

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FIRST ORDER LOGIC SYNTAX AND THE

DYNAMIC BEHAVIOR OF PROGRAMS

by

Luis Felipe Cabrera

Memorandum No. UCB/ERL M81/48

24 June ,1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

first Order Logic Syntax and the
Dynamic Behavior of Programs

by

Luis Felipe Cabrera f

Department of Mathematics
and

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94720

Abstract

A general purpose computer program can be viewed as a directed graph
with five types of nodes and one type of arcs. Program semantics can be formal
ized by the operational approach which associates a specific action (given by a
function) with each of the nodes. To study the behavior of a program as a func
tion of its inputs, traditional methods require the use of the given program. This
can be very inefficient. A new method is presented whereby the dynamic profile
of a program is found efficiently. The notion of Skolem functions is embeded in
our solution.

Given a program, a syntactic performance representation is built for it.
Using this representation, we obtain the desired program behavior information
much faster than by actually running the original program. For our solution, we
exhibit the class of programs for which the behavior is determined in optimal
time. This class is dependent on the semantics of our performance representa
tions.

Our method may determine a maximal set of programs for which behavior
information can be found in optimal time. We discuss this question in greater
detail.

t The work reported here haa been supported in part by the Computer Systems Design Program
of the National Science Foundation under grants HCS-7824618 and UCS-B012800.

1. Introduction

The efficiency of computer programs is becoming a central issue in the

implementation and utilization of novel ideas and techniques in various fields of

Computer Science. Mathematical models of programs (and of their semantics)

allow the study of programs in a programming-language independent way. In

this paper we will study a syntax-oriented method which enables us to efficiently

obtain performance information about a program. An open question is whether

the. class of programs for which we can find its behavior information in optimal

time is maximal.

1.1. Motivation

It is known that the performance of a computer system depends on all of

the aspects of its hardware and software configuration, as well as on the work

load it has. It is thus advantageous to have programs which use appropriate

algorithms and, most important, that make suitable usage of the resources

available in their execution environment. Unfortunately, today there are no pro

gram design tools, or methodologies, which allow us to analyze a symbiosis of

this kind between a program and its execution environment. It is thus of impor

tance to have means of efficiently studying the behavior of programs.

In the case of an existing program, when trying to analyze and/or predict

its performance in a given installation, it is necessary to be able to determine

exactly what resources and in what proportions the program requires to run. It

would be very convenient if one could obtain this information in an efficient way,

i.e., faster than by actually running the program and measuring it. We would

like to have a performance description of the behavior of the program as a func

tion of the values of its input variables, which would allow us to obtain efficiently

the desired performance information. If such performance descriptions for pro

grams were available, problems like comparing distinct implementations of a

given algorithm would become easier and less resource and time consuming.

1.2. Describing the Behavior of a Program Efficiently

The behavior of a program means different things to people with different

objectives. For example, one may be interested in the I/O activity, in the cpu

requirements, in the number and type of arithmetic operations performed, in

the amount of paging activity generated (in the context of a paged virtual

memory system) or in the total running time. Each of these performance

aspects of the execution of a program is normally a function of the value of the

inputs to the program. However, there exists a performance index which

enables us to unify most of these studies. This index is a count of what gets exe

cuted in a run of a program.

A basic block is a linear sequence of program statements having one entry

point (the first statement executed) and one exit point (the last statement exe

cuted). The dynamic program profile is a vector whose elements express the

number of times each basic block is executed in a given run [Knu71b]. We shall

often use the term profile to mean dynamic program profile. Given a profile, it

ia rather simple to obtain several of the above mentioned performance aspects.

The only one that may not be obtainable, depending on how intricate the flow of

control structure is, is the dynamics of the memory demands produced by the

program.

For example, if we are interested in counting the different kinds of atomic

operations that the program performs, then we need the information that asso

ciates with each basic block an itemized description of all the atomic operations

performed by the statements in the basic block. Then, once we obtain the pro

file for basic blocks, we only have to multiply the value associated with a' specific

basic block by the number of times each atomic operation is performed in it to

obtain the counts of the operations executed. This procedure is certainly

installation independent, thus, once this Information has been found for a pro

gram, it never needs to be recomputed.

We shall call profile equations of a program those expressions which

express the frequency counts of basic blocks as functions of the input data.

Thus, if we had an appropriate representation for the profile equations, we would

be able to obtain the profile of the program in an efficient way. The best achiev

able is to have an evaluation cost linear in the length of the representation of

the profile equations.

This paper explores different alternatives which will enable us to obtain pro

files for programs in an efficient manner. In fact, we will describe automatic

ways of representing the profile equations for a program and conditions under

which they will yield the profiles with linear time evaluation cost. These

methods will allow us to obtain profiles much faster than by actually running (a

properly instrumented version of) the programs.

2. Some Related Work

Donald Knuth has pioneered the area of the mathematical analysis of algo

rithms [Knu71a, Knu71b, Knu7B]. In this analysis, for the execution time of a

given algorithm or program, one attempts to determine the four quantities

<maximum, minimum, average, standard deviations

The fourth quantity refers to the standard deviation of the distribution of execu

tion times around the average. In [Knu7B] we can see that the complete analysis

of a rather simple algorithm may require complex mathematical knowledge and

expertise. The required amount of sophistication and level of reasoning about

the program seems to go beyond the current level of what can be automated.

With a different approach, since 1974 Jacques Cohen and his collaborators

have been microanalyzing structurally simple programs, i.e., determining the

above mentioned four quantities as functions of each elementary operation

involved in the program. In [Coh74] Cohen presented a system which would

accept programs in a restricted Pascal-like programming language and would

return an expression of its execution time as a function of the processing time

of elementary operations. However, the evaluation of this expression requires

the user to specify the number of times the body of a loop would be traversed

and the branching probabilities of conditional statements. These two conditions

make this approach very difficult to use when one is trying to gain knowledge

about the behavior of a program.

The simple structure of many algorithms has proved that the method can

yield interesting results. In [Coh76a] we see an analysis of Strassens's matrix

multiplication algorithm. A non recursive version of the algorithm has all loops

traversed a fixed number of times and no conditional statements within loops.

This allows the authors to find a closed form expression for the processing time

of the algorithm whose evaluation does not lead to inconsistencies. In their

expression, specifying the number of times a loop is to be traversed is given by

the dimension of the matrices. Then, as all the bodies of the loops are basic

blocks, the evaluation yields the exact profile of the run.

We shall call Cohen's approach the deterministic microanalysis of programs

because of the requirement that the user provide the number of times a loop

will be executed and the (fixed) probability that a conditional branch will be

taken. A big drawback of this method is that, in any relatively complex pro

gram, the interrelationships between statements may become very obscure and

intricate. It is unreasonable to expect that a user will master them and provide

consistent data for the evaluation of the expressions. The fact that these

expressions do not depend on the input variables of the analyzed algorithm or

program appears to be responsible for most of the method's deficiencies.

