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DIAGNOSABILITY OF NONLINEAR CIRCUITS AND SYSTEMS - PART I: THE DC CASE

V. Visvanathan and A. Sangiovanni-Vincentelli

ABSTRACT

A theory for the diagnosability of nonlinear DC circuits (memoryless

systems) is developed. Based on an input-output model, a necessary and

sufficient condition for the local diagnosability of the system, which

is a rank test on a matrix, is derived. Various ways of reducing the

computational complexity of this test are indicated. A sufficient

condition for single fault diagnosability, which is much weaker than the

necessary and sufficient condition for local diagnosability is also

derived. It is also shown that for diagnosable systems, it is possible

to pick a finite number of test inputs that are sufficient to diagnose

the system. An illustrative example is presented.

Key phrases; nonlinear resistive circuits, input-output model, local

diagnosability, single fault diagnosability, Jacobian,

test matrix, genericity.



I. INTRODUCTION

During the past decade, considerable research effort has been devoted

to the problem of fault diagnosis of analog circuits [1-8,14-15,20-22].

Among the techniques that have approached it as a solvability problem rather

than one of estimation, either based on a fault dictionary or statistical

techniques, the bulk of the work has been devoted to the diagnosis of

linear circuits which are tested at a single frequency (for example [1,2,3]),

These techniques are characterized by the following features:

1) The faulty parameter values are (globally) uniquely determined.

2) The number of test points is greater than or equal to the number of

parameters that are assumed to be faulty.

3) The diagnosis algorithm is. computationally cheap and typically involves

solving a set of linear equations.

Some work has been devoted to the multifrequency testing of linear

dynamical systems [4,5,6]. A comprehensive theory with the following

features was introduced by Sen and Saeks [4]:

1) The faulty parameters values are only locally uniquely determined.

2) The number of test points is much less than the number of parameters.

3) The diagnosis algorithm is computationally expensive and involves

solving a set of nonlinear equations.

Some techniques, as for example in [7,8] are intermediate between the*

two classes described above. In these techniques sufficient conditions

are given for the fault diagnosis equations to have globally unique

solutions. Also, this is achieved with fewer best points than single

frequency testing but these diagnosis algorithms are computationally more

expensive. Both [7] and [8] however, restrict themselves to certain

classes of linear systems. In particular Navid andWiTlson[7] deal with

circuits with linear resistors and controlled sources. Their technique

is also applicable to nonlinear resistive circuits that can be effectively
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modelled by their small signal behavior.

In this paper we develop a theory for the fault diagnosis of general

nonlinear DC circuits. We are not aware of similar results in the

fault diagnosis literature. However some of our results are similar to

work in other fields, as for example those of Rothenberg [9] on the

identifiability of parametrized probability distribution functions. While

the problems being tackled are quite different, the similarity in approach

is not surprising, since the essential question being answered in [9] is

the same as in fault diagnosis, i.e., one of solvability.

The characteristics of our technique are the same as those of Sen and

Saeks [4] for multifrequency testing of linear circuits, which were stated

earlier. The diagnosis is based on measurements made with a number of

DC inputs. Note that similar to [4], only local uniqueness of the

solution of the fault diagnosis equations is guaranteed. The condition

for diagnosability that we derive, is therefore, only a necessary condition

for globally unique diagnosis. This situation is similar to the one in

optimization where solutions are generally guaranteed to satisfy only

necessary optimality conditions, i.e., the sequences generated by most

optimization algorithms converge to a point that satisfies a necessary

condition for optimaltiy.

An important feature of our results is that, like [4], it is split

into two distinct parts: (1) conditions for local diagnosability and,

(2) the diagnosis algorithm. Our emphasis in this paper is on the former

and we deal only, briefly with the diagnosis algorithm. The necessary

and sufficient condition for local diagnosability that we derive is

determined by the system structure and the location of the inputs and

outputs of the system. In addition, it does not depend on the choice of

test signals, the test algorithm or the faulty parameter values. Such
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acriterion, being aproperty solely of the system under consideration,
can be used as adesign aid to check the testability of acircuit, to
choose testpoints and to design "testable" circuits.

Along the same lines as most of the results 1n the literature, we
assume 1n this paper that, for the systems under consideration, the faults
can be adequately represented as variations (possibly large) 1n aset of
parameters, a. We deal with both the case where all the parameters are
assumed to be faulty and the single-fault case, I.e., the case where only
one of the parameters Is assumed to be faulty and the problem is to
determine which one and Its faulty value.

The paper- 1s organized as follows. In Section II we formulate the
system description and Introduce some preliminary definitions. In

Section III we introduce the concept of local diagnosability and derive a
necessary and sufficient condition for the local diagnosability of a
parameter point and then extend 1t to give acondition for the local

diagnosability of the system. In Section IV we discuss conditions under
which the test for local diagnosability 1s simpler than the one presented
in Section III and we also discuss test Input selection. In Section V
we deal with single fault diagnosability. In Section VI we discuss a
numerical example and present asummary 1n Section VII. An earlier
version of these results was presented in [10].

II. SYSTEM DESCRIPTION

Anonlinear resistive circuit 1s usually described [11,12] by an
algebraic equation of the form

g(x,u,o) =0 /2 ji
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where x€ Rm, u e R^P, a€ KN and g:lRm xrW x RN - r"^ is

assumed to be continuously differentiate. The variables x, a and oj

denote, respectively, the internal variables, the parameters and the

accessible (input or output) variables. Since, for a meaningful model,

once the parameters and the inputs are fixed, the remaining variables are

uniquely determined, it follows from the dimensions of the various

quantities in (2.1) that p of the components of the vector u> are inputs

while the remaining q are outputs. Typically, in networks, there is some

flexibility in determining which p components ofware inputs. Since

fault diagnosis is a problem of determining the internal parameter

values from input-output measurements, one might imagine that this choice

is crucial. We will however establish that, in fact, for our model

description this choice is inconsequential.

