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Abstract

The describing function method is widely used without much attention being

paid to the error analysis so vital in any approximate method. One reason for

this is the lack of a straightforward, user-oriented method for checking error

bounds except when the nonlinear element characteristic is single value and of

bounded slope. This paper attempts to eliminate that defect. A far wider

range of nonlinear elements is now amenable to straightforward, usually

graphical treatment; discontinuities, hysteresis and backlash characteristics

are included. In addition, previous results for slope-bounded single-valued

nonlinear characteristics may be substantially improved with a small additional

computational effort.
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1. Introduction

The describing function method is the first order version of the method

of harmonic balance, which tries to find periodic solutions for nonlinear

systems by fitting a truncated Fourier series. Traditionally, the method

addresses itself to the system of Fig. 1.1, and the solution is found using

graphical constructions involving the Nyquist locus. The tradition has not died

out with the universal availability of computers; rather, it has been strengthened

because of the vastly more informative nature of graphic displays over lists of

numbers. In addition, the use of the Nyquist locus (or the inverse Nyquist locus,

which we prefer for error analysis) makes it easier to link the problem with the

question of larger system design or analysis, of which it is usually a part.

Of course, the describing function method is approximate and a lot of work

has been put into error analysis, from Bass's early studies [1] and the general

theory of Cesari [2] through the detailed investigations in the early 1970's

[3,4,5,6,7] to the recent revival of interest [8,9,10]. It seems to the present

authors that this work should be made more accessible to anyone who uses describing

functions. We feel that previous work has either been too difficult for use by

non-experts, or has only been available for a restricted set of nonlinear

elements.

This paper sets out to remedy this, by providing a set of graphically

oriented tools that are described in a purely operational manner in section 2.

Several examples are given in section 3. The theory presented in section 4

draws on much of the literature referenced above (particularly the work of

Michel and Miller [8] who considered the non-autonomous version of the same

problem), but it contains novel features and we have taken care to direct it

towards graphical interpretations. The principal novel feature is the use of a

combination of L2 and L^ norms in a way that allows us to restrict attention to
only part of the domain of the nonlinear element, which in turn allows new

problems to be solved and tightens bounds on the old ones. Another novel feature

is the use of an amplitude and frequency-dependent poleshift to optimize the

error estimate. By taking advantage of all the optimizations, a very tight error

bound can usually be obtained, but there is also the option of obtaining a less

precise bound with less effort by doing less optimization and by using easily-

obtained upper bounds on the various functions.

2. How to use the results

We shall now explain the method of calculating error bounds in almost a

cook-book fashion. A minimal amount of theory will be introduced, and the main
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body is postponed until section 4.

The idea is to find ft, a set of fundamental frequency and amplitude values,

(o),a-j), that can be shown to contain the fundamental frequency and amplitude of
a true oscillatory solution to the system in Fig. 1.1. As shown in section 3,

we find this set ft by defining various functions p, q and r needed to state a
key inequality at all points in ft.

We assume that the autonomous single-loop feedback system of Fig. 1.1 has

a linear part g with a transfer function G(ju>), and a nonlinear part n having

a describing function N(a-j). The nonlinear element may be multivalued and
discontinuous; the very mild restrictions on its behavior are that N(*) must be

continuous over the set of a^ values of interest and that over the domain of
inputs of interest, the given nonlinear input-output relation can be approximated

in an arbitrarily close fashion by a slope-bounded, though possibly multivalued

function or relation. All of the usual relay-type elements satisfy these

conditions.

We assume the first order describing function equations

have a solution (aj,a-j). We are trying to verify that this corresponds to a true
oscillatory solution to the system equations, and if so, to find intervals

containing its frequency and fundamental amplitude. We will now describe the

steps needed to do this, introducing notation as required. A relatively simple

version of the procedure is summarized in Table 1, and it may be helpful to

scan the table now, and to consult it later when working out examples or

following through the theory. Table 2 shows the full version, which usually

has to be done using a (small) computer.

2.1. Preliminaries

We decide whether we are looking for ir-symmetric solutions (those containing

only odd harmonics) or more general ones. If we are looking for Tr-symmetric

solutions — so that n must be an odd function or relation — we define

K= {1,3,5,...} and K* = {3,5,...} .

Whenever we deal with multivalued functions or relations, we must have a rule
for uniquely selecting the output produced by any given periodic input.
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If we are looking for more general 2tt-symmetric solutions, we define

K = {0,1,2,3,...}

and then we decide what to do with the bias term. It can be solved for

separately [10,11] in which case

K* = {2,3,4,...} ;

or it can be neglected just like the high harmonics, in which case

K* = {0,2,3,4,...} .