A different approach can be found in Ferrari's work, [Fer78], where pro

grams are viewed as D-charts and formulae are built in a bottom up fashion tak

ing into account all the data dependencies. Unfortunately, the methodology used

there did not clarify when one could obtain such expressions. Only very simple

examples were found to be manageable. However, the expressions obtained

were functions of the input variables and thus when supplied with values for

them a correct profile was obtained. The task of finding expressions became

more complicated but their evaluation required no further information from the

user, and the answer obtained was always correct.

To obtain the four quantities desired using Ferrari's expressions, one has to

find suitable input data that would exercise the program in such a way as to

achieve its minimum and its maximum; then, making some probabilistic

assumptions on the nature of the input data, one is able to determine the aver

age and standard deviation with some predetermined degree of statistical confi

dence by measuring enough samples of the input data. In fact, Cohen's approach

requires the same kind of hypothesis with the additional problem that, for a

given assignment of values to the number of times loops are traversed and

branches taken, one may obtain evaluations which do not represent the execu

tion of the program under any given set of inputs.

In [Weg75], the system Metric is presented. With it a very limited class of

Lisp programs can be correctly microanalyzed. The highlights of Metric are that

it knows how to find closed form formulae for recursive programs (in its res

tricted Lisp environment), deals with algebraic simplifications and expresses the

execution behavior as a function of the size of the input. Moreover, Metric also

allows several measures of performance to coexist. This provides a degree of

flexibility that Cohen's system does not have. However, when computing the

maximum and minimum execution time of a program, as in Cohen's system,

several "simplifying" hypotheses are made which yield bounds not necessarily

6

tight. In other terms, there may be no set of inputs which would make the pro

gram attain these bounds.

The very fertile area of Symbolic Evaluation or Symbolic Execution of pro

grams has undisputed relevance to our problem. In [Che79, Che76, Che7B, Kin76,

How78] we read about different systems which attempt to express in a symbolic

way the results of the computations performed by a program. Common to all of

them, and to any system which performs such a task, is the problem of dealing

with loops. The effect that such a construct has on the value of a variable is cen

tral to the analysis in all approaches. All of these authors are primarily con

cerned with the correctness, and not the performance, of the analyzed pro

grams.

3. Representation of Programs

We shall study non recursive goto-iess programs. It is well known [Boh66]

that any computation can be carried out by a program of this kind. As done in

[Fer7B], we shall represent this kind of programs by single-entry single-exit

directed graphs called D-charts.

A D-chart has five types of vertices and three rules of formation. The five

types of vertices are: rectangular boxes, which are used to represent basic

blocks of statements in series or more complicated D-charts; diamond shaped

vertices, which represent decisions; circular vertices, which represent junc

tions; and the two triangular vertices, representing entry and exit points. The

rules of formation are: composition, alternation, and iteration.

Definition 3.1

i t ^
(i) If B represents a basic block of statements in a program, then

an elementary D-chart.

m
IS

T
figure 3.1

_L

Figure 3.2 Figure 3.3

i
(ii) (Composition) If Bi and B2

T

are elementary D-charts, then Figure 3.1 is

an elementary D-chart.

(iii) (Alternation) If Jj i and fl9 are elementary D-charts and tp a quantifier

free formula in the language of arithmetic then Figure 3.2 is an elementary

D-chart. We call the two branches the T-branch and the F-branch respec

tively. For example in Figure 3.2 we have the left branch as the T-branch

and the right branch as the F-branch.

1 i

Bi and B?
\

L^_|

(iv) (Iteration) If | B I is an elementary chart and <p a quantifier free formula in

the language of arithmetic, then Figure 3.3 is an elementary D-chart. We

call the two branches the T-branch and the F-branch respectively. In Fig

ure 3.3 the T-branch is the right branch and the F-branch is the down

branch. The T-branch of an iteration will always be the "loop back" branch.

"HTU

Definition 3.2

A D-chart is a graph of the form

chart.

i
B

I
, where B

T
is an elementary D-

B

Given an elementary D-chart B
T

we shall distinguish two points in it: the

entry point a and the exit point 0, which are located just before entering the

rectangle 8 and just after exiting the rectangle B (see Figure 3.4). A check point

7 in an elementary D-chart D is any entry or exit point of an elementary D-chart

D* contained in D.

Each path through a D-chart corresponds to a possible flow of control, or

run, through the original program. In alternations and iterations, the T-branch

is taken if the evaluation of the formula <p is true. Otherwise the F-branch is

taken. Runs begin with the first statement of a program, with the triangular

vertex representing the entry point (assumed to be unique),

The input variables of a run are variables which are referenced in the path

before they are assigned values. The explicit control variables of a run are

those variables which occur in at least one predicate (formula) of an alternation

or iteration in the path. A run halts if, given the set of input variables, the

corresponding execution terminates. We say that a program halts if all of its

runs halt.

9

4. The Operational Semantics for Programs

To avoid syntax dependent definitions, one can view basic blocks of instruc

tions as (black box) functions acting on the variables which appear in it. In this

way, one associates with each rectangular node representing a basic block of

instructions a function from variables to values in the domain of the variables.

These functions are sometimes called content functions.

The extension of content functions to functions which describe the value of

variables in any D-chart should be clear. It is done by induction on the complex

ity of the D-charts. We shall only present a sketch of this construction. First, it

is assumed that all variables have a given value at the exit of the triangular node

representing the entry point.

Say B is a basic block and y the content function associated with it. Let

x [a] denote the value of the variable x at the entry point a of B, and x[p] its

value at the exit point 0 of B. Then, x[/J] = 7(ar[o]).

In the case of a branching with content function yx for the T-branch, con

tent function yz for the F-branch and predicate <p, the value of x is modified by

7t if the branching predicate <p evaluates to true and by yz otherwise.

Using this approach one makes precise the notion of values of variables at

any given point in a D-graph, as well as the notion of exit or final value of a vari

able. We shall not discuss this formalization any further, but it should be clear

that the notions of input variables, run, control variables and halting can be for

malized within this framework.

5. Program Performance Formulae

We shall now introduce a formal language which will be used to express our

symbolic representations of programs. Its spirit is similar to that of languages

used in first order logic. However, a symbol which adequately enables us to deal

10

with control structures has been introduced in our language. For a simple intro

duction to first order logic languages we refer the reader to [End72].

We assume we have an infinite set of symbols which is partitioned as follows:

Logical Symbols

[1] parentheses: (,)

[2] sentential connective symbols: -,0R

[3] variables (one for each non-negative integer n): xQ, xx xn, ...

