Uie Inner IteraUon, and t(x, k) be a closed form for x to the

Inner iteration. The three baslo relalienships for x are the foUowing:

(1) x[k4l.ft]apM(x[k,ft])

(2) x[k4l,dc)arl(x[k4l.ot].fpl(f,[k4l.al]))

(3) x[k4l.ft]affet(x(k41,a,]) .

When k a 0. relationships (1) becomes: x[l. ft] * Pcc(*[o.J) .

From (2) we realize Uiat to express Uie effeot of a nested pair of Itera

tions on a variable aymboIleaUy, one needs to describe Uie effect of succes

sive entrances to the Inner IteraUon. We shall now introduce some notation

which will dd us to this description for Uie vectors of control veriables xq and

f i. We define Uie funotlons Toand T| ae foUowa:

DefinlUon 5.6.1

Forie|0.1|,

TK*c 4>«4

Tf♦'(*a. tt) a Fit OTi(FU oTf(f«. 4). fp,(Fw oTf(*o. *i)[a)))

133

Theorem 6.6.1

(i) The (t4l)M consecuUve time we enter Uie outer ItereUon's T-branch. the

Inner Iteration la traversed

ffi(r&oTi(xV«,)[a])
limes.

(II) The value of t\ at ft after traversing consecutively the T-branch of Uie

Inner Iteration I Umes is:

4(l.ft]»Tj(fB,4)W .

Proof

By InduoUon on I. we prove simultaneously (i) end (U). For 1 = 1 w

have thet

i[l. «.] «=>»<*iM> vFlo oTf(*c *,)[a],

end so Uiainner Iteration Is traversed ipiCes oTf(fq.tx)[a)) times. Thus, (i)

holds for I a l. Because of this, we have Uiat

4(1. ft] « Fit Or,«Ho oTf(fc 4>[a]).ifiiFlo oTp(fe. *i)M)>

and (ii) holds for I a 1.

Assume now Uiat (I) and (U) hold for I. Then, as x\[l4l. a,] a x\[l. fit).

we have that

4(1*1. at)« /to oT«fe.4>[«).

the Inner iteration is traversed

#PiMol1(«»«lXa»

times, end (I) holds for 141. As for (II). using (1) we hove Uiat

4(141. ft] a r«(4(«+i. «.l. f>i(*» oT|(4> *,)[a]))

" ftOto OT/(*0.4)M. Ir-iCA) oT|(*o. t,)[«]))

and thus

4«+l. ft) • f%t o TtOlo oTj(*o. 4)(«). iftirio oT|(fo. tt)[a)))

134

•TjM(***i)M-
•

In complete endogy with T„. we define v* to describe the effect of the

nested pairof iterations to Figure 5.5.1 on a variable x.

DefinlUon 6.6.8

v°(x)ax

^♦'(x)=p0,OT(pooO«"(x). ifiiFlo&H** tx)[a))).

Theorem 5.5.8:

The value of x et ft aftertraversing consecutively the T-branch or the

toner iteration 1 times. Ik

*[l.ft]«v«(x)[o] .

Proof

Analogous to lhatofTheorem 5.5.1, butusing Definition 5.5.2.
•

We are onlynow able to express x[d], namely,
1

*[d] • «(f*o(*eM>.ft] - v"*'*m])i*)M .
Thus, the existence olclosed forms for thiscase requires thatbothiteretlons

be definable and that the functions T" and v* have closed forma.

In our Examples 1.2.2 and 1.2.3. aswell asto all the examples mention

ing nested iterations that we have seen inthe literature. Uie inner iteration

isdways traversed afixed number oflimes, say N. each time the T-branch of

the outer iteration to traversed. This to Ihe same condition we require In

Theorem 2.4.5 to obtato anoptimal profile representation. Under thesecon

ditions, v*(x) has a simple expression:

135

»♦•()=PoiOT(7ooOt»»(x).N) .
When 1a 3, this can be fully expanded to

v9(i)=p01Ot|7ooOPoiOt^00OPoiOtJ?0o(x). N). NJ. N) .
So, when v* has the above simple expression, we see that v*(x) ean be

obldned by 31 symbolic evaluations. Le.. Uie complexity of finding the

expression forx[fi] depends Unearly on the values or#po • The existence or a

closed form r(x, k) for x to the inner iteraUon Is dl we need to achieve this.

II pooopoi 1* the Identity function, then

^ix)^gotor^00ix).W**) .
Then, to this cese we obtain only from t a closed form for x In the system of

two nested IteraUons. We have thus proven

Theorem 5.5.3

Consider the pair or nested Iteretlons as depicted to Figure 5.5.1. end

assume that r(x. k) is a closed form for x for UieInner Iteration. Then

(1) if the toner iteration is weU behaved (see Theorem 2.4.5). ir'f.x) can be

obtained by 31 expression evaluations:

(2) Ifwe dso assume thatPeoOffoi to Uie idenUty function, then v*(x) has a

closed form.

6.6. Summary

In this chapter we have dealt with Ihe problem of finding closed forms

for the actions of programs onvariables. It wes seen that, under special cir

cumstances, finding closed forms can be posed as a recurrence relation

problem. Three known aulomatio procedures for finding closed forms for

special kinds or recurrences were presented. Teble look-up methods for solv-

136

ing recurrences were also explained. Finally, tbe oases of Iterations with

multiple toner paths and of nested Iterations were andysed and expressions

for their (combined) action on variables were obtained.

CHAPTER 6

On Recursive Programs

So far we have not dedt with the problem of recursion. In fact we have

not specified how to treat procedures or subroutines. We have viewed pro

grams as syntactic objocte In which each statement has a well defined effect

on Uie vdue of variables, but we have not been concerned with the various

possible types of statements.

6.1. Procedures as Basle Blocks

When using Uie D-chart representation of programs, basic blocks have

been assumed to contain primitive statements, sa Uiat a term of our perfor

mance language exists which describes the action of Uie block on Uie vari

ables. This Is essentially equivalent to assuming that at Uie poinl of a pro

cedure call, one performs "In-line code expansion", and replaces Uie coll by

Uie body of the procedure. In a D-cbart representaUon. the procedure call

statement corresponds to a node which to then expanded to the full D-chart

representing Uie procedure body.

Our techdques already dlow us to do better than In-line code expansion.

We can derive Uie profile of each procedure and use It lo obtain Uie profile of

the whole program. Our methods aUowus to treat nonrecurslve procedures

as self-contained units. The skeleton approach can be used if the procedure

doea not satisfy Uie necessary definability oondiUons needed for a faster

representation.

137

13S

When dealingwith specific programming languages, care has to be teken

in determining the meaning or input and output variablea In a procedure.

Problems with eUasing, sharing and externd veriables have to be addressed.

To giveJust one example, Uie variables to FORTRAN COMMON statements can

play the role of input variables, output variables, or both. This analysis is

context dependent but can be carried out eutomaUcdiy by edsting tech

niques of compiler theory.

Cheatham states that the endysia or a procedure ahould not be made in

totd isolation [Cbe79], since dl Uie possible patterns or sharing among for

mal parameters andinput variables haveto be explored. The argument sup

porting this statement is that in the context or e program, a procedure is

normally calledmakinguse not ordl but ore few orthe existing possibilities.

When the programming language allows tor a wide variety of combinations,

this suggestion seems appropriate. The dternaUve method proposed in

[Che79] for analyzing procedures wasbasedon a case-et-the-Ume approach.

When a call to an as yet unanalyzed procedure to found, the procedure is

enalyzed to the environment of Uie caU. A template, giving a generalized

description or Uie ceil environment to created and kept to a library. This

template contains the modes or the actud parameter values and input vari

ables, and the shoring patterns among them. Then Uie procedure ia enalyzed

assuming this (restricted) environment and the results stored associated

with the corresponding template. When subsequent caUs to the same pro

cedure ere encountered, Uie new cdl environment to compared with the

existingtemplates, and, ir a matoh is found, Uie previous analysis is used. If

the modes of tbe actual parameter values and input variables do not coincide

or if the sharing patterns are distinct then e new template Is created, added

139

to the library, and the corresponding analysis is performed end stored as

well.

This method permits the treatment of fairly generd coses. In the con

text orprogramming languages with strictsharing and aliasing rules, orwhen

a procedure doea notusethese features ofUie language, the method reduces

to that whichperforms the endysls to complete isolaUon.

Thus, the problem of nonrecurslve procedures can be treeted with the

techdques already developed to Uie previous chepters. Unlike Uie METRIC

system [Weg75]. this approach need notmake eny assumptions on the order

and on the sequence of procedure calls.

6.8. Recursive Procedures

There are several reasons why Ihe analysis of recursive procedures is

more complex than Uiat of nonrecursive ones. For example, it is proven to

Manna'a book onthe Mathematicd Theory or Computation. [Man74], that eny

flowchart schema (e.g.. a D-chart) cenbe translated intoanequivalent recur-

Bive schema. Thus, the class ol computations which ean be described with

D-charts to included to Uie cless or computations which can be described

using recursive schemes.

