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1. INTRODUCTION

Nonlinear circuits exhibiting multiple equilibrium points (dc solutions)
are indispensable building blocks (e.g., fl1ip flops) of many modern electronic
systems. Multi-valued circuits has received a great deal of attention recently -
in view of its potential applications to VLSI circuits [1-6] where significantly
fewer wirings are required over conventional designs. The phenomenon of
multiple equilibrium points is also encountered in many physical devices [7-10]
and models [11-12].

Although many algorithms have been published over the past decade which
are capable of finding multiple solutions of nonlinear resistive circuits [13-20],
except for [13-14], none can guarantee that all solutions will be found. The
other algorithms will usually find only those solutions which fall on a certain
solution branch. Random searches will sometimes incover additional solutions
falling on other solution branches. However, these algorithms all share the
serious shortcoming that they can not guarantee that all solutions will be
found. _

The algorithm described in [13-14] is an improved version of the brute-
force piecewise-linear combinatorial algorithm described in [2]].1 Unfortunately,
this algorithm is still quite inefficient and is difficult to implement in a
computer. )

One objective in this paper is to describe a new algorithm which is more
efficient and more easily programmed. This algorithm takes advantage of a new
canonical representation for single- and multi-dimensional [23,24] piecewise
linear functions. It is applicable to any resistive circuit described by a
piecewise-linear hybrid equation to be described in Section 2. The algorithm is
derived in Section 3 with illustration example given in Section 4. The il1-
conditioned cases are analyzed in Section 5 along with remedies. Finally, the
computational efficiency of this algorithm is compared in Section 6 with the
brute-force combinatorial method.

2. PIECEWISE-LINEAR EQUATION FORMULATION

Let N denote any circuit made of linear, possibly coupled, resistive elements
(e.g., linear controlled sources, transformers, gyrators, etc.) and 2-terminal
nonlinear resistors. We assume the nonlinear resistors are either voltage or
current-controlled and are approximated by continuous piecewise-linear functions.
Hence the class of circuits we allow can be depicted as in Fig. 1, where all
nonlinear resistors have been extracted across a linear n-port N. Note that

]In spite of the tremendous advances in the development of "computer circuit
analysis programs" over the last decade [14], MECA.[ZZJ remains the only existing
resistive circuit analysis program capable of finding all solutions.
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since N may contain any type of linear controlled sources, and since most device
circuit models are made simply of 2-terminal nonlinear resistors and controlled
sources [14], most practical resistive circuits are allowed. In fact, using
the recent "decomposition theorem" in [25] which asserts that any multi-terminal
nonlinear resistor can be modeled in terms of a circuit made of only 2-terminal
nonlinear resistors and linear controlled sources, we can in principle allow
all resistive circuits provided certain preliminary transformations are
performed. In other words, there is little loss of generality in developing
algorithmé for the class of circuits shown in Fig. 1.

The only additional assumption we make is that the linear n-port N in Fig. 1
has the following hybrid-representation:

E? = ??a ??b Al t : (2.1)
Y Hpa Hbb %l | &
where
AT, oo V.17 s T A [WyaaVoun vooe 01T
¥, 4 tnyvy ad 0 Yy ALY ave n
- e T = = = T
lad liyig v 110 1) 8 (g Ty, coee 1]

and [§a -S-b]T denote the source vector due to the independent sources. Efficient
computer methods for deriving (2.1) are given in [14]. Hence, we will simply
assume that (2.1) is given when describing our algorithm in Section 3. Note
that even in the few instances where N does not have a hybrid representation,
there exit many standard techniques for transforming the circuit N in Fig. 1
into an equivalent circuit N' such that the associated linear n-port N has a
hybrid representation (2.1). For example, one can always extract a small linear
resistor from any nonlinear resistor and imbed it into the linear n-port N.
Hence, the additional “"hybrid-representation assumption" does not entail any
loss of generality.

Applying the canonical representation from [23], each (piecewise-linear)
voltage-controlled resistor can be described analytically by:

Py
ik =a + bkvk + igl cki[vk - Vkil s K= 1,2,00008 (2.2)

Similarly, each (piecewise-linear) current-controlled resistor can be described
by:

Pk
Vi S 3 * b+ igl ckilik - Ikil, k = +1, 242, +see n (2.3)
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By defining
L N N ] T T
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we can combine (2.2) and (2.3) into a single vector equation

: P, ’
1l 4 n 4
a = Q' + 5‘ a + .Z .§ cj.igj gj’ .a -Bji (204) B
¥ I | J=1 1= 1p

where

el [a1a2 eeee azaz-]-l ssee an]T

B' = diagb;b, *==* byby o *<e* b ]

vji s j = ]’2’00002

]

8
ji Iji , j = z+1’ 2+2’o-oon

and Yy is the jth unit vector in R", and (-, ) denotes the vector dot product.
From Fig. 1 we have Vk = Vo ?k = iy, k = 1,2,°¢2*n. Hence, we can equate

the right-hand sides of (2.1) and (2.4) to obtain the equation :

2B bk Sl px) Byl = 0 (2.5)

where
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If we relabel the double indices in the last term of (2.5), we can recast (2.5)
into the following canonical form [24]:

p
f(x) =3 +Bx+ ,Z] ¢; | €oqx) - 84] =0 (2.6)
1=
where <5 and s1 denote simply Eji and Bji rewritten with new single indices.
Note that
f‘g] ’ j = ],z’oooop.‘,
g5 = ( T2 37 Ptheeebyiny
RIS L PR L

We have just proved that any piecewise-linear resistive circuit can be
described by a_system of multi-dimensional piecewise-1inear equations in the

canonical form (2.6). This compact equation contains only the minimum data
needed to specify the circuit. It is clearly far superior to the conventional
piecewise-linear approach where a linear equation must be specified and stored
in the computer for each region, along with its boundagx.2 )

Another noteworthy feature of (2.6) is the special form assumed by the unit
vectors Q4. Since each @ is simply a "unit vector” along some coordinate
axis, each hyperplane

(gi,g) = B'i » XE€ R"

is perpendicular to a coordinate axis. Hence the set of "p" hyperplanes in
(2.6) partition the domain R" of f(x) into a "rectangular lattice" whose
boundaries. are parallel to the coordinate axes. This remarkably simple
geometrical structure is responsible for the high efficiency of the algorithm
tobe developed in the following sections.

3. ALGORITHM FOR FINDING ALL SOLUTIONS
We begin with a simple example which illustrates geometrically the basic

2The enormous amount of data needed to be stored is in fact one of the most
objectionable features of conventional piecewise-linear analysis. This
objection is now overcome by representing the data by a compact canonical
equation.



idea behind the general algorithm to be presented in detail later.

Example 1.

Consider the simple circuit shown in Fig. 2(a). The v-i characteristics of
R1 and R2 are approximated by continuous piecewise-linear segments shown in
Fig. 2(b) and 2(c), respectively. Using the formulas in [20], R1 and R2 can
be expressed in the canonical form [20] as follow:

R1: i] =

+ 2= 3 jvp-2) + 3 |vp-s) (3.1)
+ 3
32

-h]\o -l>|<.o

. 3 |y
Applying KCL (1]=12) and KVL to Fig. 2(a), we obtain

9 (3.3)

Vi + v2 + 21‘.l
Vit v, + 2, =9 (3.4)

substituting (3.1) into (3.3), and (3.2) into (3.4), we obtain:

"2211""%\’1 +%v2-—|v]-2| + = |v]-5| =0 (3.5)
9 .1 7 - '

a7 [z 10, T.3 3 "0
4 4 2 1 2 4 3
flvqvy) = 9 |*|1 12 + 0 lvy-2] + 0 lvy-5] + 3 |v,-3]
"7 | |2 9]L"2 i K
[0
= (3.7)
0

Figure 2(e) shows that the domain of f is partitioned by the following three
1-dimensional hyperplanes (straight lines in this case) vy = 2, vy = 5, and
= 3.

Note that they are parallel to either the vy or v, axis. Hence, the domain
of f in Fig. 2(e) is partitioned into a rectangular lattice with edges paraliel
to the coordinate axis.
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The image of the lattice in the range space of f(v],vz) is shown in
Fig. 2(f). Note that each of 3 regions bounded by c'a'd'. d'a'b'e' and e'b'f’,
respectively, contains the origin of the range space as an interior point.
By the regionwise linearity of f, we can conclude immediately that the 3
corresponding regions in the domain bounded by cad (region Rl)’ dabe (region Rz)
and cbf (region R3) contain solutions of (3.7)

Observe that since there are no other regions in the range space in Fig. 2(f)
which contain the origin, the regions in the domain which contain a solution
of (3.7) are precisely Rys Ros and Rs.

Since f(-) is an affine function in each region, we can simplify (3.7) into
a system of 2 linear equations for each of the 3 regions where f(-) has a
solution. For example, in region Ry, (3.7) reduce to:

0

flvyvy) =

Nj—  pojon

solving (3.8), we obtain the following solution of (3.7) in_region R;:

i

Njw  Njw

V2

Similarly, we obtain the following solution of (3.7):

o 17
v] 4 v] 3
Region-RZ: = s Region R3: = 2

The above three solutions can be easily verified by the load-line method
shown in Fig. 2(d) . Here, we combine the 2 nonlinear resistors into an
equivalent one-port described by the 3-segment driving-point plot shown in
Fig. 2(d) [21].

3.1. The n-dimensional case:

In Example 1, we use visual inspection to determine the regions whose
images contain the origin in the range space as an interior point. However,
in higher-dimensional cases (dimensionlz 3), visual inspection becomes
very awkward (dimension = 3) or even impossible (dimension>3). We will now
develop an algorithm which will extend the preceding geometrical idea to the




arbitrary n-dimensional case.
Let f(+) be represented in the form of (2.6). The partition hyperplanes
associated with f(+) are determined by the set of equations:

(91’5) -B; =0, 1=1,2,0000p (3.9)
Consider an arbitrary k-th hyperplane Hy defined by:

<gk9§) - Bk = 0 (3-]0)
In general, Hk will be further partitioned into several sections3 by other
hyperplanes which intersect it. We consider only one arbitrary section 9,
on Hk' (See Fig. 3(a).)

For x € 040p We expand the absolute value in the last term of (2.6) and
write f(-) as:

f(x) = ék + By X (3.11)
%% %%
where x is subject to the constraint (3.10) and4
- p
3 =3+ Z 91(161) ‘ (3.12)
A i=1
i#k
B, =B+ ) gl (3.13
LA i=1
itk

The choice of + sign in (3.12) and (3.13) depends on the sign of the arguments
(OL.i,X) - B.i’ i = ]’2,""p-
=3 .
Assuming gk exists, we get from (3.11)
0.0
a’b
X = Eﬁ;]
%%

[f(x)-‘éko ] (3.14)

a%b

3A section of the k-th hyperplane H, is a subset of H, such that for all x in
this subset, sgn((gi,g)-si), i =1,2,°°++p, i # k do not change sign.

4The term involving i = k drops out in view of (3.10).

)
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Substituting (3.14) into (3.10), we get

..._'l —
o, B f(x)-2 ]> 8 =0
%Rk [ %)=y k
<: oaob 0acb

or
(@ sy)-B =0 (3.15)
0acb anb
where
y = £(x)
o =B )T g (3.16)
anb 0aob
] []
B =g, + (g Y ) (3.17)
k kT %k 2k
O’aO'b Uacb (o} O’b

Let 0506 denotes the image of a section 9,9, of Hs then (3.15) is the
representation of GQGE in the range space of f.

In Fig.3(a),let Ry and Rb denote the neighborhood regions separated by
9,9, and let X3 and Xh denote arbitrary interior points of Ra and Rb respectively.
Let their images in the range space of f be Ré, RE, Y3 and Yb respectively
(see Fig. 3(b)). '

Assuming that f is not degenerate (i.e. det Eko . # 0) in either Ra or
Rb’ then Ya and Y will be interior points of Ré andaRE respectively. The
following sign test allows us to determine whether the origin in the range
space lies on the same side of 0505 with Ya

Sign test:
Ya and the origin lie on the same side of 0505 if and only if

~

sgn(€a'y .y -8, ) =san(-8, ) (3.18)
%% %% %%

where g& and B& are defined in (3.16) and (3.17) respectively.
%% 9%

Proof of the sign test:
Since f is piecewise-linear and since f is assumed to be nondegenerate
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in the neighborhood regions of 040p° the image céoé is a portion of a linear
hyperplane represented by (a/ ,y) - B! = 0. Therefore y_ and the origin
~kc 5 > k Ja
0.0
ab ab
lie on the same side of 0506 if and only if

sgn({qy ¥, =B, ) =sgn({a, ,0)-8 )
koacb ~a koacb ~koaob - kcacb

son(-8 )
%%
which is exactly (3.18). n

In order to conclude region R; contains the origin, we need to perform
the sign test on all boundaries of R;. Hence we have the following necessary
condition:

Solution Validation Test:
If the sign test fails on any one of the boundaries of Ré, then Ra
contains no solution of (2.6).

The above test allows us to discard a region once the sign test fails on
any one of its boundaries. Therefore, carrying out the sign test over all
partition hyperplanes defined by (2.6) will allow us to identify all regions
which contain a solution of (2.6). Hence this approach guarantees that all
solutions of (2.6) will be found.

3.2. Efficient implementation of the sign test

Although the theory behind the sign test is quite simple, its practical
implementation is extremely time consuming for arbitrary piecewise-linear
equations, i.e., when f(-) in (2.6) is arbitrary. However, for the subclass
of piecewise-linear equations representing the hybrid equations derived in
section 1, the unit vectors s i=1,2,°-p,assume a particular simple form.
In this section, we will exploit this special structure to develop an efficient
algorithm for carrying out the sign test.