We now introduce some notation. If x(t) is a 27r-periodic function of

period 2tt/u), by a suitable time normalization we can pick to = 1 and we write

x(t) =Re I ak ejkt
keK K

and

x*(t) = Re I a. ejkt
kSK* K

Thus, x* is the part of the solution that was neglected when we obtained the

describing function estimate of the solution. We expect reliable results

only if x* is sufficiently small.

Now we calculate how well the linear part of the system filters out

unwanted harmonics; the filtering effect is the usual justification for

assuming x* is small. Define

P(a>) '/l lG(jko))|2 .
k€K*

f 1 m) 1 1Notice that the sum will converge if |G(s)| is o \j\ with m> j ,as |~| -> 0.
In practice, G is usually strictly proper and the convergence is very fast, so

only a few terms are needed to get a very good estimate of p(oj). Small values

of p(o)) are desirable; the smaller p is, the better the eventual error estimate,

The next step is to find the describing function output error — that is,

the error in assuming that the output of n is sinusoidal when its input is

sinusoidal. The function required is

p(a}) =/!ln(a.,cos t)!!*- la-jN^)
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where the L2 norm on [0, 2ir] is II-Up, defined by

»f(t)l|2=lpf(t)2dt .

The function p(a-j) can always be calculated explicitly, but if n has finite
gain 6 (i.e. |n(x)| < $|x| for all x in the region of interest) then, with some

loss of accuracy in the eventual error estimate, we can replace p(a-i) by an

upper bound Ba-j. Incidentally, we shall see later that it is sometimes possible
to get by without calculating p. The crucial step is to calculate a function

that measures the error introduced by neglecting high harmonics at the input of

n. The function is defined using the sup norm

Oftt)!.- sup |f(t)| ,
tS[0,2ir]

and uses an upper bound e on llx*!!^, the sup norm of the neglected (usually higher)
harmonics. The function is

q(a,,e) = sup Hn(a,cost + x*(t)}-n(a,cos t}R0
1 Dx*l <e ' • \ <L

CO

Take careful note of the two different norms used here. The actual calculation

of q is by a worst-case analysis of the integral involved in the L« norm. If n

is single-valued, we can define

m(x,e) = sup |n(y)-n(x)| ,
|y-x|<e

so that

q(a1,e)=/-l m(a1cos t,e) dt .

(For example, if n(x) = sgn x, then m(x,e) = 2 when |x| ±z and m(x,e) = 0 when

|x| >e. This leads to q(a,,e) =^/— sin" [-£-)) . If nis many-valued, we
need different functions m when x is increasing and when it is decreasing, but

otherwise the calculation is similar.

If n has slope bound X, then m(x) < Ae for all x, so q may be replaced by

an upper bound y/2 Xe, although the more detailed calculation will usually lead

to a smaller value. The smaller the value of q, the better the eventual error

estimate.
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2.2. Finding the set ft

With p, p and q known, the rest of the process involves solving an equation

to find an upper bound on the higher harmonic error, e, then finding a set ft of

(u),a-j) values that satisfy a key inequality, and finally checking a non-degeneracy
condition which is nearly always trivially satisfied.

To find a suitable value of e, we have to satisfy the inequality

p(u>) min{q(a-j,e) +p(a-,), r(a1,e)}<e (2.2)

where

r(are) = /Z sup |n(y)| .
|y|±Ve

This inequality has to hold for some eOd^) >0 for all (a),a,) € ft. in fact
we do not know ft yet. All we know at this stage is that (aj,a\) e ft where (u},a\)
is the describing function solution. In practice, we proceed as follows. Find

the smallest e which satisfies (2.2) for (w'.a^ = (aj.a-j). We can then guess a
larger value of e, check that it still satisfies inequality (2.2) for (u},a-,),
and later, complete the check when ft is known.

Alternatively, we can try to solve (2.2) as an implicit equation: for

each given pair of values of w and a1, we look for the smallest positive e for
which there is an intersection between the line y = e and the curve

y = f(e) A p(w) min{q(alse) +p^), r(a.j,e)} .

Since q and r are both monotone increasing functions of e, if there are any

intersections between the line and the curve, the first intersection will be

found by applying the contraction mapping theorem to find a fixed point of

f(e), starting from e = 0. In this way we can find the smallest e for each o>
and a-j.

