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1. Introduction

In December 1977, R.S. Glanville completed his doctoral dissertation describing a
machine independent algorithm for code generation and its use in retargetable com
pilers. The first part of Glanville's algorithm, called the code generator generator,
takes a description of the target computer for which one wants to generate code, and
produces a set of tables describing the target computer, relying heavily on LR parser
construction technology. This part of the algorithm is run once per machine descrip
tion. The second part of his algorithm reads an intermediate representation (IR) of a
program being compiled into code for the target computer, interprets the tables pro
duced by the first algorithm and maps the intermediate representation into the
instruction set of the target machine. The second part of the algorithm is run once
per source program. The mapping is provably correct, and produces nearly optimal
code at the expression level. The reader is assumed to be familiar with Glanville's
dissertation, and associated papers [Glan77] [GlanGrah78] [GrahGlan78] [Grah80].

For readers familiar with Glanville's dissertation and the work he did in its sup
port, this report documents in detail what was done to improve or extend his disserta
tion work. We reimplemented Glanville's basic algorithms, and implemented a hospit
able environment to experiment with retargetable code generators using Glanville's
ideas. The reimplementation and environment is collectively called the Code Genera
tor Generator's Work Station, or CGGWS. It is designed to be run on a 32 bit machine
running UNIX1. Some of Glanville's algorithms were changed: his loop detection algo
rithm was combined with the table generator, as well as with the default list construc
tor. The former combination made the implementation easier, and the latter
corrected a serious omission in the dissertation. We implemented a simple compres
sion technique for the large parse tables. However, experience with many real
machines and complete machine descriptions shows that the description tables, in
their original design, are too large to be practical. In addition, we implemented a
code generator which interprets the description tables, and which is capable of gen
erating reasonably efficient assembly code for arbitrarily complicated expressions for
a wide variety of target machine architectures.

This report is also intended to provide the rationale behind the implementation.
This rationale is missing from the code implementing CGGWS. We describe the quanti
tative results of the implementation, encapsulate the experience gained writing
machine descriptions for a number of machines, and offer cook-book suggestions for
writing machine descriptions. Throughout the report, we explain the problems with
this code generation technique in its current form and the issues that we are examin
ing in our current research in machine independent code generation.

1UNDC is a trademark of Bell Laboratories.



2 The CGGWS

8. Implementation Overview

The implementation description first briefly describes a previous implementation,
then discusses the current implementation as a whole by describing its five phases, its
inter phase communication files, its coding conventions, and finally the major data
structures that the code generator generator constructs for the code generator.
Then, each phase is sequentially examined in order of application, to describe how
that phase contributes to the major data structures. There are extensive descriptions
of the second phase (table constructor) and the fifth phase (code generator) which
document changes to Glanville's algorithms, and discuss semantic issues mentioned
only briefly in his dissertation.

2.1. Glanville's Implementation

As part of his dissertation research, Glanville implemented his algorithms as a
series of PASCAL programs. He chose PASCAL because of its control and data struc
turing capabilities, its set data types and algebra, and because the compiler and
interpreter had superior error diagnostics. However, the Berkeley PASCAL he used

ran interpretiveiy on a PDPll2, was very slow, and placed severe constraints on the
amount of data and code his program could have. Consequently, the target machine
descriptions he considered were restricted to small instruction subsets of real
machines. (The PDPll and IBM360 subsets given in his dissertation are the largest
examples that could be handled by his implementation.) PASCAL as a language does
not allow dynamic arrays, which are mandatory for flexible and efficient implementa
tion of the code generator. The implementation itself was a research program; some
of the code was obscured by the development history; all of the code was very dense,
comment free, and hard to understand. It also possessed latent bugs not demon
strated by his dissertation examples. In addition, both implementation space con
straints, as well as artifacts from the,order in which the ideas were developed, forced
the algorithmic separation presented in his dissertation. Further, his dissertation
and implementation algorithms disagreed in some places. However, Glanville's pro
grams were sufficient to show that his ideas worked.

2.2. Henry's Reimplementation

With some of the deficiencies in the PASCAL implementation in mind, the algo
rithms were reimplemented in the language "C". There were three goals of the reim
plementation. First, reimplementing in almost any language would force the author
to understand the algorithms thoroughly, possibly suggesting some basic improve
ments or modifications. Secondly, the new implementation would be cleaned up
enough for serious production work. Thirdly, an implementation in "C" could exploit
Borne of the power in that language. "C" has most of the data and program structur
ing facilities available in PASCAL, generates compiled code, and provides low level
constructs allowing efficient set implementations and memory management. "C"
provides facilities to allocate arrays dynamically, provides an operating system inter
face facilitating efficient I/O, and is directly useable with the tools lex and yacc. In

•PDPit a trademark of Digital Equipment Corporation.
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addition, when the project started, Berkeley had just purchased a VAX3 11/780 having
a "C" compiler, but the Berkeley PASCAL system had not yet been ported.

For comparision's sake, Glanville's original implementation contained 3486 lines
of PASCAL. For the reasons discussed in § 2.1 and in this section, this implementa
tion was entirely discarded. William Joy began the implementation of CGGWS. and
wrote about 2000 lines of "CM code implementing the first part of CGGWS. The author
completed the implementation, adding approximately 22,000 lines of "C" over the
course of 2 years. _ ~

The reimplementation has failed to meet all of its goals. The author did not ini
tially know "C", so some of the first modules to be written exhibit rough edges and
clumsiness still persists. Parts of the code generator are obtuse because the regis
ter model and register allocation schemes were hard to master. Algorithmic, logical,
time, efficiency and development constraints resulted in 89 partially shared source
files implementing the four phases. (See appendix 6.) Fortunately, the program
make provided a reasonable environment to manage the source. Further, the inter
phase file structure is more confusing than that with which Glanville's test implemen
tation was saddled. Local comments are liberally inserted into the code, but the
code lacks global documentation. This report attempts to supply that picture.

2.3. Implementation Phase Structure

The implementation is structured into five physical phases. Figure 2.1 shows the
tasks allocated amongst the five phases. Its form is based on the diagrams from the
Bliss book [Wulf75]. The first four phases are collectively called the code generator
generator, or parser constructor. The phases are run sequentially once per machine
description to construct the code generator tables. They communicate via a number
of interphase temporary files. The last phase is run once per source program. Tmdl
syntactically and semantically analyzes the target machine description language
(TMDL) described in Glanville's dissertation. Analysis analyzes the grammar, and
implements the SLR(l) parser constructor, loop removal, blocking analysis and
default list construction also described in his dissertation, eventually producing a
number of tables describing the machine. Merge merges the output files produced
by the first two phases, compresses the tables and does consistency checks. Ccode
converts the internal tables massaged by merge into initialized C variables that are
then compiled and loaded in read only storage together with a set of standard
modules that implement codegen. The C Compiler is not counted as a phase of
CGGWS. Codegen does all ofthe IR semantic checking and register allocation.

2.3.1. Typesetting Conventions for this Report

Phases in CGGWS appear in bold, viz tmdl, analysis. Utility programs appear in
italics, viz lex, yacc. The abbreviation TMDL, In roman, stands for Target Machine
Description Language, and is not to be confused with the compiler for TMDL, tmdl.
Reserved words in TMDL appear in bold, viz Sregisters, Jsymbols. C source files
implementing CGGWS appear underlined, viz seman.h. Variables in source files are
in italics, viz syms, rules. Algorithm names appear in italics, as expandR.45.

'VAX is atrademark ofDigital Equipment Corporation
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yacc parser output
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C compiler
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assembly code

codegen

CGGWS flow goes from top to bottom, left to right within each phase diagram.
Figure 2.1: Functional Overview to the CGGWS

^S'seTJV tyPeSeUin8 oonventlons «™ <«ed for grammar terminology, such
8.3.2. Data Structure Terminology

We describe here the data structure terminology used throughout the report A
Sh a°nra7 fhdata SlrCT repreSentS the hi*h level visualization of the data on
oresen^T ^ "^ B°th to ^orithms * GlanvUle's dissertation, and thosepresented later for analysis, deal exclusively with logical data structures. Logical
the ohvstlT63 arS lhf r^' regardleSS °f the Phase- Phvsioal dala structures3^the physical representation of the logical structure, are implemented to trade ofl
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speed versus time, and allow speedy responses to the algorithmic requirements.
Physical data structures are explicit in the C structure and variable declarations,
are implicit in the code, and vary considerably from phase to phase. If a datum
indexes an element of A, then A is represented as an array of contiguously allocated
elements. An indexed structure is space efficient, but requires a multiplication to
address the indexed element and is not extendable once allocated. Indices are

phase independent. If a datum points to an element of A, then the element in A is
directly addressed, requiring slightly more space than an index's implicit address,
but access is extremely fast, and is phase dependent. Binding converts indices to
pointers; unbinding converts pointers to indices, although the index may not be
valid in the current phase.

We list here some other abbreviations used throughout this report that also
appear in Glanville's dissertation. More extensive definitions will be found in other
sections of this report.

IR intermediate Representation (of the program)
canon Canonicalized (IR)

cse Common Sub Expression
lhs left #and Side (of a grammar rule)
rhs /?ight Hand Side (of a grammar rule)

rlist Reduce List

dlist default List

proc Procedure

2.3.3. Phase Subdivision Rationale

Tasks are allocated to the first four passes in a way to satisfy both data struc
ture space and time constraints. The phase structure also reflects the way the pro
grams were developed. These two constraints will be discussed in turn.

2.3.3.1. Data Structuring Constraints

If a phase generates a dynamically unpredictable number of elements in a logi
cal data structure, each element is allocated individually, and the elements are
linked together with pointers to form the physical structure. The output routine
for that phase concatenates the elements together contiguously into their proper
order when the routine writes to the interphase file. The next phase knows the
number of elements and size of each element, so it can dynamically allocate the
entire array, and do a single, efficient interphase file read. (The above dynamic
allocation is not strictly true for the tmdl phase. Tmdl has large upper bounds on
the number of register definitions and the size of a grammar rule.)

The entire code generator generation task is broken into phases at points
where as much dynamic information as possible has been assembled and the local
auxiliary data structures are no longer needed. At this point, the physical struc
ture of the major virtual data structures is too cumbersome for the future use and
can benefit by the reorganization possible across phases. For example, analysis
does itemset manipulation that no other phase needs, but does not need to see the
entire parser at once. Merge needs to see the entire parser to compress the
tables, but does not need some of the semantic information associated with rules.
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A major and unavoidable difficulty with the separate phase structure and phase
specific data representations is the plethora of structure definitions and the
confusingly different code in the different phases.

2.3.3.2. Software Development Constraints

The first two code generator generator phases, tmdl and analysis were written
with the intent that codegen would be the following phase. All of tmdl, plus the
SLR(l) parser constructor in analysis, was written by Bill Joy before the author
took over the project. Hence, the established coding style, variable names and
other conventions had to be learned and observed before default and reduce list

construction could be added to analysis. Even though a general strategy was
known before and during analysis's implementation, the implementation
agglomerated piecemeal as more algorithms were added and tested.

When analysis was completed, and the framework for codegen laid out and its
implementation begun, it became apparent that the interphase file structure
between analysis and codegen was too bulky, and the machine description tables
could be compressed. What followed was entrapment in the quagmire of a large
system. By that time, analysis was too large and complicated for the author to
regain the familiarity present during its intense development. Modifying analysis
would have created more problems than it would have solved; touching one part of
the program might inadvertently touch and break another fragile part of the pro
gram.

Hence, merge came into being. Merge could benefit from the author's
improved C coding style and could establish its own tailored and conceptually
simplified environment in which to complete the task of table compression. For the
same complexity reasons, ccode was written as a separate phase, once merge and
codegen had been working together for 6 months. Adding the two phases was not
without problems. The interphase communication file had to reflect the internal
specifics of both communicating phases. As a result, physically clean data struc
tures have murky starts in their interface initialization routines. Writing and test
ing a new phase was extremely difficult because two interphase file protocols and
implementor had to be modified and understood. A bug in merge's input routine
might require modification to tmdl, analysis and merge, plus a run of the standard
ized test example through the modified phases, before merge could be retested.

Ccode had its own development difficulties. That phase had to produce output
syntactically and "micro" semantically acceptable to the C compiler, plus "macro"
semantically acceptable to codegen. Since any modifications to structure
definitions across all of CGGWS must change code in ccode, ccode was written after
all other phases were frozen.

The five programs, developed over a period of 1.5 years, were quite sensitive to
changes in the development environment. Modifications to both the semantics of C,
and to the compiler and optimizer, proved to be a continual nuisance. Language
shortcuts and machine specifics accidently added to the source code of the five
phases were invariably stepped on and broken by compiler modifications.

6



The CGGWS

2.4. CGGWS Test Cases

2.4.1. Machine Description Grammars

CGGWS was tested on a repertoire of eight machine grammars. With one excep
tion, these grammars describe just the basic instruction set of the target machine,
for integer typed operators and operands only. The grammars recognize IR trees
constructed from the IR operators and operands GlanviUe used for his PDPll and
IBM380 examples. Afew grammars have been augmented to recognize procedure
and function call, return and argument passing; others have been extended to
recognize productions creating and using common sub expressions. For all machine
descriptions, idiomatic instructions are restricted to clear, increment, decrement
shift left to multiply and test against zero. For all but one machine grammar, con
stant operands to commutative plus and multiply IR operators are assumed to be
canonxcalized by the IR generator so they are in the left subtree. This reordering
saves a great deal of space in the resulting code generator. With the exception of
the HP3000. all machines are classical Von Neumann general register set architec
tures, so it was relatively tedious and repetitious to write the description grammars
The size of the code generators produced by some of the machine description gram
mars is in figure 6.1 of §6; values in figure 6.1 are one measure of target machine
complexity. Figure 2.2 describes the machine grammars.
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machine

PDPll

PDPll

name

glanll

11

PDPll fullll

PDPll ncll

cses?

no

yes

yes

yes

procs?
no

yes

yes

yes

The CGGWS

canon? notes
yes Incomplete grammar. Incorrect double

register specifications. This is only in
cluded for comparison of CGGWS with
the results in the dissertation.

yes Grammar complete for integer data
types only. Partial attempt to handle
bic instruction.

yes Byte, integer and floating data types (no
double). A code generator from this
grammar was never used to generate
code because of its unwieldy size.

no Non canonicalized version of 11 gram-
mar, above.

IBM360 glan360 no no yes Incomplete grammar. This is only in
cluded for comparisons of CGGWS with
the results in the dissertation.

Z8000 Z8000 no no yes Machine description grammar
developed early in the CGGWS history.
Quite incomplete.

8086 8086 no no yes

HP3000 3000 no no yes Stack machine; top locations of the
stack treated as a register file.

VAX11 VAX no no yes movi grammar: all possible canonical
ized operands to the integer move in
struction, plus register to register add
and multiply so default lists can be con
structed. No idioms. Included to show
enormous size of CGGWS grammar, even
with canonicalized input.

Gates NAND no no no Hardware description language when
only NAND gates are available to imple
ment combinatorial logic. Includes
DeMorgan's rule as an idiom, plus other
axioms of Boolean algebra. Never used
for any serious work.

Figure 2.2: Facts about Ten Machine Description Grammars

2.4.2. IR Programs

The majority of CGGWS was debugged with the hand-generated IR for the matrix
mutliply program found in Glanville's dissertation (figure 5.8, page 98), or from
modified versions of that basic algorithm. When codegen was written and debugged,
interesting IR test cases were given to codegen interactively to exercise the buggy
portions. Later in the development cycle, IRgen was written to generate IR automat
ically from a language reminiscent of "C"; see §9.2.

8
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3. Major Data Structures

This section briefly describes the data structures the code generator generator
constructs for the code generator. Interspersed with the description are references
to particular C source language files. A complete description of the source files may
be found in Appendix 6.

A number of minor control structures, and structures describing the target
machine, are declared in seman.h and are constructed by tmdl. The action, next,
reduce and default tables are constructed by analysis and physically manipulated
(but virtually unchanged) by merge and ccode; these tables are declared in
tabledef.h.

3.1. Data Derived from the Machine Description

3.1.1. Options

Debugging print routines in all phases are enabled by setting boolean, numeric,
or string valued options. These options are set either by the process arguments
passed at the shell command level to the physical phase, or from the Soptions sec
tion in the TMDL source. Options set in the tmdl phase are propagated through all
subsequent phases.

Data structures describing the target machine have a natural and obvious
correspondence to the semantics of TMDL. (§3.3 of Glanville's dissertation describes
the semantica of TMDL) These structures describe the registers, the symbols mak
ing up the instruction grammar, and the syntax and semantics of the instruction
grammar. During analysis and merge, some semantic attributes for both symbols
and grammar rules are not memory resident, or are kept resident in an abbreviated
form.

3.1.2. Registers

All registers are enumerated in the TMDL Sregister section, and saved in the
array regnam.es. Allocatable registers are managed by the code generator, and may
not appear as register qualifications in the IR. Dedicated registers may appear in
the IR provided they are bound to a non terminal register symbol, in which case
they are checked only for semantic correctness, and will not be allocated by code
gen for expression temporaries.

3.1.3. Symbols

TMDL symbols are syntactically either grammar non terminals or grammar ter
minals, and semantically are either registers with members from the register set,
register pairs with paired members from the register set, unary or binary prefix

operators, or ranged constants 4. Symbol attributes vary depending on their seman
tics, and are represented as union elements in the array syms. Implicit in the
fsymbol section of TMDL is the dot symbol (X), overloaded to represent both no
result location and the end of the IR file (conventionally, "$")• Dot is treated

4 Note that we have assumed in writing these programs that all non terminals would be registers. That
assumption is not generally valid. For example, in the VAX, memory locations could be used as accumulators.



10 The CGGWS

uniformly as a symbol from N in all phases of the code generator generator. Symbol
enumeration order follows almost the same conventions in the first phases, but due
to the reordering merge does, the enumeration order is different for codegen. In
the first three phases, dot is the zeroth symbol, and symbols with ordinal position
less than the number of grammar non terminals are grammatical non "terminals;
otherwise they are terminals. Macros in seman.h provide symbol iterators and
discrimination, and are internally messy, but easy to use. It was difficult to keep
the symbol enumeration consistent across phases during development because of
differing conventions, the messy interphase I/O, and conventions unique to tmdl;
these all resulted in a maintenance nightmare.

3.1.4. Rules

Rules are implemented as elements of a vector. Each rule has four
macroscopic parts, in a one to one correspondence to the parts of a rule definition
in the TMDL Srule section.

3.1.4.1. Left and Right Hand Side

Both the left hand side (Ihs) and right hand side (rhs) of a rule are vectors of
bundles. A bundle describes that environment for that symbol within the rule,
including the semantic qualifications and their associated value, as described in
Glanville's dissertation in §3.2. The bundle contains a unique sequence number
shared amongst all bundles with the same qualification and Linked into the assem
bly field, and an index to the next bundle with the same unique sequence number.
Both of these fields help with the semantic checking and symbolic substitution done
by the code generator.

There are five different ways to qualify symbols semantically. Two of these are
unique for double registers; these will be described later. Dot qualifications,
represented by "." in TMDL. are inter bundle links, or link a bundle into the assem
bly field. Equal qualifications, represented by "=" in TMDL, are requests for
specific values, depending on the kind of symbol they are qualifying. The third kind
of qualification is no qualification at all; in this implementation of CGGWS, unary or
binary operators must not be qualified. Throughout this report, qualifications will
be referred to by either their name (dot or equal), or by their TMDL representation
( "." or "="), with corresponding conventions for double register qualifications,
introduced in §3.2.

Taken together, all bundle qualifications determine how semantically res
tricted that rule is. When the code generator parser makes a reduction, it
attempts to select rules with the largest semantic restriction value, progressing on
failure to weakly restricted rules, and eventually to an unrestricted rule or a
default list. Rules with high restriction values usually describe more efficient
instructions on the target machine. According to our ordering, rules with non ter
minal bundles having "=" qualifications possess the highest restriction level, since
a specific register or constant is requested. Figure 3.1 gives our ordering, in order
from high to low restriction. A rule may simultaneously satisfy more than one of
these restrictions.

10
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restricted? case Notes

yes

yes

yes

1 Identical equal qualification between the left hand
and right hand side of the rule. The destination regis
ter is the same as one of the source registers.

2 Equal qualification on the left hand side of a rule; The
destination is a specific register.

3 Equal qualification on the right hand side of a rule (A
specific register or constant.)

4 Dot qualification between the left and right hand side
(A register used on the right hand side will hold the
result on the left hand side.)

5 Dot qualification between bundles on the right hand
side.

6 No restriction at all.

Figure 3.1:Semantic Restriction Level*

butes ~coL~d 1 >" *?0mbmatlOn °f Cases <2> and <3>- The "««tic attri-
cases S and ^ ICaSt /L"6 mUtUaUy 6XClUSlVe fr°m th0Se "cogntod by
duttfon ZL(fl\ ,^?h *th6re are 0ther "=" bundle vacations in the pro-
died 1 T () r (3) may,SUU be Set For ^ maohine grammars we have stu-
Uo's£^£T Z°-°aSe (1) rmanUC restricti°ns «T«* *•* register alloca-^uctor in an^ " '""* °™ "* ^ «ta—P«— «V th. default list con-

For example, on the PDPll, the chain rules
r=rO -» e=rO
r=r2 -» e=r2

ovrrnTr^161"8 °laSSed MCVen registers t0 the general register class. Or, in the
^:^^^^:ll^-^^ PDP »<- •» ^ *» 3.2 for^om!plete discussion), the four productions

d=rO -» * k. 1 dprod=rO
d=r2 -» • k. l dprod=r2
d=rO -» *dprod=rOk.l
d=r3 -. *dprod=r2k.l

model the nstrucUon multiplying an integer held in a double register pair by a
scalar constant. Two different non terminals, a*ro<i and i are needed became thev
represent register pairs with different internaTTayouts. Further, an "=" between^
he wwtZtTlhand fes is needed to *"* the -»-* ** 2Z

boU Shfce no lf u rT S,.M 8 •" Unk may 0niy be between ide"«<=al umbels. Since no default list can be constructed from the first case (there are no
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12 The CGGWS

shorter rules; see §5.1.14), it is assumed that the TMDL grammar has enumerated
all the possible productions with case (l) semantics to ensure that semantic block
ing is impossible. This assumption is not checked in the TMDL.

The distinction and ordering between cases (4) and (6) helps the code genera
tor choose instructions minimizing register allocation side effects. For example,
these two rules model the VAX's long integer register to register add instruction:

r.l -» + r.2 r.3 "addl3 r.2, r.3, r.l "
r.3 -» + r.2 r.3 "addl2 r.2, r.3 "

Normally, both rules would be considered semantically unrestricted, but the first
rule with three operands should be applied by codegen only when the value r.3 has
future uses, as the three operand instruction is less efficient. The ordering
between cases (4) and (6) ensures that the two operand instruction is tried first.

If a rule is marked as restricted in Figure 3.1, then analysis considers it to be
semantically restricted. This may force analysis to construct a default list (see
§5.1.14).

3.1.4.2. Assembly String

This string is a massaged TMDL assembly string, with references into the rule's
bundles.

3.1.4.3. Rule Qualifications

Qualification values include: The cost of the rule (either space or time, or
both), a fiag indicating that applying the rule has a "magic" register allocation side
effect (used to process common sub expressions), and the semantic qualification
level. Both the cost and magicness of a rule are specified in rule qualifiers in the
TMDL The cost is not currently used by the code generator.

3.2. Double Registers

Some target machines have instructions producing or consuming operands in
double registers. A double register is composed of two other general, single length
registers termed siblings. For most older machines, the only available form of multi
ply or divide uses double registers, which for codegen. as for other code generators,
are difficult for the register allocator to handle semantically because of their size
and alignment constraints. Like other register classes, double registers are declared
in the TMDL Jvariables section, with their specific constituent elements paired into a
first and a second sibling by "<" and ">" angle brackets. An oversight in the imple
mentation of codegen's general register model requires that a single register always
have the same sibling, regardless of the number of double register variables of which
it is a member. This model is adequate for even-odd paired machines like the PDPll
or IBM360 (register pairs (rO, rl), (r2, r3), (r4, r5)), but it can not fully model adja
cent paired machines like the VAX, Z8000 or HP3000 (register pairs (rO, rl), (rl, r2),
(r2, r3), etc). To model the adjacent paired registers in our implementation, adja
cent pairs must be discarded until an even-odd paired machine remains.

Double registers may be semantically qualified in four different ways. A double
register may be broken down into its constituent members either for printing or for

12
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value decomposition, or the double register may be treated as an indecomposable
entity just like single registers always are. Note that Glanville's definition for TMDL
only allowed three kinds of semantic qualifications for double registers, but he was
unable to do value decomposition unambiguously. In the following discussion of the
four qualification methods, refer to figure 3.2, which contains the interesting subset
of the double register grammar for the PDPll. We assume that d is a double regis
ter, r is a single register, both m and n are integers, and both xx and yy are allow
able names for the first and second siblings of d, respectively.

d.m [indecomposable] This is an inter bundle dot qualifier, used in the same
way as dot qualifiers on single registers.

d=xx [indecomposable] This is an explicit register requested via the equal
qualifier. The requested register, xx, must uniquely refer to the first si
bling register of a double register pair.

d.m .n [decomposable] This is a double dot qualification on the double register
d. Double dot qualifications may only appear in the assembly string,
and are the only way double registers appearing in the assembly string
can be qualified. Here, m is an inter bundle dot qualifier, and n is ei
ther 1 or 2, specifying the print name for the first or second sibling.

r<d.m .n> [decomposable] This is a angle bracket double dot qualification. It may
appear only on the left hand side of a production, and decomposes a
double register pair into one single register that is retained; the other
single register is discarded. This qualification form is discussed in the
next paragraph.

As an example of the bracket double dot qualification, consider the divide
instruction on the PDPll. For that machine, the dividend must initially be in a dou
ble register pair. That register pair is also used as the destination. As the destina
tion, the pair will contain the quotient in the first (even) sibling, and the remainder in
the second (odd) sibling. For a given divisor, the hardware divide instruction is
modeled in TMDL as two different productions (here we show it with a divisor of a
scalar constant):

e<d.l.l> -» /d.lk.2 "div k.2. d.1.1 "
o<d.l.2> -+ % d.lk.2 "divk.2, d.1.2"

(Here, we see three different kinds of double register qualifications in the same pro
duction.) Even though both a quotient and a remainder are produced, only one of the
two values can be tracked by TMDL and codegen's register model. The other value
must be discarded. The saved value is to be considered as a single register in the
class "e" (even) or "o" (odd), as specified by the non terminal appearing outside the
angle brackets on the left hand side of the productions.

13



14 The CGGWS

S-ynibala
Svariables

r= rO, rl, r2, r3, r4, r5, ap, pc;
c= rO, r2; /*even registers V
o= rl, r3; /*odd registers V

/•

•w.' a <rus dou6i« Isnfrfa rejrisfer, tyiin toe toty order word (LOW)
9in the odd reg, and the high order word (HOW) in the even reg.
*dprod: a double register allocated just to have two adjacent registers,
*but containing just a single length result. The even register contains only
'low order word; the odd register contains junk.
V

d= <r0, rl>, <r2, r3>;
dprod ss <r0, rl>, <r2, r3>;

Smstructiana

/•

*Formation of a double length result in preparation for a divide
•/

d=rO -* o=rl "tst rlOsxt rO; div setup", cost=2;
d=rO -» e=rO "mov rO, rlOsxt rO; div setup", cost=2;
d=r2 -♦ o=r3 "tst r30sxt r2; div setup" cost=2;
d=r2 •* e=r2 "mov r2, rSOsxt r2; div setup" cost=2;

/♦

*Formation of a double length result in preparation for a multiply
V

dprod=rO -» o=rl "mov rl, rO; mul setup", cestui;
dprod=rO -» e=rO "; mul setup", cost = 0;
dprod=r2 •* o=r3 "mov r3, r2; mul setup", cost=l;
dprod=r2 -• e=r2 "; mul setup", cost=0;

/•

0Extracting the result of a multiply. Extracting the result of a divide
*is done automatically by the <..> qualification on divide and remainder.
*We don't use the same methodfor multiply, becausea divide may follow
Immediately after the multiply, and there is no point is disassembling
*a register, and then immediately reassembling it.
V

o=rl -» d=r0 "; discard HOW of d=r0", cost - 0;
o=r3 -* d=r2 "; discard HOW of d=r2", cost - 0;
o.l -♦ •o.lk.2 "mul«k.2,o.l"co_t = 2;
o. 1 -• • k.2 o. 1 "mul $k.2 , o.l" cost = 2;
d=rO -♦ • dprod=rO k. 1 "mul tk.l . rO " cost = 2;
d=r2 -» • dprod=r2 k. 1 "mul Sk.l , r2 " cost = 2;
d=rO •+ • k. 1 dprod=rO "mul Sk.l , rO " cost = 2;
d=r2 -» • k.l dprod=r2 "mul Sk.l . r2 " cost = 2;
e<d.l .1> -* /d.lk.2 "div Sk.2 , d.1.1" cost = 2;
o<d.l .2> -• %d.l k.3 "div $k.3 , d. 1.2 " cost = 2;

/•

* Other productions for multiply and divide follow.
V

Send

Figure 3.2: Double Register Grammar for the PDPll

The TMDL production for divide
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The CGGWS 15

e<d.l.l> -• /d.lk.2 " div k.2, d.1.1 "

is syntactically equivalent to:
e.l -♦ /d.lk.2

throughout analysis. However, to the register allocator in codegen, the production is
semantically equivalent to

d.l -* /d.lk.2
with the left hand side to right hand side dot binding on "d" ensuring that the same
double register is allocated for both the source and the destination. As the last task
performed on a reduction in codegen, the destination is broken up by adjusting the
register model appropriately, and replacing the right hand side by the non terminal
"e".

