

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ON THE EFFICIENT GENERATION OF

DYNAMIC PROGRAM PROFILES

by

Luis Felipe Cabrera

Memorandum No. UCB/ERL M81/38

1 June 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

On The Efficient Generation of Dynamic Program Profiles

by

Luis Felipe Cabrera j-

Department of Mathematics
and

Electronics Research Laboratory
University of California, Berkeley

Berkeley CA 94720

Abstract

In this paper we present several methods which allow us to efficiently obtain
dynamic profiles of programs. By scanning the code of a program, we build a
representation of its profile equations. These representations of profile equa
tions yield the exact profile of the original program as a function of the inputs.

We want these representations of profile equations to have an evaluation
cost linear in the length of the program. Since this is not possible for all syntac
tically correct programs, we have devised several alternative ways to handle
non-optimal situations. We have also determined conditions which allow us to
choose among the various alternative methods. These conditions depend on the
topology of the program's flowchart, on the algebraic complexity of the state
ments which modify a loop's control variables and on the syntactic nature of the
control variables.

t The work reported here has been supported in part "by the Computer Systems Design Program
of the National Science Foundation under grants MCS-7824618 and MCS-8012900.

1. Introduction

The performance of software systems is becoming a central issue in the

implementation and utilization of novel ideas and techniques in various fields of

computer science. With hardware costs constantly decreasing, the availability

of systems with a relatively large amount of main memory has become more

widespread. Since these systems are now normally operated in a multiprogram

ming mode, they are very frequently utilized by many users at a time, creating

contention for the installation's resources. The behavior of any program in a

multiprogramming system often differs from that of the same program in a

uniprogramming one because of the effects of the actions of other users as well

as of the operating system. Programs almost always exhibit performance degra

dation, in terms of turnaround time, in multiprogramming systems.

It is not surprising then that software which is highly utilized (including in

this category the operating system) is becoming the object of an increasing

number of performance evaluation studies. It is known that the performance of

a system depends on all of the aspects of its hardware and software configura

tion and on its workload. It is thus advantageous to have software which uses

appropriate algorithms and, most important, that makes suitable usage of the

resources available in the installation. Unfortunately, today there are no

software design tools, or methodologies, which allow us to analyze a symbiosis of

this kind between a program and the installation in which it will run. Not enough

work has been done in this area, although there is interest and need. In [SmiBO,

B008O], for example, we see discussions, implementations of methodologies and

proposals on some of the issues that need be resolved to find a solution for this

problem.

In the case of an existing program, when trying to analyze and/or predict

its performance in a given installation, it is necessary to be able to determine

exactly what resources and in what proportions the program requires to run. It

would be very convenient if one could obtain this information in an efficient way,

i.e., faster than by actually running the program and measuring it. We would

like to have a performance description of the behavior of the program as a func

tion of the values of its input variables, which would allow us to obtain efficiently

the desired performance information. If such performance descriptions for pro

grams were available, problems like comparing distinct software packages, or

distinct implementations of a given algorithm, would become easier and less

resource and time consuming.

2. Our Fundamental Problem

The behavior of a program means different things to people with different

objectives. For example, one may be interested in the I/O activity, in the cpu

requirements, in the number and type of arithmetic operations performed, in

the amount of paging activity generated (in the context of a paged virtual

memory system) or in the total running time. Each of these performance

aspects of the execution of a program is normally a function of the value of the

inputs to the program. It then becomes clear that the objective of the perfor

mance study must be established beforehand. Nevertheless, there exists a per

formance index which enables us to unify most of these studies. This index is a

count of what gets executed in a run of a program.

A basic block is a linear sequence of program statements having one entry

point (the first statement executed) and one exit point (the last statement exe

cuted). The dynamic program, profile is a vector whose elements express the

number of times each basic block is executed in a given run [Knu71b]. We shall

often use the term profile to mean dynamic program profile.