Because of the term r(a.j,e), any nonlinear element that saturates (or, more
generally, any nonlinear element that eventually grows slower than linearly) will

produce a finite value of e. In section 2.3, we will show how the value of e-

can, if required, be minimized. In general, though, it is possible that no

solution exists to (2.2), either because the linear part is not a good enough

filter or the nonlinear part is badly behaved. In such a case, we can go no

further with this method. Pole-shifting may save the day by reducing the values
of q and p: this is discussed in section 2.3.
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We now try to find a closed bounded set ft that contains (<io,a,) and all

nearby points that satisfy the key inequality

|N(al} +Glfcll l^'V (2.3)
where

afo.aj) =q(a,e(aj,a1)]/a1 (2.4)

with e > 0 satisfying (2.2); the tightest bounds are found using the smallest

values of e. There are three ways of finding ft; the first provides the smallest

set, but requires more work than the other two. If no bounded ft can be found,

the error analysis has failed.

(a) We can find ft directly as described in reference [4]: surround (w,a,) by
a grid of points and at each point, find e and calculate the ratio:

a(u),a.,)

The boundary of ft consists of those points where the ratio is 1.

(b) We can fix e at some slightly pessimistic (large) value and use the

inequality (2.3). This is easy to implement graphically since it says that points

(oj,a-j) inside ft must be such that the distance between N(a-|) and -1/G(ju)) is at
most q(a-|,e)/a-|. Consequently, we can choose a range of a1 values, and draw discs
centered on N(a^) and of radius q(a-|,e)/a-|. The envelope of the discs cuts off
a range of w values and the first and last discs to intersect the -1/G locus

define the correct a1 range (see Fig. 2.1). This is analogous to the discs
drawn on the -1/G locus in reference [6]. We obtain a rectangle

^min' ^max^ x ^l *al -I wnicn Wl1^ contain the set ft found in method (a),
min max

and we check that the e we fixed is actually big enough over this rectangle.

(c) We can select a range A of a-j values and find the maximum of a(o),a-|) over
that range. This gives an inequality involving only frequency on the right side:

'N(al^ +Gl^yl - sup ^'V •a.|G4

(Even if e has been fixed to simplify the calculation, we can still do this by

using a' instead of a, where
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a'(u)^) _fe-pM
ii

This results from combining (2.2) and (2.4)). Now we can draw discs on the locus
of -1/G, but otherwise proceed as in method (b). A justification and verification

of using error circles this way will be exemplified in Example 3.1.

The final step in the error analysis is to check for nondegeneracy of the

intersection between the loci of N and -1/G. "Non-degeneracy" here means nonzero

degree relative to ft (see sec. 4) and if method (a) is used to find ft, we merely

calculate the degree d from its definition:

d(N+l ,ft, 0) =I sgn(det Jj) .

The summation is over all describing function solutions in ft, and J. is the

derivative matrix at the ith solution,

V

3f

3o>

Hi
3oj

Hi
3a-,

af,

3a~;

where f^ and f are the real and imaginary parts of N+ 1/G. If any J. is
singular, the system must be perturbed slightly to make it nonsingular before

d is found. The perturbation must not move any solution over the boundary of ft.

If method (b) or (c) is used, the degree can be calculated by inspection.

Imagine the N and -1/G loci to be made of string, and put pegs at the points

N(a, ), N(a, ), -1/G(jw . ), -1/G(jui ). Now pull the strings taut from
'min 'max min max

outside the pegs, without allowing any string to jump over a peg. If the strings

still cross, the degree is non-zero (see Fig. 2.2). If the strings do not
2

cross, the degree is zero and the error analysis has failed. If all is well

up to this stage, we are done: there is at least one oscillatory solution

a-jcos cat + x*(u)t) with (a),a,) e a and Hx*Oqo < e.

For a more technical explanation of the calculation of the degree, the interested
reader should consult reference [12]. Also, reference [13] (section 2.1) contains
a compact treatment of degree theory treated from a circuit-theoretic viewpoint.
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2.3. Poleshifting

It is well-known that pole-shifting is extremely helpful in analyzing

nonlinear feedback systems. In an earlier paper, two of the authors used

pole-shifting to give good results in cases where the nonlinear element is

siope-bounded [6]. Here, we extend this idea a good deal further by introducing

two different poleshift factors, each of which may be chosen to depend on

frequency and amplitude if desired, so as to optimize the size of the error

estimates.