Note that, the model (2.1) can, more generally, be used to describe

the steady state behavior of a nonlinear dynamical circuit that attains

a DC steady state when the inputs are constant functions of time. For

simplicity, consider a nonlinear dynamical circuit which has uncoupled

two-terminal capacitors and inductors and is described by the Sparse

Tableau equations [11]. We focus our attention on an inductor, which

is described as follows:

f(t) = v(t) Vt >0 (2.2a)

h(<J>(t),i(t),6) = 0 (2.2b)

where, <J>, i, v and B, denote respectively, the flux, current, voltage

and parameter associated with this inductor and (2.2b) is its constitutive

relation. In the DC steady state, (2.2) is replaced by
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v = 0 (2.3a)

h(d>,1,B) = 0 (2.3b)

The above equation describes an inductor with a steady state flux <j>9 a

steady state current i and which is a short circuit in DC.

Since the accessible signals are voltages and currents rather that

charges or fluxes, the flux <j> is not accessible through DC testing,

hence the value of the parameter 8 cannot be determined. On the other

hand removing (2.3b) from the DC steady state description of the circuit

will in no way affect its consistency since the variable <j> is not in

volved in any other equation. Thus, with DC testing of dynamical

circuits, capacitor and inductor faults cannot be diagnosed. However,

by modelling each capacitor as a parallel combination of the ideal

capacitor and an appropriate leakage resistor, and each inductor as a

series connection of the ideal inductor and a leakage resistor, open

circuits, short circuits and increased leakage in the capacitors and

inductors can be determined. Thus the DC approach is capable of

diagnosing a dynamical circuit for all the faults in the resistors and

the above mentioned faults in the capacitors and inductors. We call

such faults static faults.

The above discussion leads us to the following conclusions:

1) For a dynamical circuit, with DC testing, we cannot determine the

inductor and capacitor parameters (the values of L and C in the case of

linear elements).

2) It is not necessary to assume that the capacitors and inductors are

fault-free to diagnose the static faults in the circuit.
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3) The circuit equations for the dynamical circuit in DC steady state,

with the inductor and capacitor constitutive relations ((2.3b), for

example) removed, corresponds to a resistive network obtained from the

original network by replacing all inductors with short circuits and all

capacitors with open circuits. This reduced resistive network is

represented generically, by (2.1). Static faults in the original

network can be diagnosed using DC testing if and only if (2.1) is

diagnosable.

We will henceforth refer to (2.1) as the system. Let ft C j^m+q+p+N

be the set of all admissible variables of the system, i.e.,

fl A{(x.co.a) € ]Rm+q+p+N|g(x,a>,a) =0}
M

Let A c ir be the set of all admissible parameters of the system, i.e.,

AAfoe ]RN| I|(x,a)) €= jrm+q+p ^^^j € Q}

For each a € A, let W denote the set of all admissible observations

i.e.,

Wa A{oj e RP+q| gX e Rm }(x,u),a) €Q] . (2.4)

1 2
Definition 2.1: Two parameter points a and a € A are said to be

observationally equivalent if W , = W «• n
a a

Our analysis of the diagnosability of the system is based on the

assumption that it possesses an input-output model. To this end we have

the following.

Definition 2.2: The system is said to have an input-output model

y = f(u,a) if there exists a partition (y,u) € IR^xR*5 of oj and two

functions h:IRpx ]RN -• ]Rm and f:IRpx IRN -^ ]Rq such that
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1) n» {(h(u,a), (f(u,a),u),a) € lRM+q+p+N| (u,a) € ]R px ]RN}

2) Dv wg(x,y,u,a) is nonsingular V (x,y,u,ct) € Q n

Note that in the above definition the variable u is associated with the

inputs and the variable y with the outputs. Also, Dv cj(x,y,u,a)

denotes the Jacobian of g with respect to x and y evaluated at (x,y,u,a).

Other Jacobians are similarly defined. Note that when the system has an

N D
input-output model, the parameter space A = IR and 1RK may be

considered to be the input space. Also, f(u,a) is continuously

different!*able with respect to u and a.

We will henceforth assume that the system possesses an input-output

model. For a large-scale system, it is not an easy task to determine

the input-output model in symbolic form. However, as will become clear

in the following sections, we do not require that the symbolic form of

the input-output model be known. We only require that given

(u,a) € ]RP x ]R , f(u,a) and D f(u,a) can be determined. A simulation

of (2.1) with u = u and a = a will give us f(u,a) while D f(u,a) can be

determined from the following equation which is due to the implicit

function theorem [13].

Dah(u,a)

Daf(u,o)
=-DXjyg(h(u,a),f(u,a),u,a)"1 Dag(h('u,a),f('u,a),u,a) (2.5).yw^_ .'N^. A A

1 0 M

Proposition 2.1: Two parameter points a and a € ]Rn are observationally

equivalent if and only if

ffu.a1) = f(u,a2) Vu € IRP

Proof: The proof follows directly from (2.4) and Definitions 2.1 and 2.2.
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The above proposition establishes that the concept of observationally

equivalent parameters, which was formulated in Definition 2.1 on the

basis of the implicit description (2.1), is completely characterized by

any one input-output model. Since our definition of local diagnosability

(Definition 3.1) and single fault diagnosability (Definition 5.2) are based

on the concept of observationally equivalent parameters, it follows that

even for systems that have more than one input-output model, in order to

study the diagnosability of such a system, we may restrict our attention

to any one input-output model.

III. LOCAL DIAGNOSABILITY

In this section, we first define local diagnosability of a parameter

point and local diagnosability of the system. Then, after some

preliminary results, we present a theorem that gives a necessary and

sufficient condition for local diagnosability of a parameter point.