Given a profile, it is rather simple to obtain several of the above mentioned

performance aspects. The only one that may not be obtainable, depending on

how intricate the flow of control structure is, is the dynamics of the memory

demands produced by the program. As for all the other performance aspects,

all that is necessary is some information which normally needs to be gathered

only once per program-installation combination. Some of this information may

occasionally be installation dependent.

For example, if we are interested in counting the different kinds of atomic

operations that the program performs, then we need the information that asso

ciates with each basic block an itemized description of all the atomic operations

performed by the statements in the basic block. Then, once we obtain the pro

file for basic blocks, we only have to multiply the value associated with a specific

basic block by the number of times each atomic operation is performed in it to

obtain the counts of the operations executed. This procedure is certainly instal

lation independent, thus, once this information has been found for a program, it

never needs to be recomputed.

However, if we are interested in estimating the running time of a program

when executed with a given set of inputs, we need installation dependent infor

mation. In particular, if we assume a uniprogramming environment, what we

need to find out is the (average) time each atomic operation takes as well as the

execution time of each kind of branching statement appearing in the program.

For machine and assembly language programs this information may be obtained

from tables supplied by the hardware manufacturer. If we are dealing with a

program written in a high level language, then we need information which is both

compiler and system dependent, because what we are really interested in is the

(average) time a compiled atomic operation takes. It should be clear that each

time a new compiler is installed or a new system considered, a new table has to

be obtained for the atomic operations we are interested in.

We shall call profile equations of a program those expressions which

express the frequency counts of basic blocks as functions of the input data.

Thus, if we had an appropriate representation for the profile equations, we would

be able to obtain the profile of the program in an efficient way. The best achiev

able is to have an evaluation cost linear in the length of the representation of

the profile equations.

This paper explores different alternatives which will enable us to obtain pro-

files for programs in an efficient manner.' In fact, we will describe automatic

ways of representing the profile equations for a program and conditions under

which they will yield the profiles with linear time evaluation cost. These

methods will allow us to obtain profiles much faster than by actually running (a

properly instrumented version of) the programs.

3. Some Related York

Donald Knuth has pioneered the area of the mathematical analysis of algo

rithms [Knu71a, Knu71b, Knu78]. In this analysis, for the execution time of a

given algorithm or program, one attempts to determine the four quantities

<maximum, minimum, average, standard deviations-.

The fourth quantity refers to the standard deviation of the distribution of execu

tion times around the average. In [Knu78] we can see that the complete analysis

of a rather simple algorithm may require complex mathematical knowledge and

expertise. It then becomes quite clear that analyzing large real-life programs

may be an enormous task. The required amount of sophistication and level of

reasoning about the program seems to go beyond the current level of what can

be automated.

With a different approach, since 1974 Jacques Cohen and his collaborators

have been microanalyzing structurally simple programs, i.e., determining the

above mentioned four quantities as functions of each elementary operation

involved in the program. In [Coh74] Cohen presented a system which would

accept programs in a restricted Pascal-like programming language and would

return an expression of its execution time as a function of the processing time

of elementary operations. However, the evaluation of this expression requires

the user to specify the number of times the body of a loop would be traversed

and the branching probabilities of conditional statements. These two conditions

make this approach very difficult to use when one is trying to gain knowledge

about the behavior of a program.

The simple structure of many algorithms has proved that the method can

yield interesting results. In [Coh78a] we see an analysis of Strassens's matrix

multiplication algorithm. A non recursive version of the algorithm has all loops

traversed a fixed number of times and no conditional statements within loops.

This allows the authors to find a closed form expression for the processing time

of the algorithm whose evaluation does not lead to inconsistencies. In their

expression, specifying the number of times a loop is to be traversed is given by

the dimension of the matrices. Then, as all the bodies of the loops are basic

blocks, the evaluation yields the exact profile of the run.

We shall call Cohen's approach the deterministic microanalysis of programs

because of the requirement that the user provide the number of times a loop

will be executed and the (fixed) probability that a conditional branch will be

taken. A big drawback of this method is that, in any relatively complex pro

gram, the interrelationships between statements may become very obscure and

intricate. It is unreasonable to expect that a user will master them and provide

consistent data for the evaluation of the expressions. The fact that these

expressions do not depend on the input variables of the analyzed algorithm or

program appears to be responsible for most of the method's deficiencies.

