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ABSTRACT

DESIGN OF A MULTI-LANGUAGE EDITOR

WITH STATIC ERROR DETECTION CAPABILITIES

Mark R. Horton

Programmers who prepare programs interactively usually edit them in terms of text.

Those few who use source language editors are restricted to a single language for which

they have a tree structured editor.

The Babelset of programming tools is described. Babel has knowledge of the syntax

and semantics of many languages. A language description language is used to make it easy

to add a new language to the collection. Programs are represented as generalized parse

trees.

The Babel system includes an editor that presents a text-like interface to the user.

Commands utilizing the tree structure are possible, but need not be used. The user can be

unaware of the underlying tree structure. The editor incrementally checks the syntax and

semantics of the program and immediately notifies the user of errors. Human factors

involving temporarily incorrect programs, program formatting, and responsiveness of the

editor are addressed.

A prototype implementation has been built. Its design and characteristics are

described.
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CHAPTER 1

Introduction

1.1. The Problem

With current programming tools, the programmer spends most of his time in an edit-

compile-debugcycle. While developing or modifying a program, it is typical to have to make

several passes through the cycle just to "get the semicolons right*1 before real debugging of

the program can begin. The cycle usually includes the tedious process of getting a list of

error messages, reentering the editor, fixing a few bugs, recompiling, and repeating for the

next batch of errors. Much time is spent shifting from one phase to the next.

An approach receiving attention recently is the use of a language editor. A language

editor is an editing tool, replacing a text editor, which has access to information about the

language being edited. To make an efficient implementation possible, language editors usu

ally do not edit text directly, instead using a tree representation. Language editors have a

number of potential advantages over text editors.

(a) Errors can be detected, or even prevented outright, as the program is entered. There

is no need for the user to compile the program to get the syntax checked, or to make

sure that all variables are declared.

(b) Program-oriented structure operations are easier to implement correctly than in a text

editor. Although many good text editors have commands to reference such structures

as statements, sentences, and text containing balanced parentheses, such commands are

usually implemented by searching for a known, language dependent delimiter string

such as "end" or ")". They are usually fooled by comments and strings containing

the delimiter string being searched for.



(c) The editor can do a more intelligent job of elision. Most text editors elide (i.e., do

not display) lines that are above the top of the screen or below the bottom. If the

programmer wants to look at the statements that surround a large loop, there is often

no way to get both ends of the loop on the screen at the same time. When the tree

structure is known it becomes possible to manually [Teitelbaum 1979] or automati

cally [Alberga 1979] elide part of the program, replacing an arbitrarily large block of

code on the screen with an elision indication such as "...".

(d) Keeping programs in tree form can be useful in other parts of the system. There is

no reason to convert from tree to text and back upon each entry into or exit from the

editor. If the compiler works directly from the tree, its job is simplified (and sped up)

because it need not scan and parse the program. It is possible to edit the tree in place,

avoiding the customary copy when entering and leaving the editor.

(e) The editor can mark the parts of the tree that have been changed. This provides an

excellent environment for incremental compilation and for keeping histories.

(f) If a suitable tree representation is chosen, additional semantic information that the

compiler, editor, and other tools ignore can be stored in the tree. This allows a sym

bol table, generated assembly language code, and other semantic observations to be

kept in the tree.

Most of the existing language editors are for a specific language. To port the editor to

a different language, substantial modification to the program would be necessary. Those

few that handle more than one language have other problems. The editor described in [Wil

cox 1976] is written in an assembly level language, and requires substantial amounts of

reprocessing for cursor motion. The proposal of [Feiler 1980] use a formalism which is not

self-contained: external routines must be written and linked into the editor. Being able to

easily add a new language to the set available to the editor is a very desirable property.



The interface presented by many language editors to their users is based on the tree

being edited. The user must thoroughly understand the tree structure. This limits the user

* community of the editor to people who are able to understand the tree structure, usually

excluding non-programmers. Since the user of the system to be described here sees the

y text of the program on his terminal, and since text is straightforward to understand, an

interface which presents the user with the text is likely to be more easily learned than a tree

interface.

There are advantages to a text interface for experienced programmers, too. [Stallman

1978] cites a number of advantages of text editors over the tree oriented language editors

that existed at the time. Typical of the advantages cited is that a text editor allows the pro

grammer to format his program, including comments, as he sees fit rather than being

forced to use a standard layout. Also, a text editor allows the program to be temporarily

incorrect during multiple command operations such as adding a pair of parentheses,

whereas a tree interface usually prevents syntax errors from occurring, requiring a less

natural editing style. Finally, a text interface enables the user to have the same familiar

tool for editing programs that he uses for editing other kinds of text.

Both types of systems have their own advantages. The best of all worlds would be a

hybrid approach, having a user interface with all the simplicity and power of a text editor,

yet able to perform operations requiring a tree, such as checking for errors, or correctly

finding structurally defined portions of the tree. Such an approach is taken here.

»

1.2. The Properties of a Solution

1.2.1. Information Required

There are several kinds of language information a language editor requires. It must

have access to information describing the syntax of the language in order to build a tree to

work from, and to check for syntax errors. It needs the lexical structure of the language if



the user is to type text. (The template oriented approach of [Feiler 1980] does not need

the lexical information, since it insures that the user never types in tokens, other than

identifiers and constants prompted for by the system.) If the system is to check semantics,

it must have the semantic rules of the language.

1.2.2. Table Driven

The notation for this information should be high level, self-contained, portable, and

powerful enough to describe most modern programming languages. It should not contain

information irrelevant to the language being described. In the implementation, the

language dependent information should be all kept in one place, rather than scattered

about, embedded in various programs. A definition for a language should be free of

machine dependencies, so that it can quickly be ported to another environment.

A notation for description of languages should be completely self contained, so that

tables generated from the description can be the complete source of language dependent

information. This provides for a cleaner, more portable design. It also allows a user to

substitute his own version of a language, encouraging improvements to language dependent

information such as error detection and language dependent macros.

1.2.3. Erroneous Entry Possibilities

One important advantage to current text editors is that they permit errors. While

detection of errors by the editor is a valuable programmer aid, in a text entry environment

it is unreasonable for the system to refuse to accept the change until it is entered correctly,

since the change may be mostly correct. Many users make multiple-change corrections that

go through illegal states before entering a final, correct state. (Examples of such multiple

stage changes are moving a parenthesis, or adding a begin-end pair around ablock of code).

The tree structure underlying the implementation must behave cleanly in the presense

of errors. If a text-editor interface is to be presented to the user, programs that are syntac-

V



tically incorrect must be displayed exactly as typed, so that the user can correct them as

with a text editor. If the program is in an error state and a command is typed causing the

program to become correct, the editor must form a correct tree.

1.2.4. Well Engineered Error Messages

»/ Another important consideration, if errors are to be detected, is how to make the user

aware of the errors. Preventing errors outright is undesirable for reasons discussed above.

We feel that restricting the cursor position to the area before the first error, as done in

[Wilcox 1976] and [Morris 1981] is overly restrictive. Producing an error message on the

terminal screen for each error encountered is likely to annoy the user, especially when the

user is knowingly going through an incorrect state to get to a correct state; it would also

probably produce voluminous output, taking time and valuable space on the screen.

Notification of errors must be easily noticed by the programmer, yet low-key enough to not

get in his way.

1.2.5. High Degree of Incrementality

An editing system which checks syntax and semantics must do considerably more

work than a text editor. If a small change is made to the program, a very incremental sys

tem will recompute only a small amount of local information. A high degree of incremen

tality is important.

1.2.6. Shared Symbol Tables

" An implementation that checks semantics will have to keep a symbol table, to check

for proper use of symbols. Most implementations that use a formal semantic model are

based on attribute grammars [Knuth 1968]. In such an implementation, attributes are nor

mally copied around the tree liberally. Since a symbol table would be a very large attribute,

it is important not have multiple copies of symbol tables. The time and space requirements

of making such copies would be excessive. Some provision must be made for sharing the



symbol tables, while allowing for correct updating as the user makes changes.

One serious problem with the usual implementation of a shared symbol table (a

pointer to a static table) is the deletion problem: what to do if a declaration is deleted, or

the name is changed. Most current compiler technology is based on the assumption that

the compiler starts with nothing and builds up by adding one item (declaration, etc) at a

time. There is no provision for deletions.

The problem is even worse in the case of an editor based on an incremental parser.

Not only must the editor correctly handle deletions, but even determining that a deletion

has taken place is difficult.

1.3. The Babel System

This dissertation describes a set of tools called BabeL The most important of these

tools is the editor be. The interface presented the user by be is that of a text editor. The

implementation, however, keeps a parse tree representation of the program rather than a

text representation. This dissertation shows how to build a text interface as the front end

of a tree representation. The system checks for syntax and semantic errors, and reports

them unobtrusively to the user. Structure oriented commands can be implemented

correctly by making use of the tree structure.

The Babel system includes incremental evaluators for lexical, syntactic, and semantic

information. A table driven scanner is included, which can be used for subsections of the

program alone. An incremental parser for context free grammars, based on that described

in [Ghezzi 1979] checks the syntax after each line of input. An incremental attribute

evaluator, based on that in [Reps 1981] checks semantics as the program ischanged. These

checks can be partially or completely turned off by the user, to improve response time,

without affecting the text editor interface. (An explicit check command can be used, in

this mode, to check for errors.)
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Context free grammars are an almost universally accepted notation for specification of

syntax, and easily implemented subsets are more than powerful enough for most current

programming languages. Regular expressions are often used for lexical information, and

have moderate power. (They cannot handle lexically unusual languages such as FOR

TRAN, with its conventions for columns 1, 6, and 7, and its use of blanks.) Attribute

grammars [Knuth 1968] have the power to express the static semantics of most program

ming languages, and given a powerful enough notation for attribute evaluations, can handle

the static semantics of any programming language.

The Babel system uses a completely self contained notation for describing languages

called Language Description Language (LDL). LDL is based on the three formalisms

described above. LDL is a completely self-contained language which describes a large class

of languages, including LDL itself.

An expert language implementor prepares an LDL description for a language, and runs

it through a preprocessor to produce a set of tables. The editor uses these tables as a

language-dependent knowledge base.

LDL is very high level. The lexical and syntactic portions of a new language can be

brought up in a few hours, given a grammar for the language. Specification of semantics

takes considerably longer, but still requires less time than it would to write the front end of

a compiler,1 because of the high level of the attribute grammar notation. LDL encourages

highly portable language descriptions. Such descriptions would also be of use in the pro

duction of portable compilers.

Syntax errors are handled in Babel by building a tree which corresponds exactly to the

incorrect program typed by the user. Structural information near the root of the tree is

lost, but is quickly regained when the program is corrected. When this incorrect tree is

'A syntax-only description of Lisp was developed in under an hour. A similar description of Ada worked
after one evening. A description of Pascal powerful enough to detect undeclared variables and types took about
three days.
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displayed, the same text the user typed will appear. Most importantly, when another

change (producing either a correct program or an incorrect one) is entered, the parser will

treat the incorrect tree the same as a correct tree, producing a correct tree if the program

has been corrected, and reparsing little of the tree.

Error messages of all kinds (lexical, syntactic, semantic) can be attached to any node

of the tree. Nodes with error messages will be highlighted2 on the screen, pointing out the

error and its location quickly and quietly. (If the node is a nonterminal, its descendents

which are tokens will be highlighted.) The user can determine the cause of an error by

positioning the focus to the highlighted node and asking the editor for the text of the error

message.

Symbol tables are shared by building a symbol table one entry at a time, using a linear

linked list. This method arranges that incomplete versions of the symbol table are still

valid, and can be used for the construction of changed versions of the symbol table. The

deletion problem is handled by rebuilding the remainder of the symbol table from the point

of the change. (The symbol table entries themselves do not need to be recomputed, only

the parent nodes that link the entries together.) A hash table at the top of the list provides

fast lookup once the table is built. A symbol table building block is provided which is flexi

ble enough to be used not only for block structured languages, but for languages with other

scoping rules as well; yet the building block is high level and frees the language implemen-

tor from the details of constructing an efficient symbol table.

1.4. Results

The approach outlined here has been implemented to yield aworking editor. Students

have been voluntarily using the editor, which has kept statistics showing the amount of

2jt is assumed that the user has a terminal with some form of highlighting, such as bold, reverse video,
blinking, or underlining. The screen package that our implementation of be uses [Arnold 1980] ignores highlight
ing requests on terminals that cannot highlight, but could be modified to bracket highlighted text in some way,
such as puttinganglebracketsaround < <the highlighted text>>.
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work it had to do. In addition, an editing session on one particular Pascal program was

timed using various text editors and using be with various amounts of checking. For most

cases, a high degree of incrementality has been attained. Even so, the prototype editor is

several times slower than local production text editors, depending on the amount of check

ing done and the nature of the changes.

Syntactic checking is shown to be within reasonable efficiency constraints, being

roughly five times slower than vi [Joy 1980]. Semantic checking is somewhat slower, losing

a factor of about 15 when an executable statement is changed, and a much larger factor

(depending on the size of the program) when a declaration is changed. Automatic checking

can be turned off for the duration of some sequence of commands, or permanently, with

checks only by explicit user request, speeding up the process at the expense of some check

ing. It seems likely that a more careful implementation could improve the ratios consider

ably.

The remaining chapters of this document describe and motivate the Babel system, and

compare it to other systems. Chapter 2 describes some other language editors and com

pares them to Babel. Chapter 3 defines notation used in the other chapters. Chapter 4

shows the user interface, with an example session, and discusses the design of the particu

lar command language chosen. Chapter 5 describes the implementation of the editor.

Chapter 6 describes LDL and the implementation of the LDL processor. Chapter 7 con

tains some performance results, and lists some directions for future research.



CHAPTER 2

Previous Work

2.1. Introduction

This chapter discusses some of the research done by other researchers in the area of

language editors. In addition to several earlier language oriented editing systems [Teitel-

man 1978, Donzeau-Gouge 1980, Teitelbaum 1979b, Alberga 1979, Yonke 1975, Feiler

1980, Wilcox 1976], related research is discussed which develops techniques used and

extended in this dissertation for formal language definition [Knuth 1968, Geigerich 1979],

incremental parsing [Ghezzi 1979], and incremental attribute analysis [Demers 1981, Reps

1981]. A comparison is made between the other editing systems and Babel on each of

several issues, including the language (s) handled, lexical issues, comments, parsing

method, semantics, prettyprinting, editing style, incomplete or incorrect programs, whether

the system is screen-oriented, to what extent the system has been used, methods of elision

of part of the program for display purposes, preprocessors, and execution environments.

2.2. Teitelman

The Interlisp system [Teitelman 1978] is probably the most well known of the sys

tems containing Lisp editors, that is, tree editors that edit Lisp programs. Since Lisp pro

grams are intrinsically tree structured, with a very simple syntax, it is significantly simpler

to build an editor for Lisp than for most other languages. Such editors are common in Lisp

environments, although it has been argued [Stallman 1978] that text editors are superior to

tree editors even for Lisp. Interlisp has been very widely used since about 1970 on Tenex

and TOPS-20 systems.

10
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Tree editors can be characterized by their internal representation, which is a tree that

represents the syntactic structure of the program, rather than the characters, lines, or pages

that text editors use to represent program text. Interlisp edits Lisp S-expressions. (Since

S-expressions are so simple, this is easy to do for Lisp.) Interlisp does not know any seman

tics, nor does it know any of the syntactic forms embedded in S-expressions commonly

used in Lisp (such as cond, prog, or lambda). It is simply an S-expression editor, which

allows it to be used to edit data as well as program text.

This system has been tuned over the years to be convenient to use. It has a rich set

of tree editing commands, including "parenthesis changing*' commands which allow the

user to think in terms of adding, removing, or moving a parenthesis while actually making

a change to the internal tree. A "Do What I Mean" (DWIM) feature is called when an

error is discovered. DWIM has been tuned to recognize common mistakes and make a

correction that will often be what the user intended.

Interlisp is a Lisp programming environment That is, it is a single large program the

user runs continuously while developing a program in a particular language. There are

many other programming environments, most commonly for the languages Lisp, Basic, and

APL. More recently, programming environments for the language Ada have received con

siderable attention.

Probably the most interesting feature of Interlisp and its editor is the history list.

Each elementary change made by the user is recorded in a history list, allowing changes to

be undone and redone at will. After making a mistake, the faulty command can be undone

with the "undo" command without having to think of the command or sequence of com

mands necessary to undo it manually. The history list allows multiple commands to be

undone, all the way back to the beginning of the editing session. The user need not fear

losing any work because all commands which are undone can be redone just as easily with

the "redo" command.
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2.3. Donzeau-Gouge et.al.

The Mentor system [Donzeau-Gouge 1980] is a Pascal tree editor. It knows the syn

tax for the entire Pascal language, and can be programmed to handle the semantics. It is

teletype oriented, not using any CRT screen capabilities.

Mentor allows the user to think of the program as either a tree or text. There are

many tree oriented printing commands. When printing, a root and the maximum tree

depth to print can be specified. This causes the subtree with the specified root to be

printed, eliding (e.g. printing as "..." or "&") all portions beyond the specified depth. As

is the case with most tree editors, prettyprinting is done on the fly.

Program text is entered to Mentor by telling it that one wants to input a particular

nonterminal at a particular point. After checking to see if that nonterminal is legal at that

point, Mentor prompts the user for that nonterminal, which is parsed in a goal-driven

manner. Input text which can be parsed to exactly that nonterminal must then be entered.

No provision is made for unstructured input (input that is not a subtree but rather agroup

of neighboring branches, such as "+3" or "end; begin") or incorrect input. Thus, the

editor can guarantee that the program is both complete and correct at all times.

Mentor commands are very powerful and concise, much like those of [DEC 1972]. A

strong pattern matching capability is defined, utilizing the tree structure. Changes to exist

ing programs that do not involve new text are made with arather low level set ofopera

tions, that correspond roughly to the primitive operations that can be made on trees (prune

subtree, replace leaf, exchange two children, etc.).

2.4. Teitelbaum

The Cornell Program Synthesizer [Teitelbaum 1979b, Teitelbaum 1979a] is atree edi

tor for a subset of PL/I called PL/CS. It runs on aTerak personal microcomputer, and is

in use in introductory programming classes at Cornell. A more recent version runs under
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the UNIX1 operating system on a VAX2.

The Synthesizer is screen-oriented and makes full use of the hardware available. It

knows both the syntax and semantics of PL/CS, with emphasis on the syntax. When the

user makes a semantic error, such as using an undeclared variable, the incorrect use is

highlighted on the screen. Syntax errors are not possible.

Input is not textual, but rather consists of a sequence of template building commands.

Each production in the grammar has a corresponding command to create a template from

that production. For example, the command .ite will create an if-then-else node at the

current location in the tree, leaving the condition, then pan, and elsepart as nonterminals to

be filled in later, and placing the focus at the condition This program construction stops at

the expression level, allowing expressions to be typed in and parsed normally.

Since the user does not type in the program as it appears on paper, but rather builds a

tree, the tree always corresponds to a syntactically correct PL/CS program. There is no way

to represent a syntactically incorrect program, and hence syntax errors cannot occur.

(Incorrect expressions are rejected immediately.) A program can be incomplete but not

incorrect, that is, there can be nonterminals which have not been expanded, but no syntax

errors are possible.

Such an editor forces a totally different editing style on the user who is used to a text

editor. Programs cannot easily be entered from a handwritten listing, but must be con

structed a node at a time. Changes cannot go through intermediate states with syntax

errors. (Temporary introduction of errors is a widely used technique with text editors. For

example, moving a sequence of statements inside a begin-end block is usually done by

deleting the end and adding another end after the affected statements.) In the synthesizer,

'UNIX is a trademark of Bell Laboratories.

*VAX is a trademark of Digital Equipment Corporation.
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many changes which make sense textually cannot be done with any straightforward com

mand. For example, using a text editor, changing an if statement to a while statement in a

language such as C can be done by a one word substitution, since the two forms differ only

in the keyword used. The synthesizer would require the body to be deleted into a logical

register, the if header deleted, a new while header typed in, and the body restored from the

register underneath the while node.

There are two forms of elision in the Synthesizer. The more straightforward method

is to elide anything more than a certain number of lines away from the focus. (This is the

approach taken by most screen text editors.) The user can also manually elide subtrees by

positioning the focus at the root of the subtree and pressing the elide key, causing that sub

tree not to be displayed. A second press undoes the elision.

An unusual aspect of Teitelbaum's work is the way it handles comments. Comments

in PL/I and in PL/CS begin with "/•" and end with "*/", and may appear between any

two tokens. The synthesizer, however, views comments as just another syntactic form:

<stmt> ::- /* <text> V
<stmt>

The <text> is treated like the text of a string, and may be edited using operations similar

to those of a text editor. The comment may not be more than one line long. Multiple sin

gle line comments may appear in sequence before procedures.

The <stmt> on the right hand side is viewed as a child of the <stmt> on the left

hand side, and indented accordingly by the prettyprinter. A similar production exists for

declarations, and acomment is requiredby the grammar at the beginning of each procedure.

A benefit from this structure is that the right hand statement can be elided, effectively

replacing abulky statement on the screen with aone line description ofwhat it does. This

rewards users for using short, descriptive comments.

'J,

r*
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2.5. Alberga, et. al.

The LISPEDIT system [Alberga 1979] is a complete Lisp programming environment.

It is quite different from a conventional Lisp environment such as Interlisp. Rather then

merely giving the user tree manipulation commands, the user sees the program largely as

text. It is screen-oriented, and runs on IBM hardware.

The system uses an LALR parser and a grammar including syntactic forms such as

cond, for, and prog. To add to a program, text is typed in, a line at a time, and parsed

incrementally. Any expected right parentheses are automatically added by the parser, and

right parentheses which are typed in are interpreted as commands to move up in the tree,

thus allowing the user to type in the program as it is written on paper.

The display is prettyprinted according to built-in Lisp prettyprinting rules and a prior

ity elision algorithm which favors the printing of branches in the tree that are closer to the

focus. Every time Uie tree is changed or the focus is moved, the display is prettyprinted.

This automatic elision and reprettyprinting cannot be turned off or controlled by the user,

which makes it suitable primarily to high speed environments such as the 50K Baud IBM

environment. Comments are viewed as footnotes to a token. The prettyprinter prints them

wherever there is space: to the right, on the previous line, or at the bottom of the screen

with a footnote-style marker.

Erroneous syntax is possible in the tree. The offending tokens are made into error

nodes, which are treated similarly to comment nodes, and placed in the tree to the side of

the nearest correct node. When the next change is made, the error nodes will be rescanned

and reparsed to produce another chance at a correct parse. Allowing errors to be in the tree

gives the user much of the power of a text editor that is missing in many tree editors.

LISPEDIT knows the full semantics of the IBM dialect of Lisp. It detects, for exam

ple, undeclared variables, and has a convenient command to declare such a variable without

moving the focus. An interpreter and compiler are also built into the system, along with a
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pictorial execution mode for debugging (showing Uie code being executed as it is run).

LISPEDIT is a programming tool intended for use with large software projects. It has been

used to develop itself and other large Lisp projects at IBM.

2.6. Yonke

Yonke's 1975 Ph.D. dissertation [Yonke 1975] describes a true language independent

tree editor, called PCM (Program Constructor and Modifier). The editor uses a language

description formalism to describe the syntax and alimited amount ofUie semantics of the

language in question.

PCM is not screen-oriented. It was influenced by Interlisp, in which it was imple

mented. It gives the user aset oftree-changing commands such as insert before, insert after,

replace, and delete, which are appropriate for the general trees in the representation. The

input is typed by the user as it is written on paper, and parsed by agoal-driven mechanism

which appears to the user to be similar to that in Mentor.

An unusual wrinkle of PCM is that it does not use the traditional context free gram

mar for syntax definition. Instead, it uses ahigh level formalism which resembles SNO-

BOL patterns, with ordered sequence, alternating sequence, bracketed sequence, and repeating

sequence as the building blocks. Bracketed sequences are not strictly necessary, since they

are aspecial case ofordered sequences, but were included to facilitate error recovery.

This representation is much easier for the language implementor and the user to deal

with than an LR parse tree (which relies on recursion and chain productions that the user

would not ordinarily want). It is not nearly so well understood as context free grammars,

and is vulnerable to such problems as the order of productions being significant, and the

need to back up.

The semantics developed by Yonke are limited but useful. PCM builds a symbol

table suitable for a block structured language and detects undeclared variables. It also
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attempts to discover variables which are used before they are set Since this information

cannot always be determined at compile time, the diagnostic given is a warning. The

semantics are specified in the formal description as notes attached to productions. For

example, "(NEW ACCESS NODE)", indicates entry to a new scope.

While Yonke went far toward forming a language independent editor, he did not

address lexical issues or comments at all. Tokens are scanned by the Lisp parser, and com

ments are not allowed in programs edited by PCM.

2.7. Wilcox et.al.

The CAPS system [Wilcox 1976] is an editor/interpreter used for small subsets of

several programming languages, including FORTRAN, PL/I, and COBOL. The system

checks the syntax and semantics of the program, as it is typed in, after each keystroke.

When an error is found, the system leads the user through a series of possible corrections,

based on the underlying grammar. CAPS is not a tree editor. There is no tree representa

tion kept, only a text representation, so the interface presented is that of a text editor.

A small degree of incrementality is achieved by saving the state of the translator at

intervals and recompiling from the last saved state before the change. The editor maintains

the invariant that a compilation is in progress, which has progressed to the location of the

cursor. Since the states are saved for every character close to the cursor, and further apart

toward the beginning of the program, and the recompilation stops at the cursor, only a

small amount of recompilation is typically done for a local change. Moving the cursor for

ward requires recompilation of areas moved over. Moving the cursor backward causes

information to be thrown away. The disadvantage to this approach is that when leaving the

editor, or making a large jump forward, the entire remainder of the program must be

recompiled

CAPS uses a state transition mechanism to handle the scanner, with power compar

able to that of the Babel scanner. The grammar is hand-coded using recursive descent in an
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assembly-level language, which also updates the symbol table. No mention is made of Uie

structure of the symbol table.

In order to keep Uie tables small, Uie vector of previously saved states holds only the

changes from the previous state. Because of the extremely small limits imposed by the

computer on which CAPS runs, only very small programs could be handled.

Since CAPS asserts that a correct compilation has occurred to the left of Uie cursor, it

does not allow the user to move the cursor to the right of the first error in the program.

Any keystrokes which would go past the error are ignored.

Wilcox and his group tested CAPS on introductory programming students, and found

the response to be much too slow to be usable in practice. Since the computer system

often had 500 users logged in, this could have been due to the heavy load on the system.

It also could have been because of Uie lack of full incrementality.

2.8. Feiler and Medina-Mora

Feiler's and Medina-Mora's work at Carnegie Mellon University [Feiler 1980] is a

recent investigation involving a multi language tree editor, called IPE (incremental pro

gramming environment). The editor is in many ways similar to [Teitelbaum 1979a].

The user program is entered using aconstructive language. Teitelbaum stops at the

expression level and instead parses; IPE carries the construction method to all levels of the
tree. The editing operations are tree oriented. The user program can at any time be

incomplete, but never incorrect.

IPE is an editor generator. The system is not merely an editor, but also includes an

incremental (at the procedure level) compiler and loader. Agrammar is entered for agiven

language, along with a set of externally compiled procedures written in any convenient
implementation language. After leaving a procedure, a routine is called to translate the

procedure and check for errors.
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This system, like the Teitelbaum system, places an emphasis on the tree structure.

