

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INGRES

VERSION 7

REFERENCE MANUAL

4/8/81

by

John Woodfill
Polly Siegal

Jeff Ranstrom
Marc Meyer
Eric Allman

Memorandum No. UCB/ERL M81/61

21 August 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored by the Air Force Office of Scientific Research Grant
78-3596 and the U.S. Army Research Office Grant DAAG29-79-C-0182.

INTRODUCTION (INGRES) 3/1/81 INTRODUCTION (INGRES)

This manual is a reference manual for the INGRES data base system. It docu
ments the use of INGRES in a very terse manner. To learn how to use INGRES, refer
to the document called "A Tutorial on INGRES".

The INGRES reference manual is subdivided into four parts:
Quel describes the commands and features which are used inside of INGRES.
Unix describes the INGRES programs which are executable as UNIX commands.
Files describes some of the important files used by INGRES.
Error lists all the user generatable error messages along with some elabora

tion as to what they mean or what we think they mean.

Each entry in this manual has one or more of the following sections:

NAME section
This section repeats the name of the entry and gives an indication of
its purpose.

SYNOPSIS section
This section indicates the form of the command (statement). The con
ventions which are used are as follows:

Bold face names are used to indicate reserved keywords.
Lower case words indicate generic types of information which

must be supplied by the user: legal values for these
names are described in the DESCRIPTION section.

Square brakets ([]) indicate that the enclosed item is optional.
Braces ((j) indicate an optional item which may be repeated. In

some cases they indicate simple (non-repeated)
grouping; the usage should be clear from context.

When these conventions are insufficient to fully specify the legal format
of a command a more general form is given and the allowable subsets
are specified in the DESCRIPTION section.

DESCRIPTION section
This section gives a detailed description of the entry with references to
the generic names used in the SYNOPSIS section.

EXAMPLE section
This section gives one or more examples of the use of the entry. Most
of these examples are based on the following relations:

emp(name,sal,mgr,bdate)
and

newemp(name, sal,age)
and

parts(pnum, pname, color, weight, qoh)
SEE ALSO section

This section gives the names of entries in the manual which are closely
related to the current entry or which are referenced in the description
of the current entry.

BUGS section
This section indicates known bugs or deficiencies in the command.

To start using INGRES you must be entered as an INGRES user; this is done by the
INGRES administrator who will enter you in the "users" file (see users(flles)). To
start using ingres see the section on ingres(unix), quel(quei), and monitor(quel).

ACKNOWLEDGEMENTS

We would like to acknowledge the people who have worked on INGRES in the past:

1-

INTRODUCTION (INGRES) 3/1/81

Rick Birman
Bob Epstein
James Ford
Paula Hawthorn
Gerald Held
Peter Kreps
Dan Ries
Peter Rubinstein
Mike Ubell
Nick Whyte
Karel Youssefi
William Zook

FOOTNOTE

UNDC is a trademark of Bell Laboratories.

-2-

INTRODUCTION (INGRES)

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES)

APPEND(QUEL) - append tuples to a relation
append [to] relname (targetjist) [where qual]

COPY(QUEL) - copy data into/from a relation from/into a UNIX file.
copy relname (domname = format (, domname = format))

direction "filename"

CREATE(QUEL) - create a new relation
create relname (domname 1 = format \, domname*? = format j)

DEFINE(QUEL) - define subschema
define view name (target list) [where qual]
define permit oplist { on | ofj* to j var [(attlist)] to name [at term][

from time to time] [on day to day] [where qual]
define integrity on var is qual

DELETE(QUEL) - delete tuples from a relation
delete tuple_yariable [where qual]

DESTROY(QUEL) - destroy existing relation(s)
destroy relname f, relname j
destroy [permit | integrity] relname [integer {, integerJ| all]

HELP(QUEL) — get information about how to use INGRES or about relations in the
database.

help [relname] ["section"] j, relname) $, "section")
help view relname {, relname j
help permit relname {, relname)
help integrity relname f, relname)

INDEX(QUEL) —create a secondary index on an existing relation.
index on relname is indexname (domain! f ,domain£|)

INTEGRITY(QUEL) - define integrity constraints
define integrity on var is qual

MACROS(QUEL) - terminal monitor macro facility
MODIFY(QUEL) - convert the storage structure of a relation

modify relname to storage-structure [on keyl [: sortorder] [j , key2 [:
sortorder])] T[where [fillfactor = n] [, minpages = n] [,
maxpages = n J J

MONITOR(QUEL) - interactive terminal monitor

PERMIT(QUEL) - add permissions to a relation
define permit oplist (on| of | to)var [(attlist)]

to name [at term] [from time to time]
[on day to day] [where qual]

PRINT(QUEL) - print reiation(s)
print relname \, relname)

QUEL(QUEL) - QUEry Language for INGRES
RANGE(QUEL) —declare a variable to range over a relation

range of variable is relname

REPLACE(QUEL) —replace values of domains in a relation
replace tupie_yariabie (targetjist) [where qual]

RETRIEVE(QUEL) - retrieve tuples from a relation
retrieve [[into] relname] (target_list) [where qual]
retrieve unique (targetjist) [where qual]

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES)

SAVE(QUEL) - save a relation until a date.
save relname until month day year

VIEW(QUEL) - define a virtual relation
define view name (target-list) [where qual]

COPYDB(UNDC) - create batch files to copy out a data base and restore it.
copydb [-uname] database full-path-name-of-directory [relation ...]

CREATDB(UNIX) - create a data base
creatdb [-uname] [-e] [-m] [±c] [±q] dbname

DESTROYDB(UNIX) - destroy an existing database
destroydb [—s] [-m] dbname

EQUEL(UNDC) - Embedded QUEL interface to C
equel [-d][-*][-r] flle.q...

HELPR(UNIX) —get information about a database.
helpr [—uname] [±w] database relation ...

INGRES(UNDC) —INGRES relational data base management system
ingres [flags] dbname [process_table]

PRINTR(UNK) - print relations
printr [flags] database relation...

PURGE(UNIX) —destroy all expired and temporary relations
purge [HC][-p][-a][—s][±w][database ...]

RESTORE(UNIX) - recover from an INGRES or UNIX crash.
restore [—a][-s][±w][database ...]

SYSMOD(UNIX) - modify system relations to predetermined storage structures.
sysmod [—s] [-^r] dbname [relation] [attribute] [indexes] [tree] [
protect J [integrities]

USERSETUP(UNIX) - setup users file
.../bin/usersetup [pathname]

DAYFILE(FILES) - INGRES login message

DBTMPLT(FILES) - database template

ERROR(FILES) - files with INGRES errors

LIBQ(FILES) —Equel run-time support library

PROCTAB(FILES) - INGRES runtime configuration information

STARTUP(FILES) - INGRES startup file
USERS(FILES) —INGRES user codes and parameters

INTRODUCTION(ERROR) - Error messages introduction

EQUEL(ERROR) —EQUEL error message summary
Error numbers 1000 - 1999.

PARSER(ERROR) —Parser error message summary
Error numbers 2000 - 2999.

QRYMOD(ERROR) - Query Modification error message summary
Error numbers 3000 - 3999.

0VQP(ERR0R) —One Variable Query Processor error message summary
Error numbers 4000 - 4499.

DECOMP(ERROR) —Decomposition error message summary
Error numbers 4500 - 4999.

2-

TABLE OF CONTENTS (INGRES) 3/23/79 TABLE OF CONTENTS (INGRES)

DBU(ERROR) —Data Base Utility error message summary
Error numbers 5000 - 5999

-3-

APPEND (QUEL) 1/28/79 APPEND (QUEL)

NAME

append — append tuples to a relation

SYNOPSIS

append [to] relname (targetjist) [where qual]
DESCRIPTION

Append adds tuples which satisfy the qualification to relname. Relname must be
the name of an existing relation. The targetJList specifies the values of the attri
butes to be appended to relname. The domains may be listed in any order. At
tributes of the result relation which do not appear in the targetj.ist as
result_attnam.es (either explicitly or by default) are assigned default values of 0,
for numeric attributes, or blank, for character attributes.

Values or expressions of any numeric type may be used to set the value of a
numeric type domain. Conversion to the result domain type takes place.
Numeric values cannot be directly assigned to character domains. Conversion
from numeric to character can be done using the aseii operator (see
quel(quel)). Character values cannot be directly assigned to numeric domains.
Use the intl, int2, etc. functions to convert character values to numeric (see
quel(quel)).

The keyword all can be used when it is desired to append all domains of a rela
tion.

An append may only be issued by the owner of the relation or a user with append
permission on the given relation.

EXAMPLE

/* Make new employee Jones work for Smith •/
range of n is newemp
append to emp(n.name, n.sal, mgr = "Smith", bdate = 1975-n.age)

where n.name = "Jones"
/• Append the newemp 1 relation to newemp •/

range of nl is newemp1
append to newemp(nl.all)

SEE ALSO

copy(quel), permit(quel), que1(quel), retrieve(quei)

DIAGNOSTICS

Use of a numeric type expression to set a character type domain or vice versa
will produce diagnostics.

BUGS

Duplicate tuples appended to a relation stored as a "paged heap" (unkeyed, un
structured) are not removed.

-1-

COPY(QUEL) 1/19/79 COPY(QUEL)

NAME

copy — copy data into/from a relation from/into a UNDC file.

SYNOPSIS

copy relname (domname = format (, domname = format J)
direction "filename"

DESCRIPTION

Copy moves data between INGRES relations and standard UNDC files. Relname is
the name of an existing relation. In general domname identifies a domain in rel
name. Format indicates the format the UNDC file should have for the correspond
ing domain. Direction is either into or from. Filename is the full UNDC pathname
of the file.

On a copy from a file to a relation, the relation cannot have a secondary index, it
must be owned by you, and it must be updatabie (not a secondary index or sys
tem relation).

Copy cannot be used on a relation which is a view. For a copy into a UNDC file, you
must either be the owner of the relation or the relation must have retrieve per-

• mission for all users, or all permissions for all users.

The formats allowed by copy are:

il.i2,i4 - The data is stored as an integer of length 1, 2, or 4 bytes in the UNDC
file.

f4,f8 —The data is stored as a floating point number (either single or double
precision) in the UNDC file.

cl.c2,...,c255 —The data is stored as a fixed length string of characters.

cO—Variable length character string.

dO.dl d255— Dummy domain.

Corresponding domains in the relation and the UNDC file do not have to be the
same type or length. Copy will convert as necessary. When converting anything
except character to character, copy checks for overflow. When converting from
character to character, copy will blank pad or truncate on the right as neces
sary.

The domains should be ordered according to the way they should appear in the
UNDC file. Domains are matched according to name, thus the order of the
domains in the relation and in the UNDC file does not have to be the same.

Copy also provides for variable length strings and dummy domains. The action
taken depends on whether it is a copy into or a copy from. Delimitors for vari
able length strings and for dummy domains can be selected from the list of:

nl — new line character
tab — tab character
sp — space
nul or nail — null character
comma — comma

colon — colon

dash — dash

lparen — left parenthesis
rparen — right parenthesis
x — any single character *x*

The special meaning of any delimiter can be turned off by preceeding the delimi
ter with a 'V. The type specifier can optionally be in quotes ("cOdelim"). This is
usefully if you wish to use a single character delimiter which has special mean-

1-

COPY(QUEL) 1/19/79 ' COPY(QUEL)

ing to the QUEL parser.

When the direction is from, copy appends data into the relation from the UNDC
file. Domains in the INGRES relation which are not assigned values from the UNDC
file are assigned the default value of zero for numeric domains, and blank for
character domains. When copying in this direction the following special mean
ings apply:

cQdelim - The data in the UNDC file is a variable length character string terminat
ed by the delimitor delim.. If delim is missing then the first comma,
tab, or newline encountered will terminate the string. The delimitor is
not copied.

For example:
pnum=cO - string ending in comma, tab, or nl.
pnum=cOnl — string ending in nl.
pnum=cOsp — string ending in space.
pnum=cOz - string ending in the character *z\
pnum="cO%" - string ending in the character '%'.

A delimitor can be escaped by preceeding it with a 'Y. For example,
using name = cO, the string "Blow\, Joe," will be accepted into the
domain as "Blow, Joe".

dQdelim —The data in the UNDC file is a variable length character string delimited
by delim. The string is read and discarded. The delimitor rules are
identical for cOand dO. The domain name is ignored.

dl,d2,...,d255 - The data in the UNDC file is a fixed length character string. The
string is read and discarded. The domain name is ignored.

When the direction is into, copy transfers data into the UNDC file from the rela
tion. If the file already existed, it is truncated to zero length before copying be
gins. When copying in this direction, the following special meanings apply:
cO —The domain value is converted to a fixed length character string and writ-

ted into the UNDC file. For character domains, the length will be the
same as the domain length. For numeric domains, the standard INGRES
conversions will take place as specified by the ,-i\ '-f\ and '-c' flags
(see ingres(unix)).

cOdelim —The domain will be converted according to the rules for cO above. The
one character delimitor will be inserted immediately after the domain.

dl.d2,...,d2S5 — The domain name is taken to be the name of the delimitor. It is
written into the UNDC file 1 time for dl. 2 times for d2, etc.

dD —This format is ignored on a copy into.

dDdelim —The delim is written into the file. The domain name is ignored.

If no domains appear in the copy command (Le. copy relname () into/from
"filename") then copy automatically does a "bulk" copy of all domains, using the
order and format of the domains in the relation. This is provided as a con
venient shorthand notation for copying and restoring entire relations.

To copy into a relation, you must be the owner or all users must have all permis
sions set. Correspondingly, to copy from a relation you must own the relation or
all users must have at least retrieve permission on the relation. Also, you may
not copy a view.

EXAMPLE

/• Copy data into the emp relation •/
copy emp (name=cl0.sal=f4.bdate=i2,mgr=cl0,xxx=dl)

-2

COPY (QUEL) 1/19/79 COPY (QUEL)

from "/mnt/me/myflle"

/• Copy employee names and their salaries into a file */
copy emp (name=cO,comma=dl,sal=cO,nl=dl)

into "/mnt/you/yourfileM

/• Bulk copy employee relation into file •/
copy emp ()

into "/mnt/ours/ourfile"

/• Bulk copy employee relation from file •/
copy emp ()

from "/mnt/thy/thyfile"

SEE ALSO

append(quel), create(quel). quel(quel). permit(quel), view(quel), ingres(unix)
BUGS

Copy stops operation at the first error.

When specifying filename, the entire UNDC directory pathname must be provided,
since INGRES operates out of a different directory than the user's working direc
tory at the time INGRES is invoked.

-3-

CREATE (QUEL) 1/28/79 CREATE (QUEL)

NAHE

create — create a new relation

SYNOPSIS

create relname (domname 1 = format {, domname-? = format \)
DESCRIPTION

Create will enter a new relation into the data base. The relation will be "owned"
by the user and will be set to expire after seven days. The name of the relation
is relname and the domains are named domname 1, domname2, etc. The
domains are created with the type specified by format. Formats are described
in the quei(quel) manual section.