All doubly qualified double registers must have a blank before the second "." to
disambiguate them from floating point literals.

3.3. Code Generator Tables

The logical data structures for the code generator parser are described in the
walk through analysis. These structures include the action, next and reduce tables.
Auxiliary tables, also constructed by analysis, are reduce and default lists. Analysis
uses matrices as the physical representation for these tables; merge breaks the
matrices into shared slices, compresses the slices together contiguously, and con
structs a list of pointers to slices for each row in the tables. These transformations
and structures are described in the merge walkthrough.

15



16 The CGGWS

4. Tmdl Tour

Tmdl uses standard compiler technology to map the TMDL source language onto
data structures describing registers, symbols and rules. Tmdl was an uninteresting
program to write, since it is basically a straight-forward syntax directed compiler
using standard techniques. Hence, its general philosophy is quick, dirty and lazy,
relying on available tools for some of the work. Tmdl does little syntactic error
recovery (using panic mode) and no semantic error recovery, but does a good job of
finding and reporting violations in the TMDL semantics.

Tmdl uses a scanner shared with codegen, ensuring common lexical conventions
in the TMDL and the IR. The author originally wrote the scanner in lex (a lexical
analyzer generator), but this 'tool' proved to be a waste of time. Regular expressions
describing complicated patterns never worked reliably, the lexical description was
hard to modify, development iteration time was long because lex is very slow, and exe
cution time was intolerably slow for the code generator, because scanners con
structed by lex are not efficient. The lex scanner was converted to a C scanner, which
is easier to understand than the lex scanner.

Syntactic analysis of TMDL is driven by a yacc constructed parser. Since the yacc
grammar for TMDL is small, yacc has none of the problems afflicting lex that were
mentioned in the previous paragraph. In tmdl, semantic processing is syntax
directed; semantic information is collected piecemeal and stuffed into static areas,
and at appropriate times, gathered together, checked for semantic integrity, and
stuffed into the structure needed for subsequent passes. As per convention, tmdl allo
cates most things dynamically, but imposes static restrictions on the number of
grammar symbols (100), the number of registers (100) and the length of any produc
tion (100). Both lexical and syntactic analysis work together to allow most meta char
acters in TMDL to be declared and used as grammar symbols.

16
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5. Analysis Algorithmic Tour

The tour through analysis will be conducted in two separate parts. The first part
of the tour will re-present all the pertinent algorithms from Glanville's dissertation;
this presentation is necessary to correct and extend some ofthe algorithms, and unify
the theory behind the algorithms with the present implementation. The second part
of the tour briefly describes the actual implementation, discussing how implementa
tion decisions to save both space and time are reflected in modified versions of
Glanville's algorithms, and conversely, how unobvious parts of the algorithms are
reflected in the implementation. The second tour is short because much of the
description is in the first tour.

5.1. Analysis Algorithms

5.1.1. Algorithm Merging

The crucial parts of the four major code generator-generator algorithms which
Glanville presented sequentially in his dissertation, and implemented as sequential
phases, have been merged so they are applied in (pseudo) parallel. These four algo
rithms are:

Number Title

4.3 SLR(l) code generator construction
4.4 loop detection
4.5 loop elimination
4.6 uniformity testing

The fifth major algorithm, Algorithm 4.8 (default list construction) has not been
merged, but is still done in the same physical phase.

Glanville presents his five major algorithms sequentially because it aids clarity,
helps proceduralization, and keeps all the figures on one page. However, the algo
rithms in Glanville's dissertation are a direct reflection of the algorithms used in his
implementation. That implementation was structured into four distinct phases,
where each phase implemented one or two of the Ave major algorithms. Because
Glanville's implementation split the equivalent of analysis across many phases,
proper and general code for housekeeping, such as state addition or table lookup.
was implemented in only one phase. Since default list construction and loop remo
val require these housekeeping functions, and since these housekeepers were in
different phases, Algorithms 4.5 and 4.8 in Glanville's dissertation, directly reflecting
the first implementation, contain pieces that do the housekeeping in a non general
way.

All the merged algorithms possess a small subset of common characteristics.
They iterate through states and require information only on the state shifted into
from a given state. In addition, they iterate through all of the symbols, and require
access to precomputed itemsets and relations. The four state iteration loops can be
fused together, as well as some of the symbol iteration loops, provided that the
fused loop bodies are sequentially applied in the proper order. The fifth algorithm,
computing the default lists, cannot be fused together with the other four, since it
must be applied after all loops are eliminated, and requires nearly random access to
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18 The CGGWS

the information describing the states in the parser. However, constructing default
lists does need many of the sets and support routines of the first four algorithms, so
is included in the same physical phase as a logically separate phase.

5.1.2. Presentation Style

The following presentation of Glanville's algorithms is intended to reflect the
same style as the originals, to fix some typographical and omission errors, explain
the algorithms in more detail, and justify the loop fusion. The definitions, theory,
proofs and high level descriptions in Glanville's dissertation, unless otherwise stated,
still apply, and the reader should be thoroughly familiar with them. The algorithms
are presented in the same descriptive set theoretic notation Glanville used, with
many of the same variable names, or with names substituted into something more
meaningful. The notation has been extended to include domain and range declara
tions of non obvious set and array variables. It is now well bracketed by keywords:
(begin, end). ( V ... do, od), ( while • • • do, od). ( if • • then, fi), ( if • then
• • • else, fi), ( repeat until), and ( case, esac), with PASCAL like semantics.

Each line in the algorithm has a marginal comment. These comments consist
of a name and sequence number, and are used extensively in the accompanying
text. The text describes the lower level decisions intended to support the theory in
Glanville's dissertation, and provides comments lacking in the algorithms and in his
dissertation. The text references all known errors in his dissertation by their
corresponding (correct) line in these algorithms.

Fusing loops was one of the biggest changes to Glanville's algorithms. Since the
implementation works with the kernel of states, instead of manipulating cores of
states (see §5.1.3), the algorithms here are also changed to reflect this. In addition,
global tests (also called blanket tests) asserting general existence of a condition are
applied before any specific instances of that condition are searched for and found.
For example, a blanket test determines that some symbol is shifted, and another
test, in conjunction with an iterator, determines exactly which symbol is shifted.

This presentation is not without its flaws. The presented algorithm does not
attempt to proceduralize for organization's sake, and does not proceduralize to
avoid code replication. The main loop extends across many pages, and the gross
structure can't be seen in one glance. (For clarity, some end brackets have com
ments to reflect this larger structure.) The marginal comments should aid in viewing
the entire algorithm at a higher level of abstraction. The implementation is highly
proceduralized.

5.1.3. declare. 10 —declare.45 (Figure 5.1)

It is convenient to discuss here the domains, ranges and properties of the sets
we manipulate.

Formally, the machine description grammar Gis a four tuple, G = (N, E, P, X).

N is the set of non terminals including X. Recall that non terminals stand for
registers.

E is the set of terminals.

IB
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declare I is a set of all items from syntacticaUy distinct rules e P;
declare Q€ I* ordered by insertion order;
declare R e I* ordered by insertion order

o5c!ar:SNQ x^I* (-"* ** «*»* ™> : —
declare DISTANCE: Nx N-> naturals; deciare.30
declare MINDISTANCE: N - naturals; declarers
declare CHAINLOOP eNxN; ?C!°r8'̂

Rgure 5.1: Parser Construction Declarations

declare. 10

declare. IS

declare. 20

declare. 45

Xis the distinguished starting symbol, representing "no result". In alternative
notations, Xis also written as "$", 'V\

P is the set of productions describing the effect of each available instruction on
the target machine. There may be more than one production for some target
machine instructions. (We will sometimes loosely refer to Pas the grammar.) Some
productions may be syntacticaUy identical (contrasted with syntacticaUy distinct),
differing only msemantic restrictions on the syntactic symbols. Two productions
are syntacticaUy distinct if the sequence of grammar symbols from E UN composing
either the right or left hand sides of the productions differ; otherwise they are syn
tactically identical. In addition, there may be some productions that are syntacti
cally identical, and to the extent specified in the TMDL, semanticaUy identical.

Vis the total vocabulary, V = E u N.

Semantically identical productions arise if the distinguishing nature of an
idiomatic target machine instruction is not specified in the TMDL. As an example
trorn the VAX,

r.l -• + r.l k.2 addl2 k.2. r.l
r.l -♦ + r.l k.2 movab k.2(r.l). r.l
r.l -» + r.l k.2 movaw k.2(r.l), r.l
r.l -* + r.l k.2 moval k.2(r.l), r.l
r.l -» + r.l k.2 movad k.2(r.l), r.l

aU do the same thing; there is one mova instruction that is costs less (is more
efficient) than the others, depending on the semantic value of "k.2". Since this cost
measure is not specified in the TMDL, aU five instructions appear to the code genera
tor to have the same cost, so the code generator could select any one of the five
candidates, and stiU generate correct code. In the current implementation, the
code generator selects the instruction whose production appears first in the
machine description grammar.

We review here some definitions used in this report that are also defined (some
times differently) in GlanviUe's dissertation. If ••„ - a fi "is a grammar rule in P
where „ is anon terminal from N, then [„ - a.fl is an LR(O) item. If |ct| =0. then
£l 1? El"1 Tf^ item* " b°th |a| >° and W>°' then the ite*i « amedialuem. 11 pi = 0, then the item is a terminal item. The rule "v -* a 0"is said to

10



20 The CGGWS

source the item [v -» a.fi]. The rule sources \a\ + \fi\ + 1 items. An ifemsaf is a
set of items. Asparse itemset has only a few members ofthose possible. In a kernel
itemset, ail member items are either medial items, or they are initial items of the
form [X •+ •a]. Akernel itemset that has been closed by augmenting with initial
items as defined by function close (§5.3) is a core itemset. Since unique itemsets
are associated one to one with sta.es in the parser, we also speak of the kernel of a
state and the core of a state. Note that the definitions of kernel and core used here
follow those used in [AhoUUman77], and are different from the definitions in
GianvUle's dissertation. (A core inhis dissertation is our kernel.)

I, in this implementation, is the set of aU LR(0) items from syntacticaUy distinct
productions from P. By considering only syntacticaUy distinct productions in a
large grammar, the size of |I| was reduced by 14%, a worthwhUe gain. Accounting
for syntactically identical productions is more efficiently done when all set manipu
lations are completed.

Qis an ordered set of itemsets from I, one itemset for each state, ordered by
insertion sequence. Only the kernel ofa state is used as a member of Q, as the ker
nel uniquely identifies the core of the state. Since kernel itemsets are typically
sparse, they can be efficiently represented as a list to conserve space. The only
place a core is generated and manipulated is in the state expansion loop for the
state currently being considered.

Ris an ordered set of itemsets from I ordered by insertion sequence. There is
one itemset member of R for each unique reduction set that can be appUed when
ever the parser wiU reduce. All items in a given itemset element of R have terminal
dots. Further, the items have syntacticaUy identical right hand sides, and the left
hand sides are all lambda, or are all weakly connected in the distance graph (see
§5.1.4). Elements of Rare eventually converted into sets of productions from P. The
operations on the sets R and Qduring parser construction are nearly identical.

5.1.4. distance.10 - distance.75 (Figure 5.2)

This code statically analyzes chain rule productions, and is taken directly from
from GianvUle's dissertation (Algorithm 4.5). The graph distance from u to v is the
minimum cost to reduce non terminal u to non terminal v using only chain rules.
Note that since v -» u, the arrow notation to express derivations in a sequence of
productions is confusingly reversed from the graph connectivity expressed in the
distance matrix. The algorithm uses distance to find the shortest sequences of
chain reductions out of a looping configuration. We use a cost of 1 for aU chain
rules, as chain rules in all instruction grammars we have analyzed only have register
allocation side effects, and do not produce code. Note the typo in GianvUle's dis
tance. 25, where he has the order of the right and left sides of the production v -* u
interchanged. Distance.40- distance. 75 is Warshall's min closure ofa digraph.

5.1.5. genstates.50-genstates.75 (Figure 5.3)

The while loop in genstates.50 iterates over all unconsidered states. An uncon
sidered state has a computed kernel, but the Action and Next values for that state
are unknown. This while loop, in conjunction with the way unconsidered states are
added to Q, traverses the parser's finite state machine control, viewed as a digraph,
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procedure generatestates;
begin

declare qkernelj, qclosedj e I s.t. 1 -& j' ^ «;
/* one qkernelj and qclosed, for each state */
declare qkernel' e I:
declare i € I;
declare d, x e N;
declare u, u, u> eV;
declare cursfate, maxsfrxie, maxreduce € naturals;

Vu, V € N do
DISTANCE[u, v]

od

Vp ePs.t. p = "v -»u ", u eN, v eNdo
DISTANCE^, «]4- 1;

od

V w € N do

Vu €Ndo

VveNdo
DISTANCE^, v] 4- min(DISTANCED, v],

DISTANCE^, w] + DISTANCE^, v])\
od

od

od

Figure 5.2: State Generation Initialization
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qkernelj «- \i € 11 i = [X -* a]j;
Q <- qkernelj,
curstate «- 0;
maxstate «- 0;

maxreduce «- 0;

R<-0;
while citrsfare ^ mazsfale do

CHAINL00P «- 0;
gcZosed^^^ «- ciose(gfcerneZcw,t)rt8 );

VV eVdo

ACTI0N[gA:erne£cure<o<8, v] «- error;
od

Fig. 5.4:"Construction of $shift$ Actions"
Pig. 5.5:''Construction of $reduce$ Actions"
Fig. 5.6:"Construction of the Minimum Distance

out of a Looping Configuration"
Fig. 5.8:"Loop Removal"
Fig. 5.9:"Blocking Detection"

curstate «- curstate + 1;
od /* uncompleted state iterator */
ACTION[gA:erneJ0, $] <- accept;

end generatestates;

Figure 5.3: Unconsidered State Iterator (Top Level)

genstates.£0

_rensta.es.«75

gensta.es. 30

genstates.35

genstates.40

genstates. 45

genstates.50

genstates. 55
genstates. 80

genstates. 05

genstates. 70

genstates. 75

seefig. 10

seefig.15
seefig. 20

seefig.25

seefig. 30

seefig.35

genstates. 80

genstates. 85

genstates. 90

genstates. 95

in breadth first order. Genstates.55 is from Algorithm 4.4 of GlanviUe's dissertation,
and initializes detection of looping configurations in this state. See the unnumbered
figure in GlanviUe's dissertation on page 88. Next, we close the kernel itemset of the
current state, and consider this core only within the body of the state iterator. Ini-
tiaUy, aU actions are error.

5.1.6. shift.10 - shift.75 (Figure 5.4)

Testing for shifts is done first to force a shift if there is a shift/reduce conflict.
This algorithm is directly from GlanvUle Algorithm 4.3, except for the global test in
shift.10. Shift.40- shift.75 enters the kernel itemset for the new state into Q,
extending Q as necessary.

5.1.7. loopdetect.lO —loopdetect.50 (Figure 5.4)

This code is the body of Algorithm 4.4 from GlanviUe's dissertation. At this
point, the kernel for the state shifted into from this state has been constructed. We
need this kernel to find chain reductions causing a looping configuration. Chainloop

22



The CGGWS

/* see if some symbols shifts */
if 3 i e qclosedcuntgtt, v e Vs.t. i = [x -* a.v 0] then

/* iterate through all symbols v */
vv eVdo

/* see if v shifts */
if 3 i € qclosedcuntat9 s.t. i = [x -* a*v /?] then

kCT\0l\[qkemelcuntat9,v] «- shift
gArernei' «- \\x -» a v . 0] e 111> -* a. v 0]

egciosed^^j;

/* see if qkernelj is already entered */
if 3 qkernel; e Qs.t. qkernel; = qkerneV then

NEXTfgfcerne^,,^, v] 4- qkernel*;
else

maarslafe «- mazsrafe + 1;
gfcemeZmoxs{aj8 «- gfcerneZ';
NEXTfgfcerne^,,^,,, v ] «- g^rne^^,^,;
Q«- Q + qkernel';

fi /* qkernelj is not entered */

itv eNthen
if 3 i G gfcerneZ' s.t. i=[i-»i.],

x e N, d € N then

Vie qkernel' s.t. i = [re -» rf . ],
a: G N, d G N do

CHAINLOOP ♦- CHA1NL00P + { (d, x) j;
od

fi

fi /• shift on v e N */

fi /* shift on v possible */
od /* symbol iterator */

fi /* some symbol shifts */
Figure 5.4: Construction of shift Actions
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has the same graph connectivity conventions as distance: (d, x ) is in chainloop if
x -* d, or d reduces to x.

5.1.8. reduce. 10 -reduce.105 (Figure 5.5)

This code is directly from Mgorithm 4.3 in GianvUle's dissertation, although
there is again a global test to ascertain a potential reduction before testing each
symbol individuaUy. (We assume that the relation FOLLOW has already been com
puted using the definition from his dissertation on page 75.) Reduce.45 ensures that
reduce/reduce conflicts are resolved in favor of the rule with the longest right hand
side; the left hand side is not taken into consideration. Reduce.55 through
reduce.95 enter the itemset of terminal items for the new reduce set into R. much
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if 3 i Ggc£oseo\.urrt(rt8 a.t. i =[x -♦ a. ]then

if ACTION[Wsfare, v] = error, v GFOLLOW(x ) then
ACTIONCgArerneZ^,,^^, v] «- reduce;
r'«-{[*-. a. J e gcfosed^^, € 11

v G FOLLOW (a:) and
2 i Gffc*osedcur8te<8 s.t. i = [x' - a'. ].

tenofA(a') > length( a),
v GFOLLOW(x')J;

if 3 rj g R s.t. rs = r' then

else

maxreduce *- maxreduce + 1;
rmasredue« *"**';
NEXTtgArerneZ^^,, „] «- rm<artdue,;
R«- R + r';

fi

fi /* v reduces */
od /* symbol iterator */

fi /* some symbol reduces */
Figure 5.5: Construction of reduce Actions

as was done for Qin shift. 40 - shift. 70.

/* closing fi for looprm.lO is looprm.155, fig 5.8 */
if 3 d g N s.t. (d, d) g CHAINLOOP+ then

Vt, GNdo

MINDIST2\NCE[i/]«- »:

*veMmmsfcEH ?* ?ciosed=— «*xdo
^ x g N do

MINDISTANCEfx] «- min(MINDISTANCE[x ],
DIST2\NCE[x,v]);

od
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reduce. 35

reduce.40

reduce. 45

reduce. 50

reduce.55

reduce. 60

reduce. 65

reduce. 70
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reduce. 80

reduce. 85

reduce. 90

reduce. 95

reduce. 100

reduce. 105

comment. 30

looprm.lO

mindist 10

mindist.15

mindist.20

mindist.25
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mindist 35

mindist 40

mindist. 45

mindist. 50
od

mindist. 55

Figure 5.6: Construction of the Minimum Distance out of aLooping Configuration

24



The CGGWS 25

5.1.9. looprm.lO —mindistance.50 (Figure 5.6)

This code is directly from Algorithm 4.5 in GlanviUe's dissertation. At this point
we have constructed the kernels of aU states shifted into from this state, and have

enough information to remove any looping configuration by splitting states.
Looprm.lO checks if there is a chain rule reduction loop, using the information gath
ered in shift. Figure 5.7 schematically shows part of the complete itemset for state
g, together with the copied, complete and documented graph from GianvUle's
dissertation Figure 4.5. The graph is represented as a cost matrix, as Glanville sug
gests. For each symbol, mindistance is the cost of reduction using chain rules out
of a loop to the closest "safety" symbol (x in mindistance. 25) that shifts out of the
looping configuration.

state q. [x -* a*vB]
!v -* .11*]

Ufc -> .ujb-i]

[Uj -» 'Uj-i]

[part of the core]

uz -* •u*]
ux -* . d]
d •* «tOi]
wx -* .w2]

[wt -» *Uj~\ [removed]

Core of State q
and the

Graph Constructed to Eliminate the Loop
d-. • • • -d

(From Figure 4.5 of GianvUle's Dissertation)

Figure 5.7: Loop Removal Graph
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/•' iterate through all non terminals */
Vv GNdo

/* determine if v shifts */
if ACTI0N[gA:erneJCUTS<a<8, v] = shift

2 i G gcZosedc^^.^ s.t. i = [y -* a»v 0],
a * X then

qkernel' «- 0;
dropped «- false;
qkernel; *- NEXTtg^erneZ^^^,, t/];
V i g qkernel; s.t. i = [v' -♦ v . ] do

if MINDISTANCEIV] < MINDISTANCEfv ] then
gfcernei' «- qkernel' + i;

else

dropped «- true;
fi

od

/* if we drop an item, then we must split the state */
if dropped then

assert qkernel' ^ 0;
assert close ( qkernel') = qkernel';
if 3 qkernel; GQs.t. qkernel; = qkernel' then

NEXT[gfcerneZcuratot8, v] «- qkernel;-,
else

rn.axs.ate «- maxsiafe + 1;
gfegrnefWflT-fBfg «- gfcernei';
NEXTfgfcerneic^,^,, v] «- gfcerneZmaMlB<f;
Q «- Q + qkernel'-,

fi
fi /* spUt a state */

fi /* shift on v */
od /* symbol iterator */

fi /* a chain loop is possible (tied to looprm. 10) */
Figure 5.6: Loop Removal
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5.1.10. looprm. 15- looprm. 155 (Figure 5.8)

This code is based on the latter half of GlanvUle algorithm 4.5, with some impor
tant differences correcting omissions in that algorithm. First, the action from the
current state on a given non terminal must shift (looprm.20). Secondly, there is no
point in splitting the state we shift into if that state gets us out of the looping
configuration (looprm.25). Thirdly, we only add a new state to Q if a spUt state is
created and is unique from all others in Q (looprm. 100 - looprm. 140). (GlanviUe's
myopic addition of states is a vestige of his implementation.) The if statement in
£ooprm. 55 checks if the chain reduction in the state shifted into is indeed along the
shortest reduction path out of the loop. If it is not the shortest path, that chain
reduction wiU be dropped from the reduction set of a new state added to replace
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state j (the spUt state). The arc in the loop corresponding to the dropped chain
reduction (the arc U; to wt) is where the graph is "cut" to break the loop. Because
of the calculations done in mindistance. 15 — mindistance.60, there are one or more
chain reductions that will eventually get considered by the non terminal iterator in
looprm.20, one of which is the shortest path out of the loop. This observation can be
used to prove the assertion in looprm. 90. The assertion in looprm. 95 foUows directly
from the properties of terminal items in reduce itemsets. The construction of
reduce actions for the new state will eventually get done when the state iterator
considers this new unconsidered state, not here as GlanviUe used.

5.1.11. block.10-block.65 (Figure 5.9)

This is the body of /Ugorithm 4.6 from GlanviUe's dissertation. The algorithm
can be applied now, as actions for all symbols in this state have been computed.

5.1.12. close. 10 - close.45 (Figure 5.10)

This function is taken verbatim from /Ugorithm 4.3 in GlanviUe's dissertation.

5.1.13. Reduce and Default list Construction

Reduce and default Usts are discussed by GlanviUe in his dissertation, §4.5.7 on
pages 82-84. However, /Ugorithm 4.8 contains serious omissions, so some of the dis
cussion is repeated below with this in mind.

V i g qclosedG1.rsiaia s.t. i = [r -» a. v /?], a * X, v GVdo
x *~ parent(v, "r -» av 0 ");
if leftchUd(v, "r -+ avp") then

V u s.t. x LEFT FIRST u do
if ACTIONtgfcemeJct^afc, u ] = error then

output ( "Not Uniform.");
fi

od

else

V u s.t. x RIGHT FIRST u do
if ACTIONfgfcerneJc,,,^, u] = error then

output ( "Not Uniform.");
fi

od

fi /* testing right child */
od /* itemset iterator to test for blocks */

figure 5.9: Blocking Detection
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function close (g ); close.10
declare gel; close.15

begin close.20
repeat ciose.25

a *" Q + \[* •* • a] G11 [y -»/J. x y] Gg, x * X{; ciose.30
until g does not change; ctose.35
return (g); ctose. 40

end close; ctose.45

Figure 5.10: Function Close

5.1.13.1. Reduce Lists

When the parser constructed in the previous section performs a reduce action
using a reduce itemset r G R, it is prepared to reduce by one or more productions
from P having right hand sides with a particular syntax. The reduce itemset con
structor has already disregarded syntactically distinct productions that are
shorter (and presumably not as efficient) as other potential productions, so all
items in the reduce itemset have identical right hand sides. However, as wiU be
recaUed, the domain of R includes only syntacticaUy distinct productions from P.
The reduce list (or rlist) constructor converts all reduce itemsets in R into Usts of
production numbers from the entire grammar P. (See Figure 5.11.) RUsts are
sorted on the major key of descending semantic restriction level, with a minor key
of production enumeration order in the TMDL. Codegen will select the first rule
from the reduce Ust whose semantic attributes match the semantic attributes of

the isolated pattern (see §8.4). Regardless of the left hand side, any rule from an
rlist matching the major key could be chosen, since by adherence to the uniformity
conditions, the left hand side wiU always be shifted after the reduction. However,
the choice of left hand side may seriously affect the overaU code efficiency. Unfor
tunately, as discussed in §8.9, codegen is only a local decision maker. Ordering by
minor key allows the TMDL author to exercise some control in Ueu of the cost func
tion suggested on the bottom of page 83 of Glanville's dissertation.

5.1.13.2. Semantic Blocking and Default Lists

If no rule on the applied rUst semantically matches the pattern, codegen is
said to semantically block. Analysis anticipates this block, and for each fully res
tricted reduce list, constructs a default Ust (or dlist) that codegen recursively
applies to the pattern. Analysis builds the default Usts by constructing a small
code generator for a subsetted target machine. It then emits code using the sub-
setted code generator for the right hand side of any restricted rule (the prototype)
taken from the reduce list. This emitted code, encoded as a sequence of reduc
tions, their application order and their position, is encapsulated into a default Ust
associated with the reduce Ust. Applying the dUst at codegen time produces code
composed from simpler instructions from the subsetted machine; these instruc
tions implement the more complicated, semantically restricted rule. For an exam
ple, see §8.5.

26



The CGGWS

procedure expandR;
begin

declare r G R ordered by insertion order;
declare prodset G P ordered by semantic restriction, high to low;
declare default G (I. naturals) 'ordered by insertion order;
declare i £l;
declare g G P;
declare resrricfed G boolean;

V r G R do
prodset «- 0;
default *- 0;

restricted «- true;
V i e r s.t. i = [x' -» a'. ], x' G N do

V instructions g G P, a = "x' -* a' " do
prodset «- prodset + a;
restricted «- restricted A (a is restricted) ;

od

od

if restricted then

default <- dZisr(r);
fi

r «- map(prodser, default);
od /* of iterating through allr GR */

end/* expandR */
Figure 5.11: Expansion of Reduce Lists
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5.1.13.3. Grammar Subsetting and Skeleton Parser Construction

The code generator for the subsetted target machine is constructed on-the-fly
during the parse of the prototype. (Refer to figure 5.12.) The target machine gram
mar is subsetted to contain only productions with right hand sides of length less
than or equal to the length of the prototype, excluding rules with the same right
hand side as the prototype, as done in dlj.grest.20. An itemset containing items
sourced by these restricted rules is said to be length restricted. The length res
triction should be contrasted with the length restriction GlanviUe used in his disser
tation (page 83), where rules with length strictly less than the prototype are
chosen, and in his dissertation Algorithm 4.8, where rules with length less than or
equal to the prototype are chosen. The first restriction may produce inefficient
code, the second produces degenerate default lists; both are wrong.