Recursive schemes can be defined as follows. Consider the language

introduced in Chapter 2 with noapedd denotation symbols nor the specid

symbol IFTHENELSBFI. Then arecurttvo schema aover Uie set of tormdae to

the language I. of the form:

s a t0(*. F). where

Fxit.H) := Tiit.j.F)

140

A**.f):«T,,(x\f/./)

Here T0(f. /) to a predicate Uiat contains novariables other than Uie input

variables t and Uie function variablea /. Similarly, T4(*. f. /). 1* i * N, to

a predicate that contains no variablea other than Uie toput variables s\ con

trol (noninput) variables 0. and the function variables A

Tbe following theoremIsslatedto (Man74], page 326:

Theorem6.8.1 (Patterson.Hewitt)

There Is no flowchart schema (wilh any number of program variables)

which is equivalent to the recursive schema

SA s a F(a) where

F(y) :a IfP(y) then f(y) else h(F(g((y)). F(ga(y)))
•

Thus, recursion Is seen to be mora powerful than IteraUon. It to worth

noting that It toessential thatbothPs occur asarguments ofb to the defini

tion of S., because there ore flowchart achemaa whichare equivalent lo the

following two reourdve schemes:

Sg z a F(a) where

F(y) :a if p(y) then f(y)elseh(F(g(y)))

end

Sc x a F(a) where

F(y) :a If p(y) then f(y)elseb(y.F(t(y»)-

Other Issues which make Uie analysis of recursive procedures more

complicated, to the contestof symbolio evaluaUon, arise from the faot that

141

procedures to general may return addresses as vdues. Our techniques have

not dealt with this problem, because to normd program stetements It Is Uie

value of the variable which Is passed and modified.

There are two situations In which one may transform the situation from

passing anaddress backto passing a value. Consider a recursive procedure

F with only one argument say x:

(1) If the formal parameter x to bound by value, thenoneach recursive call

a new copy of Uie parametertocreated. When "unwinding" the nested

calls, appropriate care has to be taken to use Uie correctvalue of x at

each pointof Uie execution path. One essentially mimicsIhe process of

performing a procedure calland preserving to a stack the eppropriate

information.

(2) If x Is boundby reference(anddways occursIntha same position as an

actual argument to Uie recursive call), then Uie effects on x during Uie

recursive descent and unwind accumulate much like what happens to

the variablea to a regular IteraUon.

These oonslderaUons cen be easily generalized to Uie ease of several formal

parameters.

The body of a recursive procedure may contain several paths where

recursive calls are made end others which are recursion tree. Moreover,to a

given path, there could be several reourdve calls. If the pattern of caUs

becomes too Involved, or If definability oondiUons do not exist an extension

of Uie skeleton approach ean be used to produce the desired profile. There

are essentially no new problems in obtaining skeleton representations for

recursive programs.

142

However, there ere several caseswhen one can expect to do better than

using the skeleton. Two cases which have been mentioned to Ihe literature,

elthough insettings which were more restrictive than ours, are the following:

(1) Wegbreit requires [Weg75], in order to convert to a certain "normal
form", that the procedures beumll nested, Le.. that whenever Acalls B,

no procedure called by B calls A.

(2) Cheatham [Che79] analyzes tbe case of simple recursive procedures,

i.e.. those which have at most one recursive cdi along any path (Includ

ing iterations) fromits entry to en edt

When eitherof these hypotheses hold, ourmethods developed to Chapters 2.

3 and 5ere applicable. In fact (1) allows usto transform the procedure Into

one which essentially looks like anIteration with multiple innerpaths. Then,

our results of Section 5.4 can be directly applied.

F(«):

Bo Bt

F(a)

\±
Figure 6.2.1

143

As for (2), consider tbe procedure F(x) represented In Figure 6.2.1,

where Uie arrow pointing to the broken Une between B, end B, means that a

cdl to Fwith formd parameter a to made at that point. Viewed in this way,

the behavior of Fcan be thoughtof as en Iteration with body B, orrecursive

descents, acomputation B0 when control has reached "bottom", and then an

iteretion B, to "unwind" the recursive descent In Ihe IteraUon B,. the initial
vdue or parameter x will be the value or the actual parameter, end the "next
traversal" value wiU be e. In the IteraUon Br the Idtid vdue will be lhat

computed to B„, end Uie next traversd vdue wUl be that computed to Bf.
The number ol traversals token for each iteration is determined when the

predicate pceuses B0 tobe executed instead of B,. We may then employ the

techniques developed In Chepters 2 through 4. toandyxe Uie pair of Itera

Uonsto order to determine Uie effects ora call on F.

6.3. TwoExampleB

In this section we ehaU andyze two examples orrecursive procedures

which require distinct ktoda olperformance representations. We shall first

present acose where our techniques are directly eppltcable.

Example 6.3.1

Consider the recurdve definitionorUie factorid funcUon:

Factorial(n)
If n< 1 then return(l):
else return(n x Factorial(n-l)):
end

Using Figure 8.2.1 as reference, we have that f to the predicate n< 1.
in B0 we return the volue 1. B, contains the atalement a:= n-1. end to B,
we multiply the current Index by the vdue associated with the next index.

144

The oonlrd variable to n . and In tbe F-branch the only modification

made lo It to to decrease Itby one to B,. Thus, we are back to tbe cese of

Unear funcUon acUons. We then know that the F-branch wUl be executed (n-

1) times.
si

In this example, we ean therefore build a ppf to represent the profile
equations. We can do this because Uie IrensformeUons of the control vari
ables are amenable to our previous andysls.

Example 6.3.8

The following algorithm wUl list In pro-order, the names ofIhe nodes in

a binary tree:

Seerch-e-tree(pointer to Uie root)
If pointer does not point to en emptytree
then Search-a-tree(leftpointer of root)

write out Uie name of the root
Search-a-lree(right pointer of root)

end

Our only tod to deal with this kind ofdgorithm. as no algebraio proper

ties can beextracted from Uie usege ofUie control variables, to to represent

It using the skeleton approach.

6.4. Summary

In this ehapter wa have seen how to treat procedures, and In particular

recursive procedures. Even though reeurslon has been Been to be more

powerful lhan IteraUon, tha skeleton method con dweya beused lo obtdn
performance representations. Moreover, there are severd situations In

which our techniques for nonreourslve programs are directly applicable end

cen Improve on the skeleton approach. The restrictions which need to be

satisfied ore related to Uie kinds of parameter passing mechanisms used.

145

andlo Uie complexityof the structure of procedure cdls.

CHAPTER 7

A System for the lllcroaneJysis of Programs

In this chapter we shall discuss some of Uie issues to be resolved when

designing a system which implements the epproach developed to Uie previ

ous chapters. As specified to Chapter 1. our goal Is. given e program,to buUd

o performance representation corresponding to its profile equations. More

over, this performance representation should yieldUie profile (much) fester

than If the profilewere obtained from a properly instrumented version of the

original program. We sbaU edl microanalysis of a program Uie process of

finding, as a function of the input values, Uie exact profile or the program.

In Section 1.2 we introduced a default method: Uie skeleton. After show

ing why we shodd try to do better (see Examples 1.2.2 and 1.2.3). to

Chapters 2 and 3 we developed an approach whose god was to "linearize"

loops. In Chapter 4 we showed how this could be achieved when the acUons

on the control varlablerwere linear. Then Chapter 5 gave ua tools to ded

with more generd situations.

We shall nnw discuss several aspects that we have not addressed before

and propose a way In which all of our considerations oould be Implemented.

7.1. Non Linear AcUons of IteraUons onVariables

Already in Chapter 8 we recognized that our mdn problem was to

endyze Uie effect that IteraUons have on variables. To determine fp. for a

given iteration L a <B, p. a, B>, end to obtdn Uie action of an iteration on a

variable to an efficient way, we needed closed forms.

146

147

In Chapter 4 we dedt with the cese of control variables x which were

modifiedby a traversal Independent linearaction, Le.: x[k41] a ex[k] 4 b .

where a and b were not modified to the body or Uie Iteration L . The pro

cedures presented in Section 5.2 allowed us to deal with some instances or

the transformation x[k4l] a *[k] 4 f(k) . Our discussion to Section 5.1

extended this to transformations or the type x[k+l] a g(k)x[k] 4 f(k). but

tbe evaluation cost was no longer Unear to Uie length or the program.

The rest or Chapter 5 provided us with some more tools lo find closed

forms. However, there are many kinds of transformations which have not

been dedt with. We shdl now analyze some or them.

Nonlinear Traversd-Independent AcUons

As noted to SecUon 5.1.when the relaUonship between x[k4l] and x[k]

does not depend on tbe Iteretion Index k, one has that

x[k4l]*g"(x[0])

where g to the action or B on x. Thus finding (definable) closed forms Is

equivalent to finding a term Tf>,k) (with no n-place function symbols /)

which describes gk(x). However, to havea definable iteration, onedso needs

to solve for k. This last oondition was what presented dl the problems In our

andysis or the linear function case in Chapter 4.

There to one family of transformations which satisfies both of the con

straints outlined above and whioh we have not dealt with. It Is a transforma

tion ofmultiplicative type: Uie action orBonx being nV , where a.s and r

do not change to B. Then

X[k4l] a a»(x[k])'a ft«-')(x[0])fk*»)' .