The relation is created as a paged heap with no data initially in it.

A relation can have no more than 49 domains. A relation cannot have the same
name as a system relation.

EXAMPLE

/* Create relation emp with domains name, sal and bdate */
create emp (name = clO, salary = f4, bdate = i2)

SEE ALSO

append(quel), copy(quel), destroy(quel), save(quel)

BUGS

-1-

DEFINE (QUEL) 2/7/79 DEFINE (QUEL)

NAME

define — define subschema

SYNOPSIS

define view name (target list) [where qual]
define permit oplist j on | of | to) var [(attlist)] to name [at term] [from time

to time] [on day to day] [where qual]
define integrity on var is qual

DESCRIPTION

The define statement creates entries for the subschema definitions. See the
manual sections listed below for complete descriptions of these commands.

SEE ALSO

integrity(quel), permit(quel), view(quel)

- 1

DELETE (QUEL) 1/28/79 DELETE (QUEL)

NAHE

delete — delete tuples from a relation

SYNOPSIS

delete tuple_yariable [where qual]
DESCRIPTION

Delete removes tuples which satisfy the qualification qual from the relation that
they belong to. The tuplevariable must have been declared to range over an
existing relation in a previous range statement. Delete does not have a
targetjdst. The delete command requires a tuple variable from a range state
ment, and not the actual relation name. If the qualification is not given, the
effect is to delete all tupies in the relation. The result is a valid, but empty rela
tion.

To delete tuples from a relation, you must be the owner of the relation, or have
delete permission on the relation.

EXAMPLE

/• Remove all employees who make over $30,000 •/
range of e is emp
delete e where e.sal > 30000

SEE ALSO

destroy(quel), permit(quel), quei(quel), range(quel)

BUGS

- 1-

DESTROY (QUEL) 2/21/79 DESTROY (QUEL)

NAHE

destroy - destroy existing relation(s)
SYNOPSIS

destroy relname [, relname j
destroy [permit | integrity]relname [integer j , integer J| all]

DESCRIPTION

Destroy removes relations from the data base, and removes constraints or per
missions from a relation. Only the relation owner may destroy a relation or its
£!!fmiS!IOnS 2nd ^grtty constraints. Arelation may be emptied of tuples, but
not destroyed, using the delete statement or the modify statement.
If the relation being destroyed has secondary indices on it. the secondary in
dices are also destroyed. Destruction of just a secondary index does not affect
the primary relation it indexes. ««* *w

m.«?ftru7 w^J?1 pen?issions or constraints for arelation, the integer argu
ments should be those printed by a help permit (for destroy permit) or a help
fr n!^i-°r dT^toteplty) on the saml relation. To destroy™ooStnSnS
£J^13310?3, .^e ^ ke5rword may be used in place of individual integers. To
w^^b^^ PermiSSi0nS' either the *"9" -Stents or thegall key-

EXAMPLE

/• Destroy the emp relation •/
destroy emp
destroy emp, parts

/• Destroy some permissions on parts, and all integrity
• constraints on employee
•/

destroy permit parts 0, 4, 5
destroy integrity employee

SEE ALSO

create(quel). delete(quel), help(quel). index(quel), modify(quel)

-1

HELP (QUEL) 2/21/79 HELP (QUEL)

NAME

help — get information about how to use INGRES or about relations in the data
base.

SYNOPSIS

help [relname] ["section"] f, relname} f. "section"!
help view relname {, relname j
help permit relname {, relname j
help integrity relname \, relname j

DESCRIPTION

Help may be used to obtain sections of this manual, information on the content
of the current data base, information about specific relations in the data base,
view definitions, or protection and integrity constraints on a relation. The legal
forms are as follow:

help "section " — Produces a copy of the specified section of the INGRES Refer
ence Manual, and prints it on the standard output device.

help — Gives information about all relations that exist in the current database.
help relname f, relname\ - Gives information about the specified relations.
help " " — Gives the table of contents.
help view relname f, relname] - Prints view definitions of specified views.
help permit relname \, relname] —Prints permissions on specified relations.
help integrity relname \, relname] - Prints integrity constraints on specified

relations.

The permit and integrity forms print out unique identifiers for each constraint.
These identifiers may be used to remove the constraints with the destroy state
ment.

EXAMPLE

help
help help /* prints this page of the manual •/
help quel
help emp
help emp, parts, "help", supply
help view overp_yiew
help permit parts, employee
help integrity parts, employee

SEE ALSO

destroy(quel)

BUGS

Alphabetics appearing within the section name must be in lower-case to be
recognized.

-1-

INDEX (QUEL) 2/21/79 INDEX (QUEL)

NAME

index — create a secondary index on an existing relation.

SYNOPSIS

index on relname is indexname (domain 1 \ ,domain£|)

DESCRIPTION

Index is used to create secondary indices on existing relations in order to make
retrieval and update with secondary keys more efficient. The secondary key is
constructed from relname domains 1, 2,...,6 in the order given. Only the owner
of a relation is allowed to create secondary indices on that relation.

In order to maintain the integrity of the index, users will NOT be allowed to
directly update secondary indices. However, whenever a primary relation is
changed, its secondary indices will be automatically updated by the system.
Secondary indices may be modified to further increase the access efficiency of
the primary relation. When an index is first created, it is automatically modified
to an isam storage structure on all its domains. If this structure is undesirable,
the user may override the default isam structure by using the —n switch (see
ingres(unix)), or by entering a modify command directly.
If a modify or destroy command is used on relname, all secondary indices on
relname are destroyed.

Secondary indices on other indices, or on system relations are forbidden.

EXAMPLE

/• Create a secondary index called "x" on relation "emp" •/
index on emp is x(mgr.sal)

SEE ALSO

copy(quel), destroy(quel), modify(quei)

BUGS

At most 6 domains may appear in the key.

The copy command cannot be used to copy into a relation which has secondary
indices.

The default structure isam is a poor choice for an index unless the range of re
trieval is small.

-1-

INTEGRITY (QUEL) 2/7/79 INTEGRITY (QUEL)

NAME

integrity - define integrity constraints

SYNOPSIS

define integrity on var is qual

DESCRIPTION

The integrity statement adds an integrity constraint for the relation specified
by var. After the constraint is placed, all updates to the relation must satisfy
qual. Qual must be true when the integrity statement is issued or else a diag
nostic is issued and the statement is rejected.

In the current implementation, integrity constraints are not flagged — bad up
dates are simply (and silently) not performed.
Qual must be a single variable qualification and may not contain any aggre-

' gates.

integrity statement may be issued only by the relation owner.

EXAMPLE

/• Ensure all employees have positive salaries */
range of e is employee
define integrity on e is e. salary > 0

SEE ALSO

destroy(quel)

-1-

MACROS (QUEL) 2/19/79 MACROS (QUEL)

NAME

macros —terminal monitor macro facility

DESCRIPTION

The terminal monitor macro facility provides the ability to tailor the QUEL
language to the user's tastes. The macro facility allows strings of text to be re
moved from the query stream and replaced with other text. Also, some built in
macros change the environment upon execution.

Basic Concepts

All macros are composed of two parts, the template part and the replacement
part. The template part defines when the macro should be invoked. For exam
ple, the template "ret" causes the corresponding macro to be invoked upon en
countering the word "ret" in the input stream. When a macro is encountered,
the template part is removed and replaced with the replacement part. For ex
ample, if the replacement part of the "ret" macro was "retrieve", then all in
stances of the word "ret" in the input text would be replaced with the word "re
trieve", as in the statement

ret (p.all)

Macros may have parameters, indicated by a dollar sign. For example, the tem
plate "get $1" causes the macro to be triggered by the word "get" followed by
any other word. The word following "get" is remembered for later use. For ex
ample, if the replacement part of the "get" macro where

retrieve (p.all) where p.pnum = $1
then typing "get 35" would retrieve all information about part number 35.
Defining Macros

Macros can be defined using the special macro called "define". The template for
the define macro is (roughly)

(define; $t; $rj

where $t and $r are the template and replacement parts of the macro, respec
tively. r

Let's look at a few examples. To define the "ret" macro discussed above, we
would type:

(define; ret; retrieve)

When this is read, the macro processor removes everything between the curly
braces and updates some tables so that "ret" will be recognized and replaced
with the word "retrieve". The define macro has the null string as replacement
text, so that this macro seems to disappear.
Auseful macro is one which shortens range statements. It can be defined with

(define; rg vr; range of $vis $rj
This macro causes the word "rg" followed by the next two words to be removed
^nd,.re?1;?ced by the words "range of. followed by the first word which followed
rg . followed by the word "is", followed by the second word which followed

"rg". For example, the input
rg p parts

becomes the same as

range of p is parts

MACROS (QUEL) 2/19/79 MACROS (QUEL)

Evaluation Times

When you type in a define statement, it is not processed immediately, just as
queries are saved rather than executed. No macro processing is done until the
query buffer is evaluated. The commands \go, Mist, and \eval evaluate the
query buffer. \go sends the results to INGRES, Mist prints them on your terminal,
and \eval puts the result back into the query buffer.

It is important to evaluate any define statements, or it will be exactly like you
did not type them in at all. A common way to define macros is to type

(define ... J
\eval
\reset

If the \eval was left out, there is no effect at all.

Quoting

Sometimes strings must be passed through the macro processor without being
processed. In such cases the grave and acute accent marks (v and ') can be
used to surround the literal text. For example, to pass the word "ret" through
without converting it to "retrieve" we could type

*ret'

Another use for quoting is during parameter collection. If we want to enter
more than one word where only one was expected, we can surround the parame
ter with accents.

The backslash character quotes only the next character (like surrounding the
character with accents). In particular, a grave accent can be used literally by
preceeding it with a backslash.

Since macros can normally only be on one line, it is frequently useful to use a
backslash at the end of the line to hide the newline. For example, to enter the
long "get" macro, you might type:

(define; get In; retrieve (e.all) \
where e.name = "$n"J

The backslash always quotes the next character even when it is a backslash. So,
to get a real backslash, use two backslashes.

More Parameters

Parameters need not be limited to the word following. For example, in the tem
plate descriptor for define:

(define; $t; $rj
the $t parameter ends at the first semicolon and the $r parameters ends at the
first right curly brace. The rule is that the character which follows the parame
ter specifier terminates the parameter; if this character is a space, tab, newline,
or the end of the template then one word is collected.

As with all good rules, this one has an exception. Since system macros are al
ways surrounded by curly braces, the macro processor knows that they must be
properly nested. Thus, in the statement

(define; x; (sysfnjj
The first right curly brace will close the "sysm" rather than the "define". Oth
erwise this would have to be typed

(define; x; *(sysfnj'J

-2

MACROS(QUEL) 2/19/79 MACROS(QUEL)

Words are defined in the usual way, as strings of letters and digits plus the un
derscore character.

Other Builtin Macros

There are several other macros built in to the macro processor. In the following
description, some of the parameter specifiers are marked with two dollar signs
rather than one; this will be discussed in the section on prescanning below.

(define; $$t; $$rJ defines a macro as discussed above. Special processing occurs
on the template part which will be discussed in a later section.

(rawdefine; $$t; $$rj is another form of define, where the special processing does
not take place.

(remove; $$nj removes the macro with name $n. It can remove more than one
macro, since it actually removes all macros which might conflict with $n under
some circumstance. For example, typing

(define; get part $n; . . . j
(define; get emp $x; . . . j
(remove; get)

would cause both the get macros to be removed. A call to

(remove; get part}

would have only removed the first macro.

(type $$sj types $s onto the terminal.
(read $$sj types $s and then reads a line from the terminal. The line which was
typed replaces the macro. A macro called "(readcountj" is defined containing
the number of characters read. A control-D (end of file) becomes —1, a single
newline becomes zero, and so forth.

(readdefine; $$n; $$s{ also types $s and reads a line, but puts the line into a
macro named $n. The replacement text is the count of the number of charac
ters in the line, (readcountj is still defined.

Jifsame; $$a; $$b; $t; $fJ compares the strings $a and $b. If they match exactly
then the replacement text becomes $t, otherwise it becomes $f.

(ifeq; $$a; $$b; $t; $fJ is similar, but the comparison is numeric.
(ifgt; $$a; $$b; $t; $fj is like ifeq, but the test is for $a strictly greater than $b.

Jsubstr; $$f; $$t; $$sj returns the part of Ss between character positions $f and
$t, numbered from one. If $f or $t are out of range, they are moved in range as
much as possible.

(dump; $$n| returns the value of the macro (or macros) which match $n (using
the same algorithm as remove). The output is a rawdefine statement so that it
can be read back in. (dumpj without arguments dumps all macros.

Metacharacters

Certain characters are used internally. Normally you will not even see them,
but they can appear in the output of a dump command, and can sometimes be
used to create very fancy macros.

\| matches any number of spaces, tabs, or newlines. It will even match zero, but
only between words, as can occur with punctuation. For example, \| will match
the spot between the last character of a word and a comma following it.

V* matches exactly one space, tab, or newline.

3-

MACROS (QUEL) 2/19/79 MACROS (QUEL)

\& matches exactly zero spaces, tabs, or newlines, but only between words.

The Define Process

When you define a macro using define, a lot of special processing happens. This
processing is such that define is not functionally complete, but still adequate for
most requirements. If more power is needed, rawdefine can be used; however,
rawdefine is particularly difficult to use correctly, and should only be used by
gurus.

In define, all sequences of spaces, tabs, and newlines in the template, as well as
all "non-spaces" between words, are turned into a single \| character. If the
template ends with a parameter, the \& character is added at the end.

If you want to match a real tab or newline, you can use \t or \n respectively.
For example, a macro which reads an entire line and uses it as the name of an
employee would be defined with

(define; get $n\n; \
ret (e.all) where e.name = "$n"J

This macro might be used by typing

get *Stan*

to get all information about everyone with a name which included "Stan". By
the way, notice that it is ok to nest the "ret" macro inside the "get" macro.

Parameter Prescan

Sometimes it is useful to macro process a parameter before using it in the re
placement part. This is particularly important when using certain builtin mac
ros.

For prescan to occur, two things must be true: first, the parameter must be
specified in the template with two dollar signs instead of one, and second, the
actual parameter must begin with an "at" sign ("@") (which is stripped off).
For an example of the use of prescan, see "Special Macros" below.

Special Macros

Some special macros are used by the terminal monitor to control the environ
ment and return results to the user.

(begintrapj is executed at the beginning of a query.

(endtrapj is executed after the body of a query is passed to INGRES.
[continuetrap} is executed after the query completes. The difference between
this and endtrap is that endtrap occurs after the query is submitted, but before
the query executes, whereas continuetrap is executed after the query executes.

(editor) can be defined to be the pathname of an editor to use in the \edit com
mand.