[4] equality symbol: =.

Non Logical Symbols

[1] one binary predicate symbol: <

[2] two constant symbols: 0, 1

[3] function symbols: the unary function symbol log, the binary function sym

bols +, •, mod, and, for each positive integer n, some sets (possibly empty)

of symbols, called n-place function symbols.

"PJ"the Tour-place special symbol: IFTHENELSEFI.

[5] the special denotation symbols (one for each non-negative integer n):

**0« **i» ••• • &n» •••

Our intended interpretation of most of these symbols should be quite clear.

All the unary and binary operation symbols describe the basic real valued alge

braic operations and the constants 0 and 1 are to mean zero and one. The spe

cial denotation symbols i?4 will be used to represent the basic blocks (of instruc

tions in a program). We shall make all the meanings explicit after we introduce

the syntax for the language.

11

5.1. Program Performance Formulae

An expression is any finite sequence of symbols. The simplest kind of mean

ingful expressions are the terms. They are the expressions which are inter

preted as naming numerical objects. The two kinds of objects we are going to be

concerned with are the basic blocks (of instructions in a program) and numeri

cal values.

Normally in mathematical logic terms are all those expressions which can

be built up from the constant symbols and the variables by prefixing the func

tion symbols. Formally, for each n-place function symbol /, one defines an n-

place term-building operation Tf on expressions:

T/tei. tz, ... , en) = f(slt e2,... , en)

and uses it to generate the set of terms. However, we shall adopt a more res

tricted definition in that not all function symbols will be used to build up our

terms.

Definition 5.1.1

The set of terms is the set of expressions generated from the constant sym

bols and variables by the operations Tjog, I\, T+ and rmod-

•

From now on, whenever we refer to an n-place function symbol /, / will not

be one of log, +, * or mod. However, if we say "any n-place function symbol / "

then the above four function symbols are also included.

Definition 5.1.2

An atomic formula is an expression of the form P{to,ti), where P is either

the equality symbol = or the binary relation symbol < and to, tx are terms. We

shall abbreviate atomic formulae by writing f 0 = *i and to < *i-

12

Sentential formulae are those expressions which can be built up from the

atomic formulae by use of the sentential connective symbols. This can be made

precise by using the following two sentential-formula-building operators on

expressions:

r,w = (^).

r<m(*i.e8) =(*i OR ^z)-

Definition 5.1.3

The set of sentential formulae (formulae, for short) is the set of all expres

sions generated from the atomic formulae by the operations Tm and roR.

•

Definition 5.1.4

We define our set of program performance formulae by recursion on the

length of expressions. We let A denote the empty string.

(i) A is a program performance formula.

(ii) Special denotation symbols Bo, B\, ... are program performance formulae.

(iii) If if/l and ^2 are two program performance formulae then ^\^z is a program

performance formula.

(iv) If p is a formula, / any n-place function symbol, tlt ... , tn terms, and fi, ^2

two program performance formulae, then

IFTHENELSEFl(^,/(f 1 tn),1>x,i>z)

is a program performance formula.

•

Program performance formulae will be, under suitable conditions to be

described later, symbolic expressions for the profile equations of programs as

functions of the input variables. Their linear time evaluation cost is what makes

them very desirable for performance evaluation studies.

13

As is customary when describing formal languages the number and kinds of

primitive symbols have been kept to a minimum to avoid redundancies. How

ever, to make the language practical, we introduce abbreviations for commonly

used relations and operations.

We thus introduce the following three binary relation symbols: ^, >, &. The

longest definition in terms of = and < is for >:

*l>*Biff -((*! = *g) OR (f!<-*g))

where tx and 12 are terms and iff is an abbreviation for "if and only if".

We also introduce the rest of the binary logical connective symbols: &, -»

and «». The exponential function symbol exp(x,y), also denoted as xv, and the

binary division function symbol / (in whose definition we exclude the possibility

of dividing by zero) are also defined in terms of our primitive function symbols

in the usual way.

From now on the program performance formula

IPTHBHBLBEPl(9Pi/(*1 O-r'i-r'e)

will be written

IP (y> , f(ti tn)) THEN Vi ELSE ^2 PI •

5.2. Semantics for Program Performance Formulae

We shall now define the (canonical) interpretation of the syntactic objects

introduced in the previous section. As no quantifiers exist in our language, all

variables which appear in a program performance formula (ppf) are free. This

will enable us to evaluate any ppf in a one-pass left-to-right manner. This can

not be achieved when quantifiers are present.

As a full (mathematical logic) model theory for this language does not seem

to play a role in our problem, we shall not develop it here. Indeed, our (stan

dard) universe will be the set of real numbers, even though there will be cases

14

when some variables will only range over integer values.

Let t: V •+ JR be an assignment function from the set V of all variables into

the set of real numbers. We define an extension i of i to the set of all expres

sions denoting numerical values as follows:

1 for each variable x, i(x) = i(x).

2 i(0) = 0 and i(l) = 1.

3 If t J tn are terms and/is one of log, mod, +, •, then

«W*i 0)= Aid) *('«)).

where f* is the operation defined in the real numbers which is denoted by /.

In particular, x denotes the multiplication operation, i.e., *R is x .

4 If tlt ... , tn are terms and / is an n-place function symbol different from

log, mod, +, * then

i(/('i *n))= /*(i('i) i('»)).

where /* : (H u i°°))n -♦ IR u |«J is such that if any argument is » then the

value is ».

Having defined the interpretation for terms, we now proceed to define satisfac

tion for formulae. Given a formula <p and an assignment function i, <p[i] is the

result of assigning values, via i, to all (free) variables in 90.

With atomic formulae,

for any two terms 11 and f2, (f j = f2)[i] is true iff i(t j) is equal to i(f2). (tx <

r2)[i] is true iff i(t j) is (strictly) less than i(f2).

With sentential formulae cp,

(- ?)[*] is true iff it is not the case that p[i] is true, (tpi OR p2)[i] is true iff

f j[i] is true or p2M *s true.

The interpretation of a ppf will yield a (finite) sequence of symbols which is

meant to represent the profile of a program when the program is run with the

15

inputs used to evaluate the ppf.

Definition 5.2.1

We define the interpretation function I by induction on the complexity of

ppf's:

1 for any special denotation symbol Bi, l(Bi)[i] = 127<.

2 for any performance formula ^. where V is Vi1^2»

«*?*)&] = ityi)Mity2)M.

3 For any formula <p, n-place function symbol/, terms tx fn and ppf's flt

I(IF (f , f(t i, ... , in)THEN fi ELSE fa Fl)[i] is equal to

^(*(*i) *(*n)) x i(fi)W if ?M is true and equal to

f*(i(t J <<fn)) x I(fa)[i] if <p[i] is false.

where for any x € IR u {«>{, » x x = * x » = ». If ^ is A, for j e {1.2J, then we say

that/*(!(*!) i(*n)) x Ity)M is A.

