Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DESIGN OF A MULTI-LANGUAGE EDITOR
WITH STATIC ERROR DETECTION CAPABILITIES

by
Mark R. Horton

Memorandum No. UCB/ERL M81/53
July 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ABSTRACT

DESIGN OF A MULTI-LANGUAGE EDITOR
WITH STATIC ERROR DETECTION CAPABILITIES

Mark R. Horton

-

Programmers who prepare programs interactively usually edit them in terms of text.
Those few who use source language editors are restricted to a single language for which

they have a tree structured editor.

The Babel set of programming tools is described. Babel has knowledge of the syntax
and semantics of many languages. A language description language is used to make it easy
to add a new language to the collection. Programs are represented as generalized parse

trees.

The Babel system includes an editor that presents a text-like interface to the user.
Commands utilizing the tree structure are possible, but need not be used. The user can be
unaware of the underlying tree structure. The editor incrementally checks the syntax and
semantics of the program and immediately notifies the user of errors. Human factors
involving temporarily incorrect programs, program formatting, and responsiveness of the

editor are addressed.

A prototype implementation has been built. Its design and characteristics are

described.

Acknowledgments

I am indebted the members of my committee for their encouragement and assistance
in this project, especially Professor Susan L. Graham, for always encouraging me to

improve on what I had.

The excellent computing environment, brought about by many graduate students at
Berkeley, was an invaluable aid in both implementing the programs making up this

research, and for the production of this dissertation.

I would like to thank Eric Allman, Mike Deering, Dan Halbert, Robert Henry, Peter
Kessler, Kirk McKusick, and especially Dave Menicosy, who proofread earlier drafts of this

dissertation and made many valuable comments.

I also would like to thank the many people who tried out my system while it was still

under development, finding bugs and showing me how people would use it.

Most importantly, a special word of thanks to my wife, Karen, who has been a con-
stant source of support and help throughout my years as a graduate student, for many
hours of proofreading and editing of this dissertation, and for always being there when I

needed her.

Work reported herein was supported in part by the National Science Foundation under
Grants MCS-8005144 and MCS 74-07644 A04, and by Defense Advanced Research Pro-
jects Agency (DoD) ARPA Order No. 4031, Monitored by Naval Electronics Systems Com-

mand Under Contract No. N00039-80-K-0649.

- 5

[24

2. Previous Work
INLTOAUCHION ..ovevvereenreenersvecenssrensrossessssorsssssssnsnssssssssasasans

3. Notation ...

4, User Interface

5. Implementation

Table of Contents

1. Introduction resesressessrenaes

The Problem

The Properties of @ SOIUtioNcccececciuieinsunnsenissecacsnnans

The Babel System

Resultsc.ceeeeeeee

Teitelman

Donzeau-Gouge et.al.

Teitelbaum

Wilcox et.al.
Feiler and Medina-Moracccceeeeeee.

Eickel et al

..

Ghezzi and Mandroli c...cceeervereeseereisissnicssesessesssesessssssessacssnssnsarasassssssssssecs

Research on Attribute Grammars

REPS ccvvereerenccmsessssssensessnnsnnnnssssansssssssnsesesses

StallmMAan’s Letterccccccevvecrecrssrennresssssssssssssnassasassnsees

ooooo

Comparison of Babel with Other Systems

.....

ooo

LANBUARES ..vevevereneerarsssessassessnsssmsasssensssssscssssssssssasasssssssstasssssssssssssssssassssassntasssss

Grammars

Attribute Grammars

Program Trees
Representation of Textccveeccmncciseccnnces

Example SeSSioNccccevrirernranesnesnacnns

Design of the Command Language

oooooooooooooooooooooooooooooooo

Introduction recesssresnsereassnnsnsnnsasse

Overall Control

Tree Structure

Display Algorithms
Tree Editor

Incremental Scanner

Incremental Parser

Incremental Semantics

Preprocessors

O\ W =t

10
10
12
12
15
16
17
18
19
20
22
26
27
28
38
38
38
39
39
41
43
43
50
55
55
55
56
58
69
72
73
75
85

.o

Prettyprinting
Error Messages

Performancecccceseeee

6. Language Description Language

Language ..

Lisp .ccevurrenee
LDL Processor ...cccccceeesessasse

7. Conclusion

Summary .

Suggestions for Future Work ...

Bibliography

Appendices

iii

90

93

95
104
104
112
118
121
121
122
126
130

By

Ny

"/

CHAPTER 1

Introduction

1.1. The Problem

With current programming tools, the programmer spends most of his time in an edit-
compile-debug cycle. While developing or modifying a program, it is typical to have to make
several passes through the cycle just to ‘‘get the semicolons right’ before real debugging of
the program can begin. The cycle usually includes the tedious process of getting a list of
error messages, reentering the editor, fixing a few bugs, recompiling, and repeating for the

next batch of errors. Much time is spent shifting from one phase to the next.

An approach receiving attention recently is the use of a language editor. A language
editor is an editing tool, replacing a text editor, which has access to information about the
language being edited. To make an efficient implementation possible, language editors usu-
ally do not edit text directly, instead using a tree representation. Language editors have a

number of potential advantages over text editors.

(a) Errors can be detected, or even prevented outright, as the program is entered. There
is no need for the user to compile the program to get the syntax checked, or to make

sure that all variables are declared.

(b) Program-oriented structure operations are easier to implement correctly than in a text
editor. Although many good text editors have commands to reference such structures
as statements, sentences, and text containing balanced parentheses, such commands are
usually implemented by searching for a known, language dependent delimiter string
such as “‘end” or *)””. They are usually fooled by comments and strings containing

the delimiter string being searched for.

(c) The editor can do a more intelligent job of elision. Most text editors elide (i.e., do
not display) lines that are above the top of the screen or below the bottom. If the
programmer wants to look at the statements that surround a large loop, there is often
no way to get both ends of the loop on the screen at the same time. When the tree
structure is known it becomes possible to manually [Teitelbaum 1979] or automati-
cally [Alberga 1979] elide part of the program, replacing an arbitrarily large block of

k2]

code on the screen with an elision indication such as *“...”".

(d) Keeping programs in tree form can be useful in other parts of the system. There is
no reason to convert from tree to text and back upon each entry into or exit from the
editor. If the compiler works directly from the tree, its job is simplified (and sped up)
because it need not scan and parse the program. It is possible to edit the tree in place,

avoiding the customary copy when entering and leaving the editor.

(e) The editor can mark the parts of the tree that have been changed. This provides an

excellent environment for incremental compilation and for keeping histories.

(f) If a suitable tree representation is chosen, additional semantic information that the
compiler, editor, and other tools ignore can be stored in the tree. This allows a sym-
bol table, generated assembly language code, and other semantic observations to be

kept in the tree.

Most of the existing language editors are for a specific language. To port the editor to
a different language, substantial modification to the program would be necessary. Those
few that handle more than one language have other problems. The editor described in [Wil-
cox 1976)] is written in an assembly level language, and requires substantial amounts of
reprocessing for cursor motion. The proposal of [Feiler 1980] use a formalism which is not
self-contained: external routines must be written and linked into the editor. Being able to

easily add a new language to the set available to the editor is a very desirable property.

I3

]

Gt

The interface presented by many language editors to their users is based on the tree
being edited. The user must thoroughly understand the tree structure. This limits the user
community of the editor to people who are able to understand the tree structure, usually
excluding non-programmers. Since the user of the system to be described here sees the
text of the program on his terminal, and since text is straightforward to understand, an
interface which presents the user with the text is likely to be more easily learned than a tree

interface.

There are advantages to a text interface for experienced programmers, tco. [Staliman
1978] cites a number of advantéges of text editors over the tree oriented language editors
that existed at the time. Typical of the advantages cited is that a text editor allows the pro-
grammer to format his program, including comments, as he sees fit rather than being
forced to use a standard layout. Also, a text editor allows the program to be temporarily
incorrect during muitiple command operations such as adding a pair of parentheses,
whereas a tree interface usually prevents syntax errors from occurring, requiring a less
natural editing style. Finally, a text interface enables the user to have the same familiar

tool for editing programs that he uses for editing other kinds of text.

Both types of systems have their own advantages. The best of all worlds would be a
hybrid approach, having a user interface with all the simplicity and power of a text editor,
yet able to perform operations requiring a tree, such as checking for errors, or correctly

finding structurally defined portions of the tree. Such an approach is taken here.
1.2. The Properties of a Solution

1.2.1. Information Required

There are several kinds of language information a language editor requires. It must
have access to information describing the syntax of the language in order to build a tree to

work from, and to check for syntax errors. It needs the lexical structure of the language if

the user is to type text. (The template oriented approach of [Feiler 1980] does not need
the lexical information, since it insures that the user never types in tokens, other than
identifiers and constants prompted for by the system.) If the system is to check semantics,

it must have the semantic rules of the language.

1.2.2. Table Driven

The notation for this information should be high level, self-contained, portable, and
powerful enough to describe most modern programming languages. It should not contain
information irrelevant to the language being described. In the implementation, the
language deéende‘nt information should be all kept in one place, rather than scattered
about, embedded in various programs. A definition for a language should be free of

machine dependencies, so that it can quickly be ported to another environment.

A notation for description of languages should be completely self contained, so that
tables generated from the description can be the complete source of language dependent
information. This provides for a cleaner, more portable design. It also allows a user to
substitute his own version of a language, encouraging improvements to language dependent

information such as error detection and language dependent macros.

1.2.3. Erroneous Entry Possibilities

One important advantage to current text editors is that they permit errors. While
detection of errors by the editor is a valuable programmer aid, in a text entry environment
it is unreasonable for the system to refuse to accept the change until it is entered correctly,
since the change may be mostly correct. Many users make multiple-change corrections that
go through illegal states before entering a final, correct state. (Examples of such multiple

stage changes are moving a parenthesis, or adding a begin-end pair around a block of code).

The tree structure underlying the implementation must behave cleanly in the presense

of errors. If a text-editor interface is to be presented to the user, programs that are syntac-

"

tically incorrect must be displayed exactly as typed, so that the user can correct them as
with a text editor. If the program is in an error state and a command is typed causing the

program to become correct, the editor must form a correct tree.

1.2.4. Well Engineered Error Messages

Another important consideration, if errors are to be detected, is how to make the user
aware of the errors. Preventing errors outright is undesirable for reasons discussed above.
We feel that restricting the cursor position to the area before the first error, as done in
[Wilcox 1976] and [Morris 1_9811 is overly restrictive. Producing an error message on the
terminal screen for each error efxcountered is likely to annoy the user, especially when the
user is knowingly going through an incorrect state to get to a correct state; it would also
probably produce voluminous output, taking time and valuable space on the screen.
Notification of errors must be easily noticed by the programmer, yet low-key enough to not

get in his way.

1.2.5. High Degree of Incrementality

An editing system which checks syntax and semantics must do considerably more
work than a text editor. If a small change is made to the program, a very incremental sys-
tem will recompute only a small amount of local information. A high degree of incremen-

tality is important.

1.2.6. Shared Symbol Tables

An implementation that checks semantics will have to keep a symbol table, to check
for proper use of symbols. Most implementations that use a formal semantic model are
based on attribute grammars [Knuth 1968]. In such an implementation, attributes are nor-
mally copied around the tree liberally. Since a symbol table would be a very large attribute,
it is important not have multiple copies of symbol tables. The time and space requirements

of making such copies would be excessive. Some provision must be made for sharing the

symbol tables, while allowing for correct updating as the user makes changes.

One serious problem with the usual implementation of a shared symbol table (a
pointer to a static table) is the deletion problem: what to do if a declaration is deleted, or
the name is changed. Most current compiler technology is based on the assumption that
the compiler starts with nothing and builds up by adding one item (declaration, etc) at a

time. There is no provision for deletions.

The problem is even worse in the case of an editor based on an incremental parser.
Not only must the editor correctly handle deletions, but even determining that a deletion

has taken place is difficult.

1.3. The Babel System

This dissertation describes a set of tools called Babel. The most important of these
tools is the editor be. The interface presented the user by be is that of a text editor. The
implementation, however, keeps a parse tree representation of the program rather than a
text representation. This dissertation shows how to build a text interface as the front end
of a tree representation. The system checks for syntax and semantic errors, and reports
them unobtrusively to the user. Structure oriented commands can be implemented

correctly by making use of the tree structure.

The Babel system includes incremental evaluators for lexical, syntactic, and semantic
information. A table driven scanner is inciuded, which can be used for subsections of the
program alone. An incremental parser for context free grammars, based on that described
in [Ghezzi 1979] checks the syntax after each line of input. An incremental attribute
evaluator, based on that in [Reps 1981] checks semantics as the program is changed. These
checks can be partially or completely turned off by the user, to improve response time,
without affecting the text editor interface. (An explicit check command can be used, in

this mode, to check for errors.)

al

¥

'tl B

3

_ Context free grammars are an almost universally accepted notation for specification of
syntax, and easily implemented subsets are more than powerful enough for most current
programming languages. Regular expressions are often used for lexical information, and
have moderate power. (They cannot handle lexically unusual languages such as FOR-
TRAN, with its conventions for columns 1, 6, and 7, and its use of blanks.) Attribute
grammars [Knuth 1968] have the power to express the static semantics of most program-
ming languages, and given a powerful enough notation for attribute evaluations, can handle

the static semantics of any programming language.

The Babel system uses a completely self contained notation for describing languages
called Language Description Language (LDL). LDL is based on the three formalisms
described above. LDL is a completely self-contained language which describes a large class

of languages, including LDL itself.A

An expert language implementor prepares an LDL description for a language, and runs
it through a preprocessor to produce a set of tables. The editor uses these tables as a

language-dependent knowledge base.

LDL is very high level. The lexical and syntactic portions of a new language can be
brought up in a few hours, given a grammar for the language. Specification of semantics
takes considerably longer, but still requires less time than it would to write the front end of
a compiler,! because of the high level of the attribute grammar notation. LDL encourages
highly portable language descriptions. Such descriptions would also be of use in the pro-

duction of portable compilers.

Syntax errors are handled in Babel by building a tree which corresponds exactly to the
incorrect program typed by the user. Structural information near the root of the tree is

lost, but is quickly regained when the program is corrected. When this incorrect tree is

1A syntax-only description of Lisp was developed in under an hour. A similar description of Ada worked
after one evening. A description of Pascal powerful enough to detect undeclared variables and types took about
three days.

displayed, the same text the user typed will appear. Most importantly, when another
change (producing either a correct program or an incorrect one) is entered, the parser will
treat the incorrect tree the same as a correct tree, producing a correct tree if the program

has been corrected, and reparsing little of the tree.

Error messages of all kinds (lexical, syntactic, semantic) can be attached to any node

of the tree. Nodes with error messages will be highlighted? on the screen, pointing out the
error and its location quickly and quietly. (If the node is a nonterminal, its descendents
which are tokens will be highlighted.) The user can determine the cause of an error by
positioning the focus to the highlighted node and asking the editor for the text of the error

message.

Symbol tables are shared by building a symbol table one entry at a time, using a linear
linked list. This method arranges that incomplete versions of the symbol table are still
valid, and can be used for the construction of changed versions of the symbol table. The
deletion problem is handled by rebuilding the remainder of the symbol table from the point
of the change. (The symbol table entries themselves do not need to be recomputed, only
the parent nodes that link the entries together.) A hash table at the top of the list provides
fast lookup once the table is built. A symbol table building block is provided which is flexi-
ble enough to be used not only for block structured languages, but for languages with other
scoping rules as well; yet the building block is high level and frees the language implemen-

tor from the details of constructing an efficient symbol table.

1.4. Resulits

The approach outlined here has been implemented to yield a working editor. Students

have been voluntarily using the editor, which has kept statistics showing the amount of

2t is assumed that the user has a terminal with some form of highlighting, such as bold, reverse video,
blinking, or underlining. . The screen package that our implementation of be uses [Arnold 1980] ignores highlight-
ing requests on terminals that cannot highlight, but could be modified to bracket highlighted text in some way,
such as putting angle brackets around < <the highlighted text>>.

o

‘3

work it had to do. In addition, an editing session on one particular Pascal program was
timed using various text editors and using be with various amounts of checking. For most
cases, a high degree of incrementality has been attained. Even so, the prototype editor is
several times slower than local production text editors, depending on the amount of check-

ing done and the nature of the changes.

Syntactic checking is shown to be within reasonable efficiency constraints, being
roughly five times slower than vi [Joy 1980]. Semantic checking is somewhat slower, losing
a factor of about 15 when an executable statement is changed, and a much larger factor
(depending on the size of the program) when a declaration is changed. Automatic checking
can be turned off for the duration of some sequence of commands, or permanently, with
checks only by explicit user request, speeding up the process at the expense of some check-
ing. It seems likely that a more careful implemeniation could improve the ratios consider-

ably.

The remaining chapters of this document describe and motivate the Babel system, and
compare it to other systems. Chapter 2 describes some other language editors and com-
pares them to Babel. Chapter 3 defines notation used in the other chapters. Chapter 4
shows the user interface, with an example session, and discusses the design of the particu-
lar command language chosen. Chapter 5 describes the implementation of the editor.
Chapter 6 describes LDL and the implementation of the LDL processor. Chapter 7 con-

tains some performance results, and lists some directions for future research.

CHAPTER 2

Previous Work

2.1. Introduction

This chapter discusses some of the research done by other researchers in the area of
language editors. In addition to several earlier language oriented editing systems (Teitel-
man 1978, Donzeau-Gouge 1980, Teitelbaum 1979b, Alberga 1979, Yonke 1975, Feiler
1980, Wilcox 1976], related research is discussed which develops techniques used and
extended in this dissertation for formal language definition [Knuth 1968, Geigerich 1979},
incremental parsing [Ghezzi 1979], and incremental attribute analysis [Demers 1981, Reps
1981]. A comparison is made between the other editing systems and Babel on each of
several issues, including the language(s) handled, lexical issues, comments, parsing
method, semantics, prettyprinting, editing style, incomplete or incorrect programs, whether
the system is screen-oriented, to what extent the system has been used, methods of elision

of part of the program for display purposes, preprocessors, and execution environments.

2.2. Teitelman

The Interlisp system [Teitelman 1978] is probably the most well known of the sys-
tems containing Lisp editors, that is, tree editors that edit Lisp programs. Since Lisp pro-
grams are intrinsically tree structured, with a very simple syntax, it is significantly simpler
to build an editor for Lisp than for most other languages. Such editors are common in Lisp
environments, although it has been argued [Staliman 1978] that text editors are superior to
tree editors even for Lisp. Interlisp has been very widely used since about 1970 on Tenex

and TOPS-20 systems.

10

r'ﬁ.;

11

Tree editors can be characterized by their internal representation, which is a tree that
represents the syntactic structure of the program, rather than the characters, lines, or pages
that text editors use to represent program text. Interlisp edits Lisp S-expressions. (Since
S-expressions are so simple, this is easy to do for Lisp.) Interlisp does not know any seman-
tics, nor does it know any of the syntactic forms embedded in S-expressions commonly
used in Lisp (such as cond, prog, or lambda). It is simply an S-expression editor, which

allows it to be used to edit data as well as program text.

This system has been tuned over the years to be convenient to use. It has a rich set
of tree editing commands, including ‘‘parenthesis changing’’ commands which allow the
user to think in terms of adding, removing, or moving a parenthesis while actually making
a change to the internal tree. A ‘‘Do What I Mean™ (DWIM) fqature is called when an
error is discovered. DWIM has been tuned to recognize common mistakes and make a

correction that will often be what the user intended.

Interlisp is a Lisp programming environment That is, it is a single large program the
user runs continuously while developing a program in a particular language. There are
many other programming environments, most commonly for the languages Lisp, Basic, and
APL. More recently, programming environments for the language Ada have received con-

siderable attention.

Probably the most interesting feature of Interlisp and its editor is the history list.
Each elementary change made by the user is recorded in a history list, allowing changes to
be undone and redone at will. After making a mistake, the fauity command can be undone
with the ‘“‘undo’® command without having to think of the command or sequence of com-
mands necessary to undo it manually. The history list allows multiple commands to be
undone, all the way back to the beginning of the editing session. The user need not fear
losing any work because all commands which are undone can be redone just as easily with

_the “redo’’ command.

12

2.3. Donzeau-Gouge et.al.

The Mentor system [Donzeau-Gouge 1980] is a Pascal tree editor. It knows the syn-
tax for the entire Pascal language, and can be programmed to handle the semantics. It is

teletype oriented, not using any CRT screen capabilities.

Mentor allows the user to think of the program as either a tree or text. There are
many tree oriented printing commands. When printing, a root and the maximum tree
depth to print can be specified. This causes the subtree with the specified root to be
printed, eliding (e.g. printing as *...”" or “&™) all portions beyond the specified depth. As

is the case with most tree editors, prettyprinting is done on the fly.

Program text is entered to Mentor by (ellinﬁ it that one wants to input a particular
nonterminal at a particular point. After checking to see if that nonterminal is legal at that
point, Mentor prompts the user for that nonterminal, which is parsed in a goal-driven
manner. Input text which can be parsed to exactly that nonterminal must then be entered.
No provision is made for unstructured input (input that is not a subtree but rather a group
of neighboring branches, such as *‘+3” 01: “end; begin’’) or incorrect input. Thus, the

editor can guarantee that the program is both complete and correct at all times.

Mentor commands are very powerful and concise, much like those of [DEC 1972]. A
strong pattern matching capability is defined, utilizing the tree structure. Changes to exist-
ing programs that do not involve new text are made with a rather low level set of opera-
tions, that correspond roughly to the primitive operations that can be made on trees (prune

subtree, replace leaf, exchange two children, etc.).

2.4. Teitelbaum

The Cornell Program Synthesizer [Teitelbaum 1979b, Teitelbaum 1979a] is a tree edi-
tor for a subset of PL/I called PL/CS. It runs on a Terak personal microcomputer, and is

in use in introductory programming classes at Cornell. A more recent version runs under

.-

Y]

o

13

the UNIX! operating system on a VAX2

The Synthesizer is screen-oriented and makes full use of the hardware available. It
knows both the syntax and semantics of PL/CS, with emphasis on the syntax. When the
user makes a semantic error, such as using an undeclared variable, the incorrect use is

highlighted on the screen. Syntax errors are not possible.

Input is not textual, but rather consists of a sequence of template building commands.
Each production in the grammar has a corresponding command to create a template from
that production. For example, the command .ite will create an {fthen-eise node at the
current location in the tree, leaving the condition, then part, and else partas nonterminals to
be filled in later, and placing the focus at the condition This program construction stops at

the expression level, allowing expressions to be typed in and parsed normally.

Since the user does not type in the program as it appears on paper, but rather builds a
tree, the tree always corresponds to a syntactically correct PL/CS program. There is no way
to represent a syntactically incorrect program, and hence syntax errors cannot occur.
(Incorrect expressions are rejected immediately.) A program can be incomplete but not
incorrect, that is, there can be nonterminals which have not been expanded, but no syntax

errors are possible.

Such an editor forces a totally different editing style on the user who is used to a text
editor. Programs cannot easily be entered from a handwritten listing, but must be con-
structed a node at a time. Changes cannot go through intermediate states with syntax
errors. (Temporary introduction of errors is a widely used technique with text editors. For
example, moving a sequence of statements inside a begin-end block is usually done by

deleting the end and adding another end after the affected statements.) In the synthesizer,

IUNIX is a trademark of Bell Laboratories.
VAX is a trademark of Digital Equipment Corporation.

14

many changes which make sense textually cannot be done with any straightforward com-
mand. For example, using a text editor, changing an if statement to a while statement in a
language such as C can be done by a one word substitution, since the two forms differ only
in the keyword used. The synthesizer would require the body to be deleted into a logical
register, the if header deleted, a new while header typed in, and the body restored from the

register underneath the while node.

There are two forms of elision in the Synthesizer. The more straightforward method

is to elide anything more than a certain number of lines away from the focus. (This is the

approach taken by most screen text editors.) The user can also manually elide subtrees by

positioning the focus at the root of the subtree and pressing the elide key, causing that sub-

tree not to be displayed. A second press undoes the elision.

An unusual aspect of Teitelbaum’s work is the way it handles comments. Comments
in PL/I and in PL/CS begin with “/*"* and end with **/’, and may appear between any

two tokens. The synthesizer, however, views comments as just another syntactic form:

<stmt> = /* <text> */
<stmt>

The <text> is treated like the text of a string, and may be edited using operations similar
to those of a text editor. The comment may not be more than one line long. Multiple sin-

gle line comments may appear in sequence before procedures.

The <stmt> on the right hand side is viewed as a child of the <stmt> on the left
hand side, and indented accordingly by the prettyprinter. A similar production exists for
declarations, and a comment is required by the grammar at the beginning of each procedure.
A benefit from this structure is that the right hand statement can be elided, effectively
replacing a bulky statement on the screen with a one line description of what it does. This

rewards users for using short, descriptive comments.

@l

'»

15

2.5. Alberga, et. al.

The LISPEDIT system [Alberga 1979] is a complete Lisp programming environment.
It is quite different from a conventional Lisp environment such as Interlisp. Rather then
merely giving the user tree manipulation commands, the user sees the program largely as

text. It is screen-oriented, and runs on IBM hardware.

The system uses an LALR parser and a grammar including syntactic forms such as
cond, for, and prog. To add to a program, text is typed in, a line at a time, and parsed
incrementally. Any expected right parentheses are automatically added by the parser, and
right parentheses which are typed in are interpreted as commands to move up in the tree,

thus allowing the user to type in the program as it is written on paper.

The display is prettyprinted according to built-in Lisp prettyprinting rules and a prior-
ity elision algorithm which favors the printing of branches in the tree that are closer to the
focus. Every time the tree is changed or the focus is moved, the display is prettyprinted.
This automatic elision and reprettyprinting cannot be turned off or controlled by the user,
which makes it suitable primarily to high speed environments such as the 50K Baud IBM
environment. Comments are viewed as footnotes to a token. The prettyprinter prints them
wherever there is space: to the right, on the previous line, or at the bottom of the screen

with a footnote-style marker.

Erroneous syntax is possible in the tree. The offending tokens are made into error
nodes, which are treated similarly to comment nodes, and placed in the tree to the side of
the nearest correct node. When the next change is made, the error nodes will be rescanned
and reparsed to produce another chance at a correct parse. Allowing errors to be in the tree

gives the user much of the power of a text editor that is missing in many tree editors.

LISPEDIT knows the full semantics of the IBM dialect of Lisp. It detects, for exam-
ple, undeclared variables, and has a convenient command to declare such a variable without

moving the focus. An interpreter and compiler are also built into the system, along with a

16

pictorial execution mode for debugging (showing the code being executed as it is run).
LISPEDIT is a programming tool intended for use with large software projects. It has been

used to develop itself and other large Lisp brojects at IBM.

2.6. Yonke

Yonke’s 1975 Ph.D. dissertation [Yonke 1975] describes a true language independent
tree editor, called PCM (Program Constructor and Modifier). The editor uses a language
description formalism to describe the syntax and a limited amount of the semantics of the

language in question.

PCM is not screen-oriented. It was influenced by Interlisp, in which it was imple-
mented. It gives the user a set of tree-changing commands such as insert before, insert after,
replace, and delete, which are appropriate for the general trees in the representation. The
input is typed by the user as it is written on paper, and parsed by a goal-driven mechanism

which appears to the user to be similar to that in Meator.

An unusual wrinkle of PCM is that it does not use the traditional context free gram-
mar for syntax definition. Instead, it uses a high level formalism which resembles SNO-
BOL patterns, with ordered sequence, alternating sequence, bracketed sequence, and repeating
sequence as the building blocks. Bracketed sequences are not strictly necessary, since they

are a special case of ordered sequences, but were included to facilitate error recovery.

This representation is much easier for the language implementor and the user to deal
with than an LR parse tree (which relies on recursion and chain productions that the user
would not ordinarily want). It is not nearly so well understood as context free grammars,
and is vulnerable to such problems as the order of productions being significant, and the

need to back up.

The semantics developed by Yonke are limited but useful. PCM builds a symbol

table suitable for a block structured language and detects undeclared variables. 1t also

o

¥

17

attempts to discover variables which are used before they are set. Since this information
cannot always be determined at compile time, the diagnostic given is a warning. The
semantics are specified in the formal description as notes attached to productions. For

example, “(NEW ACCESS NODE)", indicates entry to a new scope.

While Yonke went far toward forming a language independent editor, he did not
address lexical issues or comments at all. Tokens are scanned by the Lisp parser, and com-

ments are not allowed in programs edited by PCM.

2.7. Wilcox et.al.

The CAPS system [Wilcox 1976] is an editor/interpreter used for small subsets of
several programming languages, including FORTRAN, PL/I, and COBOL. The system
checks the syntax and semantics of the program, as it is typed in, after each keystroke.
When an error is found, the system leads the user through a series of possible corrections,
based on the underlying grammar. CAPS is not a tree editor. There is no tree representa-

tion kept, only a text representation, so the interface presented is that of a text editor.

A small degree of incrementality is achieved by saving the state of the translator at
intervals and recompiling from the last saved state before the change. The editor maintains
the invariant that a compilation is in progress, which has progressed to the location of the
cursor. Since the states are saved for every character close to the cursor, and further apart
toward the beginning of the program, and the recompilation stops at the cursor, only a
small amount of recompilation is typically done for a local change. Moving the cursor for-
ward requires recompilation of areas moved over. Moving the cursor backward causes
information to be thrown away. The disadvantage to this approach is that when leaving the
editor, or making a large jump forward, the entire remainder of the program must be

recompiled.