We will use the following 3-dimensional example as a vehicle to describe

the algorithm.

s

A. Example 2.
Consider the circuit shown in Fig. 4(a). Piecewise-linear resistors Rl

and R3 are voltage controlled; their v-i characteristics are shown in Figs. 4(b)
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and 4(d) respectively. Piecewise-linear resistor R2 is current controlled; its
v-i characteristic is shown in Fig. 4(c). Extracting R1, R2, R3 as external
ports, we obtain the following hybrid representation for the remaining linear
3-port:

Vo | = 01 1 i2 + | -5 (3.19)
ig 0 0 -1 V3 5

Substituting the equations for R1, R2 and R3 into (3.19), we obtain the
following system of 3 piecewise-linear equations:

5 5 .
g-[v]+6| - g-lv]-GI =vytiytvg-5

1 1 s .
5
V3 - Z IV3']| + 2 IV3"2| - |V3"3l = 'V3 + 5

These equations can be recast into the following canonical form:

- .35 5
5 T 1 1 6 : 3
"5 + 0 ] ] 5 + 0 l(g]a)s)"' 6| + 0 l(g295) - 5|
5] |00 -2 0 0
0] 0] K
1 1
5
0 _0_ 7
[0 ] 0
+ 10 [[Kggoxd = 2] + | 0 |Kazox) - 3] = | 0 (3.20)
:2_ _1 ] _0
where
Kz 1 0 0
)'S = 12 3 g] = gz = 0 ’ g3 g4 1 and gs = gs g7 0
v3 0_ 0 _1
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The domain H23 is partitioned by 7 hyperplanes h],hz-o--h7 into 36
regions as shown in Fig. 5(a). For example, hyperplane h] is described by
(g],g) + 6 = 0. Note that the special structure of 5 guarantees that the
hyperplanes along each coordinate axis are parallel to each other. Now, a
brute force impiementation of the sign test will require solving for gé

(o Jo}
a'b
using (3.16), and B& using (3.17),over all regions. The calculation of
0.0
ab
g& is particularly time consuming because it involves solving a system of

%%

linear equations of order n.

However, by taking advantage of the special structure of (3.20), the
total number of g& and Bé that needs to be computed can be greatly

%% %%

reduced in view of the following observations:
B. 5 observations

Observation 1:

Consider the center section defined by the rectangle abcd of h5 in

Fig. 5(b). Let a'b'c'd' denote the image of abcd in the range space and let
gé be the normal vector of a'b'c'd'. Since abcd serves as a boundary for
region 5 as well as for region 14, we can use g¢ for two sign tests. Therefore
for each g& computed by (3.16), we can perform the sign test on two adjacent
regions.

Observation 2:
For hyperplane hg in Fig. 5(c) and h7 in Fig. 5(d), let e'f'g'h’
and p'q'r's' denote the images of sections efgh and pgqrs in the range space
respectively. Let gi4 and gé3 denote the normal vector of e'f'g'h' and p'q'r's'
respectively. In Fig. 5(a), hyperplanes hgs hgs hy are parallel, therefore
gi4 and gé3 should also be parallel to gé. Consider gé3, by the parallelism,
there exists a constant t # 0, such that

te,3 = 0 (3.21)
To determine t, we observe from (3.16) and Fig. 5(d) that
b= (B, o (3.22)
~23 ~ 23 <7 )
0"
Now in (3.20), we have g5 =g, = | O (3.23)
. .
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Substituting (3.22) and (3.23) into (3.21), we get

0
(Bpg) ap =tog =t |0 (3.24)
1

Hence, t can be determined by computing the vector dot product between the
previouslycalculated gé and the last column of.§é3‘ To implement the sign test on
region 23, we also need to calculate 6é3. By (3.17), we have

The set of y in the image p'q'r's' must satisfy the equation:

<9é3’¥) - Bé3 =0 (3.26)
Multiplying (3.25) and (3.26) by t and using (3.21), we obtain

tBé3 = t823 + (95,323) ‘ (3.27)

and
(gé,x) - tB'23 =0 (3.28)

It follows from (3.28) that we can use gé instegd of gé3 in the sign test for
region 23 provided we use t3é3 from (3.27) instead of 653 at same time. Note

that (3.27) and (3-28) do not involve gé3. Hence, we have replaced the expensive
task of solving a linear system by the simple task of computing a vector dot
product via (3.24). Likewise, we have eliminated the task of calculating a new
vector by simply rescaling a scalar via (3.27) and (3.28). Note also that we need
only one column of Eé3 instead of the whole matrix for calculating t via (3.24).
It follows from the above observation and Figs. 5(b)-5(e) that only 9 normal
vectors (corresponding to the 9 sections comprising h5) are needed to perform

the sign tests for all regions associated with the group of 3 parallel hyperplanes
h5,h 6° h7.

Observation 3:
Since Observation 2 shows that the number of normal vectors g&
c.0
ab

that must be calculated by solving a linear system of equations (hence
inefficient) is equal to the number of sections of the associated hyperplane,
significant amount of computation time can be saved by choosing a hyperplane
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having the smallest number of sections.

For example, in Fig. 4(a), hyperplanes hys hy, hy and h, have 12 sections
each, whereas hyperplanes h5, h4, and h7 have only 9 sections each. In this
case, we would pick h5, or any hyperplane parallel to h5 (h6 or h7).

In the general case of (2.6), we let ki.g 0 denote the number of "parallel"
hyperplanes intersecting the X; axis.5 Hence the set of all hyperplanes
associated with (2.6) is subdivided into "n" groups corresponding to the “"n"
variables X1s X9s «ees Xpo A11 hyperplanes belonging to a given group j contains

n
the same number "Nj" of sections, where

4]
N, = I (k;+1) (3.29)
J o oL i

i=1

i#J
Hence, we simply pick a group "k" which contains the smallest number of sections;
namely,

N, = min N, (3.30)
¥ iggen Y

Observation 4:

Since each normal vector can be used to check the sign test for two
adjacent regions (Observation 1) we need only calculate B' (as described in
Observation 2) for sections lying on every second parallel hyperplane.

For example, if we start with hyperplane h5 in Fig. 4(b), then it is not
necessary to calculate B' for any of the sections comprising hyperplane h6' In
this case, B' needs to be calculated only for corresponding sections on
hyperplanes h5 and h7, using the efficient technique described in Observation 2.

Observation 5:

To implement the sign test in each region Rj, we must locate an
interior point x* € Rj and calculate y* = f(x*) using (3.11). Since all hyper-
planes intersecting a coordinate axis X; orthogonally are parallel to each other,
Xx* can be trivially chosen to be the mid point within each "bounded" region.

For example, to find 5;3 for region Rog in Fig. 4(d), we note Ry3 is bounded by
hy (x] = 8]) and h, (x2 = 82) in the x;-direction; by h, (x2 = 63) and
hy (x2 = 64) in the xo-direction; by hg (x3 = 66) and h, (x3 = 37) in the

5;7= 0 if x does not appear within the absolute value signs in (2.6). In terms
of the network in Fig. 1, this corresponds to the degenerate case where port
“i" is terminated by a linear resistor.
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x3-direction. Hence, we simply choose

T (B8 | | 5 (6-6) 0

*
523 = %’(B3+B4) = %’(5+]) = 3
1 1 5
L'Z" (36'*'.87) 7 (3+2) >

For unbounded regions, we simply add or subtract the boundary coordinate by
a convenient number. For example, to find 5; for region Ry in Fig. 4(b), we
note that Ry lies to the right of hz(x = 62) in the x]-direction; above h3(x2
= 33) in the xz-d1rect1on, and below h5 (x 85) in the x3-direction. Hence,
a convenient cho1ce of 53 is:

B,*1 6+1 7
*
X3= | Byl | = | -1-1 | = | -2
-1 1-1 0
-85 = e -} - -

C. Bookkeeping Scheme

In order to take full advantage of the above observations, it is essential
to develop an efficient bookkeeping scheme. Again, we will use the example
in Fig. 4(a) as a vehicle to illustrate our bookkeeping technique:

We use 3 lists to keep track of regions. Before the "ijteration process"6
starts, the first list wo contains all 36 regions; the second list W (solution
1list) and the third 1ist IrJ.l (working list) are both initially empty. Having
chosen h5 (Observation 4), we begin the iteration by listing all "neighborhood"
regions of h5 belonging to wo v ws into w]; namely,

Wy = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}

Next, we compute 9 g's and B's (corresponding to the 9 sections 1,2,...9
in h5) and carry out the sign tests for regions 1,2,...18. If a region in w]
passes the test, it is put into Wg; otherwise it is discarded.

For this example, all 18 regions failed the sign test. Hence, we set
w5 = empty set and put the remaining regions (19,20,...36) into wo.

Next, we move to h7 with w1 containing regions 19 through 36. Now we
only need to compute 9 tB's (recall QObservation 2) to accomplish the sign tests.

o
The "iteration process” here means "computing o', B' and performing the sign
test on related regions.
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In this case, only regions 19,20,...27 pass the sign test and we write
ws = {19,20,21,22,23,24,25,26,27} and wo is now empty.

Since ws contains neighborhood regions of h6’ we return to h6 to calculate
the "9" associated tB's needed to carry out the sign test. In this case, we found
ws stays the same.

Having exhausted all hyperplanes in group 3, we proceed to the next group
of hyperplanes having the smallest Nj (recall Observation 2). In this case, we
can pick either group 1 or group2 (since N1 = NZ = 12) and then repeat the
iteration. We picked h] from group 1 and put its neighboring regions contained
within ws into w]; namely, N] = {19,20,22,23,25,26}.

We calculate 3 more normal vectors to the 3 sections in h, (see Fig. 4(d))
by calculating 3 new a's and B's. The resulting sign tests show ws remained
unchanged. Weproceed to h, and put W, = {21,24,27,20,23,26} (see Fig. 4(d)).
Again, we need to calculate 3 more normal vectors to h2 by calculating 3 more
tB's. Again the resulting sign tests show ws remained unchanged.

We proceed next to hs with W, = {19,20,21,22,23,24} (see Fig. 4(d)). We
calculated 3 new a's and B's to implement the sign tests. The result shows
regions 19,20,21 failed the test and these regions are discarded from ws. Hence
the new W, 1is {22,23,24,25,26,27}.

We proceed to h4 with w1 = {22,23,24,25,26} and after the sign test, we
found W = {22,23,24}.

Having exhausted all hyperplanes at this point, the iteration is terminated
with the conclusion that (3.20) has exactly 3 solutions corresponding to the
3 regions 22,23, and 23 left in ws.

Finally, using equations (A.2) and (A.3) from Appendix to compute the
Jacobians and offset vectors for these regions, we obtain the following
solutions:

Region 22 Region 23 Region 24
. | 1517 (1 LT .1 [149 7
1 i5 1 10 1 15
3 = ll = ll. = l.l.
21515 | |"2|°|F Y 5
43 43 43
V3| |15 | V3| |15 3] LT5

To summarize, we need only solve a total of 9+3+3 = 15 systems of linear
equations compared to the 36 needed in the "brute force" method. The additional
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computation needed to carry out the sign tests is generally insignificant compared
to that of solving systems of new linear equations repeatedly, especially when

ki >> 1 for all i = 1,2,°++,n. In other words, we expect the efficiency of our
algorithm to increase as the number of segments per piecewise-linear resistor
increases.

3.3. The algorithm

We now summarize our discussions in the previous sections and state the
complete algorithm formally for the most general case.

Assume all coefficients in equation (2.6) are given.

Step 0 (initialization)
(1) Let ki denote the number of parallel hyperplanes orthogonal to coordinate
axis x; where ki_g 0, i = 1,2,-°n, compute.

=3

N; =

; (k;+1) i=1,2,%n ' (3.31)

1
J

.

i
i

Reorder the index j so that Ny < Ny < eeec < N

(2) In each group j, reorder the indices in {Bjili = ],2,----kj} so that .
BJ"[ < sz & seee <& Bjkj.
Comment: We assume all hyperplanes are distinct. This implies that all Bji
are different.

Let hji be the hyperplane which corresponds to Bji' Rearrange the hyperplanes
in alternating order:

h

51 My3» Myge oo Nyps hygo

n
Label all hyperplanes from 1 to p where p = }

ki so that
i=1

hy = hyps hy = hyzs sooe hy = hopy -

(3) Let Wy denote a 1ist which contains all regions, and let NS denote a list
which is initially empty.
Set i =1, go to step 1.

Step 1.
Form a sublist w] of wo v ws such that w] contains all neighborhood regions

of the i-th hyperplane in Wo U ws. Replace wo by Wo = W and Wg by W - Wy»
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where "-" denotes the usual set difference. Let m be the total number of regions
in WH.
Step 2

Ifm=0, go to step 5; otherwise pick an arbitrary region R from N] and
consider the section o of the i-th hyperplane such that o is the boundary of
region R. Find whether 91 has previously been computed by checking the parallel
sections in the parallel hyperplane group where i-th hypeirplane belongs. If
a' has been computed, then compute ts' for the section o using the technique
descr1bed in (3.24) and (3.28); otherw1se compute a1 and B' using (3.16) and
(3.17) respectively and store the computed a Go to step 3

Step 3
Pick an arbitrary point x in the interior of region R and compute
= f(x). Perform the sign test (3.18) on region R. If the result is true,
put R on list ws; otherwise discard region R. Decrease m by 1, go to step 4.

