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1. Introduction

In a recent paper [1] we investigated the effect of two driving

frequencies on the stability properties of the Fermi map [2-4]. In

particular, we found that by dividing the input power between two

frequency components, the adiabatic limit to stochastic heating could

be more than doubled. The purpose of this report is to provide

supplementary material on the structure of the primary island chains

discussed in the first paper.

We begin by deriving an appropriate island width for use in overlap

criteria by means of an approximate averaged Hamiltonian. Next we

classify the possible types of bifurcations that can occur as an island

chain metamorphoses from one symmetry to another. The three possible

classes of bifurcations are then related to the shape of.the effective

potential occurring in the averaged Hamiltonian. Analytic expressions

are obtained for the critical values of the amplitude ratio and angular

locations of the bifurcation sequence in a number of interesting cases,

and compared with numerical solutions of the mapping equations.

Explicit formulas are derived for the island width in the three

simplest cases, with frequency ratios 2/1, 3/2, and 3/1.

2. Derivation of Averaged Hamiltonian

The symmetrized two-frequency Fermi mapping is [1]

sin s<J> +u sinr4>

^ =̂ +-^p—~ (1)
2,rMeff*n+l "*n +U^f1 » (2)

where un and <f>n are the velocity and phase after the nth collision,

y in the amplitude ratio, rand s are coprime integers, and M ff is

a constant. This mapping is area preserving and periodic in <j>
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with period 2ir. Equations (1) and (2) are derivable from the exact

Hamiltonian

1 -J °° 2*rri£n
H= 27r Meff ln u" /C~F ^s cos s* +rcos r*] ^ e » (3)

v\ +u ji = -co

where the summation arises from the Fourier-expansion of a train of

delta functions.

Introducing slow variables u=u-uQ and $ =<j> - <f>0, where uQ

and <j>Q are the fixed point coordinates, and linearizing the first

term in (3), we obtain the averaged Hamiltonian [1]

H=\ Gu2 --J== (1 cos sj +£cos r$), (4)

where

A^'s

Gs—f£. (5)
u0

For given H and u, (4) gives level curves u = u($) which closely

approximate the mapping (1-2) in the vicinity of an island chain

whose fixed points are common to both the r-fold and s-fold resonances.

These common fixed points (Uq^j^q) are given by

sin s<J)q + usin r<j>Q =0 (6)

M

u0k ="IT 'k=1'2'3"-- • <7>

It is instructive to view (4) as representing the one-dimensional

motion of a particle of effective mass G in the effective potential

V($) =--== (7 cos s$ +£ cos r$). (8)

As p increases from 0 to °°, the shape of V(<j>) changes from s-fold

to r-fold symmetry. These changes are intimately related to topological

changes in the level curves, so that some of the fixed points must

bifurcate at certain critical values of u. The model Hamiltonian (4)
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is particularly interesting to study as it occurs in other contexts,

such as particle trapping in two waves [5]. In section 3 we employ

the language and tools of elementary catastrophe theory [6-7] to

classify the possible bifurcations and calculate them in detail for

several interesting cases.

2. Island Width

We have seen that as u varies, radical topological changes in the

island structure make it impossible to define an island width at an

arbitrary position $. However, the fixed point at <J> = 0 is always

elliptic, and this fact provides us with a well-defined island width

for use in overlap criteria. Figure 1 shows a typical separatrix,

given by (4),

\ G°2 =Esep +7=T (i" C°S S<1> +rcos r<|))' <9>
where

Esep =7=? <s cos s*c +Fcos r*c> (1Q)

with * the crossing phase closest to <j> = 0. In general <f> must be
c c

extracted numerically from the several solutions of (6) for each u.

The maximum island width A = u is then given by putting <j> = 0

in (9);

(11)
2 4 n 2 S<*V x u ? r$r 1A •TT-^" Isin (-r) +- sin2(-/)qA+\?

The widths for u = 0 and °° are given by setting sc{> and r<J> = ir,

respectively, in (11), so that

A(0) _ /r
A(°°
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A

Fig. 1. Central island separatrix showing island width A = u and
crossing phase <j>c.
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The behavior of A(p) in between these limits may be understood

by examining the derivative,

2
For u « 1, A /3u may be positive or zero depending on <J> , but

A(p) is monotonically decreasing over most of the range of u, where the

second term of (lib) dominates. Generally A(p) has a gentle maximum

near p = 0.5, varying by only a few percent over the range of interest.