The solution for k to the equation x[k] = N is given by

, lofl(Nl 4 (r4s)log(o)
* (r4s)Iog(a) 4 rlog(xio))

146

We notice lhat no hypotheses have been mado about a, a and r. How

ever, our oblUty to find closed forms seems to stop here with this kind of

transformations. Even when weconsider the acUon of Bon avariable x to be

x* 4 b, we donothave a non-procedural way to expreas x[k+l). In fact to

this case we have x[2j a (x[0]» 4 bP 4 b and x[3] a ((.(0]» 4 b)« 4 b)» 4 b .
The only expression for stk4l) we have been able toderive Involves k nested

sums. Transformations which are algebraically more complexdo not lead to

simplifications to Ihe expressions they generate. Thus, when these kinds of

oetlonsere detected, one shodd proceed with Uie skeleton approach.

On FuncUons With Finite Range

Consider Uie ease where x[k4l] a x[k) 4 f(k) and the range of f is fin

ite. I.e.. there ore only finitely many vdues produood by f. One example of

thisIs given by x(k-H)a x[k]4 1 4 (k mod K) . where Kdoes notchange in

B. We shall see Uiat under some specialcircumstances, we may treet this

cese quite efficiently.

FuncUons f with fidte range may be characterised as follows:

(I) Those functions, periodic, whose values determine a sequence of
numbera composed of cycles. Le.: Uiere exists a poslUve number t.

called Uie period orcycle length, auoh lhat for aU numbers t, g(t4r) a

8(0.

(II) All others.

NaturaUy. funcUons oftype (I) are amenable to abelter(more efficient)

analysis. We noteIn passing that f(k) = 1+(k modK) . where Kto oonstant

Is of type (I).

149

To analyze funcUons of typa (I), let

SG.TJ- fitf» .
where r to fs period.

Theorem 7.1.1

For any two Integers J, and Jr SQ,. r)a S(Jr t).

Proof

Wo shdl showUiat for all J. SO.r) a S(0. r) .

Beceuse of To periodicity. f(J) « KJ+t) for aU Integers J. So for any

given integer J

S(0.T)aff(4)«£f(i4j)

«•)♦!

-S0.T) .
•

Let us denote 3(0. r) by S(f).

With this notation wemayeasilydescribe Uie values a control variable x

takes when a funcUon f of finite cyolle range to acUng on It to an additive

way. We have Uiat

«[k]«*[0]4^Jf(j).
!••

But this can be written as

*M«x[o]4k|s(f)4k?Tf(y)
by Just noting that every t traversels. xD4t] - s[J] « S(l) . We dso notloe

Uiat

X[k4l] - x[k]a f(k4l) a f((k4l)modT>

ISO

If we consider

f(t)«^flt4x[0] f

we have, for aU integers n,

x[nT]ag(irr) .

Thus, for the purposes of determining fp. we may use g as an approxi

mation lo f. We find the iteration index m at which one would stop if g were

transforming Uie control variable, and then look at the totervd of numbers

(nr, (n41)r] to which m Ilea. In It we determine the exect IteraUon index for

which L will halt

Example 7.1.1

Let L a <B. x ss 2000, a, d>, where x[a] a kfn] a 0 , Uie only modifica

tion to x to B to x :e x 4 1 4(k mod 20) , and Uie ody modification to k in B

is k:=k+l.

Then t is 20 end S(f) = f (1 4 (i mod 20)) =£* a 210. Thus g(t) a
t-l <•!

5A2-t end so Uie vdue for #p lies in Uie interval (160. 210] (since F~fjpM

a 191).

Thus, we only need to find the least k > 160such that k a 9S(f) 4 Jj f(i)

hand k > 2000. The desired kt is easUy seen to be 15. In fact as we have Jj*

k fk 41)a —Li-J—L , onecandeterminek, analytiodly. Thus, fp a 195 when x[a] a

k[«] a 0.

For functions of type (II), our skeleton approach aeema to be the only

generally applicable approach.

151

7.2. On Finding Roote at Run-Ume or by User Supplied FactorisaUans

In Chapter 3 we saw that the actions of iterations on variables may yield

functions whose zeroes do not have an elementary expression. As these

roots ere Intimately connected with counting functions fp (see Theorem

3.2.1). determining these roots at run time might be a viable alternative.

The tradeoff one has to have in mind ia Uie following: the execution time

or the algorithm which finds the least nonnegaUve root of the function must

be less than the running time of tbe skeleton of Uie corresponding iteration.

In other words, one should not find roots at run-time If the process of doing

so takes longer than Uiat of performing Uie skeleton for the corresponding

iteretion.

However, there is enother epproach to this problem. Once the system

has Identified e funcUon for which it does not know how to find zeroes sym

bolically, the user oould be presented with It and asked for help. The user

mey then return a factored form, or a criterion, e.g.: epply a specific pro

cedure for finding its roots, or perform a skeleton, or search a given data

base of funcUon forms.

With this flexibility one can envision that improvements to e given per

formance representetion could be achieved by studying and analyzing in

detdl Ihe parteof this representation where Uie default procedure was used.

As these studies codd be done dter a given representation haa been

created, one would benefit from having such a representaUon for perfor

mance studies while improving It. This Interactive approach seems to us to

be the most appropriate.

162

7.3. On Non-Numeric Contrd Variablea

Throughout our discussion In Chapters 8 through 6, we have assumed

thai cenlrolvariables are at type numeric. Moreover, we have made exten

sive useofUie ordering and algebraic properUes Uiat numeric entities have.

In fact their algebraic properUes have been most useful for our purposes.

We have been eble to "linearize loops" only whenwe obtain symbolic expres

sions for the roots of certain funcUons associated with Uie Iteretlons.

The skeleton epproach ofSection 1.8 canbaused for aU typesofoontrol

variables. To epply ourmethods whioh Improve on the skeleton, however, we

rely on on underlying elgebraic atruclure. Thus. Ifone has a data lype which

hasanunderlying algebraic structure amenable to Uiat of the numeric type,

our methods can ba used without problems. Otherwise, other techniques

need lo be developed.

For example, to several languages the typechar(character) Is declared

as an enumeratedtype. In such cases It to often true that Uie letters to Uie

elphabet upper and lower cese. are assigned a place in a Unear ordering.

Let ua assume Uiat we ded with a language where dl lower case letters pre

cede upper case ones, end thatUie ordering goes from a to s and from A

to Z. Then, there mey be situations where one may recapture properUes of

numbers. For exemple. It now may make sense to say that an iteration Is

going to betraversed Z- g times, by making useofthe underlying order.

To determine these eases, each date typo which we wodd like lo treat

efficiently must be analyzed Individually. Those cases in which a better

method than Uie skeleton can be used shodd be treated accordingly. It to

our beUef,however, that If one Is able to deal properly with Iterations whosa

controlvariables ere of typo numeric, most of the achievable efficiencyof a

153

performance representation for compulaUon Intensive programs Isachieved.

We have thus far not talked about Uie eost of building a performance

representetion, but11 should be clear Uiat Uie more "intelligence" we Incor

porate into Uie system which builds such a representation, the costlier it

becomes. Of course, Uie expeoted return is that the performance represen

tations producedby Uie system should execute fester.

There is one kind of oontrol veriables for which we do not think too many

improvements over Uie skeleton ean be obtained to an automoUe way. This

Is the case of control variables of type boolean, Le.. which only take the

vetoes true or false when evaluated. Tbe reason for our skepticism to thai to

tbe body of Uie IteraUon a (possibly verycomplicated) condition must be set

equal to the variable, and thus too much information may be lost to .this

assignment An alternative way to deal with this case Is to try to obtein a

symbolic expression for the variable andthen use en algebraio manipulator

systemto check for Uie truth vdue. ButeventhisIsnot enUrely satisfactory

because it does not help us find tbe number of eonseoutive times that Uie

variable wiU evaluate to true.

In foot trying to ded withboolean valued variables to an automatic way

brings us Into tbe field of automatic theorem proving, a teak known to be

generdly undecidable. This to so because normd programming languagea

have enough dgebrdc expressive power to encode complex arithmetic state

ments whose truth may not ba formally provable. Our next section deals

with some Issues related to this aspect

7.4. The Automatic Verification of Hypotheses

What Interesls us to to establish to an automatic woy the veUdity of the

hypotheses needed to obtain our optimal performanoa representations. To

154

do this, we have to assume some properties of the method used for finding

the performance representations.

We essume that after a first pass over the code whose performence

representation is to be found, one has complete data flow andysls Informa
tion for each variable at each point ofthe program. We dso assume that a

symbolic expression to obldned for eech control variable in each basic block
of statements. A. we have remarked in Chapter 8. finding symbolic expres

sions for straight line code is not a problem. Determining which variables
are control variables, however, does require the full power of data flow

analysis techdques.

While parsing aprogram, it to easy to determine in an eutomatic way if
an IteraUon has within Its body other Iterations or dternaUons. Thus, having
detected en Iteration with no other Iterations nor dternaUons within it. end
dso knowing its control variables, the aymboUc expressions tor tbe control
variables obldned by mere symboUc execution ofstraight Une code yield a

fair amount or information. Indeed, after reducing the symbolic expressions

for Ihe control variables loUa simplest algebrdo form, say byaaystem like
MACSYMA, pattern matching technlquea enable us todetermine the algebraic
complexity ot tbe transformation as weU as whether the transformation Is
traversal Independent or not We then act accordingly, using the techniques

developed In Chapters 4 and 5.