Step 4
Search in the list N] the neighborhood region R of R which share the same

boundary o. If it exists, repeat step 3 for R and decrease m by 1. Go to Step 2.

Step. 5
Increment i by 1. If i < p, then go to step 1, otherwise go to step 6.
Step 6

If list ws is empty, then (2.6) has no solution; otherwise for each region
in ws, compute the Jacobian matrix J and the offset vector s using equation
(A.2) and (A.3) in the Appendix respectively. The solution in the region is
then given by -g'lg.

4. ILLUSTRATIVE EXAMPLES:

We have programmed the algorithm described in section 3.3 using the "C
programming language" on a PDP-11/780 VAX computer running a UNIX time-sharing
operating system.7 The following examples are generated using this program.

Example 3.
Consider the same circuit shown in Fig. 1(a) except that Rl and R2 are

represented by (4.1) and (4.2), respectively.

7ppP and VAX are Trademarks of the Digital Co., UNIX is a Trademark of Bell
Laboratories.
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. 1256 . 9 7 3 3 1 9
‘l-l = T+ §'V] + g lV-l'l’]I -7 IV]-ZI +I IV]-5I -3 IV«I-”‘ -8 IV]-]3I + ZIV]-]SI

(4.1)
. _29 .3 3 3 3 3 3 5
g = G +3 Ve~ 3 V98l + 3 Ivg#5] - 5 Ivps3l + 5 |vptl| - 7 Ivp-3] - [vy-8

5 1
+% IVZ']Ol + IV2‘13| - ‘I |V2‘]6l + -4- |V2-18| (4.2)

The associated circuit equations can be expressed in the following canonical
form:

- 161 13 l- 16 )
£ = B+ 8 Flxe ) ogilopx) -8yl Lo] (4.3)
11 1 5 i=1
. 4 _ 2
where
-
5.2: v]J ’
2
Qs = 1 -fbr i =1,2,°¢°6 and o, = I-O for i = 7,8,¢¢++16
~i 0 _ e ~i _1 20
'%7 [ _ 3] (37 (1] -3
2 4 8 8
c, = s Cp = s Cy = s Cp = s Cp =
~-l BO- "'2 _ 0- ~3 -0- "'4 _ 0- "'5 _ 2
) '21 ) C 0] ) (0] ) ~ 0] ) "0
£6 0’57 3|88 31° % 31*%0°7 |3
. . 2 ] _ 2 | . 2 ¢ 2
- 07 07 0 0 0
| -3pqeT -8 a3 T a3
0
S| 1

u
[}
(3]

B] = "']s Bz = 29 - 63 = 5! B4 = ]}: 35 = ]39 85 = ]59 87 = "83 88
Bg = =3> Byg = =1» By7 = 35 Byp = 8 By3 = 10, Byy = 13, B35 = 16, g5 = 18

Note that the domain le is partitioned into 77 regions by 6 parallel
1-dimensional hyperplanes (vertical lines) H]’HZ""’HG along the x]-axis, and
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by 10 parallel hyperplanes (Horizontal lines) H7’H8""’H16 along the xz-axis,
as shown in Fig. 6. Hence k; = 6, k2 = 10 and Ny = 11, Ny = 7 in (3.29). We
arrange the hyperplanes in the following alternating order:

{273}"99“-” ’H]39“153H83H]0:H]23H-'43H-|6aH] 3H39H59H23H49H6}

J J
—~ =~
first parallel hyperplane group second parallel
hyperplane group

This completes the initialization step. We also label the regions from R] to
Ry7 in (Fig. 6) for easy identification.

We start the sign test in the neighborhood regions of H7, namely; R]
through R]q, Sincenone of the regions passes the test, they are deleted. We
note that H7 was partitioned into 7 sections by H] through HS' So we have
computed 7 a&s to accomplish the sign test.

Next, we perform the sign test on the neighborhood regionStnyQ, which are
R15 through R28’ Note that we need not compute any new ak since Hg is parallel
to H7. Test results showed RZO’ R2], R27 and R28 were put in set ws.

Continuing the iteration on H]], we found regions R29 through R35 were put
in set NS; on H15, regions R57 through R63 were put in ws. At the end of
iteration on HTS’ NO contains R7] through R77 and ws contains the following
regions:

{RygsRy1 sRo75RogsRogsR30sRay sR3psR335R345R35sRe75Reg s RegsRg0 s RG1 +Rg 22 Re 3t

We continue to iterate on H8 through H16’ and eliminated R21, R28’ Rzg' R35,
R57, R59, R60 and R63 from ws, and R7] through R77 from wo. At the end of
iteration on the first parallel hyperplane group, wo is empty (i.e., we have
scanned all regions once) and ws contains the following regions:

{Ryg2R372R305R375R325R33:R34sR5g5RG R0 }

Note that these are the-only regions left to be tested in the second
parallel hyperplane group.

The first hyperplane in the second parallel group is Hy- Since wo is now an
empty set,the only neighborhood regions of H] on thJ ws are R30 and ng.
Therefore we need only to compute 2 new aks.
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Note that the.a& calculated for the section serving as boundary of R30 can
be used for R3] through R34. Similarly, the aé calculated for the section
serving as boundary of R58 can be used for R61 and R62‘ Therefore, for all
sections of the hyperplanes in the second group, only 3 new a&s need to be
calculated (the third one was for RZO)’

At the end of iteration on the second parallel group, W_. contains R30, R31

s
_ : - - 3
and R3,, and step 6 gives the following three solutions: g’ in Rygs l:?'] in
17 2
3 L3
R31, and %_ in R32 .
Remark:

To help us keep track of the results of the sign test,some regions in Fig. 6
are marked with one or more asterisks. A "*" near a boundary means the sign test
associated with that boundary in the region is "positive“.8 For example, in
region R33, three *'s are marked close to the boundaries H]], H10 and H5. This
means that for boundaries Hll’ H]0 and H5, the results of the sign test are all
positive. However, since there is no * for H4, the sign test is negative- there.

Hence, R33 contains no solution of (4.3).

Example 4.

Consider the four-transistor multi-state circuit shown in Fig. 7(a) [15].
Each transistor is modeled by a controlled source in series with a p-n junction
diode as shown in Fig. 7(b). The diode ID-VD characteristic is approximated by
a continuous piecewise-linear function with two segments as shown in Fig. 7(c).
The canonical representation of the piecewise-linear function is:

2 2

Iy = f(vD) = -1.29052x10™“ + 3.9708313x10~ vp t 3.9708313 IVD-0.325|

The associated circuit equations can be expressed in the following canonical
form:

) T e o
| -1.60119 . . 0.28796 0.19854
)= | g2 | ¥ 0 0  2.42347 1.18058 | X (4.4)
-1.67119 | | 0.28796 0.19854 1.47556 2.62859

8For simplicity, we say that sign test is positive for a given section ¢ if
(3.18) holds in o. Otherwise, it is negative.
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j=1 "~
where
Vo1 1 0 0 0
< A VD2 - 0 o = ] o = 0 o = 0
~ = VD3 ? “"l 0 ? "2 0 : “'3 1 ' "‘4 0 ’
v 0 0 0 1
C 2.42347 1.13692 0 0
o = | 142156 | . _ | 2.62869 | . _ | 0.27796 _ | 0.19854
=1 0 | %2 0 |*%37 [2.42347 |* %47 | 1.13692 | °
| 0.2779 0.19854 1.42156 | - 2.62869

81 = 82 = 83 s 84 = (0.325.

Using our program, all nine solutions of the circuit are found and the result
is listed in Table 1.

The number of regions eliminated by the sign test does not look impressive
in this example because we have approximated each diode by only 2 segments so
that the reader can check the results manually. However, the efficiency of our
algorithm becomes apparent as we increase the number of segments of the piecewise-
linear characteristic, as shown in Figs. 7(g4)-7(g) for 3,4,5 and 6 segments
respectively.

The calculations corresponding to different number of breakpoints (Column 1)
and segments (Column 2) is summarized in Table 2. Note that for large ki» the
number of Tinear system of equations that must be solved using our algorithm is
significally smaller than that of using the "brute-force" combinatorial- method; namely,
ig] (ki+])' Note that the higher-ki is, the more efficient our algorithm becomes.
5. ANALYSIS OF ILL-CONDITIONED CASES

So far we have assumed that system (2.6) behaves rather well in the sense
that the algorithm can be carried out without difficulty. For example, the
matrix Ek in (3.13) is assumed to be nonsingular; and the scalar 8, in (3.18)

0,0 029,
is assumed to be nonzero, etc. But this may not be true in general.
" In this section, we will exhibit some i11-conditioned examples where the

above assumptions are violated so that the sign test can not be performed.
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We will analyze these il1l1-conditioned cases in detail and offer a remedy in
each case.

5.1. Ill-conditioned case 1: matrix §k is singular (Example 5)
] %%

Consider the circuit shown in Fig. 8(a). Both R1 and R2 are voltage-
controlled with constitutive relation ij = g(vj), j=1,2, where g(+) is shown
in Fig. 8(b). The circuit equation can be expressed in the following canonical
form:

5 1 1

-2 10 ] K

f({) = 5 | * X + [(aqesx? = 1] + l<gzs?$) - 2|

-5 01 0 ) 0

0 -0 "0
+ I(g3,§) -1 + |(g4,§) -2| = (5.1)

1 1

"7 1 0

v, ] 1
1 = = = -
where gélbvz > O T O [0] and a3 = a, =

]

The partition in the domain of f(+) and its image in the range space are shown
in Figs. 8(c) and 8(d) respectively. The singularity of matrices EAC’ EAB’ Eho,
and ECD give rise to the following degenerate behavior: the interiors of regions
RZ’ R4, RS’ R6 and R8 as well as their boundaries AB, AC, BD and CD have shrunk
into a single point P in the range space. Since point P does not coincide with
the origin in the range space, there is no solution of (5.1) in these degenerate
regions.

However, the sign test is applicable in the 4 corner regions and the test
results show that region Rg contains a solution of (5.1). This conclusion can
also be verified by inspection of Fig. 8(d), where the image of Rg is the only
region which contains the origin. The corresponding solution is

1 . 3
_v2 _3

This example suggests the following method for overcoming "ill-conditioned -
case 1:" If we encounter a singular Ek » consider instead the equation
[o3N¢)
a'b
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B, x+3 =0 (5.2)

%% %a%
where Ek is computed from (3.12). Using standard techniques from linear
0.0
ab
system theory [26], determine if §k is in the range space of Bk . If it

%a%b 9%

is, then all solutions of (5.2) lying within the definition of regions R, and Ry
(referring to Fig. 3(a)) are solutions of (2.6). This unusual situation
corresponds to the case where point p in Fig. 8(d) coincides with the origin.

On the other hand, if a, is not in the range space of B,  , then

%% %%

(2.6) has no solution in regions Ra and Rb‘ This situation corresponds to the
case in Fig. 8(d) where point-p does not coincide with the origin.

For efficient computer implementations we will now derive a useful
Property for checking the singularity of Ek . Although matrix Ek is a

%% %%
constant matrix, it is obtained from (2.6) by restricting x € R" to certain
section 0,0, (i.e., equation (3.13) in a given region. In fact, Ek is just

0.0
a’b
the Jacobian matrix of f(+) evaluated in section 030, Since Ek will vary
0.0
ab
from one section to another; let us write Ek as follows:
0.0
a b
3 =4
By i f(l)lxebaob (5.2)

9a%

Note that if we let (gk,g) - B = 0 in (2.6) before we compute the Jacobian
matrices of f(*) in regions Ry and Ry (Fig. 3(a)), then the results will be

Qa|g€bacb and Qb'xﬁhéo » respectively. Since f(+) is continuous, we must

have Js|xeo o, = dblueoo, < Be -

a’b 9,08

Since 9% is of 1 lower dimension than D%", we have

nul1(§k ) € null(d,) N nuli(g,) (5.3)
%%

where null(-) denotes "the null space of" (+). We can interpret (5.3) as follow:

Property 1. ;
For any continuous piecewise-linear function f(-), if detl:ag; f(>~<)|xGJ Gb] =0
~~a
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then, using the notation of Fig. 3(a), f(+) is singular in both R and Ry.
Property 1 implies that if det ga # 0 or det gb # 0, then det Ek # 0.
0.0
ab
To illustrate the application of this property, consider the regions in
Fig. 8(c). Since By., Bpgs Bpp and Bcp are singular, by Property 1, Jo, J;,
gs, gs and~g8 must also be singular, as is easily verified by inspection of the
Jacobian matrix in each region of Fig. 8(c). On the other hand, since Jg s
nons1ngu]ar (as well as J], J4 and J7), it follows from Property 1 that
~DC’ BDF (as well as BAa’ BAb’ BBc’ BBd’ Bcg and BCh) must also be nonsingular.
This conclusion allows our program to perform the sign test in regions R9 (as
well as in Ry, R3 and R7).

5.2. 1li-Conditioned Case 2 ({g, s¥a? - B = 0).and I11-Conditioned
0.0 0.0
‘ a’b ab
Case 3 (ﬁk = 0)
9%
From here on, we assume that matrix Ek is nonsingular, and that we have
0.0
ab
computed.gé and B& from (3.16) and (3.17) respectively. Consider
0.0 0.0
ab ab
Figs. 3(a) and 3(b), let
(g Ly =8 (5.4)

9a% 9%

denote the equation of the hyperplane containing the section GQUB in the range
space. Let x. be an arbitrary interior point in region R, and let Ya = f(ga).
Let ga denote the Jacobian matrix of f(-) in region Ra’

Property 2.

det ga =0 if and only if

<gi< aya) = B|l< (5°5)

%% ) %%
Proof:
Mecessity (only if): If det Qa = 0,then the interior of Ré collapses into its
boundaries. The degree of degeneration.depends on the rank of J,, and the highest

dimension of R can not exceed n-1 where n is the dimension of J,.