•

Proposition 5.2.1

Let ^ be a program performance formula and i an assignment function of V

into IR. Then I(^)[i] = SqSi ••• «n • where (a) s0 e R u {-J, (b) for 0 < i i n , s4

c IR u |«J u [Bili € Q, (c) if s< e IR u H then si+1 e J^J4 e w.

Proof

By induction on the complexity of program performance formulae.

•

5.3. Program Performance Formulae for D-charts

We shall now associate in a unique way ppf's to D-charts by inductively

assigning ppf s to the basic components of elementary D-charts.

16

Given a D-chart D. the ppf^D associated with Dis obtained as follows:

(1) For each indecomposable elementary D-chart B . (i.e.. |B |represents a

basic block of instructions), we assign to the basic block a special denota

tion symbol B% (never to be used again for any other basic block) and the

ppf IBi to the elementary D-chart.
J- -J.

(2) If Bl and B2
1

are elementary D-charts with assigned ppfs fx and ^2

respectively, then ^^z is the ppf assigned to their composition.

(3) Given an alternation construct where D\ and Dz are the elementary D-

charts associated with the T and Fbranches respectively and <p is the predi

cate, the ppf associated with it is

IF (<p , 1) THEN Vi ELSE fz FI.

where Vi and ^2 are ppf's associated with Dx and Dz respectively, and 1

represents the real valued constant function whose value is 1, i.e.: l(x) = 1

for all x e IR.

(4) Given an iteration construct Dwhere Dx is the elementary D-chart associ

ated with the T-branch and p is the predicate having n variables, the ppf

associated with it is

IP {9 *J) THEN Vi ELSE A FI,

where Vi is the ppf associated with Dx and / is an n-place function symbol

with the same variables as <p which, when evaluated with the value of the

variables at the entrance point a, yields the number of consecutive times

that <p would evaluate to true in the corresponding run. We shall denote

such a function / associated with xp by #p .

If D' is the elementary D-chart obtained from Dby removing the two triangular

vertices and V is the ppf associated with D' by the above rules, then ^* is ^D.

17

Theorem 5.3.1

Assume that P is a program represented by the D-chart D, and -^D has £ as

variables. Then P halts iff, for all assignment functions, i , « does not appear in

K*D(*))[i] •

Proof

P will not halt iff a run enters an iteration and never exits it. We also have

that for any program and for each iteration with predicate p, §tp will have » in

its range iff there is a set of inputs which makes the run enter the iteration and

never exit it. We finally notice that in the evaluation of a ppf the only place

where » can be introduced is when evaluating #p for some predicate p.

Thus, if P halts, for no assignment i will any §<p evaluate to « and so « will

not appear in l(f)[i]. Conversely, if « never appears for any assignment i , then

no #p's ever evaluate to « and so all runs terminate.

•

From now on, we shall assume that our programs halt.

Given a D-chart Dand an assignment function i for its input variables 2, the

sequence

a0B0aiBi • • • a^B*

is the profile of P under input i iff, for 0 ^ j jS n, the run with inputs i traverses

Oj times the elementary block of instructions represented by Bt.

Given a D-chart D, ^D represents the profile equations of P if, for every

assignment i, I(^D)W is the profile of Punder input i. If ^D represents the pro

file equations of P, we denote it by ^p .

We shall now determine conditions on D-charts under which ^D = ^p. There

is one construct which presents no problem: composition. If ^D is Vj? i>D &na i>D

= fpv i^Dt = i>pr then as ItyD) = l(if/Dl) Ity^) we immediately have ^D = ^p.

IB

Moreover, alternations and iterations where all the elementary D-charts appear

ing are basic blocks, also represent the profile equations of their corresponding

programs. In the case of iterations this is guaranteed by the definition of §<p.

Problems arise with the nesting of non primitive constructs.

Theorem 5.3.2

For any elementary D-chart D where there are neither alternations nor

iterations within an iteration, ^D = y?.

Proof

We prove it by induction on the kind of permissible constructs. Let i be"an

assignment function.

1 ♦

B
"I

where BClearly for an elementary D-chart of the form B where B ls an

indecomposable elementary D-chart, ^D = f? (= 12^ where Bi is the special

denotation symbol assigned to A). Assume now that D\ and Dz are two elemen

tary D-charts satisfying our hypothesis for which ipD = j/p and fD = fP. Com

posing them we already know preserves representability. Say we have an alter

nation with <p as predicate, Dx as T-branch and Dz as F-branch. The ppf f which

represents it is

IF (tp , 1) THEN VjDj ELSE ^g FL

and I(V0M is 1 x I(Vj)[i] if <p[i] is true, and is 1 x I(^2)W if <p[i] is false. Thus, in

either case, we obtain that ^D = ^p because of our induction hypothesis on Dx

and Dz. As for iterations, our hypothesis only allow them to have basic blocks as

T-branches and for these we know they represent the profile equations.

•

Lemma 5.3.3

Let D be an elementary D-chart and, in particular, an iteration with predi

cate <pQ. Let D's body consist of an alternation Dx with predicate tpx, T-branch

10

11

and F-branch Dlz, where ^ = fpu and ^^ = fp^. (see Figure 5.3.1). Then.

i?D = ^P, iff the same branch of the alternation is traversed each time the T-

branch of the iteration is traversed.

Proof

Let i be an assignment function. We prove the "only if* part first.

if Pq[*1 is true, the T-branch of the iteration is traversed #?oR[*] times. So

if, say, D\\ is always traversed, the correct profile is given by #poR[>] x I(VTU)M-

As by hypothesis fn = ifpn, we have fj) = $p in this case. Similarly, if D\Z

were the branch always traversed, using Vj>1b = i*piz we would obtain ^j)x = Viy

Now for the "if" part, we argue as follows. The ppf V corresponding to D is

IF (?o •#Po) THEN 1>Di ELSE AFI.

11 12

<Pl

<*>

figure 5.3.1

D0

T

<^
Figure 5.3.2

Vl

20

Thus. Ity)[i] is #p0F[i] x IfitoJM if 9oW is true, and Aif tp0[i] is false. We

then see that ^D = ^p implies that the same branch of the alternation is taken

each time the T-branch of the iteration is taken.

•

Lemma 5.3.4

Let D be an elementary D-chart and, in particular an iteration with predi

cate p0. Let D's body consist of another iteration with predicate <px and body D0.

(see Figure 5.3.2). We assume further that i/jjQ = ^P0- Then. yD = ^p iff there

exists an integer n such that each time the T-branch of the outer iteration is

traversed the T-branch of the inner iteration is traversed n times.