In the important case r = s + 1, A(p) varies only slightly over the entire

range, and we may take A(p) * A(0). In section 4 we obtain explicit

expressions for A(p) for r/s = 2/1, 3/2 and 3/1.

3. Classification of Bifurcations

Straightforward linear stability analysis [1] of the mapping (1-2)

shows that bifurcations occur at critical p* and <J>* given by the '

simultaneous solutions of

sin S(J>0 + p sin r<j>Q =0 (12)

s cos s<J>0 + pr cos s<j>0 = 0. (13)

These equations admit a simple geometrical interpretation if we observe

that they are equivalent to V'((fr0) = V"(cj>0) = 0. That is, eq. (12),

which locates the fixed points, has a double root at 4>n = <j>n*.

Bifurcations occur when fixed points merge. Thus, the averaged

Hamiltonian (4) with the effective potential (8) retains the basic

topological features of the exact mapping in the neighborhood of the

common fixed points. For our purposes we can therefore drop the

distinction between local averaged and the exact variables and write

(u,<j>) for (u,$) in applying the results of section 2. We now examine
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u

i t | 1

/A. m v

(b) Anti-Pitchfork

u

/

i mi
i iii

4>

1 1 j I

(c) Tangent

u

! ! ! !
+

^ * v

X Ati ! .

Fig. 2. Bifurcation types for a general periodic potential: (a) tangent
bifurcation, for which V(<j>) has an inflection point; (b) pitchfork

bifurcation (v"' = o, V1V >0); (c) anti-pitchfork bifurcation
(V = 0, V1V < 0).
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the possible types of bifurcation for a general periodic potential

V(<{>), based on some notions of elementary catastrophe theory [6].

(a) Tangent Bifurcation (Pair Creation) (Vq't4 0)

When V"' f 0, V(<j>) has an inflection point at <j>Q* for the critical

value p*. As p is increased further, V(<j>) develops a min-max pair,

giving rise to a stable-unstable pair of fixed points, as illustrated

in Fig. 2(a).

(b) Pitchfork Bifurcation (Vg1 =0, Vjv> 0)
When Vq' = 0, the function V(<j>Q) has a third order critical point

at <J>0*. This kind of bifurcation requires symmetry with respect to

<J>q = it for the Fermi map. As p is increased beyond p*, V(<J>) develops

a dimple in the center of a broad minimum, and the original elliptic

fixed point goes unstable, issuing forth two new stable fixed points to

either side, as shown in Fig. 2(b).

(c) Anti-Pitchfork Bifurcation (Vq» 0, vjv< o)

When VqV< 0, V(<J>) has abroad maximum at <J>Q*, which develops a
local minimum as p increases beyond p*. The original hyperbolic fixed

point then stabilizes, escorted by two new hyperbolic fixed points, as

depicted in Fig. 2(c). Again, by symmetry this can only occur at

<j)0 =Tr for the Fermi map.

4. Closed Form Solutions

In general, eqs. (12) and (13) must be solved numerically. How

ever, algebraic solutions may be obtained for s <r_<5 and for the

cases r=s + l and r = s+ 2. Detailed study of these tractable cases

then provides us with clues concerning the order and manner in which

fixed points bifurcate in general.
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Let us begin by examining the stability of the obvious fixed

points at 4>0 = 0 and ±ir. Setting <J> = 0 in Eq. (13) immediately

shows that this (elliptic) fixed point never bifurcates for positive p.

On the other hand, the <j>Q = ±-rr points (actually the same point modulo

2tt) bifurcate at p* = s/r whenever r-s is odd. In particular, if

r - s = 1, this is the only bifurcation, giving birth to two new fixed

points, exactly the required number to change from s-fold to

(s+l)-fold symmetry.

Another broad class of bifurcations is revealed by setting

<t>0 = ± j in Eqs. (12) and (13). Taking r=s+ 2m (m = 1,2,...)

then satisfies Eq. (13), since r and s must be odd in order to be

coprime. Equation (12) becomes 1+p cosirni = 0, which is satisfied by

p = 1 and m odd. Thus, a pair of tangent bifurcations always occurs

at <J>0* =±i when p* =1for r=s+2, s+6,... Again, when
r - s = 2 these are the only bifurcations as p increases from 0 to «>.