8

A different approach can be found in Ferrari's work, [Fer78], where pro

grams are viewed as D-charts and formulae are built in a bottom up fashion tak

ing into account all the data dependencies. Unfortunately, the methodology used

there did not clarify when one could obtain such expressions. Only very simple

examples were found to be manageable. However, the expressions obtained

were functions of the input variables and thus when supplied with values for

them a correct profile was obtained. The task of finding expressions became

more complicated but their evaluation required no further information from the

user, and the answer obtained was always correct.

To obtain the four quantities desired using Ferrari's expressions, one has to

find suitable input data that would exercise the program in such a way as to

achieve its minimum and its maximum; then, making some probabilistic

assumptions on the nature of the input data, one is able to determine the aver

age and standard deviation with some predetermined degree of statistical confi

dence by measuring enough samples of the input data. In fact, Cohen's approach

requires the same kind of hypothesis with the additional problem that, for a

given assignment of values to the number of times loops are traversed and

branches taken, one may obtain evaluations which do not represent the execu

tion of the program under any given set of inputs.

In [Weg75], the system Metric is presented. With it a very limited class of

Lisp programs can be correctly microanalyzed. The highlights of Metric are that

it knows how to find closed form formulae for recursive programs (in its res

tricted Lisp environment), deals with algebraic simplifications and expresses the

execution behavior as a function of the size of the input. Moreover, Metric also

allows several measures of performance to coexist. This provides a degree of

flexibility that Cohen's system does not have. However, when computing the

maximum and minimum execution time of a program, as in Cohen's system,

several "simplifying" hypotheses are made which yield bounds not necessarily

tight. In other terms, there may be no set of inputs which would make the pro

gram attain these bounds.

The very fertile area of Symbolic Evaluation or Symbolic Execution of pro

grams has undisputed relevance to our problem. In [Che79, Che76, Che78, Kin76,

How78] we read about different systems which attempt to express in a symbolic

way the results of the computations performed by a program. Common to all of

them, and to any system which performs such a task, is the problem of dealing

with loops. The effect that such a construct has on the value of a variable is cen

tral to the analysis in all approaches. All of these authors are primarily con

cerned with the correctness, and not the performance, of the analyzed pro

grams.

4. Obtaining Dynamic Profiles

4.1. The Skeleton Approach

When we are interested in a count of the basic blocks as a function of the

values of the input variables of a program and all we have is the program to work

with, we will normally find that the program has many statements which do not

play any role in this process. We shall now make this observation more precise.

Given a variable name x, we shall say that xisa control variable if its value

affects the flow of control of the program. It is clear, then, that all statements in

the program which do not modify directly or indirectly control variables may be

excluded from an analysis whose sole purpose is to find the profile of a program.

We have thus found a first approach to our problem of efficiently generating

program profiles. Given a program P, we construct a program Px and suitable

tables 7*i, ... , Tn, which will enable us to obtain performance information about

P much more rapidly than by actually running an instrumented version of P in

the following way:

B

(1) Px is obtained by deleting from P all those statements which do not affect

the flow of control of P, i.e., those statements which do not modify control

variables. Moreover in each basic block, i, we add a statement of the form

B\ := Bi + 1 , where the variable Bt does not appear in the original pro

gram, has not been used before in Px and is associated with the basic block

in a unique way. We also add, at the very beginning of Plt statements which

initialize each and every one of these new variables 27* to zero.

(2) The tables T\% ... , Tn, represent mappings between these names B\ and dif

ferent kinds of information required for our performance studies. For

example, one of these mappings will always be the one which matches the

names £< and the actual sequences of statements which constituted the

corresponding basic block.

We shall call Px the (flow-of-control) skeleton of P.

Notice that, in the first clause defining Px. we do not need to introduce so

many new variables f?< to describe the profile of P, because in any program

there is redundancy of flow-of-control information which can be used advanta

geously [Knu73]. All one needs is to have one variable counting the executions

of each independent path. Basic blocks which will always execute sequentially

may be accounted for by the use of only one variable.

