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Abstract

In a sharp departure from the conventional approaches to the
problem of meaning representation in natural languages, test-
score semantics is based on the premise that almost everything
that relates to natural languages is a matter of degree. Thus,
in test-score semantics, predicates, propositions and other
types of linguistic entities are treated as collections of elas-
tic constraints on a set of cbjects or relations in a universe
of discourse. Viewed in this perspective, the meaning of a lin-
guistic entity may be defined by (a) identifying the constraints
which are implicit or explicit in the entity in question; (b)
describing the tests that must be performed to ascertain the
degree to which each constraint is satisfied; and (c) specifying
the manner in which the degrees in gquestion or, equivalently,
the partial test scores are to be aggregated to yield an overall
test score. In general, the overall test score is a vector whose
components are numbers in the unit interval or possibility/prob-
ability distributions over this interval.

The first step in the representation of the meaning of a .
given proposition involves the construction of a relational data-
base in which the meaning of constituent relations and their at-
tributes is assumed to be known. The choice of the database af-
fects the explanatory effectiveness of the translation process
and is governed by the knowledge profile of the intended user of
the translation. The test procedure -- which is regarded as the
representation of the meaning of the proposition -- acts on the
database and returns an overall test score which is interpreted
as the compatibility of p with the database.

Test-score semantics is sufficiently general to allow the
translation of almost any proposition in a natural language. How-
ever, the price of generality is the difficulty of writing a
program which could represent the meaning of a given proposition
without recourse to human assistance.

To Professor Max Black
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1, INTRODUCTION

There are some philosophers of language who believe, as
MONTAGUE did [75], that the construction of a rigorous mathe-
matical theory of natural languages is an attainable objective.
An opposing point of view which is articulated in the present
paper is that no mathematical theory based on two-valued logic
is8 capable of mirroring the elasticity, ambiguity and context-
dependence which set natural languages so far apart from the
synthetic models associated with formal syntax and set~theo-
retic semantics.

The basis for our contention is that almost everything that
is agsocciated with natural languages 15 a matter of degree.
This applies, in particular, to the issue of grammaticality ang,
even more so, to the notion of meaning. Thus, any logical sys-
tem in which there are no gradations of truth and membership is
ipso facto unsuitable as a framework for a comprehensive theory
of natural languages and, especially, for the representation of
meaning, knowledge and strength of belief.

As an alternative to the approaches based on two~valued
logic, we have proposed in [139] a meaning-representation lan-
guage PRUP1 in which an essential use is made of what may be
described as possibility theory [138], [140). This theory --
which is distinct from the bivalent theories of possibility
related to modal logic and possible-world semantics (47), [(92) --
is based on the concept of a possibility distribution, which in
turn is analogous to and yet distinct from that of a probabilipy
distribution. In effect, the basic idea underlying PRUF is that
the concept of a possibility distribution provides a natural
mechanism for the representation of much of the imprecision and
lack of specificity which is intrinsic in communication between
humans. .

As will be seen in the sequel, the expressive power of PRUF
is substantially greater than that of predicate calculus, Mon-

1Actually PRUF is not just a language but a meaning-representa-

tion system which includes a language as one of its components.
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.

tague grammar, semantic networks, conceptual depehqency, and
other types of meaning-representation systems that are cur-
rently in use {27), [68), [70], [101]. In particular, PRUF
makes it possible to represent the ﬁeaning of propositions
which contain (a) fuzzy quantifiers, e.g., many, most, few,
almost all, etc.; (b) modifiers such as yery, more or less,
quite, rather, extremely, etc.; and (c) fuzzy qualifiers such
as guite true, not very likely, almost impossible, etc. How-
ever, the price of being able to translate almost any proposi-
tion in a natural language into PRUF is the difficulty of es-
tablishing a homomorphic connection between syntax and seman-
tics -- as is done in Montague grammar for fragments of Eng-
1ish, and in Knuth semantics and attributed grammars for prog-
ramming languages [57]. What this implies is that, although

it is relatively easy to teach a human subject to translate
from a natural language into PRUF, it would be very hard to
write a program that could perform similarly without human as-
gistance or intervention.

The semantics underlying PRUF is what we shall refer to as
test-score semantics -- a semantics in which the concept of ag-
gregation of test scores plays a central role. Test-score seman-
tics subsumes most of the semantical systems which have been
proposed for natural languages and, in particular, includes as
limiting cases both truth-conditional and possible-world seman-
tics (701, [68}, [18].

The basic idea behind test-score semantics may be supmarized
as follows. An entity in linguistic discourse, e.g., a predicate,
a proposition, a question or a command, has, in general, the ef-
fect of inducing elastic constraints on a set of objects or re-
lations in a universe of discourse. The meaning os such an en-
tity, then, may be defined by (a) identifying the constraints
which are induced by the entity; (b) describing the tests that
must be performed to ascertain the degxee‘to which each con-
straint is satisfied; and (c) specifying the manner in which the
degrees in question or, equivalently, the partial test scores
are to be aggregated to yield an overall test score. Viewed in
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this perspective, then, the meaning of a linguistic entity in
a4 natural language may be identified with the testing of elas-
tic constraints which are implicit or explicit in the entity
in question.

We shall begin our exposition of PRUP and test-score seman-
tics with a brif review of some of the basic notions in pos-
8ibility theory which will be needed in later sections. A more
detailed exposition of possibility theory may be found in [138],
{1401, [83), [45], [130) and [26).2

2. THE CONCEPT OF POSSIBILITY DISTRIBUTION

Informally, let X be a variable which takes values in a set
U. Then, the possibility distribution of X, denoted by nx, is
the fuzzy set of possible values of X, with the understanding
that possibility is a matter of degree. Thus, if u is a pos—-
sible value of X, we shall write

Poss{X=u} = a }2.1)

to indicate that the possibility that X can take u as its value
is a, where a is a number in the interval [0, 1]

The function Ty ¢ U= [0,1) which associates with each
u € U the possibility that X can take u as its value is called
the pogsibility distribution function. Thus

Poss{X=u} = ny(w), ueu, ' (2.2)

where U is the domain of X. In effect, the possibility distribu-

tion function Ry is the membership function of the possibility
distribution nx.

280me of the definitions and examples in Section 2 are drawn

from [137) and [140].
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In general, a possibility distribution may be induced by a
physical constraint or, alternatively, may be epistemic in ori-
gin. To illustrate the difference, let X be the number of pas-
sengers that can be carried in Suppes' car, which is a five
passenger Mercedes. In this case, by identifying nx(u) with
the degree of ease with which u passengers can be put in Sup-
pes' car, the tabulation of n, may assume the following form

X 1 2 3 4 S 6 7 8 9 10

Ny 1 1 1 1 1 0.8 0.6 0.2 © (]

in which an entry such as (7,0.6) signifies that, by some ex-
plicit or 1mplici£ criterion, the degree of ease with which
7 passengers can be carried in Suppes' car is 0.6.

In the above example, the possibility distribution of X is
induced by a physical constraint on the number of passengers
that can be carried in Suppes' car. To illustrate the case
where the possibility distribution.of X is epistemic in origin,
i.e., reflects the state of knowledge about X, let X be Suppes'
height and let the information about Suppes' height be con-
veyed by the proposition

P A Suppes is tall, (2.3)

where tall is the label of a specified fuzzy subset of the inter-
val [0, 250 cm] which is characterized by its membership func-
tion Wparys with "TALL(“) representing the degree to which a
person whose height is u cm is tall in a specified context.

The connection between the variable X A Height (Suppes),
the proposition p A Suppes is tall, and the fuzzy set TALL3 is
provided by the so-called possibility postulate of possibility
theory [137), [139]), which for the example under consideration
implies that, in the absence of any information about X other

3He use uppercase letters to represent fuzzy sets and fuzzy rela-
tions.
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than that supplied by p, the possibility that X=u is numerical-
ly equal tS the grade of membership of u in TALL. Thus

Pogg{X=u} = nye(u) = Wparg (W), u € [0, 250]) (2.4)
or, equivalently,
_nHeight(Suppea) = TALL, (2.5)

where (2.5) is referred to as the possibility asgignment equa-
tion. In summary, we shall say that p translates into the pos-

8ibility assignment equation (2.5), i.e.,

Suppes is tall - nBeight(Suppes) = TALL, (2.6)

where the arrow ~ should be read as “"translates into."

More generally, a central idea in PRUF is that any proposi-
tion' in a natural language which may be put into the canonical
form

PANIis P, (2.7)

where N is the name of an object, a variable or a proposition,
may be interpreted as a characterization of the joint possi-
bility distribution of a collection of variables x1,...,xn which
are implicit or expliecit in P. Thus, in symbols, N is F.trans-
lates into .

NisF-n = F. (2.8)

(X.,, ...,xn)

The variables x,,...,xn which are constrained by the possibility
assignment equation will be referred to as the base variables
of p.



- - 287 -

Example. Consider the proposition
Nils has a large office
which may be exprassed as
P A Nils' office is large.