Wa closed form for some ofUie control variables cannot be found, then

that Iteration will have lobe dedtwith using Ihe skeleton epproach. If Ihere

exists e closed form for each control variable, we determine whether the

iteration isdefinable. In case it to not definable, there still exists theoption.

as discussed to Section 7.2. ofobtotoing at run time roots for the fonctlon

155

determined by Uie closed forma or the control variables and of the predicate,
instead of resorting tothe skeleton approach. If one decides lo obtain roots
at run time, aroutine for doing so wul have tobe incorporated Into the per
formance representetion ot the appropriate point. It- inputs wUl be of two
kinds: those whose vdues can be determined el compUe time, and those

whosevdues wiU only be obtained ot run time.

The obove andysls can be generdlzed lo the case of IteraUons with
several inner paths, which may Include nested IteraUons as well. This is
achieved with the help of the data flow Information. Once we know that acer
tain variable to acontrol variable of en iteration, we may determine whether
it is modified within an toner IteraUon or not and also whether distinct
branches modify it differently. If the control variables ere not modified by
Inner ileratlona with avariable number of traversal., end If distinct toner
branches produce the same effects on them, then one ean carry out the
same andysls as toIhe case ofon irreducible Iteration.

What we would like very much to determine to an automatic way Is Ihe
validity of the hypotheses of Lemma. 2.4.3 end 2.4.4. For Lemma 2.4.3. the
case of alternation, within Iterations. Theorem 2.4.6 I. a rather .ultoble
elternollve. Unfortunetely. we do not have anything .imliar for the iteration
case. When using the condition presented in Theorem 2.4.8. that

((?o(*o) •• *i(*i)> &(*>(*o) - -»i(*i)))
be fdse under aU assignment functions i. for some famUle. of predicates we
may determine Ihe vdldlty of tola condition In an automatic way. One
instance ot this is when the predicates ere the atomic relationd operators RO
introduced in Chapter 4. end the veriables Involved ere of type numeric. In
Ihe general case, however, one would need • universal theorem prover. which

156

is known not to exist. Webelieve that this Is another instance where Uie sys

tem should ask the user to decide how It should proceed.

For the case of nested IteraUons, there are some instances to which one

can determine that Uie hypothesesof Lemma8.4.4 hold. What we need Is to

establish Uiat toner IteraUons are dways traversed a fixed number of times

each Ume the outer Iteration to entered. This may be true because of the

syntactic form of Uie construct, e.g.. a FORTRAN DO statement where dl

bounds andtha step do not change In Uiat program segment,or because it

can be determined from tha first pass over Uie code of our procedure by

using the data flow information. An example of Uie latter situation is when

one finds a defineble IteraUon where aU tha variablea appearing to Uie

expression of Uie counting function are not modified within tbe enclosing

iteration. This was Uie case to Examples 1.8.8 and 1.2.3.

In Section 3.4 we have seen a generd way to ded with Uie case when the

hypotheses of Lemmas 8.4.3 end 8.4.4 are not true. This way consists of

odopting onalgorithmic ppfrepresentetion. However, it was pointed out that

thia epproach may not be satisfactory. It may be that th* skeleton runs fas

ter than this representaUon. Two coses where the expucled cost of running

Uie dgorlthmie ppf Is smeller than Uiat of running Uie skeleton were dis

cussed In Section 3.4:

(1) When we are given a definable Iteration Lwith predicate p0(*o)> ena,ler*

naUon within this Iteration with predicate Pi(*,). and closed form

expressions for pi's control variables tx.

(2) When we ere given a definable iteration L with predicate po(*c) and

another definable iteration f ,(f,) within it. for whose contrd variables

£i we have closed form expressions.

157

The hypotheses for both of these cases can beestabUshed automatlcdly as

outlined in the previous paragraphs. Following tbe discussion ofSecUon 6.4.

(1) oan begenerdized tothe eaae where aeverd toner patha exist within Uie

Iteration.

There ere several otherhypotheses which a systemmayverity automati

cally. To mention Just one more. In SecUon 5.4 we saw that when the actions
of two blocks on a variable commute, then we ean Improve on the skeleton

even though definabiUty may not edst The commutetlvity hypothesis can be

established automatically with the help. say. of an algebraic manipulation

system Uke MACSYMA.

7.6. An Interactive System lor Mlcroandyxing Programa

From our presentation tt shodd be clear that en automatic system

which would operateon programa andconstruct our"performancerepresen

tations" eanbe implemented. There areseveral alternatives asto the organ

ization of this software. A reUier natural way of organidng It codd be by

separating Uie system Into two parte:

(1) A"front end" subsystem that would parse, obtain dl the data flow Infor
mation needed to determine aU control variables, and bdld an Inter

mediate representetion of the program.

(2) A"back end" subsystem Uiat would operate on this Intermediate form
ofprograms and produce the final performance representation.

There are several advantages ot this approach. One of them to that the

front-end subsystem, which wlU necessarily have programming language

dependent parts, can be modularly reprogrammed toperform Ihe analysis of

programs written In different programming languages. We thus avoid modi-

156

tying the whole system when one wants to analyze programs in a new pro

gramming language. The back end would dwaya act on a unique kind or

intermediate representation. As outlined here, the front end oan be a silent

process, elmost no Interactionwith the user being anticipated.

On the other hand, we believe that the back end should be interactive to

nature to achieve better results. As we have mentioned to Sections 7.2 and

7.4, there are severd instances where a dialogue with the user would help

improve on Uie default procedure. Some instances or this ore to assisting

tbe system in finding closed forms, deciding on a numerical method for find

ingroots, providing the system with a factorization of a polynomial or helping

Uie system establishUie hypotheses needed to obtain optimal performance

representations. It should also be noted that the whole process could be

made totally sUent because a skeleton, es described to Section 1.2. can be

built with no more information than Uie text of the program to be analyzed.

As output the back end wouldproduce a performance representaUon to

a specified programming language. One would then compUe this new pro

gram and run it We do not think Uiat producing pseudo code to be inter

preted to a satisfactory solution, because interpreting code Is a very slow

process. Our most important god to to have the performance representa

tions run faster than the programs they represent and reproduce faithfully

the profiles of these programs.

There to a whole area where the Interaction between tbe back end end

the user can be very fruitful end which is beyond Uie scope of what can be

done to an automatic way. This area could be called the area of the

"metafunctions" supplied by Uie user. Consider our Example 2.4.1, where we

have e program Uiat reads an array of numbers and finds Uie sum of Uie

159

positive entries In It Figure 2.4.3 shows Uie flow chart of such a program, to
Chapter 3 we sow how to obtoin on elgorilhmic ppf which should run foster

than thecorresponding skeleton because ofUie savings due to not having to

evaluate the outer predicate. The final profile representation Is C^BxCtB, ,

where C, represents the number of limes the T-branch or the iteration is
traversed (Le.. how many positive numbers are there in the array presented
to the program) end C, represents the number or limes the F-branch is
traversed. Ifthe user has aome knowledge about the probabiUty distribution

ofthe sign ofthe number, that wiU be presented tothe program, then it may
be possible for the user to provide audi information lo the back end. Thus,
the performance representetion could be modified to one that looks like
/ ii)BiQii)Bt. which would then require ody one input .ay the length of the
string presented to the program, to produce the profile.

This approach mey be helpful in determining the four basic quantities

one would like to knowabout a program'srundng Ume:

<maximum. minimum, average,standard deviatlon> .

As was discussed to Section 1.3. our approach enebles us to obtdn exact
points to Uie distribution of udprogrammlng execution Ume of agiven pro
gram. This may provide us with estimates on the four quantities mentioned
above. The exact determination ol them requirea malhematicd reasoning

about tbe algorithm. However. If one has a complex program, obtaining
points or the distribution or uniprogramming execution time mey be very
costly. Thus, our procedure helps us obtdn more empirical Information et a
smaller computetiond cost Judicious choice or input variables may give us
sufficient information for the coses which one expects toencounter in prac

tice.

leo

A third modde Uiat ean easily be Incorporated Into the system Is a spe

cialised data base. This subsystem would be queried nd updated by the

back end. Its purpose would be to store usefd Information gathered with

experience. The systemwould thenbecome an"expert system"In Ihe sense

Uiat after some Ume in use. Its date base would hove knowledgewhich was

nol there before. Oneexemple of Items that should be stored wouldbe user

supplied factorisations of polynomids (or raUond funcUons), and user sup

plied dosed forms.

7.6. Summary

Our discussion throughoutthis workhas been centered eround the topic

of building "performance representations" for programs. In this chapter we

have presented someaspeots which wehad not dedt with before. Inparticu

lar,wehavediscussed actions on variablea whichere not Unear. controlvari

ables of types which arenot numeric, andbow to addressUie problem ofver

ifying Uie hypotheses that dlow us aonieve ourgoal moreefficiently thanby

using the skeleton. We have also sketchedan implementation of these ideas.

The main components to be implemented were seen to be a front end eble to

exlraet Uie dele flow Information needed to Identify all the control variables,

end a beck end abla to apply the techdques developed to the previous

chapters of this work. Analgebrde manlpdatlon system Uke MACSYMA was

seen lo be of great help forseveralof the tasks to be performedby the beck

end.

CHAPTER 8

Microanalysis of Parallel Programs

In this chapter we shaU explore Uie epplicabUity of our methods to

parallel programs. By parallel programs we shsU understand programs writ

ten to programming languages which have explicit syntactic constructs per

mitting the eoedslence of several sequenUd processes devoted to a common

aet of tesks. There are no a priori restrictions as to how these sequenUd

processes are to be carried out but (normally) they ere to exeoution simul

taneously.