Discovering which statements affect the flow of control of a program can be

done in an automated way by the global data flow analysis methods used for

code optimization [Aho79]. The methods essentially consist of a multipass pro

cedure where, in the first pass through the code, data flow information is gath

ered and suitable data structures that will keep this information for further pro

cessing are built. In subsequent passes the information is appropriately used.

As for the tables required, some of them can easily be generated automati

cally. For example, while parsing the program, the compiler can identify all the

9

basic blocks, when they are encountered, and count the distinct types of atomic

operations which appear in each block. However, it should be clear that some

other tables require extra effort to obtain. For example, suppose we are

interested in determining the page trace of a run of a program; then, we need to

know the physical layout of a compiled version of the program to determine

which pages correspond to a given basic block. This has to be done after the

actual machine code has been produced.

To illustrate the form, effectiveness and usage of the skeleton of a program,

as well as its limitations, we shall present two examples. They are taken from a

large FORTRAN program (11000 lines of code) called SPICE. SPICE [Coh76b,

Nag75] analyzes integrated circuits to determine their electrical and thermal

properties. We have chosen to study (parts of) it because it is an example of a

large program which is constantly used at Berkeley and whose behavior has

been analyzed using only conventional techniques.

For our immediate purposes we have chosen two parts of the subroutines

TMPUPD and MATLOC for which we will build the skeletons. In both cases we will

see that obtaining the profile from the skeleton is much faster than obtaining it

from the original code. Appendix A contains the original FORTRAN code for each

of the two portions of the subroutines we use.

Example 4.1.1

In Table 4.1.1 we show the code for the skeleton of part of the subroutine

TMPUPD. We see that all the statements are very simple and thus of quick exe

cution. We have not included redundant counters. When analyzing the results,

one reconstructs the full profile by taking into account the interdependencies

used to eliminate statements from the original code.

410 IF (LOC.EQ.0) GO TO 1000

B26=B26+1

IF(IPRNT.NE.O) B27=B27+1
IPRNT=0

IF (ITEHN0.LE.2) GO TO 415
B29=B29+1

415 CONTINUE *

IF (ITEMN0.LE.2) GOTO 420
B31=B31+1

420 CONTINUE

430 LOC=NODPLC(LOC)
GO TO 410

10

Table 4.1.1 Skeleton of a part of TMPUPD

•

Example 4.1.2

Table 4.1.2 depicts the skeleton of part of the subroutine MATLOC. What we

should notice in this example is that, since we have nested loops, the execution

time of the skeleton would improve substantially if we could "linearize" them.

In fact, from analyzing the code we see that each of the inner nested loops, is

traversed NDIM times each time the T-branch of their respective outer loop is

taken. NDIM is a variable which is not modified within MATLOC, it is an input

value for this subroutine. Linearizing these loops is then a fairly straightforward

matter. After the count for the corresponding outer loop is found, one multi

plies it by NDIM and obtains the count for the inner loop.

788 L0C=L0CATE(7)
Bl7=Bl?+l

770 IF (LOC.EQ.0) GO TO 772
Bl8=Bl8+l

DO 7711=1,NDIM

B19=B19+1

771 CONTINUE

L0C=N0DPLC(L0C)
GO TO 770

Table 4.1.2 Skeleton of a part of MATLOC

11

The only reference known to us that uses an idea similar to the skeleton is

in [Pra79], where programs are decomposed into a control part (a subset of our

skeleton) and a kernel part (which is only concerned about computing output

values). The author uses this idea to study program equivalence, termination

and code optimization. It should be clear that any two programs which share

control structures will behave identically in their profile equations, and more

over, from the viewpoint of their termination, one will halt if and only if the

whole class of programs with the same control structure halts.

In the following sections we shall study families of representations for pro

grams which improve on our skeleton approach (by having a faster running

time) and which will always be dependent on the input data. To achieve this we

need to introduce pertinent formalisms.