In this case, the implicit base variables are:
x1 = Length (Office(Nils))

X, = Width(Office(Nils))
and the possibility assignment equation assumes the form

T (Length (0ffice (Ni1s) ,Width (Office (Nils))) = LARGE, (2.9)
where LARGE is a fuzzy set or, equivalently, a fuzzy binary re-
lation in the product space LENGTH x WIDTH. Thus, (2.9) implies
that

Poss{Length (0Office(Nils)) = u, Width(Office(Nils)) = v} =
* VYrarce (Ur¥)e

where “LARGB(“'V) is the degree to which an office which is u
long and v wide is defined to be large in a specified context.

What is the difference between probability and possibility?
As the above exambles indicate, the concept of possibility is
an abstraction of our intuitive perception of ease of attain-
ment or the degree of compatibility, whereas the concept of
probability is rooted in the perception of likelihood, frequency,
proportion or strength of belief. Furthermore, as we shall see
in Section 3, the rules governing the manipulation of possibil-
ities are distinct from those which apply to probabilities.

An important aspect of the connection between probabilities
and possibilities relates to the fact that, in principle, they
are independent characterizations of uncertainty in the sense
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that from the knowledge of the possibility distribution of a
variable X we cannot deduce its probability distribution, and
vice-versa. For example, from the knowledge of the possibility
distribution of the number of passengers in Suppes' car we can-~
not deduce its probability distribution; nor can we deduce the
possibility distribution from the probability distribution of
the number of passengers. In general, however, we can make a
vague assertion to the effect that if the possibility that
X=u is small, then it is likely that the probability that X=u
is also small. However, from this it does not follow that high
possibility implies high probability, as is reflected in the
commonly used statements of the form "It is possible but not
probable that...."

If the translation of a proposition p in a natural language
is taken to be a possibility assignment equation as represented
(2.8), then a question that naturally arises is: How can the
base variables x,....,xn and their joint possibility distribu-
tion n(x1'...’xn) be determined from p?

At this juncture in the development of PRUF, we do not have
an algorithm for identifying the base variables in a given pro-
position. However, experience has shown that it is not difficult
for a human subject to acquire a facility for translating any
proposition within a broad class of propositions into a possi-
bility assignment equation. What is difficult, as was alluded
to already, is to mechanize this process completely, so that
the translation represented by (2.8) could be accomplished
without any human assistance. ’

In PRUF, the translation of a proposition may be either
focused4 or unfocused, with the focused translation leading, in
general, to a possibility assignment equation. The unfocused
translation -- of which the focused translation is a special
case =-- is based on test-score semantics and has the form of
(1) a collection of tests which are performed on a database in-
duced by the proposition; and (ii) a set of rules for aggre~-

4'rhe concept of focusing in test-score semantics differs from
that introduced by B. GROSZ [37] in the context of partitioned
semantic networks.



- 289 -

gating the partial test scores into an overall test score which
represents the compatibility of the given proposition with the
database. In what follows, we shall present a condensed exposi-
tion of test-score semantics and illustrate its use in PRUF by
a number of examples.

3. TEST-SCORE SEMANTICS: NATURE OF TESTS

To simplify our exposition of test-score semantics, it will
be convenient to focus our attention on the representation of
the meaning of propositions, with the understanding that the
basic ideas underlying test-score semantics are equally appli-
cable to predicates, questions, commands and most other types
of linguistic entities.

As will be seen in the sequel, the conceptual framework of
test-score semantics is rooted -- like that of truth-condition-
al semantics =- in our intuitive perception of meaning as a
collection of criteria for relating a linguistic entity to its
designation. More specifically, suppose that we wish to test
whether or not a human subject, H, understands the meaning of
a proposition p, e.g.} p A Laura is dancing with Irwin. A nat-
ural way of doing this would be to present H with a variety of
scenes (or worlds) depicting a joint activity of Laura and Ir-
win, and ask H to indicate, for each scene or world W, the de-
gree, c(W), to which W corresponds to or is compatible with H's
perception of the meaning of p. If H can do this correctly for
each W, then we may conclude that H understands the meaning of
p. And, more importantly, if H can articulate the tests which
H performs on W to arrive at c(W), then H not only understands
what p means ostensively, but can also precisiate the meaning
of p by a concretization of the test procedure.

In truth-conditional and possible-world semantics, the de-
gree of compatibility, c(W), is allowed to have one of two pos-
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sible values: {true, falsel or, equivalently, {pass, fail}. By
contrast, in test-score semantics, c(W) can be any point in a
linear or partially ordered set -- which for simplicity is usu-
ally taken to be the unit interval [0,1]). Furthermore, c(W) is
also allowed to be a probability or possibility distribution
over the unit interval or, more generally, a composition of
probability and possibility distributions.

Instead of dealing with scenes or worlds directly, it is
simpler and more effective to deal with their characterizations
in the form of state descriptions (CARNAP [17]) or, equivalent-
ly, as databases. In essense, then, we assume that H is pre-
sented, on the one hand, with a proposition p and, on the other,
with a database D, and that H performs a test, T, on D which
yields a test score, v. In symbols,

T = T(D)
(3.1)
= Comp(p,D),

where the test T may be viewed as a representation of the
meaning of p, and its test score, T, as a measure of the com-
patibility of p and D. Furthermore, viewed from the perspective
of truth-conditional semantics, T may be interpreted as the
truth-value of p given D, i.e.,

T = Tr{piD). ' (3.2)

Alternatively, p may be interpreted -- in the spirit of possi-~
ble-world semantics -- as the possibility of D given P, Ll.e.,

t = Poss{Dlp}. (3.3)

In general, a test, T, is composed of a number of constit-
uent tests, T1,...,Tn, and the overall test score, T, is the
result of aggregation of constituent test scores TqreoersTos
where Ty i=1,...,n, 18 the test ascore associated with Ti’ In
test-score semantics, the process of aggregation need not be
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carried to the extreme of yielding a single test score, i.e.,
a number in the interval [0,1). Thus, more generally, the ag-
gregated test score T may be a vector, T "‘ta""'tv" in
which each of the components is a number in the interval [o,1]
or a probability/possibility distribution over the unit inter-
val. In particular, the analysis of presuppositions requires

" the use of vector test scores to differentiate the results of
tests performed on presuppositions from those performed on
other constituents of the proposition under analysis.s

3.1. NOTATIONAL PRELIMINARIES

We shall assume that a database consists of a collection of
relations, each of which is represented by (a) its relational
frame, i.e., the name of the relation and the names of variables
(éolumnq); and (b) the data, i.e., the entries in the table. For
example,’the relational frame of the relation named POPULATION:

POPULATION Name

Minker
Rieger
Sanchez

may be expressed as POPULATION || Name | Age | Height |
or equivalently as POPULATION [Name; Age; Height].
Generally, we shall be dealing with fuzzy relations of the
6
form:

SThe idea of a vector-truth value was suggested earlier by the
author (see [60]). The concept of a vector test score as de-
fined in this paper provides a more general framwork for the
analysis of presuppositions than that of two-dimensional lan-
guages (HERZBERGER [43], McCAWLEY ([68], BERGMANN [11]).

6Here and elsewhere in the paper, the subscripts on variables
are raised for typographical convenience.
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t1 t2 . Ten | Be

. . . . .

in which Fok? k=1,...,n, i8 the entry in tth row and column

xk, and Y, is the grade of membership of the n-tuple T, A Foqeee
veeTon (or (rt1""'!tn)) in the fuzzy relation R. For example,
in the relation BIG

BIG Length (cm) width (cm - u

35 28 0.7
45 39 0.9

the entries in the second row signify that an object which is

45 cm long and 39 cm wide is defined to be big to the degree

0.9. In effect, R may be viewed as an elastic constraint on

the n-ary variable X 4 (X,,...,X ), with Uy 8 Up(EiqrecerTyy)

representing the degree to which an n-tuple (rtl""’rtn) of

values of x1....,xn satisfies the constraint in question. When

it is desirable to place in evidence that R is a constraint on

X, we shall express R as Rx or, more explicitly, as R(x1'...'xn).
Let 8 A (11,...,1k) be a subsequence of the }ndex sequence

(1,...,n), and let s8' denote the complementary subsequence

s' A (j,,....jm) (e.g., forn =5, s = (1,3,4) and s' = (2,5)).