Proof

First we deal with the "only if" part.

If <pQ[i] is true, the T-branch of the outer iteration is traversed #<p0*[i]

times. If <px\i] is true and we are traversing the outer loop's T-branch, then the

inner one will be traversed #?iR[i] times. Thus, #p0RM * #PiRM * 1(1>d)M is

the correct profile for D in this case, since fD = ^P and since the inner itera

tion will always traverse the same number of times its T-branch each time the

outer iteration's T-branch is traversed. If tpl is false, the evaluation yields

#PoR[i] x Ax Hifj}u)[i], which is equal to Aby our definition. So in either case we

see that ^D = ^p. The last case is when <p0 is false but then Ais again the correct

answer.

Now we deal with the "if" part. The ppf $ corresponding to D is

IF (?o . #Po) THEN IF (<px , #pj) THEN Y^0 ELSE AFI ELSE AFI.

The two interesting cases of I(V0M are when both p0[i] and <px[i] are true, and

when p0[i] is true and <p Ji] is false. In the latter case I(^)[i] is A. and so this

forces the inner iteration to satisfy the condition that, if <px was false the first

21

time the T-branch of the outer iteration was traversed, then tpx will remain false

for all consecutive traversals.

If poM and ipi[i] are both true, then I(f)[i] is #tpo*[i] x #<px*[i] x I(^0)[i],

which represents the profile equations of D only if 1?dq = Vp0 and the inner

iteration's T-branch is always traversed the same number of times each time the

T-branch of the outer iteration is taken. This number of times corresponds to

that traversed the first time the outer iteration's T-branch was taken.

•

It is worth mentioning that even though the last two lemmas are quite

discouraging, the hypotheses of these lemmas have been implicitly made in all

the literature we know about.

In a D-chart, whenever alternations within iterations satisfy the hypothesis

of Lemma 5.3.3, we say that alternations are well behaved. Similarly if nested

iterations satisfy the hypothesis of Lemma 5.3.4 we say that iterations are well

behaved.

Theorem 5.3.5 Representability of Profile Equations

Y'p = ^p iff for all assignments i all alternations and iterations are well

behaved.

Proof

Let us deal first with the "only if" part. The proof is by induction on the

complexity of elementary D-charts. Clearly the symbols Bi represent the profile

of the basic blocks of instructions which they are associated to. We have already

remarked that alternations and iterations with irreducible D-charts as branches

represent the profile of their associated programs. The other two building steps

make use of Lemma 5.3.3 or Lemma 5.3.4, and the hypothesis that alternations

and iterations are well behaved. Thus, whenever a possible conflicting construct

occurs, i.e., an alternation or an iteration within an iteration, our well

22

behavedness hypothesis allows us to conclude that we still represent the profile

equations of the larger elementary D-chart.

Now we deal with the "if part. As in the proofs of Lemmas 5.3.3 and 5.3.4,

we must analyze the effect ^D = ^p has on D-chart constructs. We only have to

look at two cases: alternations within iterations and iterations within iterations,

because the all other cases cause no problems.

Assume we have an alternation Dx with predicate ax within an iteration D

with predicate <p0. The iteration may be located as in Figure 5.3.1 or there may

exist an elementary D-chart between the entrance of the alternation and the

entrance of the T-branch of the iteration. By the composition rule, in any of

these two cases we will have that when evaluating the ppf corresponding to D.

#9>oRM x IO^^M "wiii appear if (pQ[i] is true. But then, this is as in Lemma 5.3.3.

so we must have that this alternation is well behaved. In the same way we argue

that all alternations in the D-chart must be well behaved.

Similarly, using the proof of Lemma 5.3.2, we argue that all iterations

appearing in the D-chart must be well behaved.

•

Theorem 5.3.5 shows that our goal of obtaining ppf's representing profile

equations evaluable efficiently, i.e., in a one-pass left-to-right procedure in

linear time (as a function of the number of characters in the ppf), forces rather

strong topological and/or semantic constraints on the programs that these ppf's

represent.

A natural question to ask then is whether this is due to our inability to for

malize the problem or to an essential characteristic of computations which does

not allow us to "linearize" all of them. What would seem to be missing in our

evaluation procedure is a way of taking into account the interdependencies

between control variables of nested constructs. Perhaps we might gain from

23

trying to capture more semantics in I. Our assertion is that there is not much

more that one can do in full generality, and thus complicating I is not worth it.

Example 5.3.1

In Figure 5.3.3 we show the D-chart corresponding to a program which reads

an array A of N numbers and then stores in S the sum of all the positive entries

of the array. Thus, in Figure 5.3.3 <p0 is i ^ N and ax is A[i] at 0 . In this exam

ple we see that the selection of the branch in the alternation is exclusively

dependent on the input data, and that, in order to establish the correct profile

for a run, one has to read all input values and compute the cardinality of the

sets of "trues" and "falses" of the inner predicate. Thus, even though we know

that the T-branch of the iteration will be traversed exactly N consecutive times,

one has to evaluate the alternation predicate each time. This precludes the

evaluation in linear time of the ppf of this D-chart.

Figure 5.3.3

1
Bi

<k>
T <i>n

Bz

1

<^>i
Figure 5.3.4

24

Example 5.3.2

Figure 5.3.4 depicts the flowchart of a program which reads an N by M array

of numbers A and then adds all the positive elements in the j#th column up to the

A[l,j],h one in the Ith entry of the array S. Thus, the outer predicate, uQ, is i ^ M

. ?! is j <. A[l,i] and tpz is A[i,j] St 0 . In this example we see that both the

number of times the inner loop will be traversed and which branch of the alter

nation is to be taken are absolutely input data dependent. tpx and az have to be

evaluated every time. Thus, there can be no purely syntactic interpretation

function which can capture this behavior.

•

Let L = <B, <p, a, /?> be an iteration with T-branch body B, predicate a, entry

point a and exit point §. Let a: be a variable appearing in the D-chart. We denote

by x[a] the value of the variable x at the entry point of the iteration; by x[p] its

value at the exit point of the iteration and by x[k] the value it has immediately

after the k^ traversal of the T-branch B; note that x[0] is assumed to be x[a] .

titer, "the value of~z at the entrance to the iteration. We extend this notation in

the natural way to n-tuples of variables £: thus £ [a] abbreviates <xx[a],

xnM>- k- when used as above, will be called the iteration index.

The hypothesis of Lemma 5.3.3 can also be characterized by a logical condi

tion on the predicates <pn and ax:

Theorem 5.3.6

Let D be an iteration with predicate <p0, whose body consists of an alterna

tion Dx with predicate <px, T-branch ^D and F-branch ipD . (see Figure 5.3.1).