(shell] can be defined to be the pathname of a shell to use in the \shell com
mand.

(tuplecountJ is set after every query (but before continuetrap is sprung) to be
the count of the number of tuples which satisfied the qualification of the query
in a retrieve, or the number of tuples changed in an update. It is not set for DBU
functions. If multiple queries are run at once, it is set to the number of tuples
which satisfied the last query run.

For example, to print out the number of tuples touched automatically after each
query, you could enter:

(define; (begintrapj; (remove; (tuplecountjjj

4-

MACROS (QUEL) 2/19/79 MACROS (QUEL)

(define; (continuetrap); \
(ifsame; ©(tuplecountj; (tuplecountj;; \

(type @(tuplecountj tuples touchedjjj

SEE ALSO

monitor(quel)

-5-

MODIFY (QUEL) 2/23/79 MODIFY (QUEL)

NAHE

modify —convert the storage structure of a relation

SYNOPSIS

modify relname to storage-structure [on keyl [: sortorder] [(, key2 [: sor
torder]]]][where [fillfactor = n J [, minpages = n] [, maxpages =
n]]

DESCRIPTION

Relname is modified to the specified storage structure. Only the owner of a re
lation can modify that relation. This command is used to increase performance
when using large or frequently referenced relations. The storage structures are
specified as follows:

isam —indexed sequential storage structure
cisam * compressed isam
hash —random hah storage structure
chash —compressed hash
heap —unkeyed and unstructured
cheap —compressed heap
heapsort —heap with tuples sorted and duplicates removed
cheapsort —compressed heapsort
truncated —heap with all tuples deleted

The paper "Creating and Maintaining a Database in INGRES" (ERL Memo M77-71)
discusses how to select storage structures based on how the relation is used.

The current compression algorithm only suppresses trailing blanks in character
fields. A more effective compression scheme may be possible, but tradeoffs
between that and a larger and slower compression algorithm are not clear.

If the on phrase is omitted when modifying to isam, cisam, hash or chash, the
relation will automatically be keyed on the first domain. When modifying to
heap or cheap the on phrase must be omitted. When modifying to heapsort or
cheapsort the on phrase is optional.

When a relation is being sorted (isam, cisam, heapsort and cheapsort), the pri
mary sort keys will be those specified in the on phrase (if any). The first key
after the on phrase will be the most significant sort key and each successive key
specified will be the next most significant sort key. Any domains not specified in
the on phrase will be used as least significant sort keys in domain number se
quence.

When a relation is modified to heapsort or cheapsort, the sortorder can be
specified to be ascending or descending. The default is always ascending. Each
key given in the on phrase can be optionally modified to be:

key: descending

which will cause that key to be sorted in descending order. For completeness,
ascending can be specified after the colon (':'), although this is unnecessary
since it is the default. Descending can be abbreviated by a single 'd' and,
correspondingly, ascending can be abreviated by a single 'a'.

FUlfactor specifies the percentage (from 1 to 100) of each primary data page
that should be filled with tuples, under ideal conditions. Fillfactor may be used
with isam, cisam, hash and chash. Care should be taken when using large fillfac
tors since a non-uniform distribution of key values could cause overflow pages to
be created, and thus degrade access performance for the relation.

Minpages specifies the minimum number of primary pages a hash or chash rela
tion must have. Maxpages specifies the maximum number of primary pages a
hash or chash relation may have. Minpages and maxpages must be at least one.

-1

MODIFY (QUEL) 2/23/79 MODUT (QUEL)

If both minpages and maxpages are specified in a modify, minpages cannot
exceed maxpages.

Default values for fillf actor, minpages. and maxpages are as follows:
FILLFACTOR MINPAGES MAXPAGES

hash 50 10 mJ^J
chash 75 1 ™lunit
isam 80 NA NA
cisam 100 NA NA

EXAMPLES
/* modify the emp relation to an indexed

sequential storage structure with
"name" as the keyed domain */

modify emp to isam on name

/* if "name" is the first domain of the emp relation,
the same result can be achieved by */

modify emp to isam

/* do the same modify but request a 60% occupancy
on all primary pages */

modify emp to isam on name where fillfactor = 60

/* modify the supply relation to compressed hash
storage structure with "num" and "quan"
as keyed domains */

modify supply to chash on num, quan

/* now the same modify but also request 75% occupancy
on all primary, a minimum of 7 primary pages
pages and a maximum of 43 primary pages */

modify supply to chash on num, quan
where fillfactor = 75, minpages = 7,
maxpages = 43

/* again the same modify but only request a minimum
of 16 primary pages */

modify supply to chash on num, quan
where minpages = 16

/* modify parts to a heap storage structure */

modify parts to heap

/* modify parts to a heap again, but have tuples
sorted on "pnum" domain and have any duplicate
tuples removed */

modify parts to heapsort on pnum

/* modify employee in ascending order by manager,
descending order by salary and have any
duplicate tuples removed */

-2

MODIFY (QUEL) 2/23/79 MODIFY (QUEL)

modify employee to heapsort on manager, salary:descending

SEE ALSO

sysmod(unix)

-3

MONITOR (QUEL) 2/23/79 MONITOR (QUEL)

NAME

monitor — interactive terminal monitor

DESCRIPTION

The interactive terminal monitor is the primary front end to INGRES. It provides
the ability to formulate a query and review it before issuing it to INGRES. If
changes must be made, one of the UNIX text editors may be called to edit the
query buffer.

Messages and Prompts.

The terminal monitor gives a variety of messages to keep the user informed of
the status of the monitor and the query buffer.

As the user logs in, a login message is printed. This typically tells the version
number and the login time. It is followed by the dayfile, which gives information
pertinant to users.

When INGRES is ready to accept input, the message "go" is printed. This means
that the query buffer is empty. The message "continue" means that there is in
formation in the query buffer. After a \go command the query buffer is au
tomatically cleared if another query is typed in, unless a command which affects
the query buffer is typed first. These commands are \append, \edit, \print,
Mist, \eval, and \go. For example, typing

help parts
\go
print parts

results in the query buffer containing
print parts
whereas

help parts
\go
\print
print parts

results in the query buffer containing
help parts
print parts

An asterisk is printed at the beginning of each line when the monitor is waiting
for the user to type input.

Commands

There are a number of commands which may be entered by the user to affect
the query buffer or the user's environment. They are all preceeded by a
backslash ('V), and all are executed immediately (rather than at execution time
like queries).

Some commands may take a filename, which is defined as the first significant
character after the end of the command until the end of the line. These com
mands may have no other commands on the line with them. Commands which
do not take a filename may be stacked on the line; for example

\date\go\date
will give the time before and after execution of the current query buffer.

\reset Erase the entire query (reset the query buffer). The former contents
of the buffer are irretrieveably lost.

\P
\print Print the current query. The contents of the buffer are printed on the

user's terminal.

- 1-

MONITOR (QUEL) 2/23/79 " MONITOR (QUEL)

M

Mist Print the current query as it will appear after macro processing. Any
side effects of macro processing, such as macro definition, will occur.

\eval Macro process the query buffer and replace the query buffer with the
result. This is just like Mist except that the output is put into the
query buffer instead of to the terminal.

\e
Ned
\edit

\editor Enter the UNDC text editor (see ED in the UNDC Programmer's Manual);
use the ED command 'w' followed by 'q' to return to the INGRES monitor.
If a filename is given, the editor is called with that file instead of the
query buffer. If the macro "(editor)" is defined, that macro is used as
the pathname of an editor, otherwise "/bin/ed" is used. It is impor
tant that you do not use the "e" command inside the editor; if you do
the (obscure) name of the querybuffer will be forgotten.

\g
\go Process the current query. The contents of the buffer are macro pro

cessed, transmitted to INGRES, and run.

\a

\append Append to the query buffer. Typing \a after completion of a query will
override the auto-clear feature and guarantees that the query buffer
will not be reset.

Ntime

Ndate Print out the current time of day.
\s

\sh

\sheil Escape to the UNDC shelL Typing a control-d will cause you to exit the
shell and return to the INGRES monitor. If there is a filename specified,
that filename is taken as a shell file which is run with the query buffer
as the parameter "$1". If no filename is given, an interactive shell is
forked. If the macro "(shell)" is defined, it is used as the pathname of
a shell; otherwise, "/bin/sh" is used.

\q
\quit Exit from INGRES.

\cd

\chdir Change the working directory of the monitor to the named directory.
M
Mnclude

\read Switch input to the named file. Backslash characters in the file will be
processed as read.

\w

\write Write the contents of the query buffer to the named file.

\branch Transfer control within a Mnclude file. See the section on branching
below.

Mnark Set a label for \branch.

\<any other character>
Ignore any possible special meaning of character following 'Y. This al
lows the 'Y to be input as a literal character. (See also quel(quel) -
strings). It is important to note that backslash escapes are sometimes
eaten up by the macro processor also; in general, send two backslashes

-2

MONITOR (QUEL) 2/23/79 MONITOR (QUEL)

if you want a backslash sent (even this is too simplistic [sigh] - try to
avoid using backslashes at all).

Macros

For simplicity, the macros are described in the section macros(quei).

Branching

The \branch and \mark commands permit arbitrary branching within a Mnclude
file (similar to the "goto" and ":" commands in the shell), \mark should be fol
lowed with a label, \branch should be followed with either a label, indicating un
conditional branch, or an expression preceeded by a question mark, followed by
a label, indicating a conditional branch. The branch is taken if the expression is
greater than zero. For example,

\branch ?(tuplecount)<=0 notups
branches to label "notups" if the "(tuplecount)" macro is less than or equal to
zero.

The expressions usable in \branch statements are somewhat restricted. The
operators +, -,»,/, <=, >=, <, >, =, and != are all defined in the expected way.
The left unary operator "!" can be used as to indicate logical negation. There
may be no spaces in the expression, since a space terminates the expression.

Initialization

At initialization (login) time a number of initializations take place. First, a mac
ro called "(pathname)" is defined which expands to the pathname of the INGRES
subtree (normally "/mnt/ingres"); it is used by system routines such as
demodb. Second, the initialization file .../files/startup is read. This file is in
tended to define system-dependent parameters, such as the default editor and
shell. Third, a user dependent initialization file, specified by a field in the users
file, is read and executed. This is normally set to the file ".ingres" in the user's
home directory. The startup file might be used to define certain macros, exe
cute common range statements, and soforth. Finally, control is turned over to
the user's terminal.

An interrupt while executing either of the initialization files restarts execution of
that step.

flags

Certain flags may be included on the command line to INGRES which affect the
operation of the terminal monitor. The —a flag disables the autoclear function.
This means that the query buffer will never be automatically cleared; equivalent-
ly, it is as though a \append command were inserted after every \go. Note that
this means that the user must explicitly clear the query buffer using \reset
after every query. The -d flag turns off the printing of the dayfile. The -s flag
turns off printing of all messages (except errors) from the monitor, including
the login and logout messages, the dayfile, and prompts. It is used for executing
"canned queries", that is, queries redirected from files.

SEE ALSO

ingres(unix). quel(quel), macros(quel)

DIAGNOSTICS

go You may begin a fresh query.

continue The previous query is finished and you are back in the moni
tor.

Executing . . . The query is being processed by INGRES.

-3

MONITOR (QUEL) 2/23/79 MONITOR (QUEL)

»ed You have entered the UNDC text editor.

»sh You have escaped to the UNDC shell.

Funny character nnn converted to blank
INGRES maps non-printing ASCII characters into blanks; this
message indicates that one such conversion has just been
made.

nfCOHPAXMliTlES

Note that the construct
\rprint parts

(intended to reset the query buffer and then enter "print parts") no longer
works, since "rprint" appears to be one word.

BUGS

4-

PERMIT (QUEL) 2/7/79 PERMIT (QUEL)

NAME

permit — add permissions to a relation

SYNOPSIS

define permit oplist (on | of | to) var [(attlist)]
to name [at term] [from time to time]
[on day to day] [where qual]

DESCRIPTION

The permit statement extends the current permissions on the relation specified
by var. Oplist is a comma separated list of possible operations, which can be re
trieve, replace, delete, append, or all; ail is a special case meaning all permis
sions. Name is the login name of a user or the word all. Term is a terminal
name of the form 'tty*' or the keyword all; omitting this phrase is equivalent to
specifying all. Times are of the form 'hh:mm' on a twenty-four hour clock which
limit the times of the day during which this permission applies. Days are three-
character abbreviations for days of the week. The qual is appended to the
qualification of the query when it is run.

Separate parts of a single permit statement are conjoined (ANDed). Different
permit statements are disjoined (ORed). For example, if you include

... to eric at tty4 . . .

the permit applies only to eric when logged in on tty4, but if you include two per
mit statements

... to eric at all. . .

... to all at tty4 . . .

then when eric logs in on tty4 he will get the union of the permissions specified
by the two statements. If eric logs in on ttyd he will get only the permissions
specified in the first permit statement, and if bob logs in on tty4 he will get only
the permissions specified in the second permit statment.

The permit statement may only be issued by the owner of the relation. Although
a user other than the DBA may issue a permit statement, it is useless because
noone else can access her relations anyway.

Permit statements do not apply to the owner of a relation or to views.

The statements

define permit all on x to all
define permit retrieve of x to all

with no further qualification are handled as special cases and are thus particu
larly efficient.

EXAMPLES

range of e is employee
define permit retrieve of e (name, sal) to marc

at ttyd from 8:00 to 17:00
on Mon to Fri
where e.mgr = "marc"

range of p is parts
define permit retrieve of e to all

SEE ALSO

destroy(quei)

-1-

PRINT(QUEL) i/26/79 PRINT (QUEL)

NAHE

print — print relation(s)

SYNOPSIS

print relname {, relname]

DESCRIPTION

Print displays the contents of each relation specified on the terminal (standard
output). The formats for various types of domains can be defined by the use of
switches when ingres is invoked. Domain names are truncated to fit into the
specified width.

To print a relation one must either be the owner of the relation, or the relation
must have "retrieve to all" or "all to all" permissions.
See ingres(quel) for details.

EXAMPLE

/* Print the emp relation */
print emp
print emp, parts

SEE ALSO

permit(quei), retrieve(quel), ingres(unix), printr(unix)
BUGS

Print does not handle long lines of output correctly —no wrap around.
Print should have more formating features to make printouts more readable.
Print should have an option to print on the line printer.

-1-

QUEL (QUEL) 2/23/79 QUEL (QUEL)

NAME

quel - QUEry Language for INGRES

DESCRIPTION

The following is a description of the general syntax of QUEL. Individual QUEL state
ments and commands are treated separately in the document; this section
describes the syntactic classes from which the constituent parts of QUEL state
ments are drawn.