CAPS uses a state transition mechanism to handle the scanner, with power compar-

able to that of the Babel scanner. The grammar is hand-coded using recursive descent in an

18

assembly-level language, which also updates the symbol table. No mention is made of the

structure of the symbol table.

In order to keep the tables small, the vector of previously saved states holds only the
changes from the previous state. Because of the extremely small limits imposed by the

computer on which CAPS runs, only very small programs could be handled.

Since CAPS asserts that a correct compilation has occurred to the left of the cursor, it
does not allow the user to move the cursor to the right of the first error in the program.

Any keystrokes which would go past the error are ignored.

Wilcox and his group tested CAPS on introductory programming students, and found
the response to be much too slow to be usable in practice. Since the computer system
often had 500 users logged in, this could have been due to the heavy load on the system.

It also could have been because of the lack of full incrementality.

2.8. Feiler and Medina-Mora

Feiler’s and Medina-Mora’s work at Carnegie Mellon University [Feiler 1980] is a
recent investigation involving a muiti language tree editor, called IPE (incremental pro-

gramming environment). The editor is in many ways similar to [Teitelbaum 1979al.

The user program is entered using a constructive language. Teitelbaum stops at the
expression level and instead parses; IPE carries the construction method to all levels of the
tree. The editing operations are tree oriented. The user program can at any time be

incomplete, but never incorrect.

IPE is an editor generator. The system is not merely an editor, but also includes an
incremental (at the procedure level) compiler and loader. A grammar is entered for a given
language, along with a set of externally compiled procedures written in any convenient
implementation language. After leaving a procedure, a routine is called to translate the

procedure and check for errors.

[

(%;

¥

19

This system, like the Teitelbaum system, places an emphasis on the tree structure.
There is no scanner or parser. The only terminal symbols that are input are those which
are not keywords, e.g. identifiers and constants. These are explicitly marked as such by the
user. The relationship with text is through an unparser that displays text to the user. The

unparser includes a set of rules for prettyprinting.

2.9. Eickel et al

The MUG2 compiler generating system [Geigerich 1979] provides an excellent
environment for the construction of multi-pass compilers. A high level description of the
straightforward aspects of a language (the lexical and syntactic aspects, and portions of the
semantics) is input to a preprocessor. This produces a program that can be link edited with

external semantic routines provided by the language implementor to produce a compiler.

The language description consists of a lexical description, an LALR(1) or LL(1)
grammar specifying the syntax, a string-to-tree grammar used to produce an abstract pro-
gram tree, an attribute grammar description of the semantics, tree optimization rules, and

templates for intermediate code generation.

The lexical specification is regular expression based, and similar in power to that of
Lex [Lesk 1979], but the specifications are somewhat more readable. The context free
grammar is conventional and merged with the string-to-tree grammar. A reduction by a
given production builds a tree section according to the string-to-tree rule corresponding to
that production. The attribute grammar and later phases work with the abstract tree instead
of the concrete parse tree (which is never constructed), and call external action routines
written by the language implementor in Pascal or PP440. (PP440 is a language specific to

their particular computer.)

The MUG?2 system makes compiler construction much easier and faster than conven-
tional environments that have only scanner and parser generators. It automates many tedi-

ous and error-prone portions of the compiler (including information propagation and stack

20

handling) while giving the language implementor the power of an existing programming
language for the less straightforward work. It also encourages modularity by making the
implementor communicate with the rest of the compiler through parameters, rather than

global variables.

However, Eickel and his group have made several design decisions which, while
correct in the context of a compiler generator, are not compatible with an interactive, incre-
mental, entirely table driven environment such as Babel. For these reasons, nothing in

Babel has been taken directly from MUG?2, although many aspects are similar.

0

The MUG2 system, sit;ce it is geared to compiler production, throws away informa-
tion from phase to phase that is not needed in later phases. Information thrown away
includes lexical information such as white space and comments, and the parse tree. In
order to reconstruct the source from the internal representation, and to parse incrementally,

this information must be present in the internal representation.

Another problem, for our purposes, is the use of externally compiled routines.
MUG?2 is a compiler generator which produces a separate compiler for each language. While
an editor generator is a possibility, we rejected it in favor of a completely table driven editor,
to increase the portability of the language descriptions, and in order to produce a cleaner
design. Another possibility would be to load binary absolute or relocatable code dynami-
cally into a running program. This approach has even more severe implementation and
debugging problems. Instead, Babel uses tables generated from a completely self-contained,

formal description notation based on Lisp.

2.10. Ghezzi and Mandrioli
The incremental parsing technique used in our system is basically that in [Ghezzi
1979]. Some simplifications are made which dramatically cut down on the bookkeeping

overhead without changing the overall character of the method.

o~

Te

21

The Ghezzi method starts with an LR parse tree for a string w = xxzyy, and a new
string Z to replace z. (X and ¥ are one token of context in each direction.) The strings of
symbols (nonterminals and terminals) « and B, where a—"x and B—"y, are determined
from a set of so-called “‘threads’ the method maintains. (In the terminology of this paper,
a is the left firewall and B is the right firewall) Then the string of symbols axzyg is parsed
using an almost conventional LR parser, with conventionally generated LR tables from a
slightly modified grammar (all nonterminals are also terminals). The modification to the
parser arranges for the reduce function to build a new parse tree node for the new nonter-
minal, as the parent of the subtrees from the semantic stack corresponding to the symbols

on the right hand side of the production, and to push the new node on the semantic stack.

Ghezzi’s method works on the class LR(1) () RL(1), which encompasses most prac-
tical LR grammars. It also works with an LALR(1) parser on LALR(1) () RL(1) gram-
mars, and with SLR(1) on SLR(1) () RL(1) grammars. It can be implemented directly

using YACC [Johnson 1978].

The simplifications we have made involve the threads and the LALR tables. Ghezzi’s
paper describes two ‘‘threads’ kept in each node, which always point to the next node in
the firewall in both the forward and backward directions. (Ghezzi’s ‘‘threads’ are not con-
ventional threads, since they take up two extra fields in each node, rather than using other-
wise null fields as conventional threads [Knuth 1973] would.) The forward “‘thread™ of a
node is defined to reference either (a) its left sibling (if one exists), (b) the left sibling of
the closest ancestor that has a left sibling Gf such an ancestor exists), or (c) a special
“null” node. The backwards thread is symmetrically defined. (Ghezzi views forward (left)

and backward (right) as toward the front and back of the tree, respectively.)

Ghezzi does not assume a node contains pointers to its parent, left sibling, and right
sibling, although either the left or right sibling would presumably be part of the tree

representation. If such node pointers are part of the tree structure, as in Babel, the

22

“threads”, as defined above, are easy and fast to construct when needed and need not be
maintained. Since either the left or right sibling will already be present, at most two extra
fields are needed, requiring no more space than the two “‘threads’ in Ghezzi’s method.
Such extra fields are often useful for other purposes, so this may actually resuit in a space
savings. The major benefit, however, comes from not having to maintain the “‘threads’’;

saving over half of the code described in Ghezzi’s paper.

The other simplification is to use the unmodified tables from the unmodified gram-
mar. Instead, the parser is slightly changed to allow nonterminals to appear in the input,
simulating the last part of a reduction that leads to that nonterminal (e.g. application of the

goto table).

A later paper [Ghezzi 1980] improves on this method by finding a nonterminal, 4,
such that the entire changed area is below A in the tree. None of the tree structure above
A need be reparsed or rebuilt. (In effect, the method described in [Ghezzi 1979] uses the

root of the tree as 4.)

2.11. Research on Attribute Grammars

There are a number of formal techniques available to describe semantics [(Knuth
1968, Knuth 1973, Ledgard 1977, Wegner 1972, van Wijngaarden 1975]. All of these tech-
niques have serious drawbacks, either from lack of expressive power, or necessary

inefficiency of any implementation.

Several recent implementations based on formal semantic descriptions have used the
notation of artribute grammars [Knuth 1968, Knuth 1973]. While this notation is lacking in

the power to describe runtime semantics, it is well suited to implementations because it is

possible to produce a system with only a small loss in efficiency ovér a hand-coded system.3

3According to Harald Ganzinger [Ganzinger 1980], the best attribute grammar based systems lose only a
factor of 2 or 3 to hand-coded systems.

(/8

%

23

The attribute grammar notation is based on assigning a fixed number of auributes to
each token and nonterminal in the grammar. Each attribute has an evaluation function used
to compute its value. The only arguments these functions are allowed are other attributes
of symbols in the same production. Since each nonterminal instance in a parse tree will
appear in two productions (on the left hand side of one, and the right hand side of another,
corresponding to the productions below and above it in the tree) it is possible for any given
attribute to be evaluated in either production. For consistency, attributes are required to be
either inherited (evaluated in the production above) or synthesized (evaluated in the produc-
tion below). Intuitively, inherited attributes are passed down the tree, while synthesized

attributes are passed up.

The area of attribute grammars is currently a very popular research topic, with a large
number of papers published in the last decade. (See [Raiha 1980] for a comprehensive
bibliography.) The field is still only partially understood, and most research in the area is
aimed at the automated production of compilers. A major problem in the field is deciding
in what order to evaluate the attributes. Since symbol tables are treated as attributes,
another problem is avoiding having to copy symbol tables (which are large objects) up and

down the tree.

Only very recently [Demers 1981, Reps 1981] has there been any attention to the
problem of incremental attribute evaluation, which is required in an interactive editing sys-
tem such as Babel. The Reps paper solves some of the problems of incremental attribute
evaluation nicely, and Babel has built upon it. His method was designed with the Cornell

Synthesizer in mind, and required adaptation for use in an incremental parsing system.

2.11.1. Problems with Attribute Grammars

In producing any system based on attribute grammars, one must be very careful to

24

have a sound theoretical model. For example, circular grammars® should be detected and

rejected.

It is also important not to waste any attribute evaluation effort. Any system that
reevaluates the same attribute more than once during a single error check is wasteful. Such
wasteful reevaluations are quite possible in a careless system design. For example, in figure
2.1, evaluating the attributes in depth-first order could produce the evaluations of a, b, d, e,

.... C, b, d, e, ..., causing double the number of evaluations that are needed.

In an incremental system, it is also important to evaluate only those attributes that
must be reevaluated. If a change is made to an executable section of a program, usually
only that statement or expression needs to be reevaluated. Yet, which a declaration is
changed, the entire scope of that declaration must be checked for new errors or correction

of old errors.

In a typical attribute grammar, the attribute passed up and down the tree most often is

a symbol table. Declarations build a symbol table, one entry at a time, and pass it up the

v
Y

o
=2

Figure 2.1. Example of Non-Optimal Propagation®

4A circular attribute grammar is one where an attribute can depend on itself indirectly, thus making an
evaluation order impossible to find.

5This example is from [Reps1981a]

25

tree to the root of an executable section of the program. It is then passed down the execut-
able subtree to the leaves, where it is used to look up identifiers. Symbol tables are usually
large, and the attribute grammar formalism requires that each attribute be copied at each

step in the tree. Such copying clearly makes inefficient use of both time and space.

Some method of sharing symbol tables among attributes is needed. The simplest
solution would be to have a static symbol table, and to pass a pointer to it around the tree.

Such a solution is, in effect, implemented in most compilers, and is suitable to attribute
grammar driven compilers as well.®

Unfortunately, this méihod does not work with incremental systems. To see why,
consider the deletion problem, in which the declaration of an identifier is deleted. A sys-
tem based on a static symbol table will have attribute rules for declarations which add the
semantics of a declaration to the symbol table. There can be no rule for what to do when a
declaration is deleted, since rules are defined only for branches of the tree that exist. There
is no way to include a rule on a production to delete the symbol table entry, since the pro-
duction it goes with is no longer a part of the tree. Asa result, the entry for the deleted
identifier will remain in the symbol table, and uses of it will be incorrectly considered
correct (if there were no other declarations of that identifier) or incorrectly scoped (if there

was a declaration of the same identifier in an outer scope).

Since symbol tables are such an important part of the semantics of programming
languages, it is important to provide a high level symbol table facility in any system han-
dling semantics. Not only does the hand-coding of the symbol table produce a faster sys-
tem, but a high level interface means that the language implementor can produce a working
implementation more quickly, since it is not necessary to code and debug details of the

symbol table implementation.

6For example, the MUG?2 system [Geigerich 1979] allows the implementor to make non-local references to
a global symbol table pointer.

26

However, the scoping rules of languages differ. Some languages are block structured.
Others have different symbol tables for different kinds of identifiers. For example, record
fields are usually drawn from different pools than ordinary variables. In order to accurately
represent such rules, a symbol table tool must not be overly inflexible. It must be possible
to conveniently represent the symboi tables of block structured languages such as Algol 60
and Pascal. Babel’s symbol table building block, described in section 5.8, is a solution to

these problems.

2.12. Reps

Reps [Reps 1981] has begun t§ invéstigate algorithms for incremental evaluation of
attribute grammars, in preparation for a multi-language version of the Cornell Synthesizer.
Reps assumes the tree is kept *‘prepared for propagation at the editing cursor’’. Preparation
consists of keeping either a characteristic subordinate graph or characteristic superior graph
available on each node in the tree, depending on whether the node is below or above the
cursor, respectively. These graphs summarize the attribute activity below or above the
node to which they are attached. The characteristic subordinate graph of a node n is the
graph (V,E) where V is the set of attributes of the node n, and e=(vl,v2) € E iff v2
depends on vl indirectly by some chain of dependencies below the node n. The characteris-

tic superior graph is similarly defined for dependencies above the node n.

A graph, M, of attributes needing evaluation and their interdependencies is main-
tained by the algorithm. (M is always a subgraph of the interdependency graph for the
entire tree.) The edges of M are of two Kinds: direct edges representing direct dependencies,

and path edges representing indirect dependencies.

In Reps’ algorithm, all changes are assumed to consist of grafting or pruning a subtree
at the editing cursor. When a change is made, M is initialized to be the union of the
characteristic subordinate graph and characteristic superior graph at the editing cursor. An

attribute to evaluate is chosen from the vertices of M that have in-degree zero.

('

f’,

27

After evaluation, if the value of the attribute has changed, and if there are any path
edges leading from the attribute vertex in M, M is expanded to account for more attributes
which must now be reevaluated. The expansion consists of taking the union of the depen-
dency graph Dlp] for the appropriate production, and the appropriate characteristic graph of
the children or parent node. (The production and graph chosen are either the production
above the node or below it, and the superior or subordinate, depending on whether the
attribute is inherited or synthesized.) Edges added are direct edges if they came from the

dependency graph, or path edges if they came from the characteristic graph.

Since the tree must be kept prepared for propagation at the cursor, when the cursor is
moved, it is necessary to recompute some characteristic graphs. For each single cursor

motion to a node adjacent in the tree, these computations can be done in constant time.

2.13. Stallman’s Letter

Richard Staliman wrote a letter to Computing Surveys [Stallman 1978] arguing that
text editors are superior to list structure editors in a Lisp environment. He cites eight
advantages of text editors. It is our claim.that while a user of Babel is actually editing a
tree structure (no text copy is kept) all of the problems listed by Stallman have been

solved.
1) The user can specify any style of indentation and the system will never override it.
2) Comments are easily stored and formatted as the user likes them.

3) The user can create unbalanced parentheses while editing a function. ... The user can

also move, delete, or copy blocks of syntactically unbalanced text.
4) The editor can provide commands to move over balanced objects or delete them.

5) A text editor can support extended syntax. For example, ... ‘FOO is equivalent to

(QUOTE FO0).

28

6) A text editor can be used for languages other than Lisp, including English.

7) With a structure editor, temporary semantic bugs can be dangerous. In editing the
system or the editor, one cannot introduce a bug one moment and fix it the next
without risking a crash. But in editing text, changes take no effect until the user gives

the command.

8) The editing commands most natural for use on a display terminal are those whose
meaning is obvious in terms of the displayed text. A data structure of text is natural
for them, but implementing them in a structure editor would be very difficult. There

are few screen-oriented structure editors.

2.14. Comparison of Babel with Other Systems

This section compares elements of various recent program editors. See Figure 2.2 for
a summary. In the figure, *‘yes’’ means the feature is provided, ‘‘no’>’ means the feature is
not addressed, and “‘n/a’ means it is not needed. Other comments are explained in more

detail in the text.

2.14.1. Language

Most of the program editors are for a single language. Even though PCM ([Yonke
1975) and CAPS [Wilcox 1976] are among the oldest projects, they are truly multi-language
editors. Most of the authors of recent single language editors appear to be unaware of
PCM. CAPS has virtually escaped attention, in spite of its description in the Communica-
tions of the ACM. PCM was tested only on Pascal. CAPS was tested on small subsets of
Fortran, PL/I, and Cobol. IPE [Feiler 1980] was tested on a dialect of C called GC. Babel
has a partial syntax and semantic checking implementation for Pascal, a full syntax and
semantic checking for Asple [Cleaveland 1973], and syntax checking implementations of
Ada [Ichbiah 1980], LDL .(see chapter 6), Rigel {Rowe 1979], Lisp, and a subset of C
[Kernighan 1978].

ft,

fv

29

| Subject Interlisp CAPS Mentor PL/CS LISPEDIT PCM IPE Babel |

Author Teitelman Wilcox Donzesu- Teitelbaum Alberga Younke Feiler Horton
etal. Gouge et.al.

et.al.

Date 1970 1976 1979 1979 1980 1975 1980 1981

Language Lisp Multi Pascal PL/ Lisp Multi Muld (C) Muiti
(PL/D (Pascal)

Lexical Lisp hand hand hand Lisp Lisp atoms n/a Lex reg.
coded coded coded expr.
tables

Comments Lisp yes on nodes in syntax footnotes no no textual

S-expr

Syatax S-expr recursive some parser grammar, LALR patterns grammar, LALR
descent no parser no parser

Semantics atruntime some some full full some full varies

external

Pretty Lisp rules text editor Pascal simple priority, general, rules in rules in

printing on the fly Rules on rules from on the fly on the fly grammar grammar

the fly grammar

Input parse goal text editor parse goal construc- text, parse, constructed text

driven driven ted, exprs incr parse goal driven
parsed

Incomplete? no yes no yes no no yes no

Incorrect? no yes no no yes no no yes

Screen no no yes yes yes no yes yes

Degree of Use heavy light some heavy some none new new

Elision by level no by level manual by first & last no off-edge or

distance chiidren priority
from
focus

Preprocessor no no no no no o no no

Compiler yes no no no yes no yes no

Interpreter yes yes no yes yes no no no

Debugger yes yes o yes yes no yes no

Figure 2.2 Summary of Recent Program Editors

2.14.2. Lexical Scanning

Few of the systems address the lexical issues that vary so much from language to
language. The single language systems all have hand coded scanners, if they have scanners
at all. PL/CS and IPE do not need scanners since the user explicitly delimits all input.
(PL/CS does scan and parse expressions using conventional methods.) PCM uses the Lisp
parser to do the scanning. CAPS uses a state transition matrix based on regular expres-

sions. Babel is driven by tables generated by Lex.

30

2.14.3. Lexical Comments

~ This is another area that has been largely ignored by the literature. In practice, being
able to place comments in a program is essential for a programming tool to be useful.
Some systems simply do not allow comments. Interlisp treats comments as a special form
of S-expression, as do most Lisp systems. PL/CS considers comments to be a part of the
syntax of PL/1. LISPEDIT views comments as footnotes attached to a spot in the program,
marking them with a footnote marker, and displaying them where space permits. Mentor
stores comments as attributes of nodes in the abstract tree, flagging only whether they came
before or after the node. Bai)lel treats comments as part of the text of the program, attach-

ing them in the tree to the following token.

2.14.4. Syntax and Parsing

The Lisp systems use a standard Lisp parser, except for LISPEDIT which uses an
LALR(1) parser. The constructive systems PL/CS and IPE do not need to parse, since the
user is building structures. PL/CS does parse expressions to cut down on tedium. Mentor
uses an unidentified goal-driven parser. PCM uses a technique that is closer to pattern
matching than parsing. CAPS parses with recursive descent procedures, written in a special
assembly level language that the system interprets. Some degree of incrementality is
present in CAPS due to the preservation of a state vector and the possibility of backing up
to a known state and starting from there. Babel parses incrementally using an LALR(1)

parser.

2.14.5. Semantics

Some of the systems (Interlisp, PL/CS, LISPEDIT) are complete programming
environments, and have the semantics hand coded for the particular language, both at com-
pile time and run time. IPE uses hand-codgd, externally linked procedures called whenever

a user procedure that has been changed is exited. Mentor, PCM, and Babel are editors and

31

attempt varying degrees of semantic analysis. Mentor does not do semantic checking
automatically, but Pascal-specific semantic routines to do such things as program transfor-
mations and error checks have been written in a tree-oriented specialized language called
MENTOL. PCM does limited semantic checking, suitable mainly for catching undeclared
variables in block structured languages. Such checking is probably the single most useful
check that can be made. CAPS provides simple commands in the parsing language for
manipulating the symbol table, and has a powerful CAI error diagnostician to help a pro-
grammer find the cause of the error. Babel provides an attribute grammar based language

so that the implementor can chet;k as much or as little as desired.

2.14.6. Prettyprinting

Most of the tree editors store only trees and cannot remember how the user originally
indented the program. They prettyprint the program, or a section of it, every time the pro-
gram is redisplayed. Such an approach is very useful in practice, since it prevents users
from deluding themselves by mismatching brackets. However, users of text editors are
used to their own styles and may have difficulty adjusting to an enforced style. Often, there
are problems with préttyprinting comments, and with unusual situations involving very long
or short lines. Whether the ability to format one’s program as desired is good is a highly

emotional subject. See [Sandewall 1978] and [Stallman 1978] for both sides of this issue.

The Babel system takes a new approach by giving the user all the flexibility of text
while keeping only a tree representation. It is our claim that all the disadvantages cited in
(Stallman 1978] are technically solved by Babel, providing an interface with none of the
disadvantages of a tree editor, yet with many of the advantages. Babel includes prettyprint-

ing rules in the language descriptions, which can be used to drive a prettyprinter.

32

2.14.7. Form of Input

Most of the systems allow the user to textually type in portions of the program that
are to be changed, with some restrictions. Mentor requires the user to specify which non-
terminal is being entered. CAPS keeps a text representation of the program to which the
user appends with ordinary text editor commands. Interlisp, Mentor, and PCM in effect
incrementally parse by figuring out where to put the new trees generated. The parsing tech-
niques used are goal driven, however, and so do not allow insertion of arbitrary text, such
as “‘begin ; end” Babel and LISPEDIT do true, LR incremental parsing, and allow arbitrary

changes to the program.

The constructive systems PL/CS and IPE take a completely different approach, requir-
ing the user to build the tree structure one node at a time. Whether such a system is
effective remains to be seen. Only PL/CS has been in production use, primarily by intro-
ductory programming students who have never used a text editor, and it does parse expres-
sions. In the author’s opinion, a well designed constructive system could cut down on the
number of keystrokes typed by an experienced programmer, and possibly cut down on
input errors, but would be substantially more difficult for a new user to learn. Many of the
advantages of a template based system can be added to Babel in the form of language

dependent macros, as discussed in chapter 4.

2.14.8. Style used to Change a Program
The commands used to make changes to a program differ dramatically among the

different editors. Consider, for example, the program fragment:

a:= b,
return C,

which the user wishes to make conditional:

ifb < 0 then
begin

a:=b;

33

return c;
end,

In Mentor, and PCM, it is necessary to delete the two statements (presumably into a
logical register to avoid retyping them). Then the user textually enters the code being

added:

ifb < 0 then
begin
end,

Finally, the deleted text is replaced into the program between the begin and end

-

In Interlisp, commands exist that make changes to the tree structure that appear to
move, add, and delete parentheses. These commands can be used in the above example to

avoid retyping of text.

In PL/CS and IPE, the change is even more tree-specific. The user would delete the
two lines into a logical register, as before. Then nodes for if, <, variable, and constant
are created manually. (The begin end nodes need not be manually entered because the sys-
tems always provide such brackets where they are options.) The cursor is then moved from
the 0 through the tree to the empty statement sequence between the begin and end.

Finally, the deleted two lines would be put back into the tree.

In Babel, as in any text editor, the change is very simple. The cursor is positioned
above the assignment, the if and begin lines are entered, the cursor is positioned to after
the return, and the end is entered. The user then adjusts the indenting of the two newly
embedded statements. CAPS and LISPEDIT share this style of change. In LISPEDIT, it is
not necessary (or possible) to adjust the indenting of the two statements, since the system

always prettyprints each time it displays.

34

2.14.9. Incomplete or Incorrect Programs

An incomplete program is one in which in the tree representation, a nonterminal has

no expansion (i.e., subtree). Such a nonterminal is a stubor holeto be filled in later.

An incorrect program is one that does not conform to the grammar, that is, a program
that has a syntax error. An incomplete program is not necessarily incorrect, because stubs
are viewed as the nonterminal the stub represents. Similarly, an incorrect program may or

may not be incomplete.

The constructive systems allow incomplete programs, but do not allow incorrect pro-
grams. This is usually cited as one of the advantages of constructive systems, since syntax
errors cannot occur. The other systems somehow arrange that incomplete programs never

occur.

The Lisp systems always have complete S-expressions with balanced parentheses.
PCM asks the user for corrections to input containing syntax errors. CAPS requires that
the program be complete and correct to the left of the cursor, but does not check to the

right. LISPEDIT treats unparseable input as a comment until the next parse.

Babel does not allow programs which are incomplete in this syntactic sense. If the
user enters a program he considers incomplete, and the program contains syntax errors
because of the missing text, the editor will consider the program to be incorrect. All
incorrect programs are handled in a uniform way. The erroneous portion of the program is
highlighted on the terminal screen, and the incorrect program is accepted for further pro-
cessing. Note that it is not possible in Babel for the programmer to place unexpanded non-
terminals in the tree. Thus it is never possible to create an incomplete program as defined

at the beginning of this section.

Y

35

2.14.10. Screen Orientation

The last decade has seen a tremendous change in computing hardware. Printing ter-
minals are rapidly being replaced by high speed CRT screen terminals. Editors are becom-
ing screen-oriented, too, since showing the user what is really there helps prevent miscon-

ceptions from being formed and saves the user from having to print out context frequently.

Most recent editors are screen-oriented, both text and tree editors included. CAPS,
PL/CS, LISPEDIT, IPE, and Babel are all screen-oriented. (Sandewall and Stallman seem
to feel that tree editors are more difficult to make screen-oriented than text editors. The

state of the art has since progressed to the point where this is no longer true.)

2.14.11. Elision

When the entire program does not fit on the screen, the editor must decide what to
leave out. Text editors have only the choice of not displaying what is off the edge of the
screen. In principle, tree editors can do a much better job of elision. Most of the editors

here do some kind of elision.

Mentor recursively prints a subtree to whatever depth is requested by the user. This
technique is suitable largely because the size of the screen is not taken into account, since
Mentor is not screen-oriented. Interlisp uses an elision technique similar to that of Mentor.
PCM elides a subtree by printing only the first and last tokens of the subtree. PL/CS
allows the user to manually elide a subtree, and otherwise uses off-the-edge elision.
LISPEDIT uses a complex priority algorithm every time the screen is redrawn, which hap-
pens every time a line is typed or the focus is moved. Interlisp does not elide at all but,
typically, in a Lisp environment functions are small enough so that this doesn’t matter

much. Babel gives the user a choice of off-the-edge elision or priority elision.

36

2.14.12. Preprocessor

Several current languages (C, Bliss, PL/I) have a preprocessor that is applied before
the scanner. In all but C, the preprocessor is non-egsenﬁal. However, the programming
style of C is such that all but the most trivial C programs use the C preprocessor. Hence, it
is impractical to ignore the preprocessor in a system such as Babel in the UNIX environ-
ment. No other system has addressed the issue of preprocessors. Babel’s description of C
has some very simple provisions for handling programs making simple use of the C prepro-

CEssor.

2.14.13. Degree of Use

Only Interlisp and PL/CS from this group have been used heavily. Interlisp has been
used since 1970 for production Lisp work on Tenex systems, and was the implementation
language for PCM. PL/CS is used for introductory programming courses at Cornell and
elsewhere. CAPS was used for an introductory CAl programming course at Illinois.
LISPEDIT is used internally by a dozen or so persons at IBM. Mentor has been distributed
to a number of institutions and is used by the authors. PCM was an experimental pr;ject
that has not been seriously used. IPE and Babel are still too new to have been used by

many people.

2.14.14. Execution

Some of the systems in this group are complete programming environments. Such
systems provide compilers, interpreters, and/or debuggers. The Interlisp, CAPS, PL/CS,
LISPEDIT, and IPE systems include interpreters which run the user’s program without
leaving the system. Mentor and PCM, do not provide runtime facilities. Babel does not
provide such features, since it is primarily an editor. The system could be extended to
include these features. The amount of effort would be typical of the back end of a conven-

tional translator implementation.

"

37

Babel is intended as a set of tools to support an intelligent editor. The user is
expected to exit the editor (after being assured by the editor that his program contains no
static errors) and to run a compiler, translating from the tree file produced by the editor
into machine code. A number of compiler schemes are possible. One possibility is to
unparse the tree, producing a conventional text file, and torun a conventional compiler on
this text. Another option is for a compiler to work directly from the tree file. This option
eliminates the need for the compiler to scan, parse, and generate a symbol table, and makes
error detection and recovery unnecessary. A third option would be for an incremental com-
piler to recompile only what has been changed. The tree structure makes it easy for an
incremental compiler to determine what has been changed. A fourth possibility is to carry
the incremental semantic evaluation to the point of producing intermediate code in the

tree, and interpreting this code directly, or to generate code from this intermediate code.