In section 4, we will justify the method described here. For any y e K,

we write

n(x,y) = n(x) - yx

and we define q(a-j,£,Y) exactly as we defined q(a-j,e), except that n is used
instead of n:

q(a19e,y) = sup fln(a1cos t+x*) -n(anCOS t) -yx*IL .
CO—

The definitions of p and r remain unchanged, but now we have

p(w,y) = I
keK*

G(jo))

Let e(oj,a.|,Y) be the smallest positive solution of

e= p(oj,y) min{p(a1) +qta^e.y), Ka^e)} (2.5)

We can choose y to minimize e. This is a one-dimensional optimization problem

and is therefore easily solved: in the examples later, we have chosen to solve

(2.5) by contraction mapping and to find y by the "Golden section method"

[14], merely because this approach is sufficiently reliable and trivially easy

to program. However, the problem is best described as the two-dimensional

optimization problem:

minimize e,

subject to e > 0, y e]R and

e>p(<d,y) min {p^) +q(alsejY) ,Ka^e)} ,
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which can be solved numerically in negligible time by any of the standard

methods.

Having obtained e(w,a-|) =min e(u),a.j,Y)> we can choose a different Y, if
desired,to minimize Y

qta.eOo.aJ.Y)
a(a>,a,,Y) = •— ,I a1

giving, say, a(u>,a^), and then proceed to find ft in the usual way.
We wish to emphasize that the poleshift factor y is arbitrary. One can

use the optimal value of y» or y = 0, or, say, y = j (a+3) if the nonlinearity
n has slope bounds a and $, or any other value. Moreover, it is desirable to

optimize if one wants the best bounds, and the optimization can easily be

incorporated in a package of computer programs for describing function analysis.

3. Examples

The examples in this section are intended to illustrate the various levels

of sophistication to which the error bounding method can be carried out. The

first example, dealing with a backlash nonlinearity, is very simple as it uses

a slope bound estimate to obtain q and a fixed estimate to obtain e. Also, no

poleshifting is involved and the whole calculation can be done entirely by hand.

The second example looks at a Wien bridge oscillator and compares results

obtained by an earlier method described in [6] with optimized bounds from the

present method. In the third example, we show how to deal with a nonlinear

element, n(x) = x , which does not have global or sector bounds. We solve this

problem entirely numerically, with full optimization. The fourth example

concerns a relay with deadzone and hysterisis, and it uses the optimization

techniques mentioned in the paper. All our numerical calculations have been

done on an HP 9845A desk-top computer and the total computer time taken to solve

the problems is negligible. Our techniques can easily be implemented on a more

versatile system at almost no cost.

Example 3.1.

The backlash nonlinearity shown in Fig. 3.1 has a slope bound of 1

(i.e. |n(x)-n(y)| < |x-y| V x and y, regardless of history) so we know that
q(*pe) < ev^. (A more careful worst-case analysis would show that the inequality
here can be replaced by equality.) The describing function is
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N(ai) =1C| +sin-i(1 .X) +2(1 .JL)(Ji }1/2 .j4(_L._i_n .
• 1 la, 1 a.

The function p used in the error analysis is given by

,2 _ „ , _.x„2 . „,_ x,2P^T = Inta^os t)D| - |a1N(a1)|
a2 2 2

=T +2al +2+f[(T'2a)^ +T s1n 2^ +2a cos *3»
where if; = ir - sin'^O -—).

al

Ogata [15] considers a negative feedback system containing this backlash
element and the linear element with transfer function G(s) = -t—tx . In this
-12 s(s+l)

case' G(jo>) = 0,la} " J°-la3 and a rou9n sketch of the Nand -1/G loci reveals

an intersection which, on slightly more careful analysis, is found to occur
near u> = 2.72 and a] = 3.25. Evaluating p^) near a, e [2.8, 3.8], we discover
that p(a.j)/a.j < 0.1 everywhere.

Since q(a1,e) < J2 e, we can solve for e, obtaining

l-v^p(o))

and hence

a(a),ai)<^£kL !i!l! .
' l-vFp(w) al

Using the bound pfa^/a-j < 0.1 and computing p(w) for a few values of
a) e [2.5, 2.8], we can draw circles on the -1/G locus as in Fig. 3.2, obtaining
the error bounds

a) € [2.59, 2.80], a] € [2.75, 3.65] .

These are relatively coarse bounds — we could do better by using the methods

described in the paper — but they verify the prediction by the describing

function method that the system can oscillate.

Example 3.2.