4.2. The Program Performance Formulae Approach

We shall study non recursive goto-less programs. As done in [Fer78], we

shall represent this kind of programs by single-entry single-exit directed graphs

called D-charts. From now on, we shall use program as synonym for the D-chart

which represents it. In [Cab8l] we find the generalization of this discussion to

all programs.

With each D-chart D, we associate a unique program performance formula

^D (PPf 1^D for short) as follows:

(1) For each indecomposable elementary D-chart B (i.e., B represents a basic

block of instructions), we assign to the basic block a special denotation

symbol Bt (never to be used again for any other basic block) and the ppf

IBi to the elementary D-chart.

(2) If Bx and Bz are elementary D-charts with assigned ppfs fx and fz respec

tively, then the concatenation ViV'z *s tne PPf assigned to their composition.

12

(3) Given an alternation construct where Dx and D2 are the elementary D-

charts associated with the T and Fbranches respectively and <p is the predi

cate, the ppf associated with it is

IF (<p . 1) THEN Vi ELSE ^z FI,

where fx and f2 are ppf's associated with Dx and D2 respectively, and 1

represents the real valued constant function whose value is 1, i.e.: l(x) = 1

for all x € K.

(4) Given an iteration construct D where Dx is the elementary D-chart associ

ated with the T-branch and <p is the predicate having n variables, the ppf

associated with it is

IF (<p , /) THEN fx ELSE A FI,

where fx is the ppf associated with Dx and / is an n-place function symbol

with the same variables as <p which, when evaluated with the value of the

variables at the entrance of the iteration, yields the number of consecutive

times that (p would evaluate to true in the corresponding run. We shall

denote such a function / associated with <p by §<p . §<p is called the

counting function of <p.

The semantics for ppf's is quite simple because there are no quantifiers in

the language. In fact, the lack of quantifiers enables us to evaluate any ppf in a

one-pass left-to-right manner. The interpretation of a ppf will yield a (finite)

sequence of symbols which is meant to represent the profile of a program, when

the program is run with the inputs used to evaluate the ppf.

We define the interpretation function I by induction on the complexity of

ppf's:

(1) for any special denotation symbol i?t, I(27<)[i] = li?t.

(2) for any performance formula if/, where f is Vi^2« IfViV'zJW = iGMMlCfaJM-

13

(3) For any formula <p, n-place function symbol / , terms tx, ..., tn and ppf s fx,

fa, I(IF (<p . f(tx tn))THEN Vi ELSE tff2 Fl)[i] is equal to /*(i(*i). <£«)) X

I(^j)[i] if <p[i] is true, and equal to f1R(Htl)t ... , i(tn)) x I(V2)[i] if <?[i]

is false, where for any i € R U $«>), « x a: = x x « = «. If ^ is A, for j e

J1.2J. then we say that/^W*,) i(tn)) x I(V;-)[i] is A.

In this formalism, the inner iteration in Example 4.1.2 is expressed by the

ppf IF (I £ NDIM , NDIM) THEN BXQ ELSE A FI, and its interpretation is NDIM Bx9,

where NDIM represents the function whose value is the value of the variable

NDIM.

It is not difficult to prove that if a given program P halts, then the interpre

tation of its associated ppf is a string of the form a0B0axBx • • • OnBn where each

Oi is a positive integer [Cab8l].

We have thus described a way to associate ppf's with any program. More

over, the interpretation of any ppf yields a vector of numbers <a0, ax an>

which is identical in form to the profile of a program. The question we now con

sider is the following: when does a ppf represent the profile equations of a pro

gram? That is to say, under what conditions does the evaluation of a ppf always

yield a sequence which is the profile?

The answer to this question is given by the following two theorems which

can be proved by induction on the complexity of ppf's [Cab81].

Theorem 1

For any elementary D-chart D where there are neither alternations nor

iterations within an iteration the ppf f^ represents the profile equations of D.