There is no scanner or parser. The only terminal symbols that are input are those which

are not keywords, e.g. identifiers and constants. These are explicitly marked as such by the

user. The relationship with text is through an unparser that displays text to the user. The

unparser includes a set of rules for prettyprinting.

2.9. Eickeletal

The MUG2 compiler generating system [Geigerich 1979] provides an excellent

environment for the construction of multi-pass compilers. A high level description of the

straightforward aspects of a language (the lexical and syntactic aspects, and portions of the

semantics) is input to a preprocessor. This produces a program that can be link edited with

external semantic routines provided by the language implementor to produce a compiler.

The language description consists of a lexical description, an LALR(l) or LL(1)

grammar specifying the syntax, a string-to-tree grammar used to produce an abstract pro

gram tree, an attribute grammar description of the semantics, tree optimization rules, and

templates for intermediate code generation.

The lexical specification is regular expression based, and similar in power to that of

Lex [Lesk 1979], but the specifications are somewhat more readable. The context free

grammar is conventional and merged with the string-to-tree grammar. A reduction by a

given production builds a tree section according to the string-to-tree rule corresponding to

that production. The attribute grammar and later phases work with the abstract tree instead

of the concrete parse tree (which is never constructed), and call external action routines

written by Uie language implementor in Pascal or PP440. (PP440 is a language specific to

their particular computer.)

The MUG2 system makes compiler construction much easier and faster than conven

tional environments that have only scanner and parser generators. It automates many tedi

ous and error-prone portions of the compiler (including information propagation and stack
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handling) while giving the language implementor the power of an existing programming

language for the less straightforward work. It also encourages modularity by making the

implementor communicate with the rest of the compiler through parameters, rather than

global variables.

However, Eickel and his group have made several design decisions which, while

correct in the context of a compiler generator, are not compatible with an interactive, incre

mental, entirely table driven environment such as Babel. For these reasons, nothing in

Babel has been taken directly from MUG2, although many aspectsare similar.

The MUG2 system, since It is geared to compiler production, throws away informa

tion from phase to phase that is not needed in later phases. Information thrown away

includes lexical information such as white space and comments, and the parse tree. In

order to reconstruct the source from the internal representation, and to parse incrementally,

this information must be present in the internal representation.

Another problem, for our purposes, is the use of externally compiled routines.

MUG2 is a compiler generator which produces a separate compiler for each language. While

an editor generator is a possibility, we rejected it in favor of a completely table driven editor,

to increase the portability of the language descriptions, and in order to produce a cleaner

design. Another possibility would be to load binary absolute or relocatable code dynami

cally into a running program. This approach has even more severe implementation and

debugging problems. Instead, Babel uses tables generated from acompletely self-contained,

formal description notation based on Lisp.

2.10. Ghezzi and Mandrioli

The incremental parsing technique used in our system is basically that in [Ghezzi

19791. Some simplifications are made which dramatically cut down on the bookkeeping

overhead without changing Uie overall character of the method.
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The Ghezzi method starts with an LR parse tree for a string w - xxzyy, and a new

string I to replace z. (3c and y are one token ofcontext in each direction.) The strings of

symbols (nonterminals and terminals) a and j8, where a—'x and 0->V, are determined

from a set of so-called "threads" the method maintains. (In the terminology of this paper,

a is the left firewall, and 0 is the right firewall) Then the string of symbols axzyp is parsed

using an almost conventional LR parser, with conventionally generated LR tables from a

slightiy modified grammar (all nonterminals are also terminals). The modification to the

parser arranges for the reduce function to build a new parse tree node for the new nonter

minal, as the parent of the subtrees from Uie semantic stack corresponding to the symbols

on the right hand side of Uie production, and to push the new node on the semantic stack.

Ghezzi's method works on the class LR(l) f\ RL(1), which encompasses most prac

tical LR grammars. It also works with an LALR(l) parser on LALR(l) f\ RL(1) gram

mars, and with SLR(l) on SLR(l) f| RL(1) grammars. It can be implemented directly

usingYACC [Johnson 1978].

The simplifications we have made involve the threads and the LALR tables. GhezzFs

paper describes two "threads" kept in each node, which always point to the next node in

Uie firewall in both the forward and backward directions. (GhezzTs "threads" are not con

ventional threads, since they take up two extra fields in each node, rather than using other

wise null fields as conventional threads [Knuth 1973] would.) The forward "thread" of a

node is defined to reference either (a) its left sibling (if one exists), (b) Uie left sibling of

the closest ancestor that has a left sibling (if such an ancestor exists), or (c) a special

"null" node. The backwards thread is symmetrically defined. (Ghezzi views forward (left)

and backward (right) as toward Uie front and back of Uie tree, respectively.)

Ghezzi does not assume a node contains pointers to its parent, left sibling, and right

sibling, although either the left or right sibling would presumably be part of Uie tree

representation. If such node pointers are part of the tree structure, as in Babel, the
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"threads", as defined above, are easy and fast to construct when needed and need not be

maintained. Since either the left or right sibling will already be present, at most two extra

fields are needed, requiring no more space than the two "threads" in Ghezzi's method.

Such extra fields are often useful for other purposes, so this may actually result in a space

savings. The major benefit, however, comes from not having to maintain Uie "threads";

saving overhalfof the code described in Ghezzi's paper.

The other simplification is to use the unmodified tables from the unmodified gram

mar. Instead, the parser is slightiy changed to allow nonterminals to appear in the input,

simulating the last part of areduction that leads to that nonterminal (e.g. application ofthe

goto table).

A later paper [Ghezzi 1980] improves on this method by finding anonterminal, A,

such that the entire changed area is below Ain the tree. None of the tree structure above

Aneed be reparsed or rebuilt. (In effect, the method described in [Ghezzi 1979] uses the

root of the tree as A)

2.11. Research on Attribute Grammars

There are a number of formal techniques available to describe semantics [Knuth

1968, Knuth 1973, Ledgard 1977, Wegner 1972, van Wyngaarden 1975]. All of these tech
niques have serious drawbacks, either from lack of expressive power, or necessary

inefficiency of any implementation.

Several recent implementations based on formal semantic descriptions have used the

notation of attribute grammars [Knuth 1968, Knuth 1973]. While this notation is lacking in

the power to describe runtime semantics, it is well suited to implementations because it is

possible to produce asystem with only asmall loss in efficiency over ahand-coded system.3

According to Harald Ganzinger iGanzinger 19801, the best attribute grammar based systems lose only a
factor of 2 or 3 to hand-coded systems.

**
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The attribute grammar notation is based on assigning a fixed number of attributes to

each token and nonterminal in the grammar. Each attribute has an evaluation function used

to compute its value. The only arguments these functions are allowed are other attributes

of symbols in Uie same production. Since each nonterminal instance in a parse tree will

appear in two productions (on the left hand side of one, and the right hand side of another,

corresponding to the productions below and above it in the tree) it is possible for any given

attribute to be evaluated in either production. For consistency, attributes are required to be

either inherited (evaluated in the production above) or synthesized (evaluated in Uie produc

tion below). Intuitively, inherited attributes are passed down the tree, while synthesized

attributes are passed up.

The area of attribute grammars is currently a very popular research topic, with a large

number of papers published in the last decade. (See [Raiha 1980] for a comprehensive

bibliography.) The field is still only partially understood, and most research in the area is

aimed at the automated production of compilers. A major problem in Uie field is deciding

in what order to evaluate Uie attributes. Since symbol tables are treated as attributes,

another problem is avoiding having to copy symbol tables (which are large objects) up and

down the tree.

Only very recently [Demers 1981, Reps 1981] has there been any attention to Uie

problem of incremental attribute evaluation, which is required in an interactive editing sys

tem such as Babel. The Reps paper solves some of the problems of incremental attribute

evaluation nicely, and Babel has built upon it. His method was designed with the Cornell

Synthesizer in mind, and required adaptation for use in an incremental parsing system.

2.11.1. Problems with Attribute Grammars

In producing any system based on attribute grammars, one must be very careful to
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have a sound theoretical model. For example, circular grammars4 should be detected and

rejected.

It is also important not to waste any attribute evaluation effort. Any system that

reevaluates the same attribute more than once during a single error check is wasteful. Such

wasteful reevaluations are quite possible in a careless system design. Forexample, in figure

2.1, evaluating the attributes in depth-first order could produce the evaluations ofa, b, d, e,

..., c, b, d, e, ..., causing double the number of evaluations that are needed.

In an incremental system, it is also important to evaluate only those attributes that

must be reevaluated. If a change is made to an executable section of a program, usually

only that statement or expression needs to be reevaluated. Yet, which a declaration is

changed, the entire scope of that declaration must be checked for new errors or correction

of old errors.

In a typical attribute grammar, the attribute passed up and down the tree most often is

a symbol table. Declarations build a symbol table, one entry at a time, and pass it up the

Figure 2.1. Example of Non-Optimal Propagation5

«A circular attribute grammar is one where an aitribute can depend on itself indirectly, thus making an
evaluation order impossible to find.

*This example is from lReps!981al

-
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tree to the root of an executable section of the program. It is then passed down the execut

able subtree to the leaves, where it is used to look up identifiers. Symbol tables are usually

large, and the attribute grammar formalism requires that each attribute be copied at each

step in the tree. Such copying clearly makes inefficient use ofboth time and space.

Some method of sharing symbol tables among attributes is needed. The simplest

solution would be to have astatic symbol table, and to pass a pointer to it around the tree.

Such a solution is, in effect, implemented in most compilers, and is suitable to attribute

grammar driven compilers as well.6

Unfortunately, this method does not work with incremental systems. To see why,

consider the deletion problem, in which the declaration of an identifier is deleted. A sys

tem based on a static symbol table will have attribute rules for declarations which add the

semantics of a declaration to the symbol table. There can be no rule for what to do when a

declaration is deleted, since rules are defined only for branches of the tree that exist. There

is no way to include a rule on a production to delete the symbol table entry, since the pro

duction it goes with is no longer a part of the tree. As a result, the entry for the deleted

identifier will remain in the symbol table, and uses of it will be incorrecUy considered

correct (if there were no other declarations of that identifier) or incorrectly scoped (if there

was a declaration of the same identifier in an outer scope).

Since symbol tables are such an important part of Uie semantics of programming

languages, it is important to provide a high level symbol table facility in any system han

dling semantics. Not only does the hand-coding of Uie symbol table produce a faster sys

tem, but ahigh level interface means that the language implementor can produce aworking

implementation more quickly, since it is not necessary to code and debug details of the

symbol table implementation.

*For example, the MUG2 system [Geigerich 19791 allows the implementor tomake non-local references to
a global symbol table pointer.
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However, the scoping rules of languages differ. Some languages are block structured.

Others have different symbol tables for different kinds of identifiers. For example, record

fields are usually drawn from different pools than ordinary variables. In order to accurately

represent such rules, a symbol table tool must not be overly inflexible. It must be possible

to convenientiy represent Uie symbol tables of block structured languages such as Algol 60

and Pascal. Babel's symbol table building block, described in section 5.8, is a solution to

these problems.

2.12. Reps

Reps [Reps 1981] has begun to investigate algorithms for incremental evaluation of

attribute grammars, in preparation for amulti-language version of the Cornell Synthesizer.

Reps assumes the tree is kept "prepared for propagation at the editing cursor". Preparation

consists of keeping either a characteristic subordinate graph or characteristic superior graph

available on each node in the tree, depending on whether the node is below or above the

cursor, respectively. These graphs summarize the attribute activity below or above the

node to which they are attached. The characteristic subordinate graph of a node n is the

graph (V,E) where V is the set of attributes of the node n, and e-(vl,v2) € Eiff v2
depends on vl indirectly by some chain of dependencies below the node n. The characteris

tic superior graph is similarly defined for dependencies above the node n.

A graph, M, of attributes needing evaluation and their interdependencies is main

tained by the algorithm. (M is always asubgraph of the interdependency graph for the

entire tree.) The edges of Mare of two kinds: direct edges representing direct dependencies,

and path edges representing indirect dependencies.

In Reps' algorithm, all changes are assumed to consist of grafting or pruning asubtree

at the editing cursor. When achange is made, Mis initialized to be the union of the
characteristic subordinate graph and characteristic superior graph at the editing cursor. An

attribute to evaluate ischosen from the vertices of Mthat have in-degree zero.
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After evaluation, if the value of the attribute has changed, and if there are any path

edges leading from the attribute vertex in M, Mis expanded to account for more attributes

which must now be reevaluated. The expansion consists of taking the union of the depen

dency graph Dip] for Uie appropriate production, and Uie appropriate characteristic graph of

the children or parent node. (The production and graph chosen are either the production

above the node or below it, and the superior or subordinate, depending on whether the

attribute is inherited or synthesized.) Edges added are direct edges if they came from the

dependency graph, or path edges if they came from the characteristic graph.

Since the tree mustbekept prepared for propagation at the cursor, when Uie cursor is

moved, it is necessary to recompute some characteristic graphs. For each single cursor

motion to a node adjacent in the tree, these computations can be done in constant time.

2.13. Stallman's Letter

Richard Stallman wrote a letter to Computing Surveys [Stallman 1978] arguing that

text editors are superior to list structure editors in a Lisp environment. He cites eight

advantages of text editors. It is our claim that while a user of Babel is actually editing a

tree structure (no text copy is kept) all of the problems listed by Stallman have been

solved.

1) The user can specify any style of indentation and the system will never override it.

2) Comments are easily stored and formatted as the user likes them.

3) The user can create unbalanced parentheses while editing a function.... The user can

also move, delete, or copy blocks of syntactically unbalanced text.

4) The editor can provide commands to move over balanced objects or delete them.

5) A text editor can support extended syntax. For example, ... TOO is equivalent to

(QUOTE FOO).
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6) A text editor can be used for languages other than Lisp, including English.

7) With a structure editor, temporary semantic bugs can be dangerous. In editing the

system or the editor, one cannot introduce a bug one moment and fix it the next

without risking acrash. But in editing text, changes take no effect until the user gives

the command.

8) The editing commands most natural for use on a display terminal are those whose

meaning is obvious in terms of the displayed text. A data structure oftext is natural

for them, but implementing them in astructure editor would be very difficult. There

are few screen-oriented structure editors.

2.14. Comparison of Babel with Other Systems

This section compares elements of various recent program editors. See Figure 2.2 for

asummary. In the figure, "yes" means the feature is provided, "no" means the feature is

not addressed, and "n/a" means it is not needed. Other comments are explained in more

detail in the text. •

2.14.1. Language

Most of the program editors are for asingle language. Even though PCM [Yonke
1975] and CAPS IWilcox 1976] are among the oldest projects, they are truly multi-language

editors. Most of the authors of recent single language editors appear to be unaware of
PCM. CAPS has virtually escaped attention, in spite of its description in the Communica

tions of the ACM. PCM was tested only on Pascal. CAPS was tested on small subsets of
Fortran, PL/I, and Cobol. IPE iFeiler 1980] was tested on adialect of Ccalled GC. Babel
has apartial syntax and semantic checking implementation for Pascal, a full syntax and
semantic checking for Asple [Cleaveland 1973], and syntax checking implementations of
Ada ttchbiah 1980], LDL (see chapter 6), Rigel iRowe 1979], Lisp, and asubset of C

[Keraighan 1978].
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PADC PL/CS LISPEDIT PCM IPE Babel
Subject

Author

Interlisp

Teitelman Wilcox

etal.

Donzeau-

Gouge

elal.

Teitelbaum Alberga

etal.

Yonke Feiler Horton

Date 1970 1976 1979 1979 1980 1975 1980 1981

Language Lisp Multi

(PL/I)

Pascal PL/I Lisp Multi

(Pascal)

Multi (C) Multi

Lexical Lisp hand

coded

tables

hand

coded

hand

coded

Lisp Lisp atoms n/a Lexreg.
expr.

Comments Lisp
S-expr

yes on nodes in syntax footnotes no no textual

Syntax S-expr recursive

descent

some parser grammar,

no parser

LALR patterns grammar,

no parser

LALR

Semantics tt run time some some full full some fuU

external

varies

Pretty

printing

Lisp rules
on the fly

text editor Pascal

Rules on

the fly

simple
rules from

grammar

priority,
on the fly

general,
on the fly

rules in

grammar

rules in

grammar

Input parse goal
driven

text editor parse goal
driven

construe*

ted, exprs

parsed

text,

incr parse

parse,

goal driven

constructed text

Incomplete? no yes no yes no no yes no

Incorrect? no yes no no yes no no yes

Screen no no yes yes yes no yes yes

Degree of Use heavy light some heavy some none new new

Elision by level no by level manual by
distance

from

focus

first & last

children

no off-edge or
priority

Preprocessor no no no no no no no no

Compiler yes no no no yes no yes no

Interpreter yes yes no yes yes no no no

Debugger yes yes no yes yes no yes no

Figure 2.2 Summary of Recent Program Editors

2.14.2. Lexical Scanning

Few of the systems address the lexical issues that vary so much from language to

language. The single language systems all have hand coded scanners, if they have scanners

at all. PL/CS and IPE do not need scanners since the user explicitly delimits all input.

(PL/CS does scan and parse expressions using conventional methods.) PCM uses the Lisp

parser to do the scanning. CAPS uses a state transition matrix based on regular expres

sions. Babel is driven by tables generated by Lex.
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2.14.3. Lexical Comments

This is another area that has been largely ignored by the literature. In practice, being

able to place comments in aprogram is essential for aprogramming tool to be useful.
Some systems simply do not allow comments. Interlisp treats comments as aspecial form
of Expression, as do most Lisp systems. PL/CS considers comments to be apart of the
syntax of PL/I. LISPEDIT views comments as footnotes attached to aspot in the program,
marking them with afootnote marker, and displaying them where space permits. Mentor
stores comments as attributes of nodes in the abstract tree, nagging only whether they came
before or after the node. Babel treats comments as part of the text of the program, attach

ing them in the tree to the following token.

2.14.4. Syntax and Parsing

The Lisp systems use astandard Lisp parser, except for LISPEDIT which uses an
LALR(l) parser. The constructive systems PL/CS and IPE do not need to parse, since the
user is building structures. PL/CS does parse expressions to cut down on tedium. Mentor
uses an unidentified goal-driven parser. PCM uses atechnique that is closer to pattern
matching than parsing. CAPS parses with recursive descent procedures, written in aspecial
assembly level language that the system interprets. Some degree of incrementality is
present in CAPS due to the preservation of astate vector urt the possibility of backing up
to aknown state and starting from there. Babel parses incrementally using an LALR(l)
parser.

2.14.5. Semantics

Some of the systems (Interlisp, PL/CS, LISPEDIT) are complete programming
environments, and have the semantics hand coded for the particular language, both at com
pile time and run time. IPE uses hand-coded, externally linked procedures called whenever
auser procedure that has been changed is exited. Mentor, PCM, and Babel are editors and
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attempt varying degrees of semantic analysis. Mentor does not do semantic checking
automatically, but Pascal-specific semantic routines to do such things as program transfer-
mations and error checks have been written in atree-oriented specialized language caUed
MENTOL. PCM does limited semantic checking, suitable mainly for catching undeclared
variables in block structured languages. Such checking is probably the single most useful
check that can be made. CAPS provides simple commands in the parsing language for
manipulating the symbol table, and has apowerful CAI error diagnostician to help apro
grammer find the cause of the error. Babel provides an attribute grammar based language
so that the implementor can check as much or as little as desired.

2.14.6. Prettyprinting

Most of the tree editors store only trees and cannot remember how the user originally
indented the program. They prettyprint the program, or asection of it, every time the pro
gram is redisplayed. Such an approach is very useful in practice, since it prevents users
from deluding themselves by mismatching brackets. However, users of text editors are
used to their own styles and may have difficulty adjusting to an enforced style. Often, there
are problems with prettyprinting comments, and with unusual situations involving very long
or short lines. Whether the ability to format one's program as desired is good is ahighly
emotional subject See (Sandewall 1978] and Stallman 19781 for both sides of this issue.

The Babel system takes anew approach by giving the user all the flexibility of text
while keeping only atree representation. It is our claim that all the disadvantages cited in
IStallman 19781 are technically solved by Babel, providing an interface with none of the
disadvantages of atree editor, yet with many of the advantages. Babel includes prettyprint-
ing rules in the language descriptions, which can be used to drive aprettyprinter.
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2.14.7. Form of Input

Most of the systems allow the user to textually type in portions of the program that

are to be changed, with some restrictions. Mentor requires the user to specify which non

terminal is being entered. CAPS keeps a text representation of Uie program to which the

user appends with ordinary text editor commands. Interlisp, Mentor, and PCM in effect

incrementally parse by figuring out where to put the new trees generated. The parsing tech

niques used are goal driven, however, and so do not allow insertion of arbitrary text, such

as "begin ; end" Babel and LISPEDIT do true, LR incremental parsing, and allow arbitrary

changes to the program.

The constructive systems PL/CS and IPE take a completely different approach, requir

ing the user to build the tree structure one node at a time. Whether such a system is

effective remains to be seen. Only PL/CS has been in production use, primarily by intro

ductory programming students who have never used a text editor, and it does parse expres

sions. In the author's opinion, a well designed constructive system could cut down on the

number of keystrokes typed by an experienced programmer, and possibly cut down on

input errors, but would be substantially more difficult for anew user to learn. Many of the

advantages of a template based system can be added to Babel in the form of language

dependent macros, as discussed in chapter 4.

2.14.8. Style used to Change a Program

The commands used to make changes to a program differ dramatically among the

different editors. Consider, for example, the program fragment:

a:— b;
return c;

which the user wishes to make conditional:

If b < 0 then

begin
a:— b;
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return c;

end;

In Mentor, and PCM, it is necessary to delete the two statements (presumably into a

logical register to avoid retyping them). Then the user textually enters the code being

added:

if b < 0 then
begin
end;

Finally, the deleted text is replaced into the program between the begin and end

In Interlisp, commands exist that make changes to the tree structure that appear to

move, add, and delete parentheses. These commands can be used in the above example to

avoid retyping of text.

In PL/CS and IPE, the change is even more tree-specific. The user would delete the

two lines into a logical register, as before. Then nodes for if, <, variable, and constant

are created manually. (The begin end nodes need not be manually entered because the sys

tems always provide such brackets where they are options.) The cursor is then moved from

the 0 through the tree to the empty statement sequence between the begin and end.

Finally, the deleted two lines would be putback into the tree.

In Babel, as in any text editor, the change is very simple. The cursor is positioned

above the assignment, the if and begin lines are entered, the cursor is positioned to after

the return, and the end is entered. The user then adjusts the indenting of the two newly

embedded statements. CAPS and LISPEDIT share this style of change. In LISPEDIT, it is

not necessary (or possible) to adjust the indenting of the two statements, since the system

always prettyprints each time it displays.
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2.14.9. Incomplete or Incorrect Programs

An incomplete program is one in which in the tree representation, a nonterminal has

no expansion (i.e., subtree). Such anonterminal isa stub or hole to be filled in later.

An incorrect program is one that does not conform to the grammar, that is, a program

that has a syntax error. An incomplete program is not necessarily incorrect, because stubs

are viewed as the nonterminal the stub represents. Similarly, an incorrect program may or

may not be incomplete.

The constructive systems allow incomplete programs, but do not allow incorrect pro

grams. This is usually cited as one of the advantages of constructive systems, since syntax

errors cannot occur. The other systems somehow arrange that incomplete programs never

occur.

The Lisp systems always have complete S-expressions with balanced parentheses.

PCM asks the user for corrections to input containing syntax errors. CAPS requires that

Uie program be complete and correct to the left of Uie cursor, but does not check to Uie

right. LISPEDIT treats unparseable input as a comment until the next parse.

Babel does not allow programs which are incomplete in this syntactic sense. If the

user enters a program he considers incomplete, and Uie program contains syntax errors

because of the missing text, the editor will consider the program to be incorrect. All

incorrect programs are handled in auniform way. The erroneous portion of the program is

highlighted on the terminal screen, and the incorrect program is accepted for further pro

cessing. Note that it is not possible in Babel for the programmer to place unexpanded non

terminals in Uie tree. Thus it is never possible to create an incomplete program as defined

at the beginning of this section.
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2.14.10. Screen Orientation

The last decade has seen a tremendous change in computing hardware. Printing ter

minals are rapidly being replaced by high speed CRT screen terminals. Editors are becom

ing screen-oriented, too, since showing the user what is really there helps prevent miscon

ceptions from being formed and saves the user from having to print out context frequently.

Most recent editors are screen-oriented, both text and tree editors included. CAPS,

PL/CS, LISPEDIT, IPE, and Babel are all screen-oriented. (Sandewall and Stallman seem

to feel that tree editors are more difficult to make screen-oriented than text editors. The

state of the art has since progressed to Uie point where this is no longer true.)

2.14.11. Elision

When the entire program does not fit on Uie screen, the editor must decide what to

leave out. Text editors have only the choice of not displaying what is off the edge of the

screen. In principle, tree editors can do a much better job of elision. Most of the editors

here do some kind of elision.

Mentor recursively prints a subtree to whatever depth is requested by the user. This

technique is suitable largely because the size of the screen is not taken into account, since

Mentor is not screen-oriented. Interlisp uses an elision technique similar to that of Mentor.

PCM elides a subtree by printing only the first and last tokens of the subtree. PL/CS

allows the user to manually elide a subtree, and otherwise uses off-the-edge elision.

LISPEDIT uses a complex priority algorithm every time the screen is redrawn, which hap

pens every time a line is typed or the focus is moved. Interlisp does not elide at all but,

typically, in a Lisp environment functions are small enough so that this doesn't matter

much. Babel gives the user achoice of off-the-edge elision or priority elision.
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2.14.12. Preprocessor

Several current languages (C, Bliss, PL/I) have a preprocessor that is applied before

Uie scanner. In all but C, the preprocessor is non-essential. However, the programming

style ofCis such that all but the most trivial Cprograms use the Cpreprocessor. Hence, it

is impractical to ignore the preprocessor in a system such as Babel in the UNIX environ

ment. No other system has addressed the issue of preprocessors. Babel's description of C

has some very simple provisions for handling programs making simple use of the C prepro

cessor.

2.14.13. Degree of Use

Only Interlisp and PL/CS from this group have been used heavily. Interlisp has been

used since 1970 for production Lisp work on Tenex systems, and was the implementation

language for PCM. PL/CS is used for introductory programming courses at Cornell and

elsewhere. CAPS was used for an introductory CAI programming course at Illinois.

LISPEDIT is used internally by adozen or so persons at IBM. Mentor has been distributed

to a number of institutions and is used by the authors. PCM was an experimental project

that has not been seriously used. IPE and Babel are still too new to have been used by

many people.

2.14.14. Execution

Some of the systems in this group are complete programming environments. Such

systems provide compilers, interpreters, and/or debuggers. The Interlisp, CAPS, PL/CS,
LISPEDIT, and IPE systems include interpreters which run Uie user's program without

leaving the system. Mentor and PCM, do not provide runtime facilities. Babel does not

provide such features, since it is primarily an editor. The system could be extended to

include these features. The amount of effort would be typical of the back end ofaconven

tional translator implementation.