Sufficiency (if): Let (gk’ﬁ) = By be the equation of the hyperplane in
the domain containing 9,0 Write f(§) =Jx+s, for x € R, and suppose that
det J, # 0. :

Since 0,9, is a subset of Ra and f(-) is continuous, we can rederive

equation (3.16) and (3.17) with J, in place of B and s, in place of Ek .

Thus we have %% %%
o =0 g (5.6)
%%
Bl = B + (a| ’s ) (5-7)
k k <k sa
9% %%

Substitutingya by Jax +s

a and B& by (5.7), equation (5.5) becomes
g

a%
(a J.x.+s_)=8, + (o' )
<~k ’Ta~a =a k <k *a
%a% 9%

Cancelling ¢@,  ,s,) from both sides, we get Cap  sda% ) = Bys or

%% %%
T -
G )= By
%a%
But (5.6) implies JT o, =, . Therefore we have {(a,,x_) = B, , which is
~a ~kc Q'b ~k ~k ~a k
a

absurd since x, was assumed to be an interior point in R,. Hence we must have
det J; = 0. "

Example 6.
Consider the circuit shown in Fig. 9(a). Let Rl and R2 be the same as in

Example 4. The circuit equation can be expressed in the following canonical form:

.57 [ g 17 1
fx)=| %+ x+ | 2| Kapxd = 11+ | 2| Kayx) - 2|
-%J 1 2 0 0
w0 Kagewr -1 # [0 Kay0x) - 2| = [0 (5.8)
1 1
"2 2 0
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The partition in the domain of f(+) and its image in the range space are shown
in Figs. 9(b) and 9(c) respectively. Note that ill-conditioned case 2 manifests
itself in Fig. 9(c) with region Rg degenerating into the line segment A'D'. This

i11-conditioning follows of course from Property 2, since det gs = 0.
In general, if ill-conditioned case 2 occurs, we need to examine the value
of B, .
k°a°b
If Bk # 0, which is geometrically related to the fact that the hyperplane
0.0
ab
in the range space containing 0505 (Fig. 3(a)) does not pass through the origin,
there is no solution in 0,0p OF in its degenerate neighborhood region.
If B& =0 (i.e., il1-conditioned case 3), the hyperplane in the range
0.0
, ab
space containing oéoé must pass through the origin. In this case, we need to
consider the following subcases:

Case a: J_ or QI or both are singular.

~

If J, is singular, forma set N; A {x € anlgag +5, = 0} (s, is calculated
Using (A.3) in the Appendix). Then all x €N, N R are solutions of

a
(2.6).
. . n =

If J, is singular, form NJb=é {x €R"[Jx *+ s, =0} and all x € NJb 0 Ry
will be solutions of (2.6).
Case b. Both J. and J, are nonsingular.
Solve (5.2) directly to obtain x* = -E;] Ek (recall that by

O’aO'b O'aGb

Property 1, Ek is nonsingular). If x* € 0,0h» then it is the solution of

0.0
(2.6). Otherwi:e? continuity of f(-) implies that (2.6) has no solution on
0,0 3S well as in either Ra or Rb'

Let us illustrate the above method using Example 6. Since g5 is singular,
we form (case a) Ny = {x € H!zlx] + Xy -1 = 0}. Since NJ N R5 = empty set,
there is no solutioé of (5.8) in R5. This can also be ver?fied graphically
in Fig. 9(c). Note that even though the 1ine containing segment A'D' passes
through the origin, segment A'D' itself does not contain the origin.

The sign test remains valid in the remaining regions. The resulting
calculation shows that (5.8) has a single solution

» which is Tocated in region R].

<
—
Wi wir
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In the next example, we will show a similar case where Bi = 0. However,

ca°b

this time the circuit exhibits infinitely many solutions.

Example 7.
Consider again the simple circuit shown in Fig. 2(a). Let Rl and R2 be

the same as in Example 1, but the value of the linear resistor is changed from
2Q to 0.5Q and the value of the dc voltage source is changed from 9v to 6v (see
Fig. 10(a)). Now the Toad line formed by the linear resistor and the dc voltage
source coincides with the middle segment of the driving-point plot of the one
port made up of the series connection of Rl and R2 (see Fig. 10(b)). Therefore
the circuit must have infinitely many solutions. The circuit equation is
expressed in the following canonical form:

[ 39 1 13 K 0
f=] |+ S lx+ <y, - 2] + {02 - 5]
3 -5 5 3 .3
. 1 L7 % 2 4
- 3 .
+ 8 I(g3’§)-3|=
23 "
" 4

The partition in the domain of f(+) and its image in the range space are shown
in Figs. 10(c) and 10(d) respectively.

Note that (5.5) holds in this case because region R, degenerates into a
half line A'b' (or equivalently B'c') in the range space. Now since Jy is
singular, we form

2 2
Ndng(ElR |dox +s5 = 0} = {x € R%|x; + 2x, - 6 = 0}

q

_q
3-3

and Ny OR, = {x € R?|x =

], 2<q<5,q€ R} Therefore, the

solutions of (5.9) are given by

V-I q

Vo 3-3

This is shown in the shaded region (including the boundaries) in Fig. 10(c).
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6. Computational Efficiency
We will discuss the computational efficiency of our algorithm in this

section. First, we assume the given system (2.6) is well-behaved so that we
can exclude ill-conditioned cases. Then we will compare the efficiency of our
algorithm with that of the "brute-force" combinatorial algorithm [14], where
Jx + s = 0, must be solved in each region. A reasonable figure of merit to be
used in the comparison is the total number of linear systems of equations needed
to be solved until all solutions are found.

Let n be the number of parallel hyperplane groups. Let ki,i = 1,2,...0,
be the number of parallel hyperplanes in the i-th group. Then the total number
of linear systems needed to be solved in the "brute-force" combinatorial
algorithm is equal to the total number of regions; namely,

n
I (ki+l) (6.1)
i=1

For the algorithm stated in section 3.3, the number for the worst case is
found to be

n
) N + total number of solutions (6.2)
=1

where Nj is defined in (3.29) or (3.31).

For circuits exhibiting multiple solutions, the exact number of solutions
is usually impossible to predict. Indeed, comparing Example 7 with Example 1,
we note that as we change the value of the linear resistor and the constant
voltage source slightly, the number of solutions can change drastically. From
the practical point of view, however, the number of solutions is usually very
much smaller compared to the first term in (6.2).

Hence, comparing on]y the first term in (6.2) with (6.1), we get

n n - 1
I (kg#1) - 1 n (ks#1) = n (k;+1) Z k—] (6.3)

i=1 J=1 i=1 i=1
i#J

Equation (6.3) implies that if kj +1>n, j=1,2,....n, then the left-hand
side of (6.3) will always be positive. Since kj is also equal to the number
of breakpoints in the j-th piecewise-linear resistor in the circuit,then

kj + 1 > n means that if the total number of segments in each piecewise-linear

resistor is greater than the total number of piecewise-linear resistors, then

-29-



the worst case figure of our algorithm will be smaller than that of the combinatorial

n
algorithm. Fortunately, the worst case number ) Nj is seldom achieved in
35
practical circuits. As illustrated in Examples 2, 3, and 4, most of the regions

are eliminated by the sign test before the iteration reaches the second group
of parallel hyperplane.

We have already given the comparison data in Table 1 for Example 4.
The corresponding data for Examples 2 and 3 is given in Table 3.

In Table 4 we 1ist the total CPU time consumed for each example. Since.the
UNIX operating system is a time-sharing system, the actual time consumed depends
on the current load on the system at that time. Hence, we give only a range of
the total CPU time. The data is obtained from 10 tries at various loading
conditions. Although this quantity is not exact, it does give a realistic
"ball park" figure.

7. CONCLUDING REMARKS

The algorithm presented on Section 3.3 and the combinatorial algorithm in
[14] both scan all regions defined by the piecewise-linear function f in (2.6).
Therefore, both will find all solutions .

The worst case figure of our algorithm is given by the first term in
(6.2). This overly conservative upper bound is achieved only when there is a
solution to (2.6) in_every region. In practice (e.g. Examples 2, 3 and 4),
many regions will usually be eliminated during the early phase of the iteration;
i.e., from the very first few groups of parallel hyperplanes. Hence, our
algorithm is indeed quite efficient in solving practical circuits.

Although originally developed for nonlinear circuits, our algorithm is
applicable to any system of piecewise-linear equations which can be expressed
in the canonical form (2.6), where g; denotes unit vectors.

Finally we remark that since it is possible for a piecewise-linear equation
to have a solution in every region, any algorithm capable of finding all
solutions must necessarily scan through all possible regions.
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Appendix

Let f be represented in the canonical form (2.6). Since f is piecewise-
linear, it is affine in each region Rj. Hence, for any x € Rj, f can be
written as J;x + s;. The matrix Qj (often called the Jacobian matrix of f
in region Rj) and the vector §j (often called the offset vector of f in region
Rj) can be computed from the coefficients of (2.6). Here we derive two
simple formulas for computing Qj and §j'

We can write (2.6) in the following form:

[€oq %) - Byl
flx) =a+Bx+¢ : (A.1)
Ci1 G Oy
where c=1 : :
Cin C2n **° Cpn

Since we expect to express f() in the form of gjx,+ $5 for x in the interior
of region Rj, we can differentiate (A.1) with respect to x to find gj. Since
x is assumed to be an interior point in Rj, none of the terms (gi,g) - By »
i=1,2,....p, will be zero. Carrying out the differentiation, we get:

T
o
DECK) |, = &+ € disglisonCa;x-8, 300 | 0 (A.2)
. ol
P x
=

where diag[ sgn((gi,5)-ei)}?] is a pxp diagonal matrix with the i-th diagonal
element being Sgn(<91’5)'6i)’ Here, sgn(+) denotes the sign function
defined as follows



sgn(z) =

-1
undefined

if z
if 2

1 ifz>0
<

n
o

zZ € R

For any x in the interior of Rj,the terms Sg"(<91’5)'31)’ i=1,24....pPs

assume fixed values.

Hence, gj

To find $j> we observe:

S,
~J

0O

g}

[{g]

L X ]
121

diag[{sgn(<gi,5>-81)}?]

diag[{sgn(<gi,5>-81)}?]

is precisely the right-hand side of (A.2).

- p
- diag[{sgn( ¢;»x -8;)}7 ]

[ (gy.x)-8, (gy,%?
- XD
_(gp’f) Bp _(gp X §€RJ
'61
B
L PdixeRr (A.3)




FIGURE CAPTIONS

Fig. 1. Extraction of 2-terminal nonlinear resistors to form a linear n-port N.

Fig. 2. Figures for Example 1.
% Circuit containing 2 piecewise-linear resistors.

(a

(b) Constitutive relation of piecewise-linear resistor RI.

(c) Constitutive relation of piecewise-linear resistor R2.

(d) Driving-point plot of 1-port N and the load line showing 3
intersections Q], 02 and Q3.

(e) Partitions in the domain of f(.) defined by (3.7).
(f) Partitions in the range space of f(-). Note that region e'b'a'd’
encloses the origin.

Fig. 3. A portion of a partition in the general case.
(a) Partitions in the domain of f(+) defined by (2.6). Hk denotes
an arbitrary hyperplane and 0,9, denotes an arbitrary section on Hk‘

(b) Corresponding partitions in the range space.

Fig. 4. Figures for Example 2.
(a) Circuit containing 3 piecewise-linear resistors.
(b) Constitutive relation of piecewise-linear resistor RI1.
. =5 _5 -
(c) Constitutive relation of piecewise-linear resistor R2.

: I 1
R2: v, =& |i, + 1| - ¢ |1, - 5]
(d) Constitutive relation of piecewise-linear resistor R3.

. 5
R1: dig=vy-7|vg-1]-2]vg-2]-] v3-3]

Fig. 5. Figures for Example 2.
(a) Partitions in the domain of f(+) defined by (3.20). Note the
rectangular lattice structure.
(b) Part of the partition for -« < vy < 1.
(c) Part of the partition for 1 < v3'< 2.
(d) Part of the partition for 2 < v3 < 3.
(e) Part of the partition for 3 < V3 < =

Fig. 6. Partitions in the domain of f(+) defined by (4.3). Each asterisk "*"
implies the sign test in the corresponding region is positive.

Fig. 7. Figures for Example 4.
(a) A 4-transistor multi-state circuit.
(b) Simplified Ebers-Moll model of a NPN transistor.
(c) Piecewise-linear approximation of diode v-i characteristic:
(2-segment case):

mg = 0, my = 7.94167x107%; vy = 0.325v

I 2 2

= -1.29052x10"“ + 3.9708313x10" vp + 3.9708313 |vD - V]I

D
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Fig. 9.

Fig. 10.

Table 1.
Table 2.
Table 3.
Table 4.

Figures for Example 6.

(a) Circuit diagram.

(b) Partitions in the domain of f(+) defined by (5.8).

(c) Partitions in the range space of f(-). Note that region Rg
degenerates into a line segment A'D'.

Figures for Example 7.

(a) Circuit diagram.

(b) Driving-point plot of 1-port N and the load 1ine. Note infinitely
many solutions exist for this circuit.

(c) Partitions in the domain of f(+) defined by (5.9).

