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ABSTRACT

Two approaches for realizing a (p+q)-port transformer using operational

amplifiers are presented. Unlike iron-core transformers, our realization is valid

from dc to a relatively high frequency limited only by the op amp's frequency

response. The stability and limitation of the two approaches are analyzed and

compared. Examples are given to illustrate two unique and indispensable appli

cations of the (p+q)-port transformer: Synthesis of nonlinear n-ports and non
linear programming.

Research sponsored in part "by the Officeof Naval Research Contract N00014-76-0572.
L. 0. Chua is with the Department of Electrical Engineering and Computer Sciences and the
Electronic Research Laboratory, University of California, Berkeley,CA94720.
G. N. Lin is with the Shanghai Railroad Institute, Shanghai 201803, China. He is presently a
visiting Research Fellow at the University of California, Berkeley.
J. J. Lum was withthe University of California, Berkeley. Heis presently withthe Hughe's Air
craft Company.



1. Introduction

A (p+q)-port transformer is a multiport resistive element described by the

following constitutive relation:*

where

are p-vectors,

;=pai.Vaa.-.v, 'op \

I Y•6 =|W6i.V62,....V6,

0 K7,
-K 0

are q-vectors, and

K=

kn fc12
k2\ fcgg

kql kqZ

;""rol»^a2'"'«'i 'op

. J. . . \T
*b-"fol''lb2"-"'lbq\

<lp

"Zp

*qp

(1)

(2)

is a (pxq) real matrix, called the turns-ratio matrix.

Using traditional two-port ideal transformers, a (p+q)-port transformer can

be expressed as a combination of pxq ideal transformers, as depicted in Fig.l .

For simplicity, Fig.l can be symbolized as in Fig.2 and, using vector's notation,
can be simplified further as shown in Fig.3 .

The (p+q)-port transformer is a very interesting and important multiport
element in circuit theory. It has attractive features by itself, and also it is an

indispensable building block in many circuit synthesis and simulation problems.
Here we list some interesting facts related to the (p+q)-port transformer:

(1) The (p+q)-port transformer is the only multiport element which is both
reciprocal and antvrecipocal. In addition, it is non-energic,lossless and
passive.

• In this paper, unless otherwise stated, we use "bold lower-case letters to denote vectors, and
bold capital letters to denote matrices.
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(2) The connection n-port [l] is a special case of a (p+q)-port transformer.

(3) Every linear anti-reciprocaln-port resistor can be synthesized by gyra-
tors and a (p+q)-port transformer.

(4) Every reciprocal n-port resistor represented by a continuous n-
dimensional piecewise-linear function can be realized by using only

two-terminal piecewise-linear resistors and a (p+q)-port

transformer[2]. Besides, every nonlinear lossless n-port capacitor and

inductor can be realized by a nonlinear reciprocal n-port resistor and

mutators[3]. Therefore the (p+q)-port transformer is also important

for realizing n-port capacitors and inductors.

(5) A large class of nonlinear programming problems can be simulated by

using (p+q)-port transformers in addition to voltage sources, current

sources,resistors and ideal diodes[4,5].

As depicted in Fig.l, a (p+q)-port transformer can be synthesized by com

bining "pxq" ordinary two-port transformers together. But, to physically build a

(p+(3.)'Port transformer using iron cores would be very cumbersome and the dev

ice would also be very bulky. It would require very meticulous winding of the

coils on the transformer core and very precise physical positioning of the coils

to ensure the proper turns ratio and coupling. In this paper, we developed two

approaches using operational amplifiers for realizing a (p+q)-port transformer.

Besides overcoming the above objections, our realizations have several addi

tional advantages:

(1) They are compatible with modern integrated-circuit technology and

can therefore be fabricated in module form.

(2) In contrast to the iron-core transformer, they operate not only at ac ,

but also at dc. This is a very useful property. As will be seen in Section

6.2, without this property, the (p+q)-port transformer can not be used

to solve nonlinear programming problems.

(3) The turns-ratio matrix K can be easily modified.

However, since operational amplifiers are used, other problems such as

detortion and oscillation could occur and must be suppressed through careful

design. In addition, the operational amplifiers will restrict the range of operat

ing frequency, signal level, load and source properties, etc.