I
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Babel is intended as a set of tools to support an intelligent editor. The user is

expected to exit the editor (after being assured by the editor that his program contains no

static errors) and to run a compiler, translating from the tree file produced by the editor

into machine code. A number of compiler schemes are possible. One possibility is to

unparse the tree, producing aconventional text file, and to run aconventional compiler on

this text. Another option is for acompiler to work directly from the tree file. This option

eliminates the need for the compiler to scan, parse, and generate asymbol table, and makes

error detection and recovery unnecessary. Athird option would be for an incremental com

piler to recompile only what has been changed. The tree structure makes it easy for an
incremental compiler to determine what has been changed. A fourth possibility is to carry

the incremental semantic evaluation to the point of producing intermediate code in the

tree, and interpreting this code directiy, or to generate code from this intermediate code.



CHAPTER 3

Notation

This chapter contains definitions of technical terms used in this dissertation. All

definitions are collected here for ease of reference.

3.1. Languages

A string is a sequence of symbols from an alphabet

A language is a set of strings that are acceptable to a particular computer program.

This concept includes not only languages traditionally considered programming languages,

but the languages accepted by other programs including document preparation languages

such as Troff [Ossanna 1976] or Scribe IReid 1980], computer assisted instruction

languages such as Learn [Kemighan 1979], program maintenance languages such as that

understood by Make [Feldman 1978], and miscellaneous data files which are stored as text.

Babel can be used for both programming and non programming languages, provided the

languages meet the restrictions set forth subsequently.

3.2. Grammars

Acontext free grammar (grammar) is afour-tuple (V, N, S, P) where Vis the finite

vocabulary of nonterminal symbols (nonterminals) and terminal symbols (tokens)1, NQ
V is the set of nonterminals, S€Nis the start symbol, and Pis the set of production rules

of the form

Ihs: rhs

where IhsZN, rte€ V\ Lhs is the left hand side of the production, rhs\s the right hand

*TCrminal symbols are called tokens rather than terminals to avoid confusion with compater terminals,^chJl^t/T^^Z Outers. In this dissertation, terminal always refers to the mput/output
device.
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side. V is the transitive closure of V. A symbol is any v€ V. An empty production is a

production with no symbols on the right hand side.

3.3. Attribute Grammars

An attribute grammar is a five-tuple (V, N, S, A, P) where V, N, and Sare as in a

context free grammar; for each symbol v in V, A(v) is the set of attributes of v; P is aset

of productions, p, of the form

Ihs: rhs rules

where Ihs and rhs are as in a context free grammar, and the rules are of the form

where there are np symbols in rhs, and a* is the /'* attribute of symbol s,0< s< np, of pro

duction p. s-0 refers to Ihs, s>0 refers to the s1* symbol of rhs.

Each attribute atA(v), for each v€ V, is classified as either inherited or synthesized.

For each symbol s of production p, the set of attributes of s given a value in that produc

tion must be the synthesized attributes (if s-0), or the inherited attributes (if s>0). The

restriction on the nature of the attributes is made not for any implementation reason, but

because attribute grammars that do not meet the restriction do not make sense.

3.4. Program Trees

A node is a data object having associated with it a small positive integer called the

type, and some data which depends on the type. Types include integers representing

tokens, nonterminals, attributes, comments, scanner errors, etc. A nonterminal node is a

node whose type is nonterminal, a token node is a node whose type is token, and so on.

Where Uie meaning is clear, such nodes will be referred to as nonterminals, tokens, and so

on. The size of the data depends on the type and data, and is fixed at the time ofcreation

of the node. (For example, the data in a token node includes the text of Uie token, whose

length is fixed only by the kind oftoken.) A tree pointer is a reference to a node.
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A program tree (tree) is a collection of nodes, including one particular node called

the root The other nodes are partitioned into a sequence of disjoint groups

*!,..., /„,/i>0, each of which is atree. The /, are children of the root. The root is Uie

parent of the /,; *, is the first child of the root, and t„ is the last child. For each

1,1 <f< n,t, is the right sibling of fM, and /M is the left sibling of /,.

There is one particular program tree associated with the system at any time. This tree

is usually referred to as the tree. It contains arepresentation of the program being edited.

One portion of the tree is a parse tree made up of nonterminal nodes and token nodes,

corresponding to the grammar for the language in use. This tree is stored on disk, and por

tions are brought in to primary memory when needed.

Nodes have associated with them five neighbors; the parent, first child, last child,

right sibling, and left sibling. Tree pointers to these five neighbors are stored in each

node, if they are defined by the above definitions. Otherwise, the special value tnuU is

stored, referencing "no node".

A path is asequence of nodes, tx,... .'„, «>0, such that t, and t^KKn, are

neighbors. A firewall is a sequence of nodes (not a path)
/u... .4. A, m, mh, Z, ru ... ,rc, where his the first child of the root, re is the
last child of the root, Oi and rc are endmarkers) for l</<fl, Kj^c, I, and rs are either

nonterminals or tokens, and for 1< /< b, A, m„ and Z are tokens, h la is the left

firewall, A, m, mb , Zis the middle firewall and r, re is the right firewall2

The firewall divides the tree into three parts: parts on, above, and below the firewall.

Formally, anode, n, not on the firewall that is on a path from another node, / on the
firewall, to the root, is above the firewall. Anode on neither the firewall nor such apath is

below the firewall. (See figure 3.1 for an illustration.)

*or those familiar with parsing terminotogy, the left and right m™***™" %£££* *"*"' * '
parse from the left or right ends of the program, at the point where Aor Zis reached, respectively.
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middle Z

Figure 3.1 Firewall

3.5. Representation of Text

A newline is the separation between two lines of a text file. Babel views newlines as

characters.

A utoken (user level token) iseither a token, a comment, or a lexical error. (Lexical

errors are treated as comments by Babel.)

Token nodes have associated with them, as part of the data, the particular token

number, the text of the token (as a character string), and two integers called Uie white

space count and the newline count The newline count is Uie number ofnewlines between

the token and the textually preceding utoken. The white space count is the number of

blank spaces separating the token from the preceding utoken (if the newline count is zero)

or Uie closest preceding newline (if the newline count is positive). The effect of special

characters such as tab and backspace upon the position of the token is figured into the

white space count. Comments and scanner errors are attached as children of the token they

precede, and have their own newline and white space counts.

A text position is a tree reference corresponding to a particular character ofa text file.

It consists of a pair (f,c), where t is a tree pointer to a utoken, and c is an integer. If

c^O, the text position refers to character number c of the text of the utoken (numbering
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the characters from zero). If -10<K c<0 the reference is to the -e* blank before the text
of the utoken. If c<-100 the reference is to the (-100-/)'* newline preceding the text of

the utoken.

The fringe of the tree is the sequence of utokens in the tree, in the order of the tex-
tual representation. (This is the order obtained by traversing the tree depth first, visiting a

node after its children.)

Aprogram tree has associated with it atext position called the focus which represents
the current point of interest in the editor. This focus is recorded in the disk file and
remains in force after leaving the editor. The focus can also take on nonterminal values
(r,0) where t is the nonterminal being referred to. Textually, anonterminal focus refers to
the first character of the leftmost utoken below the focus in the tree. If, due to empty pro

ductions, there are no utokens below the focus, the text representation is to the first utoken
in the fringe after the focus. (Since endmarkers are always present in the grammar, there
is always anext token for atextual representation of the focus, and for attaching com-

ments.)

*>



CHAPTER 4

User Interface

This chapter gives an example that demonstrates some of the capabilities of the Babel

Editor. The design of the command language is discussed.

The key observation about the user interface is that the user types and sees what he

would when using a typical screen-oriented editor. While the specific command set chosen

here is different from existing screen editors such as EMACS [Ciccarelli 1978] and vi [Joy

1980], it would be possible to rewrite the interface to make it look just like one of these, or

any other screen-oriented text editor. The user sees a text editor, except that errors that a

text editor would be unlikely to detect are pointed out by highlighting the offending part of

the program. «*•->•

4.1. Example Session

In this section, we show an example session with the Babel editor. The user enters a

small Pascal program, and then makes modifications to it. Errors made along the way are

pointed out. Finally, the program is saved on the disk and the editor is exited.

The true utility of a system such as Babel is with programs that are too large to be

understood at a glance. To keep the presentation to a reasonable size, the example must be

kept small. Of course, an example this small is easily programmed using any editor. The

reader is asked to extrapolate the example to larger problems.

In the display (see Figures 4.1—4.8) the first line is the echo line containing the com

mand typed by the user. The second line is the message line where system messages from

Babel to the user are displayed. Remaining lines are the program itself. Error messages

and portions of the program in error are highlighted on the screen. This is indicated here
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by large bold face. The focus (cursor) is indicated by .

The * character is an endmarker. It is shown to the user to make the beginning and

end of the buffer more visible1. The endmarker should not be confused with the notion of

a fence, which is a line drawn on the screen separating windows. Even though the echo and

command lines can be considered small windows, the current implementation of Babel does

not draw fences because lines on a typical 24 line terminal screen are too valuable to waste

on fences. While a multi-window system would need fences to avoid confusing the user,

the current single window system does not need them. Such a multi-window extension

could be added to Babel in a straightforward way.

The user enters the editor, creating a new file with the command

be —lpascal copy.t

Babel finds no file of that name, so it creates an empty file. The user sees the display of

Figure 4.1.

copy.t (new file): pascal

Figure 4.1 Display upon entry to the editor.

At this point, the user can begin typing in the program. Program lines can be typed

in directly. They will be echoed in the echo line as they are being typed. As each line is

entered, it is inserted into the file after the line containing the focus. The program is incre

mentally scanned and parsed and (if syntactically correct and complete) semantically

checked after each textual line.

lThe idea of displaying ' at the ends of the buffer is from ri (Joy 19801.



program copy(input, output);
go on...

program copy(input, output);

Figure 4.2 Display after entry of one line.
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In the example, the user is entering a program to copy the input file to the output file.

After the first line of input (see Figure 4.2) the program will not be complete, (i.e., a syn

tax error was detected at the endmarker), and the user will be warned of this with the "go

on" message. The endmarker is highlighted, indicating the location of the syntax error.

The user types in the remainder of the program without event. After the final line

has been entered, the parser will accept it. Since the syntax is accepted, the program is

semantically checked. In this case, no semantic errors are detected. The user sees the

display of Figure 4.3.

end.

program copy(input, output);
var

ch: char,
begin

end.

while not eof do

begin

end

while not eoln do

begin
read(ch);
write (ch);

end;
readln;

writeln;

Figure 4.3 Display after entry of the program.
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This illustrates one style of program entry: straight top-to-bottom typing in of the pro

gram. This is suitable for a situation where the program is already written on a piece of

paper. Such a program entry style is impossible in a template based system.

A second style would be more appropriate for program development at the terminal.

In this style, the user types in the framework of the program (a very short, correct pro

gram) and then adds to it one piece at a time. Since most of the intermediate states will be

syntactically and semantically correct, the user gets a good deal of feedback while develop

ing his program. While this program development style is superficially possible with tem

plate systems, our system makes it possible to go through syntactically illegal states, and

allows complete lines of text (or portions of lines, in the case of editing commands such as

change) to be typed in exactly as displayed. The remainder of the example presented here

illustrates this program development style.

Now that the program has been entered, the user wishes to modify it to print line

numbers. Using textual arrow keys, he positions the focus to the newer begin, and types in

a write statement, producing the program shown in Figure 4.4. This statement uses the

variable line, which has not been declared, and the editor indicates this by highlighting the

variable.

The user, unsure why the editor flagged the variable, positions the cursor to the

offending variable and types the "why" command. The editor responds as shown in Figure

4.4.

Continuing to add the line numbering code, the user moves the focus to the first

begin and types in an assignment statement to initialize the variable line. He accidently

leaves out the semicolon ending the statement. The system informs him of the syntax

error with a message and by highlighting the token where the error was detected (see Fig

ure 4.5). Semantics are not checked when there is a syntax error, so the second instance of

the undeclared variable line is not detected yet.



.why
Undeclared variable

program copy(input, output);
var

ch: char;

begin
while not eof do

begin
write(line:5, * ');
while flbt eoln do
begin

read(ch);
write(ch);

end;
readln;
writeln;

end

end.

Figure 4.4 The users asks for a detailed error message.

line :— 1

syntax error

program copy(input, output);
var

ch: char;

begin
line :— 1

while not eof do
begin

write(line:5,' ');
while not eoln do

begin
read(ch);
write (ch);

end;
readln;

writeln;
end

end.

Figure 4.5 A syntax error.
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This error is corrected with the "change word" command, changing the "1" on the

line to "1;". The editor reparses, finding the syntax correct, and checks the semantics. It

discovers the second instance of the undeclared variable line, which it highlights (Figure

4.6).

.cw T,'

program copy(input, output);
var

ch: char;

begin
' . line:- l;

wriile not eof do

begin
write(line:5,' *);
while not eoln do

begin
read(ch);
write (ch);

end;
readln;

writeln;

end

end.

Figure 4.6 Correction of syntax error.

The user now enters the declaration of the variable line, and the syntax and semantics

are accepted by the editor (Figure 4.7). Note that the program still contains a logic error

(the ///invariable is never incremented), but this error cannot be detected by Babel.

Finally, the user enters the statement to increment line, and types the "exit" com

mand to leave the editor (Figure 4.8). The program is written out to disk and control is

returned to the top level command interpreter.

At this point, a tree file exists on the disk containing the Pascal program. The pro

gram has been scanned and parsed, and a symbol table has been created in the tree file.

Since this analysis was done incrementally, there was no single long delay while the user



line: integer;

program copyGnput, output);
var

ch: char;

line: integer;

begin

end.

line := 1;
while not eof do

begin
write(line:5, * ');
while not eoln do

begin
read(ch);
write(ch);

end;

readln;

writeln;

end

Figure 4.7 Correctionof a semantic error.

.exit

program copyGnput, output);
var

ch: char;
line: integer.

begin

end.

line :— 1;
while not eof do
begin

write(line:5,' ');
while not eoln do
begin

read(ch);
writefch);

end;
readln;
writeln;
line :— line + 1;

end "

Figure 4.8 Leaving the editor.
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waited for the program to be processed.

A compiler could start from this tree form, eliminating considerable processing time

(since the job of the compiler's front end is already done) and complexity (issues such as

parsing method, error recovery, and one pass problems disappear).

Since no such compiler currently exists in our experimental implementation, it is

necessary to use an ordinary text compiler instead. The user must convert the tree file to

text with

beat copy.t > copy.p

and can then use a text compiler. Obviously, a tree editing system such as Babel is at its

best in an environment with tree compilers, and creation of such compilers for Babel

should be undertaken. Tree compilers and incremental compilers already exist, such as that

described in [Feiler 1980], and are a valuable addition to any programming environment.

4.2. Design of the Command Language

The command language is not closely tied to the remainder of the editor. Any text-

oriented editor interface could be implemented on Uie Babel system. The particular com

mand language chosen here was designed with two goals in mind. First, the language

should be easy for a beginner to learn. Second, the interface shouldbe easy to implement.

A beginning user on a computer system must usually learn several things at once. He

must learn the top level command language, the command language for an editor, and the

language accepted by the program for which it is being prepared (i.e., a compiler or text

formatter). In order to make this task simpler, Uie Babel editor command language has

been designed to be compatible with the top level command language of the Unix system

on which it runs, the shell While out of necessity, the individual commands differ, the

syntax for commands is the same in the editor and the shell. Commands are sequences of

words, separated by blanks or tabs. The first word is the command, the remaining words
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are arguments to the command. Conventions for specifying options, special characters in

arguments, and multiple commands on one line are the same in the editor and in the shell.

Another factor of many text editors which is confusing is the notion of an input mode.

Having an input mode, as in vi, allows the user to edit with fewer keystrokes, since all

characters can be used for both commands and text, but confuses most naive users. While

Babel has an input mode, the command language is designed in such a way that the user

need not ever leave input mode. Thus, a beginner need not worry about input mode, but

an experienced user can switch modes if desired.

Established text editors like EMACS and vi have had years of effort put into finely

tuning their command languages, and the resources to duplicate this effort were not avail

able for this project. The option of taking Uie existing code for vi and gluing it to the Babel

back end was considered and rejected because the existing code was not designed with such

gluing in mind. A rewrite of the user interface would be possible with somewhat less work

than was originally put into the existing editors, and is planned for a future version.

When the editor is idle and waiting for input, the echo line contains the prompt '*'.

It is not necessary for the user to wait for the prompt, since typeahead is not only under

stood, but echoed as it is typed in.

A line of text can be typed in directiy, causing it to be inserted after the line contain

ing the focus. This is a special case of the add command, which appends its argument as a

line after Uie current line. Thus Uie set of keystrokes "CMD add SPACE 'begin'

CR" can be abbreviated by the special case "begin CR". The special case was included

only for convenience and to make the editor easy to learn, since the regular add command

has the same power. In practice, Uie special case is always used; the only need for the add

command itself is from inside macros.

In order to distinguish commands from text, the user presses the commandkey before
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typing the command. Aperiod is echoed to indicate that a command is being typed in.

Since the command key must be pressed before commands but not before lines of

text, Uie user is in input mode. This mode is the default, and it is quite possible to use the

editor extensively without changing modes. This property makes the Babel editor easy for a

beginner to learn.

A user with many changes to make might prefer, by default, to have his input line

treated as a command, and to type a special key before text instead. It is possible to enter

command mode to arrange for this to be the case. In command mode, Uie period is still

echoed for commands and omitted for text. Not only does this make it easy for a user to

determine which mode the editor is in, but it also provides a consistent display format.

Always showing text with no leading period assures that text typed into the echo line

will line up properly with other text on the screen, avoiding the common "off by one"

problem caused by the width of the prompt or insert command in many systems. The *

prompt of Babel is erased when the user begins to type in a command, avoiding another

common problem: the "ghost prompt" problem caused by typeahead. This problem occurs

when the user types in two commands, one command completes and a prompt is printed.

Seemingly the system is ready to accept input, but it is really processing the second com

mand. Almost any good screen-oriented editor will avoid these problems by not echoing

typeahead until it is processed. Babel avoids the problem and still lets the user see his

typeahead as it is being typed.

Commands are built in to the editor to move the focus around in Uie tree. "Textual

arrow key" commands up, down, left, and right move the focus one character in Uie indi

cated direction on the terminal screen, exactly as in a text editor. "Tree arrow key" com

mands in, out, next, and previous move the focus in the tree to the first child, parent, left

sibling, and right sibling, respectively, of the old focus. If Uie focus is on the fringe of the

*The command key is initially BREAK. It can be set by the user to any control key.
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tree, it can be on any character position of a token. If the focus is on a nonterminal, only

one position on the nonterminal is possible, since character positions on the nonterminal

are not defined. In this case, the cursor is displayed at the beginning of the leftmost token

below the focus.

It would be tedious to have to type Uie sequence "CMD right CR" repeatedly to

move the focus to Uie right several spaces. To make movement of the focus convenient, a

macro mechanism is provided in be. This maps single keystroke commands into full editor

commands. For example, the keystroke "control R" is mapped into the command "right";

thus to move right several spaces the user need only press control R repeatedly. Similarly,

there are control characters for the other seven "arrow keys" described above, as well as

other common editor commands.

In addition, if the terminal has true arrow keys (keys labeled with arrows in the four

textual directions which transmit recognizable codes), these keys are mapped into the left,

right, up, and down commands. Thus, the cursor can be positioned with arrow keys exactly

as in vi

In addition to the predefined macros, the user can define other macros, or redefine

existing macro keys. This permits the customization ofthe editor to individual tastes, with

almost no extra effort beyond that needed to implement arrow keys.

A natural extension to this concept, which has not been implemented, is the notion of

language dependent macros Such macros would be defined when the tables for a language

are read. This would provide similar functionality to the template building commands of

[Teitelbaum 1979] and [Feiler 1980]. The convention could be adopted that a language

always defined macros called if, if-else, (or a more compact abbreviation), loop, while, for,

proc, func, decl, and so on. Since macros expand to an arbitrary command line, a typical

macro definition for an Ada if might be

add "if expression then"; add "end if
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expanding to ashort, syntactically correct construction. Not only could this save keystrokes

for users experienced in a language, but together with standardization of the names across

many languages, it could help a user unfamiliar with the syntax of a language get the con

struct desired. All of this is optional, however, and a user preferring to type in the program

text directly could still do so.

Note that the "expression" in the above macro definition would not represent an

unexpanded nonterminal, as it would in a template editor, but rather an undeclared variable

called "expression". Since the variable is likely to be highlighted (because it isn't

declared) the user is still reminded mat it must be expanded. For the purposes of imple

mentation of language dependent macros, it might be slightly cleaner to allow unexpanded

nonterminals, but it was felt that the added complexity of the user interface was not

justified. It would be necessary to be able to textually enter and change these nonterminals,

requiring a text representation and rules to disambiguate, in a language independent

manner, between tokens and nonterminals. Positioning the focus to the expression and

typing a textual "change word" command is just as convenient for the user as in a template

editor. The language dependent macro could even include commands to move the focus to

the first letter of "expression".



CHAPTER 5

Implementation

5.1. Introduction

This chapter discusses the implementation of the Babel editor. The parts of the sys

tem are outlined, and the algorithms used are described.

The basic parts of the system are the control loop which controls the rest of the editor;

the keyboard handler which accepts input from the keyboard; Uie command parser which

accepts input from the keyboard handler and determines which command to call with what

arguments; the display processor which decides what character representation to display in

the editor window; the screen handler which deals with the CRT screen; the command rou

tines which each implement one user level command; the tree editor which presents a text

interface to command routines; the incremental scanner which breaks up text into a list of

tokens; the incremental parser which restructures the tree according to the grammar; the

Incremental semantic evaluator which applies semantic checks to the user program; the symbol

table module which implements the notion of a symbol table building block, and the Lisp inter

preter to interpret the attribute evaluation functions. Of these parts, the keyboard handler,

command parser, screen handler, and Lisp interpreter are quite ordinary and are not

described here. The symbol table interface is described in chapter 6.

5.2. Overall Control

The overall structure of the editor can be viewed as two processes of differing priority.

The higher priority process reads and echoes commands from the keyboard. The lower

priority process interprets the commands, modifies the tree, and updates the display.

55
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In reality, there is only one process. (Dealing with asynchronous interrupts causes
many unnecessary problems with critical sections and shared data structures.) There is a
queue of commands to be executed. Whenever the processor is available, be takes one
item from the queue, and processes it An entire tree-changing command can take
significant real time, but it is made up of small operations (parsing steps, attribute evalua
tions, display node checks). After each small operation, the system checks for typeahead,1
and processes it, so the user gets good response on the keyboard even though there may be
alarge amount of semantic processing to do.

5.3. Tree Structure

The Babel tree is adisk file consisting of aset of nodes, linked together to form a

tree. Each node has a type, such as token, ttontermimi and attribute. This representation
has all the power of an ordinary parse tree, and is ageneralization of that concept The
portion consisting of the mmterm/Ho/aitd rotennodes is the LR parse tree of the program
being represented. In addition, other programs needing to place additional information in

the tree can attach nodes of different types anywhere in the tree.2

There are anumber of other existing tree representations used by language imple-

mentors. Many compilers build an abstract syntax tree in the process of compiling. Other
tree editing systems have internal tree forms. Intermediate forms for the Ada language
ttchbiah 19801 such as Diana [Goos 1981] and its precursors TCOLAda IBrosgol 19801 and
AIDA IPersch 19801 are being standardized, m order to convert an existing compiler to

use Babel trees for input (and save the repeated work of scanning, parsing, building asym

bol table, etc) it would be easier if the tree representation were the same.

"Checking for typeahead is no. possible on many systems, such as siandard UNIX, but is often available as a
local modttSnAnriLnt check tatypeahead makes be considerably more response.

>The convention that aprogram will ignore any nodes it does not recognize is adopted. This permits new
node kinds to be created without requiring changes to existing software.
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Such existing tree representations were rejected for two reasons. First, the tree struc

tures existing elsewhere are all based on various abstract trees, not the LR parse tree.

There is currently no general purpose algorithm for incremental parsing from an abstract

tree. Second, the other representations have no provision for insertion of extra nodes. For

example, comments are extra nodes attached to the token they precede. They are very

simple to handle in the Babel tree, while the standard representations have difficulty han

dling them.

In Diana, for example, there is no provision for recreating the source program

exactly. While the authors had this in mind when they specified the source-position attri
bute as astandard attribute on most tree nodes, their aim appears to have been primarily to
produce error messages referring to the correct location in the source program. They
require source-positions on nonterminals, without specifying the meaning intended, and yet
do not provide for recording the source positions of tokens which are not explicitly
represented in the tree, such as If. Comments are attached to anode either before it or
after it making it impossible to exactly reconstruct an arbitrary comment Such arepresen-
tation might be suitable for another language editor that did not exactly represent the text

typed in by the user, but it cannot be used for Babel.

The Babel system pays ahigh price for use of the LR parse tree. If an abstract tree

mechanism could be used, the resulting trees would be considerably smaller, resulting in
smaller disk files and afaster editor. If amethod were to be found for general purpose
incremental parsing of abstract trees, the Babel system could be modified easily to use it.
For such an abstract tree to be suitable for Babel, it would have to represent a//tokens as
leaves of the tree, not just those tokens carrying semantic information. It would also be
essential to allow extra information to be attached to the tree, without being recognized by
the other parts of the system, as is true in the current representation.
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General incremental parsing of abstract trees is potentially adifficult problem. In the

process of compression of the tree, much information is lost. Punctuating tokens, such as
if and parenthesis, are usually removed. Chain reductions are removed. The tree is usually
restructured into a form convenient for the compiler writer, not the parser. Some of the

existing systems [Yonke 1975, Donzeau-Gouge 1980] parse using abstract trees, but these

parsers are goal driven, and never attempt to merge newly typed text with existing text, res

tructuring the results as required by the grammar. While the smaller, more natural abstract

trees would be preferable to the LR trees currently used, additional research to find agen

eral method for incremental parsing of abstract trees is needed.

Each tree node contains its type, pointers to five neighboring nodes (its parent, left

sibling, right sibling, first child, and last child), and type dependent information (such as

the text ofa token, or the nonterminal number for a nonterminal).

An important property of the implementation is that while there are primitive routines

to retrieve \he values of Uie neighboring pointers, there are no primitives to change them.

All structure changes must go through two routines insert(n. p, 0which inserts a given node

nas achild of pand a left sibling of 4and prune(n) which deletes the node nfrom the tree.

This requirement has three advantages. First, such a high level interface insures that the

tree structure will be consistent at all times, eliminating a large class of editor bugs.

Second, these routines, which are inverses, keep a history list of all such changes, so that

the undo and redo commands can be implemented easily. Third, changes to the representa

tion are possible with no change to most of the code.

5.4. Display Algorithms

Display algorithms are given the size of an area on the screen, and read access to the

tree and focus. They produce a character representation of some portion of the tree, near

Uie focus, that fits in an area of the given size. Three such algorithms are implemented in

the Babel editor.
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5.4.1. Recursive Display Algorithm

The recursive display algorithm recursively visits every node in the tree, displaying

token nodes as they are found. The algorithm has the advantages of simplicity and speed.

It also has aserious problem: what to do when the entire tree does not fit in the given area.

Currently, after running off the end of the screen, the algorithm stops. This causes only

the first screenful of the program to be visible.