When s < r < 5, complete algebraic solutions of (12) and (13)

may be obtained by means of the factorization

sin n<j> = sin<j) P -.(cos^), (14)

where P , is a polynomial of degree n-1. Thus, (12) becomes

Ps-1(x) + pPr-1(x) =0, (15)

where x = cos<j>. The critical values of p are then usually given by

the vanishing of the discriminant of (15). We now consider the

various cases for which this procedure is possible. The first three

cases are treated in detail as paradigms for the three varieties of

bifurcation.
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4.1 r/s = 2/1

In this the simplest combination of frequencies, the p = 0 fixed

points lie at <J>Q = 0 and it. Since r = s + 1, a single bifurcation takes

place at (j>Q* = ir. Formally, (15) gives

sin<j>0(l+2pcos<j>0) =0, (16)

whose solutions are $« = 0, ir and

cos<DQ =- i • (17)

As cju is complex for p < 1/2, p* = 1/2 is the critical value, for which

<f>0* = ir. At this point VQ =0 and Vlv= -3, indicating an anti-pitchfork

bifurcation. Figure 3 shows the level curves and effective potentials

calculated from the averaged Hamiltonian (4) for several values of p.

These may be seen to compare well with the exact mappings shown in

Fig. 4, most clearly for the chain at u = 33.33.

The separatrix is particularly easy to calculate in this case;

from (9), (10) and (17) we find

4cos2 | (l-2p sin2 f), p<p*
X+p2Gu2 =«

2p

Thus, u ~ ±cos<J> when p = p* = 1/2. Putting <j> = 0 in (18) we obtain

the central island width as a function of p, which is plotted along

with the widths for r/s = 3/2 and 3/1 in Fig. 5. Note that A decreases

monotonically and that A(0) = A A(°°), as predicted by (11a). In

studying the increase in the adiabatic barrier to stochastic heating

we are primarily interested in the parameter range 0 <_ p < 1, for

which the characteristic overlapping of neighboring islands occurs.

The curves in Fig. 5 show that even in the worst case r/s =1/2,

2 v. -M .... 2<

(18)

+ 2cos<j>(l+pcos<t>), p>p*
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r/s = 2/1

77" -7T

V -s

-7T 0
4>

IT

1 - • -

0 -

-1

1

-

7T -7T

AL=0

/x* 0.5

M =

M =5

Fig. 3. Level curves and effective potential for r/s = 2/1. An anti-
pitchfork bifurcation occurs at <J> = ir when p = 0.5. The dashed
lines are the energy levels of the separatrix.
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r/s = 2/1 M = 50

u

(a)

fJL'O

B

u

u

(b)

/x.*=0.5

B

U.

Fig. 4. Computer-produced mappings for r/s = 2/1, M = 50. Note the
increase in the adiabatic barrier ug and linear stability limit
u. with increasing p.

-11-



r/s = 2/1 M = 50
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the variation in A is only about 10%, so that we may safely take

A(p) * A(0) in deriving overlap criteria.

4.2 r/s = 3/2

Since r - s = 1, we again have the immediate complete solution

that the <f>Q = ir fixed point bifurcates at p* = 2/3, while the <J>Q =0

elliptic fixed point stays put. Formally, Eq. (15) becomes

4x2 +|x -1=0, (19)
whose solutions are

4pcos<f>Q =-1 ±/l+4p2. (20)

While (20) has no double roots, there is a double root in (j>Q when

coscj>0 = -1, where cos<j>Q is locally quadratic near <{>q = it. The second

root of (20) locates the nonbifurcating hyperbolic fixed points. At

(J)Q = ir, V = V = V =0 and V > 0, indicating a pitchfork bifurcation.

Figure 6 shows a series of level curves and effective potentials, this

time over two complete cycles, in order to better illustrate the

figure eight inner separatrix that develops at <J>q =tt when p>p*

These plots are to be compared with the exact mappings in Ref. 1.

Note that in all cases the island width is greatest at <j>Q = 0, so that

the central islands are expected to overlap first.

We now turn to the calculation of the island width for this paradigm

case. From (20), the crossing phase (u = 0) is given by

4p cos(j>c =Ahm2 - 1. (21)

Using (21) in (11) then gives

12p2/H^"GA2 =8p3 +18p2 - 1 +(l+4p2)3/2 (22)

which holds for all p. As Fig. 5 shows, the width is quite flat in

this case, having a gentle maximum at p * 0.5 after which it decreases

-14-



r/s=3/2

Fig. 6. Level curves and effective potential for r/s = 3/2. A pitchfork
bifurcation occurs at (J> = it when p =2/3.
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r/s =3/2

u

u
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monotonically to A(~) = 0.8 A(0). For this case A(p) * A(0) is a good

approximation over the entire range of p.

The cases r/s = 4/3 and 5/4 have the property r = s + 1 and yield

mappings similar to the cases r/s = 2/1 and 3/2.