In Section 2 we present a "direct approach" for realizing a (p+q)-port

transformer. This approach realizes (l) directly. In Section 3 we present



another approach—"scattering-matrix approach", which, instead of realizing (l)

directly, realizes the scattering matrix corresponding to (l). Both approaches

apply to grounded (p+q)-port transformers. If a floating signal is desired, the

grounded-to-floating converting technique presented in Section 4 may be used.

In Section 5 a comparison between the two approaches is given. Using the con

cept of "absolute stability"[6,7], extensive experimental and computer stability

analysis have been made and the results are summarized. In the last section we

present two application examples: a piecewise-linear n-port resistor synthesis

problem and a nonlinear programming problem. The two essentially different

examples show the wide variety of applications of (p+q)-port transformers.

2. Circuit realization: Direct approach

For simplicity, we begin by considering a traditional (l+l)-port transformer

(Fig.4) whose constitutive relations are

=

0 A:

-k 0 (3)

where k is a real number.

The circuit in Fig.5 realizes this constitutive relations for any fc^O. To

analyse the function of this circuit, we divide it into two parts. The lower part of

this circuit (below the broken line) fulfills the voltage constraint va = kvb while

the upper part (above the broken line) fulfills the current constraint ib = -kig, .

To see this, use the ideal model (Fig.6) for the op amps. In Fig.6, the left part is
a nullator described by

v = 0 , i = 0

The right part of Fig.6 is a norator, whose constitutive relation consists of every
points in the v-i plane.

In the lower part of Fig.5, we have

ve kvB

Therefore,

va = kvb
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In the upper part, we have

yz=va-Ria, v3=v7t v3 =
Vz+Vt

which follows that

Rib
k '

Vt = Vb~ v7 =

it, = -kia

va+vb

To realize a (l+l)-port transformer with negative values of A:, we need only

a slight modification as shown in Fig.7 . The analysis of the function of this cir

cuit is similar to that of Fig.5 .

To realize a (l+q)-port transformer with the following constitutive relation

%z

%q

where

P ^11^21
*n 0 0
*21 0 0

-A:gl 0 0

c9i
0
0

a

^61

vbz

K

(4)

"'11>"*21»,"«"'?1 — "

we extend the circuit in Fig.5 to the circuit in Fig.8 . The left part of this circuit

is basically the same as the left part of Fig.5 , except that the value of resistor

Rv should be readjusted from kR to R^k^ . The right part of this circuit con-

sists of "q" similar blocks: Nbi,Nb2,...,Nbq. Each block has the same structure.

Using the ideal op amp model, and the same reasoning as before, it is easy to

show that this circuit realizes (4) exactly.

If any ku in (4) is negative, the modification similar to those shown in Fig. 7

should be made on the corresponding Nbi block.

Finally, to form a (p+q)-port transformer we connect "p" (l+q)-port

transformers together. Each of the "p" blocks NvN2t"^Nq corresponds to a

column of (2). When they are connected in parallel across the q-port as shown in

Fig.9, the whole network N of Fig.9 realizes (l). Thus the realization of a (p+q)-

port transformer has been completed.
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3. Circuit realization: Scattering-matrix approach

Any linear passive n-port N may be completely specified by an arbitrarily

assigned reference resistance matrix*

R =

^1 • . . 0
. r2

6 '.

and an associated scattering matrix

sll s12 . sln

=

s21 s22 . . s2n

sn I snZ • ' srtn

In this case N is characterized by:

where a and b are defined as:

b=|H

b=Sa

^rfri+riii)
-j=={v2+r2i2)

ly \ •f^iVn+rnTn)

1 f—j=\v2-r2z2)
vrg

1 , '

1

(5)

(6)

(?)

(8)

(9)

Equation (7) can be realized by the circuit shown in Fig. 10[8]. Here, the block M
is the circuit realization of

Joutj 771 = 1,2,. ..,71

♦ The components Tl,r2,...,rn of R are usually called the port reference or normalization
numbers.

(10)
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For a linear resistive n-port N such as a (p+q)-port transformer, the elements of

S are real scalars. Therefore in this case v^ (m=l,2,...,n) can be synthesized

using a combination of inverting amplifiers, non-inverting amplifiers, and sum

ming circuits, all of which are easily designed using op amps and resistors.