Such an algorithm is clearly unsuitable for an editor. It is, however, well suited to an

unparser, and is used for the beat utility which prints textual representations of Babel trees.

5.4.2. Off-Edge Display Algorithm

The off-edge display algorithm prints all of the tree that is within ahalf screenful of
the focus. It effectively elides all of the tree which is "off the edge" of the screen. Most
screen-oriented text editors use an approach similar to this one.

The implementation of this algorithm is also straightforward. Starting at the focus,
the editor moves backward along the fringe of the tree, counting newlines, until the count
exceeds half the screen size. From this point, it moves forward along the fringe of the
tree, printing the tokens that are encountered, until the screen is full.

5.4.3. Priority Elision Algorithm

The priority elision algorithm is by far the most complex and least efficient3 of the
three. It is based loosely on the algorithm in [Alberga 19791. It shows the user those parts
of the tree that are near the focus Gn the tree, rather than on the screen) in preference to
parts of the tree further from the focus. Sequences of tokens that are not displayed are
elided, i.e., displayed as "..". The string ".." was chosen for compactness and ease of
understanding. Another string, such as "..." or "&" could easily be substituted.

3priori,yeWonre,uire,1.5«,J«im«Mm„ch CPUtime;.£. <^.^jt^moVerf'i^uee
r^gS^^drenS^red^m^
Ccode.
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As an example of how the user sees priority elision, consider the Cprogram shown in

Figure 5.1. Two possible results of the priority elision algorithm are shown in Figures 5.2
and 5.3. In Figure 5.2, the focus is at the root ofthe tree (and is displayed at the top end-

marker). The text displayed provides avery global view of the program. In Figure 5.3, the

focus is on an if statement well down in the tree. In this case, the user sees text that is

more local to the focus.

Distance between a node and the focus is defined inductively in terms of the path

from the focus to the node. Let /&,...,/„ be the path, where t0 is the focus and /„ is the

node.

The distance to the focus, Dit^t^ is I.

If i> and ti+i are adjacent siblings, and Ditoj,) is d, D(totti+i) is d+l.

If /h-i is the parent of t, and D(toJt) is d, DUoJh-0 is 3rf-

If t( is Uie parent of f,+i and D(toytf) is d, Ditojt+d is 5d-

The expressions </+l, 3d, and Sd are those given in [Alberga 1979]. Alberga, et. al. do not

explain the significance of these expressions. The intent is to make nodes further away in

the tree be considerably lower in priority than nearby nodes. These expressions also favor

movement upward in the tree over movement downward. It may not matter what expres

sions are chosen, as long as they increase the value of d.

The presence of Uie "sibling" case in the above expressions introduces an ambiguity

in the calculation of distance, since more than one path is possible if siblings are considered

adjacent This ambiguity is resolved by the algorithm given below, in effect always using

Uie shortest path. The sibling case can only occur when Uie path taken from the focus goes

upward in the tree, then branches tothe side, and finally might go down adifferent branch.

The algorithm uses two primary data structures. The first is a representation of the

display, consisting ofadoubly linked linear list ofelisions and tokens, that will be displayed



static char 'sccsid - "@(#)rmaiU 4.1 (Berkeley) 10/1/80";
char'index 0;

main(argc, argv)
char "argv;

char lbufl512l; /* one line of the message V
char froml512l; /* accumulated path of sender V
char ufrom 1641; /• user on remote system */
charsys(64l; /• a system in path */
charjunk(512l; /•scratchpad*/
charcmd(512l;
char *to, *cp;

to - argvlll;
if(argc!-2){

fprintffetderr, "Usage: rmail user\n );
exit(l);

1

for (;;) {
fgetsdbuf, sizeoflbuf,stdin);
if (strncmpdbuf, "From \ 5) && strncmpdbuf, ">From , 6))

break;
sscanfflbuf, "%s %s", junk, ufrom);
cp m Ibuf;
for (;;) I

cp - index(cp+l, V);
If (cp--NULL)

cp - "remote from somewhere";
If (strncmp(cp, "remote from \ 12) ——0)

break;

sscanf(cp, "remote from %s\ sys);
strcattfrom, sys);
strcat(from,"!");

1
strcat(from, ufrom);

sprintf(cmd, "%s -r%s %s", MAILER, from, to);
out - popentemd, "w");
fputsdbuf, out);
while (fgetsdbuf, sizeofIbuf, stdin))

fputsdbuf, out);
pclosefout);

/•
• Return the ptr in sp at which the character c appears;
• NULL if not found
V

char*
index (sp, c)
register char *sp, c,
I

dol
lfCsp--c)

return(sp);
1 white Csp++);
return(NULL);

)

Figure 5.1 Entire program being edited
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static char *sccsid - "@(#)rmail.c 4.1 (Berkeley) 10/1/80"

char 'index0;

main(argc, argv)
char **argv;

{..
}

char*
index (sp, c)
register char *sp, c;
(

dot..
}

Figure 5.2 Elision with focus at root of tree

if (argc !- 2) {..

fgetsdbuf, sizeof Ibuf, stdin);
if (strncmpdbuf, "From \ 5) && ..)

break;

sscanf(lbuf, "%s %s", junk, ufrom);
cp —lbuf;

for(;;){ / _s.i ^cp - index (cp-rl, r);
if (cp --NULL)

cp - "remote from somewhere";
if (strncmp(cp, "remote from", 12)- -0)

break;

sscanf(cp, "remote from %s", sys);
strcat(from, sys);
strcattfrom,"!");

Figure 5.3 Elision with focus deep in tree
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on the screen at the conclusion of the algorithm.4 The second is a priority queue consisting

of nodes waiting to be added to the display, ordered by their priority. (The priority is the

distance to Uie focus as defined above. A large number represents a low priority.)

There are also three hash tables to speed up the algorithm. One hash table contains

nodes that have already been expanded. Another contains nodes that are on the display. A

third contains, for nearby utokens, values of the next and previous utokens in the fringe of

the tree, speeding up the operation of searching along the fringe.

There are five phases to the priority display algorithm: initialization, priority expansion,

display fillout, display, and cleanup The general idea of the algorithm is first to complete the
display vertically (to determine the lines of the display), and then to fill the lines out until
they are full or complete. The initialization phase places the focus on the priority queue

with priority 1, and puts a single elision on the display.

The priority expansion phase is the heart of the technique. In amain loop, it takes

the front entry, N, from the priority queue. N is expanded by placing all neighbors

(parent, immediate siblings, and children) that have not already been expanded onto the
priority queue, with priorities calculated from that of Nby the above rule. (A hash table is
used to keep track of which nodes have already been expanded.) Then, if Nis atoken, and

if it will fit, it is added to the display.

Even after one token has been determined not to fit, anearby smaller token with loer

priority might still fit. If the priority expansion phase were continued until the queue were
empty, the entire tree would be searched before the phase could end. The algorithm in
[Alberga 1979] stops when "The display is full". Our display usually does not become
"full" because the possibility almost always exists of finding atoken that fits. ^

'An elision represents one or more tokens, adjacent in the fringe of the^^^^^'^
Elisions do not necessarily correspond to nonterminals. Nonterminals are never placed on the display.
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In order to avoid searching the entire tree, the priority expansion phase is terminated

as soon as the number of lines in the display is equal to the number of lines on the screen.

(The number of lines in the display can be found by counting the newlines in the tokens

and elisions on the display.) This phase terminates quickly.

After the priority expansion phase, the display will typically have anumber of very

short lines, containing mostiy elisions, with only a few tokens. There is usually room

within single lines to expand many of these elisions. The display fillout phase traverses the
display, from left to right, checking each token in each elision to see if it fits on that line.
Those that fit are added to the display. Since the lines are traversed from left to right

instead of by priority, the distance rule is violated within lines filled out by this phase. In
practice, this violation does not seem to matter, because the line containing the focus is

usually already filled out in the previous phase.

The next phase moves along the display list, printing each token and elision that is

found. Finally, the memory used for the data structures is freed.

Amore detailed explanation of some of the operations of the priority expansion phase

is needed. In the following paragraphs, let Nbe anode, at the front of the priority queue,

being considered for expansion.

If Nwere added to the display, it would replace all or part of one of the elisions in the

display. One question is, which elision? Consider, for example, expansion (c)-(d) in Fig
ure 5.4, in which the first "I" is added.5 When the token "(" is to be added to the display
shown in (c), there are several elisions. By inspection, it is possible to determine that the
brace is part of the elision at the end of the first line. An algorithm for determining which

elision is involved, however, is not obvious.

One possible method to find the elision might be to assign an elision to Nwhen it is
entered into the priority queue, calculated from the elision associated with the node from

sDisregard the rest of the figure for now.
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which N was expanded. This method does not work, for two reasons. First, the elision so

designated could be split into a number of elisions by Uie later addition of some other

token to the display. Second, Uie path taken from the focus (the same path used to calcu

late the priority) can go up in the tree and then either branch to the left or to the right

before coming down to the fringe ofthe tree at afar away location in adifferent elision.

The solution to the problem is to search along the fringe of the tree in both directions

from N until a node is found that is in the display. A hash table makes it quick to deter

mine if and where the node is in the display.

The second question is "How do we determine if N fits in the display?" This is a

complex question because adding certain tokens will force lines in the display to be split.

The question is answered by determining what the display structure is after expansion of N,

and checking to see if this expansion fits on the screen.

There are many possible ways to add N to the display. These methods differ in the

treatment of elisions. The method chosen here attempts to make the display easy for the

user to understand, by keeping elisions that represent one or more whole lines on separate

lines. We will use the example in Figure 5.4 to illustrate the problem. This figure shows

six examples of adding a token to the display.

Consider the tree to represent the program fragment shown ("Expanded fragment"),

with the priority queue ("Initial pqueue"). The initial display is the one labelled "(a)".

Six expansions of elisions are shown that illustrate six different cases.6 Note that if the
bodies of the ifand else clauses were longer than one line each, the example here would be

unaffected, since one elision can represent several lines.

In the first expansion (a)-(b), N is the second else Nis removed from the priority

queue. The elision after the ifis determined to be the one containing N, and is split into

To simplify the presentation, the expansions in the tree, including the priority calculations and additions to
the priority queue, are not shown here.



Expanded fragment:

if (testl) (
x- 1;

} else if (test2) (
x-2;

} else f
x-3;

)
(b)

if., else.

(e)

lf..{

.. else.

.. else {

Initial pqueue:

else

else

i
(
i
}

(c)

if..

(second)
(first)
(first)
(third)
(third)
(first)

else..

.. else..

(f)

if.. I

)

else..

else{

Figure 5.4. Example of Filling Out Elisions

"ST

it.

(d)

if.. I

.. else..

.. else.

Ti5

if..{

.. else.

} else{

}'
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three pieces: an elision, the else and another elision. Since the else neither begins nor

ends a line, the display remains one line long.

The worst case is illustrated by (b)-(c). N is the first else The elision is split into

seven separate pieces:

(1) The part up to Uie first newline. (In this example, "(testl) {".)

(2) The part between (1) and (3). ("x - 1;".)

(3) The part from the last newline before Nto N. ("}".)

(4) The node, N, being expanded, ("else".)

(5) The part from Nto the next newline. ("if (test2) {".)
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(6) The part between (5) and (7). ("x - 2;".)

(7) The part from the last newline to the end. (")")

Usually several of these pieces are empty. Parts (2) and (6) might span several lines;
the others are always wholly contained in one line. In this case, all seven pieces are
nonempty. In this example, lines are split in the display before parts (2), (3), (6). and (7),
since the first token of these elisions begins aline.

In the general case, there are six splits between the seven pieces. Four splits (before
2, 3, 6, and 7) might cause newlines to be added to the display. Anewline is added to the
display if the token, or the first token of an elision, has anewline preceding it. Unless a
blank line is involved, no more than one newUne per split is added to the display.

In the priority expansion phase, a-token fits if the total number of newlines added
plus the number of Unes already on the display does not exceed the number of lines in the
window, providing that the number of characters on the new line containing Ndoes not

exceed the width of the screen.

In the display fillout phase, only tokens on the same Une as the original elision are
considered (i.e., pieces (1) and (2) of the example are always empty). In this phase, a
token fits if the number of characters on the new Une containing Ndoes not exceed the
width of the screen. Lines are never split, leaving elisions at the ends of lines in order to

maximize information on the screen.

The four other cases in the figure are added to the display in asimilar manner. The
expansion can be in the middle of aline: cases (a)-(b) and (b)-(c); a, the end: cases
(c)-(d. d)-(e); or at the beginning: cases (e)-(f) and (f)-(g). This may: cases
(b)-(c), (d)-(e) and (e)-(f>; or may not: cases <a)-(b), (c)-(d) and <0-(g> cause
Unes to be split. Asplit can cause one extra Une: cases <d)-(e) and (e)-(f); or several,

cases (b)-»(c).
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5.4.4. Summary

Three display algorithms are presented here. Only the off-edge and priority elision
algorithms merit serious consideration for adisplay editor.

The off-edge algorithm is the choice of most text editors, primarily because priority
elision requires atree to be present. Even with the tree present, the off-edge method has
its advantages. It is simpler for auser to understand. It costs only about 2/3 as much CPU
time to run, and examines less of the tree than the priority elision algorithm, resulting in
fewer page faults. It is considerably simpler to implement Less redrawing of the screen
will be necessary as changes are made to the program.

The main advantage of the priority elision algorithm is that it is possible to see amore

"macro" view of the program. Atypical terminal has ascreen with only 24 lines, not
nearly enough for many programmers. Displaying the lines the user is most interested in
(somehow allowing the user to specify which lines these are) is adesirable property of any

editor.

If the user is interested in aloop with alarge body, it is not possible with an ordinary
text editor to get both the top and bottom of the loop on the screen at once. Text editors
with multiple windows allow the top of the loop to be displayed in one window, and the
bottom in another window. Such an approach is painful but better than nothing. The
priority elision method allows the focus to be positioned to the first token in the loop.
Since the loop beginning and end will be near the focus, in the tree, they will be favored by
this algorithm. Several statements on either side of the loop will appear on the display,
along with the first several inside the loop.

The Babel system makes both of these display algorithms available to the user. The
default is the off-edge algorithm, because of its simplicity and lower cost. The priority eli
sion algorithm can be easily requested when needed.
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5.5. Tree Editor

A command routine is allowed to change the tree in any way it wishes, provided that

errors are properly detected and handled. However, since the editor strives to present a

text oriented interface, textual subroutines are important. The routine

changesection(first,last,newtext) accepts two text positions and a character string, and

replaces the portion of the tree between those two text positions, inclusive, with the new

character string. (Text positions are defined in section 3.5.) Other primitive operations

include nexttextpos(tp) and prevtextpos(tp), which return the next (previous) text posi

tion relative to the input text position tp (that is, they move forward or backward one char

acter), and getlinetext(tp) which returns a character string representing the textual

representation of the line containing text position tp. Using these primitive operations, it is

possible to build an editor that appears to be atext editor.

Many text editors attempt to provide structure commands, such as "delete sentence,"

"move forward to the next section" (or procedure, statement, or other syntactic unit),

"check matching parentheses," etc. They are usually fooled by comments and strings. In

Babel, it is possible for astructure command to determine such boundaries correctly by exa

mining the tree. However, a simple tree operation, such as pruning a subtree, cannot

guarantee anything about the correctness of the resulting program. Hence, aBabel struc

ture command can look at the tree to determine textual boundaries, and should then make a

textual change to Uie program through Uie routines described here.

Since the editor does not keep atextual representation of the file, the interface just

described must be built in terms of the tree routines. This section outlines the steps used
to implement the changesection interface. (The other routines are straightforward to

implement.)

(1) The inputs are text positions Band Y, the first and last text position to be replaced,

and newtext, the replacement text.
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(2) The tokens Aand Z are found7. These are the first real tokens (not comments or

error tokens) outside the range from Bto Y. They represent the one token of context

required by [Ghezzi 1979] to correctly reparse with an LALR(l) parser. This also

causes Uie scanner to be given whole tokens to rescan. The portion of Uie tree fringe

from A to Z is the old firewall, which will be replaced by the newly scanned middle

firewall

(3) A buffer of Uie right size is created, and then Uie string to be scanned is created.

There are two nearly identical steps here, counting the number of characters in the

string and then creating it. The fringe of the tree from A to Z is converted to a

string, replacing the portion from Bto Y with newtext This is done by iterating along

the text positions from the beginning of A to the end of Z, accumulating characters

before B and after Y. When Bis reached, newtext is appended to the string.

(4) If a simple preprocessor were to be used, it would be applied to the string at this

point.

(5) The string is passed to the incremental scanner, which returns a list of tokens, with

white space and comments suitably attached. This string is the middle firewall

(6) The rest of the firewall is created. Starting from A, the editor works its way up and to

the left, as defined in [Ghezzi 1979] and simplified in chapter 2, until the endmarker

is reached. This is the left firewall Starting from Z, the right firewall is created sym

metrically. The three pieces are linked together to form Uie firewall, alist of termi

nals and nonterminals, that is ready to be incrementally parsed.

(7) An error nonterminal is created which is made Uie parent of each node in Uie firewall

(as though there were asyntax error). If checking has been turned off, or if there are

commands waiting, Uie editor marks the firewall "dirty", and goes on to the next

^The mnemonic value of A, B, Y, and Z is in their posiUon in the alphabet Band Y are atmostai the ends
of the middle firewall, while A and Z are at the ends. (See figure 3.1.)
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command. (When the editor becomes idle, if the firewall has been marked "dirty",

control resumes from this point to catch up on unfinished processing.)

(8) The firewall is passed to the incremental parser. The parser returns an indication of.
success or failure, and atree node, which is either the root of asuccessfully parsed,

complete parse tree, or the token or nonterminal that caused the error.

There are now two possibilities. Either the parse succeeded or it failed.

(9s) If Uie parse succeeded, the tree is rerooted at the new root.

(10s) The incremental semantic evaluator iscalled.

(90 If asyntax error has occurred, the firewall is converted into alist of children of a
newly created parent (an error nonterminab which is made the root of the tree.

UOOThe token or nonterminal rejected by the parser is marked "syntax error".

All this syntactic and semantic checking is optional. It is possible to check only syn

tax, or to check nothing. (Due to the representation, lexical checking is always done.) To
turn off all checking, the user sets aflag either when starting up the editor, or with an edi
tor command. In this case, only the first 7steps of the above method are done. There is
an explicit check command that will complete the final steps, in effect checking the syntax

and semantics of the program.

Semantic checking can also be turned off, leaving syntactic checking turned on. In
the case of asyntactically correct program, the tree will be completely rebuilt from the
firewall, and the firewall is no longer valid. The record of what still has to be done (which
is impliciUy stored in the firewall) is lost. For efficiency reasons, in the current implemen
tation turning off semantic checking turns off all bookkeeping related to semantic checking.
The tree is marked "syntax only" and further invocations of the editor only check syntax.
This mode is quite suitable for aprogram that the user only wishes syntax checking on, or

for which Uie language description only defines syntax.
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5.6. Incremental Scanner

The incremental scanner used in Babel is quite similar to the scanner that lex [Lesk

1979]. generates. There are anumber ofdifferences, all very minor.

The scanner is incremental in that it is possible for only a portion of the program text

to be passed to it. The calling routine must ensure that the text passed does not separate a

token; that is, if any part of atoken is in the text, the entire token is in the text. Since

comments are viewed as part ofthe token they precede, any comments before tokens in the

text must also be present in the text. The editor must generate text to be rescanned, but

this is not difficult to generate since the information is in the tree. In order to be com

pletely driven by external tables, the lexical specification tables, generated by Idlproc and

lex, are read in from a file instead of being compiled.

Since it must be possible to reconstruct the textual representation of the tree for

display, or for an incremental scan, comments and white space cannot be thrown away.

The tables include special tokens Comment, Whitespace, and Id. At the lowest level,

these tokens are scanned like any other token. At ahigher level, comments are attached to

the ordinary token that follows them. White space is reduced to apair of integers designat

ing the newline count and blank space count. The pair is attached to the token or comment

that follows. Unrecognized input (scanner errors) are made into error tokens and treated

like comments. Identifiers are checked against a reserved word table (also read from the

file) and converted into the appropriate reserved word token if found.

Since long comments are often present in programs and are one of the most common

reasons cited for not using lex,8 they must be handled specially. Any comment internally

spans only one line. Acomment that is longer than one line is broken up into multiple one

line comments by the scanner. The textual representation is unchanged, but internally the

• Lex keeps the text of the current token in astatic buffer. Along token, such as abigicomment, will
overflow Ais buffer. Modifications to the lex canned scanner to avoid overflowing another static buffer were also
necessary.
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long comment is treated as several comments. This prevents the usual problem of

overflowing buffers with fixed size. Although the data structure could represent asituation

with a token between two parts of a comment, such a situation cannot arise because the

user has no commands for manipulating the data structure at such a low level. If the user

attempted to insert atoken into the middle of acomment, the token would become part of

the text of the comment rather than a token.

Normally, ascanner is called once for each token aparser needs. Because ofthe pos

sibility of syntax errors, this scheme is unsuitable for an incremental environment such as

Babel. Instead, the scanner is called repeatedly until the input is exhausted, and the tokens

returned are linked together in a linear list. When the parser needs a token, a token server

is called which merely takes one token from this list. Since the list is left intact, it is easy

to reconstruct the input in case of error. Since token nodes must be generated anyway for

placement in the tree, and since these nodes are tree nodes that do not all have to reside in
primary memory, there is no memory penalty for this prescanning. The same incremental
scanner is used for the bparse tool, which scans the entire program before parsing any of it.

5.7. Incremental Parser

The incremental parser used here is based largely on [Ghezzi 1979]. The

simplifications made are noted in section 2.10. Improvements based on a later paper

[Ghezzi 1980] seem possible and are planned for a future version.

Tables generated by yacc are read in from the language file. Amodified version of
the yacc parser is used for incremental parsing. The editor is responsible for arranging that
the firewall is linked together in such away that the token server will return the correct

next input to the parser.

The incremental parser is responsible for creating acorrect tree from the old tree and

the firewall. Since the firewall is made up of both tokens and nonterminals, the incremen

tal parser must be modified to accept nonterminals from the scanner as well as tokens. It
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turns out that this is easy to do.

When a symbol is accepted by the parser, if it is a nonterminal that is legal in the

current state, control is immediately transferred to the reduction portion of the parser. The

nonterminal returned from the token server is used in place of the nonterminal node nor

mally built in the first part of the reduction. Then the nonterminal and production it came

from are used to determine the new state to enter. In the case ofa reduction by an empty

production, rather than creating a new empty nonterminal, if the lookahead symbol is the

same nonterminal, the lookahead node is used.

Arepresentation stack9 is kept in parallel with the stack used by the parser. An ele

ment of the representation stack contains a subtree corresponding to Uie symbol on the

parser stack.

Reductions are handled by the parser, the same processing is done for all productions.

When a reduction is made, Uie production number and nonterminal number are easily

determined from the tables. A new nonterminal tree node is created containing these two

numbers. The tree nodes that are popped from the representation stack become children of

the new tree node. This new node is then pushed back on the representation stock. The

usual reduction is made with the parser stack.

The parser used in Babel is based on Uie yacc parser and not on an ordinary LR

parser. Some extra effort was expended in this implementation to compensate for the

compression of the yacc tables. Since the yacc tables do not distinguish between adefault

state and an error state when a nonterminal is found, error detection is more difficult The

first token of the nonterminal must be examined, to determine ifit would be accepted. For

some grammars, this ambiguity may cause an incorrect program to be accepted, but it has

not been a problem with the languages implemented. This problem does not arise with

normal LR tables.

•The representation stack is similar to asemantic stack, but the informauon kept on the stack is syntactic in
nature.
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5.8. Incremental Semantics

For most languages, context-free grammars can not sufficiently describe all the

language restrictions. Those restrictions requiring context-sensitive checking are called

semantic restrictions or simply semantics Babel includes a formalism to check for semantic

errors, based on the notion ofattribute grammars, and does incremental checking ofsyntac

tically correct programs for such errors.

Chapter 2 includes adescription ofUie attribute grammar formalism, and the previous

work by Reps on incremental attribute evaluation. This section discusses Uie Babel contri

butions, implementing incremental attribute evaluation in an incremental parsing environ

ment, allowing shared symbol tables, and solving the deletion problem.

A Babel language description, written in LDL, will have anumber of semantic rules

for each syntactic production. Each rule is an evaluation function, written in adialect of

Lisp, for an attribute in the production. The rule also lists the attributes which are used

and which are set, so that Babel does not have to interpret the Lisp code to determine what

is used and what is set (See chapter 6 for amore detailed description ofLDL.)

The LDL processor, in translating the LDL description to internal tables, will form

for each production p, the dependency graph Dip] - (V,E) where V is the set ofattributes

ofall symbols in p, and e - (vl,v2) € Eiff v2 depends directly on vl. This graph shows

the attribute interdependencies within the production. The graph is stored among the

tables in the language intermediate file, along with Uie Lisp functions.

Babel views symbol tables as linked data structures made up of smaller symbol table

building blocks (STBB). STBB's may contain any number of identifiers, but any one

identifier can only appear once in an STBB. With each identifier is associated a fixed

number of attributes Each attribute can be either an integer or atree pointer. (Character

strings, other than the identifier itself, can be represented by storing a tree pointer,

referencing atoken node whose text is Uie desired character string.)
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At any location in a program, there is usually a "current symbol table" used to look

up identifiers. Such a symbol table is implemented as a linear list of STBBs. The list

specifies the scoping rules of the language. (For example, in an Algol-style block struc

tured language, each STBB would represent one nested block in the path to the outermost

block.) Since the scoping rules may specify different orders of preference at different loca:

tions in the program (e.g., Pascal with statements, Ada imports) it is possible to link the

STBBs into different orders in different places in the program. See section 6.1.4 for a

description of the notation used to specify these rules for a given language.

5.8.1. Solutions to Attribute Grammar Problems

In this section, solutions are presented to Uie problems outlined in chapter 2. First, it

is shown how to adapt Reps* methods to incremental LR parsing. Second, detecting and

avoiding circular grammars is discussed. Third, it is shown how to handle the scoping rules

of typical languages. Fourth, a method for sharing symbol tobies in an incremental

environment is given.

First, we define the nondestructive sharing property to be the property mat if Ais the

set of attributes that are already evaluated and in place in the tree before the evaluation of

an attribute a, then after ais evaluated, each attribute in Aretains the same value as before

the evaluation of a This property is necessary in an incremental environment, to cause the

effect of any evaluation to be "undone" by ignoring the result of the evaluation.

5.8.1.1. Incremental Attribute Evaluation with Incremental Parsing

When the parser has reparsed the portion of the tree above the firewall, all the attri

butes above the firewall must be reevaluated. In addition, any attributes below the firewall

that directiy or indirectiy depend on attributes above the firewall must be reevaluated. This

process is similar to that in [Reps 1981a] except for the nature of the change to the tree.
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The Reps methods cannot be applied directiy because Babel changes are not subtree

replacements. Rather the portion of the tree above the firewall is completely rebuilt (using
existing nodes where they are identical) and the new tree is rooted in place of the old. It is
not possible to view this as asubtree replacement at the root because the resulting tree will
not be prepared for propagation. (The attribute values do not already exist above the

firewall.)

The solution to this problem is to start with alarger attribute dependency graph M,

representing attributes of all nodes above the firewall.10 This leads to an immediate
simplification. Since Mcan only expand downward, the characteristic superior graphs are

never needed.