Four examples of programming languages with this kind of constructs

are PL/1 with Its multitasking faclUty. Nicklaus Wirth's MODULA programming

language. Per Brlncb Hansen's Concurrent Pascd programming language

[Han77] and Naroyona sf el's CCNPASCAL [Nar79]. This type ot parallelism

to programa la sometimes called explicit parallelism.

In a program we mey eiso have implicit pardleUsm. when an optimizing

compiler produces code for a normd (sequenUd or single-thread of execu

tion) program which will then have parts executable In peralleL The motiva

tion for concurrent execution to speed. Of course, such parallelised program

would execute faster In a multiprocessor system than In a single processor

system. Our techniques do not ded with thto type of performance optimiza

tion, even though there has been a substantial amount of Interest and work

to this area. One paper where a modeling techdque for this lype of parallel-

lam Is discussed to [Tow78].

161

162

The execution environment of a parallel program need not be that of a

multiprocessor system. In feet a parallel program maybe executedin a sin

gle processor system menaged according to the principles of multiprogram

ming: different parte ofUie program maybe concurrently executing by shar

ing the processor and other resources or the system, sometimes even on a

time-sliced basis. Indeed, we ahall see Uiat some ol tbe difficulties encoun

tered in analysing parallel programs arise from Uie nature of Uie different

execuUon environments.

6.1. The Loss of SequenUellty

Wehave characterized a parallel program as one consisting of sequential

processes Uiat are carriedout simultaneously. The processescooperate on

common tesks by exchanging information through appropriate interprocess

communication mechanisms. In Uie case of Concurrent Pascal, for example,

they do so by exchanging data through shared variablea [Han77]. Appropri

ate restrictions need to be imposed on the communication mechanisms to

insure the consistency or Uie shored data at dl Umes.

One problem with Uie loss or globd sequentidity Is that unrestricted

access to Uie shared variablea can make Uie resdt or a parallel program

dependent onUie relative speedsorIts sequential processes. As this has the

very negative side effect Uiat It Is possible to execute a parallel program

several times using Uie same toput date and obtain different results each

time, Interprocess synchronization mechanisms must be used.

When dealing with sequential programs, we need information about the

processing environment onlyto establish relationships betweenUie profile or

o given run and performance Indices which are compiler/systemdependent

In particular, obtaining the profile of a run never requires information about

163

the processing environment of the enalyzed program. This may not be the

case for a pardlel program. II the synchronisation or the different sequen

tial processes which make upa parallel program to dependent onthe actual

processing environment, then, since deriving the profile requires represent

ing the synchrodzetion mechedsm. knowledge about the processing

environment or the analyzed program will be needed. This fact makes

andyzlng Uie performence or parallel programs a harder tesk than that for

sequential programs. We erenow faced with Uie additional problem or repro

ducing Uie aynchrodsatlon mechanism existing among Uie sequential

processes.

This increase to difficulty coincides with Uie experience of ell other

fielda or Computer Science which deal with concurrent processes: lhat Uie

complexity or their analysis to much greater than that for aequential

processes. To mention Just one example, tothe ereo ofprogram correctness

the work by Cries and Owlckl [Grl77. 0wi76a, Owi76b] shows the difficulties

encountered when deding with techdques for proving parallel programs

correct

Ine parallel program aU computations performed by eny given sequen

tial process between stetements which require information or acknowledge

ment of other processes' actions can be enalyzed byour earlier techniques.

Thus, ifeach sequential process ofa parallel program isexecuting on adedi

cated processor, to find the profile we ere reduced tothe problem ofrepro
ducing the exchange ofInformation through the synchronizing mechanisms

to the system. This requires knowledge ofeach processing environment ond

of the Interprocess communication links.

164

If several saquentid processes are executing toa single processor, the

overall system activity generated by them le dependent on Uie scheduling

algorithm ofUie processor. Appropriate synchronization mechanisms leave

the profile ofa run not affected bythis multiprogramming environment, but

deriving Ihose performance Indices which depend on Uie activity ofthewhole

system (Uke esecuUon Ume) requires this information. Hence, to derive

some performance Indices ofa parallel program one now needs lo consider

processes clustered by processors and describe their ecUvity taking Into

account each processor's soheduler.

We see Uiat Uie level of difficulty Increases substentiaUy In the latter

ease. Asatisfactory modeling effortrequires oompleta Information about Uie

processors capabilities as weU asabout Uie tnterprocessor communications.

Accuracy Is .crucial beoause of events whioh are dependent on Uie relaUve

compleUon Umee ofother events. Our techdques are useful todetermining

Ihe timing of events within one processor. Tbe overaU modeling, however,

requires techniques which are very different to nature from the ones dis

cussed in earUer chapters.

68. Seme McJele of Parallel ComputaUons

In the previous seoUon we have seen Uie necessity of modeling the

environment In which a parallel program to to execute. For this reason, we

shall now present anoverview ofmodels and concepts usedto describing sys

tems to whichconcurrent activity of sequenUd processes tekes place.

The central Issue to the discussions found to the literature Is that of

communication and synchronization between processes working towards a

common goaL Tha component processes must be able lo communicate and

synchrodze with each other. Many methods of achieving Ihls have been

165

proposed. One widely adopted method of oommudcatlon Is by Inspection

and updating of a common store. However, this can create severe problems

in the construction of oorrect programs and It may lead to expensive and

unreliable Implementations with some hardware technologies. A variety of

methods have been proposed for synchronization: semaphores, events, condi

tional crlticd regions, monitors and queues, end path expreasions ere among

the best known. Each one of these Is demonstrably adequate for lis purpose,

but there Is no widely accepted eriterlon for choosing among them. In

[Hoa76]. Hoare departs from the standard approachto Uieproblems of Inter

process communication and synchronization and proposes a way to ded with

them based on Uie assumpUon that Input output and concurrency should be

regerded as primitives of programming.

We now present eome models of concurrent progremming which have

been proposed In recent years. We shdl follow Uie treatment to [Mac79],

where theae modela are presented In a rather formal and machine indepen

dent way. We first present three generio types of models and then three

specific proposals.

8.2.1. Automata Modela

These models generaUy consist of a state space, representing the possi

ble slates of tha entire aystem. together with transmission functions which

(nondelermlnisllcaUy) generate stale sequences representing computations.

They are designed for the investigation of automata-theoretic questions such

as the decidability of cerleln formal properties of systems. To simplify

proofs, it Is desirable to idedise the model by minimizing and simplifying its

structure. Unfortunately, the result is a "low level" model to which Uie

"high level" phenomena ot Interest to a programmer oannol be directly end

168

realistically represented.

Another drawback ol typical automate models is Uiat parallelism Is

reduced to the set or all possible Interleavlngs of computation steps, where

each step Is represented by its incremental effect on Uie globd state. This

makes it difficult to subdivide a compulation into the separate activities of

independent processes.

6.2.2. Petri Note

One of Uie most successfd and intensively studied models of parallelism

is Uie Petri net This to a graph model which, as usudly Interpreted,

represents elementary events to a computation end Uie way they dependon

one another. Petri nets have been used to analyze parallelism to a wide

variety of contexts, from hardware to operating systems, end have been

appUed to problems to the social sciences. They have dso been used to

describe the semantics of path expressions, whioh. es we mentioned earlier,

ere e tool for Interprocess synchronization.

The apped of Petri net models tobased to a number of factors: they ore

simple and elegant In structure, end their grephicd nature provides a visud

aid to intuition. They are a good tool to study tha fundamentd nature of

parallelism. They deal directly with question, concerning eausaUty and

dependence between events. They are capable of modeling phenomena at

many levels or abstraction, horn hardware to high-level languages. Relevant

phenomena suchas deadlock can be modeled fairly clearlyand naturaUy.

However, Petri net models have some Umltations, mostly due lo their

being idealized "low level" models. Expressing some problems (such as

readers and writers synchronization) requires features whioh ere not avail

able in Petri nets. Nets are global representations or a system, and there ere

167

no simple or obvious means or decomposing a net into subnets which

represent natural subsystems. Conversely, there to a lack or natural compo

sition operators for.building complex nets out or simpler nets. Petri nets

have a static structure, which makes it difficult to model the changing struc

ture of a dynamic system. One can attempt to capture dynamic structures

by the use or Infinite nets, but the result to Ueble to be a rather obscure

representation. Thesenets are auitable for describing Uie control aspects or

computations, but provide no direct way or describing tbe flow or data or

data-dependent conditional behavior.

8.2.3. Operating Systems Theory Models

This category to meant to include IbeoreUcd formdations of Uie prob

lems or operating systems together with assorted techniques or language

features, such as semaphores, critical regions, modtors. end path expres

sions, which have been proposed to deal with typicd problems In systems

programming. Most of these ideas are relevant to distributed computing but

there are some differences in outlook.

In conventional computer systems, it is normally assumed Uiat the task

of the operating aystem is to prevent undesirable Interactions between unre

lated programs which are required for economic reasons to share the

resources of the machine. The emphasis is on managing contention end

preventing interference between processes. When deeling with a parallel

program, on Uie other hand, contention over shared resource. I. less or a

problem and we are moreconcerned with facilitating co-operation and com

munication between processes. In view of these differences, we should

expect concurrent computing lo require new concepts beyond those derived

from experience withmultiprogramming operating systems.