•

In any D-chart we say that an alternation within an iteration is well behaved

if the same branch of the alternation is traversed each time the T-branch of the

iteration is traversed. We say that an iteration within an iteration is

14

well behaved if there exists an integer n such that each time the T-branch of

the outer iteration is traversed the T-branch of the inner iteration is traversed

n times.

Theorem 2 (Representability of Profile Equations)

For any D-chart D, fD represents the profile equations of Diff for all assign

ments to the free variables i, all alternations and iterations are well behaved.

•

Theorems 1 and 2 characterize the class of programs for which we can

obtain their dynamic profiles in linear time. It is worth noting that even though

this is a fairly restricted subclass of all programs, a survey of the published

literature has showed that all the examples discussed in it satisfy the

hypotheses of at least one of the theorems.

4.3. Our Final Approach

The efficient representation of dynamic profiles of programs requires a

combination of the techniques presented in the two previous sections. There are

many programming constructs which are not amenable to the automatic

discovery of counting functions. In fact, both of our examples show that the

(outer) iterations are traversed while a given list does not finish. Finding the

length of these lists, which is exactly the number of times the body of the loops

will be traversed, cannot be done without external information. However, in

Example 4.1.2 we have that the inner loop can be treated using our ppf

approach. Thus the most appropriate way to handle programs in general is to

combine both methods. Whenever a ppf representing the profile equations of a

(sub)program is found, it should be used. Otherwise, a combination of ppf's and

a skeleton will also improve on a pure skeleton. In each of the three

cases, if the programs to be analyzed perform a fair amount of computations,

our methods yield the profile faster than obtaining it from an instrumented

15

version of the program. An extensive discussion of different alternatives is given

in [Cab8l].

Example 4.3.1

Table 4.3.1 depicts Example 4.1.2 when we use both techniques simultane

ously. The interpretation of the ppf corresponding to the inner iteration has

been written in FORTRAN.

788 L0C=L0CATE(7)
B17=B17+1

770 IF (LOC.EQ.0) GO TO 772
B18=B18+1

L0C=N0DPLC(L0C)
GO TO 770

Bl9=Bl7«NDIH

Table 4.3.1 Final Representation of a part of MATLOC

•

5. Conclusions

In this paper we have presented an approach which allows us to efficiently

obtain the dynamic profile ofprograms. Its effectiveness depends on the nature

of the programs analyzed. We have determined the class of programs whose

dynamic profile can be obtained in Unear time. Asurvey of the literature has

shown that all published examples fall into this category.

For those programs whose dynamic profile cannot be obtained in Unear

time, we have devised alternative strategies which also allow us to build efficient

representations of their profile equations. Even though the evaluation cost of

these representations may not be linear in their length, in most cases they pro

duce the profile of the program substantially faster than when obtained from

the program. We have also introduced a method, the skeleton approach, which

16

is appUcable in all circumstances but whose running time may be close to that

of the original program.

Our most efficient representations rest on the abiUty to determine the

counting functions of an iteration. This is a function which gives the number of

consecutive times the body of an iteration will be traversed when presented with

the values of the control variables at the entrance of the iteration. In [Cab8l] it

is shown how to obtain automaticaUy counting functions for a wide variety of

cases.

Using known techniques of data flow analysis one can gather all the infor

mation needed to produce our efficient representations of the profUe equations

of programs. It is thus feasible to implement a system which would produce,

after scanning the code of a program, an efficient representation of its profile

equations.

6. Acknowledgements

I thank Domenico Ferrari for introducing me to this area of Computer Sci

ence and to the members of the PROGRES group for their useful comments and

insights.

7. Bibliography

[Aho79] Aho, Alfred V. and Ullman, Jeffrey D., Principles of Compiler Design,
Addison Wesley (April 1979).

[B008O] Booth, Taylor L. and Wiecek. Cheryl A., "Performance Abstract Data
Types as a Tool in Software Performance Analysis and Design," IEEE
Transactions on Software Engineering SE-6(2) pp. 138-151 (March.
1980).