A node in M must be created for each attribute of each node above the firewall.

Since there is always exactly one reduction for each node above the firewall, the obvious

time to add to Mis in the reduction. Unfortunately, Mmust be created top-down to avoid

extra path nodes in the finished graph, and the reductions are made bottom-up. For this
reason, the initial value of Mis created in atwo step process. In the first step, for each

reduction, the tree node is pushed on astock of nodes to be placed on M. The second step

occurs after the parse has been completed. Each node on the stock is expanded (as though

an evaluated attribute had changed value) and the resulting graph added to M.11

The remaining problem is how to keep the characteristic subordinate graphs available

when they are needed (Reps' requirement of keeping the tree prepared for propagation at

the cursor). Since the parser is bottom-up, nodes are always created as parents of previ
ously created nodes, never by changing nodes from underneath an existing node. Thus
once anode is created, the characteristic subordinate graph will never change. The creation

of acharacteristic subordinate graph, of anode, N, requires the dependency graph Dip] of
,aSee section 2.12 for the definition ofthe partial attribute dependency graph M.
"Note that the order of expansions on the stack is the exact reverse of the bottom-up reduction orderThis is not ifgen^? uVJ sleoX that would be produced by a™™™top*o™^;Jo™cT. this
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the production p, of which Nis the left hand side, and the characteristic subordinate graphs

of all nodes which are its children. These are all available at the time of the reduction

forming the node, and since the node is formed at that time, it is not possible to form the

characteristic subordinate graph earlier. For these reasons, the characteristic subordinate

graph is .determined at reduction time and stored in the tree.

5.8.1.2. Circularity

Babel cannot handle circular grammars since there is no evaluation order which per

mits all arguments to be evaluated before the nodes themselves. A circular grammar is

detected during the incrementol semantic evaluation phase. IfMis nonempty, but there is

no node with in-degree zero in M, the grammar is circular. It is possible, using an algo

rithm given in [Knuth 1968] to detect circularity in the preprocessor. Since circularity is

trivially detected at runtime, and since attribute grammars which are accidently circular

seem to be rare in practice, the exponential cost of this algorithm, as discussed in [Jazayeri

1974], may be excessive. The current prototype implementation does not check for circu

larity in the preprocessor. It would be possible to implement acircularity check, but an

option to turn off this check would be useful in the case of agrammar that is known to be

noncircular.

When constructing a symbol table, it is often convenient to have cycles in the data

structure. For example, in aPascal enumerated type declaration, it would be useful to be

able to tell, not only for an enumerated type name, what the constants of that type are, but

for agiven constant, what the type is. Creation of such asymbol table using the attribute

grammar formalism will either violate the nondestructive sharing property, or cause acircu
lar grammar. Babel symbol tobies must be carefully constructed to avoid such cycles.

In the case ofPascal enumerated types, circularity is avoided by noting that being able

to find the constants of a type is not necessary in standard Pascal. Extensions to this

language feature, such as being allowed to write values of enumerated types, or the 'HRST
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and XAST attributes of Ada12, which seemingly require a pointer from the type to the

members of the type, can be handled in Babel, with some extra work, because the evalua

tion routines are allowed to inspect the tree nonlocally and save additional information. In

this case, the names of the first and last elements of the enumerated type can be stored in

the symbol table type attribute.

It is also possible to construct an arbitrary code created data structure in the tree, allow

ing cycles, without using attribute values to refer to portions of the data structure. Asingle

reference to the entire data structure would be placed in an attribute value. Careful symbol

table design will probably make this unnecessary for reasonable languages. Since pure Lisp

is universal, however, the power exists to have adescription with asingle attribute attached

to the root, and an evaluation function which examines the tree, builds arbitrary symbol

tobies and other structures, checks for errors, and so on. Such an implementation is not

intended, since it does not make use of any of the incrementol semantic checking features

of Babel, but it shows that the power to handle languages requiring circular grammars does

exist in Babel.

A difficult case to handle in areal language is the Pascal enumerated type. Normally,

the type attribute in atype declaration is synthesized. However, in the enumerated type, it
is essential to know, for each of the constants, what the type is. This would seemingly

require the type attribute to be inherited. It cannot be both. However, in each instance of
atype declaration, the type is either enumerated or not enumerated, so it is possible to
specify anon-circular grammar. One solution is to pass the name of the type (which must
be part of the symbol table entry for the type) to the bottom of the list of constants, where

the type is created. Another solution is to restructure the grammar so that type is either

enumerated or otherwise, and treat them differently at the top level.

»*These attributes allow the programmer access to the first and last elements of an enumerated type, without
referring to the name of the element
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Another interesting case is a pair of mutually dependent data structures. For exam

ple, in Pascal, it is possible to have two record types aand b, where acontains apointer to
a band bcontains a pointer to an a. This case can be handled without resorting to code-

created data structures by observing that Pascal requires a restricted syntax for pointer

types:

<type> ::~ Aidentifier

It is only necessary to store the name of the identifier in the symbol table, not the type.

The identifier can be looked up and checked when it is used. (On most machines, pointers

are the same size, so storage can be allocated without knowing what type the identifier

represents, should the language implementor choose to do storage allocation in Babel.)

5.8.1.3. Scoping

Algol style block structure is easily handled by Babel. The system provides symbol

table building blocks (STBB) for symbol tables which are lists of identifiers and symbol table

attributes (STA).13 Each STBB represents one local scope. Normally, each entry in an STBB

has a unique name. (In the case of a language such as Ada that allows overloading, the

language implementor would write routines, in Lisp, to do lookups and resolve ambiguities

as needed.) Each STBB has one extra field, called the global pointer gp(stbb). This field

references the STBB of the next outer scoping level.

There are two primitive functions to look up an identifier. Lookone(stbb,name)

looks for the name in the given STBB and returns a reference to the entry found, or a

failure indication. Lookup(stbb,name) is the same, except that if no matching entry can be

found, an attempt is made to find name in the STBB referenced by the global pointer

gp(stbb). If that fails, the next scope gp(gp(stbb)) is tried, and so on until a match or a

null global pointer is found.

"STA's are not to be confused with attribute grammar attributes. STA's are merely information placed in
the symbol table for each identifier, such as the type ofavariable.



81

Lookup is used for ordinary identifier lookups. Lookone is intended to be used in a

declaration rule to check for multiple declarations. While it would be possible for the sys

tem to check automatically for multiple declarations when an identifier is added, this

responsibility was left to the language implementor, both to provide extra flexibility, and to

allow a better choice of error messages and locations to attach the messages to in the tree.

This extra flexibility would be useful, for example, in handling overloading.

This scheme is sufficient to handle ordinary block structured languages, and more.

For example, in Pascal, each record type invokes a separate scope for the fields of the

record. It is possible to use an STBB for each record type. The global pointer field can

refer to the ordinary symbol table for scoping purposes, or it can be null, allowing the

language implementor to write a routine to check record scopes that are open (from with

statements) before the normal symbol table.

Additional power is attained by the addition of the reglob primitive, which changes

the value of the global pointer field of an STBB. This change is done nondestructive^ by

copying the top node of the STBB with a new global pointer field. This permits scopes to

be linked together in arbitrary orders, which can differ in different parts of the program.

Such power is especially useful for the Pascal with statement, since dynamic relinking of

this kind is needed to handle cases such as

with a do with b do x :- y;
with b do with a do x :- y;

where both a and b are records with fields y.

The universality of Lisp and the ability to use code created data structures shows that

any language semantics can be handled. In this respect, semantic checking is one of the
strongest aspects of Babel, since there are restrictions on the lexical and syntactic rules

which rule out several existing languages. Since a syntax-only LDL description of Ada

already exists, a full semantic checking implementation of Ada is therefore possible.
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5.8.1.4. Sharing Symbol Tables

• The sharing of symbol tables is solved in the Babel system by making fundamental

use ofthe tree structure. Babel STBB's are linear lists, made up oftwo kinds oftree nodes:

SYMTAB nodes representing all or part of an STBB, and STE nodes representing one entry

in asymbol table. Symtab nodes contain aglobal pointer, apointer to an STE node, and a

pointer to another SYMTAB node. An STE node contains the name of the identifier and

an array ofattribute values. An STBB consists ofalist ofSYMTAB nodes and STE nodes,

Unked together as shown in figure 5.2. (The SYMTAB nodes are referenced by pointers pa

and pb. The STE nodes are labeled A and B.)

The convention that a SYMTAB node with no children represents an empty STBB is

adopted. A null pointer cannot be used for an empty STBB, because null STBB's must still

have global pointers.14

This list arrangement has the property that adding an entry to an STBB will not invali

date existing references to it, nor will it change them. For example, suppose that the STBB

referred to by pb in figure 5.2 exists, and an entry for A is added, referred to by pa. The

reference pb will continue to refer to an STBB containing Band lower entries. The refer

ence pa will refer to an STBB containing A, B, and lower entries. If the user later changes

Figure 5.2 Symbol Table Building Block

l4Algol-like languages where begin-end can bracket either a block (with a symbol table) or a compound
statement (which is not a scope and has no symbol table) are not a problem because the difference is resolved
syntactically.
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A to C in the program, a new STE for C will be created, a SYMTAB node will be added

above the C and pb nodes, and an STBB will exist containing C, B, and lower entries,

without A. (See figure 5.3.) Thus, the nondestructive sharing property has been preserved.

The obvious problem with the above method is that linear lists make inefficient sym

bol tables, due to the linear search time. Since each of these nodes is a tree node, with a

potential disk access for each reference, a search down a linear list is even more expensive

than a linear search in memory. Sorting the list is not possible, because the nondestructive

sharing property requires that the order of the symbol table be the orderof the declarations

in the program. Restructuring the STBB into a binary search tree is also not possible since

binary search trees add to the bottom of the tree rather than the top.

The solution to this problem is transparent hashing. A third kind of tree node is

introduced, called a hash table node Such a node contains a hashed symbol table for the

entire STBB, containing for each identifier a pointer to the STE node for the identifier. The

language implementation is expected to call the hash function with a completely built sym

bol table, and pass the result as a symbol table to the remainder of the program. The

lookup functions accept either a hashed or unhashed STBB, so that partial symbol tables

can be used in the declaration portion of the program.

Figure 5.3 Symbol Table Building Block
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In practice, this kind of symbol table works quite well. For very simple languages, it

is very straightforward to produce an attribute grammar building up such a symbol table.

For real languages such as Pascal, it requires care. Symbol table construction is easier in a

compiler than in Babel, because the symbol table is global, and any declaration which must

add to the symbol table merely adds to the global symbol table. When using an attribute

grammar, it is necessary to pass a partially formed symbol table down to any nonterminal

that might need to add to it, and to accept back a potentially augmented symbol table to pass

on up the tree.

For example, the Pascal nonterminal type, which intuitively should be passed an

inherited symbol table and return a synthesized type, which has been looked up in that

symbol table, must also return a synthesized symbol table, since the type might be a record,

or an enumerated type. Thus, any nonterminal which can derive type must be passed a

symbol table, and the resulting synthesized symbol table must be accepted back from the

type.

An alternative structure to the linear list implementation used here, as suggested by

Reps [Reps 1981b] is to use a 2-3 tree. The advantage to the 2-3 tree are that hashing is

no longer essential (since lookup time can be done in Oilog n) time where n is the

number of entries in the symbol table instead of Oin) time. This makes lookups during

the creation of an STBB faster. The disadvantage is that extra tree nodes will be created

and discarded while building a tree. Also, if no hashing is done, lookups in the body of the

scope will take Oilog n) time instead of constant time. The decision is essentially a

space/time tradeoff.

5.9. Preprocessors

There are a few languages which use a preprocessor which is run before the scanner in

order to augment the language. Fortran preprocessors are common. Assemblers have used

macros for years. Other languages using preprocessors include C, Bliss, and PL/I.
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Such preprocessors have three properties in common: (a) they drastically extend the

programming language, (b) they are simple, ad hoc tools requiring little effort to imple

ment, and (c) they can usually be implemented in one pass.

5.10. Problems

Preprocessors make the job of a language editor considerably harder. To see why,

consider the operation of one preprocessor, the Cpreprocessor cpp [Kernighan 1978]. Cpp

is a filter. It accepts one text file as input and produces another text file as output. The

output text file is the result of applying preprocessor transformations on the input. Macros

are expanded, comments are stripped, header files are textually included, conditionally

compiled code is removed, and other such drastic changes are made. Such changes are not

readily invertible, unless extra information is kept for reconstructing the source text.

Since the programmer prepares input for the preprocessor, it appears that alanguage

editor should not edit the language accepted by the compiler, but rather the language

accepted by the preprocessor. But what is this language? There is no context free grammar

to describe it Macros allow significant syntax extensions. For example, it is possible to

define macros called if, then, else, elif, and fl to create an Algol 68 style conditional state

ment with a mandatory fi.

It is possible to handle some preprocessor features by placing an incremental prepro

cessor before the incremental scanner, on aline-by-line basis. Before each line is passed to

the scanner, it is passed through the preprocessor, which can turn it into any number of

lines of output.

This approach has a number of problems, however, and is not powerful enough to

handle all the features of cpp. The worst problem is the nature of cpp scoping, which was

designed with one-pass, batch translation in mind. In cpp the scope of an identifier is from
the point of definition in the input file, either to the end of the file, or to an undefine line,
which removes the identifier from the symbol table at that point. The symbol table has a
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new set of values after each addition or deletion. This convention divides the input file

into a number of zones, each of which has a different set of values in the symbol table.

There are no blocks. Overlapping of scopes does not imply nesting. Identifiers can be

defined and undefined in any order.

In order to faithfully implement these semantics, it would be necessary to maintain a

symbol table for each zone. The overhead caused by this requirement is excessive, and

violates the spirit of the original tool, to be as simpleas possible.

5.11. Subsets

Approximations to the semantics of cpp are possible. In one possible subset, the

define command is allowed. The undefine command is forbidden. All definitions of mac

ros must appear before any uses. (Not only must they appear textually before, but chrono

logically before also, so that uses will expand properly.) This permits the straightforward

maintenance of a single symbol table. Passing a define line through the preprocessor adds

to the symbol table. Passing a text line through expands any macros involved. In addition

to the restrictions listed above, this approach is unable to detect multiple definitions of the

same macro, since they are indistinguishable from rescanning of the same macro definition.

It is not possible to change an existing macro definition, since this violates the chronological

restriction.

The chronological restriction can be dropped if, upon receiving a macro definition, the

implementation scans from the point of the definition, throughout the entire tree, looking

for instances of the token defined, and reprocessing lines containing that token. An incre

mental scan, parse, and semantic check would be required for each occurrence found. (It is

possible to prevent more than one parse and semantic check, in effect pretending all parses

but the last caused a syntax error.)

The positional restriction can be dropped by making effective use of Babel linear sym

bol tables, without hashing. To the first token on each line is attached a symbol table
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pointer, representing the symbol table at that point in the program. Moving closer to the

end of the file, as new macros are defined, new entries are added to the current symbol

table, and the resulting symbol table is attached at that point in the tree. The nondestruc

tive sharing property assures that earlier lines will continue to have their less complete ver

sion of the symbol table.

Finally, the restriction forbidding undefine can be dropped by borrowing a technique

from termcap [Horton 1980] which has special cancel entries An undefine command can

not in general delete the macro definition from the symbol table because the definition

might be in the middle of the table, and its deletion would violate the nondestructive shar

ing property. Instead, acancel entry is added to the symbol table. The lookup routines are

programmed to return failure upon encountering acancel entry for the given name, without

looking any further. The success of this strategy depends on the linear organization of the

preprocessor symbol table. Unfortunately, such an implementation requires substantial

amounts of reprocessing when any macro definition is changed. All later preprocessor lines

in the program must be reevaluated, as well as invocations of the macro just changed, and

extreme care would be required to avoid scanning, parsing, and checking semantics of most

of the remainder of the program.

In addition, the problem of deletion of a macro, or changing its name, must be

addressed. The solution used for semantics would cause complete reprocessing of the rest

of the program.

5.11.1. Display

The display is another problem. The display algorithms work from the tree represen

tation. Since the tree will contain expanded macros, a display from it will look very

different from the text the user typed in. Similarly, if a change is made, the input to the

preprocessor will be the expanded text generated from the tree instead of the original

macro invocation.
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One approach is to attach the invocation text to the first token of the expansion. Each

token of the expansion is marked "expansion" with a pointer to the first token. The

display algorithms check for such marks and produce the invocation instead of the expan

sion. Likewise, the tree editor must produce invocations instead of expansions as input to

the preprocessor.

Another approach is based on a textual representation instead of Babel's tree

representation. The text file would be stored as an ordinary text file. An auxiliary file

would contain the tree. The display would be based on the text file, and all input would

come from the text file instead of reconstructing the tree.13 This approach would miss some

of the advantages of Babel, such as priority elision, keeping only one copy of the file, and

the nonsequentiality of the tree file, but is an avenue well worth exploring.

5.11.2. Additional Preprocessor Features

There are other features provided by cpp, which can be handled with some extra

work. The include command, which includes a text file at that point in the program, is not

hard to handle. It is treated as a macro, expanding to the contents of the file.

The conditional compilation feature is hard to handle satisfactorily. An ideal solution

would check both possibilities and ensure that there are no errors whether the code is

included or not. (In the general cpp case, there are two sections of code, one to be

included if a condition is true, one if false. The program can omit one of these sections.)

Such a solution would require merging of two separate parse trees into one, or two separate

copies of the parse tree. Since multiple conditions are possible, any number of separate or

merged parse trees might be needed. Since the text need not represent a single branch of a

parse tree, no simple merging solution allowing multiple children of a node representing the

same production is sufficient.

15Such an approach is being taken in [Morris 1981].



89

A more practical solution is to evaluate the conditions and assume that the condition

values are correct The false part is stored textually as part of the invocation, and is not

checked. Some conditions can be determined by the contents of the file itself, but it is

common practice to define conditions externally by parameters to the C preprocessor. This

solution would require that the user define the conditions upon invoking the editor, just as

is done for the preprocessor. Some kind of facility for storing initial definitions in the file

would be necessary, since the user would frequently forget to define them, and in any case,

it would be tedious to enter the definitions manually upon entering the editor.

A multi language preprocessor solution is a very hard problem. If there is one com

mon property of existing preprocessors, it is that they are largely ad hoc Models such as

context-free grammars, attribute grammars, and block structured symbol tables do not

describe the preprocessors well.

The Babel system does not implement a preprocessor. Instead, a few simple provi

sions for the C language have been made, in order to make it possible to use Babel to edit

C programs. These provisions do not handle the entire C language, but it is possible to get

some checking from a large class of simple C programs.

In Babel's C description, lines beginning with the cpp attention character "#" are

treated ascomments, and the most common C macro, FILE, is defined as a reserved word,

being treated by the grammar as any other built in type in C. Thus, programmers who

make only simple use of cpp for manifest constants and in-line expansion offunctions, and

who avoid the C typedef construction1, can use Babel. Note that only syntactic checking of

C is being done. Macros are not checked (except syntactically as the procedure calls or

variables they appear to be) and semantics are not checked. This simple solution will not

^e typedef construction in Cdefines a new type. For example, "typedef char •charptr' defines a new
type, charptr, which is a pointer to a character. Ccompilers implement typedef by making a new reserved word,
cbarptr. The dynamic addition ofreserved words violates the static lexical requirements ofBabel. An >mP,emen;
tation allowing an identifier where a type is allowed would have an ambiguous grammar. For example, the block
••( a *b;)" could be either an evaluation ofthe expression a times b,ora declaration ofbas a pointer to an a.
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work with semantic checking, because macros need to be expanded to determine correctly

the types of the expressions towhich they expand.

5.12. Prettyprinting

This section describes the prettyprinting facilities in Babel. An offline prettyprinter is

described, and it is shown why the program is not prettyprinted as it is entered.

The LDL language description contains information showing how a program should

be formatted. This information is not an inflexible rule, but rather asuggested way to for

mat aprogram. The Babel system allows auser to format his program as he sees fit, just as

a text editor would. It is often useful in practice, however, to be able to reformat a pro

gram which has been somehow messed up. A large class of tools to do such reformatting

exists; such tools are called prenyprinters

It is quite easy to prettyprint aBabel program, since the tree structure of the program

is already there. Pretty printing can be done without having to guess whether a particular

keyword, such as begin, is a keyword or part of a comment. In a situation where one

instance of begin should cause aright shift, but another should not, if the two instances can

be distinguished by the syntax ofthe language, it is easy to handle both cases correctly.

Babel prettyprinting information places extra pseudo-tokens in some of the produc

tions of the grammar. There are three possible pseudo-tokens: %nl ttlshift, and ttrshift

These directives indicate a recommended place for a newline, a shift of the left margin to

the left, and a shiftof the left margin to the right, respectively.

5.12.1. Off Line Prettyprinter

The Babel prettyprinting algorithm is quite simple. An indent counter is set to zero.

The prettyprinter recursively walks the tree, keeping track at each level ofwhich production

it is in. When a shift directive is encountered in the current production, the indent counter

is incremented or decremented by one tab stop. (The size of the tab stop can be a
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parameter.)

When a newline directive is encountered, the algorithm examines the next token. If

the token has no newlines, a newline is inserted at the current indenting level. If the token

has one or more newlines, it is left as is, but the indenting level is adjusted.

When a newline that was not expected is encountered, if a comment or blank line

precedes or follows the newlme, the indenting level is adjusted to the current level, other

wise, the newline is deleted.

By using the same tree library used by the other Babel tools, it is easy to write such a

prettyprinter. The tree is prettyprinted in place. A change to the newline or white space

count of a token (the only change that must be made by the prettyprinter) is done by copy

ing the token into anew tree node, adjusting the value of the new node, and replacing the

old node in the tree with the new node. This ensures that the prettyprinter is just another

Babel editor command, saved m the history list, and can be undone with the editor undo

command. This prettyprinter has not yet been implemented.

5.12.2. Automatic Prettyprinter

An initial goal of this project was to use this same language dependent information to

prettyprint the program automatically as it is being typed in. In an LR parsing environ

ment, we are unable to do this. This section discusses the problem.

A simple solution appears to be the following: Let Bbe the line being typed in, and A

be the line immediately before it. The method starts at the first token of A, noting its

indenting level. Tne tree is walked from that point to the beginning of B, counting shifts in

the grammar. The indenting level of Bis set to the level of A, adjusted by the number of

shifts encountered from A to B.

The problem with this method is the presense of syntax errors. If the program were

always syntactically correct, this method would be possible. If syntax errors are present,
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some of the structure of the tree is gone, and shifts will be missed.

In practice, programs almost always contain syntax errors as they are being entered,

because they are usually incomplete. In an LR parsing environment, the parser can not tell

which production it is accepting until it has read all of that production, making it impossi

ble, in general, to prettyprint based on the incoming partial program.

There are a number of semi-automatic prettyprinting aids present in text editors, and

any of these could be put into the user interface. Vi, for example, has a mode which

indents the line being typed to the same level as the previous line. The user can manually

adjust this default either to the right or to the left.

In Babel, the lexical structure of the program is available, even in the presense of syn

tax errors. This property makes such techniques as counting begin and endkeywords possi

ble. While this method is less powerful than the syntactic method outlined above, it is

more powerful than simple character counting (which is fooled by comments and strings)

or than the semi-automatic method of vi.

Finally, it is worthwhile to note that the offline algorithm above can be applied to any

subtree of the program, initializing the indenting level to that of the last line before the

subtree, or to a.parameter entered by the user.

5.13. Error Messages

This section describes the facilities in Babel for handling error messages. Primitives

for attaching error messages to the program are defined. The user interface is discussed.

Many systems simply produce error messages on the terminal and forget them. Since

one of the aims of Babel is to remind the user of what still needs to be done, this approach

was deemed unacceptable. Instead, error messages are kept, as a property of the program,

until the error has been corrected.
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Babel takes the view that error messages are character strings, attached to anode in

the tree. Aspecial type of node is used to hold error messages. This node contains the
text of the error message and ahashed value of the error message for speed in comparison.

5.13.1. Implementation

Babel contains the following primitive error routines.

set_error(node, string)

Add an error message to anode. If the message is already there, nothing is done.

ciear_error(node, string)

"Remove an error message from anode. If there is no such message attached to the
node, nothing is done.

check_error(condition, node, string)
Either set.error or cle«_emr depending on the result of evaluating aBoolean

expression.

find_error(node)

Return the error message, if any, attached to the node.

This framework permits aroutine that checks for an error to insert aone line asser-
tion that automatically takes care of setting or clearing the error condition, such as

check.enor(type(a) - type(b), node, "type clash");

Such aframework is convenient for making semantic checks. The check.error routine is
called directly by the Lisp check function.

For syntax errors, the tree editor uses the set.err.r and dear.error routines. When a
syntax error is detected, the token or nonterminal rejected by the parser is marked "syntax
error" by set enor. When aparse successfully completes, all the nodes on the firewall are
cleared of the "syntax error" message by cle«_err., Since all nodes previously rejected
by the parser will be in the firewall, clearing the firewall insures without traversing the
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entire tree that there will be no remaining nodes marked in error.

5.13.2. User Interface

When the tree is displayed, any token that is a descendent of a node marked in error

will be highlighted. In order to find out why anode was marked in error, the user can posi

tion the focus to the node and enter the why command. The first error message attached

to that node will be output on the message line. If none can be found, ancestors and des-

cendents are checked.

Another approach would be to display the text of the message as soon as it is encoun

tered. Such an approach was rejected for the following reasons. First, allowing multiple

error messages on the terminal screen would clutter up the display. Second, it is common

for a user to make a multiple step change to a program, going through incorrect states.

Displaying messages during these states would be distracting to the user. Third, the time

taken to output a number of error messages to the terminal over medium speed (1200

baud) telephone lines would be excessive.

It would be possible to list alienor messages attached to a node, its ancestors, and its

descendants, either one at a time on the message line, or by clearing and redrawing the

screen. In order to avoid the cascading error message problem, only the first enor message

is output, since it is likely that the first error caused the remaining messages. If there were

additional true errors, they will become apparent when the first error is corrected.

5.14. Performance

This section discusses the performance, in terms of time and space, of the current,

experimental Babel implementation, and some possible improvements to Babel to improve

the performance of the system. Although the system was designed with performance in

mind, it was not known in advance what the trouble spots would turn out to be. Some

ideas are set forth indicating how improvements might be made to future versions.
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Since Babel does considerably more than atext editor, it is reasonable to expect that it

would cost more to use. This expectation has proven to be true. The current experimental

editor has had considerable tuning ofthe major performance bottlenecks that were straight

forward to tune without making major changes to the structures. Performance, however,

was not the overriding consideration in the construction of the system: rather, showing that

such a system can work was the major goal.

Although it has turned out that making changes to aprogram is several times more

expensive than with atext editor, moving the focus around is just as fast. Unlike the
approach of tWilcox 1976] and IMorris 19811 where moving the cursor implies recompila-
tion of text moved over, or (Reps 1981a] where moving the focus requires recomputation
of characteristic graphs, moving the focus in Babel requires only avery quick table lookup
to find the correspondence between the screen and the tree, and aredisplay if the focus has

been moved off the screen.