16B

We now present three specific ways to view concurrent processing

environments within the operating systems model category.

6.2.3.1. The Actor Model

The actor model Is a behavioral approach to computation. Actor* are

self-contained program units which communicate by sending and receiving

missagta. The receipt of a message Is called an avsnf. Its effect is to

activate the target actor, which then performs some internal compulation

leading to the sending of further messages and perhaps the creation of new

actors. The aim of the actor model is to analyze the behavior of actor sys

tems In terms of the causal and "Incidental" relations between the events of

a computation. In this respect It resembles the theory of causal nets studied

by Petri, but is more specific and concrete.

The actor model, which has been developed over the past few years by

Hewitt and his students at MIT. was inspired In part by the class notion of

SIMULA 67. Tills notion combines tbe passive structural and the active pro

cedural aspects of a data object in a single unit. Research on modeling pro

gramming language features using the lambda calculus was another contri

buting influence, as was the technique of continuation passing developed for

applications In language semantics [Str74, Rey77].

A complete description of the model is given In [Mac79] or [Hew77] and

will not be included here. One can hierarchically desc be the actor model

by Introducing first basic actors, which are those which cannot be decom

posed into systems of simpler actors, and then build all actors and messages

from them. Even messages can ba considered special kinds of actors. In this

model, no mention Is made on the way communication lakes place.

169

6.2.3.2. Communicating Behaviors

In [Mil77. Mil78a, MU7Bbj, Milner has developed an algebraic theory for

describing and synthesizing systems of communication agents. Intuitively,

the model deals with systems of computing agents communicating via Input

ports which are connected by channels. The state of an agent is represented

by an abstract object called behavior, which expresses the potential com

munication activities of the agent. Each act of communication causes a

change In the behaviors of the agents Involved. Communication takes the

form of a value-passing act requiring simultaneous co-operation between a

sender and a receiver. Hence we can assume that the communication chan

nels have no storage and are unidirectional (though In effect synchronization

information is exchanged In both directions when communication takes

place).

The mathematical theory of Milner Is concerned only with the structure

and semantics of behaviors. Formal behaviors may be interpreted as

mathematical objects In a number of ways. Including procassts. which are

the behavioral counterparts of mathematical functions, and synchronization

trees, which represent behaviors in which communication is reduced to pure

synchronization.

Each agent Is assumed to possess a fixed, finite set of Input and output

ports. The input ports are labeled by nomn and the output ports are

labeled by conamii. The names and conames together constitute the set of

labels, A. Labels are a device for specifying the Interconnection of ports, and

therefore of agents (and behaviors). Pairs of ports with complementary

labels are assumed to be connected by a channel, and can therefore com

municate.

170

The objective of tbe communicating behavior, model to to describe en

algebra of behaviors, in which complex behaviors con be built up from

simpler ones by Uie use of behavioral operators. One starts by considering

constructions for expressing the dynamic aspects of a behavior. They

Include the primitives for communication and for expressing nondetermlnls-

tic alternatives. One calls behavior, defined by means of these constructions

"elementary" to distinguish them from those behaviors constructed in terms

of them. Roughly speaking, Uieelementarybehaviors are the slates of .ingle

agents, while compound behaviors represent Uie compound states of net

works of agents. A complete presentation of Uie model can be found in

[Mil7Bb].

It is interesting to observe Uiat to this model communlcaUon Unks (or

channels) are an inlegrel part of the description or Uie model. This forces

synchronization restrictions which were not present in the actor model.

These conditionanta muat be taken into account when reproducing the

behavior of e parallel program to this environment

8.2.3.3. Process Networks

The last model lo be outlined involves networks of processes communi

cating by means or dedicated channels with storage. Because processes are

isolated from time-dependent information, their semantics can be expressed

"denotetionally" in terms of fonotlond relationships between entire toput

end output histories, representedby streams. Networks are constructedby

functional composition end recursion, so they Inherit the deterministic,

functional nature of processes.

Processes ere self-contained, independent modules, each executing its

own sequenUd program accessing its own local .tore, wblcb may be of

171

unbounded size. Processes ody commudcale with one another via channels,

using input end output operations provided for the purpose. Channels

transmit value, (which may be restricted to e given type) from a unique pro

ducer process to a consumer process. They are assumed to provide

unbounded buffering end to preserve the order of transmission.

An Input operation mey involve waiting for Uie producer, but this is

made transparent to the consumer, so that time-dependent phenomena can

not affect the outcome or Uie computotion. For Uie aame reason, there is no

"polling" operationlo determine availability orinput to a channel. This deci

sion to hide all necessary synchronizationwithin Uie input/output primitive,

has two important effects:

(1) Computation to determinate, to the sense that Uie sequence of output

vdues depends only on Uie sequence of input values.

(2) A variety of scheduling strategies may be used without materially alter

ing Uie outcome of Uie computation.

A beneficial effect of avoiding nondeterminaey to Uiat processes have a

straightforward functional nature. The communlcaUon history of each out

put channel (Le.. Uie sequence of vduea transmitted) ia a function or the

communicetion histories or toe toput channels. The model then Is totally

described by deeling withhistoriesend withhow to express functions on his

tories. Histories are represented by date of type "stream".

Nondeterminaey oanbe Incorporated intoUie model by providing a pol

ling primitive next? with which one determines whether the next input value

to a dream to Immediately available. Nondeterminaey need, lo be Incor

porated Into the model Ifwe are to repre.ent red-time applications. The full

model can be found In [Kel77].

172

6.3. A Particular Case: Concurrent Pascd

Concurrent Pascd Is an example of a programming language designed

for reel-time applications [Han77]. Concurrent Pascal extends Sequential

Pascal withconcurrentprocesses, monitorsandclasses, system types edded

to Sequential Pascal to represent these new entitle, are: type process, type

modtor and type class.

A process type defines a datastructure end a sequential statement that

can operate on It A modtor type defines a data structure and the opera

Uona Uiat can be performed on It by concurrent processes. These operations

can synchronize processes and exchange data among them. A class type

defines a dale structure and the operations Uiat can be performed on it by a

single process or monitor. These operations provide controlled access to Uie

date.

To ease synchronization between processes, the type ouaus has been

Introduced. II may be used within o monitor type to delay and resume Ihe

execution of a calling process within a routine entry. At eny time no more

than one process can wdt to a single queue. A variable of type queue ean

only be declared as a permanent variable within a monitor type.

The compiler prevents some Ume-dependent programming errors by

checking that Uie private variables of one process are Inaccessible lo

another. Processes ean ody communicate by means of monitors. A monitor

defines aU the possible operations on a shared data structure. It can. for

exemple, define the send and receive operation on a message buffer. The

compiler will check Uiat processes only perform these two operations on a

buffer. A modlor cen delay processes to make Iheir Interactions Indepen

dent of their speeds. A process that tries to reoelve a message from an

173

empty buffer wiU, for example, be delayed until another proceaa sends a

message to the buffer.

The atructured way In which concurrent programming must be done In

this language dlows us to deal with the microanalysis of Concurrent Posed

programs In a three step procedure:

(1) For eaoh sequenUd process within a parallel program a pertormence

representation Is built The profile equaUons for each sequential pro

cess ore thus expressed as a funcUon of the toput end shared variables.

This allows us to andyze to IsolaUon Uie behavior of any of tbe sequen

Ud processes whioh meke up Uie parallel program.

(8) For each monitor we obtain Its performance representation, where we

have to make special provisions for the treatment of variables of type

queue. The actions of the monitor on variables of type queue oan not be

predicted solely on tbe basis of syntactic information. Knowledge about

the execution environment of Ibe modtor (e.g., how are queues handled,

types of delays that may occur when processing a message, arbitration

mechanism for Uaa) and on Uie activities of several processes mey be

required to describe the effect of Uie monitor's action. This Is the first

Ume we encounter Uie phenomenon Uiat aome performance Indices

associated with Uie basic operelions of a program are dependent on Uie

results (or activities) of other processes.

(3) The system as a whale Is dmulaled as a network where some nodes,

those corresponding to monitors with variables of type queue. wUl have

queues associated with them. Nodoa with no queues associated with

them will correspond to sequential processes. The arcs between nodes

represent data paths. These paths may vary tremendously In nature:

174

they mey be anything from on 1/0 channel to otelephone line. This Is
another instance where we are faced with an explicit dependence on the

executing environment orthe parallel program.

Thus, lo reproduce Ihe behovior or apordlel program, we are faced with
the task d modeling its execution environment as well as representing each
or Its component parts. When we went to obtain performance indices such es
the execution time, we need lo know, es afonctlon of the inputs, the Ume it
wlU take for a sequential proceas to execute, the relevant date thai It will
produce, the Ume it wlU take that dote to travel to amonitor which requires
It the time the modtor wul take to proce.. it. and the overaU lnterreletlon-
shlps edstlng between the different activities currently being processed In
the system. In short, afull simulotion of the network needs to be done. In
this simulation, one may use the performance representetion. of each node

to e.timate UieUme .pent ot Uiat node.

It should be clear thai there will be situations where the modeling ofthe

network wUl be easier than In others. One such case Iswhen processors ore

never shared by distinct processes. The simplification arises because one

does not have todeal with reproducing the scheduUng decisions which need

to be madewhen morethen one process torunning to one processor.