[Cab8l] Cabrera, Luis FeUpe, "Syntax Oriented Analysis of the Run Time Perfor
mance of Programs," ERL Memorandum M81/30, University of Califor
nia, Berkeley (May 13, 1981). Ph.D. Dissertation

[Che76] Cheatham, Thomas E. and Townley, Judy A., "Symbolic Evaluation of
Programs, A look at Loop Analysis," pp. 90-96 in Proceedings ACM Sym
posium on Symbolic and Algebra Computation, (1976).

17

[Che78] Cheatham, Thomas E. and Washington, D., "Program Loop Analysis by
Solving First Order Recurrence Relations," TR-13-78, Center for
Research in Computing Technology, Harvard University, Cambridge,
Massachusetts (1978).

[Che79] Cheatham, Thomas E., Holloway, Glenn H., and Townley, Judy A., "Sym
bolic Evaluation and the Analysis of Programs," IEEE Transactions on
Software Engineering SE-5(4) pp. 402-417 (July 1979).

[Coh76a] Cohen, Jacques and Roth, Martin, "On the Implementation of Strassen's
Fast Multiplication Algorithm," Acta Informatica 6 pp. 341-355 (1976).

[Coh76b] Cohen, ElUs, "Program Reference for SPICE2," ERL-M592. ERL
Memorandum, University of CaUfornia, Berkeley (June 1976).

[Fer78] Ferrari, Domenico, Computer Systems Performance Evaluation,
Prentice-HaU(1978).

[How78] Howden, WilUam E. , "DISSECT- A Symbolic Evaluation and Program
Testing System," IEEE Transactions on Software Engineering SE-
4(1) pp. 70-73 (Jan. 1978).

[Kin76] King, James C, "Symbolic Execution and Program Testing," Communi
cations of the ACM 19(7) pp. 385-394 (July 1976).

[Knu71a]Knuth, Donald E., Mathematical Analysis of Algorithms, IFIP Congress,
LjubUjana (Aug. 1971).

[Knu71b]Knuth, Donald E., "An Empirical Study of FORTRAN Programs,"
Software -Practice and Experience l(l) pp. 105-133 (1971).

[Knu73] Knuth, Donald E. and Stevenson, F. R., "Optimal Measurement Points
for Program Frequency Counts," BIT 13 pp. 313-322 (1973).

[Knu78] Knuth, Donald E. and Jonassen, Arne T., "A Trivial Algorithm whose
Analysis isn't," Journal of Computer and Systems Sciences 16(3) pp.
301-322(1978).

[Nag75] Nagel, Lawrence W., "SPICE2: A Computer Program to Simulate Sem
iconductor Circuits," ERL-M520, ERL Memorandum, University of Cali
fornia, Berkeley (May 1975).

[Pra79] Pratt, Terrence, "Program Analysis and Decomposition Through
Kernel-Control Decomposition," Acta Informatica, (9) pp. 195-216
(1979).

[Smi80] Smith, Connie U., "The Prediction and Evaluation of the Performance
of Software From Extended Design Specifications," TR-154, University
of Texas, Austin, Texas (Aug. 1980). Ph.D. Dissertation

[Weg75] Wegbreit, Ben, "Mechanical Program Analysis," Communications of the
ACM 18(9) pp. 528-539 (Sep. 1975).

8. Appendix A

In this appendix we include the fragments of the FORTRAN source code of
the subroutines TMPUPD and MATLOC from SPICE used in Examples 4.1 and 4.2.

Fragment of SUBROUTINE TMPUPD

410 IF (LOC.EQ.0) GO TO 1000
L0CV=N0DPLC(L0C+1)
TYPE=N0DPLC(L0C+2)
IF(IPRNT.NE.O) WRITE (IOFILE.401)

401 F0RHAT(//'0"" HOSFET MODEL PARAMETERS'./.'ONAHE'.SX.'VTO'.aX.
1 THI\9X,'PB,,7X,,IS(JS)\7X,'KP\9X1'U0V/)

IPRNT=0

RATI04=RATI0•DSQRT(RATIO)
VALUE(L0CV+3)=VALUE(L0CV+3) /RATI04
VALUE(LOCV+29)=VALUE(LOCV+29)/RATI04
0LDPHI=VALUE(L0CV+5)
PHI0=VALUE(L0CV+5)
IF (ITEHNO.LE.2) GOTO 415
PHI0=(VALUE(L0CV+5)-PBFATl) /FACTl