5.14.1. Time

The current implementation of the Babel editor costs varying amounts more than a
text editor to run. Measurements were made of several text editors, and of Babel with vari
ous amounts of checking. Three tests were made, using an 60 line Pascal program: (1) the
editor was entered and immediately exited, (2) an assignment statement was added, and (3)
adeclaration was added. The Unix time command was used to measure the CPU time
needed by the editor invocation. The CPU time needed for entry and exit was subtracted
from the others to arrive at the time needed to make the change. The tests were repeated
to ensure that asystem fluke did not throw off the numbers.

Running be with all checking turned off required from about 4to 5.5 times the CPU
time needed by vi to make asingle change to the program. The difference can be
explained by the number of times the screen had to be redisplayed, an operation that is
more expensive in Babel than in most text editors because the tree must be examined.
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(The executable statement was added further down in the program than the declaration,

causing an extra screen redisplay.)

' Running be with syntax checking only, the cost was about 4.5 to 6times the cost of
vi. The scanner typically rescans fewer than 10 tokens, and the size of the firewall is typi

cally in the 20 to 30 range. Clearly, the cost of syntax checking is negligible.

Semantic checking costs more. When the executable statement was added, aratio of

14 to 1, compared to vi, was found. Addition of adeclaration required reevaluation of the

entire scope of the declaration, resulting in this case in aratio of 62 to 1, compared to vi,

but the ratio will in fact be proportional to the size of the scope. The cost of reevaluation

of the entire scope in the case of Babel's Pascal implementation is about one second of

CPU time per line of program.

Some effort to cut down on such expensive evaluations is clearly needed to make

semantic checking practical. One approach is to cut down the constant of proportionality.

Another is to "batch" the evaluations to occur less often. A third is to reevaluate only the

"uses of the variables affected by achange to adeclaration, rather than the entire scope.

There are many ways to cut down on the constant. The Babel system spends much of

its time in routines to examine the tree structure. Improvements to the tree library to

make tree access faster is one possibility. Better virtual memory facilities from the operat

ing system, for example, would save the system from checking (1) if the page table for that

tree node has been created, and (2) if that page needs to be read in from the disk file, two

tasks that are required for each tree access. Techniques discussed below for making the

tree smaller would also make it faster, since more nodes would fit in one page, fewer pages

would need to be touched, causing fewer page faults. Cutting down on the number of

nodes, by using an abstract tree, would cut down significantly on the number of evalua

tions. Finally, the attribute routines are written in interpreted Lisp, and appear to be

expensive to evaluate. (About 10 attributes per second can be evaluated by Babel.) Cer-
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tainly, the special cp case (see section 6.1.4), which accounts for over half the evaluation

rules of the grammar, could be made special at runtime.

Another approach is to prevent multiple evaluations of entire scopes. Evaluations are

deferred if there is another command being typed by the user. It is also possible to turn

checking off and on manually. When checking is off, an explicit check command can be

entered to catch up on all syntactic and semantic checking which has been deferred. Such a

check will evaluate any given attribute only once, avoiding repeated evaluations of entire

scopes. (Both of these features have been implemented.)

Another approach would be to automate the decision whether to check, by only doing

checks when the user leaves an area with acertain granularity, such as a scope. As long as

the decision can be made before the incremental parse begins (after the firewall has been

determined), it is easy to defer the evaluation. Since avoiding the evaluation uses the same

mechanism as handling a syntax error (the nodes of the firewall are linked into one large

error production, and their parent, an error node, is made the root of the tree) ifadecision

cannot be made until later, the work done since creation of the firewall can be thrown away.

A savings still results if only asmall part of the work has been done.

The hardest part of the above method for automating the decision is determining

when ascope has been left. Ascope can be detected in aBabel tree because the hash table

for the associated STBB is attached to a node that can be considered "the root of the

scope". One approach is to define the scope of anode as the nearest hash table on the path

from that node to the root Then the scope of the focus is easy to determine. Care must

be taken, however, to ensure that reparsing of a portion of the tree does not change the

hash table used for that scope, as it might when reevaluating it. The table must be reused

when possible. (Recall that all attributes above the firewall are reevaluated. By definition,
the hash table in question will always be above the firewall.) A disadvantage to this

approach is that executable statement changes, whose reevaluations are less expensive,
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would also not be checked until a scope is left.

Another approach is to detect that the evaluations are going to be expensive, and
avoid them. It is very hard to determine the cost before the parser starts, since it has little
information about the syntactic or semantic structure of the changed part of the program.

It can be detected shortly into the parse, by keying on reductions that will cause certain

Lisp functions (i.e., addste, hash, empty, and so on.) to eventually be evaluated. Atable
of which productions fit this category can be created when the tables are read from the LDL
table file, by inspection of the evaluation functions for each attribute of each production.

A much better solution would be to find away to evaluate only the parts of the tree

that use identifiers whose symbol table entries have changed. This is ahard problem in the

context ofattribute grammars. Some problems with this approach, and some ideas toward a

solution are discussed here.

The primary problem is that attribute grammars are based on the notion of building

up the "meaning" of aprogram from nothing. They do not deal with issues such as what

to do when something that already exists is changed or is deleted. Another problem is that

attribute grammars are very local in nature. To communicate apiece of information (such
as asymbol table) from one part of aprogram (i.e., adeclaration) to another part (i.e., an
executable statement) itmust be propagated one production at atime through the tree.

This property of attribute grammars is, however, avery desirable property when the

original intent of attribute grammars is recalled: to define the semantics of a language.

Such a definition is very high level, and can probably be developed by a language imple

mentor much faster than adefinition that specifies what to do in case ofachange or dele

tion. A good system should handle changes and deletions internally, without forcing provi

sions for them in attribute grammars. Babel currently meets this goal, at the expense of

considerable runtime overhead.



99

A solution might begin with the assumption that each use of an identifier is kept

linked together in two lists. (1) A local list, rooted at the declaration of the identifier, of all

uses of that declaration in the scope of the declaration. This list is useful when a change or

deletion is made. (2) A global Ust, rooted in a global table, of all uses of that identifier in

the entire program. This list is useful when an addition is made. Keeping these lists up to

date is not an easy job itself, since the deletion problem occurs here, too. The easiest place

to update the lists might be in the tree editor, after the firewall has been generated, before

the incremental parser is invoked. The availability of the old version of the tree is needed

to determine what to delete from the lists.

When achange is made causing the hash function to be called, the old version ofthe

table (which will be attached to the same node the new table is to be attached to, if proper

care in reusing existing nodes has been taken, unless adrastic change to the tree structure

has been made) and the new version must be compared, to create alist ofadditions, dele

tions, and changes. Determining what has changed is easy, since all changes must be local

ized in one continuous stretch of the symbol table. A comparison could be made starting

from each end; when differences are found the boundaries of the changed section have

been determined. Then, alist of identifiers contained in each version ofthe symbol table is

made. Those appearing in only the old table have been deleted, those appearing in the new

table have been added, those appearing in both have been changed. The nonterminal to

which the hash table is attached is called the root of the scope.

Now, all uses of these variables must reevaluated. Uses of changed or deleted vari

ables can be found in their attached list of uses. Uses of added variables can be found by

searching the global list. (Use of the global list could force reevaluation of more nodes

than necessary. A more involved scheme might only flag those uses that are within the

scope of the declaration.) For each token node found, the expanded superior graph would
be added to the graph Mof attributes to reevaluate. (The simplification made in Babel that
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only characteristic subordinate graphs are need would no longer be valid.)
The remaining problem is that since we are avoiding the propagation of the symbol

table throughout the scope, most of the symbol table references which had previously been
propagated will refer to an old version of the symbol table, and thus be wrong. Asolution
to this might be to adopt the convention that rather than passing apointer to the symbol
table itself throughout the scope, apointer to the root of the scope (as defined above) to
which the symbol table is attached is passed. This node would only be changed when a
drastic structural change to the scope is made, requiring complete reevaluation. Again, care

must be taken to ensure that the root of the scope does not change unless it must, to avoid

extra evaluations, and avoid symbol tables pointing into an invalid part ofthe tree.

5.14.2. Space

The memory requirements of Babel are not extreme. The program size would easily

fit in 64K bytes on a16 bit minicomputer. The data size, not counting buffers for paging

the tree in from disk, is large in the current implementation. While it might be possible to

squeeze it into the 64K address space of a minicomputer, it would be necessary to use

software routine to simulate paging of the tree, using only a few buffers. Performance

would be degraded significantly.

The current implementation allocates enough virtual memory to hold the entire tree,

and loads pages in from the file as they are needed. For this reason, an operating system

with virtual memory is all but essential in order to have reasonable performance. The

current implementation runs on aVAX running Berkeley Unix.

The space requirements of the disk file are another matter. No effort has been made

in this experimental implementation to keep their size down, and it has turned out that

their size is not only excessive, but that the excess size is increasing the CPU time needed

by the editor. Current Babel trees without semantics average about 30 times the size of the

equivalent text file. Ifsemantic checking is done, the factor jumps to 300.
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These numbers should not be taken to imply that Babel trees have to be so large.

There are a number of things that could be done to make them smaller, which are planned

for a future version. Some of these steps are outlined here.

Changes can be broken down into two categories: (1) making nodes smaller, and (2)

having fewer nodes. All nodes in the tree currently have eight overhead fields, each occu

pying four bytes. The fields are (1) the type of the node, (2) aword of flag bits, (3-7) the

parent, first child, last child, left sibling, and right sibling of the node, and (8) a link field

used to link the firewall together.

Some of these fields can be discarded or made smaller. The type can be a single byte.

The flags are not especially important (used to flag errors and changes to the tree) and

could certainly be stored in one byte, if not totally eliminated. The link field is not really

necessary, since the firewall can be linked together using the sibling fields and normal tree

structure.

The structural fields seem indispensable at first, but two of them (say, left sibling and

last child) could be eliminated by replacing the routine to look up the field by a routine to

search a list of siblings to find the requested node. There would be a space/time tradeoff

here.

A further improvement might be made by observing that several siblings linked

together all have the same parent. The parent field could be eliminated by storing only one

copy of the parent in the (otherwise null) right sibling field of the rightmost sibling, or the

left sibling field of the leftmost sibling. (This idea is similar to the use of threads of

[Knuth 1973].) Either a flag bit could be set indicating that this is the rightmost or leftmost

sibling, or the corresponding field ofthe parent could be checked to see if it points back to

the child node.

Another possibility for improvement is to reduce the size of tree pointers. In the

current implementation they are four bytes, and represent an offset in the tree file.
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Another possibility would be to have aseparate table of tree node offsets, so that atree
pointer could be an integer index into this table. Atwo byte index would probably be

sufficient.

Another apparent improvement might be to keep the text of tokens in astring table,

and to reference the string table instead of saving the text of the token in each token node.

Since tokens are often short17, this improvement would probably not result in any space

savings. It might, however, be useful in conjunction with the global linking together of

identifiers discussed above.

A second approach is to cut down on the number of nodes. Using an abstract tree

instead of an LR parse tree would have a dramatic effect on the size of the tree. If a

method for incremental parsing using abstract trees could be developed, this change alone

would be well worthwhile, not only to make the tree smaller, but to cut down on the

number of attributes that must be evaluated, and to make the tree more natural for the

user to move the focus around in.

In a tree with no semantics, most of the nodes are either tokens or nonterminals.

Other than using an abstract tree, there is not much that can be done to reduce the number

of nodes.

In atypical Babel tree with semantics, however, atypical nonterminal with three attri

butes might have three attribute nodes and five characteristic subordinate graph nodes.

These nodes, plus the need for symbol tobies, account for the factor of ten increase in the

size of the tree. Since the attribute nodes and the characteristic subordinate graph nodes

contain two and one integer values, respectively, (compared to 8 values of overhead) the

tree size is strongly influenced by the number of nodes. A different representation of the

characteristic subordinate graph, placed in the nonterminal node, would cut the tree size by

a factor of two. Attributes might all be grouped in one node, for further savings.

17A measurement of one C and one Pascal program indicates that the average length of a token is slightly
under two characters.
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(Attributes should not be placed in the nonterminal node, since their values change more

often than the nonterminal to which they are attached. Characteristic subordinate graphs,

however, are fixed at the time the nonterminal is created.)

In summary, if all these space saving measures were taken, the size of the tree could

be reduced to about 15 times the size of the text file. This tree would contain more infor

mation than the text file, such as the parsed structure, and the results of semantic evalua

tions. If no semantic evaluation were done, the figure could be reduced again by another

factor of two.



CHAPTER 6

Language Description Language

6.1. Language

LDL describes language features that are needed by the Babel system. It does not

attempt to define all aspects of the input language. The kinds of information contained in

an LDL description are:

(1) Lexical information. This includes the forms of tokens, comments, white space, and

reserved words that are needed by a scanner.

(2) Syntax, represented by a context free grammar.

(3) Prettyprinting rules. These are given in the form of special left and right shift items

in the grammar, and newline items showing suggested locations for newlines.

(4) Semantics. Attribute grammars are used as the basis of the description. No attempt

is made to describe all of the semantics. Static semantics can be described in as little

or as much detail as desired by the language implementor.

This section describes the elements of the LDL formalism. See Appendix A for some

examples of LDL descriptions.

6.1.1. Lexical Information

Regular expressions are the basis of the lexical model. Any language whose tokens

are all regular expressions, which can be distinguished by their syntax alone can be pro

cessed. Language features that require a symbol table lookup in the scanner, such as those

found in Algol 68 and C, are not handled. FORTRAN 66 and FORTRAN V are not han

dled, since they do not have reserved words and have conventions for separation of tokens

104
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that cannot be recognized with regular expressions. A dialect of FORTRAN having

reserved words, requiring blanks to separate words, prohibiting blanks in the middle of a

word, and eliminating the special significance of columns 1, 6, 7, and 72, could be

described in LDL. FORTRAN 82 is expected to use a more conventional form and to be

handled by this scheme.

By convention, names in MixedCase represent tokens and other lexical information,

and names in lowercase are nonterminals.

The notation used is very high level, not at all like the typical coding of a scanner for

a compiler. Three pieces of information are given as input:

(1) A list of reserved words.

(2) A list of "constant tokens" (those that have only one textual representation) such as

":«.«, «<-, -<«", "+", etc. This category includes most punctuation but not

reserved words. (It is actually possible to include reserved words here. For reasons

of readability aseparate section for reserved words was created.)

(3) A list of regular expressions for those tokens that are not constant (identifier, com

ment, integer constant, real constant, string constant, white space, etc.) The regular

expression notation used is the same as that of Lex.

These regular expression descriptions are passed to Lex without interpretation, allow

ing all the features of Lex to be used. Unfortunately, such descriptions are frequently hard

to read. An improvement to LDL might implement alevel of "syntactic sugar" providing

the language implementor with a more readable regular expression notation, such as the

one used in iGeigerich 1979]. Since the regular expressions are currently viewed as strings

by LDL, an additional benefit would be additional syntactic checking from the LDL

language itself.

Here is an example of the lexical portion of an LDL description.



•/oreswords

Begin "begin"
End "end"

^constant
Becomes

".^a,"

Lt
w^n

Le
M^ —"

Plus
m^n

Semi

'/otokens

Id "[a-zA-Z][a-zA-Z0-9 1*"
Intconst "[0-9]+"
String "\\"(rv]K\\\")*\\""
Comment "\7*\"(r*]K-Tr/])*\-/v
Whitespace "[\t\n]*"
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Some special interpretations of these rules are made. The token Id is special because

reserved words must be Id's. Whitespace will be ignored when found. It is instead

reduced to two integers, the number of newlines and the number of blank spaces preceding

the next token. These two integers become a property of the next token. Comments are

also ignored by the parser but are attached to the following "real" token (along with any

white space preceding the comment) by the scanner so that they are not lost. (Since there

are endmarker tokens, there is always a "next token" to which to attach a comment.)

6.1.2. Syntax

The language syntax is described using the same notation as Yacc. For example:

^grammar
goal: Begin stmtlist End;
stmtiist: stmt;

stmtlist: stmtlist stmt;
stmt: Id Becomes expr Semi;
expr: prim;
expr: expr Plus prim;
prim: Id;

6.1.3. Prettyprinting

Prettyprinting tells the editor exactly how programs should be indented. The pro

grammer is not forced to format his program this way. A prettyprinting utility could refor-



mat a program to conform to the prettyprinting standards described here.

Indenting rules are embedded in the grammar and are of three types:

%nl indicates that a newline should appear at this point.

%rshift indicates that the indenting level should shift one level to the right.

ftlshift indicates that the indenting level should shift one level to the left.

For example:

^grammar
goal: Begin %nl %rshift stmtlist %lshift End%nl;
stmtlist:
stmtlist:
stmt:

stmt;
stmtlist stmt;
Id Becomes expr Semi %nl;

expr:

expr:

prim:

prim;
expr Plus prim;
Id;
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The above grammar would suggest a program indented as follows:

begin
a :•• 3;
b :- a+5;

end

The actual program might be typed in by the programmer in any format.

6.1.4. Semantics

The semantics are specified using an attribute grammar formalism [Knuth 1968]. It is

possible to specify as little or as much of the static semantics of a language as the imple

mentor desires. One extreme is to omit all semantics, which causes the editor to check

only syntax. The other extreme would be to specify an entire translator in the attribute

grammar. The translator could leave assembly code in the tree. It is our intention that for

languages with agood deal of static semantics, the attribute grammar should specify enough

of the semantics to detect static errors, but not actually to generate code. Going much

further than this would lead to portability problems (assumptions about the object machine)

that probably do not belong in the editor.
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The attribute grammar must be noncircular. Since an attribute can only be evaluated

when all attributes it depends on have been evaluated, there is no evaluation order possible

if an attribute indirectly depends on itself. Since attributes are only evaluated in syntacti

cally correct programs, there are no "one pass" problems requiring a grammar to belong to

a more restrictive class.

Each symbol of the grammar has a set of zero or more attributes associated with it.

Each attribute has a name which need be unique only for that symbol. The name is

translated to a small integer by the LDL processor. For example, if a symbol has three

attributes, they will be numbered 0, 1, and 2. Attributes are individually stored in the tree

in attribute nodes, that are attached as children of the symbol to which they apply. Each

attribute is a single-word quantity, representing either an integer or a pointer into the tree.

Since tree pointers can indirectly reference complex structures, such as symbol tables, this

capability is quite powerful.

Character strings cannot be stored directly in attributes, but a tree pointer to a token

whose text is the character string can be stored, achieving the same effect. For purposes of

semantic checking, the names of identifiers have been the only strings needed for the exist

ing implementations. Lisp S-expressions cannot be stored directly in an attribute, since the

attribute, stored in the tree on disk, has a lifetime longer than the S-expression, stored in

primary memory. Unless the language implementor wishes to build and execute dynamic

Lisp programs1, there is no reason to store an S-expression in the tree, since the tree struc

ture provides equivalent capabilities.

Several attribute evaluation functions may be attached to each production. Each func

tion is viewed as a definition of one of the attributes of a symbol in the production. The

attribute is defined as a function of other attributes of symbols in the production and other

available information, such as the text of a token.

'This feature is not present in Babel, but could easily be added by giving the language implementor access
from Lisp to the interpreter functions ewo/or apply.
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In the LDL description, for each function, three pieces of information must be

specified: which attributes are usea\ which attribute2 is set, and the evaluation Junction.

Most of the attribute grammar literature also requires attributes to be classified as

either inherited, based on information propagated from higher in the tree; or synthesized,

requiring information from descendants of itself or its siblings. Such information is nor

mally used as a clue to a one pass evaluator, telling in what order to evaluate the attributes.

Since our evaluator is incremental, this information is used only for error checking in LDL.

The notation for the evaluation function is one area that is usually left up to the

designer. This flexibility has, unfortunately, led to a complete lack of standardization of

attribute grammar descriptions, causinga portability problem.

The notation used here is based on the Lisp language. Lisp was chosen because a

small subset of the language is universal, providing a great deal of power for the language

implementor with only modest work for the implementor of the Babel system.3 For each

attribute, the three pieces of information needed are specified in parenthesized lists,

enclosed in square brackets.

An attribute of a symbol is designated by the notation "$i.attr" which refers to the

am attribute of the i* symbol on the right hand side of the production G - 0 refers to the

left hand side).

Attributes are not declared; if one is set that does not exist, it is dynamically created.

The set of possible attributes on a symbol is static, however, since it is not possible to

dynamically create attribute names or numbers. Hence, it would be possible to have attri

bute declarations. They were omitted only for simplicity of implementation of Babel.

Declarations are not necessary in LDL for the same reason they are not necessary in FOR-

^t is possible for an evaluation function to set more than one attribute within the production. While this
will work in the current implementation, the function will be invoked to define each attribute, resulting in wasted
evaluations. For thisreason, it is recommended thateach attribute have a separate evaluation function.

^The prototype Lisp interpreter, including symbol table management, was implemented in less than aweek.
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TRAN: the translator can determine the set of identifiers used and create a symbol table at

translation time.

It is an error to use an attribute that has not been set. The LDL processor checks for

this, with some extra work. The editor also trivially checks for uninitialized attributes, dur

ing evaluation when the value is accessed. The LDL processor builds a table ofattributes,

indicating whether they are inherited or synthesized, (based on sets information in the

evaluation function rules). It checks each production that should be assigning a value to an

attribute (based on whether the symbol is on the left or right hand side of the production

and whether the attribute is inherited or synthesized) to ensure that a value is assigned.

The evaluation time check is made when the value of an attribute is used. If no attribute

node with the proper attribute number can be found attached to the symbol, the attribute is

uninitialized. This check has proved quite useful in practice, since the most common error

made in the implementation of Asple and Pascal was the omission of an evaluation rule.

For example, the following rules pass the symbol table down the tree and the type of

the expression up the tree.

expr: expr Plus prim
I (uses Sl.type $3.type)

(sets SO.type)
( (check "Type clash" (eq Sl.type $3.type) SO.self)

(set SO.type Sl.type)
)

(uses SO.stab)
(sets SLstab)
(set SLstab SO.stab)

(uses SO.stab)
(sets $3.stab)
(set $3.stab SO.stab)

The special attribute "self' produces a tree pointer to the node itself. This attribute

(number —1) is not actually stored in an attribute node, and never depends on otherattri

butes. In effect, self is a reserved attribute name.
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The following rule uses the symbol table that was passed down the tree to determine

the type of the ID and pass it back up the tree. The variable "tmp" is a local variable.

prim: Id
[ (uses SO.stab)

(sets SO.type)
(prog (tmp)

(setq tmp (lookup SO.stab Sl.text))
(check "undeclared variable" (ne tmp niD Sl.self)
(set SO.type (getattr tmp 2))

)
]
»

Check, lookup, and getattr are built-in symbol table functions. (See section 6.2 for the

meanings of these functions.) Attribute 2 would, in this example, be the type of the vari

able. (The language implementor might choose to represent types as integers, or, more

likely, as pointers into a symbol table.)

The second and third rules in the expr rule above illustrate a common case. The

actions do nothing but copy attributes up or down the tree. Since this is so common, a

shorthand notation is provided:

[cp SO.stab $ l.stab $ 3.stab]

The LDL processor expands this into the Lisp code shown above.

6.1.5. Compiler Help

It would cut down significantly on the work that a compiler must do for every compi

lation if the compiler could start with the Babel tree representation instead of a traditional

textual representation. This section discusses possible extensions to LDL to make this job

easier.

Many compilers first scan and parse the program, building an abstract tree as the parse

proceeds. It would be straightforward to traverse the Babel tree, which is an LR parse tree,

to produce the desired abstract tree, thus avoiding the problems of scanning, parsing, and

error recovery in the compiler.
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A Babel implementation that checks semantics leaves much more information in the

tree that would be useful to the compiler, such as the symbol table, types of expressions,

and results of applying scope rules. There would be a performance improvement if the

compilerdid not have to recreate this information.

A parse-tree-to-abstract-tree grammar which told how to build abstract trees from

corresponding parse trees would be useful here. While not needed directly by the editor,

such a grammar could specify portebly how an abstract tree should be formed, using pieces

of the Babel tree to build the abstract tree. Babel semantic attributes could be included in

this abstract tree, using rules in the parse-tree-to-abstract-tree grammar.

This notion is very similar to the string-to-tree grammar used in [Geigerich 1979]. A

notation based on their graphic notation, or a suitable ASCII version, could be added easily

to LDL. A standard subroutine to create an abstract tree using tables generated from this

parse-tree-to-abstract-tree grammar could be provided, which would be used by a compiler.

One problem with this approach is that different compilers for the same language

might need different abstract trees; that is, one could argue that the particular style of

abstract tree is a property of the compiler, not the language. There is, however, a move

ment toward the standardization of abstract trees for some languages, see [Goos 1981] for

an example. Such a convenient tool might encourage abstract tree standardization even

more.

6.2. Lisp

This section describes the dialect of Lisp used for attribute evaluation functions. This

dialect does not support all of pure Lisp4, since parts of it were not needed. Some addi

tional primitive functions have been added for manipulating attributes, symbol tables, and

the tree.

4 Label and lambda are not implemented, nor is the language implementor given accessto eval or apply.
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There is no garbage collector. While there is no reason a garbage collector could not

be implemented, the amount of memory allocated by cons once the language tables are

read in has turned out to be negligible. Since Babel is implemented in a virtual memory

environment,5 a significant improvement to performance was made by never freeing any

thing, so there is no penalty for failing to garbage collect. Most of the dynamically allo

cated memory in Babel is used by either tree buffers (the entire tree is kept in virtual

memory for performance reasons) or language tables, neither of which is ever freed. Most

of the reusable date structures are in local variables on the stack. Those few places where

memory is allocated and freed did not justify the overhead of afirst-fit search through all of

virtual memory (touching every page) upon every allocation. Amore intelligent memory

allocator would prompt reconsideration of this tradeoff.

An evaluation function is a Lisp S-expression which is evaluated for its side effects,

typically assigning a value to an attribute. Any value returned by the S-expression is

ignored.

The user can statically define callable functions in a separate section of the LDL

description called %functions. This allows the definition of functions with parameters, pro

viding the advantages of modular and unrepealed code, plus the power of recursion,
without implementing lambda for unnamed functions. Since all atom names are stored as
indices into the atom table, afunction body can be found for acall in constant time. This
implementation does have static (unnestable) scoping for functions, which is different from

other Lisps.

5AVAX 11/780running Berkeley 4BSDUnix.
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Functions are defined with the defun syntax, for example:

^functions
(defun checkaddste (namenode istab al a2)

(prog (ste)
* (set ste (lookone istab (name namenode;;;

(check "Multiple declaration" (eq ste tnuH) namenode)
(addste (name namenode) istab al a2)

)
)

This defines a function called "checkaddste" with parameters "namenode" (a tree node of

atoken, whose name is being added to asymbol table), "istab" (the input symbol table)

"al" and "a2" (two symbol table attribute (STA) values being used to initialize the sym

bol table entry.) The function adds the given name and STA's to the symbol table, after

checking for amultiple declaration, and returns the new symbol table.

The section that follows describes the built in functions in LDL. This set of functions

has been more than sufficient for the existing language implementations. It is easy, how

ever, to add more functions as needed, in addition to any code needed to implement the

function itself (if it is not already built into Babel in some way) there are only 4 lines of

code needed to make a function accessible from Lisp.