During default list construction, both the itemsets used in the unrestricted
parser construction and the action and next tables of the unrestricted parser (the
skeleton parser) are readUy avaUable. The prototype is parsed with the skeleton
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function dlist (r )returns (I, naturals) *;
declare r g R;

begin

declare default G(I, naturals)'ordered by insertionorder;
declare r, r9hort g R unordered;
declare Igrestricted G I;
declare qstart g I;
declare g.g^rt el-
declare v g V;
declare g\ g^ el;
declare v' g V;
declare readhead, j, k G naturals;
declarei el;
declare p e (V u X) *;
declarex, y, 2 g N;
declare goals, explored, toexplore, nextexplore GN*;

default «- 0;
/* find starting state */
Let [z -» a. ] be any i g r;
if z = X then

gsrarf «- qkernel 0;
else

gsrar* 4- qkemelk s.t. 3 i Gqkemelk s.t.
i =[y - /?. z 7] and 2 j s.t. ; <A, i gqkernel;-,

assert gsfor* is a state , i Gclose(qstart), i = [z -» . al Gr-
g «- gsrarr; J

ooate «- 0;
V i er, i = [z -• a.] do

goals *- goals + [z l;
od

Igrestricted *- \[v -»/J.7] e 11 v e N. |fr| -s |a| i;
V ; s.t. 0 «S ; <; |a| do

Igrestricted <- Igrestricted - |[x' -♦ £.7] e 11 a =/?y, |/?| =; J;
readhead *- 1;
p «- concatenate( a, $ W);
push(q );

Figure 5.12: Procedure Dlist (Set Up)
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parser, checking in each state that the length restricted closed kernel itemset (the
length restricted core) allows the action to be performed. Since the input string
bemg parsed is known exactly, the restricted parser constructor need only con
struct a small fraction of the entire parser, and can use much of the existing skele
ton. Consequently, some inefficiencies are acceptable. The two algorithms are
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different enough to warrant a separate implementation.

If the right hand side of the prototype rule is a, a = ax • • • an, then the res
tricted parser is started in the first state in the unrestricted parser that shifts on
«i (dl_start.55). The restricted parser wUl finish parsing the prototype when it per
forms an accept action (only if the prototype's left hand side is X), or when the pro
totype is completely reduced to a non terminal goal symbol that is shifted in the
estabUshed start state, or can be shifted when the reduce Ust is appUed
(di_ooais.iO-dZ_j70aZs.55, dl_done.10-dljione.25). These are the possible intermedi
ate actions, determined by examining length restricted itemsets and the skeleton.
(See figure 5.13 for the implementing code.)

error The restricted machine (and undoubtedly the unrestricted machine) is non
uniform, and codegen may stiU semantically block.

shift The symbol shifted will be contained in the right hand side of a length res
tricted production. The unrestricted skeleton parser's action and next
tables are valid.

reduce A length restricted production is to be applied. A reduce Ust is con
structed in the usual fashion from the length restricted reduce itemset
(which is added to R, possibly to have an associated default Ust, implying a
recursive appUcation of reduce and default lists at codegen time). How
ever, unlike an reduce Ust constructed for the codegen parser to use when
not applying a default Ust, all left hand sides for productions on these
reduce Usts must be the same, so that the production dynamicaUy chosen
at codegen time has the same left hand side staticaUy chosen by analysis
during default list construction. (Otherwise, inconsistencies in codegen's
parse stack may cause codegen to loop applying default lists.) In addition,
in the event of alternative left hand sides, the left hand side chosen must

keep the restricted code generator away from looping configurations.

The skeleton parser was constructed so that it could not loop by repeated
application of chain rules. However, since the dynamicaUy constructed subset
parser deviates from the skeleton, the subset parse may encounter looping
configurations that could not occur (and would have been detected) in the skeleton
parser. Consequently, the ideas from the loop detection and removal algorithms,
§5.1.7 and §5.1.10 must be integrated into the subsetted parser. For example, a
reduce list constructed from the PDPll grammar consists of the single production:

r.l -* *k=2r.l "aslr.l";

This reduce Usts requires a default list, because of the restriction on the constant.
During default Ust construction, the prototype is parsed with this stack and input:
(The tuples are (state g, symbol shifted while in state g))

stack

(l*)(8k)(18
input
r %$ $

r can not be shifted because of length restriction. Hence, "r -* k " is applied,
yielding
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while readhead £ sizeof (p) do
Msizeof(p) = 1 andreaaViead = 1 andpx gN

and (px £ goals or ACTION[gsfarf, pj = shift) then
break from enclosing while ;

fi

v *" Preadhead*
v' *" Preadhuad +l*
case ACTION[g, v ] of
accept:

break from enclosing while ;
error:

do_error:
output ("No code for "x -» a "");
break from enclosing case;

shift

Qahort *~ close(q nIgrestricted);
i* gstort = 0 then

break from enclosing while ;
fi

if 2 i G gt/wrt s.t. i = [x -» a. vj3] then
Qahort *• gs/u,rt n i[y -• 7 • ] Iy e Nj;
goto do_reduce;

fi

if v G N then/* chain loops possible */

dLparse.lO
dLdone.20

dLdone.15

dLdone.20

dJLdons.25

dUook.10

dUook.15

dLparse.15
dLfiarse.20
dLparse.25

dLparse.30
dlsrror. 10

dlsrror.15

oVLa.rror.20

dLporse.35
dlshift.lO

dLshift.15

dlshift.20

dlshift.25

dlshift.30
dlsMft.35

dlshift.40

dlshift.45
dlshift.50

Fig. 5.14:"Dlist Shift Action and Chain Reduction Detection" seefig.40

fi /* chain loops possible •/
g 4-NEXTfo.i/]:
push(q );
break from enclosing case ;

reduce:

dlshift.55
dLshift.60
dlshift.65
dlshift. 70

Fig. 5.15"Default List Reduce Action and Deletion of Chain Rules"

dLparse.40

seefig.45

dLparse.45break from enclosing case ;

esac

od /* symbols in p iterator •/

return (default);
end/*diistV

Figure 5.13: Default list Construction Parser Simulator
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stack

(l*)(8r)(19
input
r $$$

In the subsetted machine, since FIRST (r) = V, ACTI0N[19, *] is shift so the loop
detection and removal mechanism is not brought to bear in states 8, 18 and 19,
precisely where we need it now. In this configuration, both e. 1 -» r. 1 and o.l -» r. 1
might be used. If e. 1 -» r. 1 is chosen, the next production is r. 1 -* e. 1 which loops;
otherwise, the production o.l -♦ • o.lr. lis chosen.

Because the input to the subsetted parser is known, and because a wealth of
precomputed information exists about possible reductions, the fuU loop detection
and removal algorithms need not be applied. Figure 5.14 is the code implementing
the partial loop detection algorithms. For the general configuration:

stack

- (qv)(q(
input

V. v GN

the worst is assumed: v might, after repeated reductions, reduce in a loop to itself.
This assumption yields unnecessary work, at the gain of simplicity. Unlike §5.1.9.
CHAINLOOP is not filled and closed to see if there really is a loop. However, MINDIS-
T/\NCE is used in an identical way: MINDIST/VNCE is the number of chain reductions
that will be applied before the parser is out of a looping configuration. When in
state q, MINDIST/VNCE is computed for possible future use in state q'. If q' shifts on
v\ then MINDISTANCE[i; ] = 0, as the shift decreases the size of the input, if g'
reduces by a non chain rule on v', then MINDISTANCE[v] = 0, as the reduction
decreases the depth of the stack. Otherwise, z -* v and the reduction chain poten
tially forming a loop needs to be explored from z. MINDIST2\NCE is closed using the
DISTANCE matrix computed for the unsubsetted machine. When in state q', with
only chain reductions possible, MINDISTy\NCE is guaranteed to be valid (figure 5.15,
dljreduce.50). The chain reduction(s) reducing v to a non terminal that gets q
closer to an escape loop is chosen, and reflected into the default list constructed
by the parse of the prototype.

The default list construction differs from Algorithm 4.8 in GlanviUe's disserta
tion (page 84), not only with the definition of length restriction and loop avoidance
techniques, but in other ways. Glanville's dissertation uses core itemsets; analysis
uses kernels throughout. Instead of using an additional loop with the auxUiary vari
able readflag to control which symbols are used from the prototype, the default
list constructor rewrites and coUapses the prototype after each reduction, and
backs up the readhead (dl_reduce. 180— dXjreduce.200). This closely resembles
default Ust appUcation performed in codegen, and is conceptually simpler.

Appendix 1 shows that the default Ust construction phase of analysis accounts
for up to 50% its execution time. In light of this, the default Ust construction algo
rithm may have to be rewritten.
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V x G N do
MINDISTANCE[x] «- «,;

od

explored «- 0;
toexplore «- \v\;

/* explore the lhs's of all chain rules */
while toexplore ^ 0 do

nextexplore <- 0;

/* explore the non terminal x */
V x s.t. x G toexplore

and 3 i Ga,^ s.t. [y - a.x/?] do
g'«-NEXT[g,x];
a'short «- close (q'r\Igrestricted );
** ? 'wwrt = 0 then

break from enclosing V ;

if V * Xand 3 i eg'^ s.t. = [y -» ax.v'/j] then
MINDISTANCE[x] - 0;

else

/• do a reduction */
v'short «- g'^ort nf[y -»7«]i;
i* 9 ehort = 0 then

break from enclosing V ;
fi

/* Is this production not a chain loop? */
«3^ g'^rt s.t. i = [t/ -» 6 z . ],

|<5|ssl. z GVthen
MINDISTANCE[x] ♦- 0;

else/* chain reduction only */
*[y •»2'lq,,Aort do

it y£ explored then
nextexplore *-nextexplore u\y ]-,

fi

od

fi /* of just a chain reduction */

fi /• of doing a reduction */
explored *- expioredufx);

od /* exploring a non terminal */
toexplore «- nextexplore;

od /* exploring aU chain reductions */

/* minimize distances for explored non terminals */
VaeNdo
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if x G explored then dlshift.260
MINDISTANCE[x] «- dlshift.265

min( MlNDIST/VNCE[x ], DIST2\NCE[v, x ]); dlshift.270
fi dlshift.275

Od dlshift.280

assert 3 x s.t. MINDIST2\NCE[x]*»; dLshift.285
Figure 5.14: Dlist Shift Action and Chain Reduction Detection
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Qshort *~ ciose (gn Igrestricted );
i* g.Aort = 0 then
break from enclosing while ;
fi

do_reduce:
if 2ie g^or* ,i = [y -+ 6z *]\6\ stl then
/* we reduce via chain rule */

/* Now, discard looping chain rules */
v * e qsturt s.t. i = [y -» z . ] do
if MINDIST2\NCE[y] ss MINDISTANCE[z ] then
ashort *- Qahort - HI'*
fi

od

assert (q9hart * 0);
fi

let [x0 -• a0.] er8hort;
v i £ rshor*. * = [* -♦ a. ] do
if x j* x0 then

r«/iort *~ Tshort ~~ l«
fi

od

Tshort «" f[* -• a.] |x =x0j;
if 3 r; G R s.t. r; = r^,* then
k *- j
else
maxreditce *- raaxreditce + 1;

Tmaxnduco *" ^"shori •
R«- R + r gf^rt;
k «- maxreduce;
fi
/* reduce via rk at readhead */
default «- default+ (rk, readhead);

n *- \CL\;
pop(n times);
q «- tos;
begin/* rewrite the input */
readhead «- readhead - n;

Preadhaad *~ z0»

Prsad/wad +1 • • • reodhsadt+n-l *" PreaaViead'+n
end

Figure 5.15: Default list Reduce Action and Deletion of Chain Rules

rsad/wod+n+n-l'
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function sizeof (p )returns naturals ;
declare peV;

begin
declare length G naturals ;
length «- 1;
while pl9ngth * %do

length *- length + 1;
od

return (length - 1);
end

Figure 5.18: Function sizeof
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5.2. Analysis Implementation Tour

Analysis is implemented as a straight forward mapping into C of the definitions
of sets and relations, and the algorithms presented in this report. Three global
implementation strategies are foUowed. First, as much auxUiary information as pos
sible is precomputed, usually in the most time efficient physical representation,
although that may not be the most space efficient representation. This information
assists the tests and construction that occur in the primary state iteration loop.
Execution speed in this loop was deemed to be critical. Secondly, information
describing states in the parser (the next and action matrices) generated by the state
iterator is stored in a physical representation to minimize space, or is immediately
written to the intermediate file. Thirdly, the algorithm performs blanket tests
(§5.1.2). This tour first describes the static precomputed data, and then describes
the dynamic structures, with code references and highUghts interspersed.

5.2.1. Precomputed Data

Relations leftfirst, rightfirst and follow are used to detect nonuniformities, and
construct the reduce itemsets. Logically, they are |N| x |N| boolean matrices. Phy
sically, a relation is an array of pointers, each pointing to an array of words, con
taining enough bits for a relation row. All relation construction and relation algebra
primitives are contained in file analrelat.c.

Items are constructed by first partitioning P into sets of syntactically identical
productions. One such production is chosen as the candidate production, and the
others are temporarily ignored. Items are represented as a dot position and a
reference to the sourcing production. Item construction from rules, item manipula
tion and grammar rule manipulation are done in file analmakereLc.

Itemsets are the principal data objects manipulated by the parser generator.
Logically, they are an array of bits, one bit for each item. Physically, they have two
representations. The first is speed efficient for all set operations, and space
efficient for sets with many elements (high cardinaUty), and is the natural array of
bits, implemented as an array of enough words. The second representation is a Ust
of item indices with a terminator, and is space efficient for itemsets with few ele
ments (low cardinality). Most kernel itemsets have only a few elements. The
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itemsets firstset, partialset and instset are items with initial, medial or terminal
dots, respectively. The itemset chaininstset is the set of items with terminal dots
sourced by chainrules.

An itemset vector is logically an array of itemsets, with one itemset for every
symbol in V. Physically, an itemset vector is an array of pointers to the bitvector
representation of itemsets. A specific itemsetvector is appUed when that specific
information about a given symbol is needed; itemsets described in the previous
paragraph are applied when general information is needed for a blanket test.
Dotprecedes is the set of items in which the dot precedes the given symbol, and is
used in determining shifts in shift.20. Nonlstdotprecedes is the same as dotpre
cedes, excluding initial items, and is used in mindist.25, looprm.25 and block. 10.
The addlist for a given symbol is the set of items added by kernel closure for that
symbol, and accelerates kernel closure in close. 10- close.45. For a given symbol,
redfollow is a subset of aU terminal items, in which that symbol can foUow the left
hand side grammar symbol of the rule sourcing an item in redfollow, and is used in
reduce.30 and reduce.35. Lengthits has as many member itemsets as the length of
the longest right hand side of any production in P (and is not, by the above
definition, an itemset vector). Lengthits is the set of aU items with the sourcing rule
having right hand side length less than or equal to a particular value, and is used in
expandR. 185.

Itemset primitives are contained in analitemsetc. These primitives include all
set operations, itemset hashing functions, conversion routines between the two phy
sical representations, itemset cardinality computation and itemset closure. Two
things are special in analitemset.c.

First, the majority of tests in the algorithm test existence (or non existence) of
a certain condition in the closed itemset associated with the state being considered.
This test is made by seeing if a precomputed itemset that reflects aU itemsets in
which the condition holds (the blanket itemset) is disjoint from the tested itemset.
Hence, the function itsdisj accounts for over 50% of the CPU time in the analysis
phase; for the PDPll example from GianvUle's dissertation (Appendix K pp 119),
itsdisj is called 19247 times, and finds the argument sets disjoint 59% of the time.

Secondly, a numbering implementation trick is used to compute the kernel of a
state shifted into (shift.30). If the item [v -» a. x fi] has index n in I, then the item
[v -»az.|}] has index n + 1. To compute this new itemset, all item indices must be
incremented by one. In the bit vector representation, the increment corresponds to
a bit vector left shift.

5.2.2. Dynamic Structures

The data structures describing states (Q) and the matrices next and action are
dynamicaUy extended each time a new state is generated. Further, each new
reduce itemset dynamically extends the structure describing R.

5.2.2.1. Q

The state set Qis implemented as a Ust of state descriptors so states may be
accessed in order. The unconsidered state iterator traverses this Ust. During the
default Ust construction phase, Qis randomly accessed by an array of pointers to
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aU state descriptors; this array is constructed after all states have been con
sidered. Q must also be searched to find or insert a member itemset kernel, so the

states are maintained on hash Usts keyed by the itemset kernel. The algorithm in
this report inserts new state descriptors at the end of the Ust implementing Q, and
thus constructs and numbers the finite state machine (FSM) control graph of the
parser by a breadth first search. In the early stages of writing merge, the author
hypothesized that constructing the FSM control by a depth first search would
number the states in such a way that would suggest a table compression heuristic.
Constructing the FSM control depth first is done by inserting the new, unconsidered
state descriptor in the state Ust immediately after the descriptor for the state
being considered, so the new state is the next one considered. The parser con
structed this way is isomorphic to the one constructed using breadth first search;
the state numbering did not eUcit any compression heuristics. In fact, the
compressed tables for the two construction methods are identical. However, using
the depth first construction method, the order in which states are considered is not
the same as the order in which unconsidered states are created. This, together
with the order in which attributes for considered states are written to the inter

phase temporary file, creates a referencing problem. The implementation assigns
an internal state number to a state, which is the creation sequence number of an
unconsidered state, and an external state number which is the state consideration

sequence number. Internal state numbers are negative, and external state
numbers are positive. For breadth first construction, external state numbers are
the absolute value of internal state numbers; the first thing merge does is map
internal state numbers to external state numbers, and the distinction is lost. The

code that handles this search strategy is only a historical vagary, and should be
exorcised.

5.2.2.2. Action

The action matrix tells the parser what to do when in state q on symbol v, and
logicaUy is dimensioned |Q| x \V\ . State indexing is provided from a pointer
maintained in the state descriptor to a word vector; this vector is indexed by sym
bol. There are only a few unique rows in a typical action table (for the PDP 11
grammar from GianvUle's dissertation, there are 198 states and 8 distinct action
rows), so the table is stored as one physical row for each unique action row, with
routines to lookup or insert a new action row. The entire action matrix is memory
resident throughout the duration of this phase.

5.2.2.3. Next

The next matrix tells the parser which state to shift into, or which reduce set
to apply, depending on the corresponding entry in the action matrix, next is the
same size as action. For shifts, the entries in next are the internal state numbers

of the appropriate itemsets in Q. For reduce actions, the next entry is the index of
the reduce Ust associated with the reduce itemset, for shifts and reduce actions,

respectively. There is no row dupUcity in the next matrix (otherwise, two states
would have the same itemset kernel), although many rows may differ only in a few
symbols, a fact heavily exploited by merge. The row in next for a particular state is
constructed when that state is considered, and is written to the interphase
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temporary file immediately after the state is fully considered. After aU states have
been considered, this file is reopened for random access reads, and in conjunction
with a small cache of rows from next, is used in the default list construction phase
which requires access to the entire next matrix. For the PDPll grammar from
GlanviUe's dissertation, the default Ust construction on 70 semantically restricted
rules, accesses 154 rows in the next matrix (out of 198); with a cache size of 16, the
cache hit ratio is 44%.

5.2.2.4. R

The reduce set R is implemented as a list of reduce descriptors. As with Q, the
primary operation is to find or insert a member reduce itemset, so the descriptors
of members of R are maintained on hash Usts keyed by the itemset. Each reduce
itemset is associated with a unique reduce list. This reduce Ust is constructed by
considering the longest rule(s) sourced by an item in the reduce itemset. The rules
from P syntacticaUy identical to the candidate rules used to make the itemsets are
then sorted by decreasing semantic restriction, and formed into the reduce list.
This construction is carried out when a reduce itemset is inserted into R. Possibly,
a unique default Ust is associated with the reduce Ust when all members of the

reduce Ust are semantically restricted. The reduce list is a negative terminated
list of grammar rule indices; if the negative terminator on a reduce list is less than
-1, it is the negative index of the default list associated with the reduce Ust. (See
the domain hack in expandR.445.) Both reduce and default Usts are allocated
dynamically, are memory resident throughout the entire analysis phase, and are
concatenated together by the output routines into their final form as arrays.

5.3. 2\nalysis Implementation History

William Joy wrote the parser generator found in analysis, as well as the Ubrary
routines manipulating itemsets and relations. The author added the code to con
struct reduce lists, to remove loops and to construct default Usts, as well as all 1/0
interfaces to tmdl and merge. This was the last piece of code that WiUiam Joy wrote
in the CGGWS; the author wrote the remaining phases merge, ccode, and codegen,
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8. Merge

Merge is one of two physical phases appUed after analysis and before codegen.
Merge modifies the physical representation of the parse tables, but not their virtual
structure. Merge performs the housekeeping functions of merging into a single file
the three output files created by analysis and the single machine description file
created by tmdl. Merge applies an analysis supplied mapping function between inter
nal state numbers and external state numbers. Merge performs consistency checks,
and formats the parser's tables for printing. Most importantly, merge substantially
compresses the parse action and next tables; for the glanll example, the tables are
compressed to 18% of their original size.

Merge does a physical compression that trades code generator space for code
generator time. The code generator only spends a small fraction of its time doing
table lookup, so this trade-off costs only a Uttle. The tables are represented by Usts,
requiring list traversal instead of direct indexing to access an element, but Usts share
common suffixes and exploit regularities. Figure 6.1 shows some of the compression
statistics; the meaning of some rows in the figure will become apparent later.

The table compressor in merge knows that the matrices being compressed are
parser tables, but does not exploit any properties of the machine description gram
mar that analysis didn't already use to buUd the tables. Table compression heuristics
predominately view the parser tables as tables of elements that are either equal or
unequal. Since the tables are regular, these heuristics do very well. The
uncompressed tables let the parser immediately detect syntax errors in the IR, but
the compressed tables slightly delay error detection, since minor assumptions are
made about rows containing only reduce or error entries. Since the IR is assumed
error free, and the parser has no syntactic error recovery anyway, it is no great loss
to delay error detection. Since merge is run relatively infrequently, its inefficient
paging behavior is tolerated.

In the following description, we assume that the logical action and logical next
tables have been overlayed into one table. (This is indeed the case.) Recall that there
is a one to one correspondence between rows of the table and states in the parser
(both terms will be used interchangeably, depending on the context). There is also a
one to one correspondence between columns in the table and symbols in V. X(alter
natively, $ or .) is a root symbol, as are aU v GVs.t. XFIRSTv.

6.1. Row Analysis of the Parser Tables

Disregarding error entries, the rows in the table can be grouped into five
categories:

6.1.1. RowO

This row is special, since it is the only row with an accept action, and the only
row in which root symbols shift

6.1.2. Unreachable Rows

The loop removal algorithm in analysis may have spUt a state and created a new
state that is shifted into instead of the original. The original state may then be
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Compression Statistics for Ten Machine Descriptions

glanll 11 fullll ncll clan360 Z8000 8086 3000 VAX N/VND

Initial

# rows 197 782 1346 1406 193 316 936 672 1808 65
# unreach 1 1 1 1 2 1 1 0 0 0

§ discard 53 119 211 155 50 109 116 102 43 39

lg init 14K 80K 21 IK 144K 13K 23K 69K 54K 134K 2.4K

Compress
§ sUces 222 470 1793 1996 236 471 1255 897 2547 41
# overlayed 381 1805 5034 3326 379 692 3475 1704 6106 142

lg compr 2.5K 12K 24K 23K 2.6K 4K 17K UK 33K .6K
Factor (%) 18 15 12 16 20 17 24 20 24 26

Symbols
# syms 27 43 70 43 26 29 29 32 29 10

lg sym 432 688 1120 688 416 464 464 512 464 160

Dlists
lg dlist 248 1580 2372 3196 8 464 1860 175 5148 200

Rlists i

lg rlist 1186 • 0742 6256 6278 744 1394 4548 2430 5664 560

Rules
# rules 101 319 516 525 63 161 342 182 463 44

§ bundles 432 1.9K 3.2K 4. IK 253 647 2.5K 1.2K 5.9K122
lg rules 8.4K 34K 54K 66K 5K 13K 42K 21K 85K 2.8K

Assembly
lg assy 1.5K 5.7K 9.3K 10K 1.0K 2. OK 5.9K 2.7K 14K 191

Total
lg total 14K 57K 98K 109K 9.8K 22K 71K 38K 143K 45K

Key:
K 1000
lg size in bytes
# number
% percent

compr compressed
sym symbol
rUst reduce list

dUst default list

assy assembly Ust

1figure 6.1: Com pression Statistics for Ten Machine De scriptions

unreachable, and should be discarded.
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6.1.3. Reduce-Only Rows

These rows reduce on all symbols. Some of these rows reduce using the same
r G R for aU symbols, while others reduce by r G R for non root symbols and by
r' G R for root symbols. Rows of the first kind can be made unreachable by turning
all shift entries into this row into a new action, shiftjreduce by r G R. This new
action forces the parser to shift one symbol and then reduce by r, possibly delaying
error detection.

6.1.4. Shift and Reduce Rows

Typically, the reduce entries are in root columns, although not always. For
example, in the glanll example, the production

X -» - + k.l r.l k.2 "mov k.2, *k.l(r.l)"
was purposely introduced as the only instruction with indexed deferred addressing,
as discussed in Glanville's dissertation on page 90. Hence state 116 in Figure 6.3,
corresponding to state 166 in GianvUle's dissertation, shifts only on k, and reduces
on aU other symbols.

6.1.5. Shift-Only Rows

AU entries in this row shift

6.2. Column Analysis of the Parser Tables

Ignoring error entries, and row 0, column vectors in the table either shift only,
or shift and reduce. Error only columns are possible if a symbol was defined but
never used in the grammar. Reduce only columns are impossible. In order for a
symbol to cause a reduction, it must have been included in the right hand side of at
least one production. Consequently, at least one state will shift that symbol. A key
observation about most columns, exploited by the compressor, is that most shift
entries shift into the same state. Here is why. Consider all states g G Q, containing
in their core the item [u -* a •x /?] where x G N. (Since x is a non terminal, it is a
register.) Then, if x FIRST v, and the item [w -* . v y] is also in q,
ACTI0N[g, v ] = shift NEXT[g, v ] = g'. If the symbol v is only used in the grammar in
a production of the form x -» v <5, then all of the shift entries in column v will be the
same. The greater the number of grammatical contexts for v, the more times the
column entry for v differs from shift q'.

6.3. Column and Row Definitions

A slice of a row rx • • • rn is a sub row of contiguous elements, ^..r^, l£i£j£n.
SUces always refer to rows of the action/next table. (The term slice comes from the
2U1GOL68 lexicon.) The per column modal shift entry is the shift entry that occurs
most frequently in that column. The column activity is the number of shift entries in
that column different from the per column modal shift entry; the row activity is the
number of shift entries in that row differing from their respective column modal shift
value. The canonical shift slice is a full length row slice constructed from the modal
shift entry for each column.

There is an intuitive correlation between activity and instruction semantics.
Symbols with high activity are those occurring frequently in the instruction grammar
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and express primitives common to computers; on the PDP 11 the most active sym
bols are: "r" (general integer register), "k" (integer constant), "~" (indirection) and
,,+" (integer addition). Symbols with low activity occur only in certain productions:
on the PDP 11 they are "*" (multiply), ••/'• (divide) and "%" (modulo), as expected.

6.4. Row Reordering

The initial row enumeration order is determined by the way analysis constructed
and considered states, whUe the initial column ordering is the same as the relatively
arbitrary symbol declaration order in the TMDL for the instruction grammar. Hence,
the rows and columns of the table can be reordered, provided all extant implicit
references to rows and columns are changed. The table itself (stored as a row major
matrix) need not be shuffled if the row and column mapping functions are applied at
each access, but it is convenient to do so, both for later efficiency gains, and for logi
cal clarity in merge's sub phases. Reordering rows is fairly painless, but reordering
columns on a paged virtual memory machine is expensive. However, global column
reordering is necessary to slice rows efficiently for overlaying.

Row reordering must discard the unreachable states, and preserve row 0 as row
0, but since the compression is done on a per row basis, other row reordering is done
only to improve the visual aesthetics of the printed, reordered table. Rows are
separated into shift only, shift__reduce, and reduce only partitions. Each partition is
further divided depending on the number of columns shifting or reduceing, and
further by the row activity.

6.5. Column Reordering

Column reordering first tries to maximize, over aU rows, the length of error
slices, or reduce only slices. This immediately partitions the symbols into three
groups: root symbols, primary symbols and special symbols. Special symbols are
known to occur only in certain contexts; on the PDP 11, these include label refer
ences, label definitions, condition code references and the compare operator. Root
symbols are V- [ primary symbols j - \ special symbols j.

Within the partition of primary symbols, columns are reordered by decreasing
activity. For each row, this tends to create long slices of shift entries differing
slightly from the canonical shift slice.