4.3 r/s = 3/1

Since r -s = 2, it follows that tangent bifurcations occur at

<f>Q* = 0 and tt but do not bifurcate for positive p. Formally, (15)

becomes

cos2(t>0 =1(1-1), (23)

whose discriminant vanishes.at p = 1. When p > 1, the crossing phase

nearest <j>Q = 0 is given by

coscj)c =1A^~J. (24)
As Fig. 7 shows, there is a single separatrix for p < 1 and nested

inner and outer separatrices for p _> 1. The width of the outer

separatrix is given by

,2 = 4(1+p/3)

while, using (24), we find for the inner width,

S^l+p^GA2 =2(3+p) +2(p-l) A^r- • (26)
K inner 4p

The variation of the two widths with p is shown in Fig. 5. While

A . is obviously the relevant width to use in an overlap criterion,
outer

A. can play a subtle role. For, as both separatrices are adorned
inner r J r

with their own stochastic layers, the intriguing possibility of

self-overlap arises, in which the two stochastic layers strongly

interact, destroying all KAM curves in their vincinity. In fact, as

can be seen from the curves in Fig. 5, the two separatrices eventually

Kuter =f^ • (»>
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fJL-0

M*-l

/x=2

Fig. 7. Level curves and effective potential for r/s = 3/1. Tangent
bifurcations take place at at <j> = ±7r/2 when p = 1.
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r/s = 3/ M= 100

Fig. 8. Numerical mappings for r/s = 3/1, M = 100. Note bifurcation of
common islands at u = 50 and 25.
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r/s = 3/1 M= 100
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merge as p + ». Consequently, in parameter ranges where islands are

nearly overlapping, such complex nested structures may dissolve

rather rapidly. This tendency is apparent in the set of mappings shown

in Fig. 8.

We also note in passing that the inner separatrix at bifurcation

(p - 1) has the simple form

Gu2 =|A cos3(j>, |(J>| <it/2. (27)

4.4 r/s = 4/1

To determine the bifurcation sequence we write (15) as

8x3 -4x +1=0. (28)

Rather than work out the discriminant for this cubic, we instead

write out (13),

8x4 -8x2 +̂ j x+1=0. (29)

Equations (28) and (29) then combine to give

6x4 -7x2 +1=0, (30)
2

a quadratic in x . The real roots for p > 0 are

cos<j>0* =-1 p* =1

cos<f> * =— p* =| /S =0.9186
0 /6 8

(31)

Thus, the metamorphosis from one to four-fold symmetry proceeds

in two stages; when p = 1/4 there is an anti-pitchfork bifurcation

at <j>0 = 180°, followed by tangent bifurcations at (j)Q = ±65.91° when

p = 0.9186. In order to calculate level curves including the inner

and outer separatrices, a complete solution of (28) is required to

give <j>c(p). While this is straightforward, for the sake of brevity

-21-



fig. 9.
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r/s = 4/1 M = 200
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we include (Fig. 9) only the numerical mappings, which show not

only the bifurcations but also the development of a thick stochastic

layer about the inner separatrix near the cusp of the tangent

bifurcation. Note that even though the central island width shrinks

by a factor of two as p increases from 0 to », there is still a substantial

increase in the adiabatic barrier, from u, = 22 to u. * 48. This is
b b

because the enhanced stochasticity is due primarily to the growth of

the r-fold islands, producing overlap at fairly low -p, before the

common islands have shrunk appreciably. In such cases where closed

form expressions for A(p) are difficult or impossible to obtain, we

therefore employ the limiting form A(0) given by (11). In modelling

ECRH where closely spaced frequencies are called for, we naturally

take r * s , in which case the variation in A(p) is entirely negligible.

4.5 r/s = 5/1

The polynomial (15) becomes

16x4 - 12x2 + (1 +1) =0 (32)
2

which is simply a quadratic in x . The solution is

8x2 =3+/S^Tp . (33)

A pair of double roots evidently occurs for

p* = 4/5 (34)

at angles given by

cos(J>0* * ±STjQ (35)

or

<j>0* = ±52.24°, ±127.76°.
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r/s = 5/ M= 180

u

40-==

u

S^^Sffi^»^^^^^S3^^^^l
40-£

20-|I

0

-7T

(a)

/x=0

u
B

•Ui

(b)

/i =0.5

u B

u.