For this theorem, we present both an intuitive explanation and a rigorous

proof. We then extend the theorem to give a condition for local

diagnosability of the system.

Definition 3.1: A parameter point, a e ]RN, is said to be locally

diagnosable if there exists an open neighborhood of a0 containing no

other a which is observationally equivalent to it. We say that the

local diagnosability properly holds at apoint a0 € ]RN if a° is locally
diagnosable. n

In this paper we will often consider generic properties. We make

precise the concept of genercity in the following definition.

Definition 3.2: Consider a property as a logic function ir(«) :KN + {T,F}

where tt(cc) =T (or F) if it holds (or fails) at ae ]RN. The property

-9-



M M

is said to be generic in IR if there exists B c IR \ where B is a closed

set with zero Lebesgue measure such that Tr(a) = F only if aS B. a

We will sometimes refer to a generic property as a property that

N
holds for almost all parameter points in IR .

Definition 3.3: The system is said to be locally diagnosable if the

N
local diagnosability property is generic in IR . n

Definition 3.4: Let M(a) be a matrix whose elements are continuous

N ON
functions of a everywhere in IR . A parameter point a € ]R is said

to be a regular point of M(a) if there exists an open neighborhood of

a in which M(a) has constant rank. n

Definition 3.5: A function v(«) : IRP + IR is said to be a weighting

function if:

a) v(u) is continuous with respect to u

b) v(u) > 0 Vu € ]RP n

We now introduce the test matrix

OOO .00

•••J v(u) D^u.a)* Daf(u,a) dujduy-diip (3.1)

where D f(u,a) is the transpose of D f(u,a). Note that R(a) is a

symmetric positive semi definite matrix in IR

We now present a key lemma which links the rank of R(a) to the

properties of the null space and range space of D f(u,a).

Intuitively, "zero volume," as for example, an (N-l)-dim hyperplane in
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Lemma 3.1: Let v(«) be any weighting function such that the matrix

function of a, R(a) exists Va <= IR . Consider a partitioning of the

vector a as

a -Csl

where y^ IRP, p< N, and 5€ ]RN"P,

and the associated partitioning

RY(a) RYj6(a)

R(a) =

where R(a) € Fpxp, R6 e r (N-p)x(N-p) and R^ ^(o) € ^(N-p^ Suppose
V,6

that

0 ..
a) a is a regular point of R(a),

b) rank [R(a0)] = p,

c) R (a ) is positive definite.

Under these conditions

1) There exists B(a ), an open neighborhood of a , and L(a), a

continuous px(N-p) matrix function of a, such that

L(a)
[D f(u,a)]

a I (N-p)x(N-p)
= 0 qx(n-p) Vue]Rp, Va€B(a°).

2) 3yl G ^P' 1# = !»•••*» &1 Psuch that the first p columns of the

matrix

col(Daf(u\a°),---,Daf(u£,a0))

are linearly independent.

'col(A.B) =[g]
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0 ,
Proof: Since a is a regular point and the entries of R(ct) are continuous,

3B(a ) an open neighborhood of a , such that Va € B(a ), the rows of

the matrix [Rv Jot) R (a)] are linearly dependent on the rows of

[RY(ct) Ry9(5(a)]. Hence Va €B(a°)

RY(a) RY>6(a)

Rj§fi(a) R6(a)

'-RY(a)"1 Ry>6(a)

I(N-p)x(N-p)

= 0
Nx(N-p)

(3.2)

Let,

L(o) A-R^a)"1 Ry>6(a)

Note that L(a) is a continuous function of a. It now follows from (3.2)

and the definition of R(a) that

L(o)

I _

which is the first result. To prove the second result, we first note

that there exists u1 € IRP such thai? D f(u1,a°) f 0, since if it were
al

n
not so, it would contradict the positive definiteness of R (a ). Now

suppose that for k < p, we have m inputs, u .•••,um, m < k, such that

the matrix

Daf(u,a) =V(N-p) Vu€*P' Va€B(a°)

'm,k

D f(u\a°) — D f(u\a°)
al ak

Daf(um,a°) -. D f(um,a°)
al ak

^a. is the i-th entry of a.
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has full column rank. Hence it has a kxk nonsingular submatrix which can

be described as the product SHmjk, where S is a kxqm selector matrix that

selects k linearly independent rows of Hm ... To prove the result, it is
m, k

enough to show that there exists um+1 € Rp such that the matrix H^, ..,
m+1 ,k+l

has full column rank. Suppose that the statement is false. Then there

exists no choice of inputs um+1 e IRP such that Hm+1 k+1 has full column
rank, i.e., there exists a qxk matrix C(u) such that, Vu s ]RP,

^^^••^/^"•Cfu)^^ (3.3)
Substituting (3.3) in (3.1) and letting Rk+1(a°) denote the (k+1) x(k+1)

principal submatrix of R(a ), we have

k+1 t C°° (°° f

R • CSIW []_.•••]_,/<«> C(u) C(u> dV<VCSHm,k+1J-

Hence its rank is, at most k, which contradicts the positive definiteness

of R (a ). Hence the lemma is proved. n

We now present a theorem that gives a necessary and sufficient

condition for the diagnosability of a regular parameter point.

Theorem 3.1. Let v(«) be any weighting function such that the matrix-valued

function of a, R(a), exists Va € IRN, and let a0 be a regular point4 of

R(a). Under these conditions, the parameter point a is locally

diagnosable if and only if R(a ) is positive definite. n

The regularity assumption is crucial. In Theorem 3.2 and Proposition
3.1 we will discuss conditions under which almost all a € ]rN are regular
points.
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The following is a plausibility argument for the above theorem.