6.6. Graphically Interpreting Reordered Tables

Viewing the table as a whole often helps intuitively measure the uniformity ofthe
instruction grammar. Large rectangular blocks completely filled in with either error,
shift or shift_reduce entries, or with error or reduce entries indicate a uniform
grammar. SmaU, patchy blocks isolated together, or stand alone columns, should be
viewed with suspicion, unless they are in (row, column) areas ofthe table correspond
ing to the parser's context when analyzing special, idiomatic constructs guaranteed
to be the same in the IR. Indeed, when a partial grammar for the INTEL 8086 was
developed, the blocking report generated by analysis was turned off (as is normally
the case), but grammar irregularities associated with the index register model were
discovered by table inspection. To show the similarities between rows, the first few
rows for the action and next table for the glanll grammar appear literaUy in Figure
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8.2. To show the effect of column reordering, the entire glanll action table

0

1

3

9

IS 9 83 9 85 9 38 9 57 9 79 9 81 9 B7 S: • 1 9 15 |
16 s 1 s 8 9 34 9 81 s • 2 s • 3 9 67 S : • 1 9 15 |
17 9 132 s 8 9 34 9 53 s • 2 s • 3 9 67 S: • 1 9 1 5 |
18 s 1 s 8 9 34 9 58 s • 2 s • 3 9 87 S : • 1 9 IS |
80 s 78 9 74 9 18 9 47 s • 2 s • 3 9 67 S : • 1 9 15 |
21 s 22 s 8 9 34 s 56 s • 2 s • 3 9 87 S : • 1 9 IS |
22 9 100 s 8 9 34 9 45 s • 2 s • 3 9 67 S : • 1 9 1 5 |
23 s 1 s 8 9 34 9 58 s • 2 s • 3 9 67 S: • 1 9 15 |
24 9 100 s 8 9 34 9 59 s • 2 s • 3 9 87 S : • 1 9 IS |

0|
II
3|
8!

15|
16|
17!
18|
20)
21|
22|
23 j
24|

9 46 9 89 9 68 9 70 9 :

9 46 9 69 9 66 9 70 9 :

9 46 9 69 9 68 9 70 9 :

9 48 9 69 9 66 9 7 0 9 :

9 46 9 69 9 86 9 70 9 :

8 48 9 68 9 68 9 70 9 :

9 48 9 69 9 88 9 70 8 :

9 46 9 89 9 66 9 70 9 :

9 46 9 89 9 66 9 70 9 :

85

85

65

85

65

85

65

65

65

ACCPT 9: 20 9

Key

A accept

blank error

s shift

S shift_reduce

R reduce

Figure 6.2: Table Entries for First Few Rows for glanl 1 Grammar
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schematicaUy appears in Figure 6.3, with adjacent identical rows compressed
together to save space on the page.

6.7. Row Decomposition

Once the table has been reordered, the rows can be easUy decomposed into
slices on a row by row basis. Row decomposition and compression immediately fol
lows. All decomposition is done within one row. A row is decomposed into sUces, iso
lating adjacent all-same row entries into a slice, and breaking adjacent shift entries
into 2 slices, one of which can overlay the canonical shift sUce, and the other which
can not. Since the global column reordering by activity empirically works well on
each row, the first shift only sUce (that is overlayed with the canonical row) tends to
be long. SUcing does not become so fine that the sUce descriptor is bigger than the
slice.
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Figure 6.3: Table Schema for glanll Grammar
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The sUced row is then represented as a list of slice descriptors, where each sUce
descriptor contains a lower and upper symbol bound, and an index into the area
where sUces are concatenated together. Slices with length one, or with entries doing
the same thing, are trivial slices represented fuUy in the slice descriptor. Isolated
non trivial sUces are either overlayed onto the canonical shift slice, or appended to
it. Row slice descriptor Usts are then internally ordered to share tails, and are even
tually represented as indexed elements in a sUce descriptor vector, with table entry
for row i provided through the ith element in the vector.

8.8. Other Table Compressions

Merge makes no attempt to compress the action and next entries into their
smallest possible bit fields, nor does it attempt to improve the representations for
default Usts, reduce Usts or assembly strings. These compressions were deemed to
be outside of the scope of the project. For the glanll example, these Usts and
strings occupy 95% of the total machine description storage space! However, fields in
the various descriptors have been laid out with care so that both packing and access
using byte fetches is efficient. Merge does pack ACTION into 3 bits of a 16 bit word,
with the NEXT entry (always an index) stuffed into the remaining 13 bits. Hence,
figures given in Figure 6.1 are larger than GlanvUle gives, as he assumed the smallest
possible bit field for all values. More compUcated sequential coding schemes are not
suitable because the tables are randomly accessed.
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7. Ccode

Codegen was initially written to accept parsing, symbol and rule semantic tables
directly from merge. Codegen initialized its tables in a slow and complicated manner,
reflecting both the necessary consistency checks, and the complexity of the inter
mediate form and codegen data structures. For the PDPll grammar, codegen would
take 3 seconds of VAX CPU time initializing its data space before any IR was read.
WhUe this initialization was excessive for production runs of codegen, codegen could
be flexibly developed together with the previous phases without worrying about
another table filter.

When codegen became relatively stable and began to be exercised with many test
programs for many machines, ccode was written from the codegen initiaUzation rou
tines. Ccode is a filter casting the tables into preinitialized "C" data structures; these
are then compiled into tables that codegen can use without suspicion and loading
overhead. In addition, the majority of tables are loaded into read only (text) space.

Ccode is heavily dependent on the layout and naming conventions used
throughout CGGWS. Hence, modifications to codegen and phases preceding ccode may
have to be reflected in ccode's output routines. In addition, the parse tables are
arrays of unions, each union defined from structures in turn defined with bit fields.
Each structure has an aggregate size after packing of exactly two bytes, which is the
union size. Since "C" does not allow union initialization, a size compatible structure is
defined, and an array of such structures initialized, and then aliased through an
assembly language loophole to the desired array of unions. In addition, ccode and the
following compilation are very slow (typically 61% of the code generation construction
time) because the C compiler is slow with initiaUzed data, and there is a tremendous
quantity of it. This increases the development iteration time for a new machine
description/code generator, since ccode can not (now) be dropped from the iteration
loop. However, during the last months developing CGGWS, ccode and the table struc
ture it implements were stable. Ccode was abstracted into a black box, even though
some changes, fortunately not affecting data structures, had to be made in both
analysis and ccode.
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8. Codegen

Codegen is run once for every program compUed into code for the target
machine. Codegen consists of a set of standard modules interpreting the tables con
structed by analysis, merge and ccode: these tables are loaded into read only storage
to reduce codegen invocation overhead. Codegen performs seven major tasks: IR
scanning and tokenizing, IR semantic checking, IR parsing and target machine
instruction pattern recognition, production semantic matching, default Ust applica
tion, and register aUocation. Because codegen performs only one pass over the IR, not
only is the register allocator overly complicated, but the resulting code can be time
and space inefficient for machines with compUcated, non uniform register architec
tures or for complicated IR which has not had prior optimization or analysis.

The tour through codegen will discuss the six major tasks it must perform.
Included in this discussion will be examples taken from real machines. These exam
ples highlight the difficulties codegen might have with a particular target machine
architecture, or with a particular IR example; in the whole, these examples are an
incomplete cookbook for writing machine descriptions, and suggest what codegen. or
an improved successor, should do differently.

8.1. IR Scanning and Tokenizing

Codegen recognizes essentially the same internal representation used in
Glanville's dissertation. Since the IR is a sequence of characters, the IR scanner is
relatively inefficient (typically, 9% of the execution time) but the IR can be easily
generated by hand as an aid to debugging. The scanner in codegen shares tmdl's
scanner, ensuring identical lexical conventions.

8.1.1. IR Comments

The scanner recognizes two forms of comments. The first form is delimited as
in "C" by "/*" and "*/"• The contents of these comments may extend across lines,
can contain a "$" or "$no" prefixed codegen option to toggle on or off, much as the
PASCAL 6000 compUer directive comments are enabled. The remainder of these
comments are ignored. The second form is delimited by double quotes, may not
extend across a line, and is stripped of delimiters and copied directly to the assem
bly language output file when the comment is encountered. These code comments
are intended to allow the IR generator to place comments in the assembly code, and
to access assembler primitives, though such access makes the IR generator non
portable. In the assembly language file, the position of the code from code com
ments in relation to the code emitted for IR is only guaranteed if the code com
ments appear between the trees in the IR.

8.1.2. IR Tree Recognition

The IR scanner never reconstructs an explicitly linked forest of binary trees
that is implicit in the prefix flattened IR; codegen does not do any tree manipula
tions, so only needs the flattened form. However, the scanner does know where indi
vidual trees start in the IR stream. This information is used by the symbol table, the
synchronous reader and the register spiU algorithm. Let E~ex • • • en be a sequence
of symbols in V, eta root level operator. Let W(e) be 1 if e is an operand, otherwise
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let W(e) be 1 - the number of operands for e. Then, the Polish Prefix level (or sim-
n

ply level) for E is £ W(ety By the deflnition in Glanville's dissertation, page 34, the
l

level of a complete Polish prefix expression is 1, and for prefixes of prefix expres
sions the level is always less than one.

8.1.3. Synchronous Reading

The scanner implements synchronous reading to ensure that all code for an
expression tree is emitted before the code comment foUowing that expression tree
is copied out. Without synchronous reading, when the parser required one token of
lookahead after having shifted the last symbol in a tree onto the parsing stack, it
would request the scanner to read the root symbol of the next tree. The scanner
would skip across and copy out a potentiaUy unbounded number of code comments
before it found the root symbol, at which point the remainder of the expression code
would be emitted. This mis-synchronization is undesirable for the IR generator.
Instead, when an entire tree has been read and another token requested by the
parser, the scanner returns a preliminary end of file (in alternative notations, "$",
"." or "X"). The parser is then restarted from state zero if there are more trees in
the IR forest.

B.1.4. Symbol Table

All symbols and their binding values encountered in the IR are looked up or
entered into the symbol table. Tmdl has initialized and locked into the table the IR
symbol and bundle quaUfiers. The table is purged of non-locked symbols after each
complete IR tree has been parsed, since the grammar, organized around root sym
bols, ensures that there are no inter tree symbol comparisons. (Descriptions for
common sub expressions are not maintained in the symbol table, as they can have
lifetimes exceeding that of a single tree.) In codegen, most semantic attributes are
compared by comparing symbol table pointers for equality. The values in the table
are not compared, akin to the difference between LISP eg and egi. This is done in
the interest of speed, but means that "00" and "0" are not the same constants,
although they both have the same value (zero). If the IR generator ensures that only
one external representation of a value is allowed (perhaps by always using the same
output formatting routine), and the TMDL author uses the same external representa
tion in the TMDL, then this codegen time saver wiU be no problem.

8.2. IR Semantic Checking

The scanner checks if the type and value semantics for attributes bound to sym
bols in the IR are correct. In this implementation, only IR operands (the leaves of the
IR tree) may have a binding. Future implementations may aUow operator bindings to
implement rudimentary operator grouping. Leaves in the IR tree may only be ranged
constants or registers, and must have a "." qualified binding to a particular value.
For constants, the value of the binding may be either a symbolic name, in which case
no range or type checking is done, or a character, integer or floating constant with
"C" syntax and semantics. In the latter case, the type of the symbol is inferred from
the constants used in the TMDL deflnition of that symbol, and that type is compared
with the type of the constant bound to it in the IR. The value is also compared to see
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if it is in the proper range. For registers, the value of the binding must be the sym
bolic name of a dedicated register. Any semantic violations, including IR syntactic
Ul-formedness as determined by a prefix level > 1, are non recoverable errors, indi
cating that the IR generator is at fault.

8.3. IR Syntactic Recognition

A table driven shift-reduce parser, driven from the precomputed Action and
Next matrices, syntactically recognizes instruction patterns in the IR token stream.
This parser is essentially the same as that from Glanville's dissertation (Algorithm
4.1, page 50), augmented with a shift__reduce action. The parse stack contains the
state record needed by the parse algorithm, the vocabulary symbols shifted onto the
stack, and their associated semantics from the IR or the register allocator. An IR
token stack (not to be confused with the parse stack) isolates the IR scanner from
the parser, and provides a repository for the left side of a reduction and for tokens
removed from the parse stack before a reparse. (see §8.10). The parser drives the
majority of codegen. All register allocation, semantic checking and code emission is
done after the parser has found a handle residing on the top of the stack. Because
the handle is used in the context of code generation, and since the top elements of
the stack are manipulated by the default list application code, the handle is caUed
the matched instruction pattern, or simply the pattern. The pattern is indexed from
1 to n, and patterni • • •patternj, \<A.<>j<sn wiU be caUed a sub-pattern.
Sub—patterns are referenced in default lists, where they are recursively treated as
patterns.

8.4. Production Semantic Matching

Semantic matching must simultaneously find the most semantically restricted
production from the candidates on the reduce list, and try to satisfy register alloca
tion constraints. The semantic matcher must choose productions carefuUy, as once
the choice is made, the register allocator considers only that production, and may
generate terrible code. For complicated machine descriptions with many idioms,
semantic matching can be a time consuming critical inner loop because the reduce
Ust presorted by semantic restriction is linearly searched. For each production, a
number of semantic attributes must be checked. (For the PDP 11 grammar there
are 354 productions, having 388 total restrictions, or 1.09 restrictions per produc
tion. There are 294 reduce Usts, with an average length of 2.36.) The more idioms in
the grammar, the longer the reduce Usts tend to be; differences between candidates
are not isolated from simUarities, so many comparisons are repeated unnecessarily.
Tmdl and analysis have preconstrue ted the reduce list and the rule descriptors with
semantic matching in mind, but such aids increase the space required for rule
descriptors so they take up roughly 80% of the total table size. However, experi
ments with machine descriptions having only a few idioms included in the grammar
show that the semantic matcher accounts for less than 1% of codegen's execution
time. Consequently, a more complicated encoding scheme could be used. Space
could be saved if rule descriptors were factored and shared, much as merge did for
the Action and Next matrices.
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The semantic attributes associated with symbols in the pattern are pointers
understood by the register model, or pointers understood by the symbol dictionary;
in either case only one efficient pointer comparison for equaUty needs to be made.

Even if the semantics required by a a restricted production match those in the
pattern, a less restricted production may emit better code in the long run, but only
because the semantics are incomplete in this implementation. Consider again the
VAX's integer register to register add instruction, first discussed in §3.1.4.1. Assume
the production

r.l -» + r.l r.2

was chosen first (it has the highest semantic restriction value); and the registers
bound to both r.l and r.2 had future uses. The register aUocator, stuck with this
overly restricted production, would first copy the contents of the register currently
bound to r.l into another register, and then use the new register in this production.
If instead the production

r.l -» + r.2 r.3

were chosen, knowing the current and expected register aUocation, this extra move
would be avoided. Consequently, if the semantic matcher finds a production whose
use would entail a move to protect a register, it wUl consider other less restricted
productions on the reduce Ust. This example suggests that instead of a static order
ing, there should be away to weight the selection based on register use counts1.

B.5. Default list Application

If there is no production semantically matching the pattern, analysis wUl have
constructed a default list. The pattern is isolated into the sub-pattern specified by
the base and length information from the default list. Semantic matching, register
aUocation and code emission are performed recursively for the sub—pattern. When
code for the sub-pattern is emitted, the pattern is coUapsed together (as the
sub-pattern may have been internal to the matched pattern), and the next
sub—pattern on the default Ust isolated. This is exactly the same rewrite performed
in the default list construction algorithm, §5.1.14. For an example taken from the
PDP 11, if the IR input to the code generator were:

= + A:. 2 r. 6 + t + A:. 4 r. 6 k. 1

then it would syntactically match the production:

. -♦ = + k. 1 r. 2 + t + *. 1 r. 2 fc = l "inc k.l(r.2)M

but would semanticaUy mismatch because the semantic values on the constants are
not the same. The default list for this pattern consists of:

^tentatively, TMDL could be extended to include more comprehensive semantic attributes or predi
cates to be met before a rule could be applied.
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seq place Reduce List/[Default List] assembly string

"movk.l(r.2),r.l"1 8 "r.l -♦ t + k.l r.2"

2 5 "r.l -♦ t + r.lk=l"
"r.l -• t + r.lk.l"
[no default list]

3 1 "dot •* = + k.lr.2r.l"
[no default Ust]

The default Ust is appUed in sequence:

step

"incr.l"

"add$k.l.r.l"

"movr.l.k.l(r.2)"

= +

= +

= +

X

k.2

k.2

r.8

r.6

k.2 r.6

producing the code:

stack

5 6 7 8 9 10

sub pattern collapse

+ t

+ r.O

r.O s

+

k.l

- s

k.4

s

s

r.6

s

s

k.l

s

s

6..9

5..7

1..5

10 to 7

none

none

mov 4(sp), rO
inc rO
mov rO, 2(sp)

Note that there were no recursive applications of default lists, as all reduce lists
on the default Ust for the memory increment instruction were without default lists.
(Recursive application of default lists never happens on the PDP 11.) In step 1, there
was a sub pattern internal to the longer pattern, necessitating a coUapse of the
stack. In step 2, if the constant were not 1, then we would have generated the more
general, non idiomatic add instruction.

8.6. Assembly Code Emission

Tmdl produced a massaged assembly code prototype for each production. The
assembly string is scanned to isolate the embedded bundle links. These bundle Unks
are extracted and replaced by the external print representation of the correspond
ing semantic attribute found in the pattern. The largest fraction of codegen's time is
spent constructing assembly strings.

8.7. Register Allocation

The register allocator performs all of the tasks outlined in GlanviUe's disserta
tion §4.3, working from a register model simulating the contents of the registers dur
ing execution of the code emitted as a side effect to each reduction. In the foUowing
discussion, the phrase "during execution of the code emitted as a side effect to" is
dropped from most contexts where it should appear. Further, the term "register"
and the value that register contains at execution time are used interchangeably.

8.7.1. Register Allocation Assists by the TMDL Grammar

Each reduction to a non-X non terminal requires one and only one destination.
The destination may be a register or a register pair. The semantics of TMDL and
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fundamental restrictions in the parser do not aUow two (or more) destinations to be
specified. For example, one can not "track" side effects on the condition code or
the effect of a register auto increment in parallel with the primary result of the
instruction. Hence, the PDPll divide instruction, which produces both the quotient
and the remainder, can not be completely modeled in TMDL (see §3.2). To simulate
two simultaneous destinations, one can use grammatical tricks such as defining new
non terminals representing the power set of all register classes, together with an
augmented grammar. In the worst case, these tricks can exponentially increase the
table sizes and grammar complexity, although in practice the grammar could be
augmented with the few that occur, together with a selection pseudo production.
The grammar can be modestly augmented to save register allocation information in
the parser's state. For example, the IR assignment operator, "=" is only used in the
GlanviUe's dissertation as a root operator. On the PDPll, any instruction imple
menting the "=" operator sets the condition codes reflecting the new value of the
destination. If the IR were extended to allow "=" as a non root symbol, then the
PDPll grammar could be augmented with additional productions of the form:

c.l -• ? assignment tree k=0 "code for assignment tree";
where assignment tree is a tree rooted with "=" implemented by one instruction.
For the glanll grammar, there are 33/101 assignment tree productions, so that
grammar would be augmented by 33 new productions.

8.7.2. Allocating a Destination

The single destination for a production is found before the right hand side of
the production is popped from the parsing stack. The production isolated and wait
ing for a destination is said to be pending. This destination can come from one of
three places. The destination may be semanticaUy bound to a non terminal on the
right hand side, implying reuse. Or, the destination may be captured from other
soon to be freed registers on the right hand side, the register may come from the
free register pool, or the free pool must be extended and then used. After the
instruction is emitted, registers from the right hand side with no future uses are
reclaimed. If a selected destination has future uses and can not be overwritten, an
intra—register move must be done to protect the dedicated register.

8.7.3. Register Trauma

The register aUocator is prepared to handle the contingency when more regis
ters are needed than are available. When this happens, registers must be spilled
and unspiiled into temporary storage. Codegen does not assume a register preesti-
mation pass over the IR tree (for example, Sethi-Ullman numbering), nor does it
assume that the IR tree has been rewritten and decomposed in a machine depen
dent or independent way to avoid unexpected spills. The code generator does only
one pass, left to right, over the flattened IR, and has only a feeble oracle to consult
regarding future IR complexity that might bias the register allocation performed in

the present. S.C. Johnson's affirmation2 about the Portable C CompUer, which does
do rewrites to avoid unexpected spills is, in retrospect, well taken: "[This compiler
feature] is one of the more significant, successful departures from most other

8A Tour through the Portable CCompiler, S.C. Johnson, Bell Telephone Laboratories, page 15. (no date).
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compilers. It means the code generator can operate under the assumption that
there are enough registers to do the job, without worrying about temporary
storage". The complex, non modular and buggy parts of codegen are handlers and
contingency planners for the traumatic register spill and unspill. Codegen could be
cleaned up both by totally rewriting it (having learned what works and what does not
work), or, as Johnson does, by writing a phase that rewrites the input trees and thus
avoids register spills.

To facilitate spilling, the register model is broken into parts handling physical
and virtual registers. We now discuss these two models and their interaction.

8.7.4. Physical Registers and Register Classes

The TMDL ^register section defines which registers are available on the target
machine, and partitions the registers into allocatable and dedicated sets. The non
terminal declarations in TMDL establish other register classes, corresponding one to
one with non terminals, and assign registers singly or in pairs to these classes. The
implementation of the register model places a register descriptor on a list for each
class to which it belongs, with separate lists for allocatable and dedicated registers.
This list can be searched quickly to find a free register in a particular class. The
lists traversed are typically short because only a few registers must be examined
before a free register is found. The lists are not dynamically reorganized to improve
search time.

Physical registers may be:

free A free register may be allocated to any register class it belongs.

temp A temporary register contains an intermediate result computed by code
emitted when the grammar reduced to a non terminal.

cse The value in a cse register is a common sub expression, §8.8. Its proper
ties are intermediate between temp and dedicated registers.

dedicated The value in a dedicated register may be read but not written.

Consistent with TMDL declarations, double registers have their own register
ciass(es) in which they are indecomposable, so they may be allocated, spilled and
used as common sub expressions just like single registers. Because codegen can
spill single or double registers, and since it has no lookahead, traditional packing
problems are non existent. Codegen has a special case for double registers in both
the register allocator and the register spill routine. The allocator examines succes
sively more spill-expensive choices, moving from (0 used, 0 free) to (1 used, 1 free)
and finally to (2 used, 0 free). The latter case requires a double register spill. A
double register decomposed in the destination of a pending reduction is semanti-
cally indecomposable for all register allocation purposes until all assembly code is
produced. Then, codegen decomposes the register into its constituent saved and
discarded single registers, depending on the reduction semantics. (See §3.2.)

6.7.5. Virtual Registers

Virtual registers represent values in a particular register class that have been
computed, reside someplace, and will be used sometime in the future. For every
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distinct value in existence, there is a distinct virtual register. All references to
registers, especially semantic attributes of symbols on the parsing stack, are
through virtual registers. It is the function of the virtual registers and the
spill/unspill algorithm to simulate an unlimited supply of physical registers. This is
analogous to virtual memory systems:

register allocation

physical register
virtual register
spilled register
spilling
register use
unspilling
unspill algorithm
dedicated physical register
register with future uses
terrible register use

virtual memory
page of primary memory
page descriptor
page on secondary memory
page out
page hit
page in
page replacement algorithm
unpageable system area
read only page
thrashing

The analogy is not complete, however. With register allocation, one knows which
registers have how many future uses, although one does not know when they will be
used. Registers must be allocated within classes; most VM systems do not distin
guish pages based on contents (other than a read only distinction). Finally, the
structure of the IR, and the way registers are referenced, gives different kinds of
information to the unspill algorithm than is available to an LRU page replacement
algorithm.

A new virtual register is created when a value is computed by a reduction,
although a virtual register may be reincarnated if a register on the right hand side
is used as the destination. Immediately after the reduction, the virtual register is
bound to the physical register actually holding the value. Virtual registers and their
values (and associated storage) are alive until the virtual register's reference count
falls to zero. Dedicated physical registers are permanently bound to immortal vir
tual registers; at creation physical registers holding common sub expressions have
use counts which are the number of uses of the common sub expression, and
expression temporaries have a use count of one. Free physical registers are not
bound to any virtual register.

Without spills, values will stay in the physical register until the virtual register
is last used. If the physical register is spilled, the virtual register is bound to a spill
descriptor containing spill information. Whenever a spilled virtual register is used
on the right hand side of a reduction, the value is retrieved from the spill area into a
physical register. The physical register chosen must be of the class implied by the
virtual register, but it need not be the same as the register in which the value was
created. (See §8.10 for alternatives to unspilling.)

6.7.6. Register Spill Algorithm

When selecting a spillable register in the correct class, one must consider
expected future use patterns for values in all physical registers in that class.
Future uses are measured by a positive integer; a large value means the use is
expected to be a long time in the future. There are three kinds of future uses. If a
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physical register is used in the pattern of the pending reduction, it has immediate
future use. Avalue may have future uses by being included in the right hand side of
a rule on a reduce action; the metric is the distance down the parsing stack to the
first reference of the virtual register holding that value. Finally, the value may have
future uses by being shifted onto the parse stack; the metric is the number of sym
bols in the IR yet to be shifted before that value is encountered. Evaluated common
sub expressions with future uses may have future uses both by shifting and by
reducing. An attribute of each cse specifies when that cse will be used by shifting.
(See §8.8.)

The register spill weighting functions use the future use metric, together with
estimates for the short term probability of a reduce or of a shift Since the next
parsing actions, hence register uses, have locality of reference to the top of the
parse stack or to the next few IR symbols, the register spilled should have the
greatest future use metric, biased by the shift or reduce probabilities. If a double
register is being spilled, the sum of the future use metrics for the constituent ele
ments is used. The weight function makes reasonable assumptions that prefix
expression trees are not too complicated and thus too deep, that binary operators
predominate in use over unary operators, and that most instruction patterns con
tain many symbols. If the current Polish Prefix level is small (large absolute value),
then there are assumed to be an abundance of binary operators over operands, so
the probability of shifting must be high to correct this imbalance.

We now define characteristic values for both machine description grammars
and for programs. By conventions used throughout this report, P is a machine
description grammar for some target machine H. Let |P| be the number of syntac
tically distinct productions in P. If g e P, then \g | is the length of the right hand
side for g. Let PIfo be a program represented in IR to be compiled for H. Assuming
that PRm can be implemented on H using Glanville's code generation algorithm 4.1,
let the bag P be the collection of productions in P used to derive PR&. Clearly, the
number of instructions to implement PR on Mis |PR|. The static shift scale factor,
or sssf, and the dynamic shift scale factor or dssf, for program P, are defined as:
sssf = 2 \p\ / |P|

Vpep scale.10

<**/ = S \P\ / IPRI mK^..VpePR scale.15

The sssf is the number of times the code generator parser expects to shift for each
reduction, based on a static analysis of the grammar. The dssf is similar to the
sssf, but is based on a dynamic analysis for a particular program (or history of pro
grams) being compiled for H.

The computed weight functions currently used in codegen are scaled linearly.
The functions have a horizon of 20. The horizon is a measure of locality of refer
ence, either by performing a shift or a reduce. Any register with a future use
metric greater than the horizon value will not be considered when deciding what to
spill. StspiU.lO- stspUl.50, in figure 8.1, are definitions for the probability and
weight functions codegen uses to estimate which registers will be spilled without
using any dynamic history. It is also possible to compute off line the actual proba
bility functions for a given level and for a given program PR, as shown in pspUl.10-
pspUl.20, (figure 8.1).
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pr(x, I) = computed probability of x at level I
w(x, I, r*) = weight of2 at I for register rt

pr(reduce, I) = max(0, 0.05 x I + 0.95)
w(reduce, I, r*) = (stack distance to rt) x (l - pr(reduce, Z))

pr (shift I) = 1 - pr (reduce, J)
w(shift irt) = (IR distance to r<) x (l - pr{shift I))

= (IR distance to rt) x pr( reduce, J)
iw(use, I, r-i) = w(shift J, r<) x sssf + it;(reduce, J, rt)

spill rt such that tw( use, £r») is maximal

opr(x, I, P) = observed probability ofa: occuring at I for program P
nreduce(l, P) = number of reductions performed at I in program P

nshift(lt P) = number of shifts performed at I in program P
ssshift(l, P) = nshift(l, P) xsss/"1
dsshift(l, P) =nshift(l, P) x dss/~l

op^oKc(reduce, I, P) =

°pr<tunamic( reduce, J. P) =

nreducejl, P)
(ssshift(l, P) + nrerfuce(J, P))

op^to«c(shift £, P) = 1 - opr8<aMc(reduce, J, P)
nreducejl, P)

(dsshift(l, P) + nreduce(l, P))
°Prdynamic(shift, J, P) = 1 - opr^^*(reduce, I, P)

stspill.JO
stspill.15

stspiU.20

stspiU.25

stspiU.30
stspiU.35
stspill.40

stspiU.45
stspill.50

pspill. J 0

pspill. 15

pspill.20

pspill.25

pspill. 30

pspill. 35

pspill. 40

pspill. 45

pspill. 50

Figure 8.1: Static and per Program Spill Probability and Weight Functions

There has been little experience with the linear weighting functions, because
they were implemented relatively recently, and because substantially better code,
with less implementation overhead, can be produced using register preestimation
and IR rewriting. To show that the weighting function is reasonable for complicated
expressions that must spill, two artificially complicated IR programs were generated
by the "D" compiler, and compiled by codegen for the PDP 11. ("D" is a subset of
"C" with differing declaration syntax; see §9.2.) On our system, there are no real
"C" programs containing complicated expressions, so we have no experience gen
erating code for real world programs; these two artificial programs reflect worst
case statistics.