Fig. 10. Numerical mappings for r/s = 5/1 and M= 180. A spectacular
double-tangent bifurcation occurs at <p = ±52.24° and 127.76°
when p = 4/5. Note the existence of narrow adiabatic bands
sandwiched between broad stochastic layers, especially at p = 2.0
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r/s = 5/1 M= 180

(c)

= 0.8

u
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Thus, we have the unusual coincidence of two simultaneous nested

tangent bifurcations at a single value of p, arranged as shown in

Fig. 10. There are actually three nested separatrices in Fig. lOdi

4.6 |r/s » 5/3

The polynomial (15) becomes

16px4 +4(l-3p)x2 +p-1 =0 (36)

with solution

8px2 =3p-l ±/5p2-2p+l • (37)
2

In this case the double root occurs for x = 0, as the discriminant of

(37) never vanishes for positive p. Of course, since r = s + 2 we

knew a priori that tangent bifurcations occur at <j>Q* = ±ir/2, when p* = 1

A set of mappings is presented in Fig. 11, which reveals a very

interesting pair of one-sided tangent bifurcations.

4.7 r/s = 5/2

Finally we come to the last, and most challenging, of the tractable

bifurcations. The polynomial (15) to be solved is

x4 -!x3 +5Tx +iV= °• <38>
Since r-s is odd, we know that bifurcations occur for p,* = 2/5 at

<j> * = ±tt. The other (tangent) bifurcations take place at a p where

(38) has a double root.

From the classical theory of equations [8], the discriminant A.

of (38) is equal to the discriminant A- of its "resolvant cubic,"

y3 +^ qy2 +tV (q2-4s)y -̂ r2 =o (39)
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r/s = 5/3 M= 240

Fig. 11. Numerical mappings for r/s =5/3 and M=240. An interesting
pair of one-sided tangent bifurcations occurs at d> = ±tt/2
when p = 1.
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r/s = 5/3 M= 240
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where

q. .3 rm± S=X
q 4' 8p' S 16 *

Here, r and s are not to be confused with our original frequency

ratio. To find A3, we transform (39) to the reduced cubic

Y3 + PY +Q=0, (40)

with

P=C-jB2

1 2 3Q=D-jBC +j=j BJ,

where, from (39),

B=lq=-|

C=II ^^ ' 2§6

16 " (64u)2

For a double root,

i3-2Tp3+lQ2 =0
which gives

p2* =(^ v£T-6)"1/2 =0.94137. (41)

The corresponding value of <f>Q* is best found by solving eq. (6)

iteratively, rather than suffering through the formal solution of (38)

The result is

<f>0* =55.80°. (42)

The sequence of bifurcations is illustrated in the set of computer-

produced mappings in Fig. 12.
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r/s = 5/2 M= 210
!_•"- 1 '-^Zi L

60-!

u

40-^>^^$^^>^^:rS§

(a)

fJL =0

Fig. 12. Numerical mappings for r/s = 5/2 and M = 210. An anti-pitchfork
bifurcation occurs at <J> = tt when p = 2/5, followed by tangent
bifurcations at $ = 55.80° when p = 0.9414.
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r/s = 5/2 M = 2I0
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5. Discussion

We have explored in some detail the manner in which the island

width depends on the changing topology of the two-frequency Fermi map,

as the relative strength of the two components is varied. A well-

defined island width appropriate to an overlap criterion was derived and

applied to three paradigm cases. The results show that in most

instances the width of the common islands is well approximated by

A(0), with no r-component present.

The bifurcations suffered by the common islands as the mapping changes

from s-fold to r-fold symmetry were shown to be particular examples of a

general family of bifurcations occurring in one-dimensional periodic

Hamiltonian systems with a variable parameter. These bifurcations were

classified and related to the critical points of the periodic potential.

Closed-form solutions of the bifurcation equations were then obtained for

some particular values of r/s for the Fermi mapping. The calculated

bifurcation thresholds were found to be in excellent agreement with

computer-produced mappings.

In the above-mentioned cases, the fixed points move horizontally

along lines of constant u and may be appropriately termed one-dimensional

bifurcations. However, it is well known that more complex, two-

dimensional bifurcations can occur. For example, as M is varied in

the single frequency Fermi mapping, families of three, four or more fixed

points may be emitted or absorbed by primary fixed points [9]. Two-

dimensional bifurcations can also occur for the two-frequency Fermi

mapping as p is varied, and Meff held fixed. An example is shown in

Figs. 13-14 for the case r/s = 5/4, M = 225 and p = 0.25. Here we have a

dazzling showcase of three- and four-way bifurcations of both r-fold

and common islands with varying p. Clearly these complex divisions fall

outside the scope of the simple theory presented in this report and offer

a fruitful area for further analysis.
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