Consider first the case where the input space consists of a finite

number of elements u^-.-.u^. Since we can do no better than test the

system with all the available inputs, the parameter point a0 is locally

diagnosable if and only if a is a locally unique solution of the

concatenated set of input-output equations, i.e., the matrix

col(Daf(u ,a),i = l,.-k) has full column rank. Since the rank of a matrix

equals that of its transpose multiplied by itself, this is true if and

only if the matrix

I Dof(u1,a0)tDaf(u1.a0)
1=1 a a

has full rank. In the case where the input space consists of a

countably infinite number of points, u1, i= 1,•••,«, the above argument

generalizes to the statement that the required condition is that the

"matrix" coHD^u1 ,o), is1,••,«) be full column rank. "Generalizing"

the fact that the rank of a matrix equals that of its transpose multiplied

by itself, we can compactly represent the required condition as

00

det[ I vfu1') Dflu1^0)* Dffu1/)] t 0 (3.4)
i=l

where vfu1) is a weighting function that has been included to guarantee

that the infinite series has a finite sum. The natural extension of

(3.4) to the case where we have a continuum of inputs is to replace the

summation by an integral, to derive the condition of Theorem 3.1, i.e.,

»00 .00

det R(a°) »detC ••• v(u) Daf(u,a)t Df(u,a)du „...du ]f0
i «oo * — oo K

-14-



Proof of Theorem 3.1:

If: By the integral form of the mean-value theorem, we have, Vu £JRP

and Va in any neighborhood of a

f(u,a) - f(u,a°) = Df(u,sa+(l-s)a°)ds [a-a°] (3.5)
Jq «

Suppose now that a is not locally diagnosable. Then there exists an

k 0
infinite sequence of vectors a •* a , k = !,•••<», such that Vk e m 9

f(u,ak) = f(u,a°) Vu e IRP

Using (3.5), we have for all u and k,

fl 0 ^ #, _% kx^.kD f(u,sau + (l-s)aN)dsa* = 0
Jq a

k N
where a € IR is defined as

u k 0ak _ a -a
a —

k 0,
a -a I

The sequence a is an infinite sequence on the unit sphere and therefore

k 0 k
it has a limit point a on the unit sphere. As a -*- a , a approaches a

along a subsequence, and in the limit, we have

fl n
D f(u,au)ds a = 0 Vu € IRP

h a
i.e.,

Df(u,a°)a =0 Vu e ]R

But this implies that independent of the choice of weighting function,

atR(a°)a =0

Hence R(a ) is not positive definite.
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0"Ty If: Suppose that the positive semidefinite matrix R(o°) is not

positive definite, i.e., it has rank p < N. Without loss of generality,

we assume that the pxp principal submatrix R (a ) (notation of Lemma 3.1)

is positive definite. Since a is a regular point of R(a), we can apply

Lemma 3.1. Applying the second result of the lemma, we note that,

3U1 € 3RP, i= !,•••,£, I <psuch that the first pcolumns of the

matrix

coKD^.a0), Daf(u2,a°),...,Daf(uZ,a0))

are linearly independent. Lety1, i=l,"-£, be defined by

y1 *f(u\a°) i=1..-.JI . (3,6)

Let the equations

y = F(u,y,5) (3.7)

* p iwhere u A col[u ,i = !,•••£], represent a subset of p equations of

(3.6), whose Jacobian, represented by

CDyP(u,y.«) 06F(ufY>6)]

has the property that the pxp submatrix DaF(u,Y°,<5°) is nonsingular.

Applying the implicit function theorem [13] to (3.7), we conclude that

there exists B(y°) C 3RP and B(<5°) C IRN"° such that, V6 € B(<5°), (3.7)
has a unique solution y = ^(5) € B(y ) and that

D5^(6) =-DF(u,Ki(6),6)"1 D6F(u,^(5),fi), V<5 €B(S°) . (3.8)

We now define a new function $(•,•) :IRP x B(5°) •* IRq as

4>(u,6) » f(u,^(5),fi) .
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Note that,

D6*(u,6) =0 f(u,ip(6)f5) D64i(6) + D6f(u,<p(6)f6) . (3.9)

We now use the first result in Lemma 3.1, i.e., 3 B(y°,<5°) cIRN and
L(y»<5)s a continuous p x (N-p) matrix-valued function of (y»<5), such

that

[D„f(u,Yf5) D.f(u,Y,5)]
L(y.«)

I(N-p)x(N-p)
=°qx(N-p) VuG1rP» V(Y»5) €B(y°,$°)

It follows from this result that Vk GIN and V(y,6) € B(y°,6°),

rank coHpyV ,y.5) Dgf(u1 ,y.6)L 1=1....J0 <p. Assuming, without
loss of generality, that B(Y°) xB(6°) c B(y°,6°), it follows from the

above equation and the nonsingularity of D F(u,i//(6),<5), that Vu €1RP

and V 6 € B(<5 ), the rows of the matrix

[DYf(u,4»(5),fi) D6f(u,4;(6),6)]

are linearly dependent on the rows of

[DYF(u,ip(6),6) D6F(u,i|;(5),6)],

i.e., 3 amatrix K(u,6), such that, Vu €]RP and V6e B(6°),

DYf(u,i[i(6),6) = K(u,5) DyF(u,i|;(6),6)

D6f(u,iK6)f5) = K(u,6) D6F(ufi[»(6),5)

Substituting (3.8) and (3.10) in (3.9), we conclude that

D5<D(u,5) =0qx(N_p) Vu€IRP, V6€B(6°)

-17-
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Thus f(u,Y,<5) is constant on the (N-p)-dimensional manifold defined by

Y=*(o), that contains (y°,5°) and is defined in an open neighborhood
around it. Hence a is not locally diagnosable. n

Remark 3.1: In the above proof we have established that if rank[R(a0)]

=P<Nthen there is an (N-p) dimensional manifold of observationally

equivalent points that contains a0 and is defined in an open neighborhood
of it. Thus,

u(a°) AN-rank[R(a0)]

is precisely the measure of solvability of the parameter point a0 discussed

in [4] and [15]. Further, in the sequel we will discuss conditions under

which R(a) has ageneric rank, in which case u(a°) has ageneric value

V which is the measure of testability [15] of the system. n

Theorem 3.1 gives a necessary and sufficient condition for the local

diagnosability of a particular parameter point. If we can show that

local diagnosability is a generic property, this result can be used as a

condition for the local diagnosability of the system. In Theorem 3.2 we

state a condition under which local diagnosability is a generic property.