6.2.1. Pure Lisp

atom, car, cdr, cond, cons, nil, null, quote and t

These functions behave exactly as they do in pure Lisp. Their inclusion, along with the

function capability below, insures that the dialect of Lisp here is universal, nil and t are

» atoms representing true and false. Cons takes two arguments and creates a new Lisp cell

with those halves. Car and cdr take one argument and return the first or second half of the

^ indicated Lisp cell. Atom returns t if its argument isan atom, nullreturns t if its argument

is niL Quote returns its argument, without evaluating it Cond is the Lisp conditional

function, accepting one argument which is a list of pairs (condition value). The first pair

with a condition which evaluates to t will return the corresponding value. If there are no
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matches, nil is returned.

6.2.2. Common Lisp Extensions

defun, prog, progn, set and setq

These functions are usually present in actual Lisp implementations, and are needed for

practical programs, (defun funcname (parameters) value) is used in the %functions section

to define a function. This permits the function (funcname arguments) to be called, binding

the arguments to the parameters, and evaluating and returning the value, (set variable

value) and (setq variable value) have the side effect of evaluating the value, and assigning

the result to the variable. The variable can be an atom or an attribute of the form $i.name,

as described previously. The form setq is used for atoms, set for attributes. Otherwise the

two are identical. The forms (prog (localvars) el e2 ...) and (progn el e2 ...) provide local

blocks and compound statements. If local variables are listed, they are created and bound

to those names. The expressions are evaluated, and the value of the last expression is

returned.

6.2.3. Comparisons

eq, ge, gt, le, It, ne and equal

These functions take two arguments and return t or nil as the comparison function is true

or false. Eq and ne require that the two values evaluate to the same atom. The others test

for numeric inequality, equal can be used to test for numeric equality.

6.2.4. Arithmetic Functions

addl, divide, minus, plus, subl and times

These functions provide simple arithmetic capabilities. They take two integer arguments,

perform the indicated operation, and return an integer result. Addl and subl take one
integer argument and return the number plus or minus one, respectively. This arithmetic
facility is compatible with that in most other Lisp implementations.
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6.2.5. Symbol Table Functions

These functions provide access to symbol table building blocks (STBBs) and symbol

table entries (STE's).

(addste name oldste al a2 ...)

This function adds an entry with the given name to a symbol table. The attributes are

assigned the values al, a2, and so on. Oldste is the old symbol table, the new symbol

table is returned. Oldste is not changed.

(empty gp)

The empty function creates and returns an empty symbol table, with the global

pointer field set to gp.

(findattr symno attrno)

This function is the result of expanding $symno.attr. When evaluated, the appropri

ate attribute is looked for in the current production in the tree, and the value is

returned. This function can also be the first argument to set, which will cause the

given attribute to be placed in the tree, replacing anyold value.

(getattr ste i)

The getattr function is used to retrieve an attribute of an STE. The i STA of the

entry ste is looked up and returned. There is no setattr function, since its use would

encourage violation of the nondestructive sharing property. An STE's values are set

at creation.

(hash stbb anchor)

The hash function produces a hash table for a given STBB. The hash table, which is

built on top of the STBB, is returned, producing a new, faster version of the same

STBB. The anchor is a node in the symbol table to which the hashed symbol table is

attached directly.
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(lookone stbb string)

The string is looked for in the STBB. If found, the STE found is returned. Other

wise, tnull is returned.

(lookup stbb string)

Lookup is Uke lookone, but if the search fails, the STBB referenced in the global
pointer is tried, then its global pointer, and so on until the string is found or aglobal

pointer with value tnull is found.

(name token)

For atree pointer to a'token, the character string which is the text of the token is

returned.

(stjoin stbbl stbb2)

This function joins two STBBs into one, nondestructive^. The combined STBB is

returned.

(check string condition node)

This function is used to check for semantic errors in the program. It can be thought
of as an assertion. The condition is evaluated. If it is true, there is no error, other
wise there is an error. The text of the error is the string, and the error text is
attached to the given node in the tree. The node is checked for the error message; if
the condition is true and an error message is found, the error message is removed; if
the condition is false and no error message is found, one is attached to the node. If
an error has already been found in this evaluation, no additional error messages will
be attached, to avoid the "cascading error messages" problem.

6.2.6. Tree Access Functions

These functions are needed by an implementation that wishes to create and use code
created date structures. Since these permit arbitrary access to, and changes of the tree,
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nothing can be guaranteed about the nondestructive sharing property. The implementor

should use great care not to violate this property.

tnull

This built in atom has the value of a null tree pointer.

type

The type function returns, as an integer, the type ofthe node which is its argument.

parent, firstchild, lastchild, leftsibling and rightsibling

These functions return the corresponding neighbor of their argument

(newnode type size)

The newnode function creates a new node with the given type. The number of bytes

needed for date is passed in the size argument. The node created is returned.

(getfield node fieldnumber)

(setfield node fieldnumber value)

These functions access and set the value ofsome integer field in the given node. The

fields are numbered from zero.

(insert node parent lsib)

This function inserts the given node into the tree, as achild of the given parent node.

It is arranged that the left sibling ofthe node will be lsib. To insert as the first child,

lsib should be tnull.

(prune node)

This function removes the given node from the tree.

6.3. LDL Processor

The LDL processor ldlproc is atool used to preprocess LDL descriptions of languages

to produce tebles that the other Babel tools can use. Ldlproc has been implemented in the

style of Babel in that it uses a Babel tree file for input rather than text This not only
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simplifies the implementetion of ldlproc by eliminating the need to scan and parse, but

allows the user to use the editor directly onthe source file in tree form.

Ldlproc takes two arguments, the name of the tree file for input and the name of the

teble file where the results will be placed. The processor makes heavy use of existing

UNIX tools.

The first pass of ldlproc walks the tree looking for names of tokens, nonterminals, and

reserved words, saving them in internal tebles. The uses/sets information in attribute rules

are used to build an attribute symbol teble, and to build the dependency graph Dip] for
each production. Each attribute as classified as either inherited or synthesized, based on the
side of the production in which it is set. Attributes which are set on both sides (i.e., are
both inherited and synthesized) are flagged as errors, since this condition always indicates a

logic error in the description. This first pass is needed because forward references are pos
sible. Amore involved implementetion might keep asymbol teble using attribute rules.

The second pass turns the list of reserved words, constant tokens, and regular expres

sion tokens into an input file for lex The grammar is turned into an input file for yacc
The number and lists of tokens, nonterminals, reserved words, and productions are written
out to a"tebles" file. (Rather than store the text of the productions, an integer represen

tation is written to the file.) The attribute information (numbers and dependencies of attri
butes for each symbol and production) are output to the semanticsC source file. The Lisp
evaluation functions are output to the semantics file in an easy to reparse form, changing
Sltwto (findattr i attrno), outputting atoms found by atom number, and accumulating an
atom teble. The atom teble is then output to the semantics file. Atoms have one of the
types reserved (built in functions and constants such as car, check, and niD, integer, string,

or identifier.

The lex and yacc processors are invoked on their respective input files. This leaves
four Csource files: the tebles, semantics, lex output, and yacc output. They are then com-
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piled with writeout, ahandwritten, language independent Csource file, to produce an exe

cutable file. This file, when run, writes out the tebles to the desired output file in the for-

e mat needed by Babel.

&



CHAPTER 7

Conclusion

7.1. Summary

This dissertetion has shown that it is possible to build a language editor such as the

Babel system described here. A text editor style user interface is shown to work. We claim

it can be made to be to be practical, and to be simple to learn and to use.

The effort required to "re-source" to another language is quite small, if only syntax

checking is required, and moderate if semantic checking is also desired. LDL descriptions

for the syntax of several languages, including Ada [Ichbiah1980a], Rigel [Rowel979a],

Lisp, asubset ofC [Kernighanl978a], and LDL itself have been created. In addition, LDL

descriptions for Asple with full semantic checking, and for Pascal, with partial semantic

checking, have been created. It has been shown how to implement special features of Pas

cal and Ada, and since the semantic notetion is based on a universal subset of Lisp, the

semantics of any language, even those without noncircular attribute grammars, can be han

dled.

The user interfaces of language editors can be viewed as a spectrum, with template

editors such as lFeilerl980a] at one end, and text interface editors such as Babel at the

other end. Other language editors fall somewhere in between. This dissertetion shows that

all the simplicity and ease of learning of traditional text editors can be combined with the

language dependent checking and programmer assistance capabilities of tree editors.

A set of primitive functions is described, which makes it possible to build any text

editor interface on top of a tree data structure. Underlying methods for incremental scan

ning, parsing, andsemantic analysis are described.

121
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Anotetion for the description of languages, LDL, is described. This notetion is suit

able for any language with static lexical and syntactic requirements, so long as the language

can be described using regular expressions and reserved words as alexical model, LALR(l)
n RL(1) context free grammars as a syntactic model, and noncircular attribute grammars

as a semantic model. While LDL was designed for programming languages, other computer

languages in this class can also be described. Provisions for syntax-directed prettyprinting

are discussed, and extensions to support generation of abstract syntax trees to help auto

mate the production of compilers are suggested.

While the cost to build and maintain the additional information required by a system

such as Babel is higher than a traditional screen-oriented text editor, the potential benefit,

in terms of programmer time, is higher too. A useful analogy can be made with line

oriented and screen-oriented editors. The cost for screen editors ishigher than line editors,

because of the extra work to keep an up-to-date copy of the program displayed on the

screen. This extra cost has not deterred the majority of programmers from switching from

line editors to screen editors. It is our belief that as language editors become available, pro

grammers will turn to them, in spite of the additional cost, because language editors can do

more for the programmer while he remains in the editor.

7.2. Suggestions for Future Work

While it has been shown in this dissertetion, and in many other papers, how to build a

working language editor, there is much more work to be done. Many improvements are

possible, to improve the performance of language editors, and to enlarge the class of

languages handled. This section describes some possibilities for future work.

Some carefully controlled experiments should be conducted, comparing the effects of

different programming environments on programmer productivity. For example, a four

way comparison between a line oriented text editor, a screen-oriented text editor, a text

interface language editor such as Babel, and a template interface language editor such as
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PL/CS, could be made. In order to avoid biased participants who are used to one particular
kind of editor, such an experiment would be best conducted in an introductory program

ming class in auniversity. Measurements such as amount of time spent in the editor, total
time logged on, and grade in the class could be made and analysed. Anumber of two way

/comparisons could also be made.

Current incremental parsing technology does not allow for general purpose incremen
tal parsing from abstract syntax trees. Some language editors that use abstract trees restrict
the command set allowed, to make the parsing technique goal driven, since it is straightfor-
ward to generate an abstract tree during agoal driven parse, and attach it into the rest of
the tree using some specialized command. Another possibility is to translate between the
abstract and LR syntax trees, causing considerable overhead. Amethod for direct incre
mental parsing with abstract syntax trees, possibly involving arestricted class of abstract
trees, would lead to alarge performance improvement to Babel.

An algorithm to avoid reevaluation of the entire scope of adeclaration, when that
declaration is changed, would be asignificant improvement Some ideas for such an algo-
rithm are discussed in section 5.14.

The system currently contains no formal interface between the front end (user inter-
face) and back end (buffer management/checking) of an editor. An interface between the
two should be developed, allowing different front ends (for familiar text editors such as vi,
EMACS, and so on) to be plugged into different back ends (an ordinary text editor buffer
manager, and aBabel back end). Careful attention must be given to the display module; it
probably betongs in the back end, but the user interface needs ahigh degree of control over
it.

While the restrictions on the syntax class of languages handled (LALR(l) nRL(D)
is not aserious restriction, the lexical class leaves out anumber of real programming
languages. The unusual lexical styles of FORTRAN and BASIC, for example, cannot be
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handled. Languages with user denned reserved words, such as Cand Algol 68, are not

handled. Certain lexical issues, such as whether upper/lower case distinctions are

significant in identifiers, are not handled in the current system. Aclean model that handles

such real languages would be a clear step forward. Lacking this, provisions for a small

number of "special cases" which could be hand coded into the scanner, or provisions for

inclusion of language dependent code for this purpose, would extend the domain of the

language editor.

Preprocessors cannot be handled efficiently using current technology. A method for

efficient, incrementel preprocessing would expand the class of languages handled to include

languages where nearly all programmers use the preprocessor, such as C. A model of
preprocessors encompassing many of those in current languages (C, PL/I, Bliss, assem

blers, FORTRAN preprocessors, etc.) would also be asignificant improvement.

While the Babel system allows the user to format comments exactly as desired, it pro

vides little automatic help in the case of prettyprinting comments. Some investigation into

the structure, positioning, and formatting of comments would be useful in the construction

of language independent prettyprinters.

A powerful method for automatically prettyprinting the program as it is typed in, in a

language independent manner, would be useful. Since syntax errors are common as apro

gram is being typed in, and programs are almost always incomplete, amethod based only

on lexical information, or on partial syntactic information, would be useful. For acertain

class of languages and prettyprinting rules, it would be possible to count certain tokens as

"right shift" tokens and certain other tokens as "left shift" tokens. For example, begin

might be a"right shift" token. Such tokens could be counted without regard to the syntax

of the program. A method for finding such languages, given the higher level, more power

ful prettyprinting notetion of LDL, and automatic generation of the lists of tokens might be

found.
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Incrementel compilers based on Babel style trees, with subtrees marked if they are

changed, would provide areal speedup in performance, possibly overcoming the extra cost

of processing in the editor. Ordinary compilers, which could start with the Babel tree,

would not need to scan, parse, handle syntax errors, or generate symbol tebles, since these

tasks are already done by the editor.

There are many specific improvements that can be made to the Babel system, and to

the LDL language. Further tuning can reduce the CPU time and disk space needed, even

without further theoretical results to improve the algorithms. A redesign of the lexical part

of LDL would allow amore readable lexical syntax, and more checking by the editor. A

language other than Lisp might be more efficient for interpretation of semantics.

Further research is needed in some of these areas to improve the methods used to

implement language editing systems such as Babel. Now that an implementetion is com

plete, the performance problems are clear. These problems can be taken into account in a
subsequent implementetion, producing a faster editor. It is our belief that a production

quality editor can now be built, using the methods described here, with reasonable perfor

mance.
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AppendixA
«»l.Jffl«*.mpleWlDescriptions^,eJdl

LDLDescriptionofASPLE

ASPLE(ASimpleProgrammingLanguageExample)ita
smalllanguage,basedonAlgol63.Itincludes
integers,boolean*,pointerstoany.typo(including
pointers),ifstatements.whilestatements,and
simpleinputandoutput,formoredetails,see
"ASamplerofFormalDefinitions-,ACMComputing
Surveys,Juno1976,page191.

/

/•listofreservedwordsV
Xiueards

Begin"begin"
End"end"
Int"int"
Bool"bool"
Bef"ref
Input"Input"
Output"output"
If»lf»

Then"then"
Else"else"
FiMfl"

While"while"
Do-do"
True"true"
False"false"

/*constanttokens-thosewithonlyoneform•/
Xconstant

Semi«

Comma
ifn

Becomes":«"
Plus

ti^tt

Times
•ttyi

LparenHfli

Rparen
rf\l»

Eq
1^

Neq"/ta"

/*tokenswhicharenotconstant,buthaveregularexpressions•/
Xtekena

/•Note:ASPLEhasnocomments,soPL/1stylecommentsartaddsd•/
Comment•(\"/^"tt-•]^"^l-/])^V\")|(#[-\n]•^a),,
Whitespace"f\t\n]+"
Id"[a-"^-!]*"
Number-[0-9K

Xgremsaar

program:BeginXnlXrshiftdadtrain%nlprogram
stmtrainXlshiftXnlEndXnl
/•

•Passthesymboltootstipfromthedwelt.
•hashed,downtothestatements
•/

[(usesS2.stab)
(setsS3.stab)
(setS3jUb(hashS2.stabS2.«atf))

Jisn8816:161961Page1ofaspls.ldl
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asple.ldl asple.ldl

...program

decLtrain

• tho declarations make a symbol table, which wOl be passed
• to the statements to net for chocking.
V

decl.train: declaration
[ (uses SLstent)

(sets SCatab) . . . _....
(set SO.stab (stjoin ILatent (empty tnull)))]

deel train Xnl declaration
[ ~ (uses 82.stent Sl.stab)

(sets SCstab) ^ ^ ....
(set SO.stab (stjoin S2.stent SLstab))]

declaration: *»%*%,*& of «„>*» over into idKst*/
[cp Sl.pmode S2.inmode]
icd SLnrofs I2.innrefs] . . . mM^copysymbol table up from wJHti to parent •/
[cp S2.outtab SCstent]

declaration

1 Amode has two attributes: a primattoe mods (pmode)
* and the number of references (nrefs).
V

mode: Bool
[ (uses)

(sets S0.pmcde) ««„,„„„ ..,
(set SO.pmode 0 /• BOOLEAN •/)

[ (uses)
(sets SO.nrefs)
(set SO.nrefs 1)

Int

I (uses)
(sets SO.pmode)
(set SO.pmode 1 /• INTEGER •/)

iuses)
sets SO.nrefs)
set SO.nrefs 1)

Ref mode
[ (uses S2.pmode)

(sets SO.pmode)
(set SO.pmode S2.pmode)

( (uses S2.nrefs)
(sets SO.nrefs)
(set SO.nrefs (plus S2.nrefs 1)}

1 An idlist inherits amode, passes £*™* %ff^? &*%"&'• which makes an ste and passes the coMectton of ste s oac* up *•
• tho parent of idlist.
•/

Idlist: Id

Jun 28 16:16 1981

mode

idlist
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...idlist

(uses SO.inmode SO.innrefs)
(sets SO.outtab)
(set SO.outtab _

(addste (name SI.self) (empty tnull) SO.inmode SO.innrefs)
)

d Comma idlist
cp SO.innrefs S3.innrefs]
cp SO.inmode 83.inmode]

(uses SO.innrefs SO.inmode S3.outtab)
(sets SO.outtab)
(set SO.outtab

(addste (name SI.self) S3.outtab SO.inmode SO.innrefs)

]
)

• The symbol table is passed down the tree to be used in statements.
•/

stm train: statement
[cp SO.stab SLstab]

statement Semi Xnl stm_train
[cp 80-stab SLstab S3.stab]

stmJxain

statement: asgt_stm
[cp SO.stab SLstab]

cond stm
cp SO.stab SLstab]

oop_stm
cp S0.stab SLstab]

transput.stm
[cp SO.stab SLstab]

statement

asgt.stm: Id Becomes exp
/* Pass the stab through to ths expression */
[cp SO.stab S3.stab]
/* pass down the # refs expected on Ihs V
[ (uses SO.stab)

(sets S3.drefs)
(ste)

asgtstm

)

(set ste (lookup SO.stab (name Sl.self)))
(•(set S3.drefs (subl (getattr ste 1 /• NRETS •/)))

/• cntefc the id is declared and compatible with the expr •/
[ (uses SO.stab SS.primmode)

(sets S2.idste)
(prog (ste)

(set ste (lookup SO.stab (name Sl.self)))
(set SS.ldste ste)
(check "undeclared id" (ne ste tnull) Sl.self)
(check "type clash"

(eq (getattr ste 0 /• PUODE •/)
SS.primmode)

S0.aelf)
)

Jun 2816:161961 Page 3 of asplo.ldl
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asPleJdl asple.ldl

...asgtstm

•Chock that tho exp is boolean, and pass the stab through to tho stmts.

cond_stm: If exp Then Xnl Xrshift stm.train Xnl Xlshift Fi COnoLstm
Tcp SO.stab S2.stab S4.stab]
I (uses S2.primmode)

(sets 82.drefs)
(progn

(set S2.drefs 0)
(check "boolean expected"

(eq S2.primmode 0 /* BOOLEAN •/)
S2.self)

}
U exp Then Xnl Xrshift stm train Xnl Xlshift
Else Xnl Xrshift stm.train Xnl Xlshift Fi
[cp SO.stab S2.stab S4.stab 86.stab]
[ (uses S2.primmode)

(sets S2.drefs)
(progn

(set S2.drefs 0)
(check "boolean expected"

(eq S2.primmode 0 /• BOOLEAN M
S2.self)

]

/* Loop is just like if. •/
loop.stm: While exp Do Xnl Xrshift stm.train Xnl Xlshift End loOV-Stm

[cp SO.stab S2.stab S4.atab] r
(uses S2.primmode)
(sets S2.drefs)

(set SS.drefs 0)
(check "boolean expected"

(eq S2.primmode 0 /* BOOLEAN *A
S2.self)

transput.stm: Input Id transjmtstm
/• input: check that variable is declared V
[ (uses SO.stab)

(sets Sl.idate)
(prog (ste)

(set ste (lookup SO.stab (name S2.self}))
(set SLidste ste)
(check "undeclared variable" (ne ste) S2.self)

I
/• output; pass stab to expression to check V
Output exp
[cp SO.stab SS.stab]
[ (uses)

(sets S2.drefs)
(set S2.drefs 0)

Jun 2616:161981 p^, 4ofaaplaUa
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asple.ldl asple.ldl

...transput-stm

• Expressions: pass symbol table down, generate types at leaves,
• pass types back up, checking for compatibility at operators.
• drefs is passed down and is the number of references the context
• wants there to be. There must be at least that many in the
• actual value, and xero if binary operations are done.
•/

exp: factor
/* Just copy stab down and mode back up V
cp SO.stab SLstab]
'cp SO.drefs SLdrefs]
cp SLnrefa SO.nrefs]
cp Sl.primmode SO.primmcde]

exp Plus factor
/* copy stab down •/
[cp SO.stab SLstab SS.stab]
[cp SO.drefs SLdrefs S3.drefs]
/* check modes, the primmodes have to be the same */
[ (uses SLnrefa S3.nrefs Sl.primmode S3.primmode)

(sets SO.primmode)
tfJPOKQ

• (check "type clash"
(eq Sl.primmode S3.primmode)
SO.self)

(check "no ref addlUon" (eq SO.drefs 0) SO.self)
(set SO.primmode Sl.primmode)

)

(uses)
(sets SO.nrefs)
(set SO.nrefs 0)

exp

/• 5amt idea as exp •/
factor: primary

cp SO.stab SLstab]
cp SO.drefs SLdrefs]
cp Sl.nrefs SO.nrefs]
cp Sl.primmode SO.primmode]

factor Times primary
cp SO.stab SLstab SS.stab]
cp SO.drefs SLdrefs S3.drefs]

(uses Sl.nrefs S3.nrefs Sl.primmode S3.primmode)
(sets SO.primmode)
(progn

(check "type clash"
(eq Sl.primmode SS.primmode)
S0.self)

(cheek "no ref mulUplicaUon" (eq SO.drefs 0) SO.self)
(set SO.primmode Sl.primmode)

)

iuses)
sets SO.nrefs)
set SO.nrefs 0)

factor

primary: Id primary

Sun 28 16:161981 Page 5 of asple.ldl
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asple.ldl
asple.ldl

variable. Look it up and pass the mode up •/
(uses SO.stab SO.drefs)
(sets SO.nrefs)
(prog (file) ^^ naiiA SL***)))

(check "undeclared variable" (ne stejtouj) Sl.self)
(set 80.nrefs (getattr ste 1 /• NREFS •/))(check ?ef mismatch" (go SCnrefs SO.drefs) Sl.self)

)

(uses SO.stab S0.drefs)
(sets 80.primmode)
(prog (stri ^e (lookttp 8o.stab (name SLself)))

(check "undeclared variable" (ne ste UwU) SLseU)
(setSO.primmcde (getattr ste 0 /• PMODE •/))

)

constant . m.
/• bool or mt constant, pass the mode up. •/
cp SO.stab SLstab]
cp Sl.nrefs SO.nrefs]
cp Sl.primmode SO.primmode]

(uses SO.drefs)
(sets Sl.ok)
(prog (nd

[set nd (eq SO.drefs 0))
check "no constant refs" nd ILweli)
[set Sl.ok nd)

)

...primary

%"par^%Ved\spression - pas. mod. of subexp up •/
cp S0.stab S2.stab]
cp SO.drefs S2.drefs1
cp S2.nrefs SO.nrefs]
cp S2.primmode SO.primmode]

Lparen compare Rparen
/• comparison - pass boolean up •/
icp SO.stab S2.stab]
cp SO.drefs 82.drefs]

(uses)
(sets S0.nrefs)
(set SO.nrefs 0)

1

(uses)
(sets SO.primmode)
(set SO.primmode 0 /• BOOLEAN V)

• you con only comport wttptrs. Check ««*• ^^ this and ws• Sines comparts atuwys rtturn bootean. primary knows utu ana we
• don't bother to pass anything up from fttrt.
V

compare: exp compop exp
[cp SO.stab SLstab SS.stab]
[ (uses)

(aets SLdrefs)
(set SLdrefs 0)

Jun 2816:161981
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...compare

l (uses)
(sets SS.drefs)
(set SS.drefs 0)

[ (uses Sl.primmode S3.primmode)
(sets S2.ok)
(progn

(check "lhs not integer"
(eq Sl.primmode 1 /• INT •/) Sl.self)

(check "rhs not integer"
(eq S3.primmode 1 /• INT •/) 83 «df)

(set S2.ok 0)

/* Cbmparison operator - syntax only •/
campop: Eq | Neq ; COTTipop

/•

* Constants are boolean or integer. Pass the right mode up.
•/

bool.constant Constant
[ (uses)

(sets SO.nrefs)
(set SO.nrefs 0)

[ (uses)
(sets SO.primmode)
(set SO.primmode 0 /• BOOLEAN V)

int.constant
[ (uses)

(sets SO.nrefs)
(set SO.nrefs 0)

I
[ (uses)

(sets SO.primmode)
(set SO.primmode 1 /• INTEGER •/)

/•

• Syntax only for these two.
•/

bool.constont: True | False ; bool-COnstant

int.constant: Number ; imtjDOnstant

Jun 27 20:321981 Page 7 of asple.ldl
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/*LDLdescriptionofLDL•/

Xicswords
Reswords
Constant
Tokens
Grammar
Functions
Cp

"Xreswords"
"Xconstant"
"Xtokens"
"Xgrammar"
"Xfunctions"
"cp"

Xconstant
Colon
Semi
Lbracket
Rbracket
Lparen
Rparen
Dollar
Dot
Or

H.ii

H.ll

»n»»

nfii

»yi

M«ll

nit

Xtokens
Id
Intconst

String
Comment
Whitespace

"[Xa-2A-Z][a-zA-Z0-9.]*'
"[0-9]+"
"Wd^VllWWO^W"'
"VA^MIY^VM^Y'^A"
"[\t\n]»"

Xgrammar

sections:

I

section:

ressect:

restail:

I

•TGfl!