To compare results obtained by the new method with results obtained by the

older method for slope-bounded functions, consider the Wien bridge oscillator

in Fig. 3.3a, where the operational amplifier (op amp) is assumed to be ideal.
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The circuit can be modeled by the single-loop feedback system of Fig. 1.1 where

-s2+s-ln(x) is now the ideal op amp characteristic of Fig. 3.3b, and G(s) = -—^«
4(sN-3s+l)

Note that n(x) is a discontinuous function, which presents no problems for our

error analysis. However, G is not strictly proper, so p(w) is infinite. One

way to circumvent this problem is to remove the constant part of G and absorb

it into n, i.e., we poleshift n. This gives the model shown in Fig. 3.4, where

the gain provided by the IKft and 3kft resistors is accounted for by the first

feedback loop. A simple analysis shows that this can further be reduced to the

equivalent system of Fig. 1.1, with G'(s) =—5-^ and n'(x) being the
(sN-3s+l)

saturation characteristic of Fig. 3.5. Two of the present authors analyzed this

circuit by performing a similar transformation on the original circuit [16].

With an arctangent approximation to the saturation nonlinearity, they have used

the Hopf bifurcation theorem to predict an oscillation with frequency near 1 and

amplitude near 4.

Using the graphical error bound method in [6] for describing functions, we

can easily show that there is an oscillation with w e [0.9, 1.052] and

a-j e [3.45, 5]. The error circles (of radius a) have radii around 0.1.
Performing an error analysis on the same circuit using the techniques described

in this paper, we have obtained a significant improvement over the previous

result. With an optimal poleshift factor of around 1.8, the value of a is reduced

to near 0.05, and there is found to be an exact solution with w € [0.97, 1.03] and

a] e [3.8, 4.2].
Of course, it may not be very important to obtain such tight error bounds;

but there are many cases -- such as Example 3.3 which follows — where poor

error estimates render it impossible to even obtain a bounded ft, so it becomes

impossible to complete the error analysis. In such cases, the improvements we

have described are indispensible.

Example 3.3.

When n(x) = x and G(x) =—,^s J ,the Nyquist locus (of G, and not
(sJ+2sN.s+3)

3 2of -1/G) is shown in Fig. 3.6. Since N(a^) = j a^, the locus of -1/N lies along
the negative real axis, so there is a describing function solution which turns

out to be to = }/29 a-j = /4/3 . The intersection is, however, at a fairly shallow
angle, and the high harmonic part of the G locus remains close to the -1/N

locus and even comes back towards it at high frequencies; so we might suspect
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the solution to be inaccurate. If we apply the full error analysis of Table 2,
13 ~(with p(a-j) =ja, and q calculated by numerical integration), we find typical

values of e near 0.05 (with y around 1), and a near 0.05 (with y around 2).

The detailed (u),a-|) picture is shown in Fig. 3.7, with |N +1/G|/a < 1 in the
shaded set ft. The result is a-j € [1.10, 1.27] and we [1.385, 1.47], with an
upper bound of 0.11 for e over the whole of ft. These results are in agreement

with higher order harmonic balance computations [5].

Example 3.4.

The hysteretic relay shown in Fig. 3.8 has r(a-.,e) = y/29 so without

further effort, we get e < /2 p(a)). To find q, we define

1 , if x - e > £ or -x+e<-n

m(x,e) =
0 , otherwise

so q is given by

2 2 f71" 2q(a19e) =— m^cos t ,e) dt .

As long as 0 £ e ± £+n and a, > n+e» we have

q(are) =/£ [sin"1 A* - sin"1 f^ +sin'1 ^- - sin'1 ^ ] .

To get some feel for what this means, suppose a-j is large compared with
n+e. We can write

2 4c

al
f q(are)2*

Using the previous upper bound for e, we get

f8v^ ^1/2a((o,a.j) *
it

p(oj)
-3/2
ll

We expect to obtain reasonable error bounds whenever a is small compared with

N(a-.). Since

N(a7) =
ira

/TE.^
Ul "1

We see that for sufficiently large a, or small p(w), the error circles

. i linzil
J 7T 2 *

ai
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(of radius a) will be small enough to allow us to obtain a bounded set ft for

any reasonably behaved G.

For example, with a, near 3.5, we get a * 0.3/p(a)). If £ = 0.2 and n = 1.8,

the corresponding value of N(a-j) is 0.34 + jO.08. For p(w) less than about 0.35
uniformly over some range near the intersection defining a describing function

solution, we will obtain e < 0.5 and a » 0.18.

The alternative to this semi-analytic approach is to work entirely

numerically, using the full optimized method in Table 2. For example, with

2 56 /sG(s) =—^ £' tne Ascribing function method predicts that (ui,a\) = (0.8,3.74)

and our detailed error analysis yields u> e [0.7, 0.9] and a1 e [3.29, 3.89].

4. The theory

In this section we develop the new parts of the theory which justify our

results. Parts of the proof of the basic theorem are virtually identical to

published results, so we merely outline what is required there and give references
for the details.