Observe that in both Lemma 3.1 and Theorem 3.1 the results are independent

of the choice of weighting function. This is in fact true of all the

results we present in this paper. Consequently, from this point on, when

we refer to the matrix R(a), we assume that there does exist an appropriate

weighting function and will not explicitly state this fact.

Theorem 3.2: Suppose that

p A max rank R(a)
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is the generic rank of R(a). Then

1) almost all a € IR are regular points of R(a);

2) the system is locally diagnosable if and only if

p = N n

Note that the generic rank of R(a) can be determined by evaluating its

rank for some randomly chosen a€]RN. in the following two propositions,
we present conditions under which the maximum rank of R(a) is its generic

rank.

Proposition 3.1: Suppose that f(u,a) is analytic in a. Then,

p A max rank R(a) .

a€IRN

is the generic rank of R(a).

Proof: It follows from the definition of p that there exists a <= IRN

and M(a) a pxp submatrix of R(a) such that

Thus the determinant of M(a), which is an analytic function of a, is not

identically zero. Hence its zero set, say Z, is a closed subset of 3RN

with zero Lebesgue measure [16]. It now follows from the definition of

p that

rank R(a) = p Va € IR N-Z .

Hence p is the generic rank of R(a). n

Proposition 3.2: Suppose that f(u,a) is three times continuously

different!*able with respect to a, and let
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p = maxM rank[R(a)].
aEBT

Suppose that there exists M(a), a principal pxp submatrix of R(a),
such that

{a €IRN|detM(a) =0 and D2det M(a) =0M M} =0
a NxN

Under these conditions, p is the generic rank of R(a).

Proof: Since M(a) is a principal submatrix of R(a), which is a positive

semidefinite matrix, det M(a) >0, Va £JRN, hence

det M(a) =0=» D det M(a) = 0.
a

Let,

*(a) ^ [D det Mta)]*

Consider any a such that det M(a) =0. It follows that,

*(o) =0 and Da*(a) t 0NxN

Without loss of generality, assume that

(^♦(o))^ t 0.

By the implicit function theorem [13], there exists some £(•)» such

that, in a neighborhood of a, the solution of ijj,(a) = 0 can be described

as

CcCctg >•-. »a^), a2f...,ajy.)

which is a local (N-l) dimensional parametrization [13]. Thus

ZA {a6IRN|det M(a) =0}
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is closed and is a subset of an (N-l)-dimensional manifold. Hence Z

has zero Lebesgue measure. It now follows from the definition of p that

rank R(a) » p -Va SJRN-Z.

Hence p is the generic rank of R(a). n

IV: SIMPLIFIED TESTS FOR LOCAL DIAGNOSABILITY AND EXISTENCE OF TEST INPUTS

In the preceding section we have discussed conditions under which

the test for the local diagnosability of a system reduces to a rank test

on the matrix R(a )evaluated at a randomly chosen point a0. Note

however, from the definition of R(a) in (3.1), that this can be expensive,

especially when p, the number of inputs, is large, since it involves an

infinite multidimensional integral. Therefore, we now discuss conditions

under which the test for diagnosability is cheaper than the evaluation

of (3.1). We first present two simple sufficient conditions.

Corollary 4.1: Let U be an open subset of IRP and let

R(o°) AL v(u) Dffu.o0)* Df(u,a°) du,—dunjy a a l p

""0 nIf R(a ) is positive definite, the parameter point a is locally

diagnosable.

Proof: Note that

R(a°) - R(a°) +J v(u)Daf(u,a°)t Daf(u,a°) dur..du
IRN-U

Since the two matrices on the right hand side of the above equation are

respectively, positive definite and positive semidefinite, R(a°) is

positive definite, hence by Theorem 3.1, a0 is locally diagnosable.
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Proposition 4.1: Suppose that there exist kinputs u1,...,uk, such that
the matrix

col[Daf(u1,a°),..,Daf(uk,a0)]
is full column rank. Then the parameter point a0 is locally diagnosable.

Proof: The proof follows from the Inverse Function Theorem [13] and the

definition of local diagnosability. n

Our next two propositions are, under suitable conditions, necessary

and sufficient conditions for local diagnosability and lead to tests that

are computationally cheaper than the evaluation of (3.1).

Proposition 4.2: Suppose that there exists a weighting function v(-)

such that R(a) exists Va € ]RN, with the additional property

J •••! v(u) du«|"-du -1

Then Va € R ,for inputs u ,u2,.--uk, independently sampled from the
probability distribution function v(-)

lim 1 I D„f(«1»a)t Df(u\o) *R(a) with probability 1 n
k-w» i»i u »

The above proposition is a restatement of the Strong Law of Large

Numbers [17]. To paraphrase the proposition, if for a regular point a0,

a Monte Carlo analysis with a sufficiently large statistical sample of

inputs, results in a matrix*

Ĵ O^uV)* Daf(u1,a°) (4.1)
which is singular, then almost surely a regular point a0 is not locally

diagnosable (Theorem 3.1). On the other hand, if for any k, (4.1) is

nonsingular, then by Proposition 4.1 ,a0 is locally diagnosable.
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To present our final test for local diagnosability, we need some

additional notation. Let u€ lRNxp and let F(-,-) :]R Nxp x rn- ]RNx(*

be defined as

F(-,.) - col[f(.,.),...,f(.,-)]

N times

Proposition 4.3: Suppose that f(u,a) is analytic in u and a. Then the

system is locally diagnosable if and only if

p A max rank D F(u,a) s N

" (0,a)€IRNxpxIRN
Proof:

If: We establish, in exactly the same way as in Proposition 3.1, that

N is the generic rank of D F(u,a). It now follows from Proposition 4.1

that the system is locally diagnosable.