1. Comments

A comment is an arbitrary sequence of characters bounded on the left by "/*"
and on the right by "*/":
/• This is a comment */

2. Names

Names in QUEL are sequences of no more than 12 alphanumeric characters,
starting with an alphabetic. Underscore (_) is considered an alphabetic. All
upper-case alphabetics appearing anywhere except in strings are automatically
and silently mapped into their lower-case counterparts.

3. Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

abs all and
any append ascii
at atan avg
avgu by concat
copy cos count
countu create define
delete destroy exp
float4 floats from
gamma help in
index intl int2

int4 integrity into
is log max
min mod modify
not of on
onto or permit
print range replace
retrieve save sin

sort sum sumu

to unique until
view where

4. Constants

There are three types of constants, corresponding to the three data types avail
able in QUEL for data storage.

4.1. String constants

Strings in QUEL are sequences of no more than 255 arbitrary ASCII characters
bounded by double quotes (" "). Upper case alphabetics within strings are ac
cepted literally. Also, in order to imbed quotes within strings, it is necessary to
prefix them with 'V . The same convention applies to 'V itself.

QUEL (QUEL) 2/23/79 QUEL (QUEL)

Only printing characters are allowed within strings. Non-printing characters
(Le. control characters) are converted to blanks.

4.2. Integer constants

Integer constants in QUEL range from -2.147.483.847 to +2.147.483.647. Integer
constants beyond that range will be converted to floating point. If the integer is
greater than 32.767 or less than -32.767 then it will be left as a two byte integer.
Otherwise it is converted to a four byte integer.

4.3. Floating point constants

Floating constants consist of an integer part, a decimal point, and a fraction
part or scientific notation of the following format:

f<dig» [.<dig>] [e|E [+H «dig>j]
Where <dig> is a digit, [] represents zero or one, (J represents zero or more, and
| represents alternation. An exponent with a missing mantissa has a mantissa of
1 inserted. There may be no extra characters embedded in the string. Floating
constants are taken to be double-precision quantities with a range of approxi
mately -103a to 1038 and a precision of 17decimal digits.

5. Attributes

An attribute is a construction of the form:

variable,domain

Variable identifies a particular relation and can be thought of as standing for the
rows or tuples of that relation. A variable is associated with a relation by means
of a range statement. Domain is the name of one of the columns of the relation
over which the variable ranges. Together they make up an attribute, which
represents values of the named domain.

6. Arithmetic operators

Arithmetic operators take numeric type expressions as operands. Unary opera
tors group right to left; binary operators group left to right. The operators (in
order of descending precedence) are:

+,- (unary) plus, minus
•* exponentiation
•,/ multiplication, division
+,— (binary) addition, subtraction

Parentheses may be used for arbitrary grouping. Arithmetic overflow and divide
by zero are not checked on integer operations. Floating point operations are
checked for overflow, underflow, and divide by zero only if the appropriate
machine hardware exists and has been enabled.

7. Expressions (a_expr)
An expression is one of the following:

constant

attribute
functional expression
aggregate or aggregate function
a combination of numeric expressions and arithmetic operators

For the purposes of this document, an arbitrary expression will be refered to by
the name a_expr.

8. Formats

Every ajexpr has a format denoted by a letter (c. i, or f, for character, integer,

-2

QUEL (QUEL) 2/23/79 QUEL (QUEL)

or floating data types respectively) and a number indicating the number of
bytes of storage occupied. Formats currently supported are listed below. The
ranges of numeric types are indicated in parentheses.

cl - c255 character data of length 1-255 characters
il 1-byte integer (-128 to +127)
i2 2-byte integer (-32768 to +32767)
i4 4-byte integer (-2,147,483,648 to+2.147.483,647)
f4 4-byte floating (-1038 to +1038, 7 decimal digit precision)
f4 8-byte floating (-1038 to +1038, 17 decimal digit precision)

One numeric format can be converted to or substituted for any other numeric
format.

9. Type Conversion.

When operating on two numeric domains of different types, INGRES converts as
necessary to make the types identical.

When operating on an integer and a floating point number, the integer is con
verted to a floating point number before the operation. When operating on two
integers of different sizes, the smaller is converted to the size of the larger.
When operating on two floating point number of different size, the larger is con
verted to the smaller.

The following table summarizes the possible combinations:

il i2 i4 f4 f8

il- il i2 i4 f4 f8
i2- i2 i2 i4 f4 f8
i4- i4 i4 i4 f4 f8
f4- f4 f4 f4 f4 f4
f8- fB f8 f8 f4 f8

INGRES provides five type conversion operators specifically for overriding the de
fault actions. The operators are:

intl(a_expr) result type il
int2(a_expr) result type i2
int4(a expr) result type i4
float4(a_expr) result type f4
float8(a_expr) result type f8

The type conversion operators convert their argument a_expr to the requested
type. A^expr can be anything including character. If a character value cannot
be converted, an error occures and processing is halted. This can happen only if
the syntax of the character value is incorrect.

Overflow is not checked on conversion.

10. Targetjist

A target list is a parenthesized, comma separated list of one or more elements ,
each of which must be of one of the following forms:

a) result_a£2name is a_expr

Resultjattname is the name of the attribute to be created (or an already exist
ing attribute name in the case of update statements.) The equal sign ("=") may
be used interchangeably with is. In the case where a_expr is anything other
than a single attribute, this form must be used to assign a result name to the ex
pression.

-3-

QUEL (QUEL) 2/23/79 - QUEL (QUEL)

b) attribute

In the case of a retrieve, the resultant domain will acquire the same name as
that of the attribute being retrieved. In the case of update statements (append,
replace), the relation being updated must have a domain with exactly that name.
Inside the target list the keyword all can be used to represent all domains. For
example:

range of e is employee
retrieve (e.all) where e.salary > 10000

will retrieve all domains of employee for those tuples which satisfy the
qualification. All can be used in the target list of a retrieve or an append. The
domains will be inserted in their "create" order, that is, the same order they
were listed in the create statement.

11. Comparison operators

Comparison operators take arbitrary expressions as operands.

< (less than)
<= (less than or equal)
>. (greater than)
>= (greater than or equal)
= (equal to)
!= (not equal to)

They are all of equal precedence. When comparisons are made on character at
tributes, all blanks are ignored.

12. Logical operators

Logical operators take clauses as operands and group left-to-right:

not (logical not; negation)
and (logical and; conjunction)
or (logical or; disjunction)

Not has the highest precedence of the three. And and or have equal precedence.
Parentheses may be used for arbitrary grouping.

13. Qualification (qual)
A qualification consists of any number of clauses connected by logical opera
tors. A clause is a pair of expressions connected by a comparison operator:

a_expr comparison_pperator a_expr

Parentheses may be used for arbitrary grouping. A qualification may thus be:

clause
not qual
qual or qual
qual and qual
(qual)

14. Functional expressions

A functional expression consists of a function name followed by a parenthesized
(list of) operand(s). Functional expressions can be nested to any level. In the
following list of functions supported (n) represents an arbitrary numeric type
expression. The format of the result is indicated on the right.

abs(n) — same as n (absolute value)
aaemn)— character string (converts numeric to character)
atan(n) — f8 (arctangent)
concat(a,b) —character (character concatenation. See 16.2)

QUEL (QUEL) 2/23/79 QUEL (QUEL)

cos(n| — fB (cosine)
exp(n) — fB (exponential of n)
gamma(n) — f8 (log gamma)
iog(n) — f8 (natural logarithm)
mod(n,b) — same as b (n modulo b. n and b must be il, i2, or i4)
8in(n) — f8 (sine)
sqrt(n) — f8 (square root)

15. Aggregate expressions

Aggregate expressions provide a way to aggregate a computed expression over a
set of tuples.

15.1. Aggregation operators

The definitions of the aggregates are listed below.

count — (i4) count of occurrences
countu — (i4) count of unique occurrences
sum — summation

sumu — summation of unique values
avg — (f8) average (sum/count)
avgu — (f8) unique average (sumu/countu)
max — maximum
min — minimum

any — (i2) value is 1 if any tuples satisfy the qualification, else it is 0

15.2. Simple aggregate

aggregation_gperator (ajsxpr [where qual])
A simple aggregate evaluates to a single scalar value. Ajexpr is aggregated over
the set of tuples satisfying the qualification (or all tuples in the range of the ex
pression if no qualification is present). Operators sum and avg require numeric
type ajexpr; count, any, max and min permit a character type attribute as well
as numeric type ajexpr.

Simple aggregates are completely local. That is, they are logically removed
from the query, processed separately, and replaced by their scalar value.

15.3. "any" aggregate

It is sometimes useful to know if any tuples satisfy a particular qualification.
One way of doing this is by using the aggregate count and checking whether the
return is zero or non-zero. Using any instead of count is more efficient since
processing is stopped, if possible, the first time a tuple satisfies a qualification.

Any returns 1 if the qualification is true and 0 otherwise.

15.4. Aggregate functions

aggregationjgperator (ajexpr by byjiomaian
(. by_domain] [where qual J)

Aggregate functions are extensions of simple aggregates. The by operator
groups (i.e. partitions) the set of qualifying tuples by by^main values. For
more than one byjiomavn, the values which are grouped by are the concatena
tion of individual byjctomain values. Ajpxpr is as in simple aggregates. The ag
gregate function evaluates to a set of aggregate results, one for each partition
into which the set of qualifying tuples has been grouped. The aggregate value
used during evaluation of the query is the value associated with the partition
into which the tuple currently being processed would fall.

5-

QUEL (QUEL) 2/23/79 QUEL (QUEL)

Unlike simple aggregates, aggregate functions are not completely local. The
by_List, which differentiates aggregate functions from simple aggregates, is glo
bal to the query. Domains in the by_list are automatically linked to the other
domains in the query which are in the same relation.

Example:
/* retrieve the average salary for the employees
working for each manager */
range of e is employee
retrieve (e.manager. avesal=avg(e.salary by e.manager))

15.5 Aggregates on Unique Values.

It is occasionally necessary to aggregate on unique values of an expression. The
avgu, sumu, and countu aggregates all remove duplicate values before perform
ing the aggregation. For example:

count(e.manager)

would tell you how many occurrences of e.manager exist. But

countu(e.manager)

would tell you how many unique values of e.manager exist.

16. Special character operators

There are three special features which are particular to character domains.

16.1 Pattern matching characters

There are four characters which take on special meaning when used in charac
ter constants (strings):

* matches any string of zero or more characters.
? matches any single character.
[..] matches any of characters in the brackets.

These characters can be used in any combination to form a variety of tests. For
example:

where e.name = "*" —matches any name.
where e.name = "E«" —matches any name starting with "E".
where e.name = "*ein" - matches all names ending with "ein"
where e.name = "*[aeiou]*" - matches any name with at least one vowel.
where e.name = "Allman?" — matches any seven character name starting

with "Allman".
where e.name = "[A-J]*" - matches any name starting with A.B....J.

The special meaning of the pattern matching characters can be disabled by
preceding them with a 'V. Thus "\«" refers to the character "•". When the spe
cial characters appear in the target list they must be escaped. For example:

title = "\»*\« ingres \»*\»"

is the correct way to assign the string "*** ingres ***" to the domain "title".

16.2 Concatenation

There is a concatenation operator which can form one character string from
two. Its syntax is "concat(fieldl. field2)". The size of the new character string
is the sum of the sizes of the original two. Trailing blanks are trimmed from the
first field, the second field is concatenated and the remainder is blank padded.
The result is never trimmed to 0 length, however. Concat can be arbitrarily
nested inside other concats. For example:

-6-

QUEL (QUEL) 2/23/79 QUEL (QUEL)

name = concat(concat(x.lastname, ","), x.flrstname)
will concatenate x.lastname with a comma and then concatenate x.firstname to
that.

16.3 Ascii (numeric to character translation)
The ascii function can be used to convert a numeric field to its character
representation. This can be useful when it is desired to compare a numeric
value with a character value. For example:

retrieve (...)
where x.chardomain = ascii(x.numdomain)

Ascii can be applied to a character value. The result is simply the character
value unchanged. The numeric conversion formats are determined by the print
ing formats (see ingres(unix)).

SEE ALSO

append(quel), delete(quel), range(quel), replace(quei), retrieve(quel),
ingres(unix)

BUGS

The maximum number of variables which can appear in one query is 10.

Numeric overflow, underflow, and divide by zero are not detected.

When converting between numeric types, overflow is not checked.

-7-

RANGE (QUEL) 2/29/79 RANGE (QUEL)

NAHE

range — declare a variable to range over a relation

SYNOPSIS

range of variable is relname

DESCRIPTION

Range is used to declare variables which will be used in subsequent QUEL state
ments. The variable is associated with the relation specified by relname. When
the variable is used in subsequent statements it will refer to a tuple in the
named relation. A range declaration remains in effect for an entire INGRES ses
sion (until exit from INGRES), until the variable is redeclared by a subsequent
range statement, or until the relation is removed with the destroy command.

EXAHPLB

/• Declare tuple variable e to range over relation emp */
range of e is emp

SEE AISO

quel(quel), destroy(quel)

BUGS

Only 10 variable declarations may be in effect at any time. After the 10th range
statement, the least recently referenced variable is re-used for the next range
statement.

-1-

REPLACE (QUEL) 2/29/79 REPLACE (QUEL)

NAME

replace —replace values of domains in a relation

SYNOPSIS
replace tupie.yariabie (targetjist) [where qual]

DESCRIPTION
Replace changes the values of the domains specified in the target^list for all tu
ples which satisfy the qualification qual. The tuplejvariable must have been de
clared to range over the relation which is to be modified. Note that a tuple vari
able is required and not the relation name. Only domains which are to be
modified need appear in the target_list. These domains must be specified as
result_attnames in the targetjxst either explicitly or by default (see quel(quel)).

Numeric domains may be replaced by values of any numeric type (with the ex
ception noted below). Replacement values will be converted to the type of the
result domain.

Only the owner of a relation, or a user with replace pemission on the relation can
do replace.

If the tuple update would violate an integrity constraint (see integrity(quel)), it
is not done.

EXAMPLE

/* Give all employees who work for Smith a 10% raise •/
range of e is emp
replace e(sal = 1.1 • e.sal) where e.mgr = "Smith"

SEE ALSO
integrity(quel), permit(quei), quel(quel). range(quel)

DIAGNOSTICS

Use of a numeric type expression to replace a character type domain or vice
versa will produce diagnostics.

BUGS

- 1

RETRIEVE(QUEL) 2/29/79 RETRIEVE(QUEL)

NAME

retrieve — retrieve tuples from a relation

SYNOPSIS

retrieve [[into] relname] (target_Jist) [where qual]
retrieve unique (targetjist) [where qual]

DESCRIPTION

Retrieve will get all tuples which satisfy the qualification and either display them
on the terminal (standard output) or store them in a new relation.

If a relname is specified, the result of the query will be stored in a new relation
with the indicated name. A relation with this name owned by the user must not
already exist. The current user will-be the owner of the new relation. The rela
tion will have domain names as specified in the targetJList result_attnames. The
new relation will be saved on the system for seven days unless explicitly saved
by the user until a later date.