The first program, the matrix multiply program taken from Glanville's disserta
tion (figure 5.6, page 94), was reworked to multiply matrices composed from com
plex numbers, using a straight forward algorithm. (Complex numbers were imple
mented as a third dimension on the matrices A, B, and Cand the scalar sum). The
observed probability distributions for this program are in Figure 8.2. A second FOR
TRAN program with very complicated expressions that Knuth describes as being
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level Nreduce Nshift stred dyred
1 90 90 0.87 0.74
0 64 157 0.74 0.54

-1 50 188 0.65 0.44
-2 14 123 0.44 0.25
-3 0 56 0 0
-4 0 20 0 0
-5 0 3 0 0

KEY
sssf static shift scale factor = 6.92
dssf dynamic shift scale factor = 2.92

Nreduce nreduce (I, P)
Nshift nshift(l,P)

stred opratatic ( reduce, I, P)
dyred opriiynamic (reduce. I, P)

Figure 8.2: Compiling the Complex Matrix Multiply Program for the PDP 11
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"rather horrible"3 was rewritten in "D" and also compiled for the PDP11; the
observed probability distributions are in Figure 8.3.

From the figures, it is apparent that the horizon of 20 is probably too much.
Further, the assumptions about shift and reduce probabilities seem to be correct.

6.6. Common Sub Expressions

Computing and using common sub expressions (cses) fits easily into the gram
mar and the virtual register scheme. The TMDL grammar is extended by adding
three operator symbols and, for each interesting register class, a production to
evaluate and a production to use a cse. The additional operators and productions are
not implemented by the target machine, but are caught and specially interpreted by
codegen. The operator signifying cse evaluation, compose, is a root level binary
operator; the operator for cse use, usecse, is an interior (non root) unary operator.
Glanville proposed that compose (his Ooperator) be an interior operator; no general
ity is lost by the method codegen uses, which was chosen to minimize implementa
tion overhead. Since the semantics of the implemented TMDL does not allow opera
tors to have more than two operands, and since compose logically has four operands,
the interior binary operator csedesc is introduced solely to canonicalize more than
two logical operands into a standard binary form.

All cses are initially evaluated into registers, although the register spill mechan
ism may later move the value into temporary storage. Since codegen is one pass, it
can not consider ail future uses of that cse and try to minimize execution time or
space by fully, partially or not at all evaluating the cse into a register. For example,

3Kmith, D.E. An Empirical Study of FORTRAN Programs, Software Practice and Experience, 1:1. 1971.
page 123. F
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level Nreduce Nshift stred dyred
1 74 74 0.87 0.74
0 120 35 0.96 0.91
-1 56 192 0.67 0.45
-2 65 163 0.73 0.53
-3 65 149 0.75 0.56
-4 53 149 0.71 0.50
-5 38 135 0.66 0.45
-6 18 97 0.56 0.35
-7 5 58 0.37 0.20
-8 0 24 0 0

-9 0 7 0 0

-10 0 1 0 0

KEY
sssf static shift scale factor = 6.92
dssf dynamic shift scale factor = 2.86

Nreduce nreduce (I, P)
Nshift nshift(l,P)

stred opratatic(reduce, I, P)
dyred opr^^ (reduce, I. P)

Rgure 8.3: Compiling the Horrible FORTRAN Program for the PDP 11

when generating PDP11 code for this C expression:

a = (((6 + c) + d) + c )

where all quantities are displacement addressable from r5 (automatic variables), and
assuming no reordering performed on the associative and commutative operator + ,
one could produce the code alternatives shown in figure 8.4. Figure 8.4 gives the
tuples (static instruction bytes, dynamic memory references). If code size were the
only metric, then either no cse or value cse could be chosen. A cse generator,
presumably machine independent, can not completely know the cost of the cses it
proposes, because that cost depends intimately on the target machine. Ideally, a
program like codegen. using exactly the same tables, would interact with the cse gen
erator to ferret out worthwhile cse proposals before any code was emitted. This is a
topic for future research.

The cse generator must supply some attributes that are machine independent.
All cse's have a unique identification. A cse has a non zero use count decremented
each time the cse is used. Further, each evaluation or use of a cse can indicate
where in the IR sequence, relative to the first symbol in the IR, that cse is used next.
This next use value is used by the spill algorithm. As an internal check, the last use
of a cse must have a negative next use. The general syntactic form for productions
evaluating and using cses is hardwired into codegen. For the full PDP 11, there are
three pairs of cse productions: double registers, floating registers and general regis
ters. While two additional production pairs could be added for even and odd
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no cse

(20, 15)

mov

add

add

add

mov

b(r5), rO>(r5),
s(r5).
d(r5), rO
c(r5), rO
rO, a(r5)

The CGGWS

value cse

(20, 14)

mov

mov

add

add

add

mov

c(r5), rO
b(r5), rl
rO, rl
d(r5). rl
rO, rl
rl, a(r5)

address cse
(22, 16)

mov

add

mov

add

add

add

mov

r5, rO
$c, rO
b(r5), rl
(rO), rl
d(r5), rl
(rO), rl
rl. a(r5)

Figure 8.4: PDPll Code Alternatives with Common Sub Expressions
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registers, they are not needed since chain rules not emitting code convert freely
between even and odd registers to general registers, and back again. The cse pro
ductions for the PDPll general register class are:

. -* compose csedesc k.l csedesc k.2 k.3 r.l,
"k.l future uses, id k.2, k.3 next use, value r.l", magic = 1;

r.l -♦ usecse csedesc k.2 k.3,
"id k.2, k.3 next use", magic = 2;

During a reduction, codegen treats a cs8 production like any other production,
up to final register allocation and assembly code emission. Then, the magic produc
tion attribute springs a trap door keyed by the magic value, and codegen performs
specialized semantic actions behind its own back. This trap door code checks the
semantics of cse evaluation/use, performs any register allocation and cleans up. The
trap door for usecse knows the register class of the cse specified, so can construct an
appropriate left hand side. (All usecse productions are on the same reduce list
because they have identical right hand sides, and are assumed to have left hand sides
connected in the graph sense via chain rules.) The trap door code currently recog
nizes magic values 1 or 2; this mechanism can be extended to do other machine
(in)dependent code generation in codegen*s implementation language. However,
these extensions are hard to write, reduce codegen*s retargetability and may create
maintenance and consistency problems between the IR generator, the machine
grammar and codegen.

Glanville's matrix multiply algorithm was recompiled by hand into IR with three
common sub expressions. (The address of the loop control variables i, ; and k are
recognized as cses.) The values of the variables were not treated as cses because they
are used both as rvals and as Ivals, and the grammar did not allow register variables
as Ivals. A "C" program taken from figure 5.6 (page 94) of Glanville's dissertation
was written that forced the three available register variables to point to the loop con
trol variables, in an effort to simulate the action of cses in the hand compiled pro
gram. Then, the IR was compiled into PDPll code by codegen, and the C program
was compiled by the Johnson PDPll Portable CCompiler (PCC), the Ritchie (original)
C compiler, and the Whitesmith C compiler. The code from these compilers is in

61



82 The CGGWS

figure 8.5.

While figure 8.5 is the matrix multiply code with three cses, figure 8.6 is code
from the four compilers for the matrix multiply without cses that was taken from
Glanville's dissertation.

Code generated by codegen with these three cses and with four cses (addresses
of the variables i, j, k and sum), is in figure 8.7.

A number of comparisons can be made from these tests:

- The code produced by Henry's implementation using the 11 grammar can be com
pared against the code produced by Glanville's implementation using the glanll
grammar taken from his dissertation (page 97). In particular, the 11 grammar
recognizes multiply by two as an idiom.

- Codegen's spill/unspill algorithm is exercised for three and four cse IR's.

- The spiils/unspills performed by codegen for three cse IR can be compared to
those done by the other compilers. There is no appreciable difference, except for
the spill allocation strategy. (Codegen has not been fitted with a PDPll spill area
manager, so the spill code is hand generated.)

- One can observe the deteriorating and thrashing behavior of the code as more cses
are recognized.

- In all "C" programs, variables were incremented using the construct
variable - variable + 1

instead of the construct

variable++

The Ritchie, Johnson and Whitesmith compilers do not recognize the first case of
increment (where variable is a scalar) as a memory increment, but they do recog
nize the second case (again, where variable is a scalar) as a memory increment.
On the other hand, codegen recognizes the first case efficiently. The TMDL gram
mar for the PDPll could easily be extended to incorporate a new postfix operator,
"++".

8.9. Register Classes Revisited

At any time, a physical register is associated with only one register class.
Changing this association is done by a chain rule reduction, that usually does not
emit any code. The goal partially or fully achieved by the chain reduction is to get
the contents of the register into the "right" place, in preparation for emitting code
implementing an operator requiring specially located or classified operands. This is
where the power of a Polish Prefix intermediate form and the parser generator
become apparent. Upon shifting over an operator symbol requiring operands in spe
cial registers, the parser knows that the operand(s) must be in a special register
class. Assuming a uniform grammar, chain rules (and ordinary rules) eventually load
the operand registers. However, reduction by chain rules is time expensive for the
code generator, and code resulting from a poorly chosen set of chain rules may be
very bad, especially if double registers are involved. The more register classes, the
more chain rules. The TMDL writer should augment the grammar with just enough
chain rules, knowing the structure of the operands for restricted operators. Chain
rules to change register classes must be semantically ' = ' restricted with the same
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Henry's 11
mor r5,r0

add SI,rO
mor r5,rl

add $J,rl
mor r5,r2

add $K,r2
dr (rO)
jbr L2

Ll: dr (rl)
jbr lA

L3: dr SUH(r5)
dr (r2)
jbr L8

L5: mor S2»M,r3
mul (r0),r3
add (r2),r3
aal r3

add A(r5),r3
mor S2*H,r4
mor rl.spilLO
mor r4,rl

mul (r2),rl
mor spilL0,r4
add (r4),rl
ad rl

add B(r5),rl
mor (rl),rl
mul (r3).rl
add rl,SUH(r5)
inc (r2)

L6: cmp (r2),SM
jit L5
mor $2*M,rl
mul (rO),rl
add (r4),rl
aal rl

add C(r5),rl
mor SUH(r5),(rl)
me (r4)

L4: cmp (r4),$M
jit L3
inc (rO)

L2: cmp (rO),$M
jit Ll

L17:

L20:

L23:

L21:

L22:

L18:

L19:

L16:

The CGGWS

Johnson

mor r5,r0

sub S-I,rO

mor r0,r4

mor r5,r0

sub S-J,rO
mor r0,r3

mor r5,r0

sub $-K,rO
mor r0,r2

dr (r4)
cmp (r4),SM
jgt Lie
dr (r3)
cmp (r3),$M
jgt L10
dr SUH(r5)
dr (r2)
cmP (r2),SM
jgt L22
mor (r2),rl
mul S2*H.rl
add B(r5),rl
mor (r3),r0
aal rO

add rO,rl
mor (rl),-18(r5)
mor (r4),rl
mul $2*H,rl
add A(r5),rl
mor (r2),r0
aal rO

add rO.rl
mor (rl),rl
mul -18(r5),rl
add SUH(r5),rl
mor rl,SUH(r5)
mor (r2),r0
inc rO

mor r0,(r2)
jbr L23
mor (r4),rl
mul S2*M,rl
add C(r5),rl
mor (r3),r0
aal rO

add rO.rl
mor SUM(r5),(rl)
mor (r3),r0
inc rO

mor r0,(r3)
jbr L20
mor (r4),r0
inc rO

mor r0,(r4)
jbr L17

Ritchie

mor r5,r4

add JI,r4
mor r5,r3

add SJ,r3
mor r5,r2

add $K,r2
dr (r4)

L5: cmp $M,(r4)
jit L6
dr (r3)

L8: cmp $M,(r3)
jh LO
dr SUM(r5)
dr (r2)

Lll: cmp $M,(r2)
jh L12
mor (r2),rl
mul S2«M,rl
add (r3),rl
aal rl

add B(r5),rl
mor (rl).-(sp)
mor (r4),rl
mul J2«M,rl
add (r2),rl
aal rl

add A(r5),rl
mor (rl).rl
mul (sp)+,rl
add SUH(r5),rl
mor rl,SUH(r5)

L13: mor (r2),r0
inc rO

mor r0,(r2)
jbr Lll

L12: mor (r4),rl
mul S2»M,rl
add (r3),rl
aal rl

add C(r5),rl
mor SUH(r5),(rl)

LlO: mor (r3),r0
inc rO

mor r0,(r3)
jbr L8

L9: mor (r4),r0
inc rO

mor r0,(r4)
jbr L5

L6:
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Whitesmith

mor r5,r0

add SI,rO

mor r0,r4

mor r5,r0

add SJ,rO
mor r0,r2

mor rS,rO

add SK.rO
mor r0,r3

dr (r4)
Ll: cmp (r4),SM-l

bgt L3
dr (r2)

Lll: cmp (r2),SM-l
bgt L5
dr SUH(r5)
dr (r3)

L12: cmp (r3),JM-l
bgt L32
mor (r3),rl
mul S2*H,rl
add B(r5),rl
mor (r2),r0
aal rO

add r0,rl
mor (rl).(sp)
mor (r4),rl
mul S2»H,rl
add A(r5).rl
mor (r3),r0
aal rO

add rO.rl

mor (rl).rl
mul (sp),rl
add SUH(r5),rl
mor rl,SUM(r5)
mor (r3),r0
inc rO

mor r0,(r3)
br L12

L5: mor (r4),r0
inc rO

mor r0,(r4)
br Ll

L32: mor (r4),rl
mul S2*M,rl
add C(r5),rl
mor (r2),r0
aal rO

add rO.rl

mor SUH(r5),(rl)
mor (r2),r0
inc rO

mor r0,(r2)
br Lll

L3:

Figure 8.5: PDPll Matrix Multiply Code with Three Common Sub Expressions
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Henry's 11 Johnson Ritchie Whitesmith

ch- I(r5) dr KrS) dr I(r5) dr I(r5)
ita- L2 L29: cmp I(r5),$M-l L18: cmp $H-l,I(r5) L13: cmp I(r5),SH-l

Ll: dr J(r5) jgt L28 jit L10 *gt L33

jbr U ch J(r5) dr J(r5) dr J(r5)
L3: dr SUM(r5) L32: omp J(r5),$H-l L21: cmp SM-l,J(r5) L14: cmp J(r5),SH-l

dr K(r5) jgt L31 jit L22 bgt L53

jbr L6 dr SUH(r5) dr SUH(r5) ea SUH(r5)
L5: mor $2»H,rO dr K(r5) ch K(r5) ch- K(r5)

mor rO.rl L35: cmp K(r5),SM-l L24: omp *M-l,K(r5) L15: cmp K(r5),SM-l
mul I(r5),rl jgt L34 jit L25 bgt L35

add K(r5),rl mor K(r5),rl mor I(r5).rl mor I(r5),rl
wJ rl mul S2»M,rl mul S2»H,rl mul S2«H,rl

add A(r5),rl add B(r5),rl add K(r5),rl add A(r5),rl
mor S2»M,rO mor J(r5),r0 ad rl mor K(r5),r0
mor r0,r3 aal rO add A(r5),rl ad rO

mul K(r5),r3 add rO,rl mor (rl).rl add rO,rl

add J(r5),r3 mor (rl),-18(r5) mor K(r5),r3 mor (rl),rl
aal r3 mor I(r5),rl mul $2»H.r3 mor K(r5),r3
add B(r5),r3 mul S2«M.rl add J(r5),r3 mul $2»H,r3

mor (r3),r0 add A(r5),rl ad r3 add B(r5),r3
mor r0,r3 mor K(r5),r0 add B(r5),r3 mor J(r5),r0
mul (rl),r3 asl rO mul (r3),rl m»1 rO

add r3,SUH(r5) add rO,rl add SUH(r5),rl add r0,r3

inc K(r5) mor (rl).rl mor rl,SUH(r5) mul (r3).rl
L8: cmp K(r5).SM mul -18(r5),rl L26: mor K(r5),r0 add SUH(r5),rl

jit L5 add 3UH(r5),rl inc rO mor rl,SUH(r5)
mor S2*H,rO mor rl,SUH(r5) mor rO,K(r5) mc7 K(r5),r0
mor rO.rl L33: mor K(r5).r0 jbr L24 inc rO

mul I(r5),rl inc rO L25: mor I(r5),rl mor rO,K(r5)
add J(r5),rl mor rO,K(r5) mul S2«U,rl br L15

asl rl J* L35 add J(r5),rl L53: mor r(r5),r0
add C(r5),rl L34: mor I(r5),rl ad rl inc tQ

mor SUH(r5).(rl) mul S2«M,rl add C(r5),rl mor rO,I(r5)
inc J(r5) add C(r5),rl mor SUH(r5),(rl) br L13

L4: cmp J(r5),JM mor J(r5),r0 L23: mor J(r5),r0 L35: mor I(r5),rl
jit L3 aal rO inc rO mul S2»H,rl

inc I(r5) add rO,rl mor rO,J(r5) add C(r5),rl

L2: cmp I(r5),SH mor SUM(r5).(rl) jbr L21 mor J(r5),r0

jit Ll L30: mor J(r5),r0 L22: mor I(r5).r0 nal rO

inc rO inc rO add rO,rl

mor rO,J(r5) mor rO.I(r5) mor SUH(r5),(rl)

jbr L32 jbr LIS mor J(r5),r0

L31: mor

inc

mor

I(r6),r0
rO

rO,I(r5)

L19: inc

mor

br

rO

rO.J(r5)
L14

jbr L29 L33:

L28:

Figure 8.6: PDPll Matrix Multiply Code Without Common Sub Expressions

64



Ll:

L3:

L5:

L6:

IA:

L2:
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ivy's 11, three ess Henry's 11 , four cse
mor r5,r0 mor r5,r0

add Sl,rO add $I,rO
mor r5,rl mor r5,rl

add SJ.rl add SJ.rl
mor r5,r2 mor r5,r2

add $K.r2 add $SUM,r2
dr (rO) mor r5,r3

jbr L2 add SK,r3
dr (rl) dr (rO)
jbr L4 jbr L2

dr SUH(r5) Ll: dr (rl)
dr (r2) jbr U

jbr L8 L3: dr (r2)
mor $2«M,r3 dr (r3)
mul (r0),r3 jbr L8

add (r2),r3 L5: mor $2^^4
ad r3 mor rl.spilLD
add A(r5).r3 mor r4,rl

mor S2*H,r4 mul (rO).rl
mor rl.spilLD add (r3),rl
mor r4,rl ad rl

mul (r2),rl add A(r5),rl
mor spilL0,r4 mor S2»M,r4

add (r4),rl mor rl,spilL-l
ad rl mor r4,rl

add B(r5),rl mul (r3),rl
mor (rl).rl mor spi!L0,r4
mul (r3),rl add (r4),rl
add rl,SUM(r5) ad rl

inc (r2) add B(r5),rl
cmp (r2),$M mor (rl),rl
jit L5 mor rO.spill ?,
mor $2«H,rl mor spilLJ.rO
mul (rO).rl mul (rO).rl
add (r4),rl add rl,(r2)
ad rl inc (r3)
add C(r5),rl L8: cmp (r3),SM
mor SUH(r5),(rl) jit L5

inc (r4) mor spHL2.rO
cmp (r4),SM mor $2»H,rl

Jit L3 mul (rO),rl
inc (rO) add (r4),rl
cmp (rO),$M ad rl

Ht Ll add C(r5),rl
mor (r2).(rl)
inc (r4)

L4: cmp (r4),$M

jit L3

inc (TO)
L2: cmp (rO),$H

jit Ll
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Figure 8.7: PDPll Matrix Multiply Code with Three and Four Common Sub Expressions
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physical register on both sides of the chain rule.

Codegen allocates registers with a horizon constrained to the current produc
tion. While the parser's state implicitly contains allocation information, this may be
difficult to extract without restructuring the grammar. In the current version of
codegen, this information, available both on the stack and in the state, is not
extracted and used. Consequently, choosing a destination register in the present
may produce bad code in the future. An example comes from the matrix multiply
example without cse's, figure 8.5. Interesting productions in the TMDL grammar are:

o.l -» * - + k.lr.2 o.l mul k.l(r.2), o.l
r.l -»k.l mov $k.l. r.l
o=rl -+ r=rl • re classify rl as odd
o. 1 -* r. 1 mov r.l, o.l

codegen saw this fragment of IR:
• • • * ~ + k.I r.r5 k.M

and produced this PDPll code (an explanation follows):

mov $M, rO
mov rO, rl
mul I(r5), rl

The grammar only knows how to get constants into general registers of class "r", so
a load was emitted into the first free general register. Initially, all registers were
free, and since registers are allocated in TMDL declaration order (rO, rl • • • r4), rO
was chosen first. This was done even though the context of the "*" operator should
have preferenced a register load into rl. Then, on the next reduction "o.l -• r.l" was
performed, forcing an inter register shuffle to move the operand into the required
odd destination target register.

One way to fix the problem of inadequate allocation lookahead is to rewrite the
grammar, using the standard chain rule elimination algorithm by factoring chain
rules into the grammar. (The chain rule elimination algorithm is applied to the
grammar, and is not to be confused with the chain loop elimination algorithm used in
analysis). The state of the parse now has encoded, among other things, the descrip
tion of the most semantically restricted register that must be loaded.

For example, on the PDP 11, the general register class is the TMDL non terminal
"r", classes "e" (rO and r2). "o" (rl and r3) and "t" (r4). The single production to
move a displacement addressed quantity into a register would be duplicated into:
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r.l -» ~ + k.l r.2 original, "movk.l(r.2), r.l"

o.l -* ~ + k.l o.2

o.l-»* + k.le.l

o.l -» - + k.lt.l

e.l-»A + k.le.2

e.l -» - + k.l o.l

e.l -» - + k.l t.l

t.l -» - + k.l e.l

t.l -> - + k.l o.l
t.l -» - + k.l t.2

This "fix" increases the number of productions in the grammar by the square of the
number of register classes. No real grammar has been modified this way, so the
increase in table size and CGGWS execution time has not been measured.

8.10. Spills and Unspilling, Revisited

Codegen uses the register weighting algorithm from §8.7, and determines which
physical register in which class is to be spilled. Currently, the register weighting
algorithm does not check whether a physical register holds a cse that has already
been spilled. (Respilling that register would cost nothing, as its value exists simul
taneously in both a register and in the previous spill location.) Codegen relies on two
machine specific routines written in codegen's implementation language to do the
actual spilling and unspilling. These routines are responsible for allocating slots in
the spill area, and emitting code to do the spill (a move from a register) and do the
unspill (a move to a register). (There is also a third machine specific routine that
moves the contents of a register to another register; this is used to protect the con
tents of a dedicated register.) The magic trap door mechanism is not used here
because the code is emitted internal to codegen, and has no ties to tokens in the IR.

There has been no machine specific spill and unspill written for codegen, since
there are three bookkeeping difficulties.

(l) The spill area for most machines and languages must be allocated in cooperation
with the variable storage area allocated by the IR generator. There is no
mechanism in the IR so the IR generator can tell codegen where the spill
manager can put spilled values.
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<

(2) The spill manager can not use the run time stack in a pure last-in-first-out dis
cipline, because spilling and unspilling is done with respect to register classes.
Consider an example from the 8086, with an over abundance of register classes.
Assume there are no cses and the stack contains references to values contained
in "i" (index) and "b" (base) registers, as shown ("x" are attributes that do not
concern us):

xxxixxxbxxx

Assume that a request for an "b" register is made, and the one bound to the
stack is spilled. Then, a request for an "i" register is made, again spilling the
one bound to the stack. Now, a reduction is made encompassing the spilled "b",
which lies beneath the spilled "i" value in the spill area.

(3) Registers need not be spilled out of the register set, as there may be a cheap
inter register move to a register of another class. In the above example, the re
gister of class "i" could have been cheaply spilled to a register in the "t" (tem
porary) class. However, even if the "t" class has a free member, there is no
guarantee it will not be used immediately, necessitating a spill to memory any
way.

Spilled virtual registers are unspilled immediately before code for the pending
reduction is emitted, so that the recursive application of a default list will not run out
of registers. Spilled values are always unspilled into registers. One might produce
better code automatically if the code to unspill were generated by the parser driven
part of codegen. where fetching the spilled value might be encompassed as a side
effect to another instruction. However, if the unspilled value is a cse with future uses
in a particular and unknown environment, it may be better to unspill explicitly into a
register.

There are two ways to use the body of codegen to perform unspills. Both
methods macro expand a virtual register reference to a string of IR symbols that
reference the spilled value. If the value to be unspilled is contained in the pending
reduction, the pattern can be reparsed, expanding the spilled virtual register
appropriately. Reparsing is necessary to recompute the state of the parser. Or, if a
cse being shifted onto the stack is spilled, the IR scanner can expand the cse refer
ence as a macro, instead of a virtual register reference. An alternative to macro
expansion augments the TMDL vocabulary with a special non terminal representing a
spilled value, and expands the grammar to handle, in as many instructions as possi
ble, a value that is spilled. This method has advantages because it isolates spill pol
icy into the TMDL. However, this method increases the size and complexity of the
grammar, and will not avoid reparsing the pattern.

6.11. Codegen Retrospectus

The techniques used in codegen can generate high quality expression code if the
implementing instructions use only registers from one class, and there are always
enough registers in that class. While the machine description grammar can be
inefficiently extended to differentiate between register classes and cure the first
problem, the one pass, bottom up, left to right parse through the IR is simply not
powerful enough to handle graciously any register spills and unspills that may be

68



The CGGWS 69

necessary. Codegen's efforts to spill and unspill registers dynamically make it large,
unreliable and potentially slow. Register preestimation and IR tree manipulation to
avoid spills should be done with a table driven IR rewrite, preferably using the same
tables and powerful parsing techniques as codegen. Register utilization can be deter
mined from a skeleton code tree, and trees traversed and rewritten using ideas from
the Sethi-UUman code generation algorithm, but to handle register classes and their
interactions, an algebra of vector Sethi-UUman numbers must be defined. However,
programs typically contain simple expressions. With these programs, the present
version of codegen is competitive with other local-horizon only code generators, and
is reasonably machine independent.
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9. CGGWS Tools

9.1. MetaTMDL

9.1.1. TMDL Grammar Complexity

Simple target machine instructions with only one interesting destination per
form one principal operation on a number of operands. The operand's address is
specified using an addressing mode, specifying particular registers, constants or
operators to use when computing the address of the operand. For truly orthogonal
machines, all operand addressing modes can be used with all operators, although
most machines impose addressability restrictions on certain operators. At the level
of operator abstraction, the specific semantics of operand access are generally not
important, although accessing the operand may perform more complicated arith
metic than the operator itself. All architecture reference manuals are organized on
an operator (instruction) basis, enumerating the way operands may be addressed.
In keeping with the abstraction, addressing mode semantics are separately
specified.

TMDL lacks these levels of abstraction. The grammar is structured around a
flat grammar, where each reduction reduces to either a non terminal corresponding
to a destination register (or register pair) receiving a computed result, or a special,
uninteresting, non terminal (X) corresponding to a destination not in the register
set. If a target machine operator has n operands, numbered 1 • • • n, and operand i

n

can be addressed o^ different ways, then the TMDL grammar will have Yl°i Pr°duc-
<=i

tions for this operator. Alternatively there is one production for each instruction bit
pattern, after register or constant semantics have been removed. Because the prin
cipal operator of an instruction is close to the root of the tree describing the
instruction, flattening the tree places the principal operator in the left part of the
modelling production's right hand side. An LR parser constructed with the methods
currently used in analysis automatically merges only the states before the principal
operator. Parser states recognizing the complicated operand trees to the principal
operator can not be shared between other operators with identical operand trees,
since the parser's state must encode the principal operator. (The present TMDL
does not allow non terminals to group operators having identical operands.) Conse
quently, the parser has an enormous number of states. The number of states could
be drastically reduced by factoring the grammar along the natural divisions of
addressing modes. However, to achieve the reliability and efficiency offered by the
flat grammar, it must be proved that a code generator constructed from a factored
grammar will, for any valid IR input, automatically choose the best instruction
sequence from alternative instruction sequences. The code generator built from the
flat grammar does consider all possible instructions.