(d) Partitions.in the range space of f(+). Note that region R,
degenerates into a half 1ine passing through the origin.

LIST OF TABLE CAPTIONS

Solutions of Fig. 7(a).

Summary of computation for Example 4.
Summary of computation for Example 2 and 3.
Approximate CPU time used in each example.
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Table 1. Solutions of Fig. 7(a).
solutions Vdi Va2 Va3 Va4
1 0.38392 -3.79264 0.37543 -2.84029
2 0.38859 -4.31084 0.33696 0.34565
3 0.33398 0.35187 0.38142  -3.51440
4 0.33197 0.35608 0.33452 0.35074
5 -1.06411 0.37066 0.38539 -3.95558
6 -0.72552 0.37066 0.33345 0.35298
7 0.39388 -4.89790  -1.52344 0.37066
8 0.33051 0.35914  -1.11032 0.37066
9 -0.52530 0.37066 -0.97985 0.37066
Table 2. Summary of computation for Example 4. )
no. of linear systems solved by :
. total no. of
no. of no. of | regions our algorithm
breakpoints [ segments " —farecal
ks k +1 [T (k) conbinatorial worst case
1=] method ] N; | actual case
=
1 2 - 16 16 32 28
2 3 81 81 108 72
3 4 256 256 256 133
4 5 625 625 500 229
5 6 1296 1296 864 362




Table 3.

Summary of computation for Example 2 and 3.

total no. of no. of linear systems solved by:
regions our algorithm
‘brute~force ,
Examples .combinatorial worit case
wethod ) Nj actual case
J=1
Example 2 36 36 33 15
Example 3 77 77 18 10
Table 4. Approximate CPU time used in each example.
Examples CPU in seconds
Example 1 0.10 - 0.13
Example 2 0.37 -~ 0.48
Example 3 0.83 - 0.93°
ki = ] 0.40 - 0.62
ki =2 2.0 5.07
Example 4 | k; = 3 4.53 - 8.77
k,i = 4| 14.40 - 21.65
ky = 5| 36.65 - 48.22 )
Example. 5 0.13 - 0.22
Example 6 0.12 -~ 0.15
Example 7 0.10 - 0.20
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aspwlf.h aspwlf.h

Vad Copyright (c) 1961 Robin L P. Ying

** The routines in this package are able to find Al Solutions

** of a given Pigce—Hise L'(?e)m' Punction (ASPWLF)

*e Iz o

** provided that f(.) is represented in the piecewise—linear

** canonical form with boundary hyperplanes parallel to the

** coordinate azes. The algorithm used is descrided in this

:‘ section 3.3 of this memo.

L

** This package is written in the stmdard C-language descridbed in

s "The C Programming Language" by B.W. Kernighan and D.M. Rilchie.

¢* It can dbe run on a PDP-11/780 VAX—-UNIX system which supports

** the double—precision [MSL library. It contains the jfollowing

*¢ separated modules:

had aspuif.h: containing definitions of data structures and glodal
variables.

had main.c: handling command line options.

had aspulf.c: conlaining the main routines for solving the given
hid piecewise—linear system.

hed tnit.c; containing routines for initializations.

hid quaue.c: containing queue lists manmulatmg routines.

hid print.c:  conlaining printing rouiine

se error.c:  printing run—time error messages

¢+  support.c: coniaining various supporiing roulines.

**  {nterac.c: an user oriented interactive program which will
hod creat a C-progmm defining the ptecewzse-tmear

had Makefile: flle mcmte'rumce program.

e

** The folowing routines are needed from the double—precision [MSL

Mleqtz‘f() ) hdatf) baimg(). burag). warst(),

*¢ Compile and run:

hid The following steps are contained in "Makeflle" for compiling
oo and running this package:

*0

*¢ Step 1. create Alidb:

se ¢c¢ —c¢ main.c asplwf.c init.c print.c quaus.c error.c support.c
se ar ru Alib %o

*» ranlid Alid

*®

b 2. creaie inlerac:

had cc interac.c —o interac

L2 J

bt 3. create a.oul:

v cc ez.c A -limsld —-LF77 =lI77 =lm

»e [ ez.c can be created by running "interac" ]

*/

Fage 1 of aspwif.h



aspwlf.h aspwli.h

/’
** aspuwlf.h —— this is the header file for all ASPWLF routines
ot ezcept "support.c”, "interac.c” and "ez.c" which defines

hod pulf().

** 5 data structures are defined in this moduwle:
had RGN: aach region;

had RGNQ: queue of regions;

had HYP: each hyperplane;

*®

HYPQ: queue of hyperplanes;

:: QLST: Ust of the HYPGs.

** Dimension of arrays:

**  yarigbles in pwif():

e afdim], B[dm][dm] (dim][hypl, Ddim](hyp), e[hyp].
**  voariadles in struct

bt _sgnsglhyp), b hyp] pz[dim], py[dim].

**  varigbles in aspw

e ]] Bh[dun][dwn] Bht[[dzmj[dzm] alphah[dim],

- sol[dim sgn.svghyp] markz{rjmaz][dim], ynrmi[rimaz](dim],
. wk{dim®(dim+3))

:; All these arrays are dynamically allocated using palloc().
f#define FORMAT1 "7%6.3f " /¢ define priniing formats */

#define FORMAT2 "7Z2.0f "
#deflne FORMAT3 "7%13.6e "

#define RNIL (RGN *) 0177777
#define HNIL éHYP ‘; 0177777
#define QNIL (HYPQ * 0177777

typedef struct region |

int *sgnsq; /* sign sequence */
int *bdry; /* boundaries */
double *px; /¢ point in region */
double °*py; /¢ floz) */

int id; /* region identifier */

| RGN struct region °*link; /* region queue link */

typedef struct §
RGN *head; /*

RGN *tail; /¢ tail of queue °/

i ’e

n; # of elements on queue ¢/
| RGNQ;
typedef struct hplane f§
int uf /* hyperplane identifier */
struct hplane °link; /* hyperplane queue link */
| HYP;
typedef struct hqueue |
HYP shead; /* head of queue */
HYP *tail; /* tadl of queue */
int n; /* §# of elements on queue */
int 3; /° # of sections */
int axis; /* coordinate azis */
struct hqueue °*link; /¢ bUnk */
| HYPQ;

typedef struct §

Page 20of aspwlf.h



aspwli.h aspwif.h

HYPQ  *head; /* head of list */
HYPQ  *tail; /¢* tail of list */
int n; /* # of elements on list */
} QLST;
RGNQ 4];
.QLST g[ !
int rjmax;
extern double *a, *B, *C, *D, *e, epsilon;
extern int dim, hyp, aflg, pfig, tfig, imsl, ier, sigdgt;

Page 3of aspwlf.h



main.c

/0

** main.c —— handles command lire flags.

*e

hid Commmd line flags:

*¢ —p : turns on the "pflg" so that all information of hyperplanes
bt and regions will be printed.

*e

s —t : durns on the "#fig" so that the solution obtained in STEP 6
has will be tested.

*®

¢ —q : turns on the "aflg" as well as "pflg" & "ifig" so that every
:: detail of the iteration will be printed.

* —{ : turns on the "imsl" flag so that aspwlf() will use the IMSL
by routine LEQTZF() to solve linear systems.

L

¢ —s int : resets the significant dtgz.t to "int" decimal digits

had t<0131gmred)'1',fmt 0 then the accuracy test in
A IMSL routine is disabled; the defeult value of int is 9;
o this option automatically turns on the "-4' flag.

4

int afig=0, pfig=0, tfig=0, imsl=0, sigdgt=9;

double epsilon;

main (arge, argv)

int

char

argc;
.‘argv;

register int i, ig=0, tmp;

while (~—arge > 0 && (*++argv)[0] == ‘=) |
while ('++°argv) switch (**argv)
case ‘a” /* turn on aflg */

/* turm on pflg */

/* turm on tflg ¢/
= 1;

case ‘i”: /* turn on tmsl */

contmue;
case ‘s’
tmp = & (ererl1])
= atm argv|
¢ tmp > 01
sigdgt = tmp;
fig = 1

goto next;
default:
continue;

/° reset sigdgt */

/* other char has no effect ¢/

arge—-—;

if ( imsl )

Page 1 of main.c



main.c main.c

printf("**—< using IMSL routine >—*"\n");
epsilon = 5.0;
for (i=0; i < sigdgt+2; i++)

epsilon *= 0.1;
if (fig |l pig ) §

printf("**—< significant digit is set to %d >—**\n",sigdgt);
printf("**—< epsilon = %8.le >-*"\n",epsilon);

aspwlf(); /* start */

Page 2 of main.c



aspwlf.c | aspwlf.c

Vi

*s gspulf.c —— contains 6 roulines:

had aspwlf(): the main "eralion routine.
bad conW2(): construct list H[2).

Lid compah(): compute and offset{].
had compBh(): compute Bhl[] and jebn[,].
b sgrdst(): perform sign test.

:‘/ cpnrml(): compute ynrmi[].

ffinclude "aspwif.h"

double *ah, *Bh, *Bht, *alfah, ®sol, *ynrml, *markx, *wk;
int *sgnsv, kk, mxcnt, itr=0, ier;

/*
. asp-wtf() —— this is the main iteralion routine, each action
./ Jalls in clearly defined steps; called by mm()

?spwlf 0

HYPQ  *gethq(), *hg

HYP *gethyp();

RGN *getrgn();

double inprdct(). betah, scale;

int cpnrml(), n, nhq,
nsol=0, /¢ # of solutions */
btaflg, 7% for betah==0 */
erfigl, /* for Bh{,] singular */
erfig2, /* for puting h back to hg */

haflg; /¢ for Ist h on hg */
register RGN *rgn;
register HYP *h;

register int i, J, /° running indices */
figl, fig2; /* for matching & nbhd */

/* STEFP Oé)hit'ialize & allocate spaces */

init();

ah = (double *) palloc(dim®*sizeof(double));

Bh =(double *) pallo dim’dim’sizeofzdouble;;;

Bht = (double *) palloc(dim®*dim®sizeof(double));

alfah = (double *) palloc m'snzeofgdouble;

sol = (double *) palloc(dim®*sizecf(double

ynrml = (double °®) palloc(dim*rjmax®sizecf double;;

markx =(double *

palloc(dim®*rjmax®*sizecf(double
sgnsv = (int %) palloc(hyp®*sizecf(int));
if ( imsl

= (double *) palloc(dim®(dim+3)*sizeof(double));

/* BEGIN ITERATION */

while ( Q=>n != 0 ) | /* main loop */

hq = gethq(Q);

nhq = hq—>n.

mxent = hqflig = 0;

while ( hg=>n ’—O)i /* 2rd loop */
h = gethyp(hq);
kk = h->id;
erfig2 = 0;
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/* STEP l:igonstruct set W[Z] from ( W[0] union #[1] ) */

printfé"\n\n@ STEP 1: hg—>axis: %d, ",hq->axis);
printf("hyp~>id: %d,\nW[0]->n: Zd\n",kk,W[0]->n);

o i
?far(1 afig ' prntiCWIEd]->n=%d\n" i+1,Wi+1]->n);

/* STEP 2 */
while ( W[2]->n = 0 ) § /* 3rd loop */
/*

** pick a region from W 2], save its _sgnsq(],
»s set kk—th element in rgn—>sgnsg{] to zero.
*/
rgn = getrgn(W[2]);
for (i=0; i < hyp; i++)

sgnsv{i] = rgn—->sgnsq[il];
:'fgn->sgns kk] = 0;

aflg )
printf("\n\n@ STEP 2: rgn on W[2]: %d\n",rgn—->id);

compah{ah,rgn); /* compute ah[] */

scale = 1.0; /* reset scale */

if ( thaflg ) /¢ ist hyp on hq */
erfigl = cpnrml(rgn);

Vad

*e iy matching ‘markz[]’ with rgn—>pz[],
** if not, compute yramif].

v/
else |
erfigl = fig2 = 0;
for (j=0; j < mxent; j++) |{

figl = 0;
for (i=0; i < dim; i++) g
if ( i == hq—->axis ) continue;
else ﬁl; (rgn—>px[i] = markx{j*dim+i]) ¢
1 =1
break;

gf(!ﬂgl)i /* matched */
for (i=0; i < dim; i++)
alfah[i] = ynrmi{j*dim+i];

/* compute hg—>azis—th column of BR[,] */

compBh(sol,rgn, 1,hq—~>axis);
scale = inprdct(alfah,sol,dim):
fig2 = 1;

; break;

gf ( 'Ag2 ) erfigl = cpnrml(rgn);

7* restore the kk—th bit in rgn—>sgnsq(] */
rgn—>sgnsq[kk] )=[ sgnsv{kk];

switch ( erfigl
case 0: /* compute betah */
l;etah = gcale‘e[kk] + inprdect(alfah,ah,dim);

btaflg ;
ﬁ(getahf=l.0)f /* put rgn to W 1] */

if (p " [)’error(a."aspwlfO".rgn,kk,Bh.ah);
putrgn(W[1],rgn);

aspwlf.c
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break;
case 1: /* numerical error occurred
in solving alfah[] */
erfig? = 1;
if { nhq ) /* can mnot revover error */
error(O "aspwlf()",rgn,kk);
if ( afig )
rlntfg'\n” put back te W[0]: %Zd\n",rgn->id);
putrgn(V[0],rgn);
break;
case 2: /* rgn degenerated */
if ( p error(4, "aspwlf()",rgn)
gutrgn 3),rgn);

}
if ( (erfigl!'=0) || btaflg ) goto nbhd;
/* STEP 3: perfoirfrrz stgn test */

afig ) |
printf("\n alfah[]: *
prdvetr(alfah,dim, FORMATI)
printf("\n betah=%6.3f\n",betah);
prlnt.f "\n\n® STEP 3: rgn on 1st sign test:");
printf(" Zd\n",rgn->id);

/* if sign test is true, put the gumon Wil ¢/
if ( sgntst(rgn,alfah,betah) ) putrgn(W[1],rgn);

/* STEP 4: get neighborhood region */

" scan W[Z2)], search for the neighborhood region

* (all dut the sgnsqlkk] matches) and perform sign
¢+ {est again.