Unfortunately, at the time we write these Unes. we have not hod suffi
cient experience wilh Ihese methods to report on any actud experiment
This whole ereo deserves further study, and we plan lo report on It In the
future. We ore not aware ofeny other slmUar effort, inthe prediction ofpro

gram performance Indices within distributed processing environments.

CHAPTER B

Conclusions and Further Research

In Ihte thesis we have aludied toe problem of finding efficient weya to

determine, given Uie vdues for the Input variables, toe vdues of different

performance Indices associated with a program. We have seen that for most
purposes, we may concentrate on reproducing efficiently toe dynamic profile
of the program. Le.. on obtaining the exact profile for any run of the pro

gram as a function ofUie vdue. or thetoput variable..

To achieve tote, we have described severd kinds ol "performance

representation." which express the profile equations of the program we are

enalyzing. We have shown Uiat It Is often possible to represent the profile
equaUons by "program performance formulae" whose evaluaUon Ume la
linear inthe length or their expression. This to eosUy seen to bethebestone

can hope to obtato. We have elao delimited the cases In which this can be

done, and proposed some dternaUve methods for the other coses.

In fact, our "skeleton" procedure cen dwaya be used, to toe case of

sequential programs, torepresent the profile equations or aprogram. It was
noticed that for compute bound sequential programs, the running Ume of

the skeleton could be subslanUelly shorter than that of running the actud

program. Nevertheless, we also presented examples which showed that the
running time or the skeleton need not be linear In the length or Its text end
that It could also beverydose to the rundng timeolthe actual program.

Avariety or solutions, and theoretlcd resdts which can guide us to Iheir
usage, were presented lo overcome the different problems presented wilh

175

176

the possible slowness of toe skeleton, on toe one hand, and toe non-

appllcablUty of tbe program performanoa formulae, on the other hand. It

was recognized tool most of the "definabiUty" problems ere caused by the

iterations. In particular, alternaUons within IteraUons often leed to the loss

of optimal performance representation. We also examined to full detail the

cese when toe actions on tbe control variables of an IteraUon were Unear

functions. In this eese we saw that at run time we were even able to deter

mine toe exact pattern of truth vdues that a predloata would have.

We hove not Implemented a system which can build these performance

representations for us. However, we have discussedwhat is needed to do so,

and discovered toot known techdques used to date flow analysis suffice to

obtain all the Information wo need about tha variables to a program. We

believe Uiat performance representations could ba bdll by an "Intelligent

programming environment" at Uie same time Uiat tha program Is being

edited. This is one area of future research which deserves investigation.

We have also discovered Uiat our methods can be used to obtain traces

ot programs effldenUy. In fact wilh minor modifications (which amount to

write out where one Is at eaob step as weU as subscript vdues). the skeleton

epproach can be used to generate traces of programs. Including date traces.

Moreover, our techniques which yield faster performance representations

cen also be uUUzed to generate "condensed" traces, which can then be

interpreted (or decoded) by using a simple postprocessor. The idea Is that

when we are able to discover the behavior of en iteration as a function of the

variables which control Its looping, we may use this Information to shorten

the length of Uie trace without eny loss of Information. This method to

obtain traces deserves further research, since ne precedent approaches

177

seem to have been proposed. Its appeal Is tost once Uie "trace representa

Uon" of a program Is buUt obtaining severd traces should be much more

economical than actually runntog an appropriatelyInstrumented version of

the program severd Umes. Of course, the same post-processor codd be

used for traces oblained from any program by this method.

Another area which deserves further study Is that of microanalysis of

parallel programs. As we have aeen. the problem of determining perfor

mance Indices Is much more complex In this case, and reqdres modeUng of

toe computational environment of the peraUel program. There hasbeenUt

ile werk done to this area, and our techniques do not prove to be directly

applicable. They are useful fordetermtoingvdues of indices fora single pro

cess In a single processor, but we have nat developed techniques to ded effi

cientlywith toe problem of representing tbe computational environment of a

parallel program.

BIBLIOGRAPHY

[Aho74] Abo, Alfred V., Hopcroft. John E.. and Uilman. Jeffrey 0.. The Design

and Analysis ofComputer Algorithms, Addison-Wealey (1874).

[AhoTB] Aho. Alfred V. and Uilman. Jeffrey 0.. Principles of Compiler Design,

Addison Wesley (AprU 1870).

[AU78] Allen. F.E. and Cocke. J., "A Program Bate Flow Analysis Pro

cedure."Communications of the ACU 18(3) pp. 137-147 (Mar. 1976).

[Art7l] Arttn. EmU. Galois Theory. University of Notre Bame Press (Jen.

1971).

[Ash7l] Ashcroft Edword and Manna. Zohar. Translation of GO-TO Programs

to WHILE Programs. 1F1P Congres. LJubUjana (Aug. 1971).

[B5hS6] Bohm, C. and JacoplnL 0., "How Diagrams. Turing Machines and

Language, withonly twoFormation Rule.." Cbmmunicofions of the

ACU 8(5) pp. 386-371 (Mey 1868).

[BooS7] Boole. George. Ftnit* Differences. Chel.ee Publishing Company.

New York (1957). Fourth EdIUon

[BooBO] Boolh. Taylor L and Wiecek. Cheryl A.. "Performance Abotract Data

Type, es aTool to Software Performance Analysis and Design," IEEE

Transactions on Software Engineering SE-6(2) pp. 138-151 (March.

1980).

[Che78] Chealham, Thomaa E. and Townley. Judy A.. "Symbolic Evaluation ot

Programs. A look at Loop Analysis." pp. 80-98 In /Vocaedinps ACM

Symposium onSymbolic andAlgebra Computation, (1976).

178

179

[CheTB] Cheatham. Thomaa E. endWashington. 0.. "Program Loop Andysls

by Solving FirstOrder Recurrence Relations," TR-13-7B. Center for

Research to Computing Technology, Harvard University. Cam

bridge. Massachusetts (1976).

[CheTB] Chealham. Thomas E.. Hollowey. Glenn H.. end Townley. Judy A..

"Symbolic Evaluation andthe Andysls ofPrograms." IEEE Transac

tions on Software Engineering SE-6(4) pp. 402-417 (July 1979).

[Coh74] Cohen. Jacques and Zuckerman, Carl, "Two Languages for Estimat

ing Program Efficiency," Communications of the ACU 17(6) pp.

301-308 (June 1974).

[Coh78a] Cohen. Jaequea end Roth. Martin. "On toe Implementation of
Strassen'a Fast Multiplication Algorithm." Acta M/ormoMca 6 pp.

341-355(1978).

[Coh78b] Cohen. Ellis. "Program Reference for SPICE2," ERL-M592. ERL
Memorandum. University orCalifornia. Berkeley (June 1976).

[Cob77e] Cohen. Jaequea and Carpenter. Ned. "A Language for Inquiring
obout toe Run-lime Behaviour of Programs." Software - Practice

andExperience 7 pp.445-460 (1977).

[Coh77b] Cohen. Jocquos and Katcoff. John. "Symbolic Solution or Finite-
Difference Equations." ACU Transactions on Afafnemnrtcal

Software 3(3) pp. 281-271 (Sep. 1877).

[Coh79] Cohen. Jecques. Silver. Robin, and Auty. David. "Evaluating and
Improving Recursive Descent Parsers." IEEE Transactions on

Software Engineering S&6(5) pp. 472-480 (Sep. 1979).

180

[Cob6S] Conn, M. Richard. Difference Algebra, Inleraclence Publishers. New

York (1985).

[Dav80] Davies, Anthony. "The Andogy Belween Eleclriod Networks and

Flowcharts." IEEE Transactions on Software Engineering SE-

6(4) pp. 381-394 (July 1880).

[D1J88] Dijkstra, Edsger W., "Co-operaUng SequenUd Processes." pp. 43-

118 to Programming languages, ed. Genuys, F., Academic Press,

NewYork (1988).

[D1J72] Dijkstra, Edsger W.. "Notes on Structured Programming." pp. 1-82

in Structured Programming, Academio Press, NewYork (1972).

[DIJ75] Dijkstra, Edsger W.,"Guarded Cemmands. Nondeterminaey and For

mal Derivation of Programa." Communications of ths ACU 16(8) pp.

453-457 (Aug. 1675).

[Dij7B] Dijkstra. Edsger W., Lamport Leslie. Martin. A. J.. Scbolten, C S..

and Stetfens. E. F. M., "On-Uie-Fly Garbage CbUecUon: An Exercise

to Cooperation." Communications of the ACU 81(11) pp. 868-976

(Nov. 1978).

[End72] Enderton. H. B.. A UathemaHcal Introduction to Logic, Academio

Press (1972).

[Fat79] Foteman. Richard J.. Addendum fo the Uathtab/UIT UACSYUA

Reference Manual for VAX/UNIX VAXIMA, Computer Science Divi

sion (December 1979).

[Fav79] Favaro. John M., "An Interactive Symbollo Executor Based on

Macsyma." ERL 78/66, Udverslty at California, Berkeley. Callfor-

da (Dee. 1979). M.S. Research Project

181

[Fer78] Ferrari, Domedeo. Computer Systems Performance Evaluation,

Prentice-Hall (1978).

[Gos78] Gosper, R. W„ "Decision Procedure for Indefinite Hypergeomotrio

Summation," Proceedbnge of the National Academy of Sciences.