In terms of such sequences, a k-tuple of the form (r11....,r1k),

where r is an arbitrary symbol, may be expressed in an abbrevi-

ated form as r(a) (or r(s)). Expressed in this notation, the

variable X(g) & (X340.000Xq,) will be referred to as a k-ary

subvariable of X A (XyreeasX ), with Xigry & (xj1,...,xjm) being

complementary to x(

8)
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3.2. PROJECTION

An operation which plays a basic role in the manipulation
of fuzzy relations and possibility distributions i1s that of
projection. Specifically, assume that xi, i=1...,n, takes
values in the universe of discourse U, (X;) A U,. Then, the
projection of R on the domain U(s) A Ul1x...xuik is expressed

as:7

Projy g R & x R (3.4)

oo oxX
i i,

1
A x(s)R

The grade of membership of a k-tuple u(s) A (u; ,...,uy )
1 k

in R is defined by

X(s)

uX(s)R( 1yr0ces 1 ) A sup, g1y Ug(Ugreeasupd, (3.5)

where the notation 8UP, (g') signifies that the supremum is

taken over the domain of the complementary subvariable

u(s') A (u31'°"'“jm)' Stated more simply, the operation of
projection on 011 ...xuik has the effect of deleting the com-
ponents uJ ,...,uj in the n-tuple (u1,....u ) and associating
with the resultung k-tuple the highest grade of membership among
all n-tuples in R in which x1‘ = \111,...,)(‘_k = uik. To illus-
trate, 1if R is given as

R X1 X2 X3 u
a a a 0.7
a a b 0.8
a b a 0.2
a b b 1
b a a 0.4
b b a 0.6

This notation for projections is patterned after the notation
employed in the gquery language SQUARE [14].



- 294 -

then the projections of R on Uy X o, and U, are:

R R
X1xX2 X1 x2 '3 X3 X3 u
a a 0.8 a 0.7
a b 1 b 1
b a 0.4
b b 0.6

Note that from the definition of projection (3.5) it follows at
once that

x@? ¥ x(@) k@)™

provided every variable that is in the index sequence a is also
in the index sequence B.

3.3. PARTICULARIZATION

A basic operation on fuzzy relations which plays an impor-
tant role in test-score semantics is that of garticularization.8
Mor specifically, assume that R is an n-ary relation which rep-
resents a constraint on an n-ary variable X 4 (x1,...,xn). Now
suppose that we impose an additional constraint, G, on a sub-
variable of X, say X(s) 4 (x11,...,x‘k). Then, the additional
constraint on X may be viewed as a particularization of R, ex-

pressed in symbols as
n[x(s) is G) (3.6)
or, equivalentiy, in virtue of (2.8), as

Rl o, = Gl, (3.7

E—

In the case of nonfuzzy relations, particularizationIreduces to
what is commonly referred to as restriction or selection.
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where nx(s) is the possibility distribution of the subvariable
X(s).

Remark. In same cases it is necessary to differentiate between
two different interpretations of propositions of the form "X
is F." In what we shall refer to as the possibilistic (or dis-
Junctive) interpretation, the translation of "X is F" is nx =
= F. On the other hand, in the conjunctive interpretation,

"X is F" is interpreted as X = F, which in turn means that if
F is a fuzzy set expressed a39

F= u1/u1 + ... + "N/“N (3,8)

or, equivalently, as
F= I “1/“1 (3.9)

then each uy is a value of X to the degree uy.

On occasion, to differentiate between the disjunctive and
conjunctive interpretations, we shall employ the more explicit
notation

X = dis(F) in place of ﬂx s F (3.10)
and :

X = con(F) in place of X = F (3.11)

with the understanding that, unless stated to the contrary,
"X is F" should be interpreted as X = dis(F). An example illus-
trating the difference between disjunctive and conjunctive in-
terpretations is given in [139].

To give a concrete meaning to (3.7) it is convenient to
employ the concept of a row test. Specifically, let r, =
= (“1t"°"“nt'ut) be the tth row of R, where u

1t' o .'\Int:llt
are the values of x1,...,xn,u respectively. Furthermore, let

1n this notation, uj/uy signifies that uy is the grade of mem-

bership of u; in F, and + denotes the union rather than the
arithmetic sum.
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ug be the membership function of the fuzzy set G which appears
in (3.7), and let Ve be the grade of membership of Ty (s) in G,
i.e., *

Ve = UolTe(gy) . (3.12)

In terms of the parameters just defined, the row test in
question may be described as follows. First, determine the
degree to which rt(s) satisfies the particularizing constraint
"X(s) is G" by setting the text score equal to Vi and second,
combine u, and Ve by employing the min operator A, yielding
the aggregated test score

T = U, A \ (3.13)

Remark. The aggregation operator A (min) should be viewed as a
default choice when no alternative is specified. When an aggrega-
tion operator * other than min is specified (e.g., arithmetic
mean, product, geometric mean, etc.‘o) the expression for Ty
becomes '

Ty = B * Ve (3.14)

Once the aggregated test score is found for each row in R,
the particularized relation R[nx(s) = G] is readily constructed
by replacing u, in r, by T, resulting in the modified (n+1)-
tuple

. .
:t = (“":1- .o 'unt'tt) '

which represents the t™ row of R A R[nx(s) = G] and in which
Ty is expressed by (3.13) or, more generally, by (3.14).

1o'rhe closely related issue of various ways in which operations
on fuzzy sets may be defined has received considerable atten-
tign(%: ?he literature. See, in particular, [25], [S56]1, [131]
an: 2].
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A row test is compartmentalized when more than one partic-
ularizing constraint is involved, as in:

-

R(X(s) is F; X(v) is é]: (3.15)

where X(s) and X(v) are not necessarily disjoint subvariables
of X. In this case, let vér) and véc) be the test scores as-
sociated with the row tests "X(s) is F" and "X(v) is G," re—
spectively. Then, using the default definition of the aggrega-
tion operator *, the aggregated test score for r, may be ex-

pressed as

(), (3.16)

£ AV

ft - ut AV

Example. Consider a relation R defined by the table

R X1 ‘X2 X3 n
a a a 1
a b a . 0.8
b a a 0.6
b b b 0.3

which is particularized by the constraints

(X1.X2) is F

where F and G are defined by

F = 1/(8;8) + O.6/(b,a) + 002/(brb)
G = 0.3/(a,a) + .9/(a,b) + 0.7/(b,a) + 0.4/(b,b)

with the understanding that a term such as 0.6/(b,a) in F sig-
nifies that the grade of membership of the tuple (b,a) in F is

0.6.
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Applying the compartmentalized row test to the rows of R,
we obtain successively

v1(?) = 1; v4(G) = 0.3; Ty =1A140.3=0.3

vz(P) = 03 vz(G) = 0,7; = 0.8 A0A0.7=0

T2

v4(F) =0.6; v3tc) = 0.3; T, =0.6A0.640.3=0.3

0.3 A 0.2 A 0.4

v4(P) =0.2; v4(G) = 0.4; 0.2

T4

*
and hence R R(n =PF; I = G] is given by the
& Rilx .x,) (Xy,X,)
table

R X1 X2 X3 T
a a a 0.3
b a a 0.3
b b b 0.2

In the foregoing discussion, we have discussed the concepts
of projection and particularization in the context of operations
on relations. Inasmuch as a possibility distribution is a rela-
tion which acts as a disjunctive constraint on the values of a
variable, the operations of projection and particularization ap-

Ply equally well to possibility distributions. For example, we
may write

n, = ntn(x1'x2, = F; ﬂ(xz,x4) = G] (3.17)

to indicate that H1 is a possibility distribution which results
from particularizing the possibility distribution N1 with the
constraints '(x,,xz) is F" and (xz,x4) is G."
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3.4. PARTICULARIZATION/PROJECTION (TRANSDUCTION)

In test-score semantics, we usually deal with relations or
possibility distributions which are both particularized and
projected. For examples

x(w)RIX(s) is F; X(v) is G) (3.18)

which should be interpreted as a fuzzy relation R which is first
particularized and then projected. It should be noted, however,
that if s € w and v €« w, then (3.18) could also be interpreted
as a relation R which is first projected and then particularized.
It is easy to show that the latter interpretation leads to the,
same result by virtue of the distributivity of a(min) over

v (max) .

In what follows, we shall employ the suggestive term trans-
duction to refer to the combination of particularization and
projection. In essence, transduction may be viewed as a gener-
alization of the familiar operation of finding the value of a
function for a given value of its argument. In this light,

(3.18) may be read as "substitute F for X(s), G for X(v) and

get X(w)," with the understanding that the subgituttion of F

for X(s) and G for X(v) involves in actuality the gubstitution
of F and G for the possibility distributions of X(s) and X(V),
and reading the possibility distribution of X(w). In particular, -
in the special case of relations of the form

X ua[xj1 = a47 eeed sz- all (3.19)

X,o.%X, X
i im

1

in which a,,...,2, are specified values of the variables Xjqre.-
ceerXgps what is read is a fuzzy subset of 011‘~--x01m which is
a "section” of R with the planes Xy, = a1....,xjt = ag. More
particularly, an expression of the form

o = 3.20)
uR[x1 = agi ... Xy a) (



should be interpreted as "Read (or get or obtain) the grade of
membership of the n-tuple (a,,....an) in the fuzzy relation
RQ.

As an illustration, the following expressions should be
interpreted as indicated:

(a) AgePOPULATION[Name = Barbara].

Obtain Barbara's age from the relation POPULATION which
includes Name and Age among its variables. In this case,
Barbara is transduced into her age.

{(b) RIEND[Name1 = Marial.

Namezqu
Obtain the fuzzy set of Maria's friends from the fuzzy
relation FRIEND in which u is the degree to which Name2
is a friend of Name 1. In this example, Maria is trans-
duced into the fuzzy set of her friends.