It is advantageous to use a flat grammar to recognize idiomatic instructions,
assuming that the semantics of terminals and non terminals are specified using only
one simple scalar value. There are currently two different idiom forms at the
instruction/addressing mode level. Binding idioms require operands to have the
same address. Value idioms require an operand attribute to have a value in a
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certain range. For example, the VAX's operator, addl2, is a binding idiom for addl3,
while the incl instrution is a value idiom for addl2. With the flat grammar, the
addressing mode structure of the operands is effectively lost, but if all the intra
bundle "." bindings are met, the operands are equal. If the TMDL grammar were
factored into addressing mode productions, the semantic attributes of an address
ing mode non terminal would have to be defined. The definition must allow address
ing modes to be compared as a whole for binding equality, and must allow value par
ticulars to be tested. For most machines, however, the addressing mode semantics
could not be encapsulated into a single scalar; these semantics vary from machine
to machine. For example, a PDPll addressing mode non terminal has four attri
butes: mode type, data type, register used, and constant used. The VAX has these
four attributes, in addition to a second base register specifier. Extending TMDL and
CGGWS to recognize factored grammars would require redesigning TMDL to know
about arbitrary addressing mode semantics to recognize idioms.

9.1.2. CGGWS Organization for Factored Grammars

Assuming the theoretical feasibility, it would be a major undertaking to
redesign TMDL and reimplement much of CGGWS to manipulate factored grammars.
The reason is that the implementation of CGGWS makes deep, and in retrospect,
erroneous assumptions about the register-only non terminals used in TMDL. Other
more flexible parser generators, such as yacc can be used to write a machine
specific code generator to test hypotheses about grammar factoring. However,
these generators in their present state lack looping and blocking analysis, and can
not construct default lists, although the latter two could conceivably be imple
mented by post processing the tables.

A TMDL was written for the micro instruction architecture of the PDPll. The

register architecture contains Memory Buffer Registers (MBRs) and Memory Address
Registers (MARs), (collectively called multiplexor registers). The MARs contain the
address of an operand; the MBRs contain its value. Both are computed from an
addressing mode. A set of patterns describing the micro instructions loading and
storing these multiplexor registers was added to the PDP 11 grammar. The higher
level (user visible) PDPll instructions were redefined to work on the general regis
ter set and from the multiplexor registers containing the operands. Code generated
from this machine description computes operands to real instructions in scattered
places before the real instruction appears. If the intertwined microcode and high
level code is reorganized by hand, the intermediate micro instructions subsumed by
the real PDPll instructions, and register re-allocation done, then normal PDPll
code is produced. After reorganization, the code for Glanville's Matrix Multiply (the
one example the author tried), was identical to that produced with a flat grammar.

9.1.3. MetaTMDL

Because reimplementing CGGWS was a major proposition, the author was stuck
with TMDL to experiment with and test other aspects CGGWS. After writing the
Z8000 grammar, and contemplating extensions to the glam.ll grammar, it became
apparent that writing description grammars for regular architectures is a mechani
cal and tedious job, simply because there is so much duplication on a per
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instruction basis. The TMDL author must number and link the bundle semantics with

the assembly string. Across productions of the grammar, one must ensure that no
addressing modes are left out or incorrectly specified. The language metaTMDL was
hastily designed and even more quickly implemented by metatmdl to incorporate
addressing mode abstractions, to reduce the complexity of machine descriptions,
and to number automatically and to construct TMDL instruction patterns. The
metaTMDL compiler produces TMDL as its object code, so none of the modules tmdl,
analysis, merge, ccode, and codegen had to be modified.

The metaTMDL compiler is a macro expansion preprocessor that evaluates the
cross product of all addressing modes possible for an instruction. Metatmdl knows
very little about the form of TMDL instructions, except that there is a production, an
assembly string, and a cost. It knows there are "." bindings between the produc
tion and the string, and that the destination operand addressing tree appears in the
production either on the very left of the right hand side, or as the left hand side.
The brunt of the semantic checking is performed by tmdl, so errors that tmdl
reports must be reflected back into the metaTMDL, a process that may take a
number of iterations. The grammar is described in Appendix 3; what follows is an
informal semantic and pragmatic description.

In this section, refer to figure 9.1, which is the metaTMDL description of the
machine taken from Figure 3.1 (page 44) of Glanville's dissertation. (The metaTMDL
description is longer than his dissertation example, not only because it commutes

all operands to the "+" operator1, but because the machine architecture uses a
different set of operand addresses for sources than it does for destinations.)
Metatmdl is designed with three observations in mind:

(1) Parts of a metaTMDL specification are for tmdl only. Consequently, metaTMDL
files are organized like source files to yacc: text before an initial "%%" (in the
first two columns) is copied out, text between that "%%" and another "%%" is
processed by metatmdl. and text after the final "%%" is copied out. Text
between the "%%" delimiters further delimited by "%|" and "%j" is copied out.

(2) Addressable operands described in TMDL can be cast into three different forms.
The operand can be used as an lvalue, as an rvalue, or in the assembly string. It
is assumed that the assembly string has the same form regardless of the
operand's use as an lvalue or an rvalue.

(3) Principal operators take operands as sources and produce one destination
operand. In the grammar rule, the operator's operands may appear in almost
any order with respect to the operator; in the assembly string, their expansion
can be surrounded by any text.

The metaTMDL Smodes section defines the Ival, rval and assembly semantic
attributes for each addressing mode. In addition, the cost clause is the cost (by
some scalar measurement) of using that instruction. If the target machine address
ing mode contains a commutable operator, then the addressing mode should be
repeated as many times as necessary to include all possibilities. Commuting the

1 Metatmdl lacks a commutative attritube for binary operators, which would further reduce the size of
metaTMDL descriptions and make them even easier to reduce.
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topHaam statesets, tables;
Sregistexs

SaUocatable \r0,, rl, r2, r3, t4\;
^dedicated

Ssymbols
$nanterminals

r = rO, rl, r2, r3, r4, r5, r6, rT,
Stenninols

*: -32788, 32767;
+: binary;
-•.unary;

=: unary;

Smstructions

%%

Smodes /* begin ofmetaTUDL addressing mods definitions V
reg = assy: "r.l"•

hral "r.l -> ",

rval: "r.l", ccart = 0;
regindvrect= assy: "♦r.l",

hral: ". -> r.l",

rval: "-r.l", coot=l;
immediate— any: "=k.l",

hral: n n

•

rraL "k.l". cost = 1;
absolute- assy• "k.l".

hral: ".->k.l",
rraL "~ k.l", cost = 2;

absoluteindirect-

any: "•k.l",
hrab ". ->-k.l",
TTOl "",cost=l;

oJfsetaddressl= assy. "=k.l,r.l",
hral: n fi

rml: "+k.l r.l", cost =1;
offsetaddress2- assy. "=k.l,r.l",

hral: •

rval: M+r.lk.r,«Mt=l;
offsetJ= any: "k.l,r.l",

hral: ".-> + k.l r.l",
rval: "~+ k.l r.l", cart = 2;

offset2= assy. "k.l,r.l",
Wal: ".-> +r.lk.l",
rral: "~+r.lk.l", cost=2;

offset-indirect 1-
assy. "♦k.l,r.l",

hral: ".->- +k.l r.l",
rval: " ", cost = 3;

offsettndirect2=
assy. "♦k.l.r.l",

hral ".->- +r.l k.l",
rral: " ", cost = 3;

Sendxnodes; /• end of metaTMDL addressing mode definitions •/

{definitions /• begin of metaTMDL addressing mode groupings •/
rvaladd = ( offset 1, offset2, absolute, reg );

rvaUoad- ( offsetaddressl, offsetaddress2,
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offset1, offset2, absolute, regindirect, immediate );

lvalstore= ( offset1, offset2, offset-indirect1, offsetindirect2,
absolute, absoluteindirect, regindirect);

register- ( reg);
SenddefinitionB; /• end of metaTMDL addressing mode groupings V

{instructions /* begin of metaTMDL instructions V

/• this comment is copied out directly to the TMDL •/

%!
register := "+" rvatacld rsoister <"add" rvaladd "," register>, cost = 1;
register:- "+" register rvaladd <"add" rvaladd "," register>, cost = 1;

Ivalstore := register <"store" register "," tuatstore>, cost = 1;
register :- rvaUoad <"U>ad" register ","rvaUoad>, cost = 1;

fendmstractions; /* end of metaTMDL instructions V

XX /• textual end of metaTMDL */

Send /'end of TMDL */

Figure 9.1: MetaTMDL for Sample Machine Description, from Glanville Figure 3.1

operands and the order of operators in addressing modes can exponentially increase
the number of effective addressing modes. For example, to specify fully the VAX's
displacement indexed addressing mode if no assumptions are made about the IR, 24
effective addressing modes must be enumerated. In addition, if the textual form of
lvalues and rvalues in the assembly string differ, other effective addressing modes
must be added.

The ^definitions section defines aggregates of addressing modes. If a logical
aggregate is twice used as an rvalue in an instruction pattern, the aggregate must
be defined here twice, with different names but identical contents.

The tinstructions section defines the instruction pattern. Each pattern con
sists of a prototype grammar rule constructor, a prototype assembly string con
structor and an (optional) base cost. Both the rule and assembly string construc
tors are formed from expanders. An expander can be either a predefined aggregate
name expanding to all addressing modes in the aggregate, or a quoted string which
expands to itself. The grammar prototype consists of a left part separated from the
right part with the reserved symbol ":=". The left part is the destination and can be
only one expander; the right part is the pattern computing the source, and can be
one or more expanders. An aggregate name may be duplicated across the ":=", but
not within the right hand side because the resulting assembly string can be ambigu
ous. Grammar rules for this instruction are elaborated by evaluating the cross pro
duct of addressing modes from each unique aggregate named in the expander list,
renumbering bundle qualifications as necessary to avoid conflict. The resulting
grammar rule is formed from the lvalue and rvalue semantics (depending on the use
in the prototype as destination or source) of the individual addressing modes. The
cost of the rule is the sum of the costs of the prototype pattern's base cost,
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together with the cost of each addressing mode used by the expanders.

The assembly string prototype is delimited by < and >, and must contain the
same aggregate names used in the rule pattern (although an aggregate name may
be used more than once). The assembly string is constructed in parallel with the
grammar rule, using the assembly string from the addressing mode definition.

The result of the "add" elaboration from figure 9.1 is in figure 9.2.

MetaTMDL lacks methods to commute automatically operators and operands in
complicated addressing modes, although generating them can be done easily by
hand with an editor. MetaTMDL also requires different names for addressing modes
and aggregates, and only aggregate names can be used for elaborators, which taxes
the metaTMDL writer's ability to generate names for complicated machines.
MetaTMDL also rigidly adheres to a two level grammar; it is not possible to define
addressing modes from less complicated addressing modes. Metatmdl is completely
unforgiving for semantic errors, making it difficult to develop a machine descrip
tion. However, for a user familiar with metaTMDL, the language is a reasonable way
to enumerate instruction patterns.

9.2. IRgen

If writing TMDL is difficult, then writing IR for non trivial programs can be even
more error prone. To debug codegen adequately, it needs to be run on different
machines, with different IR test examples from a standard benchmark set. In addi
tion, the spill and unspill algorithms would only become active in an interesting way if
the IR test programs were horribly complicated at the expression level; such IR pro
grams are difficult to write, and hard to modify. Consequently, the program IRgen
was hastily written solely to generate complicated IR trees automatically from a
language called "D" (for lack of a better name). The language "D" is a subset of the
language "C", including all control structures and most operators, but not including
structures, data types other than integer, and possesses a different declaration syn
tax from "C". IRgen works reasonably well.

r.l -* + r.2 r. 1

r.l -♦ + -k.2 r.l

r.l -* + - + r.2 k.2 r.l

r.l -• + - + k.2 r.2 r.l

r.l -» + r.l r.2

r.l -» + r.l -k.2

r.l -♦ + r.l ~ + r.2 k.2
r.l -• + r.l ~ + k.2 r.2

"addr.2, r.l" cost = 1;
"addk.2, r.l" cost = 3;
"addk.2,r.2 , r.l" cost= 3;
"add k.2,r.2, r.l" cost = 3;
"addr.2, r.l" cost = 1;
"addk.2, r.l" cost =3;
"add k.2,r.2, r.l" cost = 3;
"addk.2.r.2 . r.l" cost= 3;

Figure 9.2: MetaTMDL Produced ADD Instructions for Sample Machine Description
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9.3. Metric

The tool metric was written to perform a number of experiments manipulating
flat machine grammars. Metric interprets a specially formatted output from tmdl
and determines (in much less time than codegen does) the number of states in the
resulting parser. The number of states is useful for estimating the amount of time
required by the programs in CGGWS to construct a code generator; if the initial esti
mate is too high when developing a code generator, then the grammar can be
corrected. Metric is typically used in conjunction with metatmdl, when it is feared
metatmdl will produce too many productions. Metric can also isolate common
suffixes from the productions and determine the number of states the parser would
have with the rewritten grammar. Isolating common suffixes does not affect the code
produced by a parser, and typically halves the number of states in the parser. The
rewritten grammar is not compatible with TMDL.
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10. Conclusions and Future Directions for Research

Some of the original goals of the project have been met: we reimplemented
Glanville's algorithms in the language "C" to provide a foundation for future experi
mentation with retargetabie code generators. In the process, a number of errors and
omissions in Glanville's algorithms were discovered. We gained practical experience
writing machine description grammars for architectures more similar than different.
These machine grammars were rich enough to uncover problems regarding register
classes, multiple destination instructions and semantic attributes that could affect
the quality of the code. Some of these problems have been adequately resolved, but
fundamental efficiency and structural issues need more work. Machine descriptions
for complicated machines like the VAX are too large to be useful. The present code
generator produces poor quality code because it can not look ahead (or behind) to
bias its register allocation or instruction selection. Future research will address these
problems:

- Can the machine description grammar be factored so that the number of states in
the code generator parser is drastically reduced? Initial experiments with a parser
based code generator for the integer subset of the VAX are encouraging: the
machine description grammar is factored into addressing modes, and less than 300
states. However, the heuristics used in writing the grammar and the support rou
tines need to be formalized. We need to prove that the code generated from an
SLR(l) or an LALR(l) parser constructed from an addressing mode factored gram
mar is equivalent to one constructed from the flat grammar.

- If the grammar is factored, the code generator may semantically block. How can
the ideas suggesting default list construction in the flat grammar be used with a fac
tored grammar?

- Can the tables produced by analysis (together with an table interpreter) form the
machine dependent part of common sub expression analysis? How should the com
mon sub expression proposer interact with codegen?

- How should TMDL be extended to model instructions with side effects, such as the
PDPll divide instruction, and the auto increment, auto decrement of a register
found on both the PDPll and the VAX?

- How powerful is TMDL for describing complicated IRoperators and operands?
Our future research will address these, and other, issues with machine indepen

dent code generation using the Graham—Glanville techniques.
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Appendix 1: Execution Times

This appendix shows the execution times for various phases of CGGWS. Of particu
lar interest is the high execution time required by the C compiler to compile the out
put of ccode into an object module to load with codegen. Note that the time required
to construct default lists is exceptionally high, possibly reflecting inefficiences in,the
improved algorithm. Also, canonicalizing the IR, a trivial thing for IRgen to do, saves
many parser states and CGGWS execution time.

Execution Times for CGGWS Modules (Glan 11 through Glan 360)
metric Kill 11 fullll ncll S1360

cpp .5 .5 .6 .5 .2

tmdlgen .6 2.5 .41 2.7 .2

tmdl 1.7 7.8 13.9 13.2 1.5

#dlist 18 118 175 236 0
dlist 1.8 44.7 141 162 0

# state 197 782 1240 1406 193

CM 36K 137K 274K 267K 29K

analysis 12.7 194.1 668 551

merge 4.1 20.0 42.0 35.7 3.7

ccode 4.7 17.1 30.5 34.6 3.6

cc 45.9 158 234 252 42.2

size 18K 6 IK 102K 113K 13K

Execution Times for CGGWS Modules (Z8000 throueh NAND)
metric Z8000 8086 3000 VAX NAND

cpp .4 .7 .2 .3 .1

tmdlgen .2 .8 2.6 .1 .9

tmdl 3.0 9.1 4.7 16.0 .8

# dlist 29 124 42 426 42
dlist 1.2 48.9 11.6 369 .5
§ state 316 936 672 1808 65

CM 55K 153K 96K 308K 8K
analysis 25.4 185 70.1 722 3.2

merge 5.8 22.2 12.9 56.9 1.0

ccode 6.8 24.5 10.8 43.4 2.0

cc 69.5 187 104 316 26.0
size 26K 76K 42K 147K 8K

Key
K 1000 bytes of storage
# number

CM Core Memory used in analysis
otherwise, processing times in seconds
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Appendix 2: TMDL, MetaTMDL and IR Recognized by CGGWS

Lexical Conventions Observed in metatmdl, tmdl and codegen

Source files to metatmdl and tmdl are free format. Spaces, tabs, line feeds, page
feeds and comments are considered as separators. An arbitrary number of separators
may appear between any two consecutive symbols in source files written in the
languages metaTMDL, TMDL or IR, except they may not appear in identifiers, numbers
of special symbols. At least one separator must appear between any consecutive pair
of identifiers, numbers of keywords.

Comments in all three languages follow the C conventions, with an open delimiter
of /* and a closing delimiter ♦/. Comments may extend across lines.

In the grammars for metaTMDL and TMDL appearing in Appendices 3 and 4, respec
tively, keywords and single character symbols are in bold, (viz comment), non termi
nals in the grammar are in roman, (viz vdecllist), and other tokens having a lexical sub
structure are in italics (for example, Identifier). The keywords defining the major sec
tions of a TMDL description (comment, options, registers, allocatable. dedicated, sym
bols and instructions) need not be preceeded by a "$", as is shown in Glanville's
dissertation.

The lexical substructure of non reserved words and symbols is defined below using
a modified regular expression notation recognized by ea\ ex, or vi. In addition to the
metacharacters "[". "]", "-", "-" and "*", we also use "\" and "J" to mean zero or
one occurances of the bracketed character set, and "+" meaning one or more occu-
rances of the preceding character.

Identifier [A-Za-zJ[A-Za-zO-9j*
Identifier ==[A-Za-zO-9_I@#%-&*-+|~?]*
Identifier <>[A-Za-zO-9_J@#%~&*-+|~?]*
Identifier !=[A-Za-zO-9_J@#%-&*-+|~?]*
Identifier [@#%~&*-+|~?][A-Za-zO-9J@#%~&*-+|~?]*

Eqldentifier =[A-Za-zJ)-9]+
EqNumber —Number

String "[-"0*"

Number H[0-9]+
Number '[0-7][0-7][0-7]'
Number H[0-9]+.[0-9]*|[eE]i+-)l>9]+J
Number H[0-9]*.[0-9]+|[eE]|+-i[0-9]+j

Kludge

decimal number

character constant

floating point number
floating point number

Comments produced by the "C" preprocessor may be included in metaTMDL or
TMDL source files. They serve only to change metatmdl's and tmdl's notion of the
current source file and line number so that error messages produced by tmdl can be
reflected back into metaTMDL. These comments are of the form:

#[0-9]+"[-"\n]*"
It is recommended that source descriptions always be written in metaTMDL, using the
macro definition and include file syntax recognized by the "C" preprocessor. These
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source descriptions should always be run through the "C" preprocessor, then through
metatmdl and finally through tmdl. If none of the expansion facilities provided by
metatmdl are used, then the "%%" delimiters should be left out of the description;
metatmdl will pass the description unmodified.

Changes to Glanville's TMDL

A number of additions and changes have been made to Glanville's TMDL.

Scomment A comment can be included in TMDL that is carried around with all
machine description tables created from the TMDL source file. This is use
ful to tag listings and coders. The comment, along with date and time
stamps is prepended to all listings produced by tmdl, analysis, merge,
ccode and codegen. The comment must be inclosed in double quotes, and
must appear at the head of the TMDL source file. For example,

Scomment "This machine description is partially debugged";

does the trick.

Joptions Options control what the phases in CGGWS will print out as diagnostic infor
mation. Both options and comments are carried around with the machine
description tables. An option name can be any identifier, and has effect
only if a phase knows about it. Option names appear in italics in the
manual pages (Appendix 6).

TMDL symbol names
Symbol names follow the semantics of identifiers, and are not constrained
to single letters, as Glanville's implementation was.

Production Syntax
The syntax describing productions in the grammar has been extended to
follow that used both in this report and Glanville's dissertation.

Double Register Qualifications
Double registers may be qualified on the left hand side of a production with
the < • • • > syntax; see 3.2.

Production Qualifications
Productions can be qualified with the cost and magic keywords. The cost
attribute is the scalar cost of the instruction, according to a cost function
determined by the TMDL writer. Examples throughout this report use a
cost function defined to be the number of memory references the instruc
tion performs, including the instruction fetch. The magic attribute may be
1, implying a cse declaration, or 2, implying a cse use. See 8.8.
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Appendix 3: Meta-TMDL Grammar

description: modes definitions instructions ;
modes: modes modelist endmodes ; | A ;
modelist: modedef | modelist modedef ;
modedef: Identifier = mquallist modecostfactor
mqualiist: mqual | mquallist mqual;
mqual: qualtype : String ;
modecostfactor:

cost = Number | X ;
assy | lval | rval;
definitions defiistl enddefinitions ; | X
defequal | defiistl defequal;
Identifier = deflist ; ;
( deflist2 ) ;
Identifier | deflist2 Identifier ;

qualtype:

definitions:

defiistl:

defequal:
deflist:

deflist2:

instructions:

insthead instlist endinstructions ; | X ;
insthead: instructions

instlist: instdef | instlist instdef;
instdef: expander ::= expanderlist assydir instcostfactor
assydir: < expanderlist > ;
expanderlist: expander | expander expanderlist;
expander: String \ Identifier ;
instcostfactor:

cost = Number I X ;
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Appendix 4: TMDL Grammar

tmdesc: comment options registers symbols instructions end;
comment: comment String ; | X ;
options: optionlist ; | X ;
optionlist: options Identifier | optionlist , Identifier ;
registers: registers allocatable

I registers allocatable dedicated

allocatable: allocatable { reglist j ; ;
dedicated: dedicated \ reglist } ; ;
reglist: Identifier | reglist , Identifier ;
symbols: symbols variables terminals ;
variables: variables vdecllist;

vdecllist: Identifier sep varlist ; | vdecllist Identifier sep varlist ; ;
sep: = | : ;
varlist: singlist | pairlist ;
singlist: Identifier | singlist , Identifier ;
pairlist: pair | pairlist , pair ;
pair: < Identifier , Identifier > ;
terminals: terminals tdecllist;

tdecilist: tdecl; | tdecllist tdecl ; ;
tdecl: oplist : Number , Number

oplist : Number . . Number
oplist: unary
oplist: binary
oplist unary
oplist binary

oplist: op | oplist , op ;
op: Identifier \ Symbol | = | < | > | : ;
instructions:

instructions instructionlist;
instructionlist:

instruction ; | instructionlist instruction ; ;
instruction:

( qualoplist ) rqualop semantics instquallist
| ( qualoplist ) . semantics instquallist
| rqualop Yields ( qualoplist ) semantics instquallist
| rqualop Yields qualoplist semantics instquallist
| . Yields ( qualoplist ) semantics instquallist
| . Yields qualoplist semantics instquallist

Yields: ::= | >|->;
qualoplist: qualop | qualoplist qualop ;
rqualop: op < op . Number . Number >
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| qualop

qualop: op
| op . Number
| op EqNumber
I op EqIdentifier

semantics: String | X ;
instquallist: instqual

| instquallist instqual
| instquallist , instqual
U
.

instqual: qualkind = Number
| qualkind EqNumber
| qualkind Number

qualkind: cost | magic ;

86



The CGGWS

Appendix 5: Machine Description Grammar for 11, ncll and full11

Soptiona
FOOBAR
/♦,defaults*/
/'.states
/*,default*/

Sregisters
S allocatable

#ifdef FLOAT

#endif FLOAT

^dedicated

Ssymbola
$ variables

r=

#ifdef FLOAT

#endif FLOAT

c = cc;

fr=
/♦

*

V

fre=
cf=

e=

o=

/

rO ,rl ,r2 ,r3 ,r4

, frO ,frl ,fr2 ,fr3
, fre4, fre 5
, fee

, cc

, stack1 ,stack2 ,stack3 ,stack4
I;

fr5, sp, pc{;

/•good for inter FPP action*/
/•floating condition codes*/

rO, rl, r2, r3, r4, r5, sp, pc; /•CPU registers*/

frO, frl, fr2, fr3;

fre are hidden FPP regs available only as reg immediates

/•FPP registers*/

fre4, fre5;
fee;

rO, r2;
rl, r3;

/•even registers*/
/*odd registers*/

d: a true double length register, with
the low order word in the odd reg, and
the high order word in the even reg.

dprod: a double register allocated just
to have two adjacent registers, but containing
just a single length result,
the even register contains only low order word
the odd register contains junk

d= <rO, rl>, <r2, r3>;
dprod = <rO, rl>, <r2, r3>;

stack = stack1, stack2, stack3, stack4;

Sterminals

#ifdef FLOAT

#endif FLOAT
#ifdef BYTE

k : -32768, 32767;

kf : -l.Oe+10, l.Oe+10;

/*16 bit integers*/

/*32 bit floating point*/
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#endif BYTE

#ifdef BYTE

#endif BYTE

#ifdef FLOAT

#endif FLOAT
/*

/*

•/

#ifdef FLOAT

#endif
#ifdef BYTE

#endif BYTE

The CGGWS

kb : '\000', '\377';

+ .'binary;
— rbinary;
♦ .-binary;
/ rbinary;
% rbinary;
m runary;

+b rbinary;
—b rbinary;
mb runary;

+f rbinary;
—f rbinary;
mf runary;
♦f rbinary;
/f rbinary;

Jump operators

< :

<=

>=

> :

unary;
binary;
binary;
binary;
binary;
binary;
binary;

unary;

1 : 0,32767;

Condition code loads

? r binary;

?f : binary;

?b : binary;

/*8 bit bytes*/

/•jump less than*/
/*jump leq*/
/*jump equal*/
/*jump not equal*/
/*jump geq*/
/*jump greater than*/

/•label operator*/
/*label numbers*/

boolean algebra, on both integers and bytes

1 :
& :
f+*

binary;
binary;
binary;
unary;

/• or */

/* and */
/* zor */
/* complement */

#ifdef BYTE
lb :
&b :
~b :

binary;
binary;
binary;

#endif BYTE
!b r unary;
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#ifdef FLOAT

#endif FLOAT
#ifdef BYTE

#endif BYTE
/•

♦/

#ifdef FLOAT

Jendif FLOAT
#ifdef BYTE

#endif BYTE
/♦

♦/

The CGGWS

indirection and storing

gets
unary;

binary;

~f : unary;
getsf r binary;

~b : unary;
getsb r binary;

Common sub expressions

compcser

usecse r

desc :

Type coercions

wtof
ftow

btow

wtob

binary;
unary;

binary;

unary;

unary;

unary;

unary;

/*compute a cse*/
/*use a cse*/
/*cse place holder for values*/

/*word to floating*/
/*floating to word*/

/*byte to word*/
/*word to byte*/

procedure call and return frobs, understood by
IRgen

stacksepr binary; /♦ argument evaluation */
forcer unary; /• for a value to be returned */
entry: unary; /• procedure /func entry point */

funccallr unary; /* func call w/o orgs */
funccallargsr binary; /• func call with orgs */
funcreturn: binary; /• function return */

proccall: unary; /• proc call w/o orgs */
proccallargs: binary; /• proc call with args */
procreturn: unary; /* proc return */

Sinstractions
%%

Smodes
"r.l",
"r.l—>",
"r.l",

"r.l",
"r.l—>",
"r.l",

#ifdef BYTE

#endii BYTE
#ifdef FLOAT

reg=

regb=

regf=

assy:

lvalr
rval:

assy:
lvalr

rval:

assyr

lvalr
rval:

"fr.l",
"fr.l—>",
"fr.l",

89

cost=0;

cost=0;

cost=0;
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#endif FLOAT
/♦

*

#ifdef BYTE

#endif BYTE
#ifdef FLOAT

#endif FLOAT
/♦

#ifdef BYTE

#endif BYTE
#ifdef FLOAT

#endif FLOAT
/♦

*

♦/

#ifdef BYTE

#endif BYTE
#ifdef FLOAT
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Indirect through a register

regind=

regindb=

regindf=

assy:

lvalr
rvalr

assyr

lvalr

rval:

assyr

lvalr
rval:

"•r.l",
".—> gets r.l",
"~ r.l". cost=l;

"♦r.l",

".—> getsb r.l",
"~b r.l", cost= 1;