¢/

n = W[2]->n;
for (j=0; i<n ]++li
rgn = %etrgnm )

for (1—0 i < hyp; i++) |
if (i == kk ) continue;
else gg 1( x;gn—)sgnsq[l] 1= sgnsvli] ) |

break; '

nbhd:

}

]
if ( figl) /* not nbdbhd region */
putrgn(’W [2).rgn); )
elseé ( afig) { /* nbhd region */
prmtfi"\n\n@ STEP 4: rgn on 2nd sign test:");
printf(" %Zd\n",rgn—>id);

i;lwitch ( erfigl ) §

case O:
if ( btafig || sgntst(rgn,alfah,betah) )
p}xtrgn(w [1),rgn);

case iflz( afg )
printf("\n** rgn put back to W[0]: %d",
rgn->id);
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putrgn(W[0],rgn);
break,

4 n “ ll’
putrg ﬂfwfsleg;rf s rgn)

break;

—r~—

{ /* end of 5rd loop */
hqﬂg 1;

(el'ﬂaz)s /% try to fix error */
if (

prmtf("\n“ end3: put #%d hyp back to queue.”,h—>id);
puthyp(hq. >) :
->n;

! if aﬂg printf("\n** end3: nhq=%d",nhq);

'E‘r

/* STEP § %/

} /¢ end of 2nd loop */
} /* end of main loop */

/* STE’P 6: compute solutions */
pfig ) printf("\n\n® STEP 6: compute solution.");
W[3]->n 1= 0) | /* check W(3] */
prmtf("\n\n“ The following are degenerate regions:\n");
/* print degeneraied region id */
while ( W[B]-)n 1= Q g {
rgn = getrgn(W[S]
pnntf("\treglon %Zd\n",rgn—>id);
if (pfig) |
compah&ah ,rgn);
compBh(Bh,rgn,0);
printf("Jacobianf,]:");
prdmtrx(Bh,dim, dun FORMAT1);
printf("Offset(]: '
prdvetr{ah,dim, FORMATI)
‘ pnntf("\n\n")
}

if ( W{1]->n 1= 0) /* check W(1] */
while ( W[l]->n 1= 0) {

rgn = getrgn(W[1]};

/* compute offset[], use ah[] as offset[] */

compah(ah,rgn);

/* co e;clm[] use BR[,] as jedn[,] */

comth(Bh rgn,0);

if (pflg) }
pnntfg"\n\n‘ re on 7%d:\n",rgn—>id);
printf("Jacobian(,]:")

prdmtrx(Bh,dim, dun.FORMATl)
pnntf("Oﬂ'set[]' ")

prdvetr{ah,dim,FORMAT1);
/* compute solutwn A4
if ( 'unsl

n(Bh.sol,ah.dlm 0,&scale);
for i=0; i < dim; 1++)

sol(i] = 0 - sol[i];
else {
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end:; ;
else

transp(Bh,Bht,dim,dim);

leqt2f (Bht,&imsl,&dim,&dim,ah, &sxgdgt wk,&ier);
if ( ier > 128 )

t
error(6,"aspwlf()",rgn,kk,Bh);
goto end;

else
for (i=0; i < dim; i++)
sol[i] = 0 - ah[i];

nsol++;

Vad

t solution */

prin
printf("\n\n** solution %d:\t", nsol);

prdvetr(sol,dim,FORMAT3);
/* test solutwn v/

if (tfig

) ¢
for (i=0; i < dim; i++}
rgn->px[i] = solfi
cmputy(rgn);
printf("\n  => pwi(solution) = ");
prdvetr(rgn—>py,dim, FORMAT1);

N

/* W 1] is emply */

printf("\n\t** No solution **\n");

/'
** conW2() — construct W[Z] from W[0] or W[1]; called by aspwif().

*/

conW2 (w, wi)

aspwlf.c

printf("\n\n** Total number of normal vectors computed: %d\n".itr);

fegister RGNQ *w, °*wi;
register RGN *rgn;
register int i n;
n = w=>n; /* save # of regions on w */

7*

** for each region on queue w, test the the specified bdry
** bit, if i is on, thenputtlwregwnmqueuewz.
*¢ otherwise return i to queue w

¢/

for (i=0; i < n; i++) |
rgn = getrgn(w);

z afig ) printf("conwz rgn from W[0&1]: %d\n".rgn—>id);
if

rgn->b

a.ﬂ(g prmtf("conWZ rgn put on W[2]: Zd\n" rgn->id);
putrg

i,rgn);

els
gy

putrgn(w,rgn);

aflg )
printf("conW2: rgn put back to W[0&1]:\t%d\n",rgn—>id);
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Ve

ad compdv,() —— compute vector ahl] and offset[] since they
share the same codes; called by aspuif().
‘/

compah (vectr, rgn)

register double  *vctr;
i‘egister RGN *rgn;

register int iLj o

for (i=0; i < dim; i++) |
vetr[i] = a[l]
?ér-(;:% < h j++)
vctr{x’] -= ygfn-]'-ll * e[j] * rgn—>sgnsq[j);

/.

b comth() - compute mairiz Bh{,] and jebn[,] since
they share the same codes; called by aspwif().

’/

compBh (mtrx, rgn, flag, axis)

double *mtrx;

RGN *rgn;
ilnt flag, axis;
register int i, j, k, m, n, p;
Vi comp-u.te the whole mairiz */
if ( 'flag )
for (1—0 i € dim; i++) {
m = i*dim;
n = i*h

YP;
for (j=0; j < dim; j++) i
mtrxﬂmﬂ] B[m+j

j*hyp
for (k-O k < hyp; k++)
mtrx{m+j] += C[n+k] * D[p+k] * rgn—>sgnsq[k];

!

& co!mpute the azis—th column of Bh[,] only */
e
for (i=0; i < dim; i++) |

m = axm‘hyp.

n = i*hyp

mtrx[i] = B[l'dlm«l-a)ns]

for (k=0; k < hyp; k++)

mtrx[x] += C[n+k] * D[m+k] * rgn—>sgnsq[k];

/.
:; sgnist() — perform sign test; called by aspwif().
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sgntst (rgn, alfa, beta)

register RGN *rgn;
t!'egister double *alfa, beta;

double Absg, inprdet();
int S ;

register int sa, sb;
register double tmp;

= mprdct(alfa.rgn—)py, ) = beta;
if F Abs(tmp) epsilon ) §
error(4,"sgntst()",rgn);
putrgn 3],rgn);
return(0);

else
sa = Sgn(tmp);
sb =0 - Sgn(bet.a)
g i aflg ) prgntf(!"\tsa = %d, sb = %d",sa,sb);
== g
aﬂf ) printf("\n\trgn put on W[1]: %Bd\n",rgn—>id);
1 .

else
return(0);

Vi

** conrmi() —— compute normal in y-space, store it in ynrmi[];
hod returns O: if successful,

¢ 1: ¥f numerical error occured,

b 2: ¢f Bh ] is singular;

had called by aspwlif().

*/

cpnrml (rgn)
i’egister RGN ‘rgn;

double det;
short dep;
register int i, err=0;

compBh(Bh,rgn,0); /° compute mailriz Bh[,] °/
/* compute alfah[] :
for (i=0; i < dim; 1++)
it (o 801[1] D[i*hyp+kk]: /¢ use sol[| as alfal] */
transp(Bh.Bht dim,dim);
linegn(Bht,alfah,sol,dim,0,&det);

else {
leqt2f_(Bh,&imsl,&dim,&dim,sol,&sigdgt,wk,&ier);
if (ier > 128 ) /* numerical error */
if ( pfig ) error(5,"cpnrml()",rgn kk,Bh);
rowech(Bh,wk,dim,dim,&det,&dep);
if ( dep ==0)
err = 1;
else
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err = 2; 7* BH|,] is singuler

]

e
for (i=0; i < dim; i++)
alfah{i] = sol[i];

}
if (terr ) {§
itr++;
for (i=0; i < dim; i++) |
yormi[mxcnt*dim+i] = alfahfi];
markx[mxcnt*dim+i] = rgn->px[il;

}
if ( afig ) | . ,
printf("\\n* CPNRML: hyp->id: %d"kk);
printf("\n mxcnt=%d",mxcnt);
printf("\n markx[]: ");
prdvetr(markx+mxcnt *dim,dim,FORMAT1);
printf("\n yormi(}: ");
prdvetr(ynrml+mxent*dim,dim, FORMAT1);
printf("\n Bh[,}:"):
prdmtrx({Bh,dim,dim,FORMATS3);

mxcnt+-+;

return(err);

*/

aspwlf.c
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init.c

/’

** inil.c —— contains 7 roudines:

Lad wit(): call rest routines to initialize.
had nrmliz(): normalize D{,] & e[].

b phgros(): ﬁnd parallel hyperplane groups.
had dtrmnz(): mpute ir

had dsubd(): compute s[ﬁn& bd[]

hid lodrgn(): load all region information

»  cmpuy(:  compute it

#include "aspwlf.h"

int
int
double
int
int

/®

trgn; /* total # of regions */
‘bd 7* bd[trgn]lhyp] ¢/

7o altrgni{dim] */
‘dcol /* deol[hyp] */
*ngrph; 7+ ngrphlaim] */

hid m’:«t() —=— takes care of all necesary initializations descridbed

‘/

ot 0
e

tn STEP 0; called by main().

register int i j ks
pwif(); /¢ initializing puwl function */
prtcoef(); /¢ print coefficients */
for (i=0; i < 4; i++§ f /* allocate spaces */
i} = (RGNQ * ce(sizecf(RGNY));
i]->head = W[i]->tail = RNIL;
i]=>n = 0;

Q = (QLST *) palloc(snzeof(QLST))
Q->head = Q-~>tail = QNIL;

Q->n = 0;

decol = (mt *) palloc(hyp*sizeof(int));
ngrph = (int *) palloc(dim®sizeof(int));

nrmliz(); 7* normalize D[,] and e[] */
pherps(); /* find parallel hyperplane groups */
trgn = 1; /® compute trgn °/

for (i=0; i < Q=>n; i++)
trgn *= ngrphli];

/.
** allocate space for zE] Y @->n < dim, then those
-, unassignad Htrgn)lil, 7 > @->n, will stay 0.

j = trgn*dim;

x = (double *) malloc(;’snzeof(double))

if ( %-:-]>n <O ) for (i=0; i < j; i++)
il =

/*

** gllscate space for bd[]; all entries of bdd[] are
¢ initialized to zero.

o/

j = trgn*hyp:
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bd = (int *) malloc(j*sizeof(int));
for (i=0; i < j; i++)
bd[i]

.
1]

dtrmnx(); /* determine z{] & bd[] in each region */
lodrgn(); /* load all information for each region */

if ( pfig ) prtq():

Jree spaces */
free(x) free(bd);

/*
** nrmliz() — for hybrid representation, each column of If,]
hid should contain one and only one nonzero entry th.zs routine
bad checks D[,] and normalizes D[] and e[] by e[] the
hid corresponding nonzero entry in the columns of If,] and set
hid that entry to 1; called by init().
*/
;:rmliz 0
register int i, j. fiag;
register double *dtmp;
for (jﬂ-:g; j 3 hyp; j++) | /* scan D by column */
for (1—0' i € dim; i++) § /* for each row tn a column */
dtmp = &D[l‘hyp-i-]‘]
if ( *dtmp !=0)
if ( 'flag ) § /* the only nonzero */
flag++;
/* normalizing */
if ( *dtmp != 1.0 ) |
e[i] /= 'dtmp,
*dtmp = 1.0;
deol[i] = i; /¢ the i-th row in the j—th
, column is nonzero */
else /* >= 2 nonzero eniries */
; error(l,"nrmliz()");
/* all eniries in column j are 0 */
if ( 'flag ) error(1,"nrmiiz()");
}
/’

** phgrps() —— identical columns in [,] represent parallel
hod hyperplanes; this routine groups those columns in seis

ve (each set corresponds to a HYPQ), allocates spaces for
hird each HYPQ and puts those HYP@s on the QLST Q; called by
[ 2 J m‘t()
*/
fhgrps 0
int flag, n, *tested;
register int i, j, k, count;
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register HYPQ *hqg;
register HYP *h;

tested = (int *) palloc(hyp*sizeof(int));
for (i=0; i < hyp, i++)

tested[i] =
i=0
count = 0;

while ( count < hyp && i < hyp ) |
/* allocate space & initialization */
hq = (HYPQ 9] palloc(sxzeof(HYPQ))
hg~>head = hq=->tail = HNIL
hg=->n = 0;
hq->axis = dcol[i];

h = (HYP *) palloc(sxzeof(HYP))

h->id = j; /* assign id */
puthyp(hq,h); 7% put on list */
tested[i]++;
count++;
flag = 0; /* reset flag */
l}°= -1; /* reset k */
*¢ find parallel columns by searching for the same
** dcol[j].
*/
for (j=i+1; j < hyp; j++) .
if ( !testedlii] /* if not tested */
Vadk ’ pmuel */
if ( deolj] == dceolfi] ) |
g = H'YPj *) palloc(sizeof(HYP));
->id =
puthyp(hq,h);
tested[i]++;
count++;

!
/* get the Ist nonparallel untested column */
else if ( !tested[j] && 'flag ) |

k=3j
flag++;
!
= hg=>n + |; /® the le e/
puthe(G,he; olirigighedt 49
ngrph{Q->n-1] =
1f(Q->n>d1m) /* fatal error ¢/
i ( irror(l "p!;gm()")
s break; /* all are parallel */
| eei=k; /* k = Ist nonparallel column */
!
/O
:: dtrmnz() —~— this rouline is called by tnit() and does the following
Lad 1 compute j for each HYPQ:
o4 2. find rimaz;
ad 3. call dsub() to compute z[] & dd[];
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had 4. sort Q so that the rj for each HYPQ on @ is in increasing
oo order.