If the keyword unique is present, tuples will be sorted on the first domain, and
duplicates will be removed, before being displayed.

The keyword all can be used when it is desired to retrieve all domains.

If no result relname is specified then the result of the query will be displayed on
the terminal and will not be saved. Duplicate tuples are not removed when the
result is displayed on the terminal.

The format in which domains are printed can be defined at the time ingres is in
voked (see ingres(unix)).

If a result relation is specified then the default procedure is to modify the result
relation to an cheapsort storage structure removing duplicate tuples in the pro
cess.

If the default cheapsort structure is not desired, the user can override this at
the time INGRES is invoked by using the -r switch (see ingres(unix)).
Only the relation's owner and users with retrieve permission may retrieve from
it.

EXAMPLE

/• Find all employees who make more than their manager •/
range of e is emp
range of m is emp
retrieve (e.name) where e.mgr = m.name

and e.sal > m.sal
/• Retrieve all domains for those who make more

than the average salary •/
retrieve into temp (e.all) where e.sal > avg(e.sal)

/• retrieve employees's names sorted •/
retrieve unique (e.name)

SEE ALSO
modify(quel), permit(quei), quel(quel), range(quel), save(quel), ingres(unix)

DIAGNOSTICS

BUGS

- 1-

SAVE (QUEL) 3/10/77 SAVE (QUEL)

NAME

save — save a relation until a date.

SYNOPSIS

save relname until month day year

DESCRIPTION

Save is used to keep relations beyond the default 7 day life span.

Month can be an integer from 1 through 12, or the name of the month, either ab
breviated or spelled out.

Only the owner of a relation can save that relation. There is an INGRES process
which typically removes a relation immediately after its expiration date has
passed.

The actual program which destroys relations is called purge. It is not automati
cally run. It is a local decision when expired relations are removed.

System relations have no expiration date.

EXAMPLE

/* Save the emp relation until the end of February 1987 */
save emp until feb 28 1987

SEE ALSO

create(quei), retrieve(quei), purge(unix)

-1

VIEW (QUEL) 2/7/79 VIEW (QUEL)

NAME

view — define a virtual relation

SYNOPSIS

define view name (target-list) [where qual]

DESCRIPTION
The syntax of the view statement is almost identical to the retrieve into stat-
ment; however, the data is not retrieved. Instead, the definition is stored. When
the relation name is later used, the query is converted to operate on the rela
tions specified in the target-list.

All forms of retrieval on the view are fully supported, but only a limited set of
updates are supported because of anomolies which can appear. Almost no up
dates are supported on views which span more than one relation. No updates
are supported that affect a domain in the qualification of the view or that affect
a domain which does not translate into a simple attribute.

In general, updates are supported if and only if it can be guaranteed (without
looking at the actual data) that the result of updating the view is identical to
that of updating the corresponding real relation.

The person who defines a view must own all relations upon which the view is
based.

EXAMPLE
range of e is employee
range of d is dept
define view empdpt (ename = e.name, e.sal, dname = d.name)

where e.mgr = d.mgr

SEE ALSO

retrieve(quel), destroy(quel)

-1

COPYDB (UNIX) 3/14/79 COPYDB (UNIX)

NAME
copydb —create batch files to copy out a data base and restore it.

SYNOPSIS
copydb [-uname] database full-path-name-of-directory [relation ...]

DESCRIPTION
Copydb creates two INGRES command files in the directory: Copy.out, which con
tains Quel instuctions which will copy all relations owned by the user into files in
the named directory, and copy.in, which contains instructions to copy the files
into relations, create indexes and do modifies. The files will have the same
names as the relations with the users INGRES id tacked on the end. (The directo
ry MUST NOT be the same as the data base directory as the files have the same
names as the relation files.) The -u flag may be used to run copydb with a
different user id. (The fact that copydb creates the copy files does not imply
that the user can necessarily access the specified relation). If relation names
are specified only those relations will be included in the copy files.
Copydb is written in Equel and will access the database in the usual manner. It
does not have to run as the INGRES user.

EXAMPLE
chdir /mnt/mydir
copydb db /mnt/mydir/backup
ingres db <backup/copy.out
tp rl backup
rm —r backup

tpxl
ingres db <backup/copy.in

DIAGNOSTICS
Copydb will give self-explanatory diagnostics. If "too many indexes" is reported
it means that more than ten indexes have been specified on one relation. The
constant can be increased and the program recompiled. Other limits are set to
the system limits.

BUGS
Copydb assumes that indexes which are ISAM do not need to be remodifled.
Copydb cannot tell if the relation was modified with a fillfactor or minpages
specification. The copy.in file may be edited to reflect this.

-1-

CREATDBXUNDC) 11/6/79 CREATDB (UNDC)

NAME
creatdb — create a data base

SYNOPSIS
creatdb[-uname][-«][-m][±c][iq] dbname

Creatdb creates a new INGRES database, or modifies the status of an existing da
tabase. The person who executes this command becomes the Database Adminis
trator (DBA) for the database. The DBA has special powers not granted to ordi
nary users.

Dbname is the name of the database to be created. The name must be unique
among all INGRES users.

The flacs ±c and iq specify options on the database. The form +x turns an op
tion on. while -* turns an option off. The -c flag turns off the concurrency con
trol scheme (default on). The +qflag turns on query modification (default on).
Concurrency control should not be turned off except on databases which are
never accessed by more than one user. This applies even if users do not share
data relations, since system relations are still shared. If the concurrency con
trol scheme is not installed inUNDC or if the special file /dev/lock does not exist
or is not accessible for read-write by INGRES, concurrency control acts as though
it is off (although it will suddenly come on when the lock driver is installed in
UNDC).
Query modification must be turned on for the protection, integrity, and view
subsystems to work, however, the system will run slightly slower in some cases if
it is turned on. It is possible to turn query modification on if it is already off in
an existing database, but it is not possible to turnit off if it is already on.
Databases with query modification turned off create new relations with all access
permitted for all users, instead of no access except to the owner, the default for
databases with query modification enabled.
Database options for an existing database may be modified by stating the -e
flag. The database is adjusted to conform to the option flags. For example:

creatdb -e +q mydb
turns query modification on for database "mydb" (but leaves concurrency con
trol alone). Only the database administrator (DBA) may use the -e flag.
When query modification is turned on, new relations will be created with no ac
cess but previously created relations will still have all access to everyone. The
destroy command may be used to remove this global permission, after which
more selective permissions may be specified with the permit command.
The INGRES user may use the -u flag to specify adifferent DBA: the flag should be
immediately followed by the login name of the user who should be the DBA.
The -m flag specifies that the UNDC directory in which the database is tc> reside
alreadv exists: This should only be needed if the directory if a mounted file svs-uSTSSght occur for avery large database. The directory must exist (as
.../data/baie/dbnome). mustbe mode 777. and mustbe empty of all files.
The user who executes this command must have the U_CREATDB bit set in the
status field of her entry in the users file.
The INGRES superuser can create a file in .../data/base containing a single line
which ^ the full pathname of the location of the database. The file must be
owned byINGRES and be mode 600. When the database is created, it will be creat-
ermthJ file named, rather than in the directory .../data/base. For example, if

-1-

CREATDB (UNDC)
11/8/79 CREATDB (UNDC)

the file .../data/base/ericdb contained the line
/mnt/eric/database

then the database called "ericdb" would be physically stored in the directory
MntAric/database rather than in the directory .../data/base/encdb.

EXAMPLE
creatdb demo
creatdb -ueric —q erics_db
creatdb -e +q-c -u:av erics_db

FUSS
.../files/dbtmplt7
.../files/data/base/* v
.../files/datadir/* (for compatibility with previous versions)

SKBAIfl0demodb(unix). destroydb(unix). users(files). chmod(I). destroydb(quel).
permit(quei)

DIAGNOSTICS

No database^-JP^^d the name of the database to create (or modify)
with the command.

You"i^S^^^S, says you are not authorized to access this da-
tabase.

You are not a valid INGRES user atlt4W_. _**h rvrops atYou do not have a users file entry, and can not do anything with INGRES at
all.

You are not allowed this command
The UjCREATDB bit is not set in your users file entry.

You may not use the -u flag
Only the INGRES superuser may become someone eise.

<name> does not exist .
With -e or -m, the directory does not exist.

^^'whou^eUhe'r^ or -m. the database (actually, the directory) already
exists.

<name> is not empty ™-»f,,
With the -m flag, the directory you named must be empty.

You are not the DBA for this database mm
With the -e flag, you must be the database administrator.

-2-

DESTROYDB(UNIX) 3/14/79 DESTROYDB(UNK)

NAME
destroydb - destroy an existing database

SYNOPSIS
destroydb [-a] [—m J dbname

DESCRIPTON ^^ remQve ^ reference t(> ^ e3dsting database. The directory of the
database and all files in that directory will be removed.
To execute this command the current user must be the database administrator
for the database in question, or must be the INGRES superuser and have the -*
flag stated.
The -m flag causes destroydb not to remove the UNDC directory. This is useful
when the directory is a separate mounted UNDC file system.

EXAMPLE
destroydb demo
destroydb —s erics.jib

PILES
.../data/base/* v
.../datadir/* (for compatibility with previous versions)

SEE ALSO
creatdb(unix)

DIAGNOSTICS^ _ tne database name specified is not avalid name.
you may not reference this database - the database may exist, but you do not

have permission to do anything with it.
you may^t use the -s flag - you have tried to use the -s flag, but you are not

the INGRES superuser.
you are not the dba - someone else created this database,
database does not exist - this database does not exist.

-1-

EQUEL(UNIX) 3/14/79 EQUEL(UNDC)

NAME
equel - Embedded QUEL interface to C

SYNOPSIS
equel [-d][-*][-r] file.q...

DESCRIPTION . l m . ^
Equel provides the user with a method of interfacing the general purpose pro
gramming language "C" with INGRES. It consists of the EQUEL pre-compiler and
the EQUEL runtime library.

Compilation

The precompiler is invoked with the statement:
equel [<flags>] filel.q [<flags>] file2.q ...

where filen.q are the source input file names, which must end with .q. The out
put is written to the flle "filen.c". As many files as wished may be specified.
The flags that may be used are:
-d Generate code to print source listing flle name and line number when a

run-time error occurs. This can be useful for debugging, but takes up pro
cess space. Defaults to oft*.

-t Forces code to be on the same line in the output file as it is in the input file
to ease interpreting C diagnostic messages. EQUEL will usually try to get all
C code lines in the output flle on the same lines as they were in the input
file. Sometimes it must break up queries into several lines to avoid C-
preprocessor line overflows, possibly moving some C code ahead some lines.
With the -f flag specified this will never happen and, though the line buffer
may overflow. C lines will be on the right line. This is useful for finding the
line in the source flle that C error diagnostics on the output flle refer to.

-r Resets flags to default values. Used to supress other flags for some of the
files in the argument list.

The output files may than be compiled using the C compiler:
cc fllel.c file2.c ... -iq

The -iq requests the use of the EQUEL object library.
All EQUEL routines and giobals begin with the characters "11". and so all globals
variables and procedure names of the form llxxx are reserved for use by EQUEL
and should be avoided by EQUEL users.

Basic Syntax

EQUEL commands are indicated by lines which begin with a double pound sign
("##")• Other lines are simply copied as is. All normal INGRES commands may be
used in EQUEL and have the same effect as if invoked through the interactive ter
minal monitor. Only retrieve commands with no result relation specified have a
different syntax and meaning.

The format of retrieve without a result relation is modified to:

retrieve (C-variable = ajcn \ . C-variable = ajcn J)
optionally followed (immediately) by:

[where qual]
##i ,

/• C-code •/
##J

- 1-

EQUEL(UNIX) 3/14/79 EQUEL(UNDC)

This statement causes the "C-code" to be executed once for each tuple re
trieved, with the " C-variable" s set appropriately. Numeric values of any type
are converted as necessary. No conversion is done between numeric and char
acter values. (The normalINGRES ascii function may be used for this purpose.)
Also, the following EQUEL commands are permitted.

ingres [ingres flags] dataj>ase_pame
This command starts INGRES running, and directs all dynamically follow
ing queries to the database databasejname. It is a run-time error to
execute this command twice without an intervening "## exit", as well
as to issue queries while an "## ingres" statement is not in effect.
Each flag should be enclosed in quotes to avoid confusion in the EQUEL
parser:

ingres M-f4f10.2" "-i212" demo

Exit simply exits from INGRES. It is equivalent to the \q command to the
teletype monitor.

Parametrized Quel Statements

Quel statements with target lists may be "parametrized". This is indicated by
preceding the statement with the keyword "param". The target list of a
parametrized statement has the form:

(tljvar, argv)
where tl var is taken to be a string pointer at execution time (it may be a string
constantj and interpreted as follows. For any parametrized EQUEL statement ex
cept a retrieve without a result relation (no "into rel") (i.e. append, copy,
create, replace, retrieve into) the string tljvar is taken to be a regular target
list except that wherever a '%' appears a valid INGRES type (f4. fB, i2, i4, c) is ex
pected to follow. Each of these is replaced by the value ofthe corresponding en
try into argv (starting at 0) which is interpreted to be a pointer to a variable of
the type indicated by the '%' sequence. Neither argv nor the variables which it
points to need be declared to EQUEL. For example:

char •argv[lO];

argvTOl = &double_yar;
argv[l] = &int_yar;

SS param append to rel
("doml = %f8, dom2 = %i2". argv)
§§ /• to escape the "%<ingresjype>" mechanism use "%%" •/
§§ /• This places a single '%' in the string. •/

On a retrieve to C-variabies, within tljvar, instead of the C-variable to retrieve
into, the same '%' escape sequences are used to denote the type of the
corresponding argv entry into which the value will be retrieved.
The qualification of any query may be replaced by a string valued variable,
whose contents is interpreted at run time as the text of the qualification.
The copy statement may also be parametrized. The form of the parametrized
copy is analogous to the other parametrized statements: the target list may be
parametrized in the same manner as the append statements, and furthermore,
the from/into keyword may be replaced by a string valued variable whose con
tent at run time should be into or from.

Declarations

Any valid Cvariable declaration on a line beginning with a "##" declares a C-

2-

EQUEL(UNIX) 3/14/79 EQUEL(UNDC)

variable that may be used in an EQUEL statement and as a normal variable. All
variables must be declared before being used. Anywhere a constant may appear
in an INGRES-command, a C-variable may appear. The value of the C-variable is
substituted at execution time.