(e) uFRIEND[Name1 = Lucia; Name2 = Richard].

Obtain from the relation FRIEND the degree to which Richard
is a friend of Lucia. Here Lucia and Richard are trans-
duced into their grade of friendship.

(@ LPOPULATION[I, . = YOUNG].

Namex
Obtain from POPULATION the fuzzy set of names of those who
are young. In this case, the fuzzy set YOUNG is trans-

duced into a fuzzy subset of the nonfuzzy set NamePOPULA‘rION.
A point that should be noted is that even though the rela-
tion POPULATION i8 nonfuzzy and has no u attribute, the
particularized relation POPULATION[nAge = YOUNG] is fuzzy

and has a u attribute which is the attribute referred to
in Name x u,
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3.5. CARDINALITY OF FUZ2Y SETS

How many lakes are there in California? wWhat is the propor-
tion of tall men among fat men? What is the meaning of "Brian
is much taller than most of Mildred's friends?" What is the
denotation of several red apples? The answers to questions of
this type hinge on the concept of cardinality of fuzzy sets or,
more generally, on the concept of measure. In what follows, we
shall give a definition of cardinality which serves to provide
a basis for testing the elastic constraints induced by fuzzy
quantifiers such as many, most, several, few, almost, all, etc.
The tests in question will be described in Sections 4 and 5.

As should be expected, the concept of cardinality of a fuz-
2y set is an extension of the count of elements of a crisp,
i.e., nonfuzzy, set. Specifically, assume, for simplicity, that
A is a fuzzy set expressed as

A= u..'/u1 + cee *+ un/un, (3.21)

where the v, i=1,...,n, are elements of a universe of dis-
course U. A simple way of extending the concept of cardinality
which was suggested by DeLuca and Termini [24] and which is
related to the notion of the probability measure of a fuzzy
event [132] is to form the arithmetic sum of the grades of mem-
bership. We shall refer to this sum, with or without a round-
off to the nearest integer, as the sigma-count or, equivalently,
as nonfuzzy cardinality of A. Thus, by definition,

n

LCOUNT (A) A): By (3.22)

i=1
For example
ICOUNT (0.6/a + 0.9/b + 1/c + 0.6/d + 0.2/e) = 3.

A less simple but perhaps more natural extension which was
suggested in [137] expresses the cardinality of a fuzzy set as
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a fuzzy number. Thus, let A be the a-level-set of A, i.e., the
nonfuzzy set defined by

Au A {utluh(u‘) >a}l,0<acx<1, uy €U, i=1,...,n,

where L A uA(u1), i =1,...,n, is the grade of membership of
uy in A. Then, as shown in [133}, A may be expressed in terms
of the Aa by the identity

A= X; aA; (3.24)

where £ stands for the union and aAu is a fuzzy set whose mem-
bership function is defined by

“aAa‘“) =a for u€ Aa (3.25)

= 0 elsewhere.

For example, if U = {a,b,c,d,e,f} and

A =0.6/a + 0.9/b + 1/c + 0.6/d + 0.2/e (3.26)
then
Ay = {c}
AO.g = {blc}
Ay g = {a,b,c,d}
Ao.z = {a.b.C'doe}

and (3.24) becomes
A= 1/c + 0.9/(b+c) + 0,6/(at+tb+c+d) + 0.2/ (a+b+c+d+e).

Now, let COUNT(A,) denote the count of elements of the non-
fuzzy set A - Then, the FGCount of A, where F stands for fuzzy
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and G stands for greater than, is defined as the fuzzy number
FGCount (A) A Z a/Count(Aa) (3.27)

with the understanding that any gap in the Count(A,) may be
filled by a lower count with the same a. For example, for A
defined by (3.26), we have

FGCount(A) = 1/1 + 0.9/2 + 0.6/4 + 0.2/5 '(3.28)
= 1/1 + 0.9/2 + 0.6/3 + 0.6/4 + 0.2/5.

It is of some help in understanding the significance of
(3.27) to interpret a term such as 0.6/4 in (3.28) as the as-
sertion:

The truth-value of the assertion that A contains at
least 4 elements is 0.6.

More generally, let Pp' 9p and Tnm be the propositions:
Pp A A contains at least m elements
9 A A contains at most m elements
and
T, 4 A contains no more and no less than m elements.

Furthermore, assume that the elements of A are sorted in des-
cending order, so that uﬁ < w if m 2 k. Then, the truth-values
of p;, q, and r, are given by [140]

Tr{pm} = Uy (3.29)
Trigy} = 1-u .4 (3.30)

= - 3.31)
Tr{rm} By A (1w ) . ( .
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These expressions provide a rationale for defining FGCount,
FLCount (L standing for less than), and FECount (E standing
for equal to) as follows.

Let A+ denote A sorted in descending order and let NA+
denote the fuzzy number resulting from replacing the mth ele-
ment in A+ by um/m and adding the element 1/0. For example, if

A =0.6/a+0.9/b+ 1/c + 0.6/d + 0.2/e (3.32)
then
At = 1/c + 0.9/b + 0.6/a + 0.6/d + 0.2/e (3.33)

NA+ = 1/0 + 1/1 + 0.9/2 + 0.6/3 + 0.6/4 + 0.2/5. (3.34)

In terms of this notation, the definition of FGCount(A)
stated earlier (3.27) may be expressed more succinctly as

FGCount (A) = NA+. (3.35)

In a similar vein, the definitions of FLCount(A) and FECount (A)
may be expressed as

FLCount(A) = (NA+)'e@1 (3.36)
FECount (A) = FGCount(A) N FLCount (A), (3.37)

where (NA+)' denotes the complement of NA+, © represents fuzzy
subtraction [136], [76], [26], and N is the operation of inter-
section.

A basic identity which relates the fuzzy cardinalities of
A, B, AN B and A U B may be expressed as

FGCount (AUB) @ FGCount(ANB) = FGCount(A) © FGCount(B),
(3.38)

where ® denotes fuzzy addition. For example, if

A =0.4/2 + 1/3 + 0.2/4
B =0.5/3+ 1/4 + 0.3/5
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then
AUB=0.4/2+ 1/3 + 1/4 + 0.3/5

ANB=0.5/3+0.2/4

FGCount (A) = 1/0 + 1/1 + 0.4/2 + 0.2/3

PGCount(B) = 1/0 + 1/1 + 0.5/2 + 0.3/3

FGCount (A) @ FGCount(B) =

= 1/0 + 1/1 + 1/2 + 0.5/3 + 0.4/4 + 0.3/5 + 0.2/6  (3.39)

FGCount (AUB) = 1/0 4+ 1/1 + 1/2 + 0.4/3 + 0.3/4

FGCount (ANB) = 1/0 + 0.5/1 + 0.2/2
and
FGCount (AUB) @ FGCount(ANB) = 1/0 + 1/1 + 1/2 + 0.5/3 +

+ 0.4/4 + 0.3/5 + 0.2/6

in agreement with (3.39).

In formulating tests for cardinality in Sections 4 and 5,
we shall be employing for the most part the definitions of
fCount and FGCount. Although the definitions of fuzzy cardi-
nality expressed by (3.27) and (3.35) are not simple enough to
be obvious on first exposure, the examples presented in Sec-
tion 5 suggest that the concept of fuzzy cardinality is a nat-
ural extension of the corresponding concept for crisp sets.

ly, TEST-SCORE SEMANTICS: MEANING REPRESENTATION

In the preceding section, we have discussed some of the
basic concepts which underlie the testing of fuzzy relations
in a relational database. In this and the following section
our attention will be focused on the principal issues relating
to the representation of the meaning of a proposition by the
testing of constraints which are induced by it.
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Let p be a proposition whose meaning we wish to represent.
The first question that arises is: What is the collection of
relational databases which should be used as the object of
testing? Once the answer to this question is arrived at, the
next question is: What are the tests to be performed and how
should their test scores be aggregated?

With respect to the first question, the position we shall
take is that the choice of the test-bed should be goal-oriented,
that is, should depend on the state of knowledge of the actual
or composite addressee of the meaning-representation process.
In plain language, what this means is that in representing the
meaning of p we should be influenced by our perception of the
concepts and variables which are explicit or implicit in P and
whose meaning is known to the addressee. Generally, these are
tacitly assumed to be the concepts whose labels appear in p,

together with the attributes with which they are associated.In test-
score gemantics, this is a flexible rather than a rigid desideratunm.

As an illustration, consider the proposition p A Overeating
causes obesity, and assume that the intended interpretation of
P is

a A Most of those who overeat are obese. (4.1)

Furthermore, assume that the addressee knows, in principle, the
meaning of the terms most, overeat and obese, so that the ob-
jective of the meaning-representation process is a precisiation
of the meaning of P. In this event, an appropriate set of rela-
tional frames for the database might be:

DF1 A POPULATION(Name; Age; Weight; Consumption] (4.2)
+ OBESE[Age; Height; Weight; u)
+ OVEREAT([Consumption; u)
+ MOST[r; u],

where DF stands for databagse frame and + denotes the union.
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The first relation, labeled POPULATION, lists the names of
individuals, together with the values of the attributes Age,
Weight, Height and Consumption, with the latter expressed as
the ratio of the level of food consumption to what would be
considered to be the normal level of consumption for an indi-
vidual of that age, weight and height.