CHAPTER 3

Notation

This chapter contains definitions of technical terms used in this dissertation. All

definitions are collected here for ease of reference.

3.1. Languages
A string is a sequence of symbols from an alphabet.

A language is a set of strings that are acceptable to a particular computer program.
This concept includes not only languages traditionally considered programming languages,
but the languages accepted by other programs including document preparation languages
such as Troff [Ossanna 1976] or Scribe [Reid 1980], computer assisted instruction
languages such as Learn [Kernighan 1979], program maintenance languages such as that
understood by Make [Feldman 1978], and miscellaneous data files which are stored as text.
Babel can be used for both programming and non programming languages, provided the

languages meet the restrictions set forth subsequently.

3.2. Grammars

A context free grammar (grammar) is a four-tuple (V, N, S, P) where V is the finite

vocabulary of nonterminal symbols (nonterminals) and terminal symbols (tokens)!, N C
V is the set of nonterminals, S € N is the start symbol, and P is the set of production rules
of the form

lhs: rhs
where Ihs€N, rhs€ V'. Lhsis the left hand side of the production, rksis the right hand

iTerminal symbols are called tokens rather than terminals to avoid confusion with computer terminals,
which are input/output devices for computers. In this dissertation, terminal always refers to the input/output
device.

38

39

\
side. V' is the transitive closure of V. A symbol is any v€ V. An empty production is a

production with no symbols on the right hand side.

3.3. Attribute Grammars

An attribute grammar is a five-tuple (V, N, §, A, P) where V, N, and S are as in a
context free grammar; for each symbol v in V, A(v) is the set of attributes of v; P is a set
of productions, p, of the form

lhs : rhs rules
where Ihs and rhs are as in a context free grammar, and the rules are of the form

Asoly © fpu(as,:, T as,,pinp)

where there are n, symbols in rhs, and ay is the i" attribute of symbol 5,0< s< n,, of pro-

duction p. s=0 refers to lhs, s>0 refers to the s symbol of rhs.

Each attribute @€ 4 (v), for each v€ V, is classified as either inherited or synthesized.
For each symbol s of production p, the set of attributes of s given a value in that produc-
tion must be the synthesized attributes (if s=0), or the inherited attributes Gf s>0). The
restriction on the nature of the attributes is made not for any implementation reason, but

because attribute grammars that do not meet the restriction do not make sense.

3.4. Program Trees

A node is a data object having associated with it a small positive integer called the
type, and some data which depends on the type. Types include integers representing
tokens, nonterminals, attributes, comments, scanner errors, etc. A nonterminal node is a
node whose type is nonterminal, a token node is a node whose type is token, and so on.
Where the meaning is clear, such nodes will be referred to as nonterminals, tokens, and so
on. The size of the data depends on the type and data, and is fixed at the time of creation
of the node. (For example, the data in a token node includes the text of the token, whose

length is fixed only by the kind of token.) A tree pointer is a reference to a node.

40

A program tree (tree) is a collection of nodes, including one particular node called
the root The other nodes are partitioned into a sequence of disjoint groups
f, ..., t,n=0, each of which is a tree. The ¢ are children of the root. The root is the
parent of the #; # is the first child of the root, and ¢, is the last child For each

i,1< i< n, 4 is the right sibling of #-, and ¢ is the left sibling of .

There is one particular program tree associated with the system at any time. This tree
is usually referred to as the tree. It contains a representation of the program being edited.
One portion of the tree is a parse tree made up of nonterminal nodes and token nodes,
corresponding to the grammar for the language in use. This tree is stored on disk, and por-

tions are brought in to primary memory when needed.

Nodes have associated with them five neighbors; the parent, first child, last child,
right sibling, and left sibling. Tree pointers to these five neighbors are stored in each
node, if they are defined by the above definitions. Otherwise, the special value tnull is

stored, referencing ‘‘no node’.

A path is a sequence of nodes, #1, ...,/ n>0, such that f and f4,1<i<n, are
neighbors. A firewall is a sequence of nodes (not a path)
Byooosloy Ay my, o ooy my, Z, r,....r where I is the first child of the root, r. is the
last child of the root, (/) and r. are endmarkers) for 1< i<a, 1< j<¢, | and r; are either

nonterminals or tokens, and for 1<i<b, 4, m;, and Z are tokens. 1, ...,l is the left

firewall, 4, my, ..., my, Z is the middle firewall, and 7y, . . ., 7 is the right firewall’

The firewall divides the tree into three parts: parts on, above, and below the firewall.
Formally, a node, n, not on the firewall that is on a path from another node, £ on the
firewall, to the root, is above the firewall. A node on neither the firewall nor such a path is

below the firewall. (See figure 3.1 for an illustration.)

2For those familiar with parsing terminology, the left and right firewalls always represent the frontier, in a
parse from the left or right ends of the program, at the point where A or Z is reached, respectively.

41

A middle 2

Figure 3.1 Firewall

3.5. Representation of Text

A newline is the separation between two lines of a text file. Babel views newlines as

characters.

A utoken (user level token) is either a token, a comment, or a lexical error. (Lexical

errors are treated as comments by Babel.)

Token nodes have associated with them, as part of the data, the particular token
number, the text of the token (as a character string), and two integers called the white
space count and the newline count. The newline count is the number of newlines between
the token and the textually preceding utoken. The white space count is the number of
blank spaces separating the token from the preceding utoken (f the newline count is zero)
or the closest preceding newline (f the newline count is positive). The effect of special
characters such as tab and backspace upon the position of the token is figured into the
white space count. Comments and scanner errors are attached as children of the token they

precede, and have their own newline and white space counts.

A text position is a tree reference corresponding to a particular character of a text file.
It consists of a pair (#,¢), where ¢ is a tree pointer to a utoken, and ¢ is an integer. If

¢=0, the text position refers to character number ¢ of the text of the utoken (numbering

42

the characters from zero). If =100<¢<0 the reference is to the —c' blank before the text
of the utoken. If ¢<—100 the reference is to the (—=100—) * newline preceding the text of

the utoken.

The fringe of the tree is the sequence of utokens in the tree, in the order of the tex-
tual representation. (This is the order obtained by traversing the tree depth first, visiting a

node after its children.)

A program tree has associated with it a text position called the focus which represents
the current point of interest in the editor. This focus is recorded in the disk file and
remains in force after leaving the editor. The focus can also take on nonterminal values
(1,0) where ¢ is the nonterminal being referred to. Textually, a nonterminal focus refers to
the first character of the leftmost utoken below the focus in the tree. If, due to empty pro-
ductions, there are no utokens below the focus, the text representation is to the first utoken
in the fringe after the focus. (Since endmarkers are always present in the grammar, there
is always a next token for a textual representation of the focus, and for attaching com-

ments.)

CHAPTER 4

User Interface

This chapter gives an example that demonstrates some of the capabilities of the Babel

Editor. The design of the command language is discussed.

The key observation about the user interface is that the user types and sees what he
would when using a typical scree.n-oriented editor. While the specific command set chosen
here is different from existing screen editors such as EMACS [Ciccarelli 1978] and vi [Joy
1980), it would be possible to rewrite the interface to make it look just like one of these, or
any other screen-oriented text editor. The user sees a text editor, except that errors that a
text editor would be unlikely to detect are pointed out by highlighting the offending part of

the program. Y

4.1. Example Session

In this section, we show an example session with the Babel editor. The user enters a
small Pascal program, and then makes modifications to it. Errors made along the way are

pointed out. Finally, the program is saved on the disk and the editor is exited.

The true utility of a system such as Babel is with programs that are too large to be
understood at a glance. To keep the presentation to a reasonable size, the example must be
kept small. Of course, an example this small is easily programmed using any editor. The

reader is asked to extrapolate the example to larger problems.

In the display (see Figures 4.1—4.8) the first line is the echo line containing the com-
mand typed by the user. The second line is the message line where system messages from
Babel to the user are displayed. Remaining lines are the program itself. Error messages

and portions of the program in error are highlighted on the screen. This is indicated here

43

o

44

by large bold face. The focus (cursor) is indicated by e

The ~ character is an endmarker. It is shown to the user to make the beginning and
end of the buffer more visible!. The endmarker should not be confused with the notion of
a fence, which is a line drawn on the screen separating windows. Even though the echo and
command lines can be considered small windows, the current implementation of Babel does
not draw fences because lines on a typical 24 line terminal screen are too valuable to waste
on fences. While a multi-window system would need fences to avoid confusing the user,
the current single window system does not need them. Such a multi-window extension

could be added to Babel in a straightforward way.
The user enters the editor, creating a new file with the command
be —Ipascal copy.t

Babel finds no file of that name, so it creates an empty file. The user sees the display of

Figure 4.1.

copy.t (new file): pascal

Figure 4.1 Display upon entry to the editor.

At this point, the user can begin typing in the program. Program lines can be typed
in directly. They will be echoed in the echo line as they are being typed. As each line is
entered, it is inserted into the file after the line containing the focus. The program is incre-
mentally scanned and parsed and (if syntactically correct and complete) semantically

checked after each textual line.

!The idea of displaying “ at the ends of the buffer is from vi {Joy 1980].

45

program copy (input, output);
80 on...

program copy (input, output);

Figure 4.2 Display after entry of one line.

In the example, the user is entering a program to copy the input file to the output file.
After the first line of input (see Figure 4.2) the program will not be complete, (i.e., a syn-
tax error was detected at the endmarker), and the user will be warned of this with the “‘go

on” message. The endmarker is highlighted, indicating the location of the syntax error.

The user types in the remainder of the program without event. After the final line
has been entered, the parser will accept it. Since the syntax is accepted, the program is
semantically checked. In this case, no semantic errors are detected. The user sees the

display of Figure 4.3.

end.

program copy (input, output);
var

ch: char;
begin
while not eof do
begin
while not eoln do
begin
read(ch);
write(ch);
end;
readin;
writeln;
end
end.
L

Figure 4.3 Display after entry of the program.

oo

-

46

This illustrates one style of program entry: straight top-to-bottom typing in of the pro-
gram. This is suitable for a situation where the program is already written on a piece of

paper. Such a program entry style is impossible in a template based system.

A second style would be more appropriate for program development at the terminal.
In this style, the user types in the framework of the program (a very short, correct pro-
gram) and then adds to it one piece at a time. Since most of the intermediate states will be
syntactically and semantically correct, the user gets a good deal of feedback while develop-
ing his program. While this program development style is superficially possible with tem-
plate systems, our system makes it possible to go through syntactically illegal states, and
allows complete lines of text (or portions of lines, in the case of editing commands such as
change) to be typed in exactly as displayed. The remainder of the example presented here

illustrates this program development style.

Now that the program has been entered, the user wishes to modify it to print line
numbers. Using textual arrow keys, he positions the focus to the newer begin, and types in
a write statement, producing the program shown in Figure 4.4. This statement uses the
variable line, which has not been declared, and the editor indicates this by highlighting the

variable.

The user, unsure why the editor flagged the variable, positions the cursor to the
offending variable and types the ‘‘why’> command. The editor responds as shown in Figure

4.4.

Continuing to add the line numbering code, the user moves the focus to the first
begin and types in an assignment statement to initialize the variable line He accidently
leaves out the semicolon ending the statement. The system informs him of the syntax
error with a message and by highlighting the token where the error was detected (see Fig-
ure 4.5). Semantics are not checked when there is a syntax error, so the second instance of

the undeclared variable line is not detected yet.

47

.why
Undeclared variable
program copy (input, output);
var
ch: char;
begin
while not eof do
begin
write(line:s,* '),
while fibt eoln do
begin
read(ch);
write(ch);
end;
- readin;
: writeln;
end
end.

Figure 4.4 The users asks for a detailed error message.

line ;=1
syntax error

program copy (input, output);

var
ch: char;
begin
line ;=1
‘While not eof do
begin
write(line:s,” °);
while not eoln do
begin
read(ch);
write{ch);
end;
readin;
writeln;
end
end.

Figure 4.5 A syntax error.

48

This error is corrected with the “‘change word’’ command, changing the ‘1>’ on the
line to *“1;’. The editor reparses, finding the syntax correct, and checks the semantics. It
discovers the second instance of the undeclared variable line, which it highlights (Figure

4.6).

ow'ly

program copy (input, output);
var
ch: char;
begin
-, line:=1;
hile not eof do
begin
write(line:s,* °);
while not eoin do
begin
read(ch);
write(ch);
end;
readin;
writeln;
end
end.

Figure 4.6 Correction of syntax error.

The user now enters the declaration of the variable line, and the syntax and semantics
are accepted by the editor (Figure 4.7). Note that the program still contains a logic error

(the line variable is never incremented), but this error cannot be detected by Babel.

Finally, the user enters the statement to increment line, and types the “‘exit” com-
mand to leave the editor (Figure 4.8). The program is written out to disk and control is
returned to the top level command interpreter.

At this point, a tree file exists on the disk containing the Pascal program. The pro-

gram has been scanned and parsed, and a symbol table has been created in the tree file.

Since this analysis was done incrementally, there was no single long delay while the user

line: integer;

program copy (input, output);

var
ch: char;
line: integer;
begin
line := 1;
While not eof do
begin
write(line:5, '),
while not eoin do
begin
read(ch);
write(ch);
end;
. readin;
writeln;
end
end.

Figure 4.7 Correction of a semahiic error.

.exit

program copy (input, output);

var
ch: char;
line: integer;
begin
line := 1;
while not eof do
begin
write(line:5, ')
while not eoln do
read(ch);
write(ch);
end;
readin;
writeln;
line := line + 1;
end “
end.

Figure 4.8 Leaving the editor.

"

v

50

waited for the program to be processed.

A compiler could start from this tree form, eliminating considerable processing time
(since the job of the compiler’s front end is already done) and complexity (issues such as

parsing method, error recovery, and one pass problems disappear).

Since no such compiler currently exists in our experimental implementation, it is
necessary to use an ordinary text compiler instead. The user must convert the tree file to

text with
bcat copy.t > copy.p

and can then use a text compiler. Obviously, a tree editing system such as Babel is at its
best in an environment with tree compilers, and creation of such compilers for Babel
should be undertaken. Tree compilers and incremental compilers already exist, such as that

described in [Feiler 1980], and are a valuable addition to any programming environment.

4.2. Design of the Command Language

The command language is not closely tied to the remainder of the editor. Any text-
oriented editor interface could be implemented on the Babel system. The particular com-
mand language chosen here was designed with two goals in mind. First, the language

should be easy for a beginner to learn. Second, the interface should be easy to implement.

A beginning user on a computer system must usually learn several things at once. He
must learn the top level command language, the command language for an editor, and the
language accepted by the program for which it is being prepared (i.e., a compiler or text
formatter). In order to make this task simpler, the Babel editor command language has
been designed to be compatible with the top level command language of the Unix system
on which it runs, the shell While out of necessity, the individual commands differ, the
syntax for commands is the same in the editor and the shell. Commands are sequences of

words, separated by blanks or tabs. The first word is the command, the remaining words

51

are arguments to the command. Conventions for specifying options, special characters in

arguments, and multiple commands on one line are the same in the editor and in the shell.

Another factor of many text edi.tors which is confusing is the notion of an inputr mode.
Having an input mode, as in vi, allows the user to edit with fewer keystrokes, since all
characters &n be used for both commands and text, but confuses most naive users. While
Babel has an input mode, the command language is designed in such a way that the user
need not ever leave input mode. Thus, a beginner need not worry about input mode, but

an experienced user can switch modes if desired.

Established text editors’ iike EMACS and vi have had years of effort put into finely
tuning their command languages, and the resources to duplicate this effort were not avail-
able for this project. The option of taking the existing code for vi and gluing it to the Babel
back end was considered and rejected because the existing code was not designed with such
gluing in mind. A rewrite of the user interface would be possible with somewhat less work

than was originally put into the existing editors, and is planned for a future version.
When the editor is idle and waiting for input, the echo line contains the prompt ‘*’.
It is not necessary for the user to wait for the prompt, since typeahead is not only under-

stood, but echoed as it is typed in.

A line of text can be typed in directly, causing it to be inserted after the line contain-
ing the focus. This is a special case of the add command, which appends its argument as a
line after the current line. Thus the set of keystrokes “CMD ad d SPACE "begin’
CR” can be abbreviated by the special case “b e g i n CR”. The special case was included
only for convenience and to make the editor easy to learn, since the regular add command
has the same power. In practice, the special case is always used; the only need for the add

command itself is from inside macros.

In order to distinguish commands from text, the user presses the command key before

"

'y

52

typing the command. A period is echoed to indicate that a command is being typed in.2

Since the command key must be pressed before commands but not before lines of
text, the user is in input mode. This mode is the default, and it is quite possible to use the
editor extensively without changing modes. This property makes the Babel editor easy for a

beginner to learn.

A user with many changes to make might prefer, by default, to have his input line
treated as a command, and to type a special key before text instead. It is possible to enter
command mode to arrange fo; this to be the case. In command mode, the period is still

echoed for commands and omitted for text. Not only does this make it easy for a user to

determine which mode the editor is in, but it also provides a consistent display format.

Always showing text with no leading period assures that text typed into the echo line
will line up properly with other text on the screen, avoiding the common “‘off by one”
problem caused by the width of the prompt or insert command in many systems. The *
prompt of Babel is erased when the user begins to type in a command, avoiding another
common problem: the “‘ghost prompt™ problem caused by typeahead. This problem occurs
when the user types in two commands, one command completes and a prompt is printed.
Seemingly the system is ready to accept input, but it is really processing the second com-
mand. Almost any good screen-oriented editor will avoid these problems by not echoing
typeahead until it is processed. Babel avoids the problem and still lets the user see his

typeahead as it is being typed.

Commands are built in to the editor to move the focus around in the tree. *“‘Textual
arrow key” commands up, down, left, and right move the focus one character in the indi-
cated direction on the terminal screen, exactly as in a text editor. “‘Tree arrow key” com-
mands in, out, next, and previous move the focus in the tree to the first child, parent, left

sibling, and right sibling, respectively, of the old focus. If the focus is on the fringe of the

2The command key is initially BREAK. It can be set by the user to any control key.

53

tree, it can be on any character position of a token. If the focus is on a nonterminal, only
one position on the nonterminal is possible, since character positions on the nonterminal
are not defined. In this case, the cursor is displayed at the beginning of the leftmost token

below the focus.

It would be tedious to have to type the sequence ‘““‘CMD r i g h t CR” repeatedly to
move the focus to the right several spaces. To make movement of the focus convenient, a
macro mechanism is provided in be. This maps single keystroke commands into full editor
commands. For example, the keystroke ‘‘control R is mapped into the command ‘‘right’’;
thus to move right several sﬁéces the user need only press control R repeatedly. Similarly,
there are control characters for the other seven ‘‘arrow keys™ described above, as well as

other common editor commands.

In addition, if the terminal has true arrow keys (keys labeled with arrows in the four
textual directions which transmit recognizable codes), these keys are mapped into the left,
right, up, and down commands. Thus, the cursor can be positioned with arrow keys exactly
as in vi

In addition to the predefined macros, the user can define other macros, or redefine
existing macro keys. This permits the customization of the editor to individual tastes, with

almost no extra effort beyond that needed to implement arrow keys.

A natural extension to this concept, which has not been implemented, is the notion of
language dependent macros Such macros would be defined when the tables for a language
are read. This would provide similar functionality to the template building commands of
[Teitelbaum 1979] and [Feiler 1980]. The convention could be adopted that a language
always defined macros called if, if-else, (or a more compact abbreviation), loop, while, for,
proc, fune, decl, and so on. Since macros expand to an arbitrary command line, a typical

macro definition for an Ada if might be

add "if expression then" ; add "end if"

w

v

54

expanding to a short, syntactically correct construction. Not only could this save keystrokes
for users experienced in a language, but together with standardization of the names across
many languages, it could help a user unfamiliar with the syntax of a language get the con-
struct desired. All of this is optional, however, and a user preferring to type in the program

text directly could still do so.

Note that the ‘“‘expression’ in the above macro definition would not represent an
unexpanded nonterminal, as it would in a template editor, but rather an undeclared variable
called “‘expression’. Since the variable is likely to be highlighted (because it isn’t
declared) the user is still reminded that it must be expanded. For the purposes of imple-
mentation of language dependent macros, it might be slightly cleaner to allow unexpanded
nonterminals, but it was felt that the added complexity of the user interface was not
justified. It would be necessary to be able to textually enter and change these nonterminals,
requiring a text representation and rules to disambiguate, in a language independent
manner, between tokens and nonterminals. Positioning the focus to the expression and
typing a textual ‘“‘change word’ command is just as convenient for the user as in a template
editor. The language dependent macro could even include commands to move the focus to

the first letter of “‘expression’.

CHAPTER 5§

Implementation

5.1. Introduction

This chapter discusses the implementation of the Babel editor. The parts of the sys-

tem are outlined, and the algorithms used are described.

The basic parts of the system are the control loop which controls the rest of the editor;
the keyboard handler which accepts input from the keyboard; the command parser which
accepts input from the keyboard handler and determines which command to call with what
arguments; the display processor which decides what character representation to display in
the editor window; the screen handler which deals with the CRT screen; the command rou-
tines which each implement one user level command; the free editor which presents a text
interface to command routines; the incremental scanner which breaks up text into a list of
tokens; the incremental parser which restructures the tree according to the grammar, the
incremental semantic evaluator which applies semantic checks to the user program; the symbol
table module which implements the notion of a symbol table building block, and the Lisp inter-
preter to interpret the attribute evaluation functions. Of these parts, the keyboard handler,
command parser, screen handler, and Lisp interpreter are quite ordinary and are not

described here. The symbol table interface is described in chapter 6.

5.2. Overall Control

The overall structure of the editor can be viewed as two processes of differing priority.
The higher priority process reads and echoes commands from the keyboard. The lower

priority process interprets the commands, modifies the tree, and updates the display.

55

[

56

In reality, tﬁere is only one process. (Dealing with asynchronous interrupts causes
many unnecessary problems with critical sections and shared data strucu_xres.) There is a
queue of commands to be executed. Whenever the processor is availal;le, be takes one
jtem from the queue, and processes it. An entire tree-changing command can take
significant real time, but it is made up of small operations (parsing steps, attribute evalua-
tions, display node checks). After each small operation, the system checks for typeahead,’
and processes it, so the user gets good response on the keyboard even though there may be

" a large amount of semantic processing to do.

§.3. Tree Structure

The Babel tree is a disk file consisting of a set of nodes, linked together to form a
tree. Each node has a type, such as foken, nonterminal, and atrribute This representation
has all the power of an ordinary parse tree, and is a generalization of that concept. The
portion consisting of the nonterminal and token nodes is the LR parse tree of the program

being represented. In addition, other programs needing to place additional information in

the tree can attach nodes of different types anywhere in the tree.?

There are a number of other existing tree representations used by language imple-
mentors. Many compilers build an abstract syntax tree in the process of compiling. Other
tree editing systems have internal tree forms. Intermediate forms for the Ada language
(Ichbiah 1980] such as Diana [Goos 1981] and its precursors TCOL ., [Brosgol 1980] and
AIDA [Persch 1980] are being standardized. In order to convert an existing compiler to
use Babel trees for input (and save the repeated work of scanning, parsing, building a sym-

bol table, etc) it would be easier if the tree representation were the same.

IChecking for typeahead is not possible on many systems, such as standard UNIX, but is often available as a
local modification. An efficient check for typeahead makes be considerably more responsive.

The convention that a program will ignore any nodes it does not recognize is adopted. This permits new
node kinds 10 be created without requiring changes 10 existing software.

57

\

Such existing tree representations were rejected for two reasons. First, the tree struc-
tures existing elsewhere are all based on various abstract trees, not the LR parse tree.
There is currently no general purpose algorithm for incremental parsing from an abstract
tree. Second, the other representations have no provision for insertion of extra nodes. For
example, comments are extra nodes attached to the token they precede. They are very
simple to handle in the Babel tree, while the standard representations have difficulty han-

dling them.

In Diana, for example, there is no provision for recreating the source program
exactly. While the authors had this in mind when they specified the source-position attri-
bute as a standard attribute on most tree nodes, their aim appears to have been primarily to
produce error messages referring to the correct location in the source program. They
require source-positions on nonterminals, without specifying the meaning intended, and yet
do not provide for recording the source positions of tokens which are not explicitly
represented in the iree, such as if. Comments are attached to a node either before it or
after it, making it impossible to exactly reconstruct an arbitrary comment. Such a represen-
tation might be suitable for another language editor that did not exactly represent the text

typed in by the user, but it cannot be used for Babel.

The Babel system pays a high price for use of the LR parse tree. If an abstract tree
mechanism could be used, the resulting trees would be considerably smaller, resulﬁng in
smaller disk files and a faster editor. If a method were to be found for general purpose
incremental parsing of abstract trees, the Babel system could be modified easily to use it.
For such an abstract tree to be suitable for Babel, it would have to represent all tokens as
leaves of the tree, not just those tokens carrying semantic information. It would also be
essential to allow extra information to be attached to the tree, without being recognized by

the other parts of the system, as is true in the current representation.

[/

58

General incr?mental parsing of abstract trees is potentially a difficult problem. In the
process of compression of the tree, much information is lost. Punctuating tokens, such as
if and parenthesis, are usually removed. Chain reductions are removed. The tree is usually
restructured into a' form convenient for the compiler writer, not the parser. Some of the
existing systems [Yonke 1975, Donzeau-Gouge 1980] parse using abstract trees, but these
parsers are goal driven, and never attempt to merge newly typed text with existing text, res-
tructuring the results as required by the grammar. While the smaller, more natural abstract
trees would be preferable to the LR trees currently used, additional research to find a gen-

eral method for incremental parsing of abstract trees is needed.

Each tree node contains its type, pointers to five neighboring nodes (its parent, left
sibling, right sibling, first child, and last child), and type dependent information (such as

the text of a token, or the nonterminal number for a nonterminal).

An important property of the implementation is that while there are primitive routines
to retrieve the values of the neighboring pointers, there are no primitives to change them.
All structure changes must go through two routines insert(n, p, 1) which inserts a given node
nas a child of pand a left sibling of and prune(n) which deletes the node nfrom the tree.
This requirement has three advantages. First, such a high level interface insures that the
tree structure will be consistent at all times, eliminating a large class of editor bugs.
Second, these routines, which are inverses, keep a history list of all such changes, so that
the undo and redo commands can be implemented easily. Third, changes to the representa-

tion are possible with no change to most of the code.

5.4. Display Algorithms

Display algorithms are given the size of an area on the screen, and read access to the
tree and focus. They‘ produce a character representation of some portion of the tree, near
the focus, that fits in an area of the given size. Three such algorithms are implemented in

the Babel editor.

59

5.4.1. Recursive Display Algorithm

The recursive display algorithm recursively visits every node in the tree, displaying
token nodes as they are found. The algorithm has the advantages of simplicity and speed.
It also has a serious problem: what to do when the entire tree does not fit in the given area.
Currently, after running off the end of the screen, the algorithm stops. This causes only

the first screenful of the program to be visible.

Such an algorithm is clearly unsuitable for an editor. It is, however, well suited to an

unparser, and is used for the beat utility which prints textual representations of Babel trees.

5.4.2. Off-Edge Display Algorithm

The off-edge display algorithm prints all of the tree that is within a half screenful of
the focus. It effectively elides all of the tree which is *‘off the edge’ of the screen. Most

screen-oriented text editors use an approach similar to this one.

The implementation of this algorithm is also straightforward. Starting at the focus,
the editor moves backward along the fringe of the tree, counting newlines, until the count
exceeds half the screen size. From this point, it moves forward along the fringe of the

tree, printing the tokens that are encountered, until the screen is full.

5.4.3. Priority Elision Algorithm

The priority elision algorithm is by far the most complex and least efficient? of the
three. It is based loosely on the algorithm in [Alberga 1979]. It shows the user those parts
of the tree that are near the focus (in the tree, rather than on the screen) in preference t0
parts of the tree further from the focus. Sequences of tokens that are not displayed are
elided, i.e., displayed as “.."”. The string *..” was chosen for compactness and ease of

understanding. Another string, such as «_% or “&" could easily be substituted.

3Priority elision requires 1.5 to 2 times as much CPU time as the off-edge display algorithm. It aiso tends t0
touch more pages, since it examines more of the tree. Thus, the start-up cost is higher because more of u}e tree
must be paged in. Off-edge elision required 50 lines of C code to implement. Priority elision required 750 lines of
C code.

79

ol

60

As an example of how the user sees priority elision, consider the C program shown in
Figure 5.1. Two possible resuits of the priority elision algorithm are shown in Figures 5.2
and 5.3. In Figure 5.2, the focus is at the root of the tree (and is displayed at the top end-
marker). The text displayed provides a very global view of the program. In Figure 5.3, the
focus is on an if statement well down in the tree. In this case, the user sees text that is

more local to the focus.

Distance between a node and the focus is defined inductively in terms of the path
from the focus to the node. Let &, ..., 1, be the path, where f is the focus and ¢, is the

node.

The distance to the focus, D (¢,) is 1.

If ¢ and 14, are adjacent siblings, and D(1 %) is d, D(ty t41) is d+1.