Neither nested structures nor variables of type char (as opposed to pointer to
char or array of char) are allowed. Furthermore, there are two restrictions in
the way variables are referenced within EQUEL statements. All variable usages
must be dereferenced and/or subscripted (for arrays and pointers), or selected
(for structure variables) to yield lvalues (scalar values). Char variables are used
by EQUEL as a means to use strings. Therefore when using a char array or
pointer it must be dereferenced only to a "char •". Also, variables may not
have parentheses in their references. For example:

struct xxx
##i

int i;
int *ip;
J ••structural-;

/* not allowed •/
delete p where p.ifleld = •(•struct_yar)->ip

/• allowed •/
delete p where p.ifield = •struct_yar[0]->ip

C variables declared to EQUEL have either global or local scope. Their scope is lo
cal if their declaration is within a free (not bound to a retrieve) block declared
to EQUEL. For example:

/• globals scope variable •/
int Gint;

func(i)
int i;

M\ ,
/• local scope variable •/

int -gintp;

}
If a variable of one of the char types is used almost anywhere in an EQUEL state
ment the content of that variable is used at run time. For example:

char •dbname[MAXDATABASES + 1];
int current_db;

dbname[current_db] = "demo";
ingres dbname[current_db]

will cause INGRES to be invoked with data base "demo". However, if a variable's
name is to be used as a constant, then the non-referencing operator '#' should
be used. For example:

-3-

EQUEL(UNIX) 3/14/79 EQUEL(UNDC)

char 'demo;

demo = "my^database";

/• ingres —d my_ciatabase •/
ingres "-d" demo

/• ingres —d demo •/
ingres "-d" #demo

The C-preprocessor's ^include feature may be used on files containing equel
statements and declarations if these files are named anything.q.h. An EQUEL
processed version of the file, which will be #included by the C-preprocessor, is
left in anything.c.h.

Errors and Interrupts

INGRES and run-time EQUEL errors cause the routine Ilerror to be called, with the
error number and the parameters to the error in an array of string pointers as
in a C language main routine. The error message will be looked up and printed,
before printing the error message, the routine (•IIprmt-err)() is called with the
error number that ocurred as its single argument. The error message
corresponding to the error number returned by (•IIprint_err)() will be printed.
Printing will be supressed if (•IIprint_err)() returns 0. IIprint_err may be reas
signed to, and is useful for programs which map INGRES errors into their own er
ror messages. In addition, if the "-d" flag was set the flle name and line number
of the error will be printed. The user may write an Ilerror routine to do other
tasks as long as the setting of Ilerrflag is not modified as this is used to exit re
trieves correctly.

Interrupts are caught by equel if they are not being ignored. This insures that
the rest of INGRES is in sync with the EQUEL process. There is a function pointer,
Hinterrupt, which points to a function to call after the interrupt is caught. The
user may use this to service the interrupt. It is initialized to "exit()M and is
called with -1 as its argument. For example:

extern int (•IIinterrupt)();
extern reset();

setexit();
Hinterrupt = reset;
mainloopO;

To ignore interrupts, signalQ should be called before the §§ ingres satatement is
executed.

.../files/error?^*
Can be used by the user to decipher INGRES error numbers,

/lib/libq.a
Run time library.

SEE ALSO

.../doc/other/equeltut.q, C reference manual, ingres(UNDC). quel(QUEL)

BOGS

The C-code embedded in the tupie-by-tuple retrieve operation may not contain
additional QUEL statements or recursive invocations of INGRES.

There is no way to specify an il format C-variable.

FTLES

-4-

EQUEL(UNIX) 3/14/79 EQUEL(UNDC)

Includes of an equel file within a parameterized target list, or within a C
variable's array subscription brackets, isn't done correctly.

-5-

HELPR(UNDC) 3/U/79 HELPR(UNDC)

NAME
helpr - get information about a database.

SYNOPSES
helpr [-uname] [±w] database relation ...

DESCRIPSeS)r gives information about the named reiation(s) out of the database
specified, exactly like the help command.
Flags accepted are -u and ±u. Their meanings are identical to the meanings of
the same flags in INGRES.

SEE ALSO
ingres(unix). help(quel)

DIAGNOSTICS _ specified aflag which is not legal or is in badformat.
you may ilot access database - this database is prohibited to you based on

status information in the users file,
cannot access database - the database does not exist.

-1-

INGRES(UNDC) 3/14/79 INGRES(UNDC)

NAME
ingres - INGRES relational data base management system

SYNOPSISIS
ingres [flags] dbname [processJable J

DESCRIPTION «,_.«. *
This is the UNDC command which is used to invoke INGRES. Dbname is the name or
an existing data base. The optional flags have the following meanings (a "i"
means the flag may be stated "+a:*, to set option x or "-a:" to clear option x.
"-" alone means that "-as" must be stated to get the x function):
iU Enable/disable direct update of the system relations and secondary in-

dicies. You must have the 000004 bit in the status field of the users flle
set for this flag to be accepted. This option is provided for system de
bugging and is strongly discouraged for normal use.

-uname Pretend you are the user with login name name (found in the users
file). If name is of the form :xx, xx is the two character user code of a
user. This may only be used by the DBA for the database or by the
INGRES superuser.

-cN Set the minimum field width for printing character domains to N. The
default is 6.

-UN Set integer output field width to N. I may be 1, 2, or 4 for il's, i2's. or
i4's repectiveiy.

-ilxM.N Set floating point output field width to M characters with N decimal
places. I may be 4 or 8 to apply to f4's or f8's respectively, x may be
e, E, f. F, g. G, n, or N to specify an output format. E is exponential
form, Fis floating point form, and G and N are identical to F unless the
number is too big to fit in that field, when it is output in E format. G
format guarantees decimal point alignment; N does not. The default
format for both is nl0.3.

-*X Set the column seperator for retrieves to the terminal and print com
mands to be X. The default is vertical bar.

-rif Set modify mode on the retrieve command to M. M may be isam.
cisam, hash, chash, heap, cheap, heapsort, or cheapsort, for ISAM.
compressed ISAM, hash table, compressed hash table, heap,
compressed heap, sorted heap, or compressed sorted heap. The de
fault is "cheapsort".

—oJQf Set modify mode on the index command to M. M can take the same
values as the -r flag above. Default is "isam".

±a Set/clear the autoclear option in the terminal monitor. It defaults to
set.

±b Set/reset batch update. Users must the 000002 bit set in the status
field of the users file to clear this flag. This flag is normally set. When
clear, queries will run slightly faster, but no recovery can take place.
Queries which update a secondary index automatically set this flag for
that query only.

±d Print/don't print the dayfile. Normally set.
±s Print/don't print any of the monitor messages, including prompts.

This flags is normally set. If cleared, it also clears the -d flag.
±w Wait/don't wait for the database. If the +w flag is present, INGRES will

wait if certain processes are running (purge.restore, and/or sysmod)
on the given data base. Upon completion of those processes INGRES will
proceed. If the -w flag is present, a message is returned and execution
stopped if the data base is not available. If the ±w flag is omitted and
the data base is unavailable, the error message is returned if INGRES is
running in foreground (more precisly if the standard input is from a
terminal), otherwise the wait option is invoked.

- 1

INGRES (UNIX) 3/14/79 INGRES (UNDC)

Process^able is the pathname of a UNDC flle which may be used to specify the
run-time conflguration of INGRES. This feature is intended for use in system
maintenance only, and its unenlightened use by the user community is strongly
discouraged.

Note: It is possible to run the monitor as a batch-processing interface using the
'<•, '>' and T operators of the UNDC shell, provided the input file is in proper
monitor-format.

EXAMPLE

ingres demo
ingres —d demo
ingres —s demo < batchfile
ingres —f4gl2.2 -il3 +b -rhash demo

FILES

.../files/users —valid INGRES users

.../data/base/* — data bases

.../datadir/* —for compatability with previous versions

.../files/proctab? —runtime configuration file

SEE ALSO

monitor(quel)

DIAGNOSTICS

Too many options to INGRES — you have stated too many flags as INGRES options.
Bad flag format — you have stated a flag in a format which is not intelligible, or a

bad flag entirely.
Too many parameters - you have given a database name, a process table name,

and "something else" which INGRES doesn't know what to do with.
No database name specified
Improper database name — the database name is not legal.
You may not access database name — according to the users file, you do not

have permission to enter this database.
You are not authorized to use the fiag flag — the flag specified requires some

special authorization, such as a bit in the users file, which you do not have.
Database name does not exist
You are not a valid INGRES user — you have not been entered into the users file,

which means that you may not use INGRES at all.
You may not specify this process table — special authorization is needed to

specify process tables.
Database temporarily unavailable — someone else is currently performing some

operation on the database which makes it impossible for you to even log in.
This condition should disappear shortly.

-2

PRINTR (UNDC) 3/14/79 PRINTR(UNIX)

NAME

printr —print relations

SYNOPSIS

printr [flags] database relation ...

DESCRIPTION

Printr prints the named relation(s) out of the database specified, exactly like
the print command. Retrieve permission must be granted to all people to exe
cute this command.

Flags accepted are -u. ±w. -c, —i, -f, and -•. Their meanings are identical to
the meanings of the same flags in INGRES.

SEE ALSO

ingres(unix), print(quei)

DIAGNOSTICS

bad flag —you have specified a fiag which is not legal or is in bad format.
you may not access database — this database is prohibited to you based on

status information in the users file,
cannot access database — the database does not exist.

1-

PURGE (UNDC) 3/14/79 PURGE (UNDC)

NAME

purge —destroy all expired and temporary relations

SYNOPSIS

purge ["*][-p][-a][-s][±w][database ...]
DESCRIPTION

Purge searches the named databases deleting system temporary relations.
When using the -p flag, expired user relations are deleted. The —f flag will cause
unrecognizable flies to be deleted, normally purge will just report these files.
Only the database administrator (the DBA) for a database may run purge, except
the INGRES superuser may purge any database by using the —s flag.

If no databases are specified all databases for which you are the DBA will be
purged. All databases will be purged if the INGRES superuser has specified the
-s flag. The —a flag will cause purge to print a message about the pending opera
tion and execute it only if the response if a *y'. Any other response is interpret
ed as "no".

Purge will lock the data base while it is being processed, since errors may occur
if the database is active while purge is working on the database. If a data base is
busy purge will report this and go on to the next data base, if any. If standard
input is not a terminal purge will wait for the data base to be free. If -w flag is
stated purge will not wait, regardless of standard input. The +w flag causes
purge to always wait.

EXAMPLES

purge —p +w tempdata
purge —a —f

SEE ALSO

save(quei), restore(unix)

DIAGNOSTICS
who are you? —you are not entered into the users file.
not ingres superuser —you have tried to use the —s flag but you are not the

INGRES superuser.
you are not the dba —you have tried to purge a database for which you are not

the DBA.
cannot access database — the database does not exist.

BUGS
If no database names are given, only the databases located in the directory
data/base are purged, and not the old databases in datadir. Explicit database
names still work for databases in either directory.

-1-

RESTORER) 3/H/79 RESTORE(UNK)

NAME
restore —recover from an INGRES or UNDC crash.

SYNOPSIS ,
restore [-*][-s][±w][database ...]

DESCRITOON restQre a^^ bage 9RMr ^ mo?£S crash. It;*£*•>
ways be run after any abnormal termination to ensure the integrity of the data
base.

In order to run restore, you must be the DBA for the database you are restoring
or the INGRES superuser and specify the -s flag.
If no databases are specified then all databases for which you are the DBA are
restored. All databases will be restored if the INGRES superuser has specified the
—s flag.
If the -a flag is specifled you will be asked before restore takes any serious ac
tions. It is advisable to use this flag if you suspect the database is ^ bad shape
Using /dev/null as input with the -a flag will provide areport of problems in the
data base. If there were no errors while restoring a database. P"r0e ™u **
called, with the same flags that were given to restore to re,mo^e/unwan^Qfilf"
and system temporaries. Restore may be called with the -f and/or -p> flags for
purge Unrecognized files and expired relations are not removed unless the
proper flags are given. In the case of an incomplete destroy, create or index re
store will not delete files for partially created or destroyed relations. Purge
must be called with the -f flag to accomplish this.
Restore locks the data base while it is being processed. If a data base is busy re
store will report this and go on to the next data base. If standard input is not a
terminal restore will wait for the data base to be free. If the -w flag is set re-
storewill not wait regardless of standard input. If +w is set it will always wait.
Restore can recover a database from an update which had finished Ailing the
batch flle. Updates which did not make it to this stage should be rerun. Smilar-
lymodifies which have finished recreating the relation wul be completed (the re
lation relation and attribute relations will be updated). If a destroy was in pro
gress it will be carried to completion, while a create will almost always be
backed out. Destroying a relation with an index should destroy the index so re
store may report that a secondary relation has been found with no primary.
If interrupt (signal 2) is received the current database is closed and the next, if
any, is processed. Quit (signal 3) will cause restore to terminate.

EXAMPLE
restore —f demo
restore -a grants < /dev/null

DIAGNOSTICS „ . , *.. .
All diagnostics are followed by a tuple from a system relations.
"No relation for attribute(s)" - the attributes listed have no corresponding en

try in the relation relation
"No primary relation for index" - the tuple printed is the relation tuple for a

secondary index for which there is no primary relation. The primary
probably was destroyed the secondary will be.

"No indexes entry for primary relation" - the tuple is to a primary relation,
the relindxd domain will be set to zero. This is the product of an in
complete destroy. , . ,

"No indexes entry for index" - the tuple is for a secondary index, the index wul
be destroyed. This is the product of an incomplete destroy.

RESTORE (UNDC) 3/14/79 - RESTORE (UNDC)

"reJname is index for" — an index has been found for a primary which is not
marked as indexed. The primary will be so marked. This is probably
the product of an incomplete index command. The index will have
been created properly but not modified.

"No file for" - There is no data for this relation tuple, the tuple will be deleted.
If, under the —a option, the tuple is not deleted purge will not be called.

"No secondary index for indexes entry" - An entry has been found in the
indexes relation for which the secondary index does not exist (no rela
tion relation tuple). The entry will be deleted.

SEE ALSO

purge(unix)

BUGS
If no database names are given, only the databases located in the directory
data/base are restored, and not the old databases in datadir. Explicit database
names still work for databases in either directory.

-2-

SYSMOD (UNDC) 3/14/79 SYSMOD (UNDC)

NAME

sysmod —modify system relations to predetermined storage structures.

SYNOPSIS

sysmod [-s] [-w] dbname [relation] [attribute] [indexes] [tree] [pro
tect] [integrities]

DESCRIPTION

Sysmod will modify the relation, attribute, indexes, tree, protect, and integrities
relations to hash unless at least one of the relation, attribute, indexes, tree,
protect, or integrities parameters are given, in which case only those relations
given as parameters are modified. The system relations are modified to gain
maximum access performance when running INGRES. The user must be the data
base administrator for the specifled database, or be the INGRES superuser and
have the —s flag stated.

Sysmod should be run on a data base when it is first created and periodically
thereafter to maintain peak performance. If many relations and secondary in
dices are created and/or destroyed, sysmod should be run more often.