Only If: Since f(u,a) is analytic with respect to a, almost all

a € RN are regular points of R(a). Further since almost all a€ IR

are locally diagnosable, 3a sucn tnat R(a ) is positive definite (by

Theorem 3.1). It follows from Lemma 3.1 that 3ul> is 1,,#*,££N

such that the matrix

col(Daf(u\a°),...,D/(u*,a0))

has full column rank. Hence for any u that satisfies

u. = u1, i = !,•••£

we have

rank[D F(u°,a0)] = N

i.e.,

p = N . n
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Observe that the number of simulations required to test for local

diagnosability has been reduced in Proposition 4.2 to a sufficiently

large Monte Carlo sample, while in Proposition 4.3 , since p is the generic

rank of DaF(u,a), simulations at arandomly chosen (u°,a°) suffice. We now
present two simple examples to illustrate the application of the results

developed so far.

Example 4.1: Consider the circuit shown in Fig. la with the diode

characteristic of Fig. lb. The system description is given by

y « (G+d)u u > 0 (4.2)

y = Gu u < 0

The (possibly faulty) parameters are G and d, i.e., a = [G,d]t.

Note that (4.2) is analytic with respect to a but only continuous with

respect to u. We pick a =[I,!]1 as the representative parameter point.
Observe that

D (u,a) s [u u] u > 0

[u 0] u < 0

To determine if this system is locally diagnosable or not, consider

Wa°) *f Dju.a0)1 D(u.a°)du
J-1 a a

2/3

u2 u:
u2 u2

V3

I du +
fl

0

u2 0
0 0

1/3 1/3

du

In the above computation, the weighting function v(u) = 1, Vu € (-1,1)
^/.ONote the R(a ) is nonsingular. Hence by Corollary 4.1 the parameter
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point a is locally diagnosable and then, by Proposition 3.1 and Theorem

3.2, the system is locally diagnosable.

1 2
Suppose we picked two inputs u and u , one greater than zero and

1 2
the other less than zero, say u =3 and u = -2. We observe that

Daf(u1,a°)
Daf(u2,a°)

3 3

-2 0

is nonsingular. Hence,by Proposition 4.1,a is locally diagnosable.

Note that a Monte Carlo analysis with any appropriate probability

distribution function will ascertain the diagnosability of the system

since it is guaranteed to eventually pick one input larger than zero and

one smaller than zero. Observe finally that since (4.1) is not analytic

with respect to u, Proposition 4.3 cannot be applied. In fact (using

the notation of Proposition 4.3),

max rank[D F(u,a)] = 2,

(G,a)€]R2x3R2

is not the generic rank. D F(u,a) does not have a generic rank. n

Example 4.2: Consider once again the circuit in Fig. la but with the

diode characteristics now given by

avd
id=Is(e d-l)

The system is described by the equation

y= Is(eau-1) +Gu (4.3)

The parameters are I$, aand G, i.e., a=[Ig^.G]*

Note that (4.3) is analytic with respect to u and a. We can therefore

apply Proposition 4.3 to test the local diagnosability of the system.
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To determine the generic rank of D F(u,a) we pick the point
a

(u°.o°) = ([-1 12]*, [1 11]*)

and observe that

Dof(u0,a°) =
-0.632 -0.368 -1

1.718 2.718 1

6.389 14.778 2

is full rank. Hence (4.3) is locally diagnosable. n

We next turn to the question of determining the faulty parameter

values of a system that is locally diagnosable. Since in this paper we

are mainly concerned with diagnosability, our goal here is to show the

existence of a finite number of test input signals that are sufficient

to diagnose almost all faults. The most straightforward diagnosis

algorithm, consists of using £ test input signals u1, i = 1,•••&,

measuring the corresponding outputs y1, i= 1,*..£ and then solving the

equation

f(u\a) -y1 =0 i = !,...,£

for the faulty parameter values a,using a stabilized Newton algorithm

[18][19]. To apply the algorithm we require that, for almost all

a € RN,

rank[col(Daf(ui,a) i=!,•••£)] =N. (4.4)

Note that all the tests for local diagnosability developed in this

section except for Corollary 4.1 are based on evaluating f(u,a) for a

finite number of inputs. Hence the same finite set of inputs that is

used to ascertain the local diagnosability of the system is sufficient
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for the diagnosis algorithm, since (4.4) will be valid for this input

set. More generally, we have the following theorem.

Theorem 4.1: Let f(u,a) be analytic with respect to a. Then if there

exists a such that R(a ) is positive definite, it follows that

3 u1, i=!,••£< Nsuch that, for almost all a€ JRN,

rank[col(Daf(u1,a) i=!,•••£)] =N

Proof: The proof follows from Lemma 3.1 and the analyticity assumption.
•

Remark 4.1: The proof of Lemma 3.1 suggests a test input selection

scheme that is similar to that of Sen and Saeks [4], Note that we have

not addressed the problem of choosing test inputs that are optimal for

the numerical well-posedness of the fault diagnosis equations. n

Finally, note that if f(u,a) is analytic with respect to u and a,

it follows from Proposition 4.3 that any randomly chosen test sequence

u , i s 1,*.,N, can diagnose almost all faults.