To apply this approach to a (p+q)-port transformer, we first convert (l) to

the corresponding expression (7). From Section 2 we have seen that a (p+q)-

port transformer can be synthesized by connecting "p" (l+q)-port transformers

together. Also, for another reason that will be made clear soon, we will start by

considering a (l+q)-port transformer with the constitutive relation (4). From

[3] we have the following general formula for transforming a given n-port

representation (e. g., hybrid matrix H in (4) ) into any other representation (e.

g., scattering matrix S).*

A' = [(a'a+/3'c)A+(a'b+/?'d)][(7a+<5'c)A+(7b+(5'd)]-1

In this particular case, we have

A = H =

P fcu k2\ . . kqi
~"/cii 0 0
-*2i 0 0

-A:?1 0 0

A'= S

10
00

a=d =

b=c =

00

00
0 1

.0 1

a' = 7 =K0'5

£' = -^s

6' = £*-
• Here we adopted the same notatins as in [3].

(11)

(12)

(13)

(14)

(15)

(16)

(1?)

(18)



s=

where

R°-5=

8-

6'=^R05

Vf70
0^r~2

1

v^i
R-0-5=

00

Vrg+1

y/TqTl

Substituting(l2)-(20)into(11),weget

v$THk2l
22vf72%^7

*n^1
22vF7

^21"V^i"_

*gi>^g»i

2v^7

iL
2Vn

0

2Vr~7I

2

2

~^21V^a

-*»^+i

11=21

2Vr72Vf7

2V?^

(18)

(19)

(20)

ii_
1-1

2Vf;

2V7-«+l

IngeneraleveryelementofSwillbeafunctionof(rltr2Tg^k^k^kq]).
However,ifwechoose

(21)



7*2 =
k211

r,

r3= WK2\
' » rg +l - 1.2«?1

(22)

as the port normalization numbers, then (21) can be simplified dramatically as
follow:

S =

g-l 2 2 . 2

2 q -1 -2 . . -2

1 2 -2 g-l . . -2

g+i •
.

, 2 -2 -2 . • g-l

(23)

which is independent from (rltr2 rq+l',kn,k2l,...,kql). This property will prove
most convenient in building and adjusting the transformer. This is the reason

why we synthesize the (l+q)-port transformer first.

The scattering-matrix approach for realizing the constitutive relation (l)

can now be summarized as follows:

(1) Partition the matrix (2) into "p" columns. For each column i

(i=l,2 p) do steps (2) and (3).

(2) Choose an appropriate value of r* (for example, 1K0 or lOKfi). Choose

the elements of (5) as follows:

i

0

«*) =

Ti 0

7\

k2u
(24)

k2-

(3) Using (23) and (24), build a (l+q)-port transformer, as indicated in

Fig. 11 . Depending on the signs and values of each k^

(j=l,2 q;i=l,2 p), the circuit inside the Mt block will have different

structures. In Appendix 1 we give an example of the actual circuit real

ization of a (l+2)-port transformer.

(4) Connect these "p" (l+q)-ports together as shown in Fig.9 to form the

complete (p+q)-port transformer.
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4. Grounded-tcKloating input conversion

If a floating input voltage rather than a grounded voltage is desired, the

grounded-to-floating converters (Fig. 12) can be used[9]. This is basically a

differential-to-single-ended convertor modified such that the port current con

straints are also satisfied.

5. A comparison of the two approaches

Both approaches realize the constitutive relation (l). Their frequency

range and voltage/current range are similar. Both depends on the op amps in
the circuit.

Structurally the direct approach is better. It has the following advantages:

(1) It uses much fewer op amps and the resulting circuit is much simpler.

(2) The turns-ratio matrix Kis easier to adjust in this approach than in the
other. To adjust a single element A^- of K, we need only adjust two
resistors (see Fig. 8). In the scattering-matrix approach, to adjust an
element ki}-, usually many resistors have to be changed. Besides, in the

direct approach, for each element fcy of K, one resistor controls the
voltage ratio, and the other controls the current ratio. Since the vol

tage ratio and the corresponding current ratio need not be equal, the

direct approach can be easily extended to realize the following more

general constitutive relation:

o kJU
1Q o]W (25)

Here, the (pxq) matrix K„ and the (qxp) matrix K: are independent and
include

as a special case. This property provides the possibility of using the

direct approach to realize a wider variety of n-port resistors.