If 4., is the parent of # and D(5,1) is d, D1, ti41) is 3d.

If 4 is the parent of f,+1 and D(1o 1) is d, D(tg 1) is 5d.
The expressions d-+1, 3d, and 54 are those given in [Alberga 1979]. Alberga, et. al. do not
explain the significance of these expressions. The intent is to make nodes further away in
the tree be considerably lower in priority than nearby nodes. These expressions also favor

movement upward in the tree over movement downward. It may not matter what expres-

sions are chosen, as long as they increase the value of d.

The presence of the “sibling” case in the above expressions introduces an ambiguity
in the calculation of distance, since more than one path is possible if siblings are considered
adjacent. This ambiguity is resolved by the algorithm given below, in effect always using
the shortest path. The sibling case can only occur when the path taken from the focus goes

upward in the tree, then branches to the side, and finally might go down a different branch.

The aigorithm uses two primary data structures. The first is a representation of the

display, consisting of a doubly linked linear list of elisions and tokens, that will be displayed

static char *sccsid = "@(#)rmailc 4.1 (Berkeley) 10/1/80™
char *index();

main (argc, argv)
char **argv:

char 1buf512]; /* one line of the message °*/
char from[512]; /* accumulated path of sender */
char ufrom{64]; /* user on remote system */

char sys[64]; /* a system in path */
char junk([512); /* scratchpad */

char cmd(512];

char *to, *cp;

to = argvill;

if (arge '= 2) {
fprintf(siderr, *Usage: rmail user\n");
exit(1);

)

for (:3) |
fgets(ibuf, sizeof Ibuf, stdin).

if (strnemp(ibuf, "From *, 5) && strncmp (ibuf, *>From *

break;
sscanf(ibuf, "%s %s", junk, ufrom);
cp = Ibuf:
for () {
cp = index{(cp+1, ’r');
if (cp == NULL)
cp = "remote from somewhere™.
if (strncmpl(cp, “remote from *, 12) = =0)
break:

sscanf(cp, "remote from %s", sys);
strcat(from, sys):
strcat(from, "1"):

strcat (from, ufrom);

sprintf(cmd, “%s -r%s %s”, MAILER, from, 10):
out = popen{cmd, "w");

fputs(ibuf, out);
while (fgets(ibuf, sizeof Ibuf, stdin))
fputs(ibuf, out);
\ pelose(out);
, L] .
* Return the ptr in sp at which the character ¢ appears;
‘/NULL if not found
char *
index(sp, ¢)
register char °sp, ¢
do {
if (°sp ==¢)
return(sp);
} while (sp++);
} return(NULL);

Figure 5.1 Entire program being edited

61

, 6))

Static char *sccsid = "@ (#)rmail.c 4.1 (Berkeley) 10/1/80";
char *index(;

main (argc, argv)
char **argv;

{.
}

char*
index(sp, ¢)
register char *sp, C;

do {..

Figure 5.2 Elision with focus at root of tree

if (arge !'=2) {..

for (;;) {
fgets (Ibuf, sizeof Ibuf, stdin);
if (strncmp (ibuf, "From ", 5) && ..)
break;

sscanf (Ibuf, "%s %s", junk, ufrom);
cp = Ibuf;
for (;;) {
cp = index(cp+1, 1);
if (cp == NULL)
cp = "remote from somewhere";
if (strncmp(cp, "remote from ", 12)==0)
. break;

sscanf(cp, "remote from %s", sys);

strcat (from, sys);
strcat (from, "1");

Figure 5.3 Elision with focus deep in tree

63

on the screen at the conclusion of the algorithm.* The second is a priority queue consisting
of nodes waiting to be added to the display, ordered by their priority. (The priority is the

distance to the focus as defined above. A large number represents a low priority.)

There are also three hash tables to speed up the algorithm. One hash table contains
nodes that have already been expanded. Another contains nodes that are on the display. A
third contains, for nearby utokens, values of the next and previous utokens in the fringe of

the tree, speeding up the operation of searching along the fringe.

There are five phases to the priority display algorithm: initialization, priority expansion,
display fillout, display, and cleanup. The general idea of the algorithm is first to complete the
display vertically (to determine the lines of the display), and then to fill the lines out until
they.gre full or complete. The initialization phase places the focus on the priority queue

with priority 1, and puts a single elision on the display.

The priority expansion phase is the heart of the technique. In a main loop, it takes
the front entry, N, from the priority queue. N is expanded by placing all neighbors
(parent, immediate siblings, and children) that have not already been expanded onto the
priority queue, with priorities calculated from that of N by the above rule. (A hash table is
used to keep track of which nodes have already been expanded.) Then, if N is a token, and
if it will fit, it is added to the display.

Even after one token has been determined not to fit, a nearby smaller token with loer
priority might still fit. If the priority expansion phase were continued until the queue were
empty, the entire tree would be searched before the phase could end. The algorithm in
{Alberga 1979] stops when “‘The display is full”. Our display usually does not become

“full”® because the possibility almost always exists of finding a token that fits.

4An elision represents one or more tokens, adjacent in the fringe of the tree, whose text is not displayed.
Elisions do not necessarily correspond to nonterminals. Nonterminals are never placed on the display.

64

In order to avoid searching the entire tree, the priority expansion phase is terminated
as soon as the number of lines in the display is equal to the number of lines on the screen.
(The number of lines in the display can be found by counting the newlines in the tokens

and elisions on the display.) This phase terminates quickly.

After the priority expansion phase, the display will typically have a number of very
short lines, containing mostly elisions, with only a few tokens. There is usually room
within single lines to expand many of these elisions. The display fillout phase traverses the
display, from left to right, checking each token in each elision to see if it fits on that line.
Those that fit are added to the display. Since the lines are traversed from left to right
instead of by priority, the distance rule is violated within lines filled out by this phase. In
practice, this violation does not seem to matter, because the line containing the focus is

usually already filled out in the previous phase.

The next phase moves along the display list, printing each token and elision that is

found. Finally, the memory used for the data structures is freed.

A more detailed explanation of some of the operations of the priority expansion phase
is needed. In the following paragraphs, let N be a node, at the front of the priority queue,

being considered for expansion.

If N were added to the display, it would replace all or part of one of the elisions in the
display. One question is, which elision? Consider, for example, expansion (c)—(d) in Fig-
ure 5.4, in which the first ““{" is added.S When the token *(*" is to be added to the display
shown in (c), there are several elisions. By inspection, it is possible to determine that the
brace is part of the elision at the end of the first line. An algorithm for determining which

elision is involved, however, is not obvious.

One possible method to find the elision might be to assign an elision to N when it is

entered into the priority queue, calculated from the elision associated with the node from

5Disregard the rest of the figure for now.

65

which N was exﬁanded. This method does not work, for two reasons. First, the elision so
designated could be split into a number of elisions by the later addition of some other
token to the display. Second, the path taken from the focus (the same path used to calcu-
late the priority) can go up in the tree and then either branch to the left or to the right

before coming down to the fringe of the tree at a far away location in a different elision.

The solution to the problem is to seafch along the fringe of the tree in both directions
from N until a node is found that is in the display. A hash table makes it quick to deter-

mine if and where the node is in the display.

The second question is ‘“‘How do we determine if N fits in the display?’’ This is a
complex question because adding certain tokens will force lines in the display to be split.
The question is answered by determining what the display structure is after expansion of N,

and checking to see if this expansion fits on the screen.

There are many possible ways to add N to the display. These methods differ in the
treatment of elisions. The method chosen here attempts to make the display easy for the
user to understand, by keeping elisions that represent on¢ or more whole lines on separate
lines. We will use the example in Figure 5.4 to illustrate the problem. This figure shows
six examples of adding a token to the display.

Consider the tree to represent the program fragment shown (*‘Expanded fragment™’),
with the priority queue (““Initial pqueue™). The initial display is the one labelled *(a)".
Six expansions of elisions are shown that illustrate six different cases.® Note that if the
bodies of the if and else clauses were longer than one line each, the example here would be
unaffected, since one elision can represent several lines.

In the first expansion (a)—=(b), N is the second else. N is removed from the priority

queue. The elision after the if is determined to be the one containing N, and is split into

To simplify the presentation, the expansions in the tree, including the priority calculations and additions to
the priority queue, are not shown here.

]

“”

66

Expanded fragment: Initial pqueue: (a)
i (testd) { else (second) if..
x=1; else (first)
} else if (test2) { { (first)
X = 2; { (third)
} else {) (third)
) x = 3;) (first)
(b) (c) d)
if.. else.. if.. if.. {
else.. else..
:1else.. else..
(e) () ®
if.. { if. (if. {
else.. - else.. else..
. else { . else { } else {
]]

Figure 5.4. Example of Filling Out Elisions

three pieces: an elision, the else, and another elision. Since the else neither begins nor

ends a line, the display remains one line long.

The worst case is illustrated by (b)=(c). N is the first else. The elision is split into

seven separate pieces:

1)
)
3)
O
(5)

The part up to the first newline. (In this example, “(testl) {*.)

The part between (1) and (3). (“x = 1,”.)

The part from the last newline before N to N.)

The node, N, being expanded. (“else”.)

The part from N to the next newline. (“‘if (test2) .)

67

(6) The part between (5) and (7). (“x = 2;)
(7) The part from the last newline to the end.)

Usually several of these pieces are empty. Parts (2) and (6) might span several lines;
the others are always wholly contained in one line. In this case, all seven pieces are
nonempty. In this example, lines are split in the display before parts (2), (3), (6), and (1),

since the first token of these elisions begins a line.

In the general case, there are six splits between the seven pieces. Four splits (before
2, 3, 6, and 7) might cause newlines to be added to the display. A newline is added to the
display if the token, or the first token of an elision, has a newline preceding it. Unless a

blank line is involved, no more than one newline per split is added to the display.

In the priority expansion phase, a.token fits if the total number of newlines added
plus the number of lines aiready on the display does not exceed the number of lines in the
window, providing that the number of characters on the new line containing N does not

exceed the width of the screen.

In the display fillout phase, only tokens on the same line as the original elision are

considered (i.e., pieces (1) and (2) of the example are always empty). In this phase, 2

token fits if the number of characters on the new line containing N does not exceed the

width of the screen. Lines are never split, leaving elisions at the ends of lines in order to

maximize information on the screen.

The four other cases in the figure are added to the display in a similar manner. The
expansion can be in the middle of a line: cases (a)—(b) and (b)—(c); at the end: cases
©=(d §)—(6); or at the beginning: cases (©)—() and (O—(@. This may: cases
(b)—(c), (d)—(e) and (e)—(f); or may not: cases (a)—(®), (€)—(d) and ()—(g) cause
lines to be split. A split can cause one extra line: cases (d)—(e) and (e)—(f); or several:

cases (b)—(c).

68

§.4.4. Summary

Three display algorithms are presented here. Only the off-edge and priority elision

algorithms merit serious consideration for a display editor.

The off-edge algorithm is the choice of most text editors, primarily because priority
elision requires a tree to be present. Even with the tree present, the off-edge method has
its advantages. It is simpler for a user to understand. It costs only about 2/3 as much CPU
time to run, and examines less of the tree than the priority elision algorithm, resulting in
fewer page faults. It is considerably simpler to implement. Less redrawing of the screen

will be necessary as changes are made to the program.

The main advantage of the priority elision algorithm is that it is possible to see a more
“macro” view of the program. A typical terminal has a screen with only 24 lines, not
nearly enough for many programmers. Displaying the lines the user is most interested in
(somehow allowing the user to specify which lines these are) is a desirable property of any

editor.

If the user is interested in a loop with a large body, it is not possible with an ordinary
text editor to get both the top and bottom of the loop on the screen at once. Text editors
with multiple windows allow the top of the loop to be displayed in one window, and the
bottom in another window. Such an approach is painful but better than nothing. The
priority elision method allows the focus to be positioned to the first token in the loop.
Since the loop beginning and end will be near the focus, in the tree, they will be favored by
this algorithm. Several statements on either side of the loop will appear on the display,

along with the first several inside the loop.

The Babel system makes both of these display algorithms available to the user. The
default is the off-edge algorithm, because of its simplicity and lower cost. The priority eli-

sion algorithm can be easily requested when needed.

69

§8.5. Tree Editor

A command routine is allowed to change the tree in any way it wishes, provided that
err'ors are properly detected and handled. However, since the editor strives to present a
text oriented interface, textual subroutines are important. The routine
changesection (first,last,newtext) accepts two text positions and a character string, and
replaces the portion of the tree between those two text positions, inclusive, ‘'with the new
character string. (Text positions are defined in section 3.5.) Other primitive operations
include nexttextpos(tp) and prevtextpos(tp), which return the next (previous) text posi-
tion relative to the input text position tp (that is, they move forward or backward one char-
acter), and getlinetext(tp) which returns a character string representing the textual
representation of the line containing text position tp. Using these primitive operations, it is

possible to build an editor that appears to be a text editor. B

Many text editors attempt to provide structure commands, such as "delete sentence,”
»move forward to the next section” (or procedure, statement, or other syntactic unit),
ncheck matching parentheses,” etc. They are usually fooled by comments and strings. In
Babel, it is possible for a structure command to determine such boundaries correctly by exa-
mining the tree. However, a simple tree operation, such as pruning a subtree, cannot
guarantee anything about the correctness of the resuiting program. Hence, a Babel struc-
ture command can look at the tree to determine textual boundaries, and should then make 2

textual change to the program through the routines described here.

Since the editor does not keep a textual representation of the file, the interface just
described must be built in terms of the tree routines. This section outlines the steps used
to implement the changesection interface. (The other routines are straightforward to

implement.)

(1) The inputs are text positions Band Y, the first and last text position to be replaced,

and rewtext, the replacement text.

(2)

(3)

C)

(5)

)

¥))

70

The tokens.A and Z are found”. These are the first real tokens (not comments or
error tokens) outside the range from B to Y. They represent the one token of context
required by [Ghezzi 1979] to correctly reparse with an LALR(1) parser. This also
causes the scanner to be given whole tokens to rescan. The portion of the tree fringe
from A to Z is the old firewall which will be replaced by the newly scanned middle
firewall .

A buffer of the right size is created, and then the string to be scanned is created.
There are two nearly identical steps here, counting the number of characters in the
string and then creating it. The fringe of the tree from A to Z is converted to a
string, replacing the portion from B to Y with newrext This is done by iterating along
the text positions from the beginning of A to the end of Z, accumulating characters

before B and after Y. When B is reached, newtextis appended to the string.

If a simple preprocessor were to be used, it would be applied to the string at this
point.
The string is passed to the incremental scanner, which returns a list of tokens, with

white space and comments suitably attached. This string is the middle firewall

The rest of the firewall is created. Starting from A, the editor works its way up and to
the left, as defined in [Ghezzi 1979) and simplified in chapter 2, until the endmarker
is reached. This is the left firewall Starting from Z, the right firewall is created sym-
metrically. The three pieces are linked together to form the Sfirewall, a list of termi-

nals and nonterminals, that is ready to be incrementally parsed.

An error nonterminal is created which is made the parent of each node in the firewall
(as though there were a syntax error). If checking has been turned off, or if there are

commands waiting, the editor marks the firewall “‘dirty’’, and goes on to the next

*The mnemonic value of A, B, Y, and Z is in their position in the alphabet. B and Y are almosrat the ends

of the middle firewall, while A and Z are at the ends. (See figure 3.1.)

71

command. (When the editor becomes idle, if the firewall has been marked ‘‘dirty’’,

control resumes from this point to catch up on unfinished processing.)

(8) The firewall is passed to the incremental parser. The parser returns an indication of _
success or failure, and a tree node, which is either the root of a successfully parsed,

complete parse tree, or the token or nonter;ninal that caused the error.
There are now two possibilities. Either the parse succeeded or it failed.
(9s) If the parse succeeded, the tree is rerooted at the new root.
(10s) The incremental semantic evaluator is called.

(9f) If a syntax error has occurred, the firewall is converted into a list of children of a

newly created parent (an error nonterminal) which is made the root of the tree.
(10f) The token or nonterminal rejected by the parser is marked ‘‘syntax error’’.

All this syntactic and semantic checking is optional. It is possible to check only syn-
tax, or to check nothing. (Due to the representation, lexical checking is always done.) To
turn off all checking, the user sets a flag either when starting up the editor, or with an edi-
tor command. In this case, oniy the first 7 steps of the above method are done. There is
an explicit check command that will complete the final steps, in effect checking the syntax

and semantics of the program.

Semantic checking can also be turned off, leaving syntactic checking turned on. In
the case of a syntactically correct program, the tree will be completely rebuilt from the
firewall, and the firewall is no longer valid. The record of what still has to be done (which
is implicitly stored in the firewall) is lost. For efficiency reasons, in the current implemen-
tation turning off semantic checking turns off all bookkeeping related to semantic checking.
The tree is marked “‘syntax only’ and further invocations of the editor only check syntax.
This mode is quite suitable for a program that the user only wishes syntax checking on, or

for which the language description only defines syntax.

72

5.6. Incremental'Scanner

The incremental scanner used in Babel is quite similar to the scanner that lex [Lesk

1979] generates. There are a number of differences, all very minor.

The scanner is incremental in that it is possible for only a portion of the program text
to be passed to it. The calling routine must ensure that the text passed does not separate a
token; that is, if any part of a token is in the text, the entire token is in the text. Since
comments are viewed as part of the token they precede, any comments before tokens in the
text must also be present in the text. The editor must generate text to be rescanned, but
this is not difficult to generate since the information is in the tree. In order to be com-
pletely driven by external tables, the lexical specification tables, generated by ldlproc and

lex, are read in from a file instead of being compiled.

Since it must be possible to reconstruct the textual representation of the tree for
display, or for an incremental scan, comments and white space cannot be thrown away.
The tables include special tokens Comment, Whitespace, and Id At the lowest level,
these tokens are scanned like any other token. At a higher level, comments are attached to
the ordinary token that follows them. White space is reduced to a pair of integers designat-
ing the newline count and blank space count. The pair is attached to the token or comment
that follows. Unrecognized input (scanner errors) are made into error tokens and treated
like comments. ldentifiers are checked against a reserved word table (also read from the

file) and conyerted into the appropriate reserved word token if found.

Since long comments are often present in programs and are one of the most common

reasons cited for not using lex, they must be handled specially. Any comment internally
spans only one line. A comment that is longer than one line is broken up into mulitiple one

line comments by the scanner. The textual representation is unchanged, but internally the

$ Lex keeps the text of the current token in a static buffer. A long token, such as a big comment, will
overflow this buffer. Modifications to the lex canned scanner to avoid overflowing another static buffer were aiso
necessary.

e vt eme s em iimies e e ee i ies ammemesmmcm el S -

73

long comment is treated as several comments. This prevents the usual problem of
overflowing buffers with fixed size. Although the data structure could represent a situation
vfrith a token between two parts of a comment, such a situation cannot arise because the
user has no commands for manipulating the data structure at such a low level. If the user
attempted to insert a token into the middle of a comment, the token would become part of

the text of the comment rather than a token.

Normally, a scanner is called once for each token a parser needs. Because of the pos-
sibility of syntax errors, this scheme is unsuitable for an incremental environment such as
Babel. Instead, the scanner is called repeatedly until the input is exhausted, and the tokens
returned are linked together in a linear list. When the parser needs a token, a token server
is called which merely takes one token from this list. Since the list is left intact, it is easy
to reconstruct the input in case of error. Since token nodes must be generated anyway for
placement in the tree, and since these nodes are tree nodes that do not all have to reside in
primary memory, there is no memory penalty for this prescanning. The same incremental

scanner is used for the bparse tool, which scans the entire program before parsing any of it.

5.7. Incremental Parser

The incremental parser used here is based largely on [Ghezzi 1979]. The
simplifications made are noted in section 2.10. Improvements based on a later paper

[Ghezzi 1980] seem possible and are planned for a future version.

Tables generated by yacc are read in from the language file. A modified version of
the yacc parser is used for incremental parsing. The editor is responsibie for arranging that
the firewall is linked together in such a way that the token server will return the correct

next input to the parser.

The incremental parser is responsible for creating a correct tree from the old tree and
the firewall. Since the firewall is made up of both tokens and nonterminals, the incremen-

tal parser must be modified to accept nonterminals from the scanner as well as tokens. It

74

turns out that this is easy to do.

When a symbol is accepted by the parser, if it is a nonterminal that is legal in the
current state, control is immediately transferred to the reduction portion of the parser. The
nonterminal returned from the token server is used in place of the nonterminal node nor-
mally built in the first part of the reduction. Then the nonterminal and pfoduction it came
from are used to determine the new state to enter. In the case of a reduction by an empty
production, rather than creating a new empty nonterminal, if the lookahead symbol is the

same nonterminal, the lookahead node is used.

A representation stack? is kept in parallel with the stack used by the parser. An ele-
ment of the representation stack contains a subtree corresponding to the symbol on the

parser stack.

Reductions are handled by the parser; the same processing is done for all productions.
When a reduction is made, the production number and nonterminal number are easily
determined from the tables. A new nonterminal tree node is created containing these two
numbers. The tree nodes that are popped from the representation stack become children of
the new tree node. This new node is then pushed back on the representation stack. The

usual reduction is made with the parser stack.

The parser used in Babel is based on the yacc parser and not on an ordinary LR
parser. Some extra effort was expended in this implementation to compensate for the
compression of the yacc tables. Since the yace tables do not distinguish between a default
state and an error state when a nonterminal is found, error detection is more difficuit. The
first token of the nonterminal must be examined, to determine if it would be accepted. For
some grammars, this ambiguity may cause an incorrect program to be accepted, but it has
pot been a problem with the languages implemented. This problem does not arise with

normal LR tables.

9The representation stack is similar to a semantic stack, but the information kept on the stack is syntactic in
nature.

75

§.8. Incremental Semantics

For most languages, context-free grammars can not sufficiently describe all the
lanéuage restrictions. Those restrictions requiring context-sensitive checking are called
semantic restrictions or simply se;nantics Babel! includes a formalism to check for semantic
errors, based on the notion of attribute grammars, and does incremental checking of syntac-

tically correct programs for such errors.

Chapter 2 includes a description of the attribute grammar formalism, and the previous
work by Reps on incremental attribute evaluation. This section discusses the Babel contri-
butions, implementing incremental attribute evaluation in an incremental parsing environ-

ment, allowing shared symbol tables, and solving the deletion problem.

A Babel language description, written in LDL, will have a number of semantic rules
for each syntactic production. Each rule is an evaluation function, written in a dialect of
Lisp, for an attribute in the production. The rule also lists the attributes which are used
and which are set, so that Babel does not have to interpret the Lisp code to determine what

is used and what is set. (See chapter 6 for a more detailed description of LDL.)

The LDL processor, in translating the LDL description to internal tables, will form
for each production p, the dependency graph Dip] = (V,E) where V is the set of attributes
of all symbols in p, and e = (v1,v2) € E iff v2 depends directly on vl. This graph shows
the attribute interdependencies within the production. The graph is stored among the

tables in the language intermediate file, along with the Lisp functions.

Babel views symbol tables as linked data structures made up of smaller symbol table
building blocks (STBB). STBB’s may contain any number of identifiers, but any one
identifier can only appear once in an STBB. With each identifier is associated a fixed
number of artributes Each attribute can be either an integer or a tree pointer. (Character
strings, other than the identifier itself, can be represented by storing a tree pointer,

referencing a token node whose text is the desired character string.)

76

At any location in a program, there is usually a *“‘current symbol table’’ used to look
up identifiers. Such a symbol table is implemented as a linear list of STBBs. The list
specifies the scoping rules of the language. (For example, in an Algol-style block struc-
tured language, each STBB would represent one nested block in the path to the outermost
block.) Since the scoping rules may specify different orders of preference at different loca- |
tions in the program (e.g., Pascal with statements, Ada imports) it is possible to link the
STBBs into different orders in different places in the program. See section 6.1.4 for a

description of the notation used to specify these rules for a given language.

5.8.1. Solutions to Attribute Grammar Problems

In this section, solutions are presented to the problems outlined in chapter 2. First, it
is shown how to adapt Reps’ methods to incremental LR parsing. Second, detecting and
avoiding circular grammars is discussed. Third, it is shown how to handle the scoping rules.
of typfcal languages. Fourth, a method for sharing symbol tables in an incremental

environment is given.

First, we define the nondestructive sharing property to be the property that if A4 is the
set of attributes that are already evaluated and in place in the tree before the evaluation of
an attribute g, then after ais evaluated, each attribute in 4 retains the same value as before
the evaluation of a This property is necessary in an incremental environment, to cause the

effect of any evaluation to be “‘undone’ by ignoring the result of the evaluation.

5.8.1.1. Incremental Attribute Evaluation with Incremental Parsing

When the parser has reparsed the portion of the tree above the firewall, ail the attri-
butes above the firewall must be reevaluated. In addition, any attributes below the firewall
that directly or indirectly depend on attributes above the firewall must be reevaluated. This

process is similar to that in [Reps 1981a] except for the nature of the change to the tree.

7

The Reps methods cannot be applied directly because Babel changes are not subtree
replacements. Rather the portion of the tree above the firewall is completely rebuilt (using
existing nodes where they are identical) and the new tree is rooted in place of the old. Itis
not possible to view this as a subtree replacement at the root because the resulting tree will
not be prepared for propagation. (The attribute values do not already exist above the

firewall.)

The solution to this problem is to start with a larger attribute dependency graph M,

representing attributes of all nodes above the firewall.'? This leads to an immediate
simplification. Since M can only expand downward, the characteristic superior graphs are

never needed.

A node in M must be created for each attribute of each node above the firewall.
Since there is always exactly one reduction for each node above the firewall, the obvious
time to add to M is in the reduction. Unfortunately, M must be created top-down to avoid
extra path nodes in the finished graph, and the reductions are made bottom-up. For this
reason, the initial value of M is created in a two step process. In the first step, for each
reduction, the tree node is pushed on a stack of nodes to be placed on M. The second step

occurs after the parse has been completed. Each node on the stack is expanded (as though

an evaluated attribute had changed value) and the resulting graph added to MU

The remaining problem is how to keep the characteristic subordinate graphs available
when they are needed (Reps’ requirement of keeping the tree prepared for propagation at
the cursor). Since the parser is bottom-up, nodes are always created as parents of previ-
ously created nodes, never by changing nodes from underneath an existing node. Thus
once a node is created, the characteristic subordinate graph will never change. The creation

of a characteristic subordinate graph, of a node, N, requires the dependency graph Dip] of

195e¢ section 2.12 for the definition of the partial attribute dependency graph M.

liNote that the order of expansions on the stack is the exact reverse of the bottom-up reduction order.
This is not, in general, the same order that would be produced by a canonical top-down parser. However, this
does not matter, the only requirement here is that a node’s parent be expanded before the node itself.

78

the production p, of which N is the left hand side, and the characteristic subordinate graphs
of all nodes which are its children. These are all available at the time of the reduction
forming the node, and since the node is formed at that time, it is not possible to form the
characterigtic subordinate graph earlier. For these reasons, the characteristic subordinate

graph is determined at reduction time and stored in the tree.

5.8.1.2. Circularity

Babel cannot handle circular grammars since there is no evaluation order which per-
mits all arguments to be evaluated before the nodes themselves. A circular grammar is
detected during the incremental semantic evaluation phase. If M is nonempty, but there is
no node with in-degree zero in M, the grammar is circular. It is possible, using an algo-
rithm givgn in [Knuth 1968] to detect circularity in the preprocessor. Since circularity is
trivially detected at runtime, and since attribute grammars which are accidently circular
seem to be rare in practice, the exponential cost of this algorithm, as discussed in (Jazayeri
1974), may be excessive. The current prototype implementation does not check for circu-
larity in the preprocessor. It would be possible to implement a circularity check, but an
option to turn off this check would be useful in the case of a grammar that is known to be

noncircular.

When constructing a symbol table, it is often convenient to have cycles in the data
structure. For example, in a Pascal enumerated type declaration, it would be useful to be
able to tell, not only for an enumerated type name, what the constants of that type are, but
for a given constant, what the type is. Creation of such a symbol table using the attribute
grammar formalism will either violate the nondestructive sharing property, or cause a circu-

lar grammar. Babel symbol tables must be carefully constructed to avoid such cycles.

In the case of Pascal enumerated types, circularity is avoided by noting that being able
to find the constants of a type is not necessary in standard Pascal. Extensions to this

language feature, such as being allowed to write values of enumerated types, or the ‘FIRST

79

and ‘LAST attributes of Ada'?, which seemingly require a pointer from the type to the
members of the type, can be handled in Babel, with some extra work, because the evalua-
tion routines are allowed to inspect the tree nonlocally and save additional information. In
this case, the names of the first and last elements of the enumerated type can be stored in

the symbol table gpeattribute.

It is also possible to construct an arbitrary code created data structurein the tree, allow-
ing cycles, without using attribute values to refer to portions of the data structure. A single
reference to the entire data structure would be placed in an attribute value. Careful symbol
table design will probably make this unnecessary for reasonable languages. Since pure Lisp
is universal, however, the power exists to have a description with a single attribute attached
to the root, and an evaluation function which examines the tree, builds arbitrary symbol
tables and other structures, checks for errors, and so on. Such an implementation is not
intended, since it does not make use of any of the incremental semantic checking features
of Babel, but it shows that the power to handle languages requiring circular grammars does

exist in Babel.