V. SINGLE FAULT DIAGNOSABILITY

Given a faulty system, in practice it is often true that only a few

of the parameters are faulty. In this section we shall study the case of

single faults. In linear systems, the problem of locating single faults

has been addressed in [20] and [21], while Chen and Saeks [22] discuss

numerically efficient algorithms for the diagnosis of single faults

using multi-frequency testing.

Definition 5.1: A parameter point a € IR which has only one entry

which is not at its nominal value is said to be a single fault. *

Assumption 5.1: In this section, we assume that the only possible faults

in the system are single faults. n
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The problem of diagnosis then, is to determine which parameter is

faulty and what its faulty value is. Note that we have assumed that all

the fault-free parameters are at their nominal value, while in practice

the fault-free parameters can be assured to be only within a tolerance

region. As will become clear in the sequel, due to analyticity in a

(Assumption 5.2), this does not invalidate our results. However, the

problem of variations in the fault-free parameters cannot be bypassed

when one discusses diagnosis algorithms.

Notation 5.1: In this section, the nominal parameter point is denoted

by a . n

Remark 5.1: As discussed in the introduction, diagnosability is a global

uniqueness property. Thus, strictly speaking, we should define a system

to be single fault diagnosable if and only if, for almost all single

faults, there exists no other possible single fault that is observationally

equivalent to it. It is however difficult to derive a necessary and

sufficient condition for an arbitrary nonlinear function with such a

definition. We therefore make the following definition of single fault

diagnosability which is a necessary condition for the definition discussed

above. Note that the concept of local diagnosability discussed in the

Section III has the same relationship to global diagnosability. =»

Definition 5.2: The system is said to be single fault diagnosable if
5 ~

Vj - !,•••,N, for almost all a. € IR and Vk = !,•••,N, k f j, the
j

following is true.

If M is a 1- or 2-dimensional manifold in the (a.,ak)-plane such

that all points in Mare observationally equivalent and (a_.,a?) € M, then
c J K
3a. is the j-th entry of a.
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MO((a?,ak)|ak SIR }=<p

Mn{(aj,a^)|aj e IR }=((a^)}

Remark 5.2: Note that if we had also included 0-dimensional observationally

equivalent manifolds in definition 5.2, then it would be equivalent to the

one in Remark 5.1. Pictorially, Definition 5.2 does not preclude a set

of isolated observationally equivalent points (P-pPo*^ on the (a.,ak)-

plane (for some j and k) as shown in Fig. 2, where say, P1 is the real

fault. Observe however, that the condition shown in Fig. 2 is possible

even if the system was locally diagnosable. Hence with this definition,

we are no worse off than if we required local diagnosability as a

precondition to diagnose faults in a system that had only single faults.

The advantage of Definition 5.2 however is that a sufficient condition

for it, that we will derive, is much weaker than the necessary and

sufficient condition for local diagnosability. n

We now present a lemma which is a key bridge between Definition 5.2

and the sufficient condition for local diagnosability that we will derive.

Lemma 5.1: If Vj = 1,-«.,N, for almost all a. e IR and Vk = 1,.-.,N,

kt J> 3 B(<*j'a|<) an °Pen neighborhood of (a-,ak) in the (a.,ak)-plane
such that no other (a.,ak) in that neighborhood is observationally

equivalent to it, then, the system is single fault diagnosable. *

Notation 5.2: For all 1< j,k < N, we let R-k(a) denote the (j,k)-th

entry of the matrix R(a) and VI < j,k < N, j f k, we define

Rjj(a) Rjk^
Rjk(a) A Rjk(a) Rkk(a)
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Assumption 5.2: Throughout this section we assume that f(u,a) is

analytic with respect to a. As a consequence,

a) max rank Rjk(a) =generic rank Rjk(a) VI <j,k <N, j f k.
a^IRN " "

b) max rank R(a) = generic rank R(a)
«6]RN

We will therefore, without loss of generality, assume that the nominal

point is a generic point, i.e., in each of the above cases the maximum

rank is achieved at a .

Theorem 5.1: If Vj = 1,.--N-1 and Vk =j+1,—,N the matrix RJk(a°)

is positive definite, then the system is single fault diagnosable.

Proof: For any pair (a.j»ctk), consider the local diagnosability of the

system with only a.- and ak being considered as parameters. The remaining

elements of a are fixed at their nominal values and are now part of the

system structure. They will therefore be suppressed in notation. Since

f(u,aj,ak) is analytic with respect to a- and ak and since RJ (a?,a?)
is positive definite, for almost all a.(resp. ak) € IR,

a) (otj,ak)(resp. (<*j,ak)) is aregular point of Rjk(a.,ak).

b) Rjk(aj,ak)(resp. Rjk(aj,ak)) is positive definite.
The result now follows from Definition 3.1, Theorem 3.1 and Lemma 5.1. n

Note that results that are similar to Corollary 4.1, and Propositions 4.1,

4.2 and 4.3 can be stated to simplify the sufficiency test for single

fault diagnosability. We present one of these propositions. Recall

the notation of Proposition 4.3.

Proposition 5.1: Suppose that f(u,a) is analytic in u and a. Then the

system is single fault diagnosable if ^u € lRNxp such that

Vj = 1,.'*N-1 and Vk = j+l,.-N
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rank[D„ F(u°,a°) D„ F(Q°,a0)] =2
aj ak

Proof: The proof is along the lines of Theorem 5.1 except that it uses

Proposition 4.3 instead of Theorem 3.1. n

We now present an example to illustrate the concepts developed in

this section.

Example 5.1: Consider the linear resistive circuit shown in Fig. 3.