Then, the same branch of the alternation is traversed each time the T-branch of

the iteration is traversed iff for all assignment functions i, whenever the T-

branch of the iteration is traversed, (1) (po^oM) -* Pi(a?i[a])) true implies

25

(Po(*oM) -♦ -?i(*iM)) is false for all positive integers k ^ #poR(*o[ct]) or (2)

(j>o(*oM) -• -<Pi(2iM)) true implies (<p0(st0[k]) -♦ <px{£x[k])) is false for all posi

tive integers k £ #poR(*oM)-

Proof

Let i be an assignment function. We prove the "if" part first.

Given that the same branch of the alternation is traversed each time the T-

branch of the iteration is traversed, then exactly one of (1) or (2) is true.

Indeed, if the T-branch of the alternation is traversed, then (poC^oM) ~»

Pi(*iM)) would be true for all integers k. 0 £ k ss MR(*oM). Thus. (<Po(£0[k])

-* ^Pi(*iM)) would be false for all integers k, 0 £ k £ #poR(*o[a])«

For the "only if" part we argue as follows. Say (l) is true. Then (aQ(£Q[k])

- -Pi(*iM)) being false for all positive integers 1 £ k ^ #p0R(*oM) means that

the F-branch of the alternation is never taken if the T-branch has been taken the

first time. We argue in an analogous manner if (2) is true. So, for the run which

corresponds to the inputs i, a unique branch of the alternation will always be

traversed each time the T-branch of the iteration is traversed.

•

The advantage of this new characterization is its syntactic orientation. One

can now hope that with the aid of a theorem prover, this condition could be

checked during a syntactic analysis of the code. In fact, if the predicates <p0 and

xpx are of the form arROy , where RO is one of <, ^, > or fe, some cases (depending

on the action of the iteration on the control variables) can be analyzed automat

ically without much difficulty.

5.4. Definable Programs

We now deal with the necessary and sufficient conditions to obtain ppf's

which represent the profile equations and in which no n-place function symbols

26

/ appear. These ppf's will be symbolic expressions for the profile equations of

programs.

The set of syntactical objects which denote numerical values needs to be

expanded so as to reflect the effect of alternations and iterations on variables.

This amounts to formalizing the symbolic evaluation of program variables.

Definition 5.4.1

The set of special terms is defined by recursion on the length of expressions

by the following clauses:

1 any term t is a special term;

2 if tx ... Tn+m+2 are special terms, a(xx,z^) a formula and / an m-place

function symbol, then

IF (?(ti. T„) . /(Tn+1 Tn+m)) THEN Tn+m+1 ELSE Tn+m+g FI

is a special term;

3 the set of special terms is closed under the operations T\0&, IVnod* F* and TV

•

Special terms can be evaluated using the same interpretation function I intro

duced in Section 5.2.

Proposition 5.4.1

For any special term r and assignment function i, I(r)[i] e IR u f»j.

Proof

By induction on the complexity of special terms.

•

We notice, as in Theorem 5.3.1, that a special term r evaluates to « iff some

§<p appearing in t evaluates to ». Thus, when dealing with halting programs, the

evaluation of any special term is finite (recall that our definition of / does not

allow division by zero).

27

Definition 5.4.2

Given an iteration L = <B, *(£), a. /?>, we say that L is definable if there

exists a special term £(£) which does not contain n-place function symbols /,

such that, if a(£[a]) is true, then

«*M> = *<?*(*[«)) •
m

This last definition is central in what follows. $ is nothing else but an effec

tive description of #p. When evaluated it yields, as a function of the values of the

control variables at the entrance of the iteration L , the number of consecutive

times that the T-branch of L will be traversed.

We shall deal later with the important problem of automatic recognition and

construction of special terms £ directly from the syntax of programs. Now, we

remark that there may not be a simple relationship between the values of <p and

-^i Their ranges of validity are disjoint.

Control variables will henceforth be assumed to be of numeric type, i.e.,

type integer or type real. We also assume that the basic operations which can

be performed (by our programming languages) on variables are: subtraction,

addition, multiplication, division, exponentiation, modulo arithmetic, logarithm

evaluation and n^ root extraction. It should be clear that our set of terms suf

fices to represent each one of these actions on variables. For example, if the

assignment statement xt := Xj * x< occurs in a basic block, then the term Xj * x^

represents it.

We now want to define expressions representing variables which, when

evaluated with the values of the input variables at a check point y, will yield the

value of the variable which they represent at y. Moreover we want these expres

sions to be special terms. This last requirement forces a constraint common to

all systems dealing with symbolic evaluation: that there be a way of expressing

28

(in whatever formal language is used) the effect of an iteration on a variable.

Example 5.4.1

Assume that we have an iteration such that in its T-branch Dx the variable x

is only modified by the assignment x := a*x + b , where a and b are names of

variables whose value does not change in Dx, and a[0] * 1. Then x[k] can be

k — 1
expressed by akx[0] + b a

a- 1

Definition 5.4.3

For any variable x, special term t and check point y, we say that t describes

x at 7 if, for any assignment function i , I(r)[i] is equal to x[y] in the

corresponding run.

•

Definition 5.4.4

For any variable x and any iteration Lwe say that r(x,y) is a closed form

for x in L if r{x,y) is a special term such that for any integer k , r[x[0],k] is

equal to x[k].

•

We notice that, without loss of generality, y can be assumed to be of type

integer. Example 5.4.1 depicts a closed form for z in the associated iteration L.

For the rest of this section, we shall assume that closed forms exist for

every variable and iteration we consider.

Definition 5.4.5

For any D-chart D, variable xi% and check point y, the canonical special

term (est) Tj,T associated with Xj at y is defined as follows:

(1) If Xj is an input variable at y of an elementary D-chart with entrance point

o. then Tit7 = Tj^. Moreover, if the entrance point is the entrance to the D-

chart D, then Tjt7 = Xj ;

29

(2) For any irreducible elementary D-chart, see Figure 5.4.1, rifi is symboli

cally expressed in terms of Ty#fl as the term representing the result of the

sequence of symbolic evaluations of the assignment statements to x,- occur

ring in B. where x^ is used to denote Tia ;

(3) For any alternation, see Figure 5.4.2, Tj fi is

IF (<p , 1) THEN Tjtfix\ax/*\ ELSE Titfiz\cLZ/a\ FI

where, for k € $1,2), Tjfk\ak/a\ is the expression obtained by replacing in

Tjft each occurrence of x;- by rita ;

(4) For every iteration, see Figure 5.4.3, r^ is

IF (a , 1) THEN r(T^t§») ELSE T/t„ FI

where r(xj,yj) is a closed form for Xj in L.

So, for any elementary D-chart D, any variable Xj and any checkpoint y in D, the

est Tjy exists iff there exist closed forms for Xj in all intervening iterations.