"•r.l",
".—> getsf r.l",
"~f r.l", cost=2;

indexed addressing

index1=

index2=

indexlb=

index2b=

indexIf=

index2f=

assy:

lvalr
rvalr

assyr

lvalr
rvalr

assy:

lvalr
rval:
assy:

lvalr
rval:

assy:

lvalr
rvalr
assyr

lvalr
rval:

"k.l(r.l)",
".—> gets + k.l r.l",
"~ + k.l r.l", cost=2;
"k.l(r.l)",
".—> gets + r.l k.l",
"~ + r.l k.l", cost=2;

"k.l(r.l)",
".—> getsb + k.l r.l",
"~b + r.l k.l", cost=2;
"k.l(r.l)",
".—> getsb + r.l k.l",
"~b + k.l r.l", cost=2;

"k.l(r.l)",
".—> getsf + k.l r.l",
"~f + k.l r.l", cost=3;
"k.l(r.l)",
".—> getsf + r.l k.l",
"~f + r.l k.l", cost=3;

indirect addressing

indexindl = "•k.l(r.l)",
".—> gets * + k.l r.l",
" + k.l r.l", cost=3;
"♦k.l(r.l)",
".—> gets - + r.l k.l",
" + r.l k.l". cost=3;

indexind2=

indexindlb=

indexind2b=

indexindlf=

assy:
lvalr
rvalr
assyr

lvalr
rval:

assy:"*k.l(r.l)'\
lvalr".—> getsb - + k.l r.l",
rvalr"-b - + k.l r.l", cost=3;
assy:"*k.l(r.l)",
lvalr".—> getsb - + r.l k.l",
rval:"~b - + r.l k.l", cost=3;

assyr'*«k.l(r.l)".
lvalr".—> getsf - + k.l r.l",
rvalr'W - + k.l r.l", cost=4;
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indexind2f= assyr' •k.l(r.l)",
lvalr".—> getsf -* + r.l k.l",
rvalr" ~f ~ + r.l k.l", cost=4;

#endif FLOAT
/♦

• Constants
*/

const= assy:
lvalr
rvalr

"#k.l",
» ii

"k.l", cost=l;
#ifdef BYTE

constb= assy:

lvalr
rvalr

"#kb. 1",
ii ii

"kb.l", cost=l;
#endif BYTE
#ifdef FLOAT

constf= assyr

lval:
rval:

"#kf.l",
ii ii

"kf.'l", cost=2;
#endif FLOAT

/•
*

*

Specfic constants

• k2..k32 are used for multiply and divide idioms
*/

k2=

k4=

k8=

kl6=

k32=

assyr

lvalr
rvalr
assyr

lvalr

rvalr
assyr

lvalr
rvalr

assyr

lval:
rvalr
assyr

lvalr

rval:

"1",
ii ii

"k=2",
"2",
ii ii

"k=4",
"3",
ii it

"k=8",
"4",
ii ii

"k=16",
"5",
ii i*

"k=32",

cost=0;

cost=0;

cost=0;

cost=0;

cost=0;

/

Double registers
These are used for the CPU registers only, for

mul, div and asho.
The logical double registers in the floating registers,
used for modd and modf are not considered..

doublereg= assy:
lvalr

ti ii

"d.l —> ",
rval: "d.l", cost=0;

doubleregl = assyr

lval:
"d.1.1",
"d.l —>",

rval: "d.l", cost=0;
doublereg2= assyr

lval:
"d.1.2",
"d.l —>",

rval: "d.l", cost=0;

doublequoreg= assyr

lvalr
"d.1.1",
"r<d .1 .1> —>",

rvalr "d.l", cost=0;
doublemodreg= assyr

lval:
"d.1.2",
"r<d .1 .2> —>",
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rvalr "d.1", cost=0;

We must have two different registers for
multiply, enumerating all possible register
pairs in which multiply is done.
This is because a multiply takes a double
register of one flavor, and turns it into one of
another flavor. We can't have the direct production
d.l —> * dprod. 1 wordrval
because there is no linking between the left and right
hand sides (as there is in the instruction), and
the semantics of the two registers are different.
Therefore, we are stuck with enumeration, and use
of the '=' qualification method.

dprodregO= assyr
lvalr

"rO",
"d=rO —>",

rvalr "dprod=rO", cost = 0;
dprodreg2= assyr

lval:
"r2",
"d=r2 —>",

rval: "dprod=r2", cost = 0;

oddreg= assy:

lval:
"o.l",
"o.l —>",

rvalr "o.l", cost=0;
evenreg= assyr

lvalr
"e.l",
"e.l —>",

rvalr "e.l", cost=0;
/*

• pushes for actual params, and function returns

stackslot= assyr

lvalr
"-(sp)".
"stack. 1 —>",

rval: "stack. 1", cost = 1;
funcretslot= assyr "rO",

lval: ". —> gets r==rO",
rval: "r=rO", cost = 1;

/♦
* Condition codes
♦/

cc= assyr

lvalr

ii ii

"c.i —>",
rvalr "e.l", cost=0;

#ifdef FLOAT
ccf= assyr

lvalr

11 II

"cf.'l >",
rvalr "cf.l", cost=0;

#endif FLOAT
Sendmodes;

Sdefinitions

wordlval= (reg
.regind
,index1
.indexindl

#ifdef NONCANON
,index2
,indexind2

#endif NONCANON

);
(regwordrval =

,regind
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fifdef NONCANON

#endif NONCANON

wordrval 1 =

#ifdef NONCANON

#endif NONCANON

#ifdef BYTE
bytelval=

#ifdef NONCANON

#endif NONCANON

byterval=

#ifdef NONCANON

#endif NONCANON

bytervall=

#ifdef NONCANON

#endif NONCANON

#endif BYTE
#ifdef FLOAT

floatlval=

#ifdef NONCANON

#endif NONCANON

floatrval=

The CGGWS

.indexl

.indexindl

.const

,index2
,indexind2

):

(reg
.regind
,indexl
.indexindl
.const

,index2
,indexind2

);

(regb
.regindb
.indexlb
.indexindlb

,index2b
,indexind2b

);
(regb
,regindb
.indexlb
.indexindlb
.constb

,index2b
,indexind2b

);
(regb
.regindb
.indexlb
.indexindlb
,constb

,index2b
,indexind2b

);

(regf
.regindf
.indexlf
.indexindlf

,index2f
,indexind2f

);
(regf
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#ifdef NONCANON

#endif NONCANON

#enctif FLOAT

.regindf

.indexIf

.indexindlf
,constf

,index2f
,indexind2f

);

fifdef FLOAT

#endif FLOAT

Senddefinitions;

Sinstractions
/♦

intreg=
intregl=

dregs
oreg=
ereg=
dquoreg=
dmodreg =
dprodreg_0
dprodreg_2

stack =

registerO =

power2=
condcode=

floatreg=
fcondcode=

(reg);
(reg);

(doubleregl);
(oddreg);
(evenreg);
(doublequoreg);
(doublemodreg);
(dprodregO);
(dprodreg2);

(stackslot);
(funcretslot);

(k2, k4, k8, kl6, k32);
(cc);

(regf);
(ccf);

loads, stores, and coercions

wordlval := wordrval
wordlval := "+" wordlval wordrval
wordlval := "+" wordrval wordlval
wordlval := "-" wordlval wordrval

<"mov" wordrval "," wordlval>;
<"add" wordrval "," wordlval>;
<"add" wordrval "," wordlval>;
<"sub" wordrval "," wordlval>;

#ifdef BYTE
bytelval
intreg :=
bytelval
intreg :=
intreg :=
intreg :=

#endif BYTE

#ifdef FLOAT
floatreg
floatlval
floatreg
wordlval
floatreg
floatreg
floatreg
floatreg

:= byterval
"btow" byterval

:= "wtob" intreg
' "+b" intreg intreg1

"+b" intreg1 intreg
"-b" intreg intreg1

:= floatrval
:= floatreg
:= "wtof" wordrval
:= "ftow" floatreg
:= "+f" floatreg floatrval
:= "+f" floatrval floatreg
:= "-f" floatreg floatrval
:= "•F floatreg floatrval
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<"movb" byterval ,,t" bytelval>;
<"movb" byterval "," intreg>;
<"movb" intreg "," bytelval>;
<"add" intreg1 "," intreg>;
<"add" intreg1 "," intreg>;
<"sub" intreg1 "," intreg>;

<"ldf" floatrval "," floatreg>;
<"stf" floatreg "," floatlval>;
<"ldcif wordrval "," floatreg>;
<"stcfi" floatreg "," wordlval>;
<"addf floatrval "," floatreg>;
<"addf floatrval "," floatreg>;
<"subf" floatrval "," floatreg>;
<"mulf" floatrval "," floatreg>;
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floatreg
floatreg

#endif FLOAT

:= "*f" floatrval floatreg
:= "/f" floatreg floatrval

<"mulf" floatrval "," floatreg>;
<"divf" floatrval "." floatreg>;

%J

/*
•

♦/

e=rO

o=rl
e=r2

o=r3

r=rO
r=rl

r=r2
r=r3

Free transfers between single length registers

—> r=rO

—> r=rl

—> r=r2
—> r=r3

—> e=rO

—> o=rl

—> e=r2

—> o=r3

e.l —>

o.l —>

*

♦/

d=rO
d=rO
d=r2
d=r2
/♦

r.l

r.l

";r=rO becomes e=rO";
";r=rl becomes o=rl";
";r=r2 becomes e=r2";
";r=r3 becomes o=r3";

";e=rO becomes r=rO";
";o=rl becomes r=rl";
";e=r2 becomes r=r2";
";o=r3 becomes r=r3";

"mov r.l, e.l", cost = 1;
"mov r.l, o.l". cost = 1;

♦/

dprod:
dprod:
dprod:
dprod:

*/

o=rl

o=r3

Formation of a double length result in preparation for
a divide

-> o=rl

-> e=rO

•> o=r3
•> e=r2

"tst
"mov
"tst
"mov

rl\n\tsxt rO; div setup", cost=2;
rO, rl\n\tsxt rO; div setup", cost=2;
r3\n\tsxt r2; div setup" cost=2;
r2, r3\n\tsxt r2; div setup" cost=2;

Formation of a double length result in preparation for
a multiply.

:rO —> o=rl "mov rl, rO; mul setup". cost=l;
:r0 —> e=rO "; mul setup", cost = 0;
=r2 —> o=r3 "mov r3, r2; mul setup", cost=l;
:r2 —> e=r2 "; mul setup". cost=0;

Extracting the result of a multiply.
Extracting the result of a divide is done automatically
by the <..> qualification on divide and remainder.
We don't use the same method for multiply, because
a divide may follow immediately after the multiply,
and there is no point is disassembling a register, and
then immediately reassembling it.

> d=rO
•> d=r2

discard HOW of d=rO", cost = 0;
discard HOW of d=r2", cost = 0;

oreg := "♦" oreg wordrval
oreg := "•" wordrval oreg

<"mul" wordrval "," oreg>;
<"mul" wordrval "," oreg>;

dprodreg_0 := "♦" dprodreg 0 wordrval
dprodreg_0 := "♦" wordrval "dprodreg 0
dprodreg_2 := "♦" dprodreg 2 wordrval
dprodreg_2 := "•" wordrval"dprodreg_2

dquoreg r= "/" dquoreg wordrval
dmodreg r= "%" dmodreg wordrval
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<"mul" wordrval
<"mul" wordrval
<"mul" wordrval
<"mul" wordrval

<"div" wordrval J
<"div" wordrval '

ii ii

ii it

ii ii

ii !•

dprodreg_0>
dprodreg~0>
dprodreg~2>
dprodreg_2>

dquoreg>;
dmodreg>;
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/♦
* negations

r

wordlval := "m" wordlval
#ifdef BYTE

bytelval := "mb"' bytelval
#endif BYTE
fifdeff FLOAT

floatlval r= "mf floatlval
#endif FLOAT

* store idioms

wordlval r= "k=C1"

#ifdef BYTE
bytelval r= "kb='\000'"

#endif BYTE
#ifdef FLOAT

floatlval := "kf=(D.O"
#endif

•

FLOAT

Additive idioms
♦/
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#ifdef

#endif

/•

wordlval r= "+" wordlval "k=l"
wordlval r= "+" "k=l" wordlval
wordlval r= "-" wordlval "k=l"

BYTE
bytelval r= "+b" bytelval "kb='\001"'
bytelval := "+b" "kb='\001'" bytelval
bytelval := "-b" bytelval "kb='\001"'

BYTE

Multiplicative idioms

wordlval r= "♦" wordlval "k=2"
wordlval r= "♦" "k=2" wordlval
intreg := "•" power2 intreg
intreg := "*" intreg power2

dreg := "*" power2 dreg
dreg := "*" dreg power2

<"neg" wordlval>;

<"negb" bytelval>;

<"negf" floatlval>;

<"clr" wordlval>;

<"clrb" bytelval>;

<"clrf" floatlval>;

<"inc" wordlval>;
<"inc" wordlval>;
<"dec" wordlval>;

<"incb" bytelval>;
<"incb" bytelval>;
<"decb" bytelval>;

<"asl" wordlval>;
<"asl" wordlval>;
<"ash" intreg "," power2>;
<"ash" intreg "," power2>;

<"ashc" dreg "," power2>;
<"ashc" dreg "," power2>;

/*

wordlval := "&" intreg wordlval
<"com" intreg "\nbic" intreg "," wordlval>;

♦/

#ifdef

#endif

#ifdef

wordlval ;= "<fe" "f* wordrval wordlval
wordlval :- "<fc" wordlval "/" wordrval

wordlval := "|" wordlval wordrval
wordlval := "j" wordrval wordlval

BYTE
bytelval := "|b" bytelval byterval
bytelval := "|b" byterval bytelval

BYTE

intreg := "~" intreg wordrval
intreg := "~" wordrval intreg
wordlval := "!" wordlval

BYTE
intreg := "~b" intreg byterval
intreg := "~b" byterval intreg
bytelval r= "!b" bytelval
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<"bic" wordrval "," wordlval>;
<"bic" wordrval "," wordlval>;

<"bis" wordrval "," wordlval>;
<"bis" wordrval "," wordlval>;

<"bisb" byterval "," bytelval>;
<"bisb" byterval "," bytelval>;

<"xor" wordrval "," intreg>;
<"xor" wordrval "," intreg>;
<"com" wordlval>;

<"xor" byterval "," intreg>;
<"xor" byterval "," intreg>;
<"comb" bytelval>;
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#endif BYTE

/•
* Comparisons

condcode r= "?" wordrvall wordrval
condcode r= "?" wordrval "k=0"
condcode := "?" "&" wordrval "k.6" "k=0"

condcode := "?" "&" "k.6" wordrval "k=0"

<"cmp" wordrvall "," wordrval>;
<"tst" wordrval>;

<"bit" wordrval ", k.6">;

<"bit" wordrval ", k.6">;

<"cmpb" bytervall "," byterval>;
<"tstb" byterval>;

#ifdef BYTE
condcode r= "?b" bytervall byterval
condcode r= "?b" byterval "kb='\000

#endif BYTE
#ifdef FLOAT

fcondcode r= "?f" floatrval floatreg
condcode := fcondcode

fendif FLOAT
%[
/•

• Branching
♦/

.—> : 1.1
—> j 1.1
—> < 1.1 C.1
—> <= i.i e.l
—> == i.i e.l

—> != 1.1 e.l
—> >= 1.1 e.l
—> > 1.1 e.l

<"cmpf floatrval
<"cfcc">;

floatreg>;

"\bLl.lr" cost = 0;
"jbr Ll.l" cost = 1;
"jit Ll.l" cost = 1;
"jle Ll.l" cost = 1;
"jeq U.l" cost = 1;
"jne L1.1" cost = 1;
"jge U.l" cost = 1;
"jne Ll.l" cost = 1;

.—> compose desc k.l desc k.2 k.3 r.l
";compute reg (r.l) cse #k.2, k.l next uses, first at k.3"
cost = 0 magic = 1;

. —> compese desc k.l desc k.2 k.3 d.l
";compute double (d.1.1) cse #k.2, k.l next uses, first at k.3"
cost = 0 magic = 1;

r.l —> usecse desc k.2 k.3
";use single (r.l) cse #k.2, next use at k.3"
cost = 0 magic = 2;

d.l —> usecse desc k.2 k.3
";use double (d.1.1) cse #k.2, next use at k.3"
cost = 0 magic = 2;

#ifdef FLOAT
fr.l —> usecse desc k.2 k.3

";use floating (fr.l) cse #k.2, next use at k.3"
cost = 0 magic = 2;

. —> compese desc k.l desc k.2 k.3 fr.l
";compute floating (fr.l) cse #k.2, k.l next uses, first at k.3"
cost = 0 magic = 1;

#endif FLOAT
%j

*/

Procedure call and return frobs

%{

stack := wordrval
stack r= "stacksep" stack wordrval
registerO r= "force" wordrval
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<"mov" wordrval "," stack>;
<"mov" wordrval "," stack>;
<"mov" wordrval "," registerO;
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r=rO —> funccall 1.1 "jsr l.l\t;call function w/o args";
r=rO —> funccallargs 1.1 stack. 1

"jsr l.l\t;call function with args";

. —> proccall 1.1 "jsr l.l\t;call procedure w/o args";

. —> proccallargs 1.1 stack. 1 "jsr l.l\t;call procedure with args";

. ——> procreturn 1.1 "ret ;procedure return from 1.1";

. —> funcreturn r=rO 1.1 "ret function return from 1.1";

. —> entry 1.1 "Valign 2\n\t\.globl l.l\nl.lr";

Sendinstractions;

%%

Send
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Appendix 6: UNDPManual Pages for CGGWS Modules

1UNIX is a trademark of Bell Telephone Laboratories.
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NAME

CGGWS - Code Generator Generator's Work Station

DESCRIPTION

The Code Generator Generator's Work Station, or CGGWS, is a set of programs
for building code generators from Target Machine Description Language (TMDL)
[Glanville77], or from Meta Target Machine Description Language (metaTMDL)
[Henry8l]. Correct, although large, code generators for non trivial subsets of
most computers can be constructed in a few hours with the programs and tools
provided by CGGWS.

metatmdl Metatmdl is a preprocessor from metaTMDL to TMDL, and works like a
restricted macro expander. It is useful for efficiently enumerating
addressing modes that, if done by hand in TMDL, soon becomes tedi
ous. Use of metatmdl is optional if one wants to write in TMDL.

tmdl Tmdl compiles TMDL into an internal form suitable for the code gen
erator being constructed.

metric Metric is used in conjunction with tmdl to estimate quickly the
number of states in the code generator parser that analysis will pro
duce.

analysis Analysis constructs a parser from the machine grammar, using algo
rithms and techniques discussed in [Glanville77] and [HenryBl]. The
parser is represented as a set of tables.

merge Merge merges intermediate files together and compresses the tables
describing the code generator.

ccode Ccode turns the tables for the code generator into initialized data
structures in the language "C" that interface with the rest of the
code generator.

IRgen IRgen compiles a language called "D" into Intermediate Representa
tion (IR) [Glanville77] that codegen accepts as input to generate code
from. "D" is based on "C".

codegen Codegen uses the tables created by tmdl, analysis, merge and ccode
to generate code for the IR produced by IRgen, by hand, or by
another compiler.

Codegen and IRgen are run once for each program being compiled. The other
modules in the system are run once for each machine description, although in
practice a number of iterations on the machine description to debug the IR
interface are required before a satisfactory codegenerator can be built. Itera
tion time takes approximately 2000 seconds of VAX 11/780 CPU time for a
machine description with the simplicity (or complexity, depending on how you
look at it) of a PDP 11/70.

Assume you wish to use CGGWS to generate a code generator for your favorite
computer, which is called "F00". These steps will create a code generator for
F00 from a metaTMDL machine description you supply in a file called
FOO.genmd. (The suffixes and file names of sources are unimportant, although
consistent nomenclature always helps.)
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Machine Description editing phase;

mkdir FOO.d

cd FOO.d
vi FOO.gen.md
metatmdl FOO.gen.md FOO.md

vi FOO.md

tmdl FOO.md

tmdl -P FOO.md FOO.m.rules

metric -E —d FOO.m.rules

tmdl -t FOO.md > FOO.rules
-C"My FOO Machine"

Lots of files are produced;
It is best to keep things separated

Go there
Create your meta machine description
Creates FOO.md

complains about errors
Examine any errors... if errors

go back to step 3
Analyze FOO. md.. .if errors

find difficulty, reflect back to
FOO.gen.md, and...
go back to step 3

Create..
a rule summary for estimating states
in file FOO.m.rules

Count how many states...
state metric appears on standard output
If there are too many for this iteration,
remove some implied productions by
going back to step 3 or step 5

Get set to...

Build the code generator
"My FOO machine "is a comment
prepended to all subsequent outputs
Create a numbered listing of the rules in
FOO.rules
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Table Construction Phase:

10 analysis —S —m 20 > analysis.run

11 merge —p > merge.run

11a merge -s -w440 -12000
> FOO.tables

12 ccode F00.md.c

13 cc-W-c-DREAD0NLY

-DREADWRITE -Isourcedir.d

F00.md.c

14 cc F00.md.o

*cd sourcedir.d; nmake -f genmakefile*
—o codegen

The CGGWS Henry

Build the parser
This takes roughly 0.2seconds
for each state estimated by metric
analysis.run contains statistics
on the parser

Compress tables
merge.run contains size statistics on the
resulting code generator

Create a formatted listing
of the parser's tables
Do this only if you want to check
visually for holes in the table
indicative of blocking.

Create an ...

initialized " C"program into file
FOO.md.c (which must end in".c")

Create a ...

compiled set of tables, ready to
be loaded.

sourcedir.d is the location of all
source files implementing CGGWS
Output in FOO.md.o

Load the code generator modules
with the tables.

nmake on genmakefile enumerates
the object modules implementing
the table independent part of
codegen.
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Codegen test phase:

15 vi test.D

16 IRgen -F "fp" test.D > test.IR

16a vi test.IR

17 codegen test.IR > test.FOO.s

18 vitest.FOO.s

Create a test "D"program
to test the code generator

Compile into IR..
If bugs in test.D, go back to 15

Or, create an IR file
by hand

Compile
test.IR into machine code

for FOO
Well..

examine the code for plausibility
go back to step 1

Print the rules

and various statistics

Print the tables

on a wide line printer
(the Versatec at UCB)

19 vprint FOO.rules analysis.run
merge.run

vpr -w -W FOO.tables20

FILES

These file are hidden intermediate files between tmdl, analysis and merge. They
are named with a standard naming convention, although they can be renamed;
see the individual manual page documentation.

tmdl. out

analysis, out 1

analysis, out2

analysis, out3

merge, out

FOO.md

FOO.m.rules

FOO.rules

analysis.run

merge .run

FOO.tables

Intermediate output of tmdl.

Intermediate output of analysis.

Intermediate output of analysis.

Intermediate output of analysis.

Intermediate output of analysis.

These files were generated in the CGGWS session above:

FOO.genmd MetaTMDL source file describing FOO in terms of addressing
modes.

TMDL source file from metaTMDL describing FOO in a more
verbose way.

Metric readable and digested machine grammar for FOO.

This contains a listing of all symbols. For each rule,
FOO.rules contains the rule pattern, the associated assembly
string the restriction level, and the internal sequence
number. The internal sequence number is referenced in
FOO.tables.

Statistics regarding the parser and measurements of
analysis's performance.

Statistics regarding the size of all tables composing the
machine specific parts of the final code generator.

This is a readable matrix of the parser's action and next
table. It has been formatted to have up to 440/6 = 77 sym
bols across the columns, and up to 2000 rows. (If the parser
is larger than that, the table will be printed in sectors.) This
table is suitable for printing only on the widest printers.
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FOO.md.c "C" initialized data structures for the machine specific tables
in the final code generator.

FOO.md.o Object module form of the initialized data structures. In the
example given, all tables reside in data space.

test.D A test program written in "D" to test the code generator.
This should be initially simple, and then more and more com
plicated.

test.IR The IR compiled form of test.D.

test.FOO.s The machine language compiled form of test.D.
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These are the source files implementing CGGWS.

CGGWS include files:

hash.h

actiondefs.h

seman.h

tabiedef.h

types.h

metatmdl'.

tgenmakefile
tgenseman.h
tgenmain.c
tgen.y
tgenscan.c
tgenhash.c
tgenTMDL.c
tgenseman.c

tmdl:

tmdlmakefile

tmdlseman.h

tmdlmain.c

tmdl.y
tmdloptreg.c
tmdisymboi.c
tmdirules.c

tmdllisting.c
tmdloutput.c

metric.

metric.h

metricmain.c

metricinput.c
metriccomp.c
metricoutput.c
metricsubr.c

p arsedrive, c

analysis:
analmakefile

analreduce.h

analstates.h

itemsets.h

relations.h

analmain.c

analmakerel.c

analrelat.c

analitemset.c

analgen.c
analdefault.c

anallooping.c

The CGGWS

symbol dictionary definitions
action definitions

TMDL semantics

the parsers action and next table
CGGWS wide type definitions

nmake format make file

internal model of metaTMDL

driver

parser for metaTMDL
metaTMDL character scanner
symbol dictionary
macro expansion
metaTMDL semantic processing

nmake format make file

tmdl internal semantics

driver

yacc parser

process TMDL option and register declarations
process TMDL symbol declarations
process TMDL rule declarations
list TMDL symbols and rules
output intermediate file with TMDL semantics

definitions

driver

symbol and rule reading
metric computation and suffix isolation
rule output in yacc format
subroutines

lexical analyzer and driver for yacc parsers

nmake format make file

reduce lists

state lists

itemset manipulations
bit matrices for symbol relations
driver

symbol relation constructor
symbol relation manipulator
itemset construction/manipulation
parser constructor driver
default list construction

loop detection and removal
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analmreduce.c

analpreduce.c
analoutput.c

merge'.

mrgmakefile
mrgpack.h
mrgseman.h
mrgmain.c
mrgsorttab.c
mrgbuildlist.c
mrgoverlay, c
mrgpack.c
mrgoutput.c

ccode:

ccodemakefile

ccodemain.c

ccodetaout.c

IRgem
IRgenmakefile
IRgen.h
IRtoks.h

IRtoktab.h

IRtypes.h
IRmain.c

IRlex.c

IRparse.y
IRbuild.c

IRcanon.c
IRfold.c

IRgen. c
IRsubr.c

codegen:
genmakefile
genscan.h
genseman.h
genmain.c
genproto.c
genreginits.c
gencodegen.c
genemit.c
genemitrule.c
genconst.c
genregallocs.c
genspills.c
gencse.c

genregprints.c
genutils.c
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reduce list construction

reduce list constructions print routines
output intermediate file I/O

nmake format make file

merge table decomposition model
merge table decomposition model
driver

parser table sorting to find sub lists
sub list construction from the parser tables
sub list suffix factoring and overlaying
sub list packing
output routines

nmake format make file

ccode driver

ccode "C" file table output routines

nmake format make file
Semantics of "D" trees

token definitions

token definitions for IRgen
data type definitions for IRgen
driver

lexical analyzer for "D"
"D" parser in yacc
"D" tree constructors
"D" tree canonicalizer and factorizer
constant folding and "D" tree compaction
code generator and "D" tree walker
subroutines

nmake format make file

IR scanner

register model
driver

prototypical machine description from ccode
register model initialization
parser

reduce and default list application
register allocation interface
IR constant evaluation and range checking
register allocator
register spilling routines
common sub expression processing
register allocation snapshot printing
utility routines
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shared files:

argproc.c

initparser.c
inittmdl.c

lex.yy.c
hash.c

actnextlook.c

tableformat.c

iosubr.c

subr.c

m alloc, c

utilities:

nmake. c
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general UNIX process argc/argv argument parsing
merge, ccode parser table initialization
TMDL semantic initialization
tmdl and analysis lexical analysis
symbol dictionary
merge, codegen parser table access routines
analysis and merge parser table printer
I/O subroutines
general subroutines for printing and errors
memory allocator

source for nmake

89 Source Files comprising 24,600 lines of "C".
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SEE AI£0

Additional manual pages may be found under:

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)
Additional references may be found in:

[Gianville77] Glanville, R.S. AMachine Independent Algorithm for Code Genera
tion and its Use in Retargetable Compilers, Electronics Research
Laboratory, University of California, Berkeley, UCB-CS-78-01,
(December 1977).

[Glanville78] Glanville, R.S. and Graham, S.L. "A New Method for Compiler Code
Generation", Conf. Record Fifth ACM Symp. Principles of Pro
gramming Languages, (January, 1978).

[Graham78] Graham, S.L. and Glanville, R.S. "The Use of a Machine Description
for Compiler Code Generation", Proc. Third Jerusalem Conference
on Information Technology, North Holland Publishing Co., (August
1978).

[GrahamBO] Graham, S.L. "Table-Driven Code Generation", Computer, 13:8,
(August, 1980), 25-33.