415 VALUE(L0CV+5)=FACT2»PHI0+PBFACT
PHI=VALUE(L0CV+5)
WB=VALUE(L0CV+44)-TYPE«0.5D0»0LDPHI
VFB=VFB+O.5D0»(OLDEG-EGFET)
VALUE(LOCV+44)=VFB+TyPE»0.5D0»PHI
VALUE(L0CV+2)=VALUE(L0CV+44)+TYPE»VALUE(L0CV+4)*DSQRT(PHI)
VALUE(LOCV+l l)=VALUE(LOCV+l 1)♦DEXP(-EGFET/VT+OLDEG/OLDVT)
VALUE(L0CV+21)=VALUE(L0CV+21)»DEXP(-EGFET/VT+0LDEG/0LDVT)
0LDPB=VALUE(L0CV+12)
PB0=VALUE(L0CV+12)
IF (ITEHNO.LE.2) GO TO 420
PB0=(VALUE(L0CV+12)-PBFAT1)/FACT1
GHAOLD=(OLDPB-PBO)/PBO

* COEOLD=l .0D0+VALUE(L0CV+1B)•(400.0D-6«DTEMP-GHA0LD)
VALUE(L0CV+9)=VALUE(L0CV+9) /COEOLD
VALUE(L0CV+10)=VALUE(L0CV+10) /COEOLD
VALUE(L0CV+17)=VALUE(L0CV+17)/C0E0LD
VALUE(LOCV+19)=VALUE(LOCV+19)/(1.0D0+VALUE(L0CV+20)
1 •(400.0D-6»DTEMP-GMA0LD))

420 VALUE(L0CV+12)=FACT2*PB0+PBFACT
GHANEW=(VALUE(L0CV+12)-PB0) /PBO
COENEW=1.0D0+VALUE(LOCV+18)«(40O.0D-6»DTEMP-GMANEW)
VALUE(L0CV+9)=VALUE(L0CV+9)♦COENEW
VALUE(L0CV+10)=VALUE(L0CV+10) »COENEW
VALUE(L0CV+17)=VALUE(L0CV+17) 'COENEW
VALUE(L0CV+19)=VALUE(L0CV+19)»
1 (1.0DO+VALUE(LOCV+20)«(400.0D-6«DTEMP-GMANEW))
PBRAT=VALUE(LOCV+12) /OLDPB
VALUE(LOCV+37)=VALUE(LOCV+37) »PBRAT
VALUE(L0CV+3B)=VALUE(L0CV+3B) •PBRAT
CSAT=DHAX1(VALUE(L0CV+11),VALUE(L0CV+21))
WRITE (I0FILE.31) VALUE(L0CV),VALUE(L0CV+2).VALUE(L0CV+5),
1 VALUE(LOCV+ 12),CSAT,VALUE(L0CV+3),VALUE(L0CV+29)

430 LOC=NODPLC(LOC)
GO TO 410

Fragment of SUBROUTINE MATLOC

788 L0C=L0CATE(7)
770 IF (LOC.EQ.0) GO TO 772

N0DEl=N0DPLC(L0C+2)
N0DE2=N0DPLC(L0C+3)
NDQI=N0DPLC(L0C+4)
L0CVS=N0DPLC(L0C+6)
LHAT=N0DPLC(L0C+7)
DO 771 I=1,NDIM

18

LOCVST=NODPLC(LOCVS+I)
IBR=N0DPLC(L0CVST+6)
NODPLC(LMAT+l)=INDXX(NODEl,IBR)
N0DPLC(LMAT+2) =INDXX(N0DE2,IBR)
LHAT=LHAT+2 .

771 CONTINUE

LOC=NODPLC(LOC)
GO TO 770

19

	Copyright notice 1981
	ERL-81-38