Theorem 5.4.2

For any elementary D-chart D, any variable x^ and any checkpoint y in D, if

the est Tj7 exists, then it describes Xj at y.

•d

fi ~q

Figure 5.4.1 Figure 5.4.2 Figure 5.4.3

30

Proof

By induction on the complexity of cst's, where for the iteration construct

(the hard one) we use our assumption that closed forms exist and that they

describe their associated variable.

•

As compositions and alternations preserve cst's, we see that all the com

plexity in building them from simpler ones lies in iterations. It is the nonex

istence of closed forms which limits our ability to generate cst's.

In general, making the assumption that a closed form exists for an irreduci

ble iteration is the same as requiring that a given recurrence equation has sym

bolic solution [Che79]. When we assume no nested iterations, as we are allowing

alternations within iterations, one has two basically different cases: (i) When

considering D-charts for which if/. = ^p, then the existence of the closed form

reduces to finding solutions for each of the possible paths and then determining,

based on the sole analysis of the input variables, which path will be taken and

thus which.solution to use for the run. (ii) In the general case where distinct

branches may be taken within the same run, no method is known for finding

closed forms. In fact, the closed form in case (i) will in general have to allow

conditional statements to reflect the fact that distinct branches may be

traversed.

If, for a check point 7 in a D-chart D, no n-place function symbol / appears

in Tj7, we say that Xj is definable at 7 and abbreviate this by saying that t^>7 is

definable. We say that an elementary D-chart D preserves definability for Xj if,

whenever riM is definable, then riiP is also definable.

Theorem 5.4.3 Definability Preservation for Variables

(i) If T;,a is definable and Dis an irreducible elementary D-chart, then Tjj is

definable.

31

(ii) If Tj,a is definable, Dis an alternation in which both the T-branch and the

F-branch preserve x^'s definability, and <p is such that each of its control vari

ables is definable at a, then Titp is definable.

(iii) If Tj>a is definable, Dis a definable iteration with predicate <p such that

each of its control variables is definable at a, and there exists a closed form for

Xj, then Tjtp is definable.

Proof

(i) This is clear, because it just amounts to having terms representing the

basic operations performed on variables, and using ria as the description of Xj

at a.

(ii) As in Figure 5.4.2, let ai and a2 denote the entrance to the T-branch and

F-branch of the alternation respectively, and ft and 02 denote the corresponding

exits. By assumption, TjtPl and ry^ are definable if riMx and T;<flg are. But, in any

alternation, T;#a = TJ>ai = Tyag , so tj^ and Tjjz are definable. Then, Tj# is

IF (<p , 1) THEN Tifix ELSE Tjt/Jg FI

and, as each of the control variables is definable at a, Tjj is definable.

(iii) For any assignment i, l(Tjfi)[i] is equal to x^[/9] in the corresponding

run, but this is equal to Zj[§a*[i]], where x[0] is I(Ty,a)[i]. Since we have a

closed form for Xj in the iteration, Tjtfi is T(Tja,#<p), and, since our iteration is

definable, we can express this by r(TjA,(p). As each of the control variables is

definable at a, we can obtain our expression for Tjj with no n-place function

symbols / appearing and thus Tj pis definable.

•

Each of the converses to (i), (ii) and (iii) in Theorem 5.4.3 deserves indivi

dual attention because none of them holds in full generality. For example, defi

nability may be quite easily regained after an irreducible elementary D-chart D:

just consider the case where the variable is assigned a constant value in D.

32

Thus, the relationship of definability between Tjj and Tj>a is not as direct as the

one between Tja and Tjtp.

Theorem 5.4.4 Definability Acquisition for Variables

(i) If D is an irreducible elementary D-chart in which assignments to Xj are

independent of x;[a] and are either based on input variables, constant values or

definable variables, then Tjtp is definable.

(ii) If Dis an alternation where (l) xy[ft] = xy[02] and xy[ft] and Xj[fa] are

independent of x,[a] and definable, or where (2) x^ft] * Xj[fc], independent of

Xj[a], definable and the alternation predicate <p is such that all of its control

variables are definable at a, then Tjtp is definable.

(iii) If D is an iteration, k an iteration index, and (1) Xj[k] is independent of

Xj[a] and constant, or (2) x^[k] is independent of Xj[a] but has a closed form,

and the iteration is definable, and all control variables are definable at a, then

Tjp is definable.

Proof

(i) Terms preserve definability. Thus, if the assignments all involve either

definable variables or composite terms obtained from definable ones, the result

ia that Tjp is definable.

(ii) By assumption, Tj p and Tjtpz are both definable. Now in case (1) we may

define ritp as Tjjp and obtain definability independently of how ill behaved the

control variables of tp may be. As for case (2). since the branch taken does

affect our result, we define Tjtp as usually and just notice that definability is

regained as the control variables are assumed to be definable.

(iii) This case is quite analogous to (ii). In (1) we define Tjtp as the (defin

able) constant value Xj[k] and in (2) we use the standard est definition. Defina

bility is regained by our assumptions on the iteration.

33

Theorem 5.4.5 Characterization of Definability for Variables

(i) For an irreducible D-chart D. Tj>fi is definable iff the hypothesis (i) of

Theorem 5.4.3 or the hypothesis (i) of Theorem 5.4.4 hold.

(ii) For an alternation D, ritp is definable iff the hypothesis (ii) of Theorem

5.4.3 or the hypothesis (ii) of Theorem 5.4.4 hold.

(iii) For an iteration D, TjP is definable iff the hypothesis (iii) of Theorem

5.4.3 or the hypothesis (iii) of Theorem 5.4.4 hold.

Proof

Theorems 5.4.3 and 5.4.4 prove the "only if" part of this theorem. We shall

prove the "if part by induction on the complexity of D-charts.

Proving (i) is simple, because, given any irreducible elementary D-chart D,

it is always true that there exists a term which describes all the assignments

made to Xj in D, where we use the symbol x;- to represent TJitt. So if the assign

ments depend on Tjt*, and ritp is definable, then Tj,a must be definable. If those

assignments do not depend on Xj[a], then the variables occurring in this term

have to either be input variables, which are always definable, or definable vari

ables because TjiCl is so.

As for the proofs of (ii) and (iii), we need to carry out a simultaneous induc

tion.

Say that D is an alternation as in Figure 5.4.2 in which each branch is an

irreducible D-chart. We now look at the terms which describe the action of each

of the branches on Xj. If they are so that their value is equal and independent of

x[a] for all evaluations i, then the definability of Tjtp forces, as in (i), the desired

restrictions on the variables participating in the definition. If the values are still

independent of x[a] but they are not equal for all assignments i, then the defina

bility of Tjjp forces the control variables of cp to be definable at a and imposes

34

the constraint that each term representing the branches be definable as well. If

(any) of the values depends on x[a], then the definability of ritp forces the defi

nability OfTjA.