(3) The direct approach results in a unified circuit structure for different

values of p and q, while the other does not. Therefore the former is more

suitable to be integrated in module form.
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But, concerning the load ranges, the scattering-matrix approach has its

own advantage too. Since both approaches are based on op amps, it is a crucial

problem to avoid oscillations. To determine whether an active n-port will oscil

late or not under certain termination conditions, we apply the following concept

of absolute stability [6,7]:

Definition:

A two-port N is said to be absolutely stable if all natural frequencies of the

terminated two-port (Fig.13) have negative real parts for any pair of passive

terminations yx and yz .

If the active two-port in question has a Y-matrix representation, the criteria

for absolute stability are the so called Llewellyn's conditions:

gu = Re[yn(jo0)] > 0

g22 = Re[y22(ja0)]>0 (26)

_ 2c;nc;g2-Re(y12ygl)
7] - : > 1

11/122/211

where rj is called the stability parameter. A two-port is absolutely stable if and

only if Llewellyn's conditions are satisfied for all q (0<u<°°).

For Z, H and G parameters the correspoding Llewellyn's conditions have

similar forms[10].

For simplicity we will analyse and compare the absolute stability of both

approaches for the case p=q=l only.

The (l+l)-port transformer of the direct approach is shown in Fig.5 . For

each op amp we use a single-pole model (Fig.14). For the op amp Ai, A2 and A$

(LM301) we choose the following parameters:

a = 200000 , r = 1KQ , c = 25fj,f

Since the op amp A4 (LM310), used in the voltage follower, has a much better

frequency response than the other op amps, we simply choose

a = 1 , r=c=0

Using these models for each op amp in Fig.5, we can easily check Llewellyn's

condition using a standard computer simulation program, such as SPICE. A

computer output sample for the (l+l)-port transformer realized by the direct

approach with A: = 1 is given in Table 1.
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Table 1

A computer output checking Llewellyn's

conditions for the (l+l)-port transformer

realized by the direct approach

I

f.Hz 0n 9zz V

0 1.667e+01 1.667e+01 1.000e+00

1 1.839e+01 1.639e+01 1.000e+00

10 6.146e+00 6.146e+00 1.000e+00

100 9.680e-02 9.616e-02 1.000e+00

IK 1.073e-03 4.722e-04 1.000e+00

10K 1.097e-04 -4.894e-04 0.9989e+00

100K 1.001e-04 -4.707e-04 0.8928e+00

1M 1.002e-04 5.001e-05 1.724e+00

10M 1.000e-04 9.999e-05 3.058e+04

100M l.OGie-04 i.C00e-04 3.047e+08 ;

Note that at some frequencies (e.g. f=10KHz and f=100KHz) Llewellyn's con

ditions are not satisfied (g&KO). Hance this circuit is not absolutely stable. It is

potentially unstable for some passive terminations.

Next we would like to know for which terminations this circuit will be

unstable. Since the most commonly used terminations are resistors, we choose

two passive linear resistors as terminations to find out for which ranges (if any)

the circuit would be unstable. When we connect two resistors at the two ports as
shown in Fig. 15, the total admittance seen from 1-1' is

—+ txy
Y - JL-+ Rz

Rt
•+V22

(27)

where tay-yny22--yl2y2l . If Re(rlO"wo))<0. this circuit will oscillate when a

current source is applied across 1-1'. This means that the natural frequencies

of the augmented two-port are not restricted to the open-left half complex fre

quency plane. Therefore, whenever Yx of (27) has negative real part at any o
(0^o<«>) for some Rx and R2, the two-port is unstable for the particular termina
tions Rx and R2. Likewise, the total admittance seen from 2-2' is
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1/22

*=-k* -^z— (28)
If Re(7g)<0» the augmented two-port is unstable. Using the values of
Vii»yi2«y2i-y22 calculated from a computer program (the real parts of yn and

1/22 are listed in Table 1 for 10 sampled frequencies ) for different values of Rx

and R2 (0.01 fi ,0.1 Q ,1 Q ,10 Q ,100 Q ,1K Q ,10K Q ,100K Q ,1M 0 and 10M Q ),

l^and}^ have been computed using (27) and (28). Whenever Re^^O and/or

Re(y2)<0 the computer prints out a symbol indicating oscillations. Fig.16 is a

computer output for the (l+l)-port transformer with k = 1 .

These results have also been verified experimentally. In the laboratory, for

different values of Rx and R2 (short circuit, 1 Q ,10 Q ,100 Q ,1K Q ,10K Q ,100K Q

,1M fi and open circuit) we made measurements for the circuit in Fig. 15. For

some values of Rx and R2 oscillations across Rx and Rz have been observed.