The relation OBESE defines the grade of membership of an
individual, u, in the fuzzy set of cbese individuals as a func-
tion of the attributes Age, Weight, and Height. The relation
OVEREAT defines the grade of membership of an individual, u,
in the fuzzy set of those who overeat, as a function of Consump-
tion. The last relation, MOST, defines the fuzzy quantifier
most as a fuzzy subset of the unit interval, with r representing
a numerical proportion.

Alternatively, and more simply, we could assume that DF
consists of the following relations:

DF2 A POPULATION[Name] (4.3)
+ OBESE[Name; u] + OVEREAT([Name; ul] + MOST(r; ul.

In this case, the fuzzy subsets OBESE and OVEREAT of POPULA-
TION are defined directly rather than through the intermediary
of the numerically-valued attributes Age, Weight and Height. As
should be expected, the representation of the meaning of p as a
test on the database represented by (4.3) would.be less infor-
mative than a test on (4.2).

As was alluded to already, the test on a database, D, depends
on the choice of relational frames, DF. As an illustration, for
the database frame DF2 defined by (4.3), the compatibility test
for p and D may be described as follows.

1. Count the number of individuals in POPULATION who
overeat. To this end, let Namei denote the name of
ith individual in POPULATION. Using the expression
for the ICount as defined by (3.22), we have
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Compute the test score corresponding to the degree to
which the proportion v expressed by (4.9) satisfies
the constraint induced by the fuzzy quantifier most.
Using (4.9), the test score for this constraint is
found to be given by

uﬁDST[r = v]. (4.10)
This test score, then, may be interpreted as the truth

of p given D or, equivalently, as the posaibility of
D given p.

There are several important observations relating to this
example that are of general validity.

(a)

{b)

(c)

(a)

The meaning of p is represented by the test which
yields the test score t.

The description of the test involves only the rela-
tional frames in the assumed database and not the
data. In other words, the test represents the in-
tension of p [139].

The structure of the test depends on the choice of
relational frames. Thus, the description of the
test would be different for DF1 (defined by (4. 2)).
Purthermore, for the same choice of relational
frames, different tests would be required to ac-
commodate different definitions of cardinality.
This point is discussed in greater detail in
Example 4, Section S.

The choice of DF affects the explanatory effective-
ness of meaning representation in test-score seman-
tics. More specifically, lessening the degree of
detail in DF has the effect of lowering the degree
of explanatory effectiveness. For example, in the
case of DF1 and DF2, DF2 is less detailed than DF1.
Correspondingly, the test procedure associated with
DF2 conveys less information about the meaning of p
than that associated with DF1.
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The simplest possible DF for the proposition
P A Overeating causes obesity is

DF A CAUSE[Cause; Effect]. (4.11)

For this DF, the test reduces to the containment con-
dition

(Overeat,Obese) « CAUSE

which signifies that the tuple (Overeat,Obese) belongs
to the relation CAUSE. Equivalently, the test may be
represented as

CAUSE[Cause = Overeat; Effect = Obese] (4.12)

which is similar in form to the conventional semantic-
network representation of the meaning of p.

It is of interest to observe that the DF represented by
(4.11) is insufficiently detailed to allow a differentiation be-
tween the meanings of the propositions

P A Overeating causes obesity

>

and -

1

P Cbesity is caused by overeating

>

with the latter interpreted as
1 13)
q A Most of those who are obese overeat. 4.

It can readily be verified that the test score corresponding
to q1 is given by

unt (OBESE N OVEREAT)]

ICo
T = MOSTIr = St (OBESE)

(4.14)

which differs from (4.9) in the denominator of r.
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As a further example consider the proposition

p A Dana is very young and Tandy is not much older than Dana

In this case, we shall assume that the database frame 13:11

DF A POPULATION([Name; Age) (4.15)
+ YOUNG[Age; w)

+ MUCH.OLDER[Agel; Age2; u].

In the last relation, B is the degree to which Agel is much
older than Age2.

The proposition under consideration induces two eleastic
constraints: (a) A constraint on the age of Dana, and (b) 2
constraint on the age of Tandy relative to that of Dana. To
test these constraints, we proceed as follows.

1. Find the ages of Dana and Tandy. Using (4.15), we have
Age (Dana) = AgePOPULATION[Name = Danal (4.16)

Age (Tandy) = AgePOPULM‘ION[Name = Tandy) (4.17)

2. Test the constraint on the age of Dana. Denoting the
test score for this constraint by T, W€ have

x, = (,YOUNG[Age = Age (pana) 12, (4.18)

where Age (Dana) is given by (4.16) and the squaring
accounts for the effect of the modifier very (see (4.31).

3. Test the constraint on the age of Tandy relative to
that of Dana. The test score for this constraint 1s
given by

11'ro place in evidence that a sequence of words i a label of a

relation, we employ the convention of jnserting periods be=
tween the words.
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T, - i - uIMUCH.OLDER[Agel = Age (Tandy): ‘ (4.19)
Age2 = Age (Dana)],

where the subtraction of the second term from unity ac-
counts for the effect of the negation not in the rela-
tion "not much older.” (See (4.30).)

4. Aggregate the test scores T and T, Using the product
for aggregate (instead of the usual min), we arrive at
the overall test score

T =TT, (4.20)

as a measure of the compatibility of p with the data-
base.

4.1, POCUSED TRANSLATION

In general, the test score t for a given test T depends not
on the entire database D but on a subset of it. Typically, if
x,,...,xm are the variables involved in D (i.e., the designa-
tions of entries in relations in D), then ¥ may depend on a
proper subset of the-xi, say x11,...,x1k. To take a simple ex-
ample, if the database, D, consists of two relations, say POPULA-
TION[Name; Age; Weight; Height] and YOUNG[Age; ul]l, then the com-
patibility of the proposition

p 4 Lillian is young

with D depends only on Lillian's age ~- which is an entry under
Age in POPULATION -- and the degree to which Lillian's age sat-
isfies the constraint induced by young -- which is an entry un-
der u in the relation YOUNG.

More generally, a subset F(D,p) of D will be sajid to be a
focus of D relative to p if
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(a) The compatibility of p with D is identical with
"the dompatibility of p with F(D,p)
and ’
(b) F(D,p) is minimal, i.e., tﬁe:e is no proper subset

of P(D,p) with property (a).

The notion of a focus provides a natural point of depar-
ture for introducing the concept of a focuged translation.
Specifically, given p and D, let F(D,p) be the focus of D rela-
tive to p and let x11,f..,x1k or, more simply, XqseessXpy be
the variables which enter into F(D,p). Then, using unfocused
translation, we can compute for each D == and hence for each
n-tuple (u1,...,un) of values of x,,...,xn == the compatibility,
t, of p with (x1 = “1""’xn = “n}’ Now, if we interpret T as
the possibility of the n-tuple (u1....,un), i.e.,

T = Poaa{x1 = u1,_....xn = “n}' (4.21)

then the focused translation of p may be expressed symbolical-

ly as

P n(x1'o.-'xn) = F' (‘.22)

where T defines the membership function of P; n(x ) eeeoXp) rep-
resents the possibility distribution of the n-ary variable
(x1,...,xn); the variables x,,...,xn are the base variables in
p; and the right-hand member of (4.22) is what we have refer-
red to in Section 2 as the possibility assignment equation.

As a simple illustration of the concept of a focused trans-
lation, consider the proposition

p A Brian is much taller than Mildred. (4.23)

Assuming that DF consists of the relational frames

DF A POPULATION([Name; Height]
MUCH.TALLER[Height1; Height2]; ul,
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the unfocused translation of p is characterized by the fol-
lowing test:

1. Determine the height of Brian and Mildred:

Height (Brian) = POPULATION{Name = Brian])

Héight
Height (Mildred) = HeightPOPULATION[Name = Mildred].

2. Test the constraint induced by the fuzzy relation
MUCH.TALLER.

The test score for this constraint is given by

Ts= quCH.TALLBR[Height1 = Height (Brian); (4.24)

Height2 = Height (Mildred)].

Since p induces just one constraint, no aggregation is neces-
sary and T as expressed by (4.24) defines the compatibility of
p with D.

Correspondingly, the focused translation of p may be ex-
pressed compactly as

p-1I = MUCH.TALLER. (4.25)

(Height (Brian), Height(Mildred))

In this form, the translation of p signifies that the base va-
riables in p are x1 = Height (Brian) and x2 = Height(Mildred),
and that the focused translation of p defines the meaning of p
as an assignment statement which assigns the fuzzy relation
MUCH.TALLER to the joint possibility distribution of X, and Xy
Additional examples of both unfocused and focused transla-
tions will be presented in Section 5. What is important to note
at this juncture is that, as its name implies, a focused trans-
lation serves the purpose of placing in evidence the base vari-
ables in p and focuses the translation process on the determina-
tion of the joint possibility distribution of these variables.
In general, a focused translation has the advantage of greater
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transparency in the case of relatively simple propositions,
but becomes rather unwieldy in the case of propositions whose
DF's involve more than a few relational frames.