The theorem shows that if a bounded set ft can be found as described in

section 2, and if the non-degeneracy condition is satisfied, there is an

oscillatory solution to the exact system equations. The idea behind the proof

is to show that, as the describing function equations are perturbed towards the
«

exact equations, a solution (a),a-|) moves away from (u^a-.) but it can never move
beyond the boundary of ft. Indeed, no periodic solution can ever cross the

boundary of ft. The degree condition ensures that even if solutions appear or

disappear (say, by mutual annihilation) there will always be at least one solution

in ft. This result, called homotopy invariance [17] is a generalization of the

notion that solutions will usually only disappear by coalescing in pairs, so if

we start with an odd number of non-degenerate solutions and if no solution ever

crosses the boundary of ft, there is no way in which all the solutions can be lost.

The part of the proof involving degree theory is now standard and we will not be

repeating it, so we do not propose to give any more technical description of

degree theory: Lloyd's book [17] is exceptionally clear, and the use of degree

theory in the present context is described in [10].

We now derive the expressions used to find the set ft. The inequality for

e comes from considering an equation for neglected harmonics and the main

inequality defining ft comes from the exact equation for the first harmonic.

The system equation is
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x = -gnx

and we are looking for a periodic solution x(t) with period, say, 2tt/o).

It is convenient to normalize time, and to write

x = -gj* (4.1)

where x has period 2ir. If g has convolution kernel <f>(t) then g has

kernel 4>(t/a))/u) and we see that — not surprisingly — w > 0 is required

for continuity. If z has period 2ir and has complex Fourier coefficients

zk (kSK) then g^z has Fourier coefficients G(jka)) z. .
We work, then, on a space of 2ir-periodic functions, and we choose

to equip it with the L^ norm

lzlw« sup |z(t)| .
te[0,2ir]

Call this space n, and let P, be the continuous linear operator that
3projects signals in n^ to the first harmonics and write P* = 1-P-j. We

can define x-j, x*, K^ and K* in the obvious ways: for instance, x* = P*x
contains only harmonics whose indices are in K*. Of course, P, and P*

commute with g , which in plain words says that no harmonic distortion

is introduced by a linear system.

We write

x(t) = Re I a. ejkt
kGK K

so that x-j(t) = a,cos t with a, chosen to be real by adjusting the
arbitrary time origin. Applying P* and P-i to (4.1) we get

x* = -P*gajn(x1+x*) (4.2)
and

xl ="^V^l^*5 (4'3)

Using (4.3) we obtain the phasor equation

3
Or zeroth and first, if we are balancing bias term too, so K-j = {0,1}.

As before, we shall lighten the notation by considering only the case
where K, - {1}.
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a1 = G(jto) E(a],x*)a1 - G(jto) N(a1)a] (4.4)

where -E(a-|,x*) a.jCOSt= (P1[n(x1+x*)-n(x2)])(t). Since P-jX* =0we can
also write a "pole-shifted" version,

-E(arx*) a^os t= (P1[n(x1+x*)-n(x1)-Yx*])(t) (4.5)

where y is an arbitrary constant, which may be chosen separately for each

co and a-.. Dividing (4.4) by G(jto) a, and rearranging, we arrive at

N(ai) +GirE{ai'x*> <4-6>
which should be compared with (2.1).

At this stage, the standard method described, for example, in [6] is

to apply the contraction mapping theorem to (4.2) to show that a given

(a),a-|) defines a unique x* which varies continuously with to and a-., and
then to write E in (4.6) as a function of to and a, only. Finally, the

Leray-Schauder theorem or something similar is used to bound errors in

(4.6). In the present paper we are avoiding the assumption of slope

bounds so we cannot obtain the Lipschitz constant needed to apply the

contraction mapping theorem. Instead, we show that inequality (2.2)

ensures that the right side of (4.2) maps B(0,e) into itself, where

B(0,e) is the closed ball in P*^ of radius e, centered at the origin.

The value of e may depend on to and a,. We also show that if (to,a,) e ft

and x* € B(0,e(to,a-|)) then |E(a-j,x*)| < a(to,a-j). If we were proving the
theorem in full, we would then apply (infinite-dimensional) degree theory

o

to (4.2) and (4.6) simultaneously, working on the space IR^ * P^H^ — or,
more precisely, on the set {(to,a-|,x*) :(to,a-j) ej], x* e B(0,e(to,a,))}.
There are several technicalities concerning continuity which will be

discussed briefly later.