However, because of the discrepancy among different op amps, including op

amps having identical model numbers, oscillations have been observed for

different values of Rx and R2. Fig. 17 gives one pattern of experimental results.

Fig. 17 is very close to Fig. 16.

We repeat the same analysis for the (l+l)-port transformer realized by the

scattering-matrix approach. A computer output checking Llewellyn's condi

tions is shown in Table 2. Note that Llewellyn's conditions are almost always

satisfied, except for some frequencies where the stability parameter r\ is equal

to 1. However, as shown in Appendix 2, when 77=1, no resistive terminations can

make the two-port unstable. Hence, if we restrict the terminations to resistors,

the two-port is actually absolutely stable. In the laboratory, we did the same

measurements as in the direct approach. In agreement with the computational

results, no oscillations were observed experimentally. Therefore, with respect

to absolute stability the scattering-matrix approach is better. However, for

many practical applications, the termination connected to the q-port is a vol

tage source, which has very low output impedance. Hence, R2 is near to zero.

According to Fig. 16 and Fig. 17, the (l+l)-port transformer realized by the direct

approach is also stable in this case.

+ Ay
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Table 2

A computer output checking Llewellyn's

conditions for the (l+l)-port transformer

realized by the scattering-matrix approach

f.Hz 0n 9zz V

0 5.714e+00 5.714e+00 1.000e+00

1 5.613e+00 5.613e+00 1.000e+00

10 2.038e+00 2.038e+00 1.000e+00

100 3.151e-02 3.151e-02 1.000e+00

IK 3.495e-04 3.495e-04 1.000e+00

10K 3.657e-04 3.657e-04 1.000e+00

100K 3.385e-05 3.385e-05 1.001e+00

1M 7.340e-05 7.340e-05 3.321e+00

10M 1.000e-04 1.000e-04 1.952e+03

100M 1.000e-04 1.000e-G4 1.94'.£ + 06 :
1

On the other hand, although the (l+l)-port transformer realized by the

scattering approach is stable for any pair of passive resistive terminations,

there is no guarantee that it will also be stable for active terminations. Actually

we have observed oscillations when some active resistors were connected to it.

As will be seen in the next section, two-terminal active resistors are needed for

the n-port piecewise-linear resistor synthesis problem. Fortunately the (p+q)-

port transformer realized by the direct approach is stable for this situation.

6. Applications of the (p+q)-port transformer

6.1. Piecemse-linear n-port resistor synthesis

As pointed out in[2], every reciprocal n-port resistor represented by a con
tinuous n-dimentional piecewise-linear func tion

ix = ai+blivl+...-rblnvn-rYl9ik\avciVi'r..-+Ciiknvn-plk
*=i

(29)
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in =cLn-rbnivl-r...-rbnnvn +^gnk\avklvl+...+a7lknvn^nk
k = l

is realizable by a circuit containing only 2-terminal piecewise-linear resistors

and a (p+q)-port transformer with q=n. An explicit circuit realization is given in

[2] without physically building it. Here we present a numerical example which
was confirmed by experimental results:

Suppose we wish to realize a 2-port resistor described by:

H- " r+ — + — - gHvi + —- ^ + 4^ 2^1 +V2 + 2^ (30)

„•- lJ_VlJ.'U2 lj J_vl lnlil _,_ j. 1, /olX
*• = ~ 8"+ T+ T~ 4^ + I"" 2^ + 2"! 2^ +v« + 2^ (31)

which is reciprocal according to[2].

The basic building blocks besides the (p+q)-port transformer consist of 2-

terminal voltage-controlled resistors described by

i = a+bv+g \v-p\ (32)

where a, b, g and 0 are real numbers.

In order to realize (30) and (31), let us try to use two such resistors, i.e.