When focusing is employed in the translation of a complex
proposition, it is frequently advantageous to (a) decompose it
into simpler propositions; (b) translate separately the con-
stituent propositions; and (c) compose the results. In this
connection, it is convenient to have a collection of transla-
tion rules which may be employed -- when this is possible ==
to c¢ompose the meaning of a proposition from the meanings of
its constituents. Among the basic translation rules in PRUF
which serve this purpose are the rules of Type I, Type 1I,
Type III and Type IV. For convenient reference, these rules
are summarized in the following.

4.2. TRANSLATION RULES

.

Modifier rule (Type I). Let X be a variable which takes
values in a universe of discourse U and let F be a fuzzy sub-
set of U. Consider the proposition

PAXisF (4.26)
or, more generally,

pANIisF, (4.27)
where N is a variable, an object or a proposition.

Now, if in a particular context the proposition X is F
translates into

X is F =Ny = F (4.28)

12A more detailed discussion of these rules may be found in [1391.
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then in the same context

X is oF - 0, = F, (4.29)
vhe:e m is a modifier such as not, very, more or less, etc.,
and F* 13 a modification of F induced by m. More specifically:
If m = not then F' A P' A complement of F, i.e.,

Balw) =1 -, ueu, (4.30)

If mm= ve!!' then F+ = pzp i.e.,

Bl = wiw, uweu. (4.31)

If m = more ox less, then F' = VF, i.e.,

up,,,(u) = VuFZuS, u €U, (4.32)

As a simple illustration of (4.31), if SMALL is defined as
SMALL = 1/0 + 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5

then

x is very small - I, = P, (4.33)

where

p2

= 1/0 + 1/1 + 0.64/2 + 0.36/3 + 0.16/4 + 0.04/5.

It should be noted that (4.30), (4.31) and (4.32) should be
viewed as default rules which may be replaced by other transla-
tion rules in cases in which some alternative interpretations
of the modifiers not, very and more Or less are more appropriate.



- 317 -

4.3. CONJUNCTIVE, DISJUNCTIVE AND IMPLICATIONAL RULES
(TYPE II).

If

Xis F-1n

x = Fand Y is G = rlY = G, (4.34)

where F and G are fuzzy subsets of U and V, respectively, then

(a) X is Fand Y i8 G = Dig,y) =F 6 (4.35)
where
Upyg(WrV) A up(u) A ua(v). (4.36)
(b) X is For Y is G = Dy, = F uG, (4.37)
where
FAFxv,6AaU0x6, (4.38)
and

(c) I£f X is F then Y is G - I = F' @ G, (4.40)

(Y1X)
where H(Y‘x) denotes the conditional possibility distribution
of Y given X, and the bounded sum @® is defined by

v _(u,v) =1 A (1-ug(u) + ug(v)). (4.41)
'9G

F'®

Note. In stating the implicational rule in the form (4.40), we
have merely chosen one of the several alternative ways in which
the conditional possibility distribution u(YIx) may be defined,
each of which has some advantagrs and disadvantages depending
on the application. A detailed discussion of this issue can be
found in [S], [72], and [105].
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As simple illustrations of (4.35), (4.37) and (4.40), if

F A SMALL = 1/1 + 0.6/2 + 0.1/3
G A LARGE = 0.1/1 + 0.6/2 + 1/3

then

X is small and Y is large - n(x'y)
=0.1/(1,1) + 0.6/(1,2) + 1/7(1,3) + 0.1/(2,1)
+ 0.6/(2,2) + 0.6/(2,3) + 0.1/(3,1)
+ 0.1/(3,2) + 0.1/(3,3).

X is small or Y is large - n(x'y,
= 1/01,1) + 1/(1,2) + 1/(1,3) + 0.6/(2,1) + 0.6/(2,2)
+ 1/(2,3) + 0.1/(3,1) + 0.6/(3,2)-+ 1/(3,3)

and

If X is small then Y is large - H(le,

=0.1/(1,1) + 0.6/(1,2) + 1/0(1,3) + 0.5/(2,1)
+ 1/42,2) + 1/(2,3) + 1/(3,1) + 1/(3,2) + 1/€3,3).

4.4. QUANTIFICATION RULE (TYPE III).

IfU = {u1....,uN}, Q is a fuzzy quantifier such as many,
few, several, all, some, most, etc., and

XisF-0I,=F (4.42)

X
then the proposition "QX are F" (e.q., "many X's are large")
translates into

QX are F - I1 (4.43)

ICount(F) = 9
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if the concept of nonfuzzy cardinality is employed. (See (3.22).)
As a simple example, if the quantifier geveral is defined as

SEVERAL = 0.4/2 + 0.6/3 + 1/4 + 1/5 + 1/6 + 0.7/7 + 0.2/8

(4.44)
then

Several X's are large - Il = SEVERAL. (4.45)

Zyuparce(Yy)

Examples in the which the concept of fuzzy cardinality is
employed will be considered in Section 5.

4.5. TRUTH QUALIFICATION RULE (TYPE IV).

Let T be a linguistic truth-value, e.g., Vvery true, quite
true, more or less true, etc. Such a truth-value may be regarded
as a fuzzy subset of the unit interval which is characterized
by a membership function u_: fo,1) = [o,1]).

A truth-qualified proposition, e.g., "It is T that X is F,"
is expressed as "X is F is t." As shown in [10], the transla-

tion rule for such propositions is given by
XisFist -1 =F, (4.46)
where

U (u) = u (up(u)). (4.47)
F

As an illustration, consider the truth-qualified proposition
Teresa is young is very true

which by (4.46), (4.47) and (4.31) translates into

a (4.48)

Age (Teresa) = uTRUEZ(uYOUNG)’
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Now, if we assume that
w,2,"!
uYOUNG(“) = 1 4+ (33) ) , u € [0,100] (4.49)

and

Uppge (V) = v2, v € [0,1]

then (4.47) yields

-4
u,2
Yage (Teresa) = (1 + (33)7)

as the possibility distribution of the age of Teresa.

4.6. PROBABILITY QUALIFICATION RULE (TYPE 1IV).

This rule applies to propositions of the general form "X is
F is8 A," where X is a real-valued variable, F is a linguistic
value of X, and A is.a linguistic value of likelihood (or prob-
ability), e.g., "X is small is not very likely." Unless stated
to the contrary, A is assumed to be a fuzzy subset of the unit
interval [0,1] which is characterized by its membership func~
tion Wy and the probability distribution of X is characterized
by its probability density function p, i.e.,

Prob{X € [u,u+du)} = p(u)du. . (4.50)

As shown in {139], the translation rule for probability-
qualified propositions is expressed by

X 18 F is A - n(p) = ul(I up(u)p(u)du), (4.51)
4}

where n(p) denotes the possibility that the probability density
function of X is p, and the integral in the right-hand member
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of (4.51) represents the probability of the fuzzy event [132]
"X is F." Thus, in the case of probability-qualified proposi-
tions, the proposition "X is P is A" induces a possibility
distribution of the probability density function of X.

As a simple illustration, consider the proposition

q A Vickie is young is very likely. (4.52)

In this case, X A Age(Vickie) and the right-hand member of
(4.51) becomes

100
n(p) = uf‘mgw(JO MyouG (WP (wdu). (4.53)
The translation rules stated above may be used in combina-

tion. For example, consider the proposition

P A If X is not very large and Y is more or less small
then 2 is very very large. .

In this case, by the application of (4.30), (4.31), (4.32),
(4.35) and (4.40),we £ind that p induces a conditional pos-
8ibility distribntioq of 2 given X and ¥, i.e., “(zlx,Y)' The
possibility distribution function of this distribution is given
by

2 0.5
n(zlx'y)(wlu,v) = 1A (1 - (1 - “LARGE(“)) A us"AIJ}v)
4
.t “LARGB"’")'
(4.54)

where YL ARGE and WsmaLL denote, respectively, the membership
functions of the denotations of large and small in p.
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4.7. VECTOR TEST SCORES AND PRESUPPOSITIONS

Since an aggregated test score is basically a summary, it
would be natural to expect that in some cases the degree of
summarization which is associated with a single overall test
score might be exessive. In such cases, then, a vector test
score might be required to convey the meaning of a proposition
correctly.

Among the cases which fall into this category are proposi-
tions with false presuppositions, as in the classical example
P A The King of France is bald. In this case, an attempt to
associate a single test score or truth-value with P leads to
difficulties which have been discussed at length in the liter-
ature [68]. In our view, a natural way of dealing with these
difficulties is provided by the concept of a vector test score
== a concept which furnishes a general framework for the ana-
lysis of presuppositions and related issues.