A difficult case to handle in a real language is the Pascal enumerated type. Normally,
the type attribute in a type declaration is synthesized. However, in the enumerated type, it
is essential to know, for each of the constants, what the type is. This would seemingly
require the type attribute to be inherited. It cannot be both. However, in each instance of
a type declaration, the type is either enumerated or not enumerated, so it is possible to
specify a non-circular grammar. One solution is to pass the name of the type (which must
be part of the symbol table entry for the type) to the bottom of the list of constants, where
the type is created. Another solution is to restructure the grammar so that type is either

enumerated or otherwise, and treat them differently at the top level.

12These attributes allow the programmer access to the first and last elements of an enumerated type, without
referring to the name of the element.

80

Another interesting case is a pair of mutually dependent data structures. For exam-
ple, in Pascal, it is possible to have two record types a and b, where a contains a pointer to
a b and b contains a pointer to an a This case can be handled without resorting to code-
created data structures by_ observing that Pascal requires a restricted syntax for pointer
types:

<type> := ° identifier

It is only necessary to store the name of the identifier in the symbol table, not the type.
The identifier can be looked up and checked when it is used. (On most machines, pointers
are the same size, so storage can be allocated without knowing what type the identifier

represents, should the language implementor choose to do storage allocation in Babel.)

5.8.1.3. Scoping

Algol style block structure is easily handled by Babel. The system provides symbol
table building blocks (STBB) for symbol tables which are lists of identifiers and symbol table
attributes (STA).1® Each STBB represents one local scope. Normally, each entry in an STBB
has a unique name. (In the case.of a language such as Ada that allows overloading, the
language implementor would write routines, in Lisp, to do lookups and resolve ambiguities
as needed.) Each STBB has one extra field, called the global pointer gp(stbb). This field

references the STBB of the next outer scoping level.

There are two primitive functions to look up an identifier. Lookone(stbb,name)
looks for the name in the given STBB and returns a reference to the entry found, or a
failure indication. Lookup(stbb,name) is the same, except that if no matching entry can be
found, an attempt is made to find mame in the STBB referenced by the global pointer
gp(stbb). If that fails, the next scope gp(gp(stbb)) is tried, and so on until a match or a

null global pointer is found.

13STA’s are not to be confused with attribute grammar attributes. STA's are merely information placed in
the symbol table for each identifier, such as the type of a variable.

81

Lookup is used for ordinary identifier lookups. Lookone is intended to be used in a
declaration rule to check for multiple declarations. While it would be possible for the sys-
tem to check automatically for multiple declarations when an identifier is added, this
responsibility was left to the language implementor, both to provide extra flexibility, and to
allow a better choice of error messages and locations to attach the messages to in the tree.

This extra flexibility would be useful, for example, in handling overloading.

This scheme is sufficient to handle ordinary block structured languages, and more.
For example, in Pascal, each record type invokes a separate scope for the fields of the
record. It is possible to use an STBB for each record type. The global pointer field can
refer to the ordinary symbol table for scoping purposes, or it can be null, allowing the
language implementor to write a routine to check record scopes that are open (from with

statements) before the normal symbol table.

Additional power is attained by the addition of the reglob primitive, which changes
the value of the global pointer field of an STBB. This change is done nondestructively by
copying the top node of the STBB with a new global pointer field. This permits scopes to
be linked together in arbitrary orders, which can differ in different parts of the program.
Such power is especially useful for the Pascal with statement, since dynamic relinking of

this kind is needed to handle cases such as

with a do with bdox:= Y,
with b do witha dox := ¥,

where both a and b are records with fields y.

The universality of Lisp and the ability to use code created data structures shows that
any language semantics can be handled. In this respect, semantic checking is one of the
strongest aspects of Babel, since there are restrictions on the lexical and syntactic rules
which rule out several existing languages. Since a syntax-only LDL description of Ada

already exists, a full semantic checking implementation of Ada is therefore possible.

82

§.8.1.4. Sharing Symbol Tables

The sharing of symbol tables is solved in the Babel system by making fundamental
use of the tree structure. Babel STBB's are linear lists, made up of two kinds of tree nodes:
SYMTAB nodes representing all or part of an STBB, and STE nodes representing one entry
in a symbol table. Symtab nodes contain a global pointer, a pointer to an STE node, and a
pointer to another SYMTAB node. An STE node contains the name of the identifier and
an array of attribute values. An STBB consists of a list of SYMTAB nodes and STE nodes,
linked together as shown in figure 5.2. (The SYMTAB nodes are referenced by pointers pa
and pb. The STE nodes are labeled A and B.)

The convention that a SYMTAB node with no children represents an empty STBB is
adopted. A null pointer cannot be used for an empty STBB, because null STBB’s must still

have global pointers. '

This list arrangement has the property that adding an entry to an STBB will not invali-
date existing references to it, nor will it change them. For example, suppose that the STBB
referred to by pb in figure 5.2 exists, and an ;sntry for A is added, referred to by pa. The
reference pb will continue to refer to an STBB containing B and lower entries. The refer-

ence pa will refer to an STBB containing A, B, and lower entries. If the user later changes

e .
‘/\ ,/
B .

Figure 5.2 Symbol Table Building Block

44 gol-like languages where begin-end can bracket either a' block (with a symbol table) or a compound
statement (which is not a scope and has no symbol table) are not a problem because the difference is resolved
syntactically.

83

A to C in the program, a new STE for C will be created, a SYMTAB node will be added
above the C and pb nodes, and an STBB wiil exist containing C, B, and lower entries,

without A. (See figure 5.3.) Thus, the nondestructive sharing property has been preserved.

The obvious problem with the above method is that linear lists make inefficient sym-
bol tables, due to the linear search time. Since each of these nodes is a tree node, with a
potential disk access for each reference, a search down a linear list is even more expensive
than a linear search in memory. Sorting the list is not possible, because the nondestructive
sharing property requires that the order of the symbol table be the order of the deciarations
in the program. Restructuring the STBB into a binary search tree is also not possible since

binary search trees add to the bottom of the tree rather than the top.

The solution to this problem is transparent hashing. A third kind of tree node is
introduced, called a hash table node. Such a node contains a hashed symbol table for the
entire STBB, containing for each identifier a pointer to the STE node for the identifier. The
language implementation is expected to call the hash function with a completely built sym-
bol table, and pass the result as a symbol table to the remainder of the program. The
lookup functions accept either a hashed or unhashed STBB, so that partial symbol tables

can be used in the declaration portion of the program.

/.o — po

Figure 5.3 Symbol Table Building Block

]

84

In practicé, this kind of symbol table works quite well. For very simple languages, it
is very straightforward to produce an attribute grammar building up such a symbol tabie.
Fm: real languages such as Pascal, it requires care. Symbol table construction is easier in a
compiler than in Babel, because the symbol table is global, and any declaration which must
add to the symbol table merely adds to the global symbol table. When using an attribute
grammar, it is necessary to pass a partially formed symbol table down to any nonterminal
that mightneed to add to it, and to accept back a potentially augmented symbol table to pass

on up the tree.

For example, the Pascal nonterminal type, which intuitively should be passed an
inherited symbol table and return a synthesized type, which has been looked up in that
symbol table, must also return a synthesized symbol table, since the type might be a record,
or an enumerated type. Thus, any nonterminal which can derive type must be passed a
symbol table, and the resulting synthesized symbol table must be accepted back from the

type.

An alternative structure to the linear list implementation_used here, as suggested by
Reps [Reps 1981b) is to use a 2-3 tree. The advantage to the 2-3 tree are that hashing is
no longer essential (since lookup time can be done in O(log n) time where n is the
number of entries in the symbol table instead of O(n) time. This makes lookups during
the creation of an STBB faster. The disadvantage is that extra tree nodes will be created
and discarded while building a tree. Also, if no hashing is done, lookups in the body of the
scope will take O(log n) time instead of constant time. The decision is essentially a

’

space/time tradeoff.

5.9. Preprocessors

There are a few languages which use a preprocessor which is run before the scanner in
order to augment the language. Fortran preprocessors are common. Assemblers have used

macros for years. Other languages using preprocessors include C, Bliss, and PL/I.

85

Such preprocessors have three properties in common: (a) they drastically extend the
programming language, (b) they are simple, ad hoc tools requiring little effort to imple-

ment, and (c) they can usually be implemented in one pass.

5.10. Problems

Preprocessors make the job of a language editor considerably harder. To see why,
consider the operation of one preprocessor, the C preprocessor cpp [Kernighan 1978). Cpp
is a fiiter. It accepts one text file as input and produces another text file as output. The
output text file is the result of applying preprocessor transformations on the input. Macros
are expanded, comments are stripped, header files are textually included, conditionally
compiled code is removed, and other such drastic changes are made. Such changes are not

readily invertible, unless extra information is kept for reconstructing the source text.

Since the programmer prepares input for the preprocessor, it appears that a language
editor should not edit the language accepted by the compiler, but rather the language
accepted by the preprocessor. But what is this language? There is no context free grammar
to describe it. Macros allow significant syntax extensions. For example, it is possible to
define macros called if, then, else, elif, and fI to create an Algol 68 style conditional state-

ment with a mandatory fi.

It is possible to handle some preprocessor features by placing an incremental prepro-
cessor before the incremental scanner, on a line-by-line basis. Before each line is passed to
the scanner, it is passed through the preprocessor, which can turn it into any number of

lines of output.

This approach has a number of problems, however, and is not powerful enough to
handle all the features of cpp. The worst problem is the nature of cpp scoping, which was
designed with one-pass, batch translation in mind. In cpp the scope of an identifier is from
the point of definition in the input file, either to the end of the file, or to an undefine line,

which removes the identifier from the symbol table at that point. The symbol table has a

]

g

86

new set of values after each addition or deletion. This convention divides the input file
into a number of zones, each of which has a different set of values in the symbol table.
There are no blocks. Overlapping of scopes does not imply nesting. Identifiers can be

defined and undefined in any order.

In order to faithfully implement these semantics, it would be necessary to maintain a
symbol table for each zone. The overhead caused by this requirement is excessive, and

violates the spirit of the original tool, to be as simple as possible.

5.11, Subsets

Approximations to the semantics of cpp are possible. In one possible subset, the
define command is allowed. The undefine command is forbidden. All definitions of mac-
ros must appear before any uses. (Not only must they appear textually before, but chrono-
logically before also, so that uses will expand properly.) This permits the straightforward
maintenance of a single symbol table. Passing a define line through the preprocessor adds
to the symbol table. Passing a text line through expands any macros involved. In addition
to the restrictions listed above, this approach is unable to detect multiple definitions of the
same macro, since they are indistinguishable from rescanning of the same macro definition.
It is not possible to change an existing macro definition, since this violates the chronological

restriction.

The chronological restriction can be dropped if, upon receiving a macro definition, the
implementation scans from the point of the definition, throughout the entire tree, looking
for instances of the token defined, and reprocessing lines containing that token. An incre-
mental scan, parse, and semantic check would be required for each occurrence found. (Itis
possible to prevent more than one parse and semantic check, in effect pretending all parses

but the last caused a syntax error.)

The positional restriction can be dropped by making effective use of Babel linear sym-

bol tables, without hashing. To the first token on each line is attached a symbol table

87

pointer, representing the symbol table at that point in the program. Moving closer to the
end of the file, as new macros are defined, new entries are added to the current symbol
taBle, and the resulting symbol table is attached at that point in the tree. The nondestruc-
tive sharing property assures that earlier lines will continue to have their less complete ver-

sion of the symbol table.

Finally, the restriction forbidding undefine can be dropped by borrowing a technique
from termcap [Horton 1980] which has special cancel entries An undefine command can-
not in general delete the macro definition from the symbol table because the definition
might be in the middle of the table, and its deletion would violate the nondestructive shar-
ing property. Instead, a cancel entry is addedto the symbol table. The lookup routines are
programmed to return failure upon encountering a cancel entry for the given name, without
looking any further. The success of this strategy depends on the linear organization of the
preprocessor symbol table. Unfortunately, such an implementation requires substantial
amounts of reprocessing when any macro definition is changed. All later preprocessor lines
in the program must be reevaluated, as well as invocations of the macro just changed, and
extreme care would be required to avoid scanning, parsing, and checking semantics of most

of the remainder of the program.

In addition, the problem of deletion of a macro, or changing its name, must be
addressed. The solution used for semantics would cause complete reprocessing of the rest

of the program.

5.11.1. Display

The display is another problem. The display algorithms work from the tree represen-
tation. Since the tree will contain expanded macros, a display from it will look very
different from the text the user typed in. Similarly, if a change is made, the input to the
preprocessor will be the expanded text generated from the tree instead of the original

macro invocation.

"

-

88

One apprc;ach is to attach the invocation text to the first token of the expansion. Each
token of the expansion is marked ‘‘expansion’’ with a pointer to.the first token. The
d.isplay algorithms check for such marks and produce the invocation instead of the expan-
sion. Likewise, the tree editor must produce invocations instead of expansions as input to

the preprocessor.

Another approach is based on a textual representation instead of Babel's tree
representation. The text file would be stored as an ordinary text file. An auxiliary file

would contain the tree. The display would be based on the text file, and all input would

come from the text file instead of reconstructing the tree.!’ This approach would miss some
of the advantages of Babel, such as priority elision, keeping only one copy of the file, and

the nonsequentiality of the tree file, but is an avenue well worth exploring.

§.11.2. Additional Preprocessor Features

There are other features provided by cpp, which can be handled with some extra
work. The include command, which includes a text file at that point in the program, is not

hard to handle. It is treated as a macro, expanding to the contents of the file.

The conditional compilation feature is hard to handle satisfactorily. An ideal solution
would check both possibilities and ensure that there are no errors whether the code is
included or not. (In the general cpp case, there are two sections of code, one to be
included if a condition is true, one if false. The program can omit one of these sections.)
Such a solution would require merging of two separate parse trees into one, or two separate
copies of the parse tree. Since multiple conditions are possible, any number of separate or
merged parse trees might be needed. Since the text need not represent a single branch of a
parse tree, no simple merging solution allowing multiple children of a node representing the

same production is sufficient.

15Such an approach is being taken in {Morris 1981].

89

A more practical solution is to evaluate the conditions and assume that the condition
values are correct. The false part is stored textually as part of the invocation, and is not
checked. Some conditions can be determined by the contents of the file itself, but it is
common practice to define conditions externally by parameters to the C preprocessor. This
solution would require that the user define the conditions upon invoking the editor, just as
is done for the preprocessor. Some kind of facility for storing initial definitions in the file
would be necessary, since the user would frequently forget to define them, and in any case,

it would be tedious to enter the definitions manually upon entering the editor.

A multi language preprocessor solution is a very hard problem. If there is one com-
mon property of existing preprocessors, it is that they are largely ad hoc Models such as
context-free grammars, attribute grammars, and block structured symbol tables do not

describe the preprocessors well.

The Babel system does not implement a preprocessor. Instead, a few simple provi-
sions for the C language have been made, in order to make it possible to use Babel to edit
C programs. These provisions do not handle the entire C language, but it is possible to get

some checking from a large class of simple C programs.

In Babel’s C description, lines beginning with the cpp attention character “§” are
treated as comments, and the most common C macro, FILE, is defined as a reserved word,
being treated by the grammar as any other built in type in C. Thus, programmers who
make only simple use of cpp for manifest constants and in-line expansion of functions, and
who avoid the C typedef construction’, can use Babel. Note that only syntactic checking of

C is being done. Macros are not checked (except syntactically as the procedure calls or

variables they appear to be) and semantics are not checked. This simple solution will not

The typedef construction in C defines a new type. For example, *‘typedef char *charptr” defines a new
type, charptr, which is a pointer to a character. C compilers implement typedef by making a new reserved word,
charptr. The dynamic addition of reserved words violates the static lexical requirements of Babel. An implemen-
tation allowing an identifier where a type is allowed would have an ambiguous grammar. For example, the block
“{a*b; }" could be either an evaluation of the expression a times b, or a declaration of b as a pointer to an a.

90

work with semantic checking, because macros need to be expanded to determine correctly

the types of the expressions to which they expand.

5.12. Prettyprinting

This section describes the prettyprinting facilities in Babel. An offline prettyprinter is

described, and it is shown why the program is not prettyprinted as it is entered.

The LDL language description contains information showing how a program should
be formatted. This information is not an inflexible rule, but rather a suggested way to for-
mat a program. The Babel system allows a user to format his program as he sees fit, just as
a text editor would. It is often useful in practice, however, to be able to reformat a pro-
gram which has been somehow messed up. A large class of tools to do such reformatting

exists; such tools are called prettyprinters

It is quite easy to prettyprint a Babel program, since the tree structure of the program
is already there. Pretty printing can be done without having to guess whether a particular
keyword, such as begin, is a keyword or part of a comment. In a situation where one
instance of begin should cause a right shift, but another should not, if the two instances can

be distinguished by the syntax of the language, it is easy to handle both cases correctly.

Babel prettyprinting information places extra pseudo-tokens in some of the produc-
tions of the grammar. There are three possible pseudo-tokens: %nl, %lshift, and %rshift.
These directives indicate a recommended place for a newline, a shift of the left margin to

the left, and a shift of the left margin to the right, respectively.

5.12.1. Off Line Prettyprinter

The Babel prettyprinting algorithm is quite simple. An indent counter is set to zero.
The prettyprinter recursively walks the tree, keeping track at each level of which production
it is in. When a shift directive is encountered in the current production, the indent counter

is incremented or decremented by one tab stop. (The size of the tab stop can be a

91

parameter.)

When a newline directive is encountered, the algorithm examines the next token. If
the token has no newlines, a newline is inserted at the current indenting level. If the token

has one or more newlines, it is left as is, but the indenting level is adjusted.

When a newline that was not expected is encountered, if a comment or biank line
precedes or follows the newline, the indenting level is adjusted to the current level, other-

wise, the newline is deleted.

By using the same tree library used by the other Babel tools, it is easy to write such a
prettyprinter. The tree is prettyprinted in place. A change to the newline or white space
count of a token (the only change that must be made by the prettyprinter) is done by copy-
ing the token into a new tree node, adjusting the value of the new node, and replacing the
old node in the tree with the new node. This ensures that the prettyprinter is just another
Babel editor command, saved in the history list, and can be undone with the editor undo

command. This prettyprinter has not yet been implemented.

§.12.2. Automatic Prettyprinter

An initial goal of this project was to use this same language dependent information to
prettyprint the program automatically as it is being typed in. In an LR parsing environ-

ment, we are unable to do this. This section discusses the problem.

A simple solution appears to be the following: Let B be the line being typed in, and A
be the line immediately before it. The method starts at the first token of A, noting its
indenting level. The tree is walked from that point to the beginning of B, counting shifts in
the grammar. The indenting level of B is set to the level of A, adjusted by the number of

shifts encountered from A to B.

The problem with this method is the presense of syntax errors. If the program were

always syntactically correct, this method would be possible. If syntax errors are present,

92

some of the structure of the tree is gone, and shifts will be missed.

In practice, programs almost always contain syntax errors as they are being entered,
because they are usually incomplete. In an LR parsing environment, the parser can not tell
which production it is accepting until it has read all of that production, making it impossi-

ble, in general, to prettyprint based on the incoming partial program.

There are a number of semi-automatic prettyprinting aids present in text editors, and
any of these could be put into the user interface. Vi, for example, has a mode which
indents the line being typed to the same level as the previous line. The user can manually

adjust this default either to the right or to the left.

In Babel, the lexical structure of the program is available, even in the presense of syn-
tax errors. This property makes such techniques as counting begin and end keywords possi-
ble. While this method is less powerful than the syntactic method outlined above, it is
more powerful than simple character counting (which is fooled by comments and strings)

or than the semi-automatic method of vi.

Finally, it is worthwhile to note that the offline algorithm above can be applied to any
subtree of the program, initializing the indenting level to that of the last line before the

subtree, or to a. parameter entered by the user.

5.13. Error Messages

This section describes the facilities in Babel for handling error messages. Primitives

for attaching error messages to the program are defined. The user interface is discussed.

Many systems simply produce error messages on the terminal and forget them. Since
one of the aims of Babel is to remind the user of what still needs to be done, this approach
was deemed unacceptable. Instead, error messages are kept, as a property of the program,

until the error has been corrected.

93

Babel takes the view that error messages are character strings, attached to a node in
the.tree. A special type of node is used to hold error messages. This node contains the

text of the error message and a hashed value of the error message for speed in comparison.

5.13.1. Implementation
Babel contains the following primitive error routines.

set_error(node, string)

Add an error message to a node. If the message is already there, nothing is done.

clear_error(node, string)
Remove an error message from a node. If there is no such message attached to the

node, nothing is done.

check_error(condition, node, string)
Either set_error or clear_error depending on the result of evaluating a Boolean

expression.

find_error(node)

Return the error message, if any, attached to the node.

This framework permits a routine that checks for an error to insert a one jine asser-

tion that automatically takes care of setting or clearing the error condition, such as
check_error(type(a) = type(b), node, “type clash™);

Such a framework is convenient for making semantic checks. The check_error routine is

called directly by the Lisp check function.

For syntax errors, the tree editor uses the set_error and clear_error routines. When a
syntax error is detected, the token or nonterminal rejected by the parser is marked *‘syntax
error’ by set_error. When a parse successfully completes, all the nodes on the firewall are
cleared of the ‘‘syntax error’’ message by clear_error. Since all nodee previously rejected

by the parser will be in the firewall, clearing the firewall insures without traversing the

(0

94

entire tree that there will be no remaining nodes marked in error.

§.13.2. User Interface

When the tree is displayed, any token that is a descendent of a node marked in error
will be highlighted. In order to find out why a node was marked in error, the user can posi- .
tion the focus to the node and enter the why command. The first error message attached
to that node will be output on the message line. If none can be found, ancestors and des-

cendents are checked.

Another approach would be to display the text of the message as soon as it is encoun-
tered. Such an approach was rejected for the folldwing reasons. First, allowing multiple
error messages on the terminal screen would clutter up the display. Second, it is common
for a user to make a multiple step change to a program, going through incorrect states.
Displaying messages during these states would be distracting to the user. Third, the time
taken to output a number of error messages to the terminal over medium speed (1200

baud) telephone lines would be excessive.

It would be possible to list allerror messages attached to a node, its ancestors, and its
descendants, either one at a time on the message line, or by clearing and redrawing the
screen. In order to avoid the cascading error message problem, only the first error message
is output, since it is likely that the first error caused the remaining messages. If there were

additional true errors, they will become apparent when the first error is corrected.

5.14. Performance

This section discusses the performance, in terms of time and space, of the current,
experimental Babel implementation, and some possible improvements to Babel to improve
the performance of the system. Although the system was designed with performance in
mind, it was not known in advance what the trouble spots would turn out to be. Some

ideas are set forth indicating how improvements might be made to future versions.

95

Since Babel does considerably more than a text editor, it is reasonable to expect that it
would cost more to use. This expectation has proven to be true. The current experimental
editor has had considerable tuning of the major performance bottlenecks that were straight-
forward to tune without making major changes to the structures. Performance, however,
was not the overriding consideration in the construction of the system: rather, showing that

such a system can work was the major goal.

Although it has turned out that making changes to a program is several times more
expensive than with a text editor, moving the focus around is just as fast. Unlike the
approach of [Wilcox 1976] and [Morris 1981] where moving the cursor implies recompila-
tion of text moved over, or [Reps 1981a] where moving the focus requires recomputation
‘ of characteristic graphs, moving the focus in Babel requires only a very quick table lookup
to find the correspondence between the screen and the tree, and a redisplay if the focus has

been moved off the screen.

5.14.1. Time

The current implementation of the Babe! editor costs varying amounts more than a
text editor to run. Measurements were made of several text editors, and of Babel with vari-
ous amounts of checking. Three tests were made, using an 60 line Pascal program: (1) the
editor was entered and immediately exited, (2) an assignment statement was added, and (3)
a declaration was added. The Unix time command was used to measure the CPU time
needed by the editor invocation. The CPU time needed for entry and exit was subtracted
from the others to arrive at the time needed to make the change. The tests were repeated

to ensure that a system fluke did not throw off the numbers.

Running be with all checking turned off required from about 4 to 5.5 times the CPU
time needed by vi to make a single change to the program. The difference can be
explained by the number of times the screen had to be redisplayed, an operation that is

more expensive in Babel than in most text editors because the tree must be examined.

e

‘y

96

(The executable statement was added further down in the program than the declaration,

causing an extra screen redisplay.)

* Running be with syntax checking only, the cost was about 4.5 to 6 times the cost of
vi The scanner typically rescans fewer than 10 tokens, and the size of the firewall is typi-

cally in the 20 to 30 range. Clearly, the cost of syntax checking is negligible.

Semantic checking costs more. When the executable statement was added, a ratio of
14 to 1, compared to vi, was found. Addition of a declaration required reevaluation of the
entire scope of the declaration, resulting in this case in a ratio of 62 to 1, compared to vi,
but the ratio will in fact be proportional to the size of the scope. The cost of reevaluation
of the entire scope in the case of Babel's Pascal implementation is about one second of

CPU time per line of program.

Some effort to cut down on such expensive evaluations is clearly needed to make
semantic checking practical. One approach is to cut down the constant of proportionality.
Another is to *‘batch™ the evaluations to occur less often. A third is to reevaluate only the

uses of the variables affected by a change to a declaration, rather than the entire scope.

There are many ways to cut down on the constant. The Babel system spends much of
its time in routines to examine the tree structure. Improvements to the tree library to
make tree access faster is one possibility. Better virtual memory facilities from the operat-
ing system, for example, would save the system from checking (1) if the page table fdr that
tree node has been created, and (2) if that page needs to be read in from the disk file, two
tasks that are required for each tree access. Techniques discussed below for making the
tree smaller would also make it faster, since more nodes would fit in one page, fewer pages
would need to be touched, causing fewer page faults. Cutting down on the number of
nodes, by using an abstract tree, would cut down significantly on the number of evalua-
tions. Finally, the attribute routines are written in interpreted Liép, and appear to be

expensive to evaluate. (About 10 attributes per second can be evaluated by Babel.) Cer-

97

tainly, the special cp case (see section 6.1.4), which accounts for over half the evaluation

rules of the grammar, could be made special at runtime.

Another approach is to prevent multiple evaluations of entire scopes. Evaluations are
deferred if there is another command being typed by the user. It is also possible to turn
checking off and on manually. When checking is off, an explicit check command can be
entered to catch up on all syntactic and semantic checking which has been deferred. Such a
check will evaluate any given attribute only once, avoiding repeated evaluations of entire

scopes. (Both of these features have been implemented.)

Another approach would be to automate the decision whether to check, by only doing
checks when the user leaves an area with a certain granularity, such as a scope. As long as
the decision can be made before the incremental parse begins (after the firewall has been
determined), it is easy to defer the evaluation. Since avoiding the evaluation uses the same
mechanism as handling a syntax error (the nodes of the firewall are linked into one large
error production, and their parent, an error node, is made the root of the tree) if a decision
cannot be made until later, the work done since creatic;n of the firewall can be thrown away.

A savings still results if only a small part of the work has been done.

The hardest part of the above method for automating the decision is determining
when a scope has been left. A scope can be detected in a Babel tree because the hash table
for the associated STBB is attached to a node that can be considered *‘the root of the
scope”. One approach is to define the scope of a node as the nearest hash table on the path
from that node to the root. Then the scope of the focus is easy to determine. Care must
be taken, however, to ensure that reparsing of a portion of the tree does not change the
hash table used for that scope, as it might when reevaluating it. The table must be reused
when possible. (Recall that all attributes above the firewall are reevaluated. By definition,
the hash table in question will always be above the firewall.) A disadvantage to this

approach is that executable statement changes, whose reevaluations are less expensive,

98

would also not be checked until a scope is left.

Another approach is to detect that the evaluations are going to be expensive, and
avoid them. It is very hard to determine the cost before the parser starts, since it has little
information about the syntactic or semantic structure of the changed part of the program.
It can be detected shortly into the parse, by keying on reductions that will cause certain
Lisp functions (i.e., addste, hash, empty, and so on.) to eventually be evaluated. A table
of which productions fit this category can be created when the tables are read from the LDL

table file, by inspection of the evaluation functions for each attribute of each production.

A much better solution would be to find a way to evaluate only the parts of the tree
that use identifiers whose symbol table entries have changed. This is a hard problem in the
context of attribute grammars. Some problems with this approach, and some ideas toward a

solution are discussed here.

The primary problem is that attribute grammars are based on the notion of building
up the ‘“‘meaning™ of a program from nothing. They do not deal with issues such as what
to do when sometﬁing that already exists is changed or is deleted. Another problem is that
attribute grammars are very local in nature. To communicate a piece of information (such
as a symbol table) from one part of a program (i.e., a declaration) to another part (i.e., an

executable statement) it must be propagated one production at a time through the tree.

This property of attribute grammars is, however, a very desirable property when the
original intent of attribute grammars is recalled: to define the semantics of a language.
Such a definition is véry high level, and can probably be developed by a language imple-
mentor much faster than a definition that specifies what to do in case of a change or dele-
tion. A good system should handle changes and deletions internally, without forcing provi-
sions for them in attribute grammars. Babel currently meets this goal, at the expense of

considerable runtime overhead.

99

A solution might begin with the assumption that each use of an identifier is kept
linked together in two lists. (1) A local list, rooted at the declaration of the identifier, of all
us'es of that declaration in the scope of the declaration. This list is useful when a change or
deletion is made. (2) A global list, rooted in a global table, of all uses of that identifier in
the entire program. This list is useful when an addition is made. Keeping these lists up to
date is not an easy job itself, since the deletion problem occurs here, too. The easiest place
to update the lists might be in the tree editor, after the firewall has been generated, before
the incremental parser is invoked. The availability of the old version of the tree is needed

to determine what to delete from the lists.