Rx : i = ai+biv-¥gi\v-fii\ (33)

R2: i =a2+b2v+g2\v-p2\ (34)

and a (2+2)-port transformer, whose turns-ratio matrix is

K =
kn k12

k2i k22 (35)

If we connect the two resistors across the p-ports and two voltage sources

across the q-ports as shown in Fig. 18, we would obtain

**! = a i+61(^11^1+^21^2)+0i Î 11^1+^21^2-/511 (36)

*j?2 = a2+62(A:12i;1+A:22i'2)+Sf2l<t12T;1+A:22T;2-/?2i (37)

and

ix -kniR^rkl2iRz
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= {knal+kl2a2)+{k2lbl+k22b2)vx+{kuk2lbl+kl2k22b2)v2 (38)

+* 110 i I&i i^ i+* 21^2-/?i! +& \z921 k \zv i+k22v2-p2 i

i2 = A^i^+^iffg

= (kziai-rkzza^+ikukubi+kxkttb^Vi+ik^b^kj&b^Vz (39)

+^21011^11^1+^21^2-^11 +^22021 &12^ 1+^22^2-02i

Comparing (38) and (39) with (30) and (31), we can determine all coefficients in

(33), (34), and (35). They are:

kn = 1 , kx2 = —, k2l = —, &22 = 1

aj =-—, a2 = 0 , &!=—, 62 = 0

0i = " g-. 02 = J". 0i = 2"' ft = ~2~

To build /?! and i?2 • we adopted the technique from[9]. The resulting oscil
lograph pictures of characteristics of Rx and R2 are shown in Fig. 19.

The final circuit is obtained by connecting Rx and R2 across a (2+2)-port

transformer having a turns-ratio matrix

ii
1 2

K = (40)

as shown in Fig.18. While v2 is kept constant, the v1-il characteristics are

measured. Similarly, the v2-i2 characteristics are measured while vx is kept
constant. These pictures are shown in Fig.20 and Fig.21. The experimental
results agree closely with the theoretical predictions.

6.2. Nonlinear programming

A general nonlinear programming problem can be stated as follow:

Minimize a scalar objective function <p{v) subject to the inequality con
straints. •*

• V^ 0 means Vj >: 0 for all j.
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vs>0 (41)

f(v>:0 (42)

where vis a q-vector and I is ap-vector.

If (p is a concave function and each ft is a convex function, the program is

called concave program. Among the class of concave programs, there are two

specially interesting subclasses: linear program and quadratic program. Actu

ally the former is only a special case of the latter. For the quadratic program

ming problem, the objective function is:

<p{v)=}Tv + p-v^Gv (44)

where j is a q-vector and G is a qxq positive semi-define symmetric real

matrix.** The constraints are:

v ^ 0 , f(v) = Av-e => 0 (45)

where e is a p-vector and A is a pxq matrix.

Using circuit simulation, we can give (44) a very good physical interpreta

tion. The circuit of Fig.22 consists of a (p+q)-port transformer, voltage sources,

current sources, ideal diodes and resistors. The bold lines denote repeated cir

cuits.

Clearly, this circuit satisfies all the constraints of (45). Every item of (44)

and (45) has a counterpart in this circuit: f represents the voltages across the

diodes Di. v represents the voltages across the diodes J^, j represents the

current sources, e represents the voltage sources, G is the symmetric conduc

tance matrix and A is the transpose of the turns-ratio matrix Kof the (p+q)-port

transformer. In Appendix 3, we show that <p(v) of (44) is just the total co-content

of this circuit. It follows from the stationary co-content theorem[3,ll] that the

operating point of this circuit is a stationary point of the total co-content. More

over, since ^(v) in (44) is concave and each fi in (45) is convex, p(v) has &global

minimum which coincides with the unique stationary point of <p. Therefore the

solution of this circuit gives the minimum of (44).

We have also verified this conclusion experimentally. To realize the ideal

diodes and current sources, we adopted the techniques from [9]. For example,

♦• When G = 0 , it reduces to a linear program.
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Fig.23 gives the circuit realization of a "biased" ideal diods and the oscillograph

picture of its v —i characteristic.

To be specific, suppose the function to be minimized is

<p(v) =vl+2v2+^{v1v2] 2 -1

-1 2

=Vx-r2v2+V f —V iV2+V§

subject to the constraints

"i

v^O

v 2^0

/1=^1+2^2-1^0

(46)

(47)

/ 2= 2^1+^2-2^0

The physical circuit simulating (46)-(47) is shown in Fig.24.* The current

sources and resistances have been normalized to /0 and RQ where

I0=Q.lmA R0=10KQ

The mathematical solutions of this problem are:

«!= f-= 1.143,

The experimental results are

vx = 1.177,

v2 = ~-= 1.429a 7

v2 = 1.467

The slight discrepancy in the answers is due to inperfections of the circuit com
ponents.