When we have an iteration as in Figure 5.4.3 with irreducible T-branch, then,

if Xj[k] is independent of Xj[a] and constant, TjiP will evaluate to that value,

which is, thus, obtained in a definable way. If Xj[k] depends on k but is indepen

dent of xj[a], then the definability of Tj$ forces the existence of a closed form

for Xj, the definability of the iteration and that of the control variables at a. The

last alternative introduces the further requirement that Tj#a be definable.

The rest of the proof for alternations and iterations is analogous to the one

above but an induction hypothesis is used to deal with branches, instead of using

the existence of the term obtainable from straight line code.

•

If tx rx are cst's and i'(xx xn) a ppf, then V(Ti« ••• • i"n) is a special

program performance formula (sppf).

Definition 5.4.6

For any program P, if ^P is an sppf with no special function symbols /, then

P is definably microanalyzable.

m

We are now at the point where we may characterize those programs whose

profile equations can be expressed without the use of any n-place function sym

bol/.

Theorem 5.4.6

P is definably microanalyzable iff (a) ^D = ^p, (b) for all exit points p in D

and any control variable Xj, Tjtp is definable, (c) all iterations are definable, and

(d) for every control variable and iteration a closed form for the variable exists.

35

Proof

The "only if part is proven by inductively constructing the cst's and the

ppf which represent P. The "if part is proven by induction; it uses the assump

tion ^D = ^p, Theorem 5.4.5 and the observation that the exit points of a con

struct are the entry points of the subsequent one.

•

The theorems of this section suggest several interesting remarks about the

nature of the preservation of definability for different types of objects. We see

that proving the preservation of definability for variables is essentially a top-

down process. In contrast, proving the preservation of definability for iterations

is a bottom-up process, as is the existence of closed forms and the preservation

of definability of the iterations. We have also seen that proving the satisfiability

of V'd = ^p mav De seen as a bottom-up condition which depends strongly on the

nature of the variables appearing in predicates.

Unfortunately, the class of definably microanalyzable programs is rather

limited. The sole assumption VD = ^p is quite a constraint. In [CabBl], we see

how we may deal with a wider family of programs by changing some of our syn

tactic constructs. The goal still is that of obtaining efficiently a representation

of program profile equations, but the complexity of the evaluation will no longer

be linear.

6. Conclusions

In this paper we have presented a new approach for the efficient generation

of program profiles. The approach is to build performance representations of

programs. From these l epresentations one obtains all the desired performance

information more efficiently than by using the program. A formal language in

which performance representations of programs can be expressed was intro

duced, and the semantics for it were also given. We then studied conditions

36

under which optimally efficient performance representations could be obtained.

Theorem 5.3.5 characterizes the family of programs for which our method

yields optimally efficient performance representations. It is seem that pro

grams need to satisfy conditions on the topology of their D-charts and/or on the

behavior of the predicates which govern iterations and alternations. Examples

5.3.1 and 5.3.2 show that in general we cannot expect to achieve much more

than what our interpretation function I allows us to achieve.

It is an open question whether the family of programs determined by

Theorem 5.3.5 is maximal if we consider all possible evaluation functions I which

operate in a one-pass left-to-right manner. This question is also open if we only

require I to have evaluation cost linear in the length of the expression to be

evaluated.

Subsection 5.4 deals with the problem of finding definable programs. In this

area it is not known for which recurrences one can have a decision procedure

which yields a closed form. In [CabBl] one finds a discussion on this subject as

.,wf.)l as some, results on closed forms for conditional recurrence relations.

7. Acknowledgements

I thank Domenico Ferrari for introducing me to this area of Computer Sci

ence, to Steven Muchnick for showing me different formalizations of program

semantics, and to the members of the PROGRES group for their useful com

ments and insights.

. *

37

8. Bibliography

[BohB6] Bohm, C. and Jacopini, G., "Flow Diagrams, Turing Machines and
Languages with only two Formation Rules," Cbmmunications of the
ACM 9(5) pp. 366-371 (May 1968).

[CabBl] Cabrera. Luis Felipe, "Syntax Oriented Analysis of the Run Time
Performance of Programs," ERL Memorandum MB1/30, University
of California, Berkeley (May 13, 1981). Ph.D. Dissertation

[Che76] Cheatham, Thomas E. and Townley, Judy A., "Symbolic Evaluation of
Programs. A look at Loop Analysis," pp. 90-96 in Proceedings ACM
Symposium on Symbolic and Algebra Computation, (1976).

[Che78] Cheatham, Thomas E. and Washington, D., "Program Loop Analysis
by Solving First Order Recurrence Relations." TR-13-78. Center for
Research in Computing Technology. Harvard University, Cam
bridge, Massachusetts (1978).

[Che79] Cheatham, Thomas E., Hoiloway, Glenn H., and Townley, Judy A.,
"Symbolic Evaluation and the Analysis of Programs," IEEE TYansac-
tions on Software Engineering SE-5(4) pp. 402-417 (July 1979).

[Coh74] Cohen, Jacques and Zuckerman, Carl, "Two Languages for Estimat
ing Program Efficiency," Communications of the ACM 17(6) dd.
301-308 (June 1974).

[Coh76] Cohen, Jacques and Roth, Martin, "On the Implementation of
Strassen's Fast Multiplication Algorithm," Acta Informatica 6 dd.
341-355(1976). ^

[End72] Enderton, H. B., A Mathematical Introduction to Logic, Academic
Press (1972).

[Fer7B] Ferrari, Domenico, Computer Systems Performance Evaluation
Prentice-Hall (1978).

[How7B] Howden. WiUiam E. , "DISSECT- ASymboUc Evaluation and Program
Testing System." IEEE Transactions on Software Engineering SE-
4(1) pp. 70-73 (Jan. 1978).

[Kin76] King. James C, "Symbolic Execution and Program Testing," Cbm
munications of the ACM 19(7) pp. 385-394 (July 1976).

[Knu71a] Knuth, Donald E., Mathematical Analysis of Algorithms, IFIP
Congress, LjubUjana (Aug. 1971).

[Knu71b]Knuth, Donald E.. "An Empirical Study of FORTRAN Programs,"
Software -Practice and Experience 1(1) pp. 105-133 (1971).

[Knu7B] Knuth, Donald E. and Jonassen. Arne T., "A Trivial Algorithm whose
Analysis isn't," Journal of Computer and Systems Sciences
16(3) pp. 301-322 (197B).

[Weg75] Wegbreit, Ben, "Mechanical Program Analysis," Cbmmunications of
the ACM 1B(9) pp. 528-539 (Sep. 1975).

	Copyright notice 1981
	ERL-81-48