Let p be a given proposition and let p* be a presupposition
which is associated with p. Usually, but not necessarily, p*
asserts the existence of an object which is characterized by p.
In a departure from the conventional point of view, we shall
assume that existence is a matter of degree and hence that p*
is a fuzzy presuppogition, i.e., a proposition whose compatibil-
ity with a database may be a number other than O or 1.

As a simple illustration, consider the proposition

P 4 By far the richest man in France is bald. (4.55)
In this case,

P* A There exists by far the richest man in France (4.56)
is a fuzzy presupposition by virtue of the fuzziness of the
predicate by far the richest man.

To apply test-score semantics to this proposition assume
that the DF contains the following relational frames
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DF A POPULATION([Name; Wealth; uBald)] + (4.57)

BY.FAR.RICHEST[Wealth; Wealth2; ul.

In the first relation in (4.57), Wealth is interpreted as
the net worth of Name and uBald is the degree to which Name is
bald. In the second relation, Wealth2 is the wealth of the sec-
ond richest man; and u is the degree to which Wealth and Wealth2
qualify the richest man in France (who is assumed to be unique)
to be regarded as by far the richest man in France.

To compute the compatibility of p with the database, we
perform the following test.

1.

Sort POPULATION in descending order of Wealth. Denote
the result by POPULATION+ and let Name1 be the ith
name in POPULATION+.

Determine the degree to which the richest man in France
is bald:

Ty A pa)gPOPULATION(Name = Name,]. (4.58)

Determine the wealth of the richest and second richest
men in France:

¥y A yealtnPOPULATIONY [Name = Name,]

A

Wy A yea1tnPOPULATIONY [Name = Name,].

Determine the degree to which the richest man in France
is by far the richest man in France:

T, A uBY.FAR.RICHEST[Wealth =W, Wealth2 =w,]. (4.59)

The overall test score is taken to be the ordered pair

T = (11,12). (4.60)
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Thus, "instead of aggregating L and T, into a single
test score, we maintain their separate identities in
the overall test score. We do this because the aggre-
gated test score

THT.‘ATZ

would be creating a misleading impression when T, is
small, that is, when the test score for the constraint
on the existence of "by far the richest man in France”
is low.

In the simple case which we have used as an example, the
overall test score as expressed by (4.60) has only two compo-
nenta.‘In general, however, a proposition p may have a multi-
plicity of fuzzy presuppositions each of which may have to be
represented by a component test score in the overall test score
for p. For example, the proposition

p A By far the richest man in France is much taller than
most of his close friends

has at least two fuzzy presuppositions

P} A There exists by far the richest man in France

95 A By far the richest man in France has close friends

and hence the overall test score for p will have to have at
least three components.

It is important to observe that the fuzzy presuppositions
pg,pa,...,p; which are associated with a proposition p depend
in an essential way on the formulation of the test of compatibil-
ity of p with the database. For example, consider the proposi-
tion :

P A By far the richest man in France is by far the tallest
man in Paris.
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In this case, depending on the way in which the test procedure
is formulated, either one of the following propositions could
be regarded as a fuzzy presupposition of p:

g
»
>

4 There exists by far the richest man in France

0
N
-4

There exists by far the tallest man in Paris.

The issue of vector test scores has many ramifications
which extend beyond the scope of the present paper. In what
follows, we shall confine ourselves to a discussion of examples
in which the fuzzy presuppogitions are tacitly assumed to have
perfect test scores and hence need not be considered in the
computation of compatibility.

5. EXAMPLES OF TRANSLATION

The examples considered in this section are intended to
clarify some of the aspects of test-score semahtics which were
discussed in general terms in Sections 3 and 4. The examples
are relatively simple and, for the most part, involve proposi- '
tions. When appropriate, both focused and unfocused translations
are presented.

1. Margaret is slim and very attractive

Assume that

DF A POPULATION(Name; Weight; Height) + (5.1)
SLIM{Weight; Height; u] +
ATTRACTIVE[Name: u).

The steps in the test procedure are:
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1. Find Margaret's height and weight: ’

a A Weight(Margaret) = "eightPOPULATION[Name = Margaret])

b A Height(Margaret) = aeightPOPUI.ATION[Name = Margaret].

2. Test the constraint induced by SLIM:

T, 4 uSLIM[Weight = a; Height = b], (5.2)

3. Test the constraint induced by ATTRACTIVE:

T2 4 ATTRACTIVE[Name = Margaret]. (5.3)

4. Modify T, to account for the modifier very:

2
T3 4 T, (5.4)
5. Aggregate t,.and t3=
TETA 5. (5.?)

The aggregated ieat score given by (5.5) represents the
compatibility of the Proposition in question with the database
whose DP 138 expressed by (5.1).

2. Ellen resides in a small city near Oslo.
=——=——=nt" N a small city near Oslo

Unfocused translation. Assume that

DF A.RESIDENCE[Name; City.Name) + (5.6)
POPULATION[City.Name:.Population] +
SMALL[Population; uj + .

NEAR[City.Name1; City.Name2; ﬁ].
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Find the name of the residence of Ellen:

aa c1ty.NameRESIDENCE[Name = Ellen].

Find the population of the regsidence of Ellen:

b A populationPOPULATION[City.Name = al.

Test the constraint induced by SMALL:

T, A uSMALL[Population = b], (5.7

Test the constraint induced by NEAR:

T, = uNEAR[City.Name1 = 0slo, City.Name2 = al]. (5.8)
Aggregate T and Tyt

T =T, AT, (5.9)

Focused translation. Suppose that we are interested in the
location of residence of Ellen and that the relation RESIDENCE
does not contain Ellen's name. Then, if the base variable im~
plicit in the proposition under consideration is taken to be
X A Location (Residence(Ellen)), the proposition translates in-
to the possibility assignment equation i

uLocation(Residence(Ellen))'(City.uame.zxup

EAR[City.Name 1
= 0slol) n
{(5.10)

uPOPULATION[UP

(City.Namex opulation

= SMALL]).
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In effect, (5.10) conveys the information that the possi-
bility distribution of X is the intersection of two possibility
distributions: the first reflects the constraint that the resi-
dence of Ellen is near Oslo while the second reflects the con-
straint that it is a small city.

3. Gary earns much more than his youngest brother.
Assume that

DF 3 POPULATION{Name; Income; Agel] + (5.11)
BROTHER[Name1; Name 2] +

MUCH.MORE([Incomel; Income2; ul.
1. Find Gary's income

a POPULATION{Name = Gary]l.

A Income
2. Determine the set of Gary's brothers;

b A Nmﬂe131?.0‘.!.'“31‘{[Nmuez = Garyl.

3. Restrict POPULATION to brothers of Gary:

¢ A POPULATION[Name = con{b)],

where the prefix con indicates that b should be interpreted as
a conjunctive fuzzy set (see (3.11)).

4. Pind the income of Gary's youngest brother:

aa Incommn Age(c)' . (5.12)

where the operation Incomem“Age finds the tuple in c which
minimizes the value of Adge and reads the Income value in this
tuple.
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5. Test the constraint induced by MUCH.MORE:

T= uMUCH.HORE[IncomeT’- a; Income2 = d]. (5.13)

This value of v is the desired compatibility of the proposition
with the database.

4. Several large balls.

In this.caae, the problem is to determine the compati-
bility of the description d A several large balls with an
object, D, which consists of a collection of n balls of various
sizes represented by the DF

DF A BALL[Identifier; Size] + (5.14)
LARGE(Size; u) +
SEVERAL[N; ul.

In (5.14), the first relation has n rows and is a listing of
the identifiers of the balls and their respective sizes. In
SEVERAL, u is the degree to which an integer N fits the defini-
tion of several.

The description d A several large balls is susceptible of
different interpretations. In one, which we shall analyze first,
the interpretation is compartmentalized in the sense that the
constraints induced by LARGE and SEVERAL are tested separately.
In another interpretation, which will be referred to as integ-
rated, the tests are not separated. To differentiate between
these interpretations, we shall write [several] [large] balls
and [several large] balls to represent the first and second in-
terpretations, respectively.

In an expanded form, the compartmentalized interpretation
of d may be expressed as:

[several]lllarge] balls e= the object consists of several
balls and all of the balls are large.
' (5.15)
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The test procedure corresponding to this interpretation is
the following.

1. Test the constraint induced by SEVERAL:

T, A usx-:vam[u = n].

2. Find the size of the smallest ball:

a A g4,oMing, o (Ball).

3. Test the constraint induced by LARGE by finding the
degree to which the smallest ball is large:

T, 4 ,LARGE[Size = a].

4. Aggregate the test scores:

T =T, AT, (5.16)

In the case of the integrated interpretation, the expanded
form of 4 is agssumed to be expressed as:

Q@ e at least several large balls and at most (5.17)
several large balls.

Purthermore, we shall employ the FGCount and the FLCount to
count the elements of D.

At a firat step in the translation of d, we represent 4 as
a conjunction of d1 and dz, where

d1 A at least several large balls (5.18)

and .