If the data base is being used while sysmod is running, errors will occur. There
fore, sysmod will lock the data base while it is being processed. If the data base
is busy, sysmod will report this. If standard input is not a terminal sysmod will
wait for the data base to be free. If -w flag is stated sysmod will not wait, re
gardless of standard input. The +w flag causes sysmod to always wait.

The system relations are modified to hash; the relation relation is keyed on the
first domain, the indexes, attribute, protect, and integrities relations are keyed
on the first two domains, and the tree relation is keyed on domains one, two, and
five. The relation and attribute relations have the minpages option set at 10, the
indexes, protect, and integrities relations have the minpages value set at 5.

SEE ALSO

modify(quel)

1-

USERSETUP(UNDC) 3/14/79 USERSETUP(UNDC)

NAME

usersetup — setup users flle

SYNOPSIS

.../bin/usersetup [flags [pathname]]

DESCRIPTION

The /etc/passwd file is read and reformatted to become the INGRES users file,
stored into .../files/users. If pathname is specified, it replaces "...". If path
name is "—", the result is written to the standard output.

The user name. user, and group id's are initialized to be identical to the
corresponding entry in the /etc/passwd file. The status field is initialized to be
000001, except for user ingres. which is initialized to all permission bits set. If
the status parameter is provided, the field is set to this instead. The "initializa
tion flle" parameter is set to the file .ingres in the user's login directory. The
user code field is initialized with sequential two-character codes. Ail other fields
are initialized to be null.

After running usersetup, the users file must be edited. Any users who are to
have any special authorizations should have the status field changed, according
to the specifications in users(files). To disable a user from executing INGRES en-

• tirely, completely remove her line from the users file.

As UNDC users are added or deleted from the /etc/passwd file, the users file will
need to be editted to reflect the changes. For deleted users, it is only necessary
to delete the line for that user from the users flle. To add a user, you must as
sign that user a code in the form "aa" and enter a line in the users flle in the
form:

name:cc:uid:gid:status:flags:proctab:initfile::databases
where name is the user name (taken from the first field of the /etc/passwd flle
entry for this user), cc is the user code assigned, which must be exactly two
characters long and must not be the same as any other existing user codes, uid
and gid are the user and group ids (taken from the third and fourth fields in the
/etc/passwd entry), status is the status bits for this user, normally 000000,
fiags are the default flags for INGRES (on a per-user basis), proctab is the default
process table for this user (which defaults to =proctab7), and databases is a list
of the databases this user may enter. If null, she may use all databases. If the
first character is a dash ("—"), the field is a comma separated list of databases
which she may not enter. Otherwise, it is a list of databases which she may
enter.

The databases field includes the names of databases which may be created.

Usersetup may be executed only once, to initially create the users file.

FILES

.../files/users
/etc/passwd

SEE ALSO

ingres(unix), passwd(V), users(files)

BUGS

It should be able to bring the users file up to date.

- 1

DAYFILE (FILES) DAYFILE (FILES)

NAME

.../files/dayfile7 - INGRES login message
DESCRIPTION

The contents of the dayfile reflect user information of general system interest,
and is more or less analogous to /etc/motd in UNDC. The flle has no set format; it
is simply copied at login time to the standard output device by the monitor if
the -s or -d options have not been requested. Moreover the dayfile is not man
datory, and its absence will not generate errors of any sort; the same is true
when the dayfile is present but not readable.

-1-

DBTMPLT (FILES) DBTMPLT (FILES)

NAME

.../flles/dbtmplt7 — database template

DESCRIPTION
This flle contains the template for a database used by creatdb. It has a set of en
tries for each relation to be created in the database. The sets of entries are
separated by a blank line. Two blank lines or an end of file terminate the file.
The first line of the file is the database status and the default relation status,
separated by a colon. The rest of the flle describes relations. The flrst line of
each group gives the relation name followed by an optional relation status,
separated by a colon. The rest of the lines in each group are the attribute name
and the type, separated by a tab character.

All the status fields are given in octal, and have a syntax of a single number fol
lowed by a list of pairs of the form

±x±N
which says that if the ± x flag is asserted on the creatdb command line then set
(clear) the bits specified by N.
The first set of entries must be for the relation catalog, and the second set must
be for the attribute catalog.

EXAMPLE
3-c-l+q+2:010023
relation:—c—20
relid cl2

reiowner c2
relspec il

attribute:—c—20
attrelid cl2
attowner c2
attname cl2

(other relation descriptors)

SEEALSO

creatdb(unix)

- 1-

ERROR(FILES) ERROR(FILES)

NAME

.../files/error7_7 - files with INGRES errors

DESCRIPTION

These files contain the INGRES error messages. There is one file for each
thousands digit; e.g., error number 2313 will be in file error7_£.

Each file consists of a sequence of error messages with associated error
numbers. When an error enters the front end, the appropriate file is scanned for
the correct error number. If found, the message is printed; otherwise, the first
message parameter is printed.

Each message has the format
errnum <TAB> message tilde.

Messages are terminated by the tilde character (w). The message is scanned
before printing. If the sequence %n is encountered (where n is a digit from 0 to
9), parameter n is substituted, where %0 is the first parameter.
The parameters can be in any order. For example, an error message can refer
ence %Z before it references %0.

EXAMPLE

1003 line %0, bad database name %1~
1005 In the purge of %1, a bad %Q caused execution to halt~
1006 No process, try again.**

-1-

UBQ(FILES) LIBQ(FILES)

NAME

libq — Equel run-time support library

DESCRIPTION

Libq all the routines necessary for an equel program to load. It typically resides
in /usr/lib/libq.a. and must be specifled when loading equel pre-processed ob
ject code. It may be referenced on the command line of cc by the abbreviation
-*q-

Several useful routines which are used by equel processes are included in the li
brary. These may be employed by the equel programmer to avoid code duplica
tion. They are:

int IIatoi(buf. i)
char 'buf;
int i;

char *IIbmove(source, destination, len)
char 'source, 'destination;
int len;

char *IIconcatv(buf. argl, arg2,.... 0)
char *buf. *argl, ...;

char 'llitos(i)
int i;

int Hsequai(sl. s2)
char *sl, 's2;

int Illength(string)
char 'string;

IIsyserr(string, argl, arg2,...);
char 'string;

Ilatoi Ilatoi is equivalent to atoi(UTIL).

Ilbmove Moves len bytes from source to destination, returning a pointer to
the location after the last byte moved. Does not append a null byte.

Uconcatv Concatenates into buf all of its arguments, returning a pointer to the
null byte at the end of the concatenation. Buf may not be equal to
any of the arg-n but argl.

Ilitos Ilitos is equivalent to itoa(III).

Ilsequal Returns 1 iff strings si is identical to s2.

Illength Returns max(length of string without null byte at end. 255)
Ilsyserr Ilsyserr is diferrent from syserr(util) only in that it will print the

name in IIproc_name, and in that there is no 0 mode. Also, it will al
ways call exit(-l) after printing the error message.

There are also some global Equel variables which may be manipulated by the

- 1-

LIBQ (FILES)

user:

int nerrflag;
char •Ilmainpr;
char (*IIprint_err)();
int IIret_errp:
int Ilno^errQ;

LIBQ(FILES)

Ilerrflag Set on an error from INGRES to be the error number (see the error
message section of the "INGRES Reference Manual") that ocurred.
This remains valid from the time the error occurrs to the time when
the next equel statement is issued. This may be used just after an
equel statement to see if it succeded.

Ilmainpr This is a string which determines which ingres to call when a "##
ingres" is issued. Initially it is "/usr/bin/ingres".

IIprint_err This function pointer is used to call a function which determines what
(if any) error message should be printed when an ingres error oc
curs. It is called from IIerror() with the error number as an argu
ment, and the error message corresponding to the error number re
turned will be printed. If (*IIprint_err)(<errno>) returns 0, then no
error message will be printed. Initially IIprint_err is set to IIret_err()
to print the error that ocurred.

IIret_err Returns its single integer argument. Used to have (*IIprint_err)()
cause printing of the error that ocurred.

IIno_err Returns 0. Used to have (*IIprint_err)() suppress error message
printing. IIno_err is used when an error in a parametrized equel sta-
temenr occurs to suppress printing of the corresponding parser er
ror.

SEE ALSO
atoi(util), bmove(util),
sequal(util), syserr(util)

cc(I), equel(unix), exit(II), itoa(III). length(util),

-2-

PROCTAB (FILES) PROCTAB(FILES)

NAME
.../flles/proctab7 - INGRES runtime configuration information

DESCRIPTIONThe process table describes the runtime configuration of the INGRES system.
Each line of the process table has a special meaning depending onthe first char
acter of the line. Blank lines and lines beginning with an asterisk are comments.
All other lines have a sequence of fields separated by commas. Pipe descriptor
fields are lower case letters or digits; if they are digits they are replaced by file
descriptors from the flag or the @ flag.
Ddefines a macro. The first field is a single character macro name. The second
field is the string to use as the value. Macros are expanded using "Sx where\ x
is the macro name. The macro "P" is predefined to be the pathname of the
INGRES subtree.

P introduces a process description. All lines up to an end of file or another P
line describe a single process. The first field is the process number. The next
field is the pathname of the binary to execute for this process. The third field is
the name of the process to use for printing messages. The fourth field must be a
single character lower case letter representing the input pipe that is normally
read when nothing special is happening, or a vertical bar followed by a single di
git, meaning to read from that file descriptor. The next field is a set oJAags in
octal regarding processing of this process; these are described below. The final
field is a single letter telling what trace flag this process uses.
L defines what modules are defined locally by this process. The first field is the
module number used internally. The second field is a set of fiags describing pro
cessing of this module: the only bit defined is the 0001 bit which allows this
module to be executed directly by the user. The third field is the function
number in the process which defines this module. The final field is the module
number to be executed after this module completes; zero is nothing (return).
R defines modules that are known to this process but which must be passed to
another process for execution. The first field is the process number the
modules will be found in. The second field is the pipe to write to get to that pro
cess. The third field is the pipe to read to get a response from that process.
The fourth field is a set of flags: 0001 means to write the output pipe if you get a
broadcast message. 0002 means that the process is physically adjacent on the
read pipe, and 0004 means that the process is adjacent on the write pipe, lne
fifth and subsequent fields are the module numbers that are defined by this pro
cess.

The status bits for the P line are as follows:

000010 close diagnostic output
000004 close standard input
000002 run in user's directory, not database
000001 run as the user, not as INGRES

The lowest numbered process becomes the parent of all the other processes.
WARNING: Giving a user permission to specify his or her own process table^wUl
allow them to bypass all protection provided by INGRES. This facility should be
provided for system debugging only!

EXAMPLE
The following example will execute a three process system.

DB:$P/bin
DS:$P/source
•« Process 0 — terminal monitor

- 1

PROCTAB(FILES) PROCTAB (FILES)

P0:$B/monitor:M0NIT0R:h:0003:M
L0:0:0:0
Rl:0:a:h:0007:l
• Process 1 - parser
Pl:$B/parser:PARSER:a:0014:P
L3:1:0:0
R0:0:h:a:0006:0
R2:0:b:g:0007:5:6:7
* Process 2 — data base utilities
P2:$B/aildbu:DBU:b:0014:Z
L5:0:6:0
L8:0:0:0
L7:0:l:0
R0:0:g:b:0000
Rl:0:g:b:0006

-2-

STARTUP(FILES) STARTUP(FILES)

NAME

.../files/startup —INGRES startup file

DESCRIPTION
This flle is read by the monitor at login time. It is read before the user startup
file specified in the users flle. The primary purpose is to deflne a new editor
and/or shell to call with the \e or \s commands.

SEE ALSO

monitor(quel), users(files)

-1

USERS (FILES) USERS (FILES)

NAME

.../files/users —INGRES user codes and parameters

DESCRIPTION

This file contains the user information in fields seperated by colons. The fields
are as follows:

* User name, taken directly from /etc/passwd flle.
* User code, assigned by the INGRES super-user. It must be a unique two charac

ter code.

* UNIX user id. This MUST match the entry in the /etc/passwd file.
* UNDC group id. Same comment applies.
* Status word in octal. Bit values are:

0000001 creatdb permission
0000002 permits batch update override
0000004 permits update of system catalogs
0000020 can use trace flags
0000040 can turn off qrymod
0000100 can use arbitrary proctabs
0000200 can use the =proctab form
0100000 ingres superuser

* A list of flags automatically set for this user.
* The process table to use for this user.
* An initialization file to read be read by the monitor at login time.
* Unassigned.
* Comma seperated list of databases. If this list is null, the user may enter any

database. If it begins with a '—*, the user may enter any database except
the named databases. Otherwise, the user may only enter the named da
tabases.

Giving permission to a user to use arbitrary process tables is tantamount to
turning off the protection system for that user.

EXAMPLE

ingres:aa:5:2:177777:-d:=special:/mnt/ingres/.ingres::
guest:ah:35:1:000000::: ::demo,guest

SEE ALSO

initucode(util)

-1-

INTRODUCTION (ERROR) 3/30/81 INTRODUCTION (ERROR)

NAME
Error messages introduction

DESCRIPTION
This document describes the error returns which are possible from the INGRES
data base system and gives an explanation of the probable reason for their oc
currence. In all cases the errors are numbered nxxx where n indicates the
source of the error, according to the following table:

1 = EQUEL preprocessor
2 = parser
3 = query modification
4 = decomposition and one variable query processor
5 = data base utilities
30 = GEO-QUEL errors

For a description of these routines the reader is referred to 77ie Design and Im
plementation ofINGRES. The xxx in an error number is an arbitrary identifier.
The error messages are stored in the file .../files/error7_n, where n is defined
as above. The format of these files is the error number, a tab character, the
message to be printed, and the tilde character ("~") to delimit the message.
In addition many error messages have "%i" in their body where i is a digit inter
preted as an offset into a list of parameters returned by the source of the error.
This indicates that a parameter will be inserted by the error handler into the er
ror return. In most cases this parameter will be self explanatory in meaning.
Where the error message is thought to be completely self explanatory, no addi
tional description is provided.

PARSER (ERROR) 3/30/79 PARSER (ERROR)

NAME

Parser error message summary

SYNOPSIS

Error numbers 2000 - 2999.

DESCRIPTION

The following errors can be generated by the parser. The parser reads your
query and translates it into the appropriate internal form; thus, almost all of
these errors indicate syntax or type conflict problems.

ERRORS

2000 %0 errors were found in quel program

2100 line %0, Attribute '%1' not in relation '%2'

This indicates that in a given line of the executed workspace the indicat
ed attribute name is not a domain in the indicated relation.

2103 line %0, Function type does not match type of attribute '%1'

This error will be returned if a function expecting numeric data is given a
character string or vice versa. For example, it is illegal to take the SIN
of a character domain.

2106 line %0, Data base utility command buffer overflow

This error will result if a utility command is too long for the buffer space
allocated to it in the parser. You must shorten the command or recom
pile the parser.