[Henry8l] Henry, R.R. The Code Generator Generator's Work Station: Reim-
plementation and Experimentation with the Graham-Glanville
Machine Independent Algorithms for Code Generation M.S. Project
Report, Electronics Research Laboratory, University of California,
Berkeley, (April, 1981).

AUTHOR

Robert Henry
Electronics Research Laboratory
Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley
December 1978 - October 1980

Grant Numbers: NSF MCS74-07644-A04, MCS78-07291, MCS-8005144
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NAME

metatmdl —Macro Expand meta-TMDL into TMDL

SYNOPSIS

metatmdl [ infile [ outfile ] ]

DESCRIPTION

The meta-TMDL is expanded into TMDL in this pass. The meta-TMDL comes from
infile or the standard input if infile is absent or " = ". The generated TMDL goes
to outfile or the standard output if outfile is absent or '*=".

Meta-TMDL contains descriptions of all the available addressing modes, an indi
cation of which addressing modes are grouped together and can be used inter
changeably, and a list of the instructions available on the target machine. These
instructions are specified in terms of strings and the grouped addressing modes.
Meta TMDL enumerates the cross product of all addressing modes implicitly
specified in the grouped addressing modes given for each instruction. Using
meta TMDL can substantially ease the burden of writing TMDL for highly regular
machines, allowing one to make simple changes and deletions while experiment
ing with a machine description grammar.

FILES

By default metatmdl is invoked with these arguments:
metatmdl = =

SEE AI£0

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

DIAGNOSTICS

The meta TMDL analyzer attempts to pin point syntactic and semantic errors in
the meta-TMDL, and give somewhat intelligent diagnostics. Error recovery is
panic mode to the nearest major token, usually a ';'. Errors in meta-TMDL will
produce incomplete TMDL, although the TMDL may be syntactically correct.

Some semantic errors are only warning errors. These include specifying an
addressing mode with the number of "." or "=" qualified operands unequal
amongst the lval, rval or assembly specifiers.

All error diagnostics are included as TMDL comments ("/*".."*/"). as well as
printed on the standard error file.

Metatmdl understands the conventions for line numbering and file naming that
the "C" preprocessor uses. All error messages are relative either to the begin
ning of the file, or to the file name/line number produced by the "C" preproces
sor. The output of metatmdl to be input to tmdl generates file name/line
number lines in the same format as the "C" preprocessor. With these mechan
isms, it is relatively easy to pinpoint errors that tmdl may discover in prepro-
cessed meta-TMDL.

BUGS

May core dump unexpectedly during error recovery.
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NAME

tmdl - Syntactic and Semantic Analysis of TMDL

SYNOPSIS

tmdl [ -tP ] [ -C string ] [ infile [ outfile [ intermediate files ... ] ] ]
DESCRIPTION

This is the first phase of a system to produce machine independent code genera
tors. Subsequent phases construct the code generator parser, compress tables
and perform the code generation.

Tmdl performs syntactic and semantic analysis of a description of the target
machine, written in Target Machine Description Language, (TMDL). The TMDL is
presented to tmdl on infile or from the standard input if infile is absent or "=".
The language accepted is almost identical to that described by Glanville[77],
with extensions to improve the semantics of the code generation, and slight syn
tactic modifications to disambiguate some of Glanville's TMDL descriptions of
double registers.

The output from this phase is used by all subsequent phases.

These options are available, and may also be set by including the names in ital
ics in the Soptions section of TMDL:

—t Write to outfile or to the standard output if outfile is missing or is "=" the
TMDL symbol table (symtab), which includes the grammatical symbols and
rule patterns and their internally assigned sequence numbers. The output
from this option is human readable.

—P Write to outfile or to the standard output if outfile is missing or is " = " a
different version of the symbol table that the grammar postprocessor metric
understands. The output from this option is barely human readable.

—Cstring
Include the string as a comment which will appear on all intermediate files
produced from this run of tmdl and on all listings produced by future
phases. The entire comment string is constructed from the name and date
of the input file, the date tmdl was run on the input file, an optional com
ment from the —C option, and the comment string declared in TMDL by the
Scomment section. (This Scomment section is an addition to Glanville's
description of TMDL.)

Tmdl understands the lines inserted by the "C" preprocessor or metatmdl giv
ing the file name and line number of the source file. All error messages are rela
tive to these points.

FILES

tmdl.out Intermediate machine description file used in subsequent phases.

By default, tmdl is invoked with these arguments:
tmdl = = tmdl.out

SEE ALSO

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

DIAGNOSTICS

Tmdl pinpoints syntactic and semantic errors with somewhat intelligent diag
nostics. Error recovery is panic mode to the nearest major TMDL token, usually
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a semicolon.

Any errors forego generating the output file.

BUGS

May core dump for some kinds of input.
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NAME

analysis —create a code generator parser

SYNOPSIS

analysis [ -sdS ] [ -M num ] [ -pirbLBDcI ] [ intermediate files ... ]
DESCRIPTION

Analysis is the code generator parser generator. It analyzes an encoded target
machine description previously created by tmdl, and produces uncompressed
tables describing the target machine and the code generator parser. Analysis
uses SLR(l) parser construction techniques, examines the machine description
for states that may block due to non uniformities in the target machine,
removes potentially looping configurations from the parser caused by chain
rules in the machine description grammar, and constructs default lists for
semanticaliy restricted rules. See Glanville[77] and Henry[80] for the algo
rithms.

Analysis catches interrupts. When interrupted, it will accept either another
interrupt signal and terminate, or will accept another option argument string in
the same form used when analysis is initially invoked. This way, the user can
reenter a string of options and dynamically alter various options. To turn off an
option, precede it with a lower case "n".

These options are the ones of most use:

—s As each state in the code generator is constructed, print out the
shift/reduce information for that state. This option produces reams of out
put.

-d Print out the default lists constructed for semanticaliy restricted rules.

—S Print out a readable summary of statistics about the resulting code genera
tor. This includes the number of states, the number of items, the number
and variety of rules, and information regarding the reduce and default lists.

—M number

Monitor (to the standard error output) what the state generator is doing
every number states. This prints out the state number currently being con
structed, and an estimate of the number of states yet to be constructed.
This is useful for monitoring the progress of analysis when the resulting
parser has many states.

These options are intended primarily to analyze the internal workings of
analysis. The output they produce tends to be verbose and repetitive.

-p List the syntactically distinct rule patterns used to construct the parser.

—i List the items as they are constructed.

—r List the relations first, partial, final, dotprecedes and addlist.

-b List the states and symbols that will cause the code generator to block.

-L List the decisions the loop detection and removal algorithms make when
finding and breaking loops in the grammar. Useful for debugging only.

-B Number states breadthfirst. (This is the default.)

—D Number states depthfirst. For both depthfirst and breadthfirst state
numbering, non determinstic decisions in constructing the parser's finite
state control graph are resolved in favor of traversing the "arc" in the con
trol graph that is labeled with the smallest "alpha" number. Alpha order is
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defined to be the order in which variables and symbols are declared in the
TMDL Sterminals section.

-c List the chainpath relationship between variables causing potentially looping
configurations in the parser.

-I Print out statistics on the itemsets generated, including their cardinality,
and their folded representation.

FILES

tmdl.out Output of tmdl.

analysis.out1 The first intermediate output file, containing the code genera
tor parser's action, next and reduce list tables.

analysis.out2 The second intermediate output file, containing resource
counters.

analysis.out3 The third intermediate output file, containing the default
lists.

By default, analysis is run with these arguments:
analysis -B tmdl.out analysis.out1 analysis.out2 analysis.out3

SEE ALSO

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

BUGS

Some of the algorithms Glanville gives are not quite correct. See Henryrsil for
revisions.
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NAME

merge —Intermediate File Merging and Table Compression

SYNOPSIS

merge [ -pRC ] [ -wnumber ] [ -1 number ] [ —PsOL ] [ -Sd ] [ int. files ...]
DESCRIPTION

Merge logically merges the single intermediate file from tmdl and the three
intermediate files from analysis into a single intermediate file. This single file is
more suitable for use in the actual code generator, and is easier to save and
manipulate.

Merge does not modify the logical representation of the parsing tables, but
changes the physical representation from a matrix of numbers to lists of shared
lists, physically compressing the tables to about 18% of their original size. The
compression algorithm is basically heuristic in nature, sorting the table by both
rows and columns to concentrate 'active' states and symbols into one corner,
and then overlaying the common tails.

Merge prints out a nicely formatted table describing the parser's actions for
each state and each symbol. For the 36" Versatec at UC Berkeley, the com
mand for printing out the final sorted table is:

merge -s -w440 -12000 | vpr -w -W

These options produce useful and terse output:

—p Print out table packing statistics. This option also prints out the byte sizes
of the parser tables, symbol descriptors, default lists, reduce lists and rules
constituting the final machine description as codegen requires it.

—R Print out row statistics, describing the common, shared sub lists for each
row.

—C Print out column statistics, describing each column's activity.

These options are more verbose, printing out the logical and physical parser
tables.

—P Print out the logical and physical unsorted table as the parser has con
structed it.

-s Print out the logical and physical sorted table.

—O Print out the overlayed table. This is the physical representation of the logi
cal table after recognizing common sub lists. This is probably of little use.

—L Print out the logical table from the sublist representation. This should be
identical to the table produced under the —s option.

These options set the formatted size of all printed tables:

-w number

Print the table to occupy a width of number columns of output. The default
is for the line printer: 132 columns.

-4 number

Print the table to have a total length of number rows. The default is for the
line printer: 60 rows.

These options are even more verbose. They are intended primarily for debug
ging.

—S Print out the sublist construction.
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—d Print out the sublist decomposition. This provides information complement
ing the —Soption.

FILES

tmdl.out Intermediate machine description file from tmdl.

analysis.out 1 First intermediate file from analysis, containing the parser's
action, next and reduce list tables.

analysis.out2 Second intermediate file from analysis, containing resource
counters.

analysis.out3 Third intermediate file from analysis, containing the default
lists.

merge.out Intermediate file from merge, containing the entire machine
description.

By default, merge is run with these arguments:
merge -w 132 -1 60

tmdl.out merge.out analysis.out1 analysis.out2 analysis.out3

SEE ALSO

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

BUGS

The table sorting algorithm exhibits poor paging behavior.
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NAME

ccode - Construct Initialized "C" Structures

SYNOPSIS

ccode [ outfile [ intermediate files ... ] ]
DESCRIPTION

Ccode takes the intermediate file from merge and constructs initialized data in
the precise form that codegen requires it. Ccode produces a "C" program on
outfile or the standard output if outfile is absent or "=". This "C" program is
intended to be compiled and loaded with the other standard code generator
modules, producing a code generator specific to the target machine described
in a file created by a previous run of merge.
Having an initialized "C" program obviates the need for codegen to read and ini
tialize its own data space, which, for large machines, takes a great deal of time.
However, this convention is very sensitive to changes in structure definitions in
codegen.

The output from ccode in outfile contains #ifdef macros that can be used to
force read only tables into read only storage when codegen is loaded. The rest of
the data is read/write.

FILES

merge.out Intermediate output file from merge.
By default, ccode is run with these arguments:

ccode = merge.out

SEE ALSO

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

BUGS

If any structure or union definitions are changed, the order in which fields are
written to outfile will have to be changed before the changes will be reflected
into codegen.

Arrays of unions are initialized by renaming an array of structures using an
"asm", as initialized unions are not defined in "C".

Changes to the allocation strategy in the "C" compiler may cause ccode to pro
duce incorrectly initialized tables.
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NAME

codegen —Table Driven Machine Independent Code Generator

SYNOPSIS

codegen [ -spPrtde ] [ IR file [ assembly code file ] ]

DESCRIPTION

Codegen parses the Intermediate Representation (IR) of the program being com
piled, using a parser constructed from the application of the four previous
phases tmdl, analysis, merge and ccode. Codegen allocates registers from those
available on the target machine, spills registers to intermediate storage, and
handles common sub expressions. The IRfile is a compiler generated Intermedi
ate Representation of the source program, and must use the same tokens
defined in the TMDL initially fed to tmdl.

Codegen is created by loading together a set of standard modules with a module
containing initialized data fully describing the target machine. Retargeting
codegen involves relinking, at the gain of quicker invocation each time the code
generator is run.

Codegen recognizes these options:

—s Print out each IR token as it is scanned by the IR lexical analyzer.

—p Print out the parser's action for each IR token.

-P Print out the parser's stack for each IR token. Print out the allocation
status of each register on the target machine before each reduction. Gen
erally, this output is very verbose.

—r Print out the decisions the register allocator makes during a reduction. This
information includes the register chosen to receive an intermediate expres
sion result, the register chosen for a spill when there are no free registers,
the nature of semantic restrictions between the left hand side and the right
hand side of a instruction rule, and other generally useful information
designed to make debugging easier.

-t Auxiliary trace flag, not currently used.

-d Auxiliary debug flag, not currently used.

—e Print out statistics about each expression after it is entirely reduced. These
statistics include how many IR tokens formed the entire expression, how
many reductions the parser took on that expression, the maximum depth of
that expression tree and a summary of the statistics regarding shift and
reduce probabilities for each polish prefix level in the expression.

HE Print out statistics for all expressions when an end of file in the IR file is
encountered. These statistics are the sum of those gathered (and printed)
by the —e option.

The syntax and semantics of the IR have been extended from what Glanville uses
in his dissertation. Briefly, these extensions are:

— Wherever a numeric constant can occur, a symbolic constant can also
occur. This allows the code generator to analyze examples similar to
Glanville's Fig. 5.8, without translating the symbolic constants into
magic numbers.

— Numeric constants may be either integers (base 10), character con
stants or floating point constants. The syntax for all three kinds of
constants is identical to that used in "C".
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FILES

The IR may contain comments, enclosed in "/•" .. '*•/" delimiters, as
in "C". Text inside of these comments is discarded.

The IR may contain assembly strings, enclosed in double quotes ('"')
not extending over a line boundary. When these strings are encoun
tered by the IR lexical analyzer, they are stripped of their double quote
delimiters, and copied directly to the assembly language output file.
The relative locations of the assembly strings and the instructions
codegen produces are unpredictable unless the assembly strings occur
between flattened expression trees. If this is the case, all code for the
previous expression is emitted before the assembly string is copied
out. Typically, assembly strings are used to pass through assembler
directives, or when debugging codegen to echo the IR the codegenera-
tor is working on.

IRfile IR from the compiler. If the file name is absent, or given by a "=",
the standard input is used.

Assembly code file
This file will receive the copied assembly strings and the final
code. If the file name is absent, or given by a " = '*, the standard
output is used.

By default, codegen is run with these arguments:
codegen = =

SEE AISO

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

DIAGNOSTICS

IR that is invalid lexically, syntactically or semanticaliy is diagnosed by a terse
and specific error message before a core dump is taken.

Inconsistencies in the internal data structures (eg, attempting to free a register
that is already free, and other crimes against reality) result in a readable dump
of important internal data structures (including the parsing stack, register allo
cation snapshot, and extant common sub expressions) and eventually a core
dump.

BUGS

Input lines may be no longer than 256 characters.
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NAME

IRgen - Generate IR for the language "D", reminiscent of "C"

SYNOPSIS

IRgen [ —ydD ] [ —7 name ] [ sourcefile [ IRobjfile ] ]
DESCRIPTION

IRgen compiles into Intermediate Representation, or IR, a rather arbitrary and
easy to implement tiny programming language reminiscent of "C". IRgen takes
its input from sourcefile or if the argument is not present or "=", from the stan
dard input. IRgen produces IR onto the output file IRobjfile or if that argument
is not present or "=", to the standard output.

The language implemented is called "D", which is almost a subset of the pro
gramming language "C". IR is the standard intermediate form between a
language specific compiler and codegen, a machine independent code generator.
IRgen is intended to easy the difficulty of writing complicated IR test cases for
codegen and to compare the output of the various "C" compilers with the output
of codegen. Unfortunately, the declaration syntax for "D" is different from than
that for "C", necessitating small changes in the sources, but the expressions
accepted by "D" are a true subset of those accepted by "C".
IRgen was written as a quick and dirty tool to enable code generation for simple
"C" like programs. A second reason for writing IRgen was to understand the
techniques necessary to transform intermediate trees to reflect "C" semantics
and to explore the realm of what was possible in TMDL semantics. "D" will
become obsolete when the first pass of the portable "C" compiler is interfaced
to a slightly modified IRgen.

"D" supports these operators and constructs with the same syntax (and hope
fully semantics) as "C":
integers floats arrays functions procedures

if if., else do.,while while for

break continue return goto labels

= *..! (••) [••]
+ —

* / %

& i ^. i
< <= s

!= > >=

&& ii unary & unary * unary —

constants actual params

To whit, "D" does not support:
register static auto extern

pointers structures unions function vars

unsigned char short long double
? : + + ——

<< >> op=

In addition, all variables (global variables, formal parameters and local vari
ables) are declared with an arcane syntax. For globals and formals,

var name <type> ;
does the trick. For locals,

var name level <leveldesc> <type> ;
does the trick. The name must be unique within the sourcefile IRgen is compil
ing; the symbol table is not flushed of formal declarations and local definitions
on function declaration exit. The <type> specifies allocation and access

The CGGWS Henry 119



IRGEN (Henry) The CGGWS User's Manual IRGEN (Henry)

FILES

semantics. Ints take up two bytes and floats take up four bytes. Arrays are
allocated in row major order, with zero based indexing.

<type> ::= int
<type> ::= float
<type> ::= array [ <integer> ] of <type>

The level descriptor tells IRgen how to expand the access path to the particular
variable. Globals are accessed using absolute addressing. Locals are accessed
using indexing from the frame pointer. In addition, upievel addressing may be
simulated to any number of levels; in this case, the frame pointer is derefer
enced an appropriate number of times before indexing is used.

<leveldesc> ::= global
<leveldesc> ::= local
<leveldesc> ::= <integer>

IRgen produces IR compatible with Glanville's dissertation PDP 11 TMDL, with
extensions to handle the semantics of procedures. IRgen performs constant
folding in the IR, canonicalizes the occurrence of constants so they are the left
children of operators, prints out the IR in a nicely indented style, and comments
the IR with the source program using the assembly string comment convention
recognized by codegen.

IRgen recognizes these options:

-y Turn on yacc debugging when the "D" source is parsed.
—d Turn on debugging.

—D Turn on a more verbose debugging.
—F name

The name of the frame pointer is name.

IRgen is invoked by default with these arguments:
IRgen -F r5 = =

SEE ALSO

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

DIAGNOSTICS

Complains about invalid "D", and refuses to compile any more.
BUGS

The type propagation and interaction between floats and integers is flakey.
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NAME

metric - Analyze and Measure a Postprocessed TMDL grammar
SYNOPSS

metric [ -MEDd ] [ -sSPF ][ -Y yaccfile ] [grammflle [ sumflle ] ]
DESCRIPTION

Metric analyzes the -4> postprocessor formatted and digested output tmdl pro-
f°!f £?m Twi?et Macnine Description Language. Analyzing the previously dig

ested TMDL reheves metric from having to parse and understand TMDL, a job
which tmdl is best suited for. This digested input contains an enumeration of all
symbols defined and their polish prefix weight (one per line), and a list of all
rules with their TMDL assembly string (one per line). The rules have been
stripped of semantic qualifications. Metric takes its formatted input from
grammfile or, if not given or "=", from the standard input. The summary out
put, which is enabled by setting various options, goes to the sumfile or, if not
given or "=", to the standard output.

Metric computes the prefix and suffix match metric which is used to estimate
toe number of states a parser constructed from the TMDL grammar will have.
Metrvj also finds common suffixes in the grammar that can be factored out, and
creates a yacc formatted machine description grammar, with associated actions
consisting of pnntfs of the TMDL assembly string. Finding and factoring com
mon suffixes is useful for reducing the number of states in a parser. The yacc
grammar can be used with yacc to test the effectiveness of a factored grammar
and compare the size of the tables yacc produces for both factored and unfac-
toredgrammars with the size of tables the merge phase produces.
These options control which metrics are computed and output to sumfile:
-M Print out the prefix and suffix match metric.

-E Print out the estimate of the number of states an LR parser (prefix match
metric) and RL parser (postfix match metric) would have.

-D Print out the rules after they are sorted for common prefixes or common
suffixes. Used for debugging.

-d Print out a count of the number of syntactically duplicated rules in the
grammfile.

These options control how suffixes are isolated:
—S Print out suffixes.

-s Convert the machine description grammar in grammfile to use suffixes.
-P Find suffixes using the principal operator method outlined below. Exclusive

from the —F option.

-F Find suffixes using the general suffix match metric. Exclusive from the -P
option.

This option controls the how the yacc input file is generated.
—Y name

Ayacc compatible file is to be created in name. The grammar produced
depends on the settings of the -P, -% and -s options.

Metrw works by finding syntactically common prefixes and suffixes in the gram
mar. The prefix match metric for a grammar production is the length of the
longest prefix of the right hand side that is shared with another production.
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FILES

Shared prefixes reduce the state count of an LR parser constructed from the
grammar. The suffix match metric is similar, except it is for shared suffixes.
Shared suffixes reduce the state count if common suffixes are factored out as
separate productions, or if an LR parser is constructed from reversed produc
tions in the grammar. A function of the prefix match metric over all produc
tions will quickly and accurately estimate the number of states in the parser
that analysis will produce for the TMDL.

Metric also finds common suffixes by considering the prefix weight of each gram
mar production. For machines with a reasonably uniform combination of opera
tors and operands, a principal operator can be isolated out of the right hand
side of each production. This principal operator reflects the principal semantics
of the instruction on the target machine being modeled by the production. The
prefix string composing the concatenation of the operands to the principal
operator usually is shared among similar operators in a number of productions.
Hence, these strings are good candidates for shared suffixes. The principal
operators are not isolated into suffixes so the semantics of the modeled instruc
tion are not factored out. The destination of the result of the principal operator
is a prefix that is automatically shared by the LR parser construction.

Metric is invoked by default with these arguments that may be changed to
redirect the input or output:

metric —P = =

SEE ALSO

CGGWS(henry)
metatmdl(henry) tmdl(henry) analysis(henry)
merge(henry) ccode(henry) codegen(henry)
IRgen(henry) metric(henry)

DIAGNOSTICS

Complains if the grammfile is not in an understandable format.
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NAME

nmake —Preprocessor for make

SYNOPSIS

nmake [ -§ ] [ -? ] [ -f makefile ] [ makeoptions ]
DESCRIPTION

Nmake, with the help of make, helps to manage the construction of software sys
tems composed of many programs. The dependencies and syntax make under
stands is not powerful enough to tersely specify dependencies between a large
number of source files producing even more object files that in turn are shared
between various programs. Nmake also obviates the need to use the baroque
and occaisonaly undesired general dependency rules make uses.

Nmake's model of a make assumes that object modules are created from "C"
source modules. Some object modules have special rules to make them by, and
have names not at all related to the name of the source module. Interesting
source modules can be printed out in a specific order, and all source modules
should be briefly documented in the makefile describing what they contain.
Nmake expands the makefile (or if that is not given, nmake looks for one of
Makefile, makefile, nMakefile or nmakefile in the current directory in that
order) into a makefile that make understands. The general format of recognized
makefiles has three sections, separated by two "%%" section boundarys, much
as lex or yacc source files do. Any lines starting with a "#" in any of the three
sections make comment delimiter are normally discarded.

Nmake passes out undisturbed any text preceding the first section boundary.
Text between the first and second section boundarys is processed by nmake as
the dependency table. At the end of the dependency table, a number of make
macro definitions are defined from information gleaned from the dependency
table. Text after the second section boundary is also stripped of comments and
passed out. This text is the dependency information make will need to complete
the make file, and should define macros that the dependencies nmake con
structs may use. When the end of file is encountered, a list of make dependen
cies and actions in a standard format is constructed from the dependency table.
Nmake then calls make do the actual work.

Nmake recognizes a dependency table with 4 tab or space separated fields.
Each field in the table describes one source—object file pair in detail.
SourceFile Name (Field 1)

The SourceFileName can be anything, although files ending with ".h"
or ".c" have special meanings. The SourceFileName may be preceded
with a "!" or "@", which is stripped off, but effects the constructed
dependencies.

ObjectFileName (Field 2)
The ObjectFUeName can be anything, although ObjectFileNames ending
with ".o" (as expected) have special meaning. The ObjectFileName
may be preceded with an "@" which is stripped off.

print order (Field 3)
The print order is a string of digits, optionally preceded with an "@".

comment (Field 4)
This field is ignored.
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^ncyUWe*: ma°r°S "" ^^^ l"m the inf°™ati°<> g'̂ aned from the depen-
HDRS ^f0UrcemeNam^ *tth ".h". not preceded by "O". sorted alphabeti-
CSRCS A]l SourceFUeNames with ".e". not preceded by "O". sorted alphabet!-

cany.

UNKSRCS

AU SourceFileNames not in HDRS and CSRCS and not preceded by "@"
sorted alphabetically. y '

PRINTS All SourceFileNames whose printorder field is not preceded by an "@"
sorted numerically by the printorder field.

0BJS a^h?be^j"JVamB8 6nding Wlth ,,,0,,, n0t preceeed by "@"' s°rted
^n ^^d^f «^« eoMtructe have one simple form, with apossible addi-
So^rcpS ffG5mg 5o^ce^e^^ and OfrntFUmNwmm roots. For each

ObjectFileName : SourceFileName $(DEPEND)
$(COMP) SourceFileName

rooToi^^AV^^^!^ lfuthe F00t °f the SourcFOMNamM differs from theroot of ObjectFileName, then the third line:

ic^o,* » *u - . , ™ SourceFUeRoot.o ObjectFileNameis added after the first two commands in the directive.
Nmake recognizes these options:
-# Pass through comment lines starting with "#".
~~? f£ldUne a?°*8 comPatible makefile called MAKEFILE in the current direc

tory. Do not run make.

—f name

Find the nmake compatible makefile in name instead of in the default loca
tions Makefile ormakefile. a

AU other arguments tonmake are passed to make undisturbed.
FILES

Makefile First default make file searched for if -f name is not
given.

makefile Second default make file searched for if -f name is
not given.

/tmp/RBHmakeXXXXXX Expanded makefile in make format when make is to
be run.

MAKEFILE Expanded makefile in make format when debugging
—? option is set and make is not run.

SEE ALSO

make(l)
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sampleMakefile sampleMakefile

PATH = ../glanll.d/
HDNAME = glanll.md
OPTIONS =

#
m # Makefile to construct individual codegenerators from

# modules composing the prototypical code generator, yielding codegen
#
# the modules contain all of the functions that implement

iY # the codegenerator, but does not contained the initialized
# data that defines the code generator for a particular machine.
#
# The initialized data can fall into either the text segment (read
# only), or the data segment (read/write).
#
# This Makefile assumes that machine descriptions are in standard
# places with respect to the location of this Makefile.
#
# Flags appropriate to C compiling the machine description:
#
# READONLY Set to extract the read ovly initialized data,
§ so one can change all data segments to
# text segments in the file md.s
#
# READ WRITE Set to extract the read/write initialized data.

#
MD = 8(PATH)8(MDNAME)
SOURCEDIR = A'a/stafif/henry/tmdl /sourcedir.d/
UTILPATH = /va/staff/henry/tmdl/

, #
j # NOTE: the C compiler will create the .s file (from the -S option)

~* # in the current.' directory
#
RO__COMPILE = S(CC) -S -w -DREADONLY -IS(SOURCEDIR)
RW_C0MP1LE = S(CC) -c -w -DREADWRITE -IS(SOURCEDIR)
ALL_COMPILE = S(CC) -c -w -DREADONLY -DREADWRITE -IS(SOURCEDIR)

ROFDC = sh ./:rofix

CFLAGS = -g -p
LINK = S(CC) S(CFLAGS)

EXAMPLE 1: S(MD).o genobjs
S(UNK) "cat genobjs" S(MD).o -o S(PATH)codegen

genobjs: codegen

codegen:
-> nmake —f genmakefile buildobjs

f S(MD).o: 8(MD).c
* * S(ALL_COMPILE) 8(MD).c
t mv S(MDNAME).o S(MD).o

X t S(MD).c: 8(PATH)merge.out
8(UTILPATH)ccode 3(MD).c S(PATH)merge.out

S(PATH)merge.out: 8(HD)
/lib/cpp S(OPTIONS) 8(MD) | S(UTTLPATH)metatmdl > S(MD).MD
S(UTILPATH)tmdl 8(MD).MD = 8(PATH)tmdl.out
S(UnLPATH)analysis -m 20 8(PATH)tmdl.out \

#. S(PATH)analysis.outl S(PATH)analysis.out2 S(PATH)analysis.out3
"l S(UTILPATH)merge S(PATH)tmdl.out S(PATH)merge.out \

8(PATH)analysis.outl 8(PATH)analysis.out2 8(PATH)analysis.out3
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