The circuit is driven by a DC current source, u, and the voltages y,

and y« are the measured outputs. The faulty resistor values are all

assumed to be strictly positive. The parameter vector is

a=[R1R2R3R4R53t

and the nominal parameter values are

R1 = IK, R2 = 2K, R3 = 3K, R4 = 4K, R5 = 5K

The system description is given by,

R3<R4+R5WR1+R2)(R3+R4+R5}

(R3+R4+R5}

R , (R4+R5>R3R5
2 R^s+^Rs+f^

(5.1)

Since (5.1) is analytic in u and a, we can apply Proposition 5.1. Further

since the system is linear, there is no advantage in testing it at more

than one input. Therefore, (5.1) is single fault diagnosable if every

pair of columns of the matrix D f(u,a) evaluated at a test input say

1 mA, and the nominal parameter values is linearly independent. The

Jacobian of (5.1) with respect to the parameters evaluated at the

nominal parameter values and the given test input is given by the matrix
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1 1 .4167 .0625 .0625

0 1 .4074 -.1698 .2105

Note that every pair of columns in the above matrix is linearly

independent, hence (5.1) is single-fault diagnosable. Note also

that since there are five parameters and only two transfer functions,

(5.1) cannot.be locally diagnosable.

We next turn our attention to the algorithm for the diagnosis of

systems that satisfy the condition of Theorem 5.1. The algorithm is

based on test measurements taken with a finite number of test inputs,

u , i • l,«-.Jl. It follows from the following theorem that measurements

made with only this finite set of inputs preserves the local uniqueness

property described in Lemma 5.1 and guaranteed by the conditions of

Theorem 5.1.

Theorem 5.2: Suppose that Vj = 1,.--,N-1 and Vk = j+l,.-.,N the matrix

-N

2
RJ (a0) is positive definite. Then, gu1, i=1,•"•,*, I<(!!(), such
that Vj = !,•••,N-l and Vk = j+l,.-.,N

rank[col(D f(u\a°), i=l,",£):col(D f(u1,a°),i =1,•-,*)] =2
i ' ak

Proof: The proof follows from Lemma 3.1 by considering each pair

(a.,ak) separately. n

The algorithm that we propose for diagnosis is the search algorithm

described by Chen and Saeks [22] for the multi-frequency testing of

single faults in linear systems, and is as follows

Vk = 1,.*.,N compute

Ck Amin •col(y1.f(u1toj,..,oj-lfak.aj+r-,oj),. 1=1,••.£)!
°k€R
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The faulty parameter, say a., necessarily satisfies the equation
j

Cj =o

while the fault value is the value of a- for which the zero minimum is
j

achieved.

VI. AN EXAMPLE

We now present a simple example to illustrate the application of

our results in a computational environment. Consider the single-stage

transistor amplifier with various possible test points, shown in Fig. 4.

We use the following Ebers-Moll model for the transistor.

, Kvrp KvrpiE=IES(e BE-l)-aFIES(e BC-1)

KvRr KvRP
ic=Ics(e BC-1) -aFI£S(e BE-1)

K = 38.46 V'1

The parameters of the system are assumed to be

= [R1 R2 R3 R4 Ic$ I£S aF]

The nominal values of the resistors are given in Fig. 4 while the nominal

values of the transistor parameters are

ap = 0.99

Ics =10-5 mA

IES =7x10"6 mA.

Since all the branch relations are analytic functions, every input-

output model, y = f(u,a), is analytic in u and a [16]. We therefore use

Proposition 4.3 and Proposition 5.1 to test the local diagnosability and
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the single fault diagnosability of circuit, respectively. To apply these

propositions it suffices to use 7 test input signals. However, to avoid

possible numerical difficulties, we used 20 test input signals. The test
matrix

colDy^u1^0), 1=1,...,20]

was created by simulating the circuit at the nominal parameter values

and the various test inputs and using the Implicit Function Theorem (2.5).

The rank of the test matrix was determined using standard numerical

techniques [23]. Recall that

u A N - generic rank [R(a)] .

The results are summarized in Table 1. Note that, for entries 4 and 6 in

the table, if (R^Rg) is considered to be a single parameter, then, the

values of y would be 1 and 0 respectively, and the circuit would be

single fault diagnosable.

VII. SUMMARY

In this paper, we have investigated the problem of diagnosability

of nonlinear DC circuits (memoryless systems) based on the assumption

that the circuit has a global input-output representation. We first

consider local diagnosability. In this situation all the parameters

are assumed to be faulty. We have derived a necessary and sufficient

condition for the local diagnosability of the system which is a rank

test on a matrix and indicated various ways of reducing the computational

complexity of this test. We then consider single-fault diagnosability

and derive a sufficient condition for it which is much weaker than the

necessary and sufficient condition for local diagnosability. We have

thereby rigorously confirmed the intuitive belief that fewer testpoints
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are required to diagnose faults in circuits where only one. instead of

all the parameters are faulty. We have also shown that for diagnosable

systems it is possible to pick a finite number of test inputs that are

sufficient to diagnose the system. We have however not addressed the

question of choosing these test inputs optimally for the numerical

well-posedness of the fault diagnosis equations.

Interestingly, the techniques developed in this paper can be used to

derive necessary and sufficient conditions for the local diagnosability

of general nonlinear dynamical systems by reformulating the problem in

an infinite dimensional setting. We address this problem in Part II of

this two-part paper.
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FIGURE CAPTIONS

Fig. 1 (a): Circuit for Examples 4.1 and 4.2.

(b): Diode Characteristics for Example 4.1.

Fig. 2. Isolated, observationally equivalent parameter points

Fig. 3. Circuit for Example 5.1.

Fig. 4: Single-stage transistor amplifier.
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TABLE CAPTION

Table 1: Measure of testability of the circuit of Fig. 4 for various

input-output combinations.



TABLE 1

No. Input Output u

Single Fault
Diagnosable?

1 !1 el
1 Yes

2 h er e2 0 Yes

3 l1 eT e3
0 Yes

4 l2 e2 2 Yes*

5 l2 er e2 0 Yes

6 l2 e2' e3
1

*

Yes

If (R-j+Ro) is considered to be asingle parameter,
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