*/

?trmnx 0

HYPQ  °*gethq()., *tmp;

double *dtmp;

register int i, j, k, n, pericd;
register HYPQ **vhq;

rjmax = 0; /* initialize */
n = Q—->n; /* save the length */

vhq[ contains pointers of HYPQ */
vhq = (HYPQ **) palloc(n®sizeof(int));

pericd = 1; /¢ starting period */
for (1-0 | < m; i++) |

= gethq(Q);
->r1 = trgn/ngrph(i]; /* compute 15 */
rjmax < vh i]=>rj

rimax = vh |->r1. /* get mazimum */
dsub(vhq[x] period);
period *= ngrph[ ], /* change period */

/* SHELL sort'mg so that [J=->17 is in increasing order */
for (k =n2 k>0 k /= 2) {

for &-k i< o i++)

for §j =i-

i>= g && vh[j]->rj > vhq[j+k]=>rj;

J -

vh ] = vhq}_'+k]
j+k] = tmp;

/* put sorted objects back to @ */
for (i=0; i < n; i++)

puthq(Q,vhq[i]);

/.
hd dsub() —— use SHELL sort to sort ¢ HYPQ so that the

correspondmg e[] St.e beta) is in increasing order;
e compute z{] & bd[], note that z{] is actually z[trgn][dim],
bt o‘rdy trgn ][1.] s, 0 <= i1 <= dim~—1, are assigned each time
L this routine bdeing called by dtrmnz()
A4
dsub (hq, p)
HYPQ *hq;
int p:
HYP *gethyp(), **vh, *tmp;
double *xi;
register int i, ) k, axis, n, 1;
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hq—>n /* save the length */
= (HYP **) palloc(n*sizeof(int));

x1 = (double *) palloc((n+1)‘sxzeof(double))

for (i=0; i < n; i++)

vhii] = gethyp(hq);
= deol[vh{0]->id]; /* save azis */
/* SHELL sorting so that deta is in increasing order */

for (k = n2 k >0 k /=2) |
for {‘-k i <o i++)

for (j = i—-
ji>=0 & e[vh[j]->id] > e[vh[j+k]->id];
{u:- ) ¢ 3
i] = v +k]
j+k] = tmp;
}
!
xl[O] =p;greh[ '->:é] - 1.0; 7* lefi—-most point */

for (i=1; i < n; i++) |
j = vh[i=1]->id;
k=v 1]->1d
if ( e[j] =

(k]
error(2 "dsub())");
/¢ middle points */ -
xi[i] = (e[j] + e[k]) 7 2.0;
xi{n] = e[vh[n-1]->id] + 1.0; /° right—most point */
/‘ csoayn z{] & bd] */
w}.ule ( r!=trgn ) {

for (i=0; i <= n; i++)
for (=0, i < p )]++) {

/°* trgn counter */

x[r‘d1m+ams = xi[i];
k = r*hyp;
f(i==0) /° left—most °/
bd[k+vh[1]—>1d]
f (i==n) /* right-most */

bd[k+vh.[1— 1]->id] = 1;

bd k+vg[x—1]->1d] =1;
bd[k+vh[i]->id] = 1;

T+

}

/.
** put sorted hyp’s back to hg in the alternating order:
** °1,357,....,2,468,...
s/
for (j=0; j < 2; j++)
for (i=f; i < n; i+=R)
puthyp(hq,vh{i]);
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/.
** lodrgn() —— allocate space for each RGN; compute the sign
i sequence; assitgn bdry, pz, py, id; place RGN on the
b queue W[0].
s/
%cdrgn 0
int Sgn():
register int i, j, k., m, o

register RGN rgn;
if ( afig ) printf("\nRegions’ information: - lodrgn()\n");

for (k=0; k < trgm; k++) |
/* allocate spaces */
rgn = (RGN *) palloc(sizecf(RGN));
rgn—->sgnsq = (int *) palloc(hyp*sizeof(int));
rgn->bdry = (int *) palloc(hyp®sizeof(int));
rgn=->px = gdouble ‘; palloczdim‘sizeofgdoublegg;

rgn->py = (double *) palloc(dim®*sizeof(double));
m = k*dim;
n = k*hyp;
for (i=0; i < dim; i++) /* assign rgn=>pz[] */
+ rgn=->px[i] = x[m+i];
for (j=0; j < hyp; j++) /* assign rgn—->bdry(] */
rgn->bdryl] = baln+il;

** computle sign sequences.
** note that since columns of D[] are unit vectors,
** only one component of rgn—>pz{] is needed.

v/
for (j=0; j < hyp; j++) |
rgn->sgnsq£] = Sgn(rgn->px{dcol{jl]-e(i]);
cmputy(rgn); /* compute rgn—>py(] */
rgn—->id = k + 1; /* set region id */
if ( pAg ) | /* print regions */
‘printf("\n® region %d"k+1);
prrgn(rgn,":");
putrgn(W[0],rgn); ' /* place region on W[O] */

/*
* cmputy() —— compute ;,[] = pulf(z[]) for each given region;

hid called by lodrgn()
’/

cmputy (rgn)

}-egister RGN ‘rgn;

register int i, j, k, m, n:

for (i=0; i < dim; i++) {
rgn—>py[i] = ali];
m = i*dim;
n = i*hyp;
for (j=0; j < dim; j++)
rgn—>py[i] += B[m+j] * rgn—>px[i];

init.c
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for (k=0;>k f]hyp: écf--l-)k]i "
- i] += +kj * ->
! R i o 1 e

!
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e

** gqueue.c —— conlaining 6 queue-lists mani

oy putrgn(), yetryn() zmthyp() getwp(m puthq() yethq()
se putrng() & getrgn(): RGNQ.

- puth.yp() & get () HYPQ.

:; puthg() & gethq(): QLST.

ffinclude "aspwlf.h"

/*

. put-rgn() —— places RGN at the end of RGNGQ, it always assumes
queue is not emply.

‘/

putrgn (rgnq, rgn)

register RGNQ rgnq;
fegister RGN *rgn;

rgn—>link = RNIL;
/° if queue was mmu empty */
if (rgnq=>head = RNIL? {
rgnq—>head = rgn;
rgng—->tail = rgn;
/* ‘t;fiq'zwue was not emply, append at the end */
else
rgnq—->tail=->link = rgn;
rgng->tail = :

rgnq—>n-++;

/*
i getrgn() —— gets one RGN from the front of RGNQ and returns

a pointer to that RGN; it returns NIL if the RGNQ is emply.

‘/

RGN *getrgn (rgnq)
register RGNQ *rgng;

! register RGN *rgn;

rgn = RNIL; /* if queue is empty, return NIL ¢/
/* if queus is not empty, get one from the frond */
if (rgnq—>head 1= RNIL) §
rgn = rgng—>head;
rgnq—->head = rgnq—->head->link;
rgnq—>n——;

return(rgn);

/.
hid puﬂtyp() — places HYP at the end of HYPQ, i always assumes

queua is not empty.
‘/

queue.c
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puthyp (hq, h)
register HYPQ *hq;

;‘egister HYP *h;

h—>hnk HNIL;
queue wa.s tnilially empty */
if (hq—>head HNIL) !{

hg—~>head = h;
‘ hg—>tail = h;
/l's'}fiqueue was not empty, append at the end */
else
hg—->tail->link = h;
; hqg—>tail = h;
hg=->n++;

/‘
gethyp() —- gets one HYP fro the front of HYPQ and returns
a pointer to that HYP; it returns NIL if the HYPQ is empty.
’/

HYP *gethyp (hq)
register HYPQ *hq;
i register HYP *h;
HNIL /* if queue is empty, return NIL */

if queus is nol empty, get one from the front */
if (hq->head != HNIL) §

h = hgq—->head;

hq—->head = hq-—>head->link;
‘ hg->n——;
return(h);

/‘
i puthq() —— places HYPQ at the end of QLST, it always assumes

queue ts not empty.
‘/

puthqg (qlst, hq)

register QLST *glst;
fegister HYPQ *hq;

hq-;lmk QNIL; &
/* queue was tmtwlly empty °*/
if (qlst—>head == QNIL) f
glst—>head = hg;
qist—>tail = hg;

7* i queue was not empty, append at the end */

else §
qlst->tail->link = hgq;
qlst—>tail = hg;
gist—>n++;
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f: gethq() —— gets one HYP fro

’/

HYPQ  “*gethq (qist)

register QLST *qist;

! register HYPQ *hq;
hq = QNIL; /* if queue is emply, return NIL */

/* if queue is not empty, get one from the front */
if (qlst-)head t= QNIL) {

the front o fQLSTcmdretzmzs

m
a pointer to that HYP; it retwrns NIL if the QLST is emply.

qlst—>head
qlst—>head glst=>head—>link;
; gist=>n—-—;
return(hq);

queue.c
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/.

** print.c —— conlaining 4 printing routines:

- pricoef(), prirgn(), prihq(), prig().

ad Routine "prtcoef()" is for printing the coefficients
hod of the piecewise=linear function; prirgn(), prth() &
:‘ prtg() are called if the "pfig" flag is set.

f#include "aspwlf.h"

/*
:; pricoef() —— print coefficients of the pwif(.).

{)rtcoef 0
printf("\nCoeflicients of the piecewise—linear function:");

printf("\n\na[]:\t");
prdvetr(a,dim, FORMAT1);

printf("\n\nB[,]:");
prdmtrx(B,dim,dim,FORMAT1);

printf("\nC[,]:");
prdmtrx(C,dim,hyp,FORMAT1);

printf("\nD[,]:");
prdmtrx(D,dim,hyp,FORMAT2);

printf("\ne[]:\t");
prdvctr(e, hyp, FORMAT1);

printf("\n");

/.
: prirgn() —— print the sign sequence, boundaries z{] and y[J

in the given region.
*/
prtrgn (rgn, str)

register RGN ‘rgn;
;'egister char *str;

register int k;

printf("%s",str);

printf("\nsign sequence: ");

for (k=0; k < hyp; k++)
printf("%24 *,*(rgn—>sgnsq+k));

printf("\nboundries: ");

for (k=0; k < hyp; k++)
printf("%2d ", *(rgn—>bdry+k));

prntf("\nx[]: ");
prdvetr(rgn—>px,dim, FORMAT1);

print.c
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pnntf("\ny[] n
prdvctr(rgn—>py.dxm,FORMAT1)

printf("\n");

/.
:;prthq() —— print the given HYPQ.

prthq (hq, str)

register HYPQ *hq;
;'egister char *str;

HYP *gethyp();
register HYP *h;
register int nhg;

printf("\n%s—queue: ",str);
nhq = hq->n;

while ( nhq != 0 ) |
= ethyp(hq)
pnntf("?d ,h=>id);

puthyp(hq,h);
nhq—-;

printf("\n");

/*
:; prig() —— print the id of each hyperplane on the structure QLST.

?rtq 0

HYP *gethyp():
HYPQ ‘gethq()
register HYP 5
register HYPQ *hg;
register int ng;

printf("\nQ-list:");
ng = Q->n;
while ( nq != 0 ) |
hq = gethq(Q);
pmitf("\n' 1111-711) rj=%d",hq=>n,hq->rj);
prt q hq’". yp'l
puthq%Q hy
nq——

———
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Vad

¢* grror.c — prinils error messages.
s/

#include "aspwlf.h"”
error (flag, str, rgn, hid, mtrx, vetr)

register int flag, hid;
register char sstr;
register double *mtrx, *vetr;
register RGN *rgn;

if ( lag < 3)
printf("\n\n**ERROR: [in routine: %s]:\n\t",str);

else
printf("\n\n**WARNING: [from routine: %s]:\n\t",str);

switch ( flag ) {

case 0: /*° in aspuwlf() */
printf("can not recover numerical error.");
printf("\n\toccured at\tregion: %d;".rgn—>id);
printf("\thyperplane: %d",hid);

break;
case 1: /7* in nrmliz() & phgrps() */
printfg”Mat.rix D[] is not compatible with *);
printf("hybrid representation.");
break;
case 2: /7* in dsud() */
printfg"Vector e[] is not compatible with");
printf("hybrid representation.");
break;
case 3: /* in aspulf() */

printf("betah = 0");
printf("\n\toccured at\tregion: %d;".rgn—>id);
printf("\thyperplane: %d", hid);
printf (] ] = " ;
prdvetr(vetr,dim,FORMAT1);
printf("\nBh[,]:");
prdmtrx(mtrx,dim,dim,FORMAT1);
break;
case 4: /* in sgntst() & aspuwlf() */
grg;g "region %d is a degenerate region.\n",rgn—>id);
reax,
case 5: /* in cpnrml() */
printf("matrix Bh[,] ");
break;
case 6:
printf("Jacobian matrix J[,] ")
break;

!
switch ( flag ) |

case S:
case 6:
if ( ier == 129 )
printf("is algorithmically singular.");
else if ( ier == 131 ) |
pﬁntfé"is too ill—conditioned for iterative\n");
printf("\t\timprovement to be effective.");

printf{' [from IMSL}");

printf("\n\toccured at\tregion: %d;",rgn—>id);
printf("\thyperplane: %d",hid);
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printf("\nmatrix");
Pr%mtrx(mtrx.dim.dim.FORMAm);
if ( flag ==

printf("\n**~< solution not computed >=**");
break;

if ( flag > 2)
s 1}:rintf("\n“—< program continued >—°**"\n");
else
printf("\n\n**—< program aborted >—**\n");
exit(1);
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Vi

** support.c —— contains supporting routines to the ASPWLF
:: m%m? (). tnprdet(), transp(), prdmirz()

: priveir(), pravcir(), bneqn(), rowsch(). palioc().