•For the complete circuit, see Appendix 4.
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7. Appendix

7.1. Appendix 1: An example of a scattering-matrix approach (l+2)-port
transformer

Suppose the turns-ratio matrix K is given as

K =
ku

k 21

Substituting q =2 into (23) for n=3, we obtain the scattering matrix

r

We choose

R =

S =

1_ 2_ 2_
3 3 3

2 1-2

3 3 3

2 -2 1

3 3 3

r07*! 0 0

0 r2 0

0 0 r3

o 2Sl o

12
k 9'21

Substituting (A2) and (A3) into (10) yields

1 . 2*n
ini ~ 3~v°uti "~3—^0trf2

2 _,_ 1
**8 = MTT,;"rfi+ a~v«*«~3k n

2

3

2*ii

2*21
3 Vouis

2*gl

3*n V8U«»

,<n3" 3*,, v«*i21 3* 21
V0Ut2 + Tj-^OTtfg

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

Equations (A4), (A5) and (A6) can be realized by the circuits in Fig.Al . The

(l+2)-port transformer is then synthesized as shown in Fig.A2 .
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7.2. Appendix 2: Stability analysis for the case rj = 1

Suppose the Y parameters of the two-port N and the two terminations

evaluated at frequency j Oq are:

Vii =0ii+;&u

V12 = 9iz+Jbiz

1/21 = 9zi+JbZl

2/22 =flf22+;&22

yi =ffi+;6i

3/2 = 9z+j*>2

Define:

Then we have

M -: RelyizVzi]

N =•lm[yl2y2l]

L = iVi2l/2i!

a = M

'" 2^11

/? = bzZ 2gn

,= L
2pn

„_ 29m9zz-M 9zz 2gn a
77 " Z = £ =7

2^ii

Therefore r\ = 1 means a = 7. When port 2-2' is terminated by the admittance
y2, the input admittance Yn (Fig.A3) can be expressed as:

v - „, I/122/21
Mi -3/11-

V22+V2

and hence the real part of Yn can be written as:



If we choose

21

r _„ M(g2+g22)+N(b2+b22)
Gn-gU~ (9z+9zz)*H*>z+b22)2 (A?)

yz(ju0) =0+j(^- 622)

then from (A7) we get

N2
Mg22+

0.1 =P., ^~= ^—(a=-y) =0
*9u *g n

Since now yu = 0+jBn is purely reactive, we can choose a passive admittance

t/i = O—jBu to let the over-all driving-point admittance y"i1(7^0) = 0 • Hence

Zu has a pole at jcjq and therefore the circuit is potentially unstable. On the

other hand, if we choose any y2 with <72>0, then from (A7) we will get Gu>0 .

Therefore there is no passive yx which can render Yu - 0 • We conclude there

fore that only reactive terminations yx and y2 can render the circuit unstable

when 77=1.

7.3. Appendix 3: Total co-content of the circuit in Fig.22

The stationary co-content theorem states[3,ll]:

In a network N containing only voltage sources and voltage-controlled ele

ments (including current sources), a twig voltage vector vp is an operating

point of N if and only if vr is a stationary point of the total co-content

function G(yf), where G is defined as the sum of the co-contents of all ele

ments in N except voltage sources.

In the circuit of Fig.22, voltages of all branches can be determined in terms

of v and e. Since the components of e are constants, v is a complete set of vari-

ables[l,ll]. The total co-content is therefore a function of v . In this circuit

there are five types of elements: voltage source, current source, ideal diode,

linear resistor and (p+q)-port transformer.

An ideal diode (v>0, i=0; v=Q, £<0) is neither voltage-controlled nor

current-controlled. But if we connect a small resistor r in series with it, it will

_ TV
become voltage-controlled. Its co-content will be Ga = „ . In the ideal situa

tion, r-»0, hence Ga->0.
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A (p+q)-port transformer consists of "(pxg)" 2-port ideal transformers.

Even though the 2-port ideal transformer (Fig.4) is not a voltage-controlled ele

ment, it has a well defined co-content; namely,

«o vb vb vb

Gt = fiadva + f%dvb = fkiadvb - fkiadvb = 0
ooo o

Hence the co-content of the (p+q)-port transformer is also zero. Therefore the

total co-content is contributed only by current sources and resistors. The co-

content of the current source j is:

V

Gj{v) - fjdv =jv (A8)
o

The co-content of the resistor r (or conductor g) is:

Gg(v) =fidv =Z£- (A9)
o tf

Summing ail co-contents given by (A8) and (A9) and using a vector notation, we
obtain the total co-content;

G(v) =jfv+ gVGv

which is (44).