Let us derive the inequalities. We start with (4.2), which by

standard methods of pole-shifting can be converted to

x* = -P*g n(x.j+x*)

with

%=(1+Ygto^"] gto and "M =n^ "YX
0

We write this as

x* = F(ui9a^9x*9y)
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and we derive an inequality showing that Bx*Ooo < e implies BFD <_ e, so
that F maps B(0,e) into itself. Now if

Jkt

1 k€K K
then

F(a),a1,x*)(t) =-Re \ G(jkco) c. ejkt,

so by Schwartz's inequality,

HF0£< I |G(jko>)|2 I |c.|2
k€j<* k^K* K

=p(oj,y)2 BP*fi(x)ll2 (4.7)
"2 ^ 2

where p(o),y) A \ |G(jk(o)| . At this stage, we can either set y = 0
k€K*

and use the crude bound Dp*n(x)D2 <r(a.j,e) where r(a.j,e) is defined just
after (2.2), or we can try to get a better bound by writing

P*(n(x)-yx) = P*(n(x)-n(x1)-YX*)+P*n(x1)

so

HP*n(x)02 <(ln(x)-n(Xl)-YX*a2 +p(a.,)2

where

p(a7)2 =Op*n(a1cos t)l|

=On^cos t)02 -la-jNCa-,) |2 (4.8)

In (4.8) we used the Pythagorean equality on the Hilbert space iu °f

square-integrable 2ir-periodic functions. Notice that as we mentioned in

section 2, p(a-j) is a measure of the describing function output error:
the extent to which, because it neglects harmonics at the output, the

describing function would be inaccurate even with a pure sinusoidal input.

For each oa and a-, we now have

flFll^ < p(o),Y)(p(a1 )+fln(x1+x*)-n(x1 )-yx*02)

< p(w.Y)(p(a1)+q(a1,e,Y))

n(a,cos t+x*(t)) = Re J c. e:
1 k€K K
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where q(a-,,e,Y) = sup Hn(a,cos t+x*(t))-n(a1cos t)-YX*(t)H0.
1 i!x*D <e ' • d

00—

Noting the remark after (4.7) and optimizing the bound over choices of

Y» we see that

e >min {min ptto.YKpfaJ+qta, ,e,y)), p(w) r(alse)} (4.9)
yER ' ' '

ensures F maps B(0,e) into itself. Inequality (4.9) is the same as (2.2)

except that poleshifting has been allowed for. Notice that if the upper

bounds on p and q mentioned in section 2 satisfy the inequality, B(0,e)

will still be mapped into itself.

We have already done most of the work needed to deal with (4.6), since

(4.5) gives

|E(arx*)| =J- IIP1(n(x1+x*)-n(x1)-Yx*)ll2

< r-q(a-i>e»Y)
al '

which, on minimizing over y, gives aU.a^) as defined in (2.4).
Observe that all of the above works perfectly well for "multivalued"

nonlinear elements such as hysteresis or backlash since N, p and r are

always well-defined and q is well-defined if e is not too large. The

reason there is no difficulty is that such elements induce single-valued

maps on spaces of periodic functions provided the initial state is

consistent with periodic behavior.

The main technical issue which we do not discuss in detail here is

that degree theory, on which the theorem relies, only works if all

functions are continuous; and in fact g has to be completely continuous
0)

(compact), which is a restriction following automatically from the low-

pass condition implied by finiteness of p((o). Most of the continuity

analysis is routine, but if n(*) is discontinuous there is an added

difficulty. The technique used in [8] overcomes this difficulty. There,

Michel and Miller have shown that if n is discontinuous, but if there

exists a set ft which works for all sufficiently good continuous approxima

tions to n, it is possible to define weak solutions. We say the system

has a weak periodic solution x if n is the limit of a sequence of slope-

bounded relations {n^} having periodic solutions {xk}, and Xl •»• x as k -*• «.
From the practical point of view, there is nothing to check except that

-18-



such a sequence {nfc} could exist and would result in {p.}, {q.}, {r.}
and {Nk} which converge to p, q, r and N. This is true of all nonlinear
elements that, over the domain [am-e,"am+e] where a? = sup a-., consist
of a finite number of Lipschitz continuous segments, with the usual

hysteresis or backlash rules for choosing the correct segment whenever
segments overlap. Let us call this set of elements W.

Theorem 4.1.

For the feedback system of Fig. 1.1, suppose n e N and there exists

a closed subset ft of (coO.a^O) such that for all (to,a,) € n,

|N(a1)-i-l/G(jco)| < a(ft),ai) .