/*
¢ Abs() —— find absolute valus with type double argument.
*/

double Abs (x)
double x;
if (x >= 0.0)
return(x);

else
return(-=x);

/.
** Sgn() —— determine sign of a type double argument.
*/

int Sgn (%)
double x;
it (x> 00)
return (1);

else if ( x < 0.0)
return (-—1);
else
return (0);

Vdd
:‘/ tnprdct() —— inner product of 2 vectors: ¢ = <z,3>

double inprdet (px, py, dim)

register double *px, °py:
register int dim;

register int i;
double sum=0;

for (i=0; i < dim; i++)
sum += px[i] * pylil;
return(sum);

/.
:'/trcmsp() —— find trasnpose of a given mairiz.

transp (pe, pat, row, cal)

support.c
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register double *pa, *pat;
register int row, col;

register int L
for (i=0; i < row; i++)

for (j=0; j < col; j++)
pat[j*row+i] = pa[i*col+il;

/*
:; prdmtrz() —— print a double precision mairiz.

prdmtrx (pm, row, col, format)

register double *pm;

register int row, col;
register char *format;
register int i J

for (i=0; i < row; i++) {
printf("\n\t");
for (j=0; j < col; j++)
printf(format,pm{i®col+j]);

printf("\n");

/*
s* privetr() —— print an integer vector.
v/

privetr (pv, dim, format)

register int *pv, dim;
register char *format;

register int i;

for (i=0; i < dim; i++g
printf(format,pv(i]);

/*
** orductr() —— print a double precision vector.
A4
prdvetr (pv, dim, format)
register double *pv;
register int dim;
register char *format;
register int i;

for (i=0; i < dim; i.’“?
printf(format,pv[i]);
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/7*
:; linegn() —— solve linear system Az =

lineqn (pa, px, pb, dim, flag, deta)

register double *pa;

double
int

{

Ve

*px, *pb, *deta;
dim,

, flag;
int axcol, err;
register double “pax;
register int i, jymn
axcol dim+ /° # of cols in AX[][] */

(double ‘) malloc(dim*axcol*sizeof(double));

end z[] to the last column of A[][] => AX(][] */
for (i=0; i < dim; i++) §
= [*axcol;
n = ji*dim;
for (j-O j < dim; j++)
ax[m+j] = p n+J]
pax[m+d1m]

|

/* compute ‘row—echelon form of AX{1[] */
rowech (pax,pax,dim,axcol,deta,&err);

/’ if non~singular, stert back substitution °/
if (terr) for (i=dim-1; i >= 0; i-=) {
m = i*axcol;
px[i] = pax{m+dim];
for (r'dun-l j > i j==)
pxli] == px[j] * pax[m+1]

!
/7° if flag != O then return A[][] in its row—echelon form */
if (fag != O) for (i=0; i < dim; i++) §

m = j*axcol;

for (10} < dim; 3++)
or (j= P j+
pa[n+j] = pax[m+J]
free(pax); /* free spaces */
return(err);

** rowech() —— Reduce mairiz 4 to the row echlon form,

e
[ 214

c/

The pivot element is chosen to be the mazimum in that
column.

rowech (pa, pr, arow, acol, deta, dep)

register double “*pa, *pr;

double
%nt

*deta;
arow, acol, *dep;

double Abs(), max, tmp;
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int row, col, maxrow, stop;
register int i, j m, m;

for (i=0; i < arow; i++) | /* copy Ato R */
m = i*acol;
for (j=0; j < acol; j++f
prim+j] = pa[m+j};

]
stop=0; row=0; *deta=1.0; T /* {nitialize */

while ('stop) |
for {col=0; col < acol; col++) |
/‘
** find the mazimum element in the column as the
** pivot element.
*/

max = 0.0;
for (i=row; i < arow; i++) {
tmp = prli*acol+col];
if (tmp != 0.0 && Abs(tmp) > Abs(max)) }
maxrow = i;
max = tmp;

}

max != 0.0 ) {
m = maxrow®acol;
. = row®acol;
if ( maxrow != row ) |
/* interchange "mazrow and "row’ */
for (j=col; j < acol; j++) §
tmp = pr{m+j];
prim+j] = pr{n+j);
P nﬂi = tmp;

(*deta) *= (-1.0);

/* normalize pivol element */

(*deta) *= max;

pr{n+col] = 1.0;

for (j=col+1; j < acol; j++)
prin+j] /- max;

s~
~

row+<+; /* increment row */
if ( row < arow ) |
7*

¢+ reduce entries in "col' below "row" to 0.
*/

for (i=row; i < arow; i++) |

tmp = pr[1'acol+ccl]
thp 1= 0.0)
for (3-col j < acol; j++)
pr{itacol+j] += pr[(row—l)‘acolﬂ]
* (~tmp);

stop = 1; /* terminate iteration */
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/*

f; Jind first linear dependent column */
ep = 0;
j= (arcw < acol) ? arow : acol;/* j = min(arow,acol) */
for (i=0; i < j; 1++}
if ( prli*acol+i] != 1.0) §
*dep = i+];
break;

g palloc() -~ C storage allocator, it calls "malloc()' to get 4096

e
L 24
[ 4

*/
#define

vi.msigned

bytes (2K words) at a time and re—distributes them to its
caller. The purpose is to reduce the number of calls to
"malloc()'. If the number of dytes left is less than needed,
those spaces are watsted.

PAGESIZ 4036

*palloc (nbytes)
nbytes;

static  char *pgtop; /*

static char *cptr; .- /* current pointer position */
static char ‘nptr; /* > o)

static  unsigned tingth; /*

static int flag;

if ( nbytes > PAGESIZ )
return ( (char *) malloc(nbytes) ):

if ( 'fag )
petop = (char *) malloc(PAGESIZ);
nptr = pgtop;
tingth = 0;
ﬁag++;

if ( nbytes <= (PAGESIZ-tingth) ) |
cptr = nptr;
tingth += nbytes: /° update used length *
nptr += nbytes; /° advance nptr */
return(cptr);

’e]se f 0 /*® not enough space left °/
retur;(p’alloc(nbytes));
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/.

*¢ interac.c —— oulputs a C—zrrog'rmm which deﬂnes an N-dimensional
hod piecewise—linear function "puwlf()'; the input is taken

had Jrom user’s terminal.

*/

#include <stdio.h>

#define pf printf /* abbreviations. */
#define fpf fprintf

#define spf sprintf

FILE *fp;

int dim, hyp;

char str{BUFSIZ];

char cc = "/bin/cc =p -0";

char lib = "Alib -limsld =IF77 -l[77 —-lm";
char figl = "\t’=i”: use IMSL routine\n";

char fig2 = "\t’=t’: test solution\n";

char fig3 = "\t’-p”: print hyp & rgn\n";

char fig4 = '"\t’—a’: print all lteratxon details\n";

main (arge, argv)

int argec;
char *argv(];

t FILE *fopen();
char *ctime(), ‘l_[zg]gt(), *s_get(), buf[BUFSIZ];

int i_get(),

register char sstr, *tl;

register int k, trgn;

if ( ar = 1 || (fp = fopen(argv[1], "w")) == NULL ) {
pf "Usage interac file.c\n");
exit(1);

pf("\nEnter title: ");
tl = s_get();

time(tim);
fpfgfp S /N\t— %-s —\n", argv[1]);
fpf(fp.”**\n** Zs\n**"\n** %24¢.24s\n*An\n", tl,ctime(tim));

2"\:1" Enter coefficients of the PWL functmn sorr).
pf("\n\tEnter the row dimension of a[]: '

dim = i_get();

pf("\tEnter téw column dimension of D[] ")

hyp = i_

fpfifp '\mnt\tdun—%d hyp=%d;\n",dim,hyp);
fpf(fp,"\ndouble\t®a, *B, *C, *D, ®*e;\n");

fpf(fp,"\npwlf (O\nf{");

s‘lb 1 "a" "double" "dlm" n 1")
sub1("B","double","dim","dim");
subl "C","double"."dim"."hyp"
subl I'U""doublel”"m"'l!hyp")
subl "e"’"double”'"hypl"" 1");
fpf(fp’"\nﬂ):

pf("\n  Enter vector a[]:");
sub2(1,"a",dim,0,0);
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Pf("\n Enter matrix B[,]:");
sub2(2,"B",dim,dim,0);

pf("\n  Enter matrix C[}:");
sub2(2,"C",dim,hyp,0);

pf("\n  Enter matrix D[,]:");
sub2(2,"D",dim,hyp.0);

pf("™\n  Enter vector e[]:");
sub2(1,"e",hyp,0,0);

fpf(fp, \n\tprintf(\"\\nZs\\n\");\nj\n", tl);
felose(fp);
pf("\n** output file is %s **\n", argv[1]);

/* continue ezculion */
pf("\nContinue to excute ? [y.n] ");
str = 1_get();

if (*str != ‘y’) exit(1);

/* compiling */

spf(buf,"%s %s %s",cc,argv(1],lib);
pf("\n%s\n", buf);

system(buf);

/* excuting */
pf('\n\CO7Ready to excute, command line flags are:\n");
pf "%s%s%s%s",ﬂ%l.ﬂgz.ﬁg&ﬁgll);

pf("Invoke flag(s): ");

str = s_get();

spf(buf,”./a.out %s", str);

system(buf);

/’

*¢ sudl() —— write to the oulput program the lines containing
*e "malloc()".

&/

subl (s1, s2, s3, s4)

register char *s1, *s2, *s3, *s4;

tpf(fp,\n\t%s = (%s *) malloc(%s*%s*sizecf(%s));",
81,s2,53,54,52);

/°
os sud2() —— write to the oulput program the lines of avrays.
*/

sub2 (fig, s, row, col, rgn)

char *s;
register int row, col, rgn;

double 4 _getS);
int i_get();
register int i i

switch ( fig ) ¢

interac.c
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case 1: 7* d], ef] */
for (i=0; i < row; i++) |
pf("\n\t%s[%dE = "s,i+1);
fpi(fp, \n\i%s[%d] = %16.9e;",s,i.d_get();

break;
case 2: s* B, d) D] v
for (i=0; i < row; i++) |
pf("\n row Z%d:",i+1);
for (j=0; j < col; j++) }
pf("\n\t%s[%d,%d] = ".s,i+1,j+1);
fpfgfp."\n\t/' %s[%d,%d] */",s,i+1j+1);
fpf(fp," %s[%d] = %16.9e;",s,i*col+j,d_get());

break;
default: 7* 2], bd[,] */
for (j=0; j < col; j++) §
pE("\n\tZs[Zd] = ",s,j+1);
fpf(fp,"\n\t/* %s[%d.%d] °*/".s.rgn+1,j+1);
3 *

if (Ag == 3) /* for z %/
fpf(fp,” %s[%d] = %16.9¢;",s,rgn*dim+j,d_get());
e /* for bd */
fpi(fp,” %s[%d] = %d;".s.rgn*hyp-+i,i_get(Q):
| break;
; fpf(fp."\n"):
/*

:’ i_get() —— get an integer from inputl.
/

i{nt i_get ()
int atoi();

fgets(str,sizeof str,stdin);
return(atci(str));

/‘
** d_get() —— get a doubdle precision number from input.
&/

?ouble d_get 0
double atof();

fgets(str,sizeof str,stdin);
return(atof(str));

/‘.
** | _get() — get a line from input.
./

!char *_get ()
register char *c;

interac.c
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/.
:’/ s_get() — get a string (without NL) from input.

char
¢

c = échar *) malloc(BUFSIZ*sizeof(char));
fgets(c,sizeof c,stdin);
return(c);

*s_get ()
register char *c;
¢ = (char *) malloc(BUFSIZ*sizeof(char));

g:’t;.‘sé_clzl)(;c);

interac.c
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# File maintenance for ASPWLF programs.

CFLAGS = -0 —p
E = ex.c

FILE = Makefile\
aspwif.h mainc aspwlif.c init.c print.c queue.c error.c\
interac.c support.c

OBIS = main.c aspwlf.o init.c print.o queue.o error.o support.o
Alib: $(0OBJS)

ar ru Alib 8(0OBJS); ranlib Alib
main.o: aspwif.h main.c
aspwlif.o: aspwlf.h aspwlf.c
init.o: aspwif.h init.c
print.o: aspwif.h print.o
queue.c: aspwif.h queue.c
error.o: aspwif.h error.c
support.o: support.c
interac:

cc -0 —o interac interac.c; strip interac

cc 8(CFIAdS) 8(E) Alib =limsld —IF77 -I[77 -Im

Page 1 of Makefile



	Copyright notice 1981
	ERL-81-54