USA76(1) pp. 40-42 (Jan. 1976).

[Grl77] Cries, David, "An Exercise to Proving PoraUel Programs Correct"

Cbmmtmicafions of the ACU20(18) pp. 921-930 (Dec. 1977).

[Han77] Hansen, Per Brlncb, Ths Arcnitsefurs of Concurrent Programs,

Prentice-Hall (1977).

[Hon78] Hansen. Per Brincb. "Distributed Processes: A Concurrent Pro

gramming Concept" Communications of the ACU 81(11) pp. 834-

841 (Nov. 1978).

[HenBO] HenneU. Michael A. end Prudom. J. Alan. "A Static Analysis of toe

NAG Library." IEEE Transactions en Software Engineering SB-

6(4) pp. 329-333 (Jdy 1980).

[Hew77] Hewitt C. "Viewing Control Structures es Patters of Passing Mes

sages." Artificial Intelligence 8(3) pp. 323-384 (June 1977).

[Hoa78] Hoare, C. A. R., "Communicating SequenUd Processes." Communi

cations of ihe ACU81(8) pp. 686-677 (Aug. 1678).

[How78] Howden. William E.. "DISSECT- A Symbellc EvaluaUon and Program

Testing System," IEEE Transactions on Software Engineering SJ5-

4(1) pp. 70-73 (Jen. 1878).

(lng7B} Ingalls. D. H. H.. "Tbe SMALLTALK-78 Programming System: Design

end Implementation." pp. 8-15 In Fifth Annual ACUSymposium en

Principles of Programming Languages,. Tucson (Jan. 1978).

182

[lvi76] We, John. "Some MACSYMA Programa for Solving Recurrence Rela

tions." ACU Transactions on Mathematical Software4(1)pp. 24-33

(Mar. 1976).

[Joiei] JoUey. L B., , Summation ofSeries, Bover Publlcetions lm'.. New
York (1961). Seoond Revised Edition

[Jor50] Jordan. Charles. Calculus of /mite Differences. Chelsea PubUshlng

Company.New York (1950). Second Edition

[Ker79] Kerr. Michael , Summation in Finite Terms, Massachusetts Com

puter Associates (Apr. 1979).

[Kel78] KeUer, R. M.. "Denotettonol Model, for Parallel Progrems with

IndeterminateOperators." to Formal Descriptions of Programming

Languages, ed. CUchrlst. B.. North-Holland. Amsterdam (1978).

[Kin76] King. James C, "Symbolic Execution end Program Testing." Cbm-

municotionsof the ACU 18(7) pp. 385-394 (Jdy 1976).

[Knu71o]Knuth. Dondd E.. Mathematical Analysis of Algorithms, IF1P

Congres. Ljubljana (Aug. 1971).

[Knu71b] Knuth. Dondd E., "An Empirical Sludy of FORTRAN Programs."

Software -Practice andExperience 1(1) pp. 105-133 (1971).

[Knu73] Knuth. Dondd E. end Stevenson. F. P-. "OpUmd Measurement

Points for Program Frequency Counts." BIT 13pp. 313-322 (1973).

[Knu74] Knuth. Dondd E.. "Structured Programming with GOTO State

ments." Computing Surveys. (6) pp. 261-301 (Dec. 1974).

[Knu78] Knuth. Donald E. and Jonassen, Arne T.. "A Trlvtd Algorithm whose

Analysis isn't" /oumol of Computer' and Systems Sciences

16(3) pp. 301-322(1976).

163

[Kod78a] Kodres. Uno R.. "Analysis of Reel-Time Systems by Dale Flow-
graphs." IEEE Transactions on Software Engineering SE-4(3) pp.

169-176(May 1878).

[Kod7Bb) Kodres. Uno R.. "Discrete System, and Flowchart.." IEEE Transac
tions onSoftware Engineering SB-4(e) pp. 521-525 (Nov. 197B).

[Lam7B] Lamport LesUe. "Time. Clocks, end the Ordering of Events to aDis
tributed System." Cbmmunications of the ACM 81(7) pp. 556-585

(July 1978).

[Led75] Ledgard. Henry F. end Marcotty. MlehaeL "A Genedogy of Control
Structures." Communications of the ACM 18(11) pp. 829-839 (Nov.

1975).

[Lev6l] Levy, H. and Lessman. F., Finite Difference Equations. McMillan.

New York (1981).

[Mac79] MacQueen. David B.. "Models for Distributed CompuUng." Rapport
de Recherche, 1NR1A Leborla. Perls(Apr. 1979).

[Man74] Manna. Zohar. Mathematical Theory of Cbmputaiion. McGraw-Hill

Book Company (1974).

[Man78] Monno. Zohar and Wddtager. Richard. "The Logic of Computer Pro
gramming." IEEE Transactions on Software Engineering SE-

4(3)pp. 189-229 (May 197B).

[Mal77j MaUilab. MACSYMA Reference Manual, Laboratory of Computer Sci
ence (December 1977).

[MU77] Milner. R.. "Fiowgraphs end Flow Algebras." CSR-5-7. Department
ol Computer Science. Udveralty or Edinburgh. Edinburgh. England

(July 1977).

164

[MI178] Milner, R, "Algebra, for Communicating Systems." CSR-25-78.

Department of Computer Science, University of Edinburgh, Edin

burgh, England (June 1878).

[MU78] Milner. R.. "Synthesis of Communicating Behavior." to 7th Sympo

sium on Mathematical Foundations of Computer Science. , Zako

pane, Poland (1879).

[Mla78] Misra. Jayadev, "Some Aspects of tbe Verification of Loop Computa

tions," IEEE Transactions on Software Engineering SE-4(6) pp.

478-488 (Nov. 1878).

[Moe77] Moenck, Robert OnComputing Cloeed Forms for Summations. 1B77

MACSYMA User's Conference (1977).

[Nag75] Nagel. Lawrence W., "SPICE2: A Computer Program to Simulete

Semiconductor Circuits." ERL-M520. ERL Memorandum, University

of California, Berkeley (May 1975).

[Nar7B] Narayena, K. T.. Prasad. V. R.. and Joseph. M.. "Some Aspects of

Concurrent Programming In CCNPASCAL." Software • Practice and

Experience 9 pp. 749-770 (1879).

[0wl76a] Owlcki. Susan and Cries, David, "An AdomaUo ProofTechnique tor

ParallelProgramaI." Acta Informatica 6 pp. 318-340(1878).

[0wl76b] Owlckl. Susan and Grles. David. "Verifying ProperUes of Parallel

Programs: An Axiomatic Approach." Cbmmunications of the ACU

18(5) pp. 878-285(Moy 1976).

[Pro79] Pratt, Terrence. "Program Andysls and Decomposition Through

Kernel-Control Decomposition." Acta Informatica, (8) pp. 195-216

(1979).

165

[RamBO] Ramamoorthy. C. V. and Ho, Gary S.. "Pertormence EvaluaUon of

Asynchronous Concurrent Systems Using Petri Nets." IEEE Tran

sactions on Software Engineering SE-6(5) pp. 440-446 (Sep. 1980).

[Rem79) Ramshaw. Lyle H., Formalising the Analysis of Algorithms, Stanford

University (June 1879). Ph.D. Dissertation

[Rey85] Reynolds. J. C. COGENT.ANL-7022. Argonne National Laboratory.

Argonna, Illinois (1985).

[Rey72] Reynolds, J. C, "Definltiond Interpreters for Higher-order Pro

gramming Languages," In Procssrfinas of ths ACU Annual Confer

ence, (1872).

[Sml79] Smith, Connie U. and Browne. J. C, Uodeling Software Systems for

Performance Predictions. CMC X, Boulder (1979).

[SmiBO] Smith. Conde U.. "Tbe Prediction and Evduation of toe Perfor

mance of Software From Extended Design Specifications." TR-154.

University ofTexaa. AusUn. Texas (Aug. 1880). Ph.D. Dissertation

[Str74] Straobey. C. and Wadsworth. C. P.. "Continuations: A Mathematical

SemenUea for HandUng Full Jumps." PRG-11. Programming

Research Group, Oxford Udverdty, Oxford, England (Jan. 1974).

[Tow7B] Towsley, D., Chandy. K. M., and Browne, J. C. "Models for Perdlel

Processing Within Programs: AppUcation to CPU:l/0 and 1/0:1/0

Overlap," Cbmmunications of the ACU £1(10) pp. 821-631 (Oct.

1978).

[Wat79] Waters, Riohard C, "A Method for Analyzing Loop Programs." IEEE

Transactions on Software Engineering SE-6(3) pp. 837-247 (May

1979).

* •*.*•
188

[Weg75] Wegbrelt Ben. "Mechanical ProgramAnalysis." Cbrnmuntcafiona of

the ACU 18(9) pp. 528-539 (Sep. 1975).

[Woo79] Woodword. Martin R.. HenneU. Michael A., and Hedley. David. "A

Measure of Control Flow Complexity In Progr :m Text" IEEE Tran

sactions onSoftware Engineering SE-6(1) pp. 45-50 (Jon. 1979).

. <»© '«

Appendix A

In this appendix we Include the complete FORTRAN source of the file

tmp.f and the subroutine MATLOC from SPICE.

The text of Appendix A is not included. It
can be obtained directlly from the author.

	Copyright notice 1981
	ERL-81-30