When a change is made causing the hash function to be called, the old version of the
table (which will be attached to the same node the new table is to be attached to, if proper
care in reusing existing nodes has been taken, unless a drastic change to the tree structure
has been made) and the new version must be compared, to create a list of additions, dele-
tions, and changes. Determining what has changed is easy, since all changes must be local-
ized in one continuous stretch of the symbol table. A comparison couid be made starting
from each end; when differences are found the boundaries of the changed section have
been determined. Then, a list of identifiers contained in each version of the symbol table is
made. Those appearing in only the old table have been deleted, those appearing in the new
table have been added, those appearing in both have been changed. The nontermihal to
which the hash table is attached is called the root of the scope.

Now, all uses of these variables must reevaluated. Uses of changed or deleted vari-
ables can be found in their attached list of uses. Uses of added variables can be found by
searching the global list. (Use of the global list could force reevaluation of more nodes
than necessary. A more involved scheme might only flag those uses that are within the
scope of the declaration.) For each token node found, the expanded superior graph would

be added to the graph M of attributes to reevaluate. (The simplification made in Babel that

100

only characteristic subordinate graphs are need would no longer be valid.)

The remaining problem is that since we are avoiding the propagation of the symbol
tablé throughout the scope, most of the symbol table references which had previously been
propagated will refer to an old version of the symbol table, and thus be wrong. A solution
to this might be to adopt the convention that rather than passing a pointer to the symbol
table itself throughout the scope, a pointer to the root of the scope (as defined above) to
which the symbol table is attached is passed. This node would only be changed when a
drastic structural change to the scope is made, requiring complete reevaluation. Again, care
must be taken to ensure that the root of the scope does not change unless it must, to avoid

extra evaluations, and avoid symbol tables pointing into an invalid part of the tree.

§.14.2. Space

The memory requirements of Babel are not extreme. The program size would easily
fit in 64K bytes on a 16 bit minicomputer. The data size, not counting buffers for paging
the tree in from disk, is large in the current implementation. While it might be possible to
squeeze it into the 64K address space of a minicomputer, it would be necessary to use
software routine to simulate paging of the tree, using only a few buffers. Performance

would be degraded significantly.

The current implementation allocates enough virtual memory to hold the entire tree,
and loads pages in from the file as they are needed. For this reason, an operating system
with virtual memory is all but essential in order to have reasonable performance. The

current implementation runs on a VAX running Berkeley Unix.

The space requirements of the disk file are another matter. No effort has been made
in this experimental implementation to keep their size down, and it has turned out that
their size is not only excessive, but that the excess size is increasing the CPU time needed
by the editor. Current Babel trees without semnantics average about 30 times the size of the

equivalent text file. If semantic checking is done, the factor jumps to 300.

101

These numbers should not be taken to imply that Babel trees have to be so large.
There are a number of things that could be done to make them smaller, which are planned

for a future version. Some of these steps are outlined here.

Changes can be broken down into two categories: (1) making nodes smaller, and (2)
having fewer nodes. All nodes in the tree currently have eight overhead fields, each occu-
pying four bytes. The fields are (1) the type of the node, (2) a word of flag bits, (3-7) the
parent, first child, last child, left sibling, and right sibling of the node, and (8) a link field

used to link the firewall together.

Some of these fields can be discarded or made smaller. The type can be a single byte.
The flags are not especially important (used to flag errors and changes to the tree) and
could certainly be stored in one byte, if not totally eliminated. The link field is not really
necessary, since the firewall can be linked together using the sibling fields and normal tree

structure.

The structural fields seem indispensable at first, but two of them (say, left sibling and
last child) could be eliminated by replacing the routine to look up the field by a routine to
search a list of siblings to find the requested node. There would be a space/time tradeoff

here.

A further improvement might be made by observing that several siblings linked
together all have the same parent. The parent field could be eliminated by storing only one
copy of the parent in the (otherwise null) right sibling field of the rightmost sibling, or the
left sibling field of the leftmost sibling. (This idea is similar to the use of threads of
{Knuth 1973].) Either a flag bit could be set indicating that this is the rightmost or leftmost
sibling, or the corresponding field of the parent could be checked to see if it points back to

the child node.

Another possibility for improvement is to reduce the size of tree pointers. In the

current implementation they are four bytes, and represent an offset in the tree file.

 ——— —————

102

Another possibility would be to have a separate table of tree node offsets, so that a tree
pointer could be an integer index into this table. A two byte index would probably be

sufficient.

Another apparent improvement might be to keep the text of tokens in a string table,

and to reference the string table instead of saving the text of the token in each token node.

Since tokens are often short!”, this improvement would probably not result in any space
savings. It might, however, be useful in conjunction with the global linking together of

identifiers discussed above.

A second approach is to cut down on the number of nodes. Using an abstract tree.
instead of an LR parse tree would have a dramatic effect on the size of the tree. If a
method for incremental parsing using abstract trees could be developed, this change alone
would be well worthwhile, not only to make the tree smaller, but to cut down on the
number of attributes that must be evaluated, and to make the tree more natural for the

user to move the focus around in.

In a tree with no semantics, most of the nodes are either tokens or nonterminals.
Other than using an abstract tree, there is not much that can be done to reduce the number

of nodes.

In a typical Babel tree with semantics, however, a typical nonterminal with three attri-
butes might have three attribute nodes and five characteristic subordinate graph nodes.
These nodes, plus the need for symbol tables, account for the factor of ten increase in the
size of the tree. Since the attribute nodes and the characteristic subordinate graph nodes
contain two and one integer values, respectively, (compared to 8 values of overhead) the
tree size is strongly influenced by the number of nodes. A different representation of the
characteristic subordinate graph, placed in the nonterminal node, would cut the tree size by

a factor of two. Attributes might all be grouped in one node, for further savings.

175 measurement of one C and one Pascal program indicates that the average length of a token is slightly
under two characters.

103

(Attributes should not be placed in the nonterminal node, since their values change more
often than the nonterminal to which they are attached. Characteristic subordinate graphs,

however, are fixed at the time the nonterminal is created.)

In summary, if all these space saving measures were taken, the size of the tree could
be reduced to about 15 times the size of the text file. This tree would contain more infor-
mation than the text file, such as the parsed structure, and the results of semantic evalua-
tions. If no semantic evaluation were done, the figure could be reduced again by another

factor of two.

CHAPTER 6

Language Description Language

6.1. Language

LDL describes language features that are needed by the Babel system. It does not
attempt to define all aspects of the input language. The kinds of information contained in
an LDL description are:

(1) Lexical information. This includes the forms of tokens, comments, white space, and

reserved words that are needed by a scanner.
(2) Syntax, represented by a context free grammar.
(3) Prettyprinting rules. These are given in the form of special left and right shift items

in the grammar, and newline items showing suggested locations for newlines.

(4) Semantics. Attribute grammars are used as the basis of the description. No attempt
is made to describe all of the semantics. Static semantics can be described in as little

or as much detail as desired by the language implementor.

This section describes the elements of the LDL formalism. See Appendix A for some

examples of LDL descriptions.

6.1.1. Lexical Information

Regular expressions are the basis of the lexical model. Any language whose tokens
are all regular expressions, which can be distinguished by their syntax alone can be pro-
cessed. Language features that require a symbol table lookup in the scanner, such as those
found in Algol 68 and C, are not handled. FORTRAN 66 and FORTRAN 77 are not han-

dled, since they do not have reserved words and have conventions for separation of tokens

104

105

that cannot be recognized with regular expressions. A dialect .of FORTRAN having
reserved words, requiring bianks to separate words, prohibiting blanks in the middle of a
word, and eliminating the special significance of columns 1, 6, 7, and 72, could be
described in LDL. FORTRAN 82 is expected to use a more conventional form and to be

handled by this scheme.

By convention, names in MixedCase represent tokens and other lexical information,

and names in lowercase are nonterminals.

The notation used is very high level, not at all like the typical coding of a scanner for

a compiler. Three pieces of information are given as input:
(1) A list of reserved words.

(2) A list of “constant tokens™ (those that have only one textual representation) such as
m=m" "g" "<=" "+" etc. This category includes most punctuation but not
reserved words. (It is actually possible to include reserved words here. For reasons

of readability a separate section for reserved words was created.)

(3) A list of regular expressions for those tokens that are not constant (identifier, com-
ment, integer constant, real constant, string constant, white space. etc.) The regular

expression notation used is the same as that of Lex.

These regular expression descriptions are passed to Lex without interpretation, allow-
ing all the features of Lex to be used. Unfortunately, such descriptions are frequently hard
to read. An improvement to LDL might implement a level of “‘syntactic sugar’’ providing
the language implementor with a more readable regular expression notation, such as the
one used in [Geigerich 1979). Since the regular expressions are currently viewed as strings
by LDL, an additional benefit would be additional syntactic checking from the LDL

language itself.

Here is an example of the lexical portion of an LDL description.

106

%reswords
Begin "begin”
End "end"
%constant
Becomes " ="
Lt ” < L]
L e " < =l'
Plus s
Semi -nt
%tokens
Id "[a-zA-Z] [a-zA-Z0-9_]*"
Intconst "{0-9]+"
String "W)™

Comment "\ IV /D A
Whitespace "[\t\n]*"

-

Some special interpretationé of these rules are made. The token Id is special because
reserved words must be Id’s. Whitespace will be ignored when found. It is instead
reduced to two integers, the number of newlines and the number of blank spaces preceding
the next token. These two integers become a property of the next token. Comments are
also ignored by the parser but are attached to the following "real” token (along with any'
white space preceding the comment) by the scanner so that they are not lost. (Since there

are endmarker tokens, there is always a "next token" to which to attach a comment.)

6.1.2. Syntax

The language syntax is described using the same notation as Yacc. For example:

%grammar
goal: Begin stmtlist End;
stmtlist: stmt;
stmtlist: stmtlist stmt;
stmt: Id Becomes expr Semi,
expr: prim;
expr: - expr Plus prim;
prim: Id;

6.1.3. Prettyprinting

Prettyprinting tells the editor exactly how programs should be indented. The pro-

grammer is not forced to format his program this way. A prettyprinting utility could refor-

107

mat a program to conform to the prettyprinting standards described here.
Indenting rules are embedded in the grammar and are of three types:

%nl indicates that a newline should appear at this point.

%rshift indicates that the indenting level should shift one level to the right.

%Ishift indicates that the indenting level should shift one level to the left.

For example:

%grammar
goal: Begin %n! %rshift stmtlist %ishift End %nl;
stmtlist: stmt;
stmtlist: stmtlist stmt;
stmt: Id Becomes expr Semi %nl;
expr: prim;
expr: expr Plus prim;
prim: Id;

The above grammar would suggest a program indented as follows:

begin
a:=3
b:=a+5;
end

The actual program might be typed in by the programmer in any format.

6.1.4. Semantics

The semantics are specified using an attribute grammar formalism [Knuth 1968]. 1t is
possible to specify as little or as much of the static semantics of a language as the imple-
mentor desires. One extreme is to omit all semantics, which causes the editor to check
only syntax. The other extreme would be to specify an entire translator in the attribute
grammar. The translator could leave assembly code in the tree. It is our intention that for
languages with a good deal of static semantics, the attribute grammar should specify enough
of the semantics to detect static errors, but not actually to generate code. Going much
further than this would lead to portability problems (assumptions about the object machine)

that probably do not belong in the editor.

108

The attribute grammar must be noncircular. Since an attribute can only be evaluated
when all attributes it depends on have been evaluated, there is no evaluation order possible
if an attribute indirectly depends on itself. Since attributes are only evaluated in syntacti-
cally correct programs, there are no “‘one pass’’ problems requiring a grammar to belong to

a more restrictive class.

Each symbol of the grammar has a set of zero or more attributes associated with it.
Each attribute has a name which need be unique only for that symbol. The name is
translated to a small integer !)y the LDL processor. For example, if a symbol has three
attributes, they will be numb;red 0, 1, and 2. Attributes are individually stored in the tree
in attribute nodes, that are attached as children of the symbol to which they apply. Each
attribute is a single-word quantity, representing either an integer or a pointer into the tree.

Since tree pointers can indirectly reference complex structures, such as symbol tables, this

capability is quite powerful.

Character strings cannot be stored directly in attributes, but a tree pointer to a token
whose text is the character string can be stored, achieving the same effect. For purposes of
semantic checking, the names of identifiers have been the only strings needed for the exist-
ing implementations. Lisp S-expressions cannot be stored directly in an attribute, since the
attribute, stored in the tree on disk, has a lifetime longer than the S-expression, stored in

primary memory. Unless the language implementor wishes to build and execute dynamic

Lisp programs!, there is no reason to store an S-expression in the tree, since the tree struc-

ture provides equivalent capabilities.

Several attribute evaluation functions may be attached to each production. Each func-
tion is viewed as a definition of one of the attributes of a symbol in the production. The
attribute is defined as a function of other attributes of symbols in the production and other

available information, such as the text of a token.

This feature is not present in Babel, but could easily be added by giving the language implementor access
from Lisp to the interpreter functions ewal/or appl.

109

In the LDL description, for each function, three pieces of information must be

specified: which attributes are used, which attribute? is set, and the evaluation function

Most of the attribute grammar literature also requires attributes to be classified as
either inherited, based on information propagated from higher in the tree; or synthesized,
requiring information from descendants of itself or its siblings. Such information is nor-
mally used as a clue to a one pass evaluator, telling in what order to evaluate the attributes.

Since our evaluator is incremental, this information is used only for error checking in LDL.

The notation for the evaluation function is one area that is usually left up to the
designer. This flexibility has, unfortunately, led to a complete lack of standardization of

attribute grammar descriptions, causing a portability problem.

The notation used here is based on the Lisp language. Lisp was chosen because a
small subset of the language is universal, providing a great deal of power for the language
implementor with only modest work for the implementor of the Babel system.? For each
attribute, the three pieces of information needed are specified in parenthesized lists,

enclosed in square brackets.

An attribute of a symbol is designated by the notation “‘Si.attr>* which refers to the
attr attribute of the it symbol on the right hand side of the production (i = O refers to the

left hand side).

Attributes are not declared; if one is set that does not exist, it is dynamically created.
The set of possible attributes on a symbol is static, however, since it is not possible to
dynamically create attribute names or numbers. Hence, it would be possible to have attri-
bute declarations. They were omitted only for simplicity of impiementation of Babel.

Declarations are not necessary in LDL for the same reason they are not necessary in FOR-

¢ is possibie for an evaluation function to set more than one attribute within the production. While this
will work in the current implementation, the function will be invoked to define each attribute, resuiting in wasted
evaluations. For this reason, it is recommended that each attribute have a separate evaluation function.

3The prototype Lisp interpreter, including symbol table management, was implemented in less than a week.

te

fo

110

TRAN: the translator can determine the set of identifiers used and create a symbol table at

translation time.

It is an error to use an attribute that has not been set. The LDL processor checks for
this, with some extra work. The editor also trivially checks for uninitialized attributes, dur-
ing evaluation when the value is accessed. The LDL processor builds a table of attributes,
indicating whether they are inherited or synthesized, (based on sets information in the
evaluation function rules). It checks each production that should be assigning a value to an
attribute (based on whether Ehe symbol is on the left or right hand side of the production
and whether the attribute is inl';erited or synthesized) to ensure that a value is assigned.
The evaluation time check is made when the value of an attribute is used. If no attribute
node with the proper attribute number can be found attached to the symbol, the attribute is
uninitialized. This check has proved quite useful in practice, since the most common error

made in the implementation of Asple and Pascal was the omission of an evaluation rule.

For example, the following rules pass the symbol table down the tree and the type of

the expression up the tree.

expr: expr Plus prim
(uses $1.type $3.type)
(sets 30.type)
((check "Type clash” (eq $1.type $3.type) $0.self)
) (set 30.type $1.type)

[(uses $0.stab)
(sets $1.stab)
(set $1.stab $0.stab)

[(uses $0.stab)
(sets $3.stab)

| (set $3.stab $0.stab)

*

The special attribute “self’ produces a tree pointer to the node itself. This attribute
(number —1) is not actually stored in an attribute node, and never depends on other attri-

butes. In effect, self is a reserved attribute name.

111

The following rule uses the symbol table that was passed down the tree to determine

the type of the ID and pass it back up the tree. The variable “‘tmp”’ is a local variable.

prim: Id
B (uses $0.stab)
(sets $0.type)
(prog (tmp)

(setq tmp (lookup 30.stab $1.text))
(check "undeclared variable” (ne tmp niD 31. self)
(set $0.type (getattr tmp 2))

]

Check, lookup, and getattr are built-in symbol table functions. (See section 6.2 for the
meanings of these functions.) Attribute 2 would, in this example, be the type of the vari-
able. (The language implementor might choose to represent types as integers, or, more

likely, as pointers into a symbol table.)

The second and third rules in the expr rule above illustrate a common case. The
actions do nothing but copy attributes up or down the tree. Since this is so common, a
shorthand notation is provided:

[cp $0.stab $ 1.stab $ 3.stab]

The LDL processor expands this into the Lisp code shown above.

6.1.5. Compiler Help

It would cut down significantly on the work that a compiler must do for every compi-
lation if the compiler could start with the Babel tree representation instead of a traditional
textual representation. This section discusses possible extensions to LDL to make this job
easier.

Many compilers first scan and parse the program, building an abstract tree as the parse
proceeds. It would be straightforward to traverse the Babel tree, which is an LR parse tree,
to produce the desired abstract tree, thus avoiding the problems of scanning, parsing, and

error recovery in the compiler.

112

A Babel implementation that checks semantics leaves much more information in the
tree that would be useful to the compiler, such as the symbol table, types of expressions,
and results of applying scope rules. There would be a performance improvement if the

compiler did not have to recreate this information.

A parse-tree-to-abstract-tree grammar which told how to build abstract trees from
corresponding parse trees would be useful here. While not needed directly by the editor,
such a grammar could specify portably how an abstract tree should be formed, using pieces
of the Babel tree to build the abstract tree. Babel semantic attributes could be included in

this abstract tree, using rules in the parse-tree-to-abstract-tree grammar.

This notion is very similar to the string-fo-tree grammar used in [Geigerich 1979]. A
notation based on their graphic notation, or a suitable ASCII version, could be added easily
to LDL. A standard subroutine to create an abstract tree using tables generated from this

parse-tree-to-abstract-tree grammar could be provided, which would be used by a compiler.

One problem with this approach is that different compilers for the same language
might need different abstract trees; that is, one could argue that the particular style of
abstract tree is a property of the compiler, not the language. There is, however, a move-
ment toward the standardization of abstract trees for some languages, see [Goos 1981] for
an example. Such a convenient tool might encourage abstract tree standardization even

more.

6.2. Lisp

This section describes the dialect of Lisp used for attribute evaluation functions. This

dialect does not support all of pure Lisp*, since parts of it were not needed. Some addi-
tional primitive functions have been added for manipulating attributes, symbol tables, and

the tree.

4 Label and lambda are not implemented, nor is the language implementor given access to eval or apply.

113

There is no garbage collector. While there is no reason a garbage collector could not
be implemented, the amount of memory allocated by cons once the language tables are
read in has turned out to be negligible. Since Babel is implemented in a virtual memory
environment,’ a significant improvement to performance was made by never freeing any-
thing, so there is no penalty for failing to garbage collect. Most of the dynamically allo-
cated memory in Babel is used by either tree buffers (the entire tree is kept in virtual
memory for performance reasons) or language tables, neither of which is ever freed. Most
of the reusable data structures are in local variables on the stack. Those few places where
memory is allocated and freed did not justify the overhead of a first-fit search through all of
virtual memory (touching every page) upon every allocation. A more intelligent memory

allocator would prompt reconsideration of this tradeoff.

An evaluation function is a Lisp S-expression which is evaluated for its side effects,
typically assigning a value to an attribute. Any value returned by the S-expression is

ignored.

The user can statically define callable functions in a separate section of the LDL
description called %functions. This allows the definition of functions with parameters, pro-
viding the advantages of modular and unrepeated code, plus the power of recursion,
without implementing lambda for unnamed functions. Since all atom names are stored as
indices into the atom table, a function body can be found for a call in constant time. This
implementation does have static (unnestable) scoping for functions, which is different from

other Lisps.

5A VAX 11/780 running Berkeley 4BSD Unix.

/]

114

Functions are defined with the defun syntax, for example:

%functions
(defun checkaddste (namenode istab al a2)

(prog (ste)
(set ste (lookone istab (name namenode)))
(check "Multiple declaration” (eq ste tnulD namenode)
(addste (name namenode) istab al a2)

)

This defines a function called *“‘checkaddste’” with parameters “namenode’’ (a tree node of
a token, whose name is being added to a symbol table), “istab>’ (the input symbol table)
“al” and *“a2” (two symbol table attribute (STA) values being used to initialize the sym-
bol table entry.) The function a.dds the given name and STA’s to the symbol table, after

checking for a multiple declaration, and returns the new symbol table.

The section that follows describes the built in functions in LDL. This set of functions
has been more than sufficient for the existing language implementations. It is easy, how-
ever, to add more functions as needed, in addition to any code needed to implement the
function itself Gf it is not already built into Babel in some way) there are only 4 lines of

code needed to make a function accessible from Lisp.

6.2.1. Pure Lisp

atom, car, cdr, cond, cons, nil, null, quote and t
These functions behave exactly as they do in pure Lisp. Their inclusion, along with the
function capability below, insures that the dialect of Lisp here is universal. nil and t are
atoms representing true and false. Cons takes two arguments and creates a new Lisp cell
with those halves. Car and cdr take one argument and return the first or second half of the
indicated Lisp cell. Atom returns t if its argument is an atom, null returns t if its argument
is niL Quote returns its argument, without evaluating it. Cond is the Lisp conditional
function, accepting one argument which is a list of pairs (condition value). The first pair

with a condition which evaluates to t will return the corresponding value. If there are no

115
matches, nil is returned.

6.2.2. Common Lisp Extensions

defun, prog, progn, set and setq
These functions are usually present in actual Lisp implementations, and are needed for
practical programs. (defun funcname (parameters) value) is used in the %functions section
to define a function. This permits the function (funcname arguments) to be called, binding
the arguments to the parameters, and evaluating and returning the value. (set variable
value) and (setq variable value) have the side effect of evaluating the value, and assigning

the result to the variable. The variable can be an atom or an attribute of the form 3i.name,

as described previously. The form setq is used for atoms, set for attributes. Otherwise the

two are identical. The forms (prog (localvars) el e2 ...) and (progn el e2 ...) provide local
blocks and compound statements. If local variables are listed, they are created and bound
to those names. The expressions are evaluated, and the value of the last expression is

returned.

6.2.3. Comparisons

eq, ge, gt, le, It, ne and equal
These functions take two arguments and return t or nil as the comparison function is true
or false. Eqand ne require that the two values evaluate to the same atom. The others test

for numeric inequality. equal can be used to test for numeric equality.

6.2.4. Arithmetic Functions

add1, divide, minus, plus, subl and times
These functions provide simple arithmetic capabilities. They take two integer arguments,
perform the indicated operation, and return an integer result. Addl and subl take one
integer argument and return the number plus or minus one, respectively. This arithmetic

facility is compatible with that in most other Lisp implementations.

@

116

6.2.5. Symbol Table Functions

These functions provide access to symbol table building blocks (STBBs) and symbol

table entries (STE’s).

(addste name oldste al a2 ...)
This function adds an entry with the given name to a symbol table. The attributes are
assigned the values al, a2, and so on. Oldste is the old symbol table, the new symbol

table is returned. Oldste is not changed.

(empty gp) o

The empty function creates and returns an empty symbol table, with the global

pointer field set to gp.

(findattr symno attrno)
This function is the result of expanding $symno.attr. When evaluated, the appropri-
ate attribute is looked for in the current production in the tree, and the value is
returned. This function can also be the first argument to set, which will cause the

given attribute to be placed in the tree, replacing any old value.

(getattr ste i)
The getattr function is used to retrieve an attribute of an STE. The ith STA of the
entry ste is looked up and returned. There is no setattr function, since its use would
encourage violation of the nondestructive sharing property. An STE’s values are set

at creation.

(hash stbb anchor)
The hash function produces a hash table for a given STBB. The hash table, which is
built on top of the STBB, is returned, producing a new, faster version of the same
STBB. The anchor is a node in the symbol table to which the hashed symbol table is

attached directly.

117

(lookone stbb string)
The string is looked for in the STBB. If found, the STE found is returned. Other-

wise, tnull is returned.

(1ookup stbb string)
Lookup is like lookone, but if the search fails, the STBB referenced in the global
pointer is tried, then its global pointer, and so on until the string is found or a global

pointer with value tnull is found.

(name token)
For a tree pointer to a token, the character string which is the text of the token is

returned.

(stjoin stbbl stbb2)
This function joins two STBBs into one, nondestructively. The combined STBB is

returned.

(check string condition node)
This function is used to check for semantic errors in the program. It can be thought
of as an assertion. The condition is evaluated. If it is true, there is no error, other-
wise there is an error. The text of the error is the string, and the error text is
attached to the given node in the tree. The node is checked for the error message; if
the condition is true and an error message is found, the error message is removed, if
the condition is false and no error message is found, one is attached to the node. If
an error has already been found in this evaluation, no additional error messages will

be attached, to avoid the *‘cascading error messages’> problem.

6.2.6. Tree Access Functions

These functions are needed by an implementation that wishes to create and use code

created data structures. Since these permit arbitrary access to, and changes of the tree,

n

118

nothing can be guaranteed about the nondestructive sharing property. The implementor

should use great care not to violate this property.

tnull

This built in atom has the value of a null tree pointer.

type
The type function returns, as an integer, the type of the node which is its argument.

parent, firstchild, lastchild, leftsibling and rightsibling

These functions return the corresponding neighbor of their argument.

(newnode type size)
The newnode function creates a new node with the given type. The number of bytes

needed for data is passed in the size argument. The node created is returned.
(getfield node fieldnumber)

(setfield node fieldnumber value)
These functions access and set the value of some integer field in the given node. The

fields are numbered from zero.

(insert node parent Isib)
This function inserts the given node into the tree, as a child of the given parent node.
It is arranged that the left sibling of the node will be Isib. To insert as the first child,

Isib should be tnull

(prune node)

This function removes the given node from the tree.

6.3. LDL Processor

The LDL processor ldlproc is a tool used to preprocess LDL descriptions of languages
to produce tables that the other Babel tools can use. Ldlproc has been implemented in the

style of Babel in that it uses a Babel tree file for input rather than text. This not only

119

simplifies the implementation of Idiproc by eliminating the need to scan and parse, but

allows the user to use the editor directly on the source file in tree form.

Ldiproc takes two arguments, the name of the tree file for input and the name of the
table file where the results will be placed. The processor makes heavy use of existing

UNIX tools.

The first pass of idlproc walks the tree looking for names of tokens, nonterminals, and
reserved words, saving them in internal tables. The uses/sets information in attribute rules
are used to build an attribute symbol table, and to build the dependency graph Dlp] for
each production. Each atuibﬁte is classified as either inherited or synthesized, based on the
side of the production in which it is set. Attributes which are set on both sides (i.e., are
both inherited and synthesized) are flagged as errors, since this condition always indicates a
logic error in the description. This first pass is needed because forward references are pos-

sible. A more involved implementation might keep a symbol table using attribute rules.

The second pass turns the list of reserved words, constant tokens, and regular expres-
sion tokens into an input file for lex The grammar is turned into an input file for yacc.
The number and lists of tokens, nonterminals, reserved words, and productions are written
out to a “sables” file. (Rather than store the text of the productions, an integer represen-
tation is written to the file.) The attribute information (numbers and dependencies of attri-
butes for each symbol and production) are output to the semantics C source file. The Lisp
evaluation functions are output to the semantics file in an easy to reparse form, changing
Siaurto (findattr i attrno), outputting atoms found by atom number, and accumulating an
atom table. The atom table is then output to the semantics file. Atoms have one of the
types reserved (built in functions and constants such as car, check, and niD, integer, string,

or identifier.

The lex and yacc processors are invoked on their respective input files. This leaves

four C source files: the tables, semantics, lex output, and yacc output. They are then com-

"

b

120

piled with writeout, a handwritten, language independent C source file, to produce an exe-

cutable file. This file, when run, writes out the tables to the desired output file in the for-

mat needed by Babel.

CHAPTER 7

Conclusion

7.1. Summary

This dissertation has shown that it is possible to build a language editor such as the
Babel system described here. A text editor style user interface is shown to work. We claim

it can be made to be to be practical, and to be simple to learn and to use.

The effort required to ‘‘re-source” to another language is quite small, if only syntax
checking is required, and moderate if semantic checking is also desired. LDL descriptions
for the syntax of several languages, including Ada [Ichbiah1980al, Rigel [Rowe1979al,
Lisp, a subset of C [Kernighan1978a], and LDL itself have been created. In addition, LDL
descriptions for Asple with full semantic checking, and for Pascal, with partial semantic
checking, have been created. It has been shown how to implement special features of Pas-
cal and Ada, and since the semantic notation is based on a universal subset of Lisp, the
semantics of any language, even those without noncircular attribute grammars, can be han-

dled.