If ft is bounded and d(N+l/G,ft,0) f 0 then the equation z = -gnz has a
periodic solution z(t) = x(cot) where

x((ot) = a-jCos tot + x*(a>t)

for some (oj,a-j) e q and x* e P*^ with Bx*fla> < e, where e = sup efw.a,)
and e(co,a-|) is defined by (4.9). ®

Outline of Proof

When n is continuous as a map from fl^ to n^, the proof is virtually
identical to that of Theorem 5.2.15 in reference [10], with the new error

bounds and the simplifying assumptions that x is scalar and there is only

one harmonic to be balanced. Applying Michel and Miller's work in [8] on

weak solutions, the same result can be obtained when n is discontinuous.

The interested reader should consult these publications for details.
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Table 1. Summary of simple error bound calculation

(We assume that n is a single-valued odd function and is monotone

increasing or decreasing; we only look for solutions composed of odd

harmonics. Table 2 deals with the general case and also gives tighter

bounds than in the present case.)

Step Description

0 Find (co,a-|) satisfying Nfa^) +6/L\ =0. Check that the Nand -1/G
loci are not parallel where they intersect at (co,a-j).

1. Let p(o))2 = I |G(jku))|2.
I\—«3 ,0 , . . .

2. Let p(a}) =iln(a1cos t)Il| -|a1N(a1) |2.
(If n has gain B, we can use p(a^) < 3a,.)

3. Let q(a-|,e) = llm(a-,cos t,e)IL
where

m(x,e) = max{|n(x+e)-n(x)|,|n(x-e)-n(x)|}

(If n has slope bound X, we can use q(a-|,e) < y/2 Xe)

4. Choose e such that for all (co,a.j) near (u!,^), e>p(u>)(p(a,)+q(a,,e)).

5. Find the set ft of (u),a-|) values near (u>,a-|) such that

i"(«i) +5iri i««(»Te)/«T
(This can be done graphically: see the text.)

Check that & is bounded.

6. Check that fi only contains the one describing function solution

(to,a-j).

7. There is at least one true periodic solution with (<o,a,) € Q and

Bx*QM < e.
oo —



Table 2. Summary of general error bound calculation

(Not all the optimizations need be carried out; for example, y can be set
to 0 everywhere.)

Step

1.

2.

3.

4.

5.

6.

7.

8.

Description

Find all (to,a-j) satisfying N(a-j) +qttqy =0, where Naccounts for
the zero'th harmonic if relevant.

Let K = {1,3,5...} (or {0,1,2,3...} if even harmonics are allowed,)

and K* = K\{1} (or K\{0,1 } if the zero'th harmonic has been balanced).

Let p(co,y)2 = I |G(jkco)/(l+YG(jk<o))|2.
k€K*

Let p(a1)2 =lin^cost)!!2 -|a1N(a1)|2.
Let q(a-,,e,Y) = sup !ln(a,cos t+x*)-n(a,cos t)-yx*D0

1 Bx*I <e ' ' *•
CO—

Denote q(a,,e) = min q(a,,e,y)
Y

Let r(are) = /Z sup |n(y)| ,

and for each ((o,a^,y)» find the smallest positive solution of
e(w,a-j,y) of es p((o,y) min{q(a1 ,e,y) + p(a-j), r(a.j,e)} .

For each (cj,a«j) let

e(oj,a^) = min e(to,a, ,y) .
Y

Choose a solution (o),a^) and find the smallest connected component
ft of {((o,a.j) :|N(a-j) + l/G(j(o)| <q(aj^(co^ha,)^} containing
(w,a-|)

Check that the degree d(N+i ,ft,0) is nonzero.

There is at least one true periodic solution with (<o,a,) € & and

Ox*B < e.



Figure Captions

Figure 1.1. Autonomous single-loop feedback system studied in the paper.

Figure 2.1. Error discs used in locating the set ft, in which the exact

solution lies.

Figure 2.2. The degree in (a), (b) and (c) is nonzero because the

intersection cannot be removed by perturbation; but the

degree in (d) is zero.

Figure 3.1. Backlash nonlinearity of Example 3.1.

Figure 3.2. Error circles for Example 3.1.

Figure 3.3a. The Wien bridge oscillator of Example 3.2.

Figure 3.3b. Ideal Operational Amplifier characteristic

Figure 3.4. Poleshifting the nonlinearity in Example 3.2 to obtain a

strictly proper G'(s).

Figure 3.5. Saturation characteristic

Figure 3.6. Nyquist locus of Example 3.3.

Figure 3.7. Region ft containing the exact solution in Example 3.3.

Figure 3.8. Hysteretic relay of Example 3.4

Table Captions

Table 1. Summary of simple error bound calculation.

Table 2. Summary of general error bound calculation
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