'd2 4 at most several large balls. (5.19)
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Consider the particularized fuzzy set (see (3.11))
DL = BALL[Size = LARGE] (5.20)

which represents the restriction of the set BALL to large balls.
The PGCount of this set is obtained by sorting DL in order of
decreasing u and replacing the ith element by 1 (see (3.35)).
Thus,

Lt (5.21)

FGCount (D) = ND
Now the quantifier at least several may be expressed as the
composition of the binary relation 3 with SEVERAL. Thus, 1f

SEVERAL = 0.5/3 + 1/4 + 1/5 + 1/6 + 0.5/7
then

> © SEVERAL = 0.5/3 + 1/4 + 1/5 + ...

and similarly, for at most several, we have

< © SEVERAL = 1/0 + ... + 1/6 + 0.5/17,

where o denotes the composition operator (see [133]).
In terms of FGCount(DL), PLCount(DL) and the quantifiers
> o SEVERAL and < © SEVERAL, the test scores for the constraints’

induced by d1 and d2 may be expressed 8813

T, A sup(FGCount(DL) N (> © SEVERAL)) (5.22)
and

T, A sup(PLCount(DL) N (< © SEVERAL)). (5.23)

The aggregated test score, then, is given by

TE T, A T, (5.24)

31 Fis a fuzzy set, sup(F) is its height, i.e., the supremum
of up(u) over U. (See [141].)
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Note. It may be argued that (5.18) and (5.19) should not be
treated as independent propositions, that is, as propositions
in which the base variables are not jointly constrained. If
we constrain the base variables to have the same value, the
expression for the aggregated test score becomes

T = sup(FBCount(DL) N SEVERAL) (5.25)
in which the FECount(DL) (see (3.37)) may be normalized by
scaling its membership function by the reciprocal of
sup(FECount(DL)).

S. Let G be a given set of balls of various sizes. The
proposition, p, which we wish to translate is related to the
description considered in the preceding example. Specifically,

P A G contains several large balls

In this case, DF is assumed to be:

DF A GlIdentifier; Sizel + (5.26)
LARGE([Size; u)] +
SEVERALIN; ul.

l. Form the fuzzy subset of large balls in G:
a A GlSize = LARGE].

2. Determine the FGCount of a:
b A FGCount(a).

3. The test score for the constraint induced by SEVERAL and
the relation of containment is given by (as in (5.22)).

T = sup(b N (> ©SEVERAL)). (5.27)
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6. Patricia has many acquaintances and a few close friends
most of whom are highly intelligent.

The database frame is assumed to be:

DF A ACQUAINTANCE(Name1; Name2; u] + (5.28)
FRIEND{Name1; Name2; u) +
INTELLIGENT[Name; u] +
MANY(N; ul +
FEW[N; u] +

MOSTI[p: ul.

In ACQUAINTANCE, u is the degree to which Name2 is an ac-
quaintance of Namei, and likewise for FRIEND. In INTELLIGENT,
u is the degree to which Name is intelligent. Highly intelligent
will be interpreted as INTELLIGENT3 and close friend as FRIENDZ,
where the exponent represents the power to which u is raised.
For simplicity, we shall employ the sigma-count for the represen-
tation of the meaning of MANY, FEW and MOST.

1. Find the fuzzy set of Patricia's acquaintances:

a u5CQUAINTANCE[Name1 = Patricial.

4 Name2x

2. Count the number of Patricia's acquaintances. Using
the sigma-count, we have:

b A ICount(a).
3. Find the test score for the constraint induced by MANY:
71 = uW[N = b]u
4. Find the fuzzy set of friends of Patricia:

= ial.
cay 2quRIEND(Name1 Patricial
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S. Find the set of close friends by intensifying FRIEND:
d= cz.

6. Determine the count of d:
e A ICount(c?).

7. Find the test score for the constraint induced by FEW:

A  FEW[N = el.

T A

8. Find the set of close friends of Patricia who are highly
intelligent:

£ = 4 n INTELLIGENT>.
9. Determine the count of £:

g = ICount(f).

10. Form the proportion of those who are highly intelligent
among the close friends of Patricia:

= ZCount(f) _ g
ZCount (d) e’

r
11. Find the test score for the constraint induced by MOST:

Ty = uyOST[p = r].

12. The aggregated test score for the proposition under con-
sideration is given by

T T T4 ATHyA T, (5.29)
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7. During the past few months three large tankers carried
a total of 500,000 tons of oil to Naples.

The database frame is assumed to be:

DF A TANKER[Name;Displacement:Cargo;Weight:Destination:Time.

Arrival) +
LARGE([Displacement; u)] +
FPEW.MONTHS[t; u)
500,000(N; u). (5.30)

The inclusion of the relation 500,000[N; ul] in the database
reflects the assumption that the number 500,000 should be in-
terpreted in an approximate rather than exact sense. Thus, the
relation in question defines the degree to which a real number
N fits the description "500,000." In the relation FEW.MONTHS,

t stands for the time-difference between the present time and
the time of arrival.

1. Particularize TANKER by specifying the displacement,
cargo and destination. Thus (see (3.10)),

TANKER1 A TANKER[Displacement = dis (LARGE);
Cargo = 0il; Destination = Naples].

2. To take into consideration the constraint induced by the
number of tankers, we pick an arbitrary three-element subset of
tankers, say

T3 = {Namei, Namej. Name, }

and restrict TANKER1 to T3. Thus

TANKER2 A TANKER1[Name = T3).
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3. For each tanker in TANKER2 find the time of arrival and
weight of cargo:
t 8 Time.Arrival TANKER2(Name = Name, ]
©; & yeightTANKER2[Name = Name, ]
and likewise for Namej and Name, .

4. Determine the test score for the constraint induced by
500,000:

T, = u§oo,ooo[N = ci+cj+ck].

S. For each tanker in T3 determine the test score for the
temporal constraint induced by FEW (t° 4 present time):

Ty = FEW[t = t -t ]
and likewise for tj and t, .
6. Aggregate the test scores determined in 5:
Ty T Tip A Typ A Ty
7. Aggregate T and T,
T3 2Ty AT, (5.31)

8. The test score expressed by (S.13) represents the com-
patibility of the given proposition with the subset TANKER2.
To £ind the compatibility with the whole database, it is neces-
sary to maximize Ty over all 3-element subsets of TANKER1,
finding that subset which yields the best fit of the proposi-
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tion to the database. Thus, the overall test score for the
proposition in question is given by

T = Maxi'j'k T3- (5.32)

8. Our last example involves a command rather than a pro-
position. Specifically, what we wish to translate is:

¢ A Reep under refrigeration

in which the underlying assumption is that an item A (say a
carton of milk), must be stored in a refrigerator when not.in
use. We assume that A is taken out of the refrigerator at
times ty,...,t;, with [ti'ti*dil representing the ith time-in-
terval during which A is not under refrigeration. The ambient
temperature during the time-interval [t ,t;+d;1, 1 = 1,....n,
is assumed to be a,.

In general, to translate a command, c, it is necessary to
identify the compliance criterion, cc, which is implicit in c,
and devise a procedure for testing the constraints induced by
cc. To this end, assume that ed,, i = 1,...,n, is the effective
duration of non-compliance which takes into consideration the
ambient temperature a. Thus

edi = 9(d1’ai)'
where g is a specified function.
The compliance criterion, cc, is assumed to be expressed

by the proposition:

cc A Total effective duration of non-refrigeration
is not much longer than K,

where K is a specified length of time, and

Total effective duration A ted A ed, +...+ ed.. (5.33)
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To translate cc, we assume that
OF A PROCESS[Effective.buration] + MUCH.LONGER[T; u], (5.34)

in which the relation PROCESS lists the effective duration of
non-compliance at times t1""'tn' and MUCH.LONGER defines the
degree to which T is much longer than K.

To compute the test score associated with cc we proceed as
follows.

1. Obtain from the relation PROCESS the total effective
duration:
ted = :1 (Effective.Durationi)

2. Compute the test score:
T =1 - uMUCH.LONGER[T = ted]. (5.35)

This test gcore, then, represents the degree to which an execu-
tion sequence defined by the relation PROCESS complies with the

instruction c Reep under refrigeration.

6. CONCLUDING REMARK

To give an adequate idea of the applicability of test-score
semantics to the problem of meaning representation in natural
languages would require a far greater number of diverse examples
than could be included in the present paper. In particular, with
a few exceptions, we have not considered linguistic entities
other than propositions and have not illustrated the use of
truth-qualification, pProbability-qualification and possibility-
qualification. Furthermore, we have not touched upon (a) the
important issue of nesting of linguistic entities, and (b) the
concepts of 8em$ntic equivalence and entailment. In sum, what
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we have attempted to convey is a general idea of the conceptual
framwork of test-score semantics and to articulate the convic-
tion that a comprehensive theory of natural languages cannot be
constructed without coming to grips with the issues of impreci-
sion, elasticity and lack of specificity -- issues which are
intimately related to the necessity for gradation of truth, mem-
bership and possibility.
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