The user interfaces of language editors can be viewed as a spectrum, with template
editors such as [Feiler1980a) at one end, and text interface editors such as Babel at the
other end. Other language editors fall somewhere in between. This dissertation shows that
all the simplicity and ease of learning of traditional text editors can be combined with the

language dependent checking and programmer assistance capabilities of tree editors.

A set of primitive functions is described, which makes it possible to build any text
editor interface on top of a tree data structure. Underlying methods for incremental scan-

ning, parsing, and semantic analysis are described.

121

"”

122

A notation for the description of languages, LDL, is described. This notation is suit-
able for any language with static lexical and syntactic requirements, so long as the language
can be described using regular expressions and reserved words as a lexical model, LALR(1)
A RL(1) context free grammars as a syntactic model, and noncircular attribute grammars
as a semantic model. While LDL was designed for programming languages, other computer
languages in this class can also be described. Provisions for syntax-directed prettyprinting
are discussed, and extensions to support generation of abstract syntax trees to help auto-

mate the production of compilers are suggested.

While the cost to build ;md maintain the additional information required by a system
such as Babel is higher than a traditional screen-oriented text editor, the potential benefit,
in terms of programmer time, is higher too. A useful analogy can be made with line
oriented and screen-oriented editors. The cost for screen editors is higher than line editors,
because of the extra work to keep an up-to-date copy of the program displayed on the
screen. This extra cost has not deterred the majority of programmers from switching from
line editors to screen editors. It is our belief that as language editors become available, pro-
grammers will turn to them, in spite of the additional cost, because language editors can do

more for the programmer while he remains in the editor.

7.2. Suggestions for Future Work

While it has been shown in this dissertation, and in many other papers, how to build a
working language editor, there is much more work to be done. Many improvements are
possible, to improve the performance of language editors, and to enlarge the class of

languages handled. This section describes some possibilities for future work.

Some carefully controlled experiments should be conducted, comparing the effects of
different programming environments on programmer productivity. For example, a four
way comparison between a line oriented text editor, a screen-oriented text editor, a text

interface language editor such as Babel, and a template interface language editor such as

123

PL/CS, could be made. In order to avoid biased participants who are used to one particular
kind of editor, such an experiment would be best conducted in an introductory program-
ming class in a university. Measurements such as amount of time spent in the editor, total
time logged on, and grade in the class could be made and analyzed. A number of two way

/comparisqns could also be made.

Current incremental parsing technology does not allow for general purpose incremen-
tal parsing from abstract syntax trees. Some language editors that use abstract trees restrict
the command set allowed, to make the parsing technique goal driven, since it is straightfor-
ward to generate an abstract tree during a goal driven parse, and attach it into the rest of
the tree using some specialized command. Another possibility is to translate between the
abstract and LR syntax trees, causing considerable overhead. A method for direct incre-
mental parsing with abstract syntax trees, possibly involving a restricted class of abstract

trees, would lead to a large performance improvement to Babel.

An algorithm to avoid reevaluation of the entire scope of a declaration, when that
declaration is changed, would be a significant improvement. Some ideas for such an algo-

rithm are discussed in section 5.14.

The system currently contains no formal interface between the front end (user inter-
face) and back end (buffer management/checking) of an editor. An interface between the
two should be developed, allowing different front ends (for familiar text editors such as vi,
EMACGS, and so on) to be plugged into different back ends (an ordinary text editor buffer
manager, and a Babel back end). Careful attention must be given to the display module; it
probably belongs in the back end, but the user interface needs a high degree of control over
it.

While the restrictions on the syntax class of languages handled (LALR(1) n RL(1))
is not a serious restriction, the lexical class leaves out a number of real programming

languages. The unusual lexical styles of FORTRAN and BASIC, for example, cannot be

w0

124

handled. Languages with user defined reserved words, such as C and Algol 68, are not
handled. Certain lexical issues, such as whether upper/lower case distinctions are
significant in identifiers, are not handled in the current system. A clean model that handles
such real languages would be a clear step forward. Lacking this, provisions for a small
number of *‘special cases” which could be hand coded into the scanner, or provisions for
inclusion of language dependent code for this purpose, would extend the domain of the

language editor.

Preprocessors cannot be handled efficiently using current technology. A method for
efficient, incremental preproét;ss“ing would expand the class of languages handled to include
languages where nearly all programmers use the preprocessor, such as C. A model of
preprocessors encompassing many of those in current languages (C, PL/I, Bliss, assem-

blers, FORTRAN preprocessors, etc.) would also be a significant improvement.

While the Babel system allows the user to format comments exactly as desired, it pro-
vides little automatic help in the case of prettyprinting comments. Some investigation into
the structure, positioning, and formatting of comments would be useful in the construction

of language independent prettyprinters.

A powerful method for automatically prettyprinting the program as it is typed in, in a
language independent manner, would be useful. Since syntax errors are common as a pro-
gram is being typed in, and programs are almost always incomplete, a method based only
on lexical information, or on partial syntactic information, would be useful. For a certain
class of languages and prettyprinting rules, it would be possible to count certain tokens as
“right shift” tokens and certain other tokens as ““jeft shift’’ tokens. For example, begin
might be a “right shift™ token. Such tokens could be counted without regard to the syntax
of the program. A method for finding such languages, given the higher level, more power-
ful prettyprinting notation of LDL, and automatic generation of the lists of tokens might be

found.

125

Incremental compilers based on Babel style trees, with subtrees marked if they are
changed, would provide a real speedup in performance, possibly overcoming the extra cost
of processing in the editor. Ordinary compilers, which could start with the Babel tree,
would not need to scan, parse, handle syntax errors, or generate symbol tables, since these

tasks are already done by the editor.

There are many specific improvements that can be made to the Babel system, and to
the LDL language. Further tuning can reduce the CPU time and disk space needed, even
without further theoretical results to improve the algorithms. A redesign of the lexical part
of LDL would allow a more }eadable lexical syntax, and more checking by the editor. A

language other than Lisp might be more efficient for interpretation of semantics.

Further research is needed in some of these areas to improve the methods used to
implement language editing systems such as Babel. Now that an implementation is com-
plete, the performance problems are clear. These problems can be taken into account ina
subsequent implementation, producing a faster editor. It is our belief that a production
quality editor can now be built, using the methods described here, with reasonable perfor-

mance.

2]

Bibliography

Alberga 1979.
C. N. Alberga, A. L. Brown, G. B. Leeman Jr., M. Mikelsons, and M. N. Wegman,
“A Program Development Tool,”” Report RC 7859, IBM T. J. Watson Research
Center, Yorktown Heights, New York 10598 (September 1979).

Arnold 1980.
K. Arnold, Screen Updating and Cursor Movement Optimization: A Library Package,
Computer Science Division, University of California, Berkeley (1980).

Brosgol 1980. .
B. M. Brosgol, J. M. Newcomer, D. A. Lamb, D. Levine, M. S. Van Deusen, and W.
A. Wulf, “TCOL das Revised Report on An Intermediate Representation for the
Preliminary Ada fanguage," Technical Report CMU-CS-80-105, Carnegie-Mellon
University, Computer Science Department (February 1980).

Ciccarelli 1978.
E. C. Ciccarelli, *‘An Introduction to the EMACS Editor,” Al Memo 447, MIT Al
Lab (January 1978).

Cleaveland 1973.
J. Cleaveland and R. Uzgalis, What every programmer should know about grammar,
Dept. Computer Science, Univ. of California, Los Angeles (1973).

DEC 1972.
DEC, Text Editor and Corrector Program Programmer’s Reference Manual, Digital
Equipment Corporation (1972).

Demers 1981.
A. Demers, T. Reps, and T. Teitelbaum, ‘‘Incremental Evaluation for Attribute
Grammars with Application to Syntax-directed Editors,” Eighth ACM Symposium on
Principles of Programming Languages, pp. 105-116 (January 1981).

Donzeau-Gouge 1980.
V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang, Programming Environments based
on Structured Editors: The MENTOR Experience, IRIA Laboria (July 1980).

Feiler 1980.
P. H. Feiler and R Medina-Mora, An Incremental Programming Environment, Carnegie-
Mellon University, Computer Science Department (December 1980).

Feldman 1978.
S. 1. Feldman, Make: A Program for Maintaining Computer Programs, Bell Laboratories
(August 1978).

Ganzinger 1980.
H. Ganzinger, Private Communication 1980.

Geigerich 1979. :
R. Geigerich, “Introduction to the Compiler Generating System MUG2,” TUM-
INFO-7913, Technische Universitat Munchen (May 1979).

Ghezzi 1979.
C. Ghezzi and D. Mandrioli, “Incremental Parsing,”” ACM Transactions on Program-
ming Languages and Systems 1(1) pp. 58-70 (July 1979).

126

127

Ghezzi 1980.
C. Ghezzi and D. Mandrioli, “‘Augmenting Parsers to Support Incrementality,” Jour-
nal of the ACM 21(3) pp. 565-579 (July 1980).

Goos 1981. _
G. Goos and W. A. Wulf, Diana Reference Manual, Institut Fuer Informatic II,
Univeritaet Karlsruhe, and Computer Science Department, Carnegie-Mellon Univer-
sity (March 1981).

Horton 1980.
M. R. Horton and W. N. Joy, “Termcap(5) Manual Page,” Berkeley Unix Program-
mers Manual, (December 1980).

Ichbiah 1980.
J. D. Ichbiah, B. Krieg-Brueckner,, B. A. Wichmann, H. F. Ledgard, J. C. Heilard, J.
R. Abrial, J. G. P. Barnes, M. Woodger, O. Roubine, P. N. Hilfinger, and R. Firth,
Reference Manual for the Ada Programming Language, Honeywell, Inc., and Cii-
Honeywell Bull (July 1980).

Jazayeri 1974. .
M. Jazayeri, “‘On Attribute Grammars and the Semantic Specification of Programming
Languages,” Report No. 1159, Case Western Reserve University (October 1974).

Johnson 1978.
S. C. Johnson, YACC: Yet Another Compiler-Compiler, Bell Laboratories, Murray Hill
(July 1978).

Joy 1980.
W. N. Joy and M. R. Horton, “An Introduction to Display Editing with Vi,”” Berkeley
Unix Programmers Manual, (September 1980).

Kernighan 1978.
?. W.) Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall
1978).

Kernighan 1979.
B. W. Kernighan and M. E. Lesk, LEARN - Computer Aided Instruction on UNIX, Bell
Laboratories (January 1979).

Knuth 1968. _
D. E. Knuth, “‘Semantics of context-free languages,” Math. Systems Theory 2 pp.
127-145 (1968). See also vol 6, page 95, 1971

Knuth 1973.
D. E. Knuth, “Threaded Trees,” pp. 319 in The Art of Computer Programming, Volume
L Addison-Wesley (1973).

Ledgard 1977.
H. F. Ledgard, “Production Systems: A notation for defining syntax and translation of
programming languages,” IEEE Transactions on Software Engineering, (April 1977).

Lesk 1979.
M. E. Lesk and E. Schmidt, Lex: A Lexical Analyzer Generator, Bell Laboratories,
Murray Hill (January 1979).

Morris 1981.
J. M. Morris and M. D. Schwartz, “The Design of a Language-Directed Editor for
Block-Structured Languages,”” ACM Special Interest Group on Programming Languages
16(6) (June 1981).

Ossanna 1976.
J. F. Ossanna, NraffiTroff User’s Manual, Bell Laboratories (October 1976).

128

Persch 1980.
G. Persch, G. Winterstein, M. Dausmann, S. Drossopoulou, and G. Goos, “AIDA
Reference Manual,” Technical Report Nr. 39/80,, Institut fuer Informatik II,
Universitaet Karlsruhe (November 1980).

Raiha 1980.
K Raiha, *“Bibliography on Attribute Grammars,” SIGPLAN Notices 15(3) pp. 35-44
(March 1980).

Reid 1980.)
B. K. Reid and J. H. Walker, Scribe Introductory User’s Manual, Unilogic, Ltd., 605
Devonshire St., Pittsburgh, PA 15213 (1980).

Reps 1981a.
T. Reps, Private Communication May 1981.

Reps 1981b.
T. Reps, “‘Optimal-time Incremental Semantic Analysis for Syntax-directed Editors,”
TR 81-453, Cornell University, Ithaca, N. Y. (March 1981).

Rowe 1979.
L. Rowe and K. Shoens, ‘“‘Data Abstraction, Views and Updates in RIGEL,” Proceed-
z'ngs of 197)9 ACM Special Interest Group on Management of Data Conference, pp. 71-81
May 1979).

Sandewall 1978. _
E. Sandewall, *‘Programming in the Interactive Environment: The Lisp Experience,”
Computing Surveys 10(1) pp. 36-71 (March 1978).

Stallman 1978.
R. Stallman, “Structured Editing with a Lisp,” Computing Surveys 10(4) pp. 505-507
(December 1978). Surveyers’ Forum

Teitelbaum 1979a.
T. Teitelbaum, “The Cornell Program Synthesizer: A Microcomputer Implementation
of PL/CS,” TR 79-370, Cornell University (July 1979).

Teitelbaum 1979b.
T. Teitelbaum, “The Cornell Program Synthesizer: A Syntax-directed Programming
Environment,” ACM SIGPLAN Notices 14(10) p. 75 (October 1979).

Teitelman 1977.
W. Teiteiman, *‘A Display Oriented Programmer’s Assistant,” CSL 77-3, Xerox Palo
Alto Research Center (March 1977).

Teitelman 1978.
W. Teitelman, Interlisp Reference Manual, Xerox Corporation, Palo Alto Research
Center (1978).

van Wijngaarden 1975.
A. van Wijngaarden, B. J. Mailloux, J. E. Peck, C. H. A. Koster, M. Sintzoff, C. H.
Lindsey, L. G. L. T. Meertens, and R. G. Fisker, “Revised Report on the algorithmic
language Algol 68, Acta Informatica 5(1-3)(1975).

Wegner 1972.
P. Wegner, “The Vienna definition language,” Computing Surveys 4(1) pp. 5-63
(March 1972).

Wilcox 1976.
T. R. Wilcox, A. M. Davis, and M. H. Tindall, *‘The Design and Implementation of a

Table Driven, Interactive Diagnostic Programming System,” Communications of the
ACM19(11) pp. 609-616 (November 1976).

129

Yonke 1975.
M. Yonke, “A Knowledgeable, Language-Independent System for Program Construc-
tion and Modification,” Rep. ISI-USC-RR 77-42, University of Southern California,
Information Sciences Institute (October 1975). Also University of Utah Ph.D. disser-
tation, University Microfilms no. 76-10,349

1'91dso Jo [sbog

woiboud

/o POPPD 84D SIUPUWUIC)

P1-o1dse

Ott

1681 91°91 g2 uns
((ea-2g quis-zg YeUy) quis'sg 198
(quis'sg =108
(qus2g sosn]

/e
STUNUSIDIT) O3 UMOP ‘PIYSDY
‘sj08p M3 wiosf dn 0193 joquAS a3 s5nd o

(V4
[oX PUZ [UX IYETY TR T Tns

QX TIY (08P UMK [UX wPeg ‘mresdoad
oy
«+[6-0 Jaqumy
2]
w0 sowdssyqa
o[\ 1)} v...\.([/-]..\...\lt.-])..\-/.. o uswmo)
1/77d O8 ‘S3uswiui0d ou SOV FTJSY ‘00N o/

m}x
/¢ SUuOISBRLAZE SO0 ADY INQ ‘FUDIFUCO JOU D YIIYM SUIYO] o/
=/ baN
By 53
ol uoIedy
ll)“ m“d'l
e “m
Py mid
452, 89U030g
e VW@IOY
wte jmeg
JTMITOY
/¢ Ukiof suo AU yIVD 820V} — FUYOR JUDIIUOD o/
«9578},, gy
L0y, angl
uopu °ﬂ
LA, IR
B 1d
JSSR, /N3
um;an uagy
2
«andins, nding
Jsndu, ndog
wfORy i |
«100Q, 100§
ll‘m” ‘q
umu pus
JU180q, wleg

SRIDASARY
/¢ Spiom penissas SO 3! o/

/e

‘181 sbod ‘ge8r sunpy ‘sRanung

Bugnduicy FIY ‘. Suapulfeg ouwdoy Jo 4ndwos V., o

288 ‘SPIDIND S0 JOF 'md:Mpw;ndv?qm.

PUD ‘SUNLNDIE apYM ‘Surweinis fi (Sajuod o
Duspnyowy) edfy Aud 03 siepwnod 'SUDI00g ‘s4oBo3uy o
sapnious & 99 1081y uo pasoq ‘sdonbumy pOuWie

? 8 (nrdwosy afonSuv] Buwwniloy sduns) .mrsv .

T1dSY Jo uonduiosag 707 :/

suopdindsaq @] Jdmexy Prapdse

V XIpuaddy

131

asple.ldl ' asple.ldl

...program
/.

* the declarations maks o symbol table, which will de passed

o to the statements to uss for checking.

\74
decl_train: declaration . decl irain
L (uses $1.stent)
Eaeta $0.atab)
| get 80.stab (stjcin $l.stent (empty tnull)))]
decl_train Znl declaration
[uses $2.stent $1.stab)
sets $0.stab)
sct 80.stab (stjcin 32.stent $1.stab))]
declaration: mode idlist Semi declaration
/* copy the mode of”mdc"owmwm‘/
[cp $1.pmede 32.inmode]
cp $l.nrofs $2.innrefs]
/’copysymboltab&cwﬁom(dlﬁtbmnt‘/
{ep $2.outtab $0.stent]

Vad
o A mode has two attridbutes: ¢ primative mode (pmods)

: and the numbsr of rsfersnces (nrefs).

/ .-
mode: Bool mode
{ uses)
'sets 30.pmode)
sct 80.pmode 0 /* BOOLEAN */
uses)
sets 80.nrefs)
il set $0.nrefs 1)
Int
[insea)
sets 80.pmode)
(set $0.pmode 1 /* INTEGER */)
l uses)
sets 80.nrefs)
E sct $0.nrefs 1)
Ref mede
{ uses $2.pmade)
sets 80.pmode)
set $0.pmode $2.pmode)
l uses $2.nrefs)
sets 80.nrefs)
] sot $0.nrefs (plus $2.orefs 1))

/.
'M(dlmw:amdc.pmnwwdctouchﬂhm&t.
¢ which makes an sts ond passes the collsction of ste’s dack up to
L]

[V3) . 39
1dlist: d 1dlist

Jun 28 16:16 1881 Page 2 of aspla.ldl

132

asple.ldl asple.ldl
...tdlist
[gus 80.inmede $0.innrefs)
sets $0.outtab)
set $0.outtab

(addste (namo $1.self) (empty tnull) $0.inmode $0.innrefs)

Id Comma idlist
cp $0.innrefs 83.innrefs]
cp 30.inmode $3.inmode]
uses $0.innrefs $0.inmode 83.cuttab)
sets $0.outtab)
set 30.outtab
(oddste (name $1.self) $3.cuttab 30.inmode 30.innrefs)

,.
'/Mmhlmuhmudmmm.bumodhwm.
®

stm_train: statement stm.irain
cp $30.stab $1.stab]

statement Semi Xnl stm_train
[cp 80.stab $1.stab $3.stab]

statement: statement

asgt_stm
[cp $0.stab $1.stab]

cond_s

tm
cp $0.stab $1.stab]

locp_stm
cp 30.stab $1.stab]

transput_stm
[cp 80.stab S1.stab]

asgt_stm: 14 Becomes exp asgi_stm

/* Pass the stab through to the expression °/
[ep 80.stab $3.stab]
/* pass down the # refs ezpected on lhs */
[uses 30.stab)

sets S(S.d:)-uh)

ste
set ste (lockup $0.stab (name $1.self)))
) set $3.drefs (subl (getattr ste 1 /* NREFS */)))

]
/* check the id is declared and compatidle with ths ezpr */
[uses 30.stab 83.primmode)
sots $82.idste)
(ste)
sct ste (lockup $0.stab (name $1.self)))
sct 32.idste ste)
check "undeclared id" (ne ste taull) $1.self)
(check "type clash”
(oq (getattr ste 0 /* PHODE */)
$3.primmode)
$0.3elf)

Jun 28 10:16 1981 Page 3 of asple.ldl

133

asple.1ldl asple.ldl
...asgt_stm
]
Vad -
°O\cclcthctthcczpttboohm.mdpaath¢:t¢bt~vwhhwm.
(74
cond_stm: If exp Then Xnl Xrshift stm_train %nl Xishift Fi cond_stm
[ep 80.stab 82.stab $4.3tab 2
uses 32.primmode 4
sets 82.drefs)
progn
?ut $2.drefs 0)
check "boolean expected”
(oq 32.primmode 0 /* BOOLEAN */)
$2.30lf)
)
Lexp'l‘hen:nl Xrahbift stm_train %nl
Else %Xnl Zrshift stm_train Xnl Xlishift Fi
[ep $0.stab 82.stab $4.stab 88.stab]
uses 32.primmode)
sets 32.drefs)
progn
set 82.drefs 0)
check "boolean expected”
(eq 32.primmocde 0 /* BOOLEAN */) ..
$2.self)
)
]
/° Loop {3 fust like ¥f. */
loop_stm: While exp Do %nl Xrshift stm_train %nl Xishit End loop_sim
cp $0.stab $2.stab $4.stad
uses $2.primmeode
sets $2.drefs)
zlet $2.drefs 0)
check "boolean expected”
(eq $2.primmode 0 /* BOOLEAN */)
) $2.3elf)
]
transput_stm: Input Id transput._stm
/° tnput: check that variadle is declared */
[uses $0.stab)
sets 81.idste)
(ate)
set ste (lockup $0.stab (name 32.self)))
set S1.idste ste)
) check "undeclared variable” (ne ste) $2.self)
7% oulput: pass stad to ezpression fo check */ a
Qutput exp
[cy $0.stab $2.stab]
;mea
(sets $2.drefs)
(sst $2.drefs 0) &

]

Jun 28 18:16 1981 Puage 4 of asple.ldl

134

asple.ldl asple.ldl

/°

Exzpressions: pass symbol table down, gensrate itypes ot leaves,
pass types back up, checking for compalidility at operaiors.

drefs is passed down and is the number of references the contezt
wants there to de. There must de at least that many in the
actual value, and gero {f dinary operaiions are done.
/

exp: factor erp
/* Just copy stad doun and mode bdack up */
cp $0.stab $1.stab]
cp 80.drefs Sl.drefs]
cp 8$i.nrefs 80.nrefs
cp $1.primmode 80.primmcde]

.
]
]
*
LJ
]

exp Plus factor

/° copy stad doum */

[cp $0.stab $1.stab $3.stab]

cp $0.drefs $l.drefs $3.drefs]

7* check modes, the primmodes Acve to be the same °/

{ uses $1.nrefs $3.nrefs $1.primmode $3.primmode)
sets $0.primmeode)

- (check "type clash”
(yeq $1.primmede $3.primmede)

$0.
icheck "no ref addition” (eq $0.drefs 0) $0.self)
) sct $0.primmode $1.primmode) :

uses)
sets $0.nrefs)
set 30.nrefs 0)

/* Same tdea as ezp */

factor: rimary
cp 30.stab $1.stab]
cp 80.drefs $1.drefs]
cp $l.nrefs $0.nrefs]
cp $1.primmode $80.primmode]

factor Times primery

cp $0.stab $l.stab $3.stab]

cp $0.drefs $1.drefs $3.drefs]
uses $l.nrefs $3.nrefs $1.primmode $3.primmode)
sets $0.primmecde)

Jactor

(check "t clash”

&e 81.primmode $3.primmode)

$0.self)
check "no ref multiplication” (eq $0.drefs 0) $0.self)
set 30.primmode $1.primmeode)

)

l

]

.
.

primary: | primary

uses)
sets $0.nrefs)
set 30.nrefs 0)

Jun 28 16:18 1681 Poga 6 of asple.ldl

asple.ldl asple.1dl
s variable. Look it up and ass the mode up */
L uses 30.stab 80.drefs
sets $0.nrefs)

eheck "undeclared veriable” (ne ste tnull) $1.self)

got 80.nrefs (getattr ste 1 /* NREFS */))

t
prog (s Elet ste (loakup $0.stab (name $1.self)))
check "ref mismatch” (ge 30.nrefs $0.drefs) $1.self)

)

l uses 30.stab $0.drefs)
sets $0.primmode)

prog (ste)
set ste (lockup 80.stab (name $1.01f)))
check "undeclared variable” (ne ste tnall) $1.
set 80.primmode (gotattr ste 0 /* PMODE */))

or int constant. pass the mode up. */
[cp go.atub $1.stab)
]

gl
g
-4
s
B
@

prog (nd
set nd (eq $30.drefs 0))
check "no constant refs” nd $1.9cll)

sct 81.0k nd)

Lparen exp Rparen .
/* parenthesissed ezpression — pass mods of subezp up */
cp $0.stab $2.stab]
cp $0.drefs $2.drefs

[cp $2.nrefs so.mm]
cp $2.primmode 80.primmode]

Lparen compare Rparen
/* comparison ~ pass boolean up \74

cp 30.stab 82.stab]
cp $0.drefs $2.drefs]

uses,
zseu $0.nrefs)

wet $0.nrefs 0)

(uses)
sets $0.primmode)
set 30.primmode 0 /° BOOLEAN */)

Vad
* You caon only compars fniegers. Check this.
knouws this and we

\74
compare: exp compop exp compare
[cp $0.stab $1.stab $3.stab]
uses
sets $1.drefs)
sot $1.drefs 0)

Jun 28 16:16 1981 Pags 6 of aspls.ldl

»2

asple.ldl
l gaeta)83 drefs)
set $3.drefs 0)
l (uses 81.primmode $3.primmode)
sets 32.0k)

(check "lbks not integer”

136

asple.ldl

...compare

(eq $l.primmode 1 /* INT °/) $l.self)

(check "rhs not integer”

(eq $3.primmecde 1 /* INT */) $3.sclf)

(set $2.0k 0)
]
/* Comparison operaior — symtas only */
compop: Eq | Neq ;
/°
:/am.mmts are bdoolean or integer. Puss the right mode up.
constant: boal_constant
[uses)
sets $0.nrefs)
set $0.nrefs 0)
l (uses)
iaeta $0.primmode)
set $0.primmode 0 /* BOOLEAN */)
int_constant
{ uses
sets 30.arefs)
set $0.nrefs 0)
l uses)
sets 80.primmode)
set 30.primmode 1 /* INTEGER */)
Pl

:/Synm only for these two.
bool_constant: Trus | False ;
int_constant: Number ;

Jun 27 20:32 1881

compop

constant

bool _constant
it constant

Page 7 of aspls.ldl

01°1P1 fo I abnd

1981 60:02 9T M

7oaswoLb ! prymesd Jemmesn :yoeswrea?
ad ¢ Sans Pl :ad
! puiad al |
17D334 /¢ Rydwin o e
103sa4 ! el sueyol ;300804
uood ¢ Suung Pl :god
! [9ucd Wod |
1103U09 /¢ Mydwse o [ac0
1088U09 ¢ Uuod JueIsUe) :3095T0D
t Sung Pl |
sad Jung H -1
: mua.l. L2 |
17102834 7e Rydwse o/ ‘re3sad
j0assad ! {1e189d SpIOMSTY 1309883l
¢ joesuny |
joesurul®
308882
Joasu0d |
012038 Jo088a1 {uo008
! SUOIID3E UONI0S |
sSu0110598 /¢ Rydws o {SU013008
Jemuresdy
Vorell/ e ..) n:z\ Q.. aoudsaiyn
" 8 *Ju\Nou L g o 1\t Wﬂm"a
N e AN A=) Fumng
- wrl8=0}n 382093l
w[T6-0Z-V2=0][Z-VZ~0X], Pl
saoyoyy
¢Ju 40
v
o vesudy
wlu uand‘]
u‘u je5081qY
wlu ex0uLq]
wn jureg
W ool
JomSUDIY,
udo, d)
«SUOROUNY, suopdun g
JAvmmeady,, Jemmesn
45UaN0Y, suayol,
#JUUISUODY,, JawIsUO)
«wSPIOMEIIY,, Splousay
SPIDAEDIY
/¢ TAT o uordaiossp 107 o/
TPT'TP1 IPT'TPI

LET

ra

e

1d1.1d1

gramtail:

funsect:
funtail:

fundef:
production:

rules: |

rhs: |

semantics:

/* empty */
production gramtail ;

Functions funtail ;

/° emply °*/
fundef funtail ;

sexpr ;
Id Colon rules Semi ;

rhs semantics
rules Or rhs semantics ;

/° empty */
rhafgp;

7* empty */
semantics semrule ;

/* The following con be [cp src dest] or [uses sets code] */

semrule:

Jul 16 20:05 1981

Lbracket sexpr sexpr sexpr Rbracket
Lbracket Cp sexpr sexprseq Rbracket ;

atom
Lparen sexprseq Rparen
Dollar Intconst Dot Id ;

/° emply */
sexpr sexprseq ;

Id
Intconst
String :

1dl.1d1

...gramtail
gramiail

Junsect
Suntail

Jundef
production
rules

Ths

semantics

semrule

sezpr

sezprseq

atom

Page 2of ldL.ldl

138

lisp.1dl

/* LDL description of the default dialect of Lisp */

Xconstant
Rparen
Lparen ne
Qnote nor
Dot n'n
Z%tckens
Whitespace [\t\n]*"
Intconst *(0=9]+"
Fpanumb "0=8]+\.[0~8]+([eE][+=]?[0~0]+)?"
sm n\\n(-\n \\\\n).\\vm
Comment "[~\n]*
Atom o[~ \n\t]+"
Xgrammar
sexpraeq: /°* empty */
| sexpr sexprseq ;
sexpr: atom
Lparen sexprseq Rparen
Lparen sexpr Dot sexpr Rparen
Quote sexpr ;
atom: Atom
| Intconst
| Fpnumb
String ;

Jul 719:13 1981

139

lisp.1dl

sezprseq
sezpr

atom

Puge 1of lisp.ldL

p1'mosod fo [sbog 188l 16T L mp

"y ‘ﬂuV

“™an ﬁ'l'ﬂ!ﬂ

wbu snid

wa uolo)

= bg

w'e smIme)

u:u mas

wlu "asudy

W uased

ll. “" lna

w’u opq
ITMITTOIY

X8y, XoH

w190, 100

wATm,, TIA

«OTA,, oA

+I0A,, JRUA

.“ mun

«~2d&y, ad4L

«OYUMOD,, ojumeq

»u8Yqy,, usy]

u‘asu 398

weadaa, woday

wPdo2ad,, pdooay

+aedload,, 8oag

«Bdnpasoad,, aJnpadolq

«payoud,, pojang

«20,, 10

wfOu 10

w304, N

I, TN

«poud, POR

«1oqu], 1equ]

Wty nl

llnll n

40108, 0309

«gonouny,, uopjaum, g

«PIesIo], pleatoy

w39}, 1048

w98, oftd

+3483X0,, wleIxy

«Pud, pug

«9819,, os|g

uozu °|L

uOPy oq

AP, Alq

«I8T0D,, 15303

9889, o5v)

Ja18aq,, uidag

w3lossR,, oSSy

wLodre, Leary

ltm“ Puv
SpJoASIIY

Ze

‘PO4DIIAD 4D SOIQDMLIDA PUD 'SPUDISU0D ‘sadfly ,

30y} pud ‘peroadze aun Asyy sioym s3ze3U0O W pesn alp ,
SJUDU0O pud s8dAly Dy SYORYd 3y ‘(spuDisuod omy 4o sadAy ,
omp udam3aq 30U INQ) desy; By} UBBMIAG BIULLTIP O3 o
Smouy puv ‘ssouon puv ‘sadfy ‘spudisuco Suruipiuos

#1903 10qwifis paunjonizs 33019 © SppPng uordISIP S .