I

consect:

contail:

I

con:

resect:

retail:

re:

gramsect:

/•empty*/
sectionsections;

ressect
consect

resect
gramsect
funsect;

Reswordsrestail;

/•emptyV
resrestail;

String
IdString;

Constantcontail;

/*empty*/
concontail;

IdString;

Tokensretail;

/•empty•/
reretail;

IdString;

Grammargramtail;

Jul1520:051981
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sections

section

ressect

restail

res

consect

contail

con

resect

retail

re

gramsect

Page1ofldl.ldl
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gramtail:

funsect:

funtail:

fundef:

production:

rules:

I

rhs:

I

semantics:

I

semrule:

I

sexpr:

sexprseq:

atom:

/• empty •/
production gramtail ;

Functions funtail ;

/* empty •/
fundef funtail ;

sexpr ;

Id Colon rules Semi ;

rhs semantics
rules Or rhs semantics ;

/• empty •/
rhs Id ;

/* empty V
semantics semrule ;

The following can be [cp src dest] or [uses sets code] */
Lbracket sexpr sexpr sexpr Rbracket
Lbracket Cp sexpr sexprseq Rbracket ;

atom

Lparen sexprseq Rparen
Dollar Intconst Dot Id ;

/• empty */
sexpr sexprseq ;

Id
Intconst
String ;

Jul 15 20:051981
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...gramtail
gramtail

funsect
funtail

fundef
production

rules

rhs

semantics

semrule

sexpr

sexprseq

atom

Page 2 of ldl.ldl
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/* LDL description of the default dialect of Lisp */

Xcanatant
Rparen
Lparen
Quote
Dot

it/it

Xtokens

sexpr:

atom:

Whitespace
Intconst
Fpnumb
String
Comment
Atom

Xgrammar
sexprseq:

,\t\n]*'
.0-9]+"

"[0-9]+V[0-9]+([eE][H
"\V(f»\"]N\\V,)*\\,,H
";[-%»]•"
"l-0'l \n\t]+"

-]?[0-9]+)?"

/* empty */
sexpr sexprseq ;
atom
Lparen sexprseq Rparen
Lparen sexpr Dot sexpr Rparen
Quote sexpr ;
Atom
Intconst
Fpnumb
String ;

Jul 719:131981
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sexprseq

sexpr

atom

Page 1 of lisp.ldl
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•LDLdescriptionofPascal,withpartialsemanticschecking.

•Thisdescriptionbuildsablockstructuredsymboltable
•containingconstants,types,andvariables,andknows
•thedifferencebetweenthethree(butnotbetweentwo
•typesortwoconstants).Itchecksthattypesandconstants
•areusedxncontextswheretheyareexpected,andmat
•types,constants,andvariablesaredeclared.

Xreswords

And"and"
Array"array"
Assert"assert"
Begin"begin"
Case"case"
Const"const"
Div"eUv"
Do"do"
To"to"
Else"else"
End"end"
Extern"extern"
File"file"
For"for"
Forward"forward"
Function"function"
Goto"goto"
If»if»
In"in"
Label"label"
Hod"mod"
Nil"nil"
Not"not"
Of"of
Or"or"
Packed"packed"
Procedure"procedure"
Prog"program"
Record"record"
Repeat"repeat"
Set"set"
Then"then"
Downto"downto"
Type"type"
Until"until"
Var"vnr"
While"while"
With"with"
Oct"oct"
Hex"hex"

Xconstant
Dotdot
Dot
Lparen
Rparen
Semi
Comma
Eq
Colon
Plus
Minus
Arrow

Jul719:131981

n/>

n»

It/1)

»\n

it.fi

if»

li.ft

M+11
li.if

nmtt
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nr»

Mill

Xtokens

Lbracket
Rbracket
Lt "<"
Gt ">
Star "•"
Slash "/"

•f^n ^

Whitespace "[ \t\b\r\f\n]+"
Comment "K"C\"([-]h"*\"[-)])^\"<)V)I(V'{\"[-n'N"JV,)l(#[^al#Nn)"
Id "[a-2A-Z][a-sA-Z0-9]*"
String "'([-'Null")*"'
Int "[0-9]+"
Fpnumb "[0-9]+\.[0-9]+([eE][+-]?[0-9]+)?"

Xgrammar

program: program
btab prog hedr decls block Dot

[cp Sl.buUtins 83.itab]
[ (uses SS.stab)

(sets 84.stab)
(set 84.atab (hash S3.stab SS.sclf))

[cp S4.stab SO.stab]

btab decls
[cp Sl.builtina S2.itab]
[ (uses S2.stab)

{sets SO.stab)
set SO.stab (hash SS.stab S2.self))

1

btab: btabchild btab
/•
• We bury the built in symbol table over here to
• keep it from getting reevaluated.
•/

[ (uses)
(sets Sl.buUtins)
(prog (st)

(initialize)
(set st Sl.buUtins)
(cond ((eq st tnull)

(act Sl.builtina
(empty (bufltins Sl-self))))

(tnil))
)

[cp Sl.buUtins SO.builtins]

btabchild
btabchild: /• smpty •/ ;

prog-hedr
Prog Id Lparen id.list Rparen Semi ^

prog.hedr:

ui u block
block:

Begin statjist End
[cp SO.stab S2.stab]
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...block

9 Since this is only a partial implementation, u« don t know
about record fields. This makes us cry wolf in "with stmts
because yields look Nfce variables. So we dont check
any variables that are inside a with, statement,

t

iuses)
sets S2.inwith)
eet SS.inwith 0)

• DECLARATION PART
• input: itab ftnput symbol table)
• output: stab (local symbol table)
•/

decls:

deck

decls decl
cp SO.itab Sl.itabl
cp SLstab S2.itab]
cp S2jtab SO.stab]

/* lambda •/
[cp SO.itab SO.stab]

labels
cp SO.itab SI.itab]
cp SLstab SO.stab]

const.decl
[cp SO.itab Sl.itab]
'cp 81.stab SO.stab]

type.decl

var.decl

cp SO.itab SI.itab]
cp 81.stab SO.stab]

cp SO.itab Sl.iUb]
[cp SLstab SO.stab]

proc.decl
[cp SO.itab Sl.itab]
[cp SLi.stab SO.stab]

• LABEL PART
V

labels:
Label label.decl Semi

[cp SO.itab SO.stab]

label.decl:
Int

label decl Comma Int

Jul 719:131981

decls

decl

labels

/• Don't bother checking labels •/

labeludecl
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/•

• CONST PART
•/

const.decl:
Const Id Eq const Semi

[cp SO.itab S4.stab]
[ (uses SO.itab S4.type)

(sets SO.stab)
(set SO.stab

(checkaddste 82 self SO.itab 1 /•constant*/ S4.type))

14:

pascal.ldl

.labeLdeci

const-decl

const.decl Id Eq const Semi
Top SO.itab Sl.itab]
cp SLstab 34.stab]

(uses Sl.stab S4.type)
(sets SO.stab)
(set SO.stab

(checkaddste S2.sclf Sl.stab 1 /•constant*/ S4.type))

/•

• TYPE PART
*/

type.decl: type^decl
Type Id Eq type Semi

[cp SO.itab S4.itab]
[ (uses S4.stab 84.type)

(sets SO.stab)
(set SO.stab

(checkaddste S2.self S4.stab 2 /type*/ S4.type))

type decl Id Eq type Semi
[cp SO.itab Sl.itab]
'cp Sl.stab S4.itab]

(uses 84.stab 84.type)
(sets SO.stab)
(set SO.stab

(checkaddste 82.self S4.stab 2 /type*/ S4.type))

• YAR PART

mr.decl:
Ver vid.Iist Colon type Semi

[cp 80.itab S2.itab]
cp S2.stab SO.stab]
cp 34.type 32. type]
cp SO.itab S4.itab]

var decl vid Ust Colon type Semi
fcplO.itab Sl.itab]
cp SLstab S2.itab]
op S2.stab SO.stab]
cp S4.type 32.type]
cp SLstab S4.itab]
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.var_decl

• vidjist for var decl.
• input: itab (input symbol table), type (type of these ids)
• output; stab (output symbol table).

lid.list:
Id

vicLList

[ (uses SO.itab SO.type)
(sets SO.stab)
(set SO.stab (checkaddste

SLself SO.itab 3 /* variable*/ SO.type))

vid.list Comma Id
cp SO.itab Sl.itab]
tcp 80.type Sl.type]

(uses SLstab SO.type)
(sets SO.stab)
(sat SO.stab (checkaddste

. 33.self Sljtab 3 /• variable*/ SO.type))

* PROCEDURE AND FUNCTION DECLARATION PART
* input: itab. output; stab.

I £?*,? "J^*"^?^ t0 tto° wtt/l this P**0* "**•<* «s otab to decls.
*SSsssV^Jl!!^ 1P<X? pnp9rty $ ****** *«» completoTstab^instead of current one (pass up and down when completed).

proc.decl:
phead Forward Semi

cp SO.itab SO.stab]
cp SO.itab Sl.gtab]

phead Extern Semi
cp SO.itab SO.stab]
cp SO.itab 8l.gtab]

phead decls block Semi
cp SO.itab Sl.gtab]
cp Sl.ogtab SO.stab]
cp SLstab 32.itab]

(uses S2.stab)
(sets SS.stab)
(set S3.stab (hash S2.stab 32^elf))

proceed

/* /Tummy, uwn't be used */

/* Dummy, won't be used •/

phead:
pheadProcedure Id params Semi

uses SO.gtab SS.type)
(sets SO.ogtab)
(set SO.ogtab

(checkaddste S2.self SO.gtab procedure void))
(uses SO.ogtab)
(sets SS.itab)
(set S3.itab (empty SO.ogtab))
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[cp SS.stab SO.stab]

Function Id params Colon type Semi
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params:

(uses S5.stab 35.type)
(sets SO.ogtab)
(set SO.ogtab

(checkaddste S2.salf SS.stab function SS.type))

iuses SO.ogtab)
sets S3.itab)
set S3.iUb (empty SO.ogtab))

cp SS.stab SO.stab]
cp SO.gtab SS.itabJ

Lparen param list Rparen
cp SO.itab S2.itab]
.cp S2.stab SO.stab]

/* lambda V
[cp SO.itab SO.stab]

...phead

params

parem.liat:
param

paramJnst
cp SO.itab Sl.itab]
cp SLstab SO.stab]

param.Ust Semi param
[cp SO.itab Sl.itab]
cp SLstab S3.itab]
.cp SS.stab SO.stab]

/•

• PARAMETERS
•/

param:

pid.Ust:

pld.list Colon type
cp SO.itab SS.itabl
cp S3.stab Sl.itab]
cp SLstab SO.stab]

Var pid.Ust Colon type
cp SO.itab 34.itab]
cp S4.stab S2.itab]
.cp S2.stab SO.stab]

Function pid.Ust Colon type
cp SO.itab S4.1tab]
cp S4.stab S2.itab]
.cp S2.stab SO.stab]

Procedure pid Ust
[cp SO.itab S2.ltab]
[cp S2.stab SO.stab]

param.

pidj,ist
Id

uses SO.itab)
sets S0.stab)
.set SO.stab (checkaddste Sl.self 30.itab parameter 0))
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...pidJist
pid Ust Comma Id

[cp SO.itab Sl.itab]
[ (uses SLstab)

(sets SO.stab)
(set SO.stab (checkaddste S3.sebT SLstab parameter 0))

CONSTANTS
•/

const:

number

String

number

(uses)
(sets SO.type)
(set SO.type array)

cp 81.type SO.type]
cp SO.stab SLstab]

const

Plus number
cp S2.type SO.type]
.cp SO.stab 82.8tab]

Minus number
[cp S2.type SO.type]
[cp SO.stab S2.stabJ

Id

Int

Fpnumb

number

uses SO.stab)
jseta SO.type)

(ste)
(set ste (lookup SO.stab (name Sl.self)))
(check "Undeclared constant" (ne ste tnoJf) Sl.self)
(cheek "Constant expected"

(equal (getattr ate 0) 1 /•constant*/) Sl.self)
(set SO.type (getattr ste 1))

(uses)
(sets SO.type)
(set SO.type integer)

(uses)
(sets SO.type)
(set SO.type real)

const.Ust:
const

constJ,ist

[cp SO.stab Sl.stab]

const.Ust Comma const
[cp SO.stab Sl.stab]
[cp 80.stab S3.stab]
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...constlist

/•

• TYPES
•/

type: *VPe
simple type

[cp SO.itab Sl.itab]
cp SLstab SO.stab]
'cp Sl.type 30.type]

Arrow Id
[cp SO.itab SO.stab]
[ (uses)

(sets SO.type)
(set SO.type pointer)

I
struettype

[cp SO.itab Sl.itab]
cp SLstab SO.stab1
[cp Sl.type 30.type]

Packed etruct.type
Icp SO.itab S2.itab]
cp S2.stab SO.stab]
cp S2.type SO.type]

simpie.type: simple^ype
M [cp SO.itab SO.stab]

[ (uses SO.itab)
(sets SO.type)
(prog (ste)

(set ste (lookup SO.itab (name Sl.self)))
(check "Undeclared type" (ne ste tnull) Sl.self)
(check "Type expected" _

(equal (getattr ste 0) 2 /type*/) Sl.self)
(set SO.type (getattr ste 1))

)

?
Lparen eid.Ust Rparen

/•
• Should enter eid list in symbol table as enums.
• To do this we have to pass the symbol table down
• to ail types and back up. Later.
*/
cp SO.itab S2.itab]
cp S2.stab SO.stab]

(uses)
(sets SO.type)
(set SO.type enum)

3
I

const Dotdot const
cp SO.itab SO.stab
cp SO.itab SLstab,
cp SO.itab S3.stab]
cp Sl.type SO.type] /* Should do some checking •/

struct.type: ..
Array Lbracket simple.type.list Rbracket Of type

[cp SO.itab SB.itab]

structJype
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...stmct_jype
cp SO.itab S3.itab]
cp Se.stab SO.stab]

(uses)
(sets SO.type)
(set SO.type array)

FUe Of type
Icp SO.itab 33.itab]
cp S3.stab SO.stab]

(uses)
(sets SO.type)
(set SO.type file)

Set Of simple type
(cp SO.itab S3.itab]
cp S3.stab SO.stab]

(uses)
(sets SO.type)
(set SO.type set)

Record field.Ust End
,cp~S0.itab SO.stab]
cp SO.itab 32.itab]

(uses)
(sets SO.type)
(set SO.type record)

***-*&&„ simple-type-list
[cp SO.itab Sl.itab]
[cp SLstab SO.stab]

simple.type.Ust Comma simple type
[cp SO.itab Sl.iUb] "
[cp SLstab S3.itab]
[cp S3.stab SO.stab]

eIdJi8t: M eidJist
[ (uses SO.itab)

(sets SO.stab)
(aet SO.stab (checkaddste Sl.srff SOJUb i /•constant*/ enum))

eid.Ust Comma Id
[cp 80-itab Sl.iUb]

fuses 81.stab)
(sets SO.stab)
(set SO.stab (checkaddste SS.self Sl.stab l /Constant*/ enum))

/•

• RECORD TYPE
*/

field~BSt: fixed jart Tariant.part fleltUist
[cp SO.itab S2.itab]
[cp SO.itab Sl.iUb]
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flxed.part:
field

[cp SO.itab Sl.itab]

flxedjort Semi field
[cp SO.itab Sl.itab]
[cp SO.itab S3.itabJ

field:
/* lambda */

id.list Colon type
[cp SO.itab S3.iUb]

variaut_part:
/* lambda */

Case type.id Of variant.Ust
[cp SO.itab S4.iUb]

Case Id Colon type id Of variant Ust
[cp S0.itab~86.iUb]

variant.Ust:
"" variant

[cp SO.itab Sl.itab]

variant:

variant.Ust Semi variant
[cp SO.itab Sl.iUb]
[cp SO.itab S3.iUb]

/* lambda */

I
const.Ust Colon Lparen field Ust Rparen

[cp SO.itab SLstab]
[cp SO.itab S4.itab]

STATEMENT UST

sUt Hat:
sUt

cp SO.sUb SLstab]
cp SO.inwith SLinwith]

sUt.Isth stat
cp SO.stab Sl.stab]
cp SO.sUb S2.sUb]
cp SO.inwith SLinwith]
cp SO.inwith S2.inwith]

stat lath:
sUtJist Semi

[cp SO.stab Sl.stab]
[cp SO.inwith SLinwith]
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fixed-part

field

variantjpart

variant-List

variant

statJist

statj^th
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• CASE STATEMENT LIST
•/

cstat.Ust:
csUt

cp SO.stab SLstab]
cp SO.inwith SLinwith]

cstat.iist Semi csUt
cp SO.stab Sl.stab]
cp SO.inwith SLinwith]
cp SO.stab S3.sUb]
cp SO.inwith 83.inwith]

csUt:

const.Ust Colon *Ut
cp SO.stab SLsUb]
cp SO.stab S3.sUbj
cp SO.inwith 83.inwith]

/* lambda */

STATEMENT

stat:

/* lambda */

Int Colon stat
[cp SO.sUb SS.stab]
[cp SO.inwith S3.inwith]

proc id

I
proc.id Lparen wexpr Ust Rparen

cp SO.stab SS.stab]
cp SO.inwith S3.inwith]

assign
cp SO.sUb Sl.stab]
.cp SO.inwith SLinwith]

Begin sUt.Ust End
fcp SO.stab S2.stab]
cp SO.inwith S2.inwith]

Case expr Of cstat.Ust End
Icp SO.sUb" S2.stab]
cp SO.inwith S2.inwith]
cp SO.stab S4.aUb]
cp SO.inwith S4.inwith]

With var Ust Do stat
Tcp SO.stab S2.sUb]
[cp SO.inwith S2.inwith]
[cp SO.sUb 34.sUb]

(uses)
(sets S4.inwith)
(aet S4.inwith 1)

[C
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cstatj,ist

cstat

stat
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assign:

While expr Do stat
[cp SO.sUb 32.stab]
cp SO.inwith S2.inwith]
cp 30.stab S4.sUb]
cp SO.inwith S4.inwith]

Repeat sUt.Ust Until expr
cp 80.sUb 82.sUb]
cp SO.inwith 82.inwith]
cp 80.sUb S4.stab]
cp SO.inwith S4.inwith]

For assign To expr Do stat
[cp SO.stab 82.sUb]
[cp SO.inwith 82.inwith]
[cp 30.stab 34.stab]
[cp SO.inwith S4.inwith]
[cp SO.sUb SB.sUb]
[cp SO.inwith S6.inwith]

For assign Downto expr Do sUt
[cp SO.sUb S2.stab]
'cp SO.inwith 82.inwith]
cp SO.sUb 84.stab]
cp SO.inwith 84.inwith]
cp SO.sUb SO.stab]
cp SO.inwith S6.inwith]

Goto Int

I
If expr Then sUt

[cp SO.stab S2.stab]
[cp SO.inwith 82.inwith]
[cp 80.sUb S4.stab]
[cp SO.inwith 84.inwith]

If expr Then stat Else sUt
[cp 80.stab SS.stab]
cp SO.inwith S2.inwith]
cp 80.stab 84.stab]
cp SO.inwith 84.inwith]
cp SO.stab SO.sUb]
'cp SO.inwith SO.inwith]

Assert Lparen expr Rparen
tcp SO.sUb S3.sUb]
cp SO.inwith SS.inwith]

variable Colon Eq expr
cp 80.sUb 8l.sUb]
cp SO.inwith SLinwith]
cp SO.sUb 34.sUb]
cp SO.inwith S4.inwith]

/•

• EXPRESSION
*/

expn
simple expr relop simple expr

~ [cp SO.sUb SLstab]
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cp SO.inwith SLinwith]
cp SO.stab S3.sUb]
cp SO.inwith S3.inwith]

simple.expr
[cp SO.sUb SLsUb]
cp 80.inwith SLinwith]

simple.expr
simple.expr addop term

!cp 80.stab SLsUb]
cp SO.inwith SLinwith]
cp SO.stab 33.stab]
cp SO.inwith S3.inwith]

term:

factor:

Plus term
cp SO.sUb S2.stab]
cp SO.inwith S2.inwith]

Minus term
cp 80.sUb S2.sUb]
cp SO.inwith S2.inwith]

term

[cp SO.sUb SLstab]
[cp 80.inwith SLinwith]

term divop factor
[cp SO.sUb Sl.stab]
[cp SO.inwith SLinwith]
[cp 80.sUb 83.stab]
[cp SO.inwith S3.inwith]

factor

[cp SO.sUb SLsUb]
[cp SO.inwith SLinwith]

Not factor
cp SO.sUb S2.sUb]
.cp SO.inwith S2.inwith]

NU

I
String

I
Int

I
Fpnumb

variable
I

cv SO.sUb SLsUb]
cp SO.inwith SLinwith]

func.id Lparen wexpr Ust Rparen
Icp SO.stab S3.sUb]
cp SO.inwith S3.inwith]

Lparen expr Rparen
[cp SO.stab S2.sUb]
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simple^expr
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...factor

element

[cp SO.inwith S2.inwith]

Lbracket element.Ust Rbracket
cp SO.stab S2.sUb]
cp SO.inwith S2.inwith]

Lbracket Rbracket

.Ust:
element

cp SO.stab SLsUb]
cp SO.inwith SLinwith]

element.Ust Comma element
[cp SO.sUb SLsUb]
cp SO.inwith SLinwith]
cp SO.sUb S3.sUb]
cp SO.inwith S3.inwith]

element-list

element: element
expr

cp SO.sUb SLsUb]
cp SO.inwith SLinwith]

expr Dotdot expr
[cp SO.stab SLstab]
cp SO.inwith SLinwith]
cp SO.stab SS.stab]
cp SO.inwith 83.inwith]

• QUALIFIED VARIABLES
•/

variable: variable
Id

(uses SO.stab SO.inwith)
(sets 80.type)
(prog (ste)

(set ste (lookup SO.sUb (name Sl.self)))
(cond ((equal SO.inwith 0)

(check "Undeclared variable"
(ne ste tnull) SI.self))

(check Type not allowed"
(eq (equal (getattr ste 0) 2 /*type*/) nil)
Sl.self)

(set SO.type (getattr ste 1))

quel.ver
cp SO.sUb SLsUb]
cp SO.inwith SLinwith]

(uses)
(sets SO.type)
(set SO.type integer)

qual.var:
array.id Lbracket expr list Rbracket

[cp SO.sUb S3.sUb]
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[cp SO.inwith SS.inwith]

quai.var Lbracket expr.Ust Rbracket
[cp SO.sUb SLsUb]
cp SO.inwith SLinwith]
cp SO.stab 33.sUb]
.cp SO.inwith S3.1nwith]

record id Dot field id

" I
quai.var Dot field.id

[cp SO.sUb SLsUb]
op SO.inwith SLinwith]

ptr.id Arrow

quai.var Arrow
[cp S0.aUb SLsUb]
[cp SO.inwith SLinwith]

* Expression with write widths
*/

wexpr:

octhex:

expr
cp SO.sUb SLsUb]
cp SO.inwith SLinwith]

expr Colon expr
[cp SO.sUb SLsUb]
cp SO.inwith SLinwith]
cp SO.sUb S3.sUb]
cp SO.inwith SS.inwith]

expr Colon expr Colon expr
[cp SO.stab SLstab]
cp SO.inwith SLinwith]
cp SO.stab 83. stab]
cp SO.inwith 83.inwith]
cp SO.sUb SS.sUb]
cp SO.inwith SS.inwith]

expr octhex
cp SO.sUb SLsUb]
'cp SO.inwith SLinwith]

expr Colon expr octhex
[cp SO.sUb SLsUb]
cp SO.inwith SLinwith]
cp 80.stab S3.sUb]
cp SO.inwith S3.inwith]

Oct

Hex

expr.Ust:
expr
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expr.Uat Comma expr
[cp 80.stab SLsUb]
cp SO.inwith SLinwith]
cp SO.stab SS.stab]
cp SO.inwith S3.inwith]

wexpr.Ust:
wexpr

cp SO.stab SLstab]
cp SO.inwith SLinwith]

wexpr.Ust Comma wexpr
[cp SO.stab Sl.stab]
cp SO.inwith SLinwith]
cp SO.sUb SS.stab]
cp SO.inwith S3.inwith]

OPERATORS
*/

relop:

addop:

divop:

Eq

Lt

Ct

Lt Gt

IX Eq

Gt Eq

In

Plus

Minim

Or

Star

Slash

Div

Hod

And

/•

• LISTS
*/

varlist:
variable

[cp S0.sUb SLsUb]
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wexprj/ist

relop

addop

divop
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[cp SO.inwith SLinwith]

var.list Comma variable
[cp SO.sUb SLsUb]
cp SO.inwith SLinwith]
cp SO.stab 83.stab]
cp SO.inwith S3.inwith]

idlist:
Id

I
id Ust Comma Id

• Identifier productions with semantic restrictions
•/

const.id:
Id

type.id:
Id

array.id:
Id

ptr.id:
Id

record.id:
Id

field.id:
Id

proc.id:
Id

func.id:
Id

Xfunctions

• This avoids having to quote lots of stuff. These an
* manifest constants whose value doesn't matter, e.g.
•/

(defun initialize 0
(progn

(set abs (quote abs))
(set arctan (quote arcUn))
(set boolean (quote boolean))
(set char (quote char))
(set chr (quote chr))
(set constant (quote constant))
(set cos (quote cos))
(set enum (quote enum))
(set eof (quote eof))
(set eoln (quote eoln))
(set exp (quote exp))
(set false (quote false))
(set file (quote file))
(set function (quote function))

Jul 719:131981

i all essentially
enumerated types.
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...varj/ist

icLList

consLid

type-id

array^id

ptr-id

recordSd

fielcLid

proc-id

func-id
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»,...func-id
(setinput(quoteinput))
(setinteger(quoteinteger))
(setIn(quoteIn))k
(setmaxint(quotemaxint))
(setodd(quoteodd))$
(setord(quoteord))
(setoutput(quoteoutput))
(setpred(quotepred))*
(setreal(quotereal))
(setround(quoteround))$
(setsin(quotesin))
(setsqr(quotesqr))
(setsqrt(quotesqrt))
(setsucc(quotesucc))
(settext(quotetext))
(settrue(quotetrue))
(settrunc(quotetrunc))
(settype(quotetype))
(setvariable(quotevariable))

)
(defunbuiltins(node)

(hash

^HLH^fJ"****"tpU8"(•**•*•"maxint" (eddsU(integer"(addste"boolean"(addste"Boolean"(m***m«%»-1»
(ad^Jlchar"<"**»*•"te*"(-daste^niS2{^**ntd

(Bdf!^OU^t"(,addste"aba"(»*iste"arcUn" (adWSicby{odaste"cos"(addste"eor
(addste"eoln"(addste"exp"(addste"In"

(add»**!lodd"(addste"ord"(addste"pred"
(addste"round"(addste"sin"(addste"sqr"

(addste"sqrt"(addste"succ"(addste"trunc"
(addste"clock"(addste"waUclcck"^^

(emptytnull)
funcUonInteger)funcUoninteger)

funiSS"™.!?1!?8!?,func"?n«aum)funcUonreal) t.^1^nTe^ifuncU°nreal)funcUoninteger)
funcUonenum)funcUoninteger)funcUonboolean)

funiS?Kn""I*"***real)functionbooleS)' fc«5K?talJ0?16"11)factionreal)funcUonchar)

J(namenodeisUbala2)

>"?^eJ???koneiaUb(bbbwnamenode)))
>check"HulUpledeclaration"(eqstetnufl)namenode)

(defuncheckaddste(namenodeisUbala2)
(prog(ate)'

)'
,eadste(namenamenode)isUbala2)

Jun8720:091981
Page18ofpascal.ldl



^

158

texUdl ♦ - i^,text.ldl

/* LDL description of TEXT, a transparent arbitrary text language •/
Xtokens

i Word "[a-xA-Z0-9J+
Whitespace -»...-.. —•^- =. .--— i \t\n]+"

jg» PunctuaUon "i- \t\no-sA-Z0-9 1+"
Xgrammar *~J
text: .

text Word text
text Punctuation ;

Jun 27 20:091981 -. t -. . , _
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