7.4. Appendix 4: Complete circuit realization of fig. 24

Acomplete realization of the circuit in Fig.24 is shown in Fig.A4. The circuit
inside broken lines is a (2+2)-port transformer realized by the direct approach
with *u = *22 = 1 , *i2 = *2i = 0.5 . The other parts contain ideal diodes, biased

ideal diodes, current sources and resistances. All dc voltage sources in this cir
cuit (+1V,+2V,-10V,-12V) can be obtained from the +15V and -15V sources using
circuits similar to the dc source in Fig.23(b).
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Figure captions

Fig.1 A (p+q)-port transformer.

Fig.2 Simplified notation of a (p+q)-port transformer.

Fig.3 Vector's notation of a (p+q)-port transformer.

Fig.4 A (l+l)-port transformer.

Fig.5 Circuit realizing a (l+l)-port transformer.

Fig.6 Operational amplifier and its ideal model.

Fig.7 Circuit realizing a (l+l)-port transformer with negative k.

Fig.8 Circuit realizing a (l+q)-port transformer.

Fig.9 Block diagram of a (p+q)-port transformer formed by interconnection of
"p" (l+q)-port transformers.

Fig.10 Circuit realizing the scattering matrix of a n-port, where Mis the realiza
tion of:

Vinm=y/r^2_lsTnj-j=r-vouij , m=l,2,...,n

Fig.11 Scattering-matrix approach realization of a (l+q)-port transformer,
where Mi is the realization of:

ff+i i

yinmi=^/r^2lsTnji /— *Wfl . m=l,2,...,g +1
J=l vT^ **

Fig.12 A grounded-to-floating converter.

Fig. 13 A terminated two-port.

Fig.14 A single-pole op amp model.

Fig. 15 A terminated (l+l)-port transformer.

Fig. 16 Computer output indicating unstable ranges of loads.

Fig. 17 Experimental results. Area where oscillations have been observed are
shown hatched.

Fig. 18 The connection of sources and loads across a (2+2)-port transformer.

Fig.19 The v-i oscillograph pictures of Rx and R2.
Horizontal scale: 2V/div , Vertical scale: 0.2mA/div.

(a) ^ :*=-!-+ 2L- L\v - |h , (b)R2:i=±)v +-|h



Fig. 20 i/i-*! characteristic measured by holding v2 constant.
Horizontal scale: 2V/div , Vertical scale: 0.2mA/div .

(a) «, =-i,

The theoretical result from (30) is ix =- f-+ ^— h\vi~ %-\ +i-| ^-|
(b) i/8 = 0.

The theoretical result from (30) is ^ =- j-+ ^— l_jVl-l_j+i-]^iL+ Ij

(c) V2 =^

The theoretical result from (30) is ix =- |-+ ^— ^vi - h~\ +tH "5^+ !|
odd 4 4 &

Fig. 21 v2—i2 characteristic measured by holding i/j constant.

Horizontal scale: 2V/div , Vertical scale: 0.2mA/div.

(a) i»,--i,

The theoretical result from (31) is i2 =- ^-+ ^— ^| ^— 1| +4-1^2+ ^H
(b) Vl = 0.

The theoretical result from (31) is i2 = - ~+ -^-- -H -^-- ;=-; +7^-1^2+ 75"!
8 o 4 c c c c

(c) «,= ii

The theoretical result from (31) is i2 = -= -H -=H + tH^2+ tHv / <: 8 4 2 2*4

Fig. 22 Circuit simulating a quadratic program.

Fig. 23
(a) A biased ideal diode to be realized.
(b) Circuit realization of (a).
(c) v-i characteristics of the circuit in (b).

Fig.24 Circuit for solving the quadratic-programming problem defined by (46)
and (47).

Fig.Al
(a) Circuit realizing Equation (A4).
(b) Circuit realizing Equation (A5).
(c) Circuit realizing Equation (A6).

Fig.A2 The complete circuit of a (l+2)-port transformer realized by the scat
tering matrix approach.

Fig.A3 A terminated two-port.

Fig.A4 The complete circuit of Fig.24.
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