[
"Bupyoeyd sopuowes mnuod ypm ‘mosng Jo uondiiosep 707 o
o/

P Teosed PI Teosed

o7t

pascal.ldl

Lbracket
Rbracket

Rtokens
Whitespace
Comment

Id “(a=zA=Z]
lll(‘o\n]'oo).on

Fpnumb "[0-9]4-\ {0-8]+([eE]{+=]?[0—-0]+)?"

Zgrammar
program

cp $1.builtins 83.itab
uses $3.stal
sets 84.stab)

set 84.stab (hesh $3.stab $3.self))

tcp $4.stab 80.stab]

btab decis

{cp $1.builtins $2.itab
(uses $2.sta

sseta $0.stab)

set $0.stab (hesh $2.stab $2.self))

nen
[0
ngn
nyn
nern

”/'

" btab proi _hedr decls block Dot

btab: btabchild
/'

* e

(

lcp $1.builtins $0.builtins]

btabehild: 7o empty */ ;

prog_hedr:

block:

dury the duilt in symbol tadie over hsre to
* ksep it from getting reeveluated.
o/
(uses)
?ets $1.builtins)
prog (st)

)

Prog 14 Lparen id_list Rparen Semi

Begin stat_list End

E
{cp $0.stab $2.stab]

Jul 718:13 1881

alize)

st $1.builtins)

cond ((eq st tnnll)
set $1.

(cmm (builtins $1.seif))))

141

pascal.ldl

[\t\b\r\f\n]+
"%\"('\"(l“']I\"~\"[~)])'\"‘)\”)l(\"t\"[*l]‘\"!\”)i(#['-\n]‘\n)"
a—zA=-Z0~9)*"

program

biab

biabchild
prog-hedr

block

Page 2 of pascal.ldl

adout record flelds.

142

pascal.ldl

...block

This makes us cry wolf ¢n "with” simts

decauss flelds look lke variables. So we don’t check
any varigbles that ars insrids o with statament.

{ gusu)
sets $2.inwith)
sot $2.inwith 0)

/‘
* DECLARATION PART
* input: itad (input symbol tabdls)
:,ouw: stad (local symbol tabdle)
decls:
decls decl
cp 80.itab $1.itab
cp $1.stab $2.itab
cp $2.stab $0.stab

7° lambdda */
[ep $0.itab $0.stab]

decl:

labels
cp $0.itab 81.itab]
[cp $1.stab $0.stab)

const_dec]
[cp $0.itab $1.itab]
lop S1.5tab $0.stab)

type_decl
cp $0.itab 81.itab]
[cp 81.stab $0.stab)

var_decl
cp 80.itab $1.itab]
cp Sl.stab $0.stab)

proc_decl
cp $0.itab 31.itab]
cp $l.stab $0.stab]

Vi
® LABEL PART
*/

labels:
Label label_decl Semi
[cp $0.itab $0.stab]

label_deck:
int

label_det!l Comma Int

Jul ?719:13 1881

Vad

¢ Since this ¢s only a partial tmplementation, we don’t know
[]

[J

[]

L)

decls
decl
labels
s* Don’t bother checking labels */
: label _decl

Page 3 of pascal.ldl

143

pascal.ldl pascal.ldl

...ladel decl
’°
:/cousr PART

const_deck: consi_decl
Const Id Eq const Semi

[cp $0.itab $4.stab]
uses 30.itab $4.type)
sets $0.stab)-
set $0.stab
(checkaddste 832.self 20.itab 1 /*consiant®/ $4.type))

const_decl Id Eq const Semi
cp 30.itab $1.itab]
cp $l.stab 84.stab]
uses §1.stab $4.type)

sets $0.stab)
oet 30.stab
] (checkaddste $2.self $1.stab 1 /*constant®/ $4.type))
Vad
® TYPE PART
./
type_decl: . type..decl

Type Id Eq type Semi
[cp $0.itab $4.itab]
uses 34.stab 84.type)
sets 30.stab)
set 80.stab
(checkaddste $2.self 84.stab 2 /*fype*/ $4.type))

type_decl Id Eq type Semi
cp 30.itab Sl.ltab]]
cp 81.stab $4.itab

uses 84.stab 84.type)

sets 30.stab)
set $0.stab
] (checkaddste $2.self $4.stab 2 /*type®/ 84.type))
Vad
® VAR PART
L4
var_decl: . var_decl

Var vid_list Colon type Semi
cp 80.itab $2.itab]
cp 32.stab $0.stab
cp 34.type 82.type
cp 30.itab 34.itab]

var_decl vid_list Colon type Semi
cp $0.itab 31.itab
cp $l.stab 32.itad
cp $2.stab 80.stab
cp $4.type 32.type
cp $l.stab $4.itab]

Jul 719:18 1581 Page 4 of pascal.ldl

L

144

pascal.ldl pascal.ldl
...var_decl

“ vid_list fo decl.

M r vor

* input: input dol tadle), these {ds

. output:“:t:b((outpﬁ?m symbdol tcglc). Cupe of o &)

°/ .y g
vid_list: 'm wvid_list

[suaes $0.itab $0.type)
sets $0.stab)

(set 30.stab (checksddste
S1.self 30.itab 3 /* variable*/ $0.type))

?

vid_list Comma Id
cp 80.itab 81.itab]
cp 30.type 81.type]
uses $1.stab $0.type)
sets $0.stab)
sct $0.stab (checkaddste
] 83.3elf $1.stab 3 /* variable®/ $0.type))

7/°
® PROCEDURE AND FUNCTION DECLARATION PART
¢ input: 4ad. output: stad.
® Passes a reference to itad with this Jhcad Gdd:: as giad p‘:o“:tch.
‘Couldcuﬂymfdlpmmpcﬂy passing doun com, stad
: instead of current one (pass up and down when completed).
/

proc_decl: proc.decl
phead Forward Semi

[cp 80.itab $0.stab

cp $0.itab 81.gtab /* Dummy, won’t de used */

Phead Extern Semi
cp $80.itab $0.stab
jcp 80.itab 81.gtab 7* Dummy, won’t bs used */

phead decis block Semi
[cp 80.itab $1.gtab]
[cp 31.cgtab 30.stab)
cp 8l.stab $2.itab]
{uses $2.stab)
(sets $3.stab)
(sot $3.5tab (hash $2.stab $2.9elf))

]
phead: ' phead
Procedurf Id params Semi

uses $0.gtab $5.type)
sets $0.ogtab)
set $0.ogtab

checkaddste $2.self $0.gtab procedure void))

l uses $0.ogtab)

§set $3.itab)

set 33.itab (empty $0.cgtab))
cp $3.stab $0.stab)

Function Id params Celon type Semi

Jul 719:13 1981 Page 5 of pascal.ldl

145

pascal.ldl pascal.ldl
[uses $5.stab $5.type)
sets $0. octeb) .
set 30.0 -
?chechddsto $2.30}f $5.stab function $5.type)) <
i {usea $0.0gtab)
sets 33, itub)
set 83.itab (emply $0.cgtab))
‘cp $3.stab m.stabil ¢
cp $0.gtab 8$S.itab
params: ' params

Lparen param_list Rparen
cp 30.itab 32.itab]
cp $2.3tab $0.stab]

/* lambdda */
[cp $0.itab $0.atab]

parem_list: param_list
param

cp 30.itab 81.itab]
cp $Si.stab 30.stab)

peram_list Semi param .
cp $0.itab 81.itab
cp $i.stab 33.itab
cp $3.stab 80.stab

7
¢ PARAMETERS
*/

param
pid_list Colen type
lcp 30.itab $3.itab
cp 33.stab $1.itab
cp $1.atab $0.stab

Var pid_list Colon type

lcp $0.itab 84ua
cp $4.stab $2.itab
[cp $2.3tab $0.stab

Function pid_list Colon type
[cp "$0.itab $4.itab
cp $4.stab $2.itab

cp $2.stab $0.stab

Procedure pid_list
[cp $0.itab 32.1tab]
cp $2.stab $0.stab)

pid_list: pid list >
[uses $0.itab

sets $0.stab
set 30.stab (checkaddste $1.moif $0.itab parameter 0))

Jul 719:13 1981 Puage 8 of pascal.ldl

pascal.ldl pascal.ldl

pid_list Comma Id
[cp 80.itab $1.itab]
uses $81.stab

sets $0.stab
sct 30.stab (checkaddste $3.self $1.stab parameter 0))
! .
/e
* CONSTANTS
(74
const: const
String
[uses)
sets 80.type)
set 80.type array)
number

cp $l.type mtypef
cp 30.stab $1.stab

Plus number
cp $2.type So.typeij
cp 80.stab 82.atab

Hinus number
[ep $2.type. So.type]]
cp $0.stab $2.stab

pumber: number

Id
[es $0. stabg
sets Sottyye
3pn¢ (ste)
ste (lockup $0.steb (name $
gcheake"t(Jndeclgred '::nst(an " (ne1 ::0 t)'zmll) $1.9elf)
eck "Constant expected”
geuttr ste 0) 1 /*constant®/) $1.sell)
) (set SOtype (gcmu- ste 1))
.
§ ets $0.type)
] sct 30.type integer)
Fpnumb !
[uses)
sets 30.type)
] set 30.type real)
const_list: : const_list
const

ecp 30.stab $1.stab]
const_list Comma const

cp $30.stab $1.stab
ep 80.stab 83.stab

Jul 719:18 1981 Pugs 7 of pascal.ldl

147

pascal.ldl pascal.ldl
...const_list
r
* TYPES
o
type: sizaple_type type

cp $1.stab So.atab%

cp 30.itab 81.itab]
cp 81l.type 80.type

1d
[cp 80.itab $0.stab]
uses)
sets 80.type)
set 30.type pointer)

struct _t;
cp $0.itab $1.itab]l
cp $l.stab So.stnb]"
cp Sl.type 80.type

Packed struct_type
cp $0.itab $2.itab]
cp $2.stab m.mb}
cp $2.type $0.type

limple_tyf:: : sﬁnple_t‘ype
[cp $0.itab 30.stab]
uses $0.itab)
sots $0.type)
(ste)

chock "Undeclared type” (ne ste tnull) $i.self)
check "Type expeacted”
getattr ste 0) 2 /*type®/) $1l.melf)

gad. ste (lockup $0.itab (nsme $1.seif)))
(equal
(set 30.type (getattr ste 1))

Lparen ei}i._llst Rparen

* Should enter eid_list in symbol tadle as en 3
¢ To do this we have to pass the symbol table doun
¢ 0 oll types cnd dack up. Later.

\ 74
cp $0.itab $2.itab]
cp $2.stab $0.stab)
(uses)
sets 80.type)
int 80.type enum)

|
const Dotdot const
cp 80.itab 80.stab
cp 80.itab 81.stab
cp $0.itab 83.stab
cp $Sltype $0.type] /* Should do some checking °/

struct_type: ’ struct._lype
Array Lbracket simple_type_list Rbracket Of type
fcp $0.itab $8.itab]

Jul 718:13 1981 Page 8 of pascal.ldl

w

pascal.ldl pascal.ldl

cp 38.stab 30.stab)
uses)
sets $0.type)
set 30.type array)

r:p 80.itab $3.itab]

File Of type
cp 30.itab $3.itab]
cp $3.stab 30.stab]
uses)
sets 80.type)
set 30.type file)

Set Of simple_type
cp $0.itab $3.itab]
cp $3.atab $0.stab]
uses)
sets 80.type)
set 30.type set)

Record ﬁeld _list End
cp $0.itab 80.stab
cp $0. itab Szitab

aets 30 type)
(set 30.type record)

simpls_type_list: : simple_type_list

simple_type
cp $0.itab $1.itab]
cp $1.stab $0.stab]

simple_type_list Comma simple_type
cp $0.itab $1.itab
cp $1.stab $3.itab
cp $3.stab $0.stab

eid_list: eid_list

{ uses $0.itab
sets $0.stab
set 30.stab (checkaddste $1.self $0.4tab 1 /*constant®/ enum))

eid_list Comma Id
cp 30.itab 81.itab]
uses $1.stab)
sets $0.stab)
set 30.stab (checkaddste $3.self $1.stab 1 /*constant®/ enum))

Vad
* RECORD TYPE
s/

fleld_list: fleld_list
fixed_part varient_part
cp $0.itab 32.itab
cp $0.itab 81.itab

Jul 719:13 1981 Page 9 of pascal.ldl

pascal.ldl

fixed _part:
cp $0.itab $1.itab]

fixed_part Semi fleld
cp $0.itab 3l.itad
cp 80.itab 83.itab

/* lambdda */

|
id_list Colon type
{cp $0.itab $3.itab]

fleld:

variant_part:
/* lambda */

|
Case type_id Of variant_list
cp 80.itab 84.itab]

Case Id Colon type_id Of variant_list

[cp $0.itab $8.itab]

variant _list: '
variant
cp $0.itab $1.itab)

variant_list Semi variant
[cp $0.itab $1.itab
cp $30.itab $3.itab

i

/° lambda ¢/

variant:

|
const_list Colon Lparen field_list Rparen

cp $0.itab $1.stab
cp $0.itab $4.itadb

’

/*
* STATEMENT LIST
o/

stat_list:
stat
cp $0.stab $1.stab]
cp $0.inwith $1.inwith]

stat_lsth stat
cp 30.stab $1.stab
cp $0.stab 82.stab
cp 80.inwith $1.inwith
cp 30.inwith 32.inwith,

stat_lsth:
stat_list Semi
[ep $0.stab $1.stab]
cp $0.inwith $1.inwith]

Jul 719:13 1981

149

pascal.ldl

...fleld list
fized_part

fleld

variant_part

variant_list

variant

stat_list

stat_Isth

Page 10 of pascal.ldl

pascal.ldl

Vad
® CASE STATEMENT LIST
s/

cstat_list:

cstat
[cp $0.stab $1.stab]
lcp 80.inwith $1.inwith]

cstat_list Semi cstat

[cp 80.stab 31.stab]
cp 30.inwith $1.inwith)
cp 80.stab 83.stab)
cp $0.inwith 33.inwith])

cstat:
const_list Colon stat
[cp 30.stab 21.stab
cp 30.stab $3.stab
cp 80.inwith $3.inwith]
/° lambdda */
/.
* STATEMENT
A4
stat:
/* lambda */

Int Colon stat
cp 80.stab 83.stab]
cp 8C.inwith $3.inwith)

proc_id

proc_id Lparen wexpr_list Rp
cp $0.stab 83.stab]
cp 30.inwith $3.inwith]

assign
cp $0.stab $1.stab]
cp $0.inwith $1.inwith]

Begin stat_list End
cp 80.stab 82.stab)
cp $0.inwith $2.inwith]

Case expr Of cstat_list End
cp 80.stab $2.stab]
cp 80.inwith $2.inwith]
cp 80.stab 84.stab)
cp 30.inwith $4.inwith)

With var_list Do stat
cp 30.stab $2.stab]
cp 30.inwith $2.inwith]
cp 80.stab 84.stab]
uses)
sets $4.inwith)
sot 34.inwith 1)

Jul 719:13 1981

150

pascal.ldl
...stat_Isth

cstat_list

cstat

stat

FPage 11 of pascal.ldl

pascal.ldl

|
While expr Do stat

[cp $0.atab 32.stab]
[cp 80.inwith $2.inwith]
lcp 80.stab $4.stab]
[cp 80.inwith $4.inwith]

Repeat stat_list Until expr

For assig

cp $0.stab 82.stab)
[cp 80.inwith 32.inwith]
[cp 80.stab 84.stab)
cp 30.inwith 84.inwith]

n To expr Do stat
cp 80.stab $2.stab]
cp 30.inwith 82.inwith}
jcp 80.stab 84. stadb]
cp $0.inwith $4.inwith]
cp $0.stub 88.stab]

cp 80.inwith $6.inwith]

For assign Downto expr Do stat

Goto Int

cp 30.stab 82.stab]
cp 80.inwith $2.inwith]
cp 80.stab 84.stab]
cp 30.inwith 84.inwith]
cp $0.stab 886.stab]
cp 80.inwith $6.inwith]

If expr Then stat

If expr T

[cp 80.stab 82.stab]
[cp 80.inwith $2.inwith]
cp $0.stab 84.stab]
cp 80.inwith $4.inwith]

hen stat Else stat

cp $0.stab $2.stab]
cp 80.inwith $2.inwith]
[cp 80.stab 84.stab]

cp 80.inwith $4.inwith]
cp 80.stab 86.stab]
[cp 80.inwith $6.inwith]

Assert Lparen expr Rparen

cp $0.stab $3.stab]
[ep $0.inwith $3.inwith]

variable Colon Eq ex

assign:

cp 80.stab 81 stab]
cp 80.inwith $1.inwith]
cp $0.stab $4.stab)
lep $0.inwith $4.inwith]

/°
* EXPRESSION
A4

expr:

simple_expr relop simple_expr
[cp $0.stab $1.stab]

Jul 7189:13 1981

151

pascal.ldl

...Stat

assign

exzpr

Page 12 of pascal.ldl

143

"

g

-4

ai

pascal.ldl
cp $0.inwith 81l.inwith]
cp $80.stab $3.steb]
cp $0.inwith $3.inwith]
simple_expr
cp 80.stab 81.stab]
cp 80.inwith $1.inwith]
simple_expr:

simple_expr addop term
cp 80.stab 81.stab]
cp 80.inwith 81.inwith]
cp 30.stab 83.stab]
cp 80.inwith $3.inwith]

Plus term
cp $0.atab $2.stab]
cp 80.inwith $2.inwith]

Minus term
cp 80.stab $2.stab)
cp $0.inwith $2.inwith]

term
[cp $0.stab 81.stab]
cp 80.inwith $1.inwith]

term:
term divop factor
cp 80.stab Sl.stab)
cp 80.inwith $1.inwith]
cp 80.stab 83.stab]
cp 80.inwith 83.inwith)
factor
[cp 80.stab 81.stab]
cp 30.inwith $1.inwith)
factor:
Not factor
cp 80.stab $2.stab]
cp 80.inwith $2.inwith]
" |
String |
Int
Fpoumb
variable

cp 30.stab $1.stab]
cp 30.inwith $1.inwith]

func_id Lparen wexpr_list Rparen
cp $0.stab $3.stab)
cp 30.inwith $3.inwith]}

Lparen expr Rparen
(cp 80.stab $2.stab]

Jul 7189:13 1881

152

pascal.ldl

...expr

simple_ezpr

term

Sfactor

Page 18 of pascal.ldl

153

pascal.ldl pascal.ldl

...Jactor
cp $0.inwith $2.inwith]

Lbracket element_list Rbracket
cp $0.stab 32.stab]
cp $0.inwith $2.inwith)

Lbracket Rbracket

.
.

element _list: element_list
element
cp $0.stab $1.stab)
cp $0.inwith 81.inwith)

element_list Comma element
cp 30.steb $1.stab]
cp $0.inwith 31.inwith]
cp $0.stab $3.stab)
cp $0.inwith $3.inwith]

element: element

expr
cp $0.stab 31.stab]
cp $0.inwith $1.inwith]

expr Dotdot expr
cp 30.stab 31.stab]
cp $0.inwith $1.inwith)
cp 30.stab $3.stab)
cp $0.inwith $3.inwith]

g
¢ QUALIFIED VARIABLES
s/

variable: variable
Ia

[susea 80.stab $0.inwith)
sets Sgt t.y)pe)
¢ ¢ ?ut ste (lockup 30.stab (name $1.seif)))
(cond ((equal $0.inwith 0)
(check "Undeclared variable"
: (ne ste tnull) $1.self))
check “Typ allowed”
¢ (eq°(e'::nl (getattr ste 0) 2 /type°/) nil)

(set 30. type (getattr ste 1))

?

_var
cp $0.stab $1.stab)
cp $0.inwith $1.inwith]

isats)80 type)
(set 80.type integer) /* guess */

qual_var: ; qual var
array_id Lbracket expr_list Rbracket
[ep $0.stab $3.stab])

Jul 719:18 1881 Page 14 of pascal.ldl

pascal.ldl

- cp $C.inwith $3.inwith]

¥ qual_var Lbracket expr_list Rbracket
cp 80.stab $1.stab]
cp $0.inwith $1.inwith]
< cp 30.stab $3.stab]
cp 30.inwith $3.inwith]

record_id Dot fleld_id

1

qual_var Dot field_id
cp $0.stab 81.stab]
cp $0.inwith $1.inwith]

ptr_id Arrow

qual_var Arrow
cp $0.stab $1.stab]
cp $0.inwith $1.inwith]

Pald
’/Ezprnm with write widths
[J

wexpr:

expr
[cp 30.stab $1.stab]
[cp 80.inwith $1.inwith]

expr Colon expr

cp 30.stab $1.stab])
'cp 80.inwith $1.inwith]
cp $0.stab $3.stab]
lcp $0.inwith 83.inwith]

expr Colon expr Colon expr
cp 80.stab $1.stab)
cp $0.inwith $1.inwith]
cp 80.stab 83.stab]
[cp 80.inwith $3.inwith]
cp 30.stab 85.stab]
[cp 80.inwith $S.inwith]

expr octhex
fcp 30.atad $1.stab]
[cp $0.inwith $1.inwith]

expr Colon expr octhex
cp $0.stab $1.stab]
cp $80.inwith $1.inwith]
cp 80.stab $3.stab]
cp $0.inwith 83.inwith]

< Hex I

expr_list:
expr
B cp $0.stab $1.stab]
cp $0.inwith $1.inwith]

Jul 7189:13 1981

154

wezpr

octhez

ezpr_list

Page 16 of pascal.ldl

pascal.ldl

expr_list Comma expr
cp $0.stab $1.stab]
cp 30.inwith $1.inwith]
cp $0.stab $3.stab)
cp 30.inwith $3.inwith]

wexpr_list:

wexpr
cp 80.stab $1.stab]
cp 80.inwith $1.inwith]

wexpr_list Comma wexpr
cp 30.stab $1.stab]
cp 80.inwith $1.inwith]
cp 80.stab 83.stab]
cp 80.inwith $3.inwith]

/®

©° OPERATORS

A4

relop:
Eq
Lt
Gt
Lt Gt
Lt Eq
Gt Eq
In

addop:
Plus

Minus
Or

divop:
Star

Slash

Mod

7°
* LISTS
A4

var_list:
variable
[cp $0.stab $1.stab)

Jul 719:13 1981

155

pascal.ldl

...expr_list

wezpr_list

relop

addop

divop

var_list

Page 18 of pascal.ldl

a

v

o

JAN

pascal.ldl

cp $0.inwith $1.inwith]

var_list Comma variable
cp $0.stab $1.stab]
cp 30.inwith $1.inwith]
cp 80.stab 83.stab]
cp 30.inwith $3.inwith]

id_list:
Id

|
id_list Comma Id

/E/Idﬂwﬁcr productions with semantic resirictions
const_id:

type_id:

array_id:

ptr_id:

:'ecerd_ld:Id

fleld_id:

proc_id:

Id

func_id:
1d

Ztunctions
/.

.
.

156

pascal.ldl

.var.list

id_list

const_id
type_id
array-id
pirad
record.id
fleld_id
procid

Juncd

* Thais avoids having fo quote lots of stuff. Thess are ali essentially
* manifest constants whose valus doesn’t maiter, €.g. snumaerated lypes.

sot arctan (quote arctan))
?:nou beolean))
set char (quote char))
sot chr (quote chr))
constant (qucte constant))

FETTTRTIE
28
52
s

EF

(quote flle
tion (quote function))

Jul 718:13 1881

Page 17 of pascal.ldl

iy

P1'350d fo g1 obng

(epouewy (jrum o3s bo) |

(3@ 19 quis] (apououren ouren) wpppa;
(((epouenvu ‘a

‘Ruvsssoau f3 sauy ”3 uy peomyd

‘aumu sy Sususouod ap
fipoasuo 3um

(2v 10 quyg

“MM'MM
ans sypw 03 354y 2o

(eslooq /4qunisucoss 1 (wes[ooq /equdisucs,, 1 (a

(0303w /o0dfye/ 2 (uwaiooq /40

(uuajooq worjoum; (ives uopnounm; (dxs uoy

(auojooq wopduny (sado3uy

1861 60:02 42 uns

,I0NBINdap aidnmpy, yoogs
WeU) quis; auoyoo]) o3% jam

(918) Boad)
opousmun) a3sppuRoay> Unzap)

7/
nwowmmummoc:

jou 51 spouswou paivyosp
MMWWIWH:,

(

(spou
280301 /43uDisuss,, 1

g (awojooq /oadAs., 2 (ot ,,0dAy,,]
(3992 /o2dAte/ 2 (OB se2dAs,, 2 (s19)
(318 /+919m1400,/ ¢ (10803u; uopioum; (juad uojouny
(Juga wonoum) (wed Tonoun; (uwsjooq

Uopjouny (umue uopy

(398a3u; uspoumy (1esz wopdung (reaa uoryoun;

(rwas wopoumy (umue uspoun;

Je3ajur uojjouny

(«0393u; wopoun; (108970} wopoun;
(mm Kdu)
«A30[O[[eM,, MEPPR) ,x00}0, NEPPe)
«SULL,, 2%ppe) ,00ns, NEppe) ,ubs, aisppu)
«b8, Nsppe) ,ms, oyppu) ,punay, a3sppu)

«padd,, aisppu) ,pio, appe)

/401Q0%i0Ay s ©
uopjoumy

3otmy
ouTy

«PPO,, 315ppe)

«3l, a15ppe) ,dxe, 93sppu) ,urce, a1sppe)
4309, NETppe) 800, NIPpu) ,JY0, LyEppe)
«URI2I0, NEpPe) 895, MSppR) ,Indjno, oysppu)
wndul, oysppe) ,3xe), 9ysppu)
«[Usd, :ysppu) ,ualoog, @3sppe) ,uusjooq,, Nsppe) Jodeym;, oysppe)
«1UPOW, MEppu) ,ond), Swppu) o879}, osppe)

prmw. oo
TPITeosed

LST

«1992, ai=ppu)

gewy)
(9pou) sunmq nn%
(

S]qurrea ojonb) oiquisos joe
(e {(ed&y wu)mb')q ad£y jos
((ounay mn:l aunuy jos

((1xe7 ajoub) ix0y jo8
((oons ajonb) soans jos
((3abs mn:g) 3bs 08

((abs @10mB) abs 308
((a1s aroud) up j0s

((punox mondb) punos jos
((reod oy0mb) rvas jos
é(lmd ojonb) paid jes
((3ndino aond) jndino jos

((pa0 ayoudb) pio jom
((ppo 930ub) ppo 3

((7mxew ajoudb) jupxem jos

@onb) Uy e

((m
((238s3u1 ajoub) 1o¥ojur qos
((wnduy oy0mb) yndu; 308

TP Teosed

[

158

text.ldl text.ldl

ﬁwba:c&&nofTMcmwﬂMhdth
Xtckens

Word "a=-zA=-Z0-0_J+"
Whitespace “ \t\n]+"
Punctuation "[* \t\na-zA-20-8_J+"
%grammaer
text: text
text Word
text Punctuation ;

Jun 27 20:09 19881 Page 1 of text.ldl

	Copyright notice 1981
	ERL-81-53 (1 of 2)
	ERL-81-53 (2 of 2)