2107 line %0, You are not allowed to update this relation: %1

This error will be returned if you attempt to update any system relation
or secondary index directly in QUEL (such as the RELATION relation).
Such operations which compromise the integrity of the data base are not
allowed.

2108 line %0. Invalid result relation for APPEND '%1'

This error message will occur if you execute an append command to a re
lation that does not exist, or that you cannot access. For example, ap
pend to junk(...) will fail if junk does not exist.

2109 line %0. Variable '%1' not declared in RANGE statement

Here, a symbol was used in a QUEL expression in a place where a tuple
variable was expected and this symbol was not defined via a RANGE state
ment.

2111 line %0, Too many attributes in key for INDEX

A secondary index may have no more than 6 keys.

2117 line %0, Invalid relation name '%1' in RANGE statement

You are declaring a tuple variable which ranges over a relation which
does not exist.

2118 line %0, Out of space in query tree - Query too long

You have the misfortune of creating a query which is too long for the
parser to digest. The only options are to shorten the query or recompile
the parser to have more buffer space for the query tree.

2119 line %0. MOD operator not defined for floating point or character attri
butes

- 1-

PARSER (ERROR) 3/30/79 PARSER (ERROR)

The mod operator is only defined for integers.

2120 line %0, no pattern match operators allowed in the target list

Pattern match operators (such as "*") can only be used in a
qualification.

2121 line %0, Only character type domains are allowed in CONCAT operator

2123 line %0, '%l.all' not defined for replace

2125 line %0, Cannot use aggregates ("avg" or "avgu") on character values
2126 line %0, Cannot use aggregates ("sum" or "sumu") on character values
2127 line %0, Cannot use numerical functions (ATAN, COS, GAMMA, LOG. SIN.

SQRT, EXP, ABS) on character values
2128 line %0, Cannot use unary operators ("+" or "-") on character values
2129 line %0, Numeric operations (+-*/) not allowed on character values

Many functions and operators are meaningless when applied to character
values.

2130 line %0, Too many result domains in target list

Maximum number of result domains is MAXDOM (currently 49).

2132 line %0, Too many aggregates in this query

Maximum number of aggregates allowed in a query is MAXAGG (currently
49).

2133 line %0, Type conflict on relational operator

It is not legal to compare a character type to a numeric type.

2134 line %0, '%1' is not a constant operator.
Only 'dba' or 'usercode' are allowed.

2135 line %0, You cannot duplicate the name of an existing relational)
You have tried to create a relation which would redefine an existing rela
tion. Choose another name.

2136 line %0, There is no such hour as %1, use a 24 hour clock system
2137 line %Q, There is no such minute as %1. use a 24 hour clock system
2138 line %0, There is no such time as 24:%1. use a 24 hour clock system

Errors 2136-38 indicate that you have used a bad time in a. permit state
ment. Legal times are from 0:00 to 24:00 inclusive.

2139 line %0. Your database does not support query modification

You have tried to issue a query modification statement (define), but the
database was created with the —q flag. To use the facilities made avail
able by query modification, you must say:

creatdb —e +q dbname

to the shelL

2500 line %0, The word '%1'. cannot follow this command

A 2500 error is reported by the parser if it cannot otherwise classify the
error. One common way to obtain this error is to omit the required
parentheses around the target list. The parser reports the last symbol
which was obtained from the scanner. Sometimes, the last symbol is far
ahead of the actual place where the error occurred. The string "EOF" is
used for the last symbol when the parser has read past the query.

2501 line %Q, The word *%1;, cannot follow a RETRIEVE command
2502 line %Q, The word '%!', cannot follow an APPEND command

-2

PARSER(ERROR) 3/30/79 PARSER(ERROR)

2503 line %0, The word '%1', cannot follow a REPLACE command
2504 line %0, The word '%1', cannot follow a DELETE command
2507 line %0, The word '%1', cannot follow a DESTROY command
2508 line %0, The word '%1', cannot follow a HELP command
2510 line %0, The word '%1', cannot follow a MODIFY command
2511 line %0, The word '%1', cannot follow a PRINT command
2515 line %0, The word '%1', cannot follow a RETRIEVE UNIQUE command
2516 Une %0, The word '%1'. cannot follow a DEFINE VIEW command
2519 Une %0, The word '%1', cannot follow a HELP VIEW, HELP INTEGRITY, or

HELP PERMIT command
2522 Une %0, The word '%1\ cannot follow a DEFINE PERMIT command
2523 Une %0, The word '%1', cannot follow a DEFINE INTEGRITY command
2526 Une %0. The word '%1', cannot foUow a DESTROY INTEGRITY or DESTROY

PERMIT command

Errors 2502 through 2528 indicate that after an otherwise vaUd query,
there was something which could not begin another command. The
query was therefore aborted, since this could have been caused by
misspelUng where or something equally as dangerous.

2600 syntax error on line %0
last symbol read was: '%!'

2601 Une %0, Syntax error on '%1'. the correct syntax is:
RETRIEVE [[INT0]relname] (targetjist) [WHERE qual]
RETRIEVE UNIQUE (targetjist) [WHERE qual]

2602 Une %0, Syntax error on '%1', the correct syntax is:
APPEND [TO] relname (targetjist) [WHERE qual]

2803 Une %0, Syntax error*a%l', the correct syntax is:
REPLACE tuple_yariable (targetjist) [WHERE qual]

2604 Une %0, Syntax error on '%1', the correct syntax is:
DELETE tuple_yariable [WHERE qual]

2605 Une %0, Syntax error on '%1', the correct syntax is:
COPY relname (domname = format |, domname = format)) direction

2606 Une %0. Syntax error on '%1'. the correct syntax is:
CREATE relname (domname 1 = format|, domname2 = format))

2807 Une %0, Syntax error on '%1\ the correct syntax is:
DESTROY relname \, relname)
DESTROY [PERMIT | INTEGRITY] relname [integer integer) | ALL]

2609 Une %0, Syntax error on '%1\ the correct syntax is:
INDEX ON relname IS indexname (domain1\, domain2()

2810 Une %0, Syntax error on '%1'. the correct syntax is:
MODIFY relname TO storage-structure [ON keyl [: sortord]
[|, key2 [:sortorder])]] [WHERE [FILLFACTOR = n] [, MINPAGES = n] [,
MAXPAGES = n]]

2611 Une %0, Syntax error on '%1', the correct syntax is:
PRINT relname j, relname)

2612 Une %0, Syntax error on '%1', the correct syntax is:
RANGE OF variable IS relname

2613 Une %0, Syntax error on '%1', the correct syntax is:
SAVE relname UNTIL month day year

2614 Une %0, Syntax error on '%1'. the correct syntax is:
DEFINE VIEW name (target list) [WHERE qual]
DEFINE PERMIT oplist |0N|0F|T0) var [(attUst)] TO name [AT term] [FROM
time TO time] [ON day TO day] [WHERE qual]
DEFINE INTEGRITY ON var IS qual

2815 Une %0, Syntax error on '%1', the correct syntax is:
RETRIEVE UNIQUE (targetjist) [WHERE qual]

2616 Une %0, Syntax error on '%!', the correct syntax is:

-3-

PARSER (ERROR) 3/30/79 PARSER(ERROR)

DEFINE VIEW name (targetjist) [WHERE qual]
2619 Une %0. Syntax error on '%1', the correct syntax is:

HELP VIEW relname[. relname]
HELP PERMIT relname[. relname]
HELP INTEGRITY relname[, relname]

2822 Une %0, Syntax error on '%1', the correct syntax is:
DEFINE PERMIT opUst (0N|0F|T0| var [(attUst)] TO name [AT term] [FROM
time TO time] [ON day TO day] [WHERE qual]

2623 Une %0, Syntax error on '%1', the correct syntax is:
DEFINE INTEGRITY ON var IS qual

Errors 2600 through 2823 are generated when a command's syntax has
been violated. The correct syntax is given. If the command cannot be
determined, error 2600 is given.

2700 Une %0, non-terminated string

You have omitted the required string terminator (").

2701 Une %0, string too long

Somehow, you have had the persistence or misfortune to enter a charac
ter string constant longer than 255 characters.

2702 Une %0, invalid operator

You have entered a character which is not alphanumeric, but which is
not a defined operator, for example, "?".

2703 Une %0, Name too long '%1'

In INGRES relation names and domain names are limited to 12 characters.

2704 Une %0, Out of space in symbol table - Query too long

Your query is too big to process. Try breaking it up with more \go com
mands.

2705 Une %0, non-terminated comment

You have left off the comment terminator symbol ("*/").

2707 Une %0, bad floating constant: %1

Either your floating constant was incorrectly specifled or it was too large
or too small. Currently, overflow and underflow are not checked.

2708 Une %0, control character passed in pre-converted string

In EQUEL a control character became embedded in a string and was not
caught until the scanner was processing it.

2709 Une %0. buffer overflow in converting a number

Numbers cannot exceed 256 characters in length. This shouldn't become
a problem until number formats in INGRES are increased greatly.

2800 Une %0, yacc stack overflow in parsing query

QRYMOD(ERROR) 3/30/79 QRYMOD (ERROR)

NAME
Query Modiflcation error message summary

SYNOPSIS

Error numbers 3000 - 3999.

DESCRIPTION , , _.
These error messages are generated by the Query Modiflcation module. These
errors include syntactic and semantic problems from view, integrity, and pro
tection deflnition, as weU as run time errors - such as inabUity to update a view,
or a protection violation.

ERRORS
3310 %0 on view %1: cannot update some domain

You tried to perform operation %0 on a view; however, that update is not
define d.

3320 %0 on view %1: domain occurs in quaUfication of view
It is not possible to update a domain in the quaUfication of a view, since
this could cause the tuple to disappear from the view.

3330 %o on view %1: update would result in more than one query
You tried to perform some update on a view which would update two
underlying relations.

3340 %0 on view 551: views do not have TID's
You tried to use the Tuple IDentifier field of a view, which is undefined.

3350 %0 on view %1: cannot update an aggregate value
You cannot update a value which is defined in the view definition as an
aggregate.

3360 %0 on view %1: that update might be non-functional
There is a chance that the resulting update would be non-functional, that
is, that it may have some unexpected side effects. INGRES takes the atti
tude that it is better to not try the update.

3490 INTEGRITY on %1: cannot handle aggregates yet
You cannot define integrity constraints which include aggregates.

3491 INTEGRITY on %1: cannot handle multivariate constraints
You cannot define integrity constraints on more than a single variable.

3492 INTEGRITY on %1: constraint does not initially hold
When you defined the constraint, there were already tuples in the rela
tion which did not satisfy the constraint. You must fix the relation so
that the constraint holds before you can declare the constraint.

3493 INTEGRITY on %1: is a view

You can not define integrity constraints on views.

3494 INTEGRITY on %1: You must own '%1'

You must own the relation when you declare integrity constraints.

3500 %0 on relation %1: protection violation

You have tried to perform an operation which is not permitted to you.

QRYM0D(ERROR) 3/30/79 QRYM0D(ERROR)

3590 PERMIT: bad terminal identifier "%2"

In a permit statement, the terminal identifier field was improper.

3591 PERMIT: bad user name "%2"

You have used a user name which is not defined on the system.

3592 PERMIT: Relation '%1' not owned by you

You must own the relation before issuing protection constraints.

3593 PERMIT: Relation '%1' must be a real relation (not a view)

You can not define permissions on views.

3594 PERMIT on %1: bad day-of-week '%2'

The day-of-week code was unrecognized.

3595 PERMIT on %1: only the DBA can use the PERMIT statement

Since only the DBA can have shared relations, only the DBA can i-sue per
mit statements.

3700 Tree buffer overflow in query modification
3701 Tree build stack overflow in query modification

Bad news. An internal buffer has overflowed. Some expression is too
large. Try making your expressions smaUer.

-2-

OVQP(ERROR) 3/30/79 OVQP(ERROR)

NAME
One Variable Query Processor error message summary

SYNOPSIS

Error numbers 4000 - 4499.

DESCRIPTION *,_ « ,, • v, n
These error messages can be generated at run time. The One Variable Query
Processor actuaUy references the data, processing the tree produced by the
parser. Thus, these error messages are associated with type conflicts detected
at run time.

ERRORS
4100 ovqp query Ust overflowed

This error is produced in the unlikely event that the internal form of
your interaction requires more space in the one variable query proces
sor than has been aUocated for a query buffer. There is not much you
can do except shorten your interaction or recompile OVQP with a larger
query buffer.

4106
4107

the interpreters stack overflowed - query too long
the buffer for ASCII and CONCAT commands overflowed

More buffer overflows.

cannot use arithmetic operators on two character fields
cannot use numeric values with CONCAT operator

You have tried to perform a numeric operation on character fields,
floating point exception occurred.
If you have floating point hardware instead of the floating point software
interpreter, you wul get this error upon a floating point exception
(underflow or overflow). Since the software interpreter ignores such ex
ceptions, this error is only possible with floating point hardware,
character value cannot be converted to numeric due to incorrect syntax.
When using intl. int2, int4. float4. or floatB to convert a character to
value to a numeric value, the character value must have the proper syn
tax. This error will occur if the character value contained non-numeric
characters.

ovqp query vector overflowed

Similar to error 4100.

compUer text space ran out
compUer ran out of registers
These errors refer to an experimental version of the system that is not
currently released.
you must convert your 8.0 secondary index before running this query!
The internal format of secondary indices was changed between versions
6 0 and 6.1 of INGRES. Before deciding to use a secondary index OVQP
checks that it is not a 6.0 index. The solution is to destroy the secondary
index and recreate it.

4108
4109

4110

4111

4112

4113

4114

4199

- 1-

DECOMP(ERROR) 3/30/79 DECOMP(ERROR)

NAME
Decomposition error message summary

SYNOPSIS
Error numbers 4500 - 4999.

DESCRIPTION ^
These error messages are associated with the process of decomposing a multi-
variable query into a sequence of one variable queries which can be executed by
OVQP.

ERRORS
4602 query involves too many relations to create aggregate function inter

mediate result.

In the processing of aggregate functions it is usually necessary to create
an intermediate relation for each aggregate function. However, no query
may have more than ten variables. Since aggregate functions implicitly
increase the number of variables in the query, you can exceed this limit.
You must either break the interaction apart and process the aggregate
functions separately or you must recompile INGRES to support more vari
ables per query.

4610 Querytoo long for avaUable buffer space (qbufsize).
4611 Querytoo long for available buffer space (varbufsiz)
4812 Query too long for avaUable buffer space (sqsiz)
4613 Query too long for avaUable buffer space (stacksiz)
4614 Query too long for avaUable buffer space (agbufsiz).

These wUl happen if the internal form of the interaction processed by
decomp is too long for the available buffer space. You must either shor
ten your interaction or recompUe decomp. The name in parenthesis
gives the internal name of which buffer was too smaU.

4615 Aggregate function is too wide or has too many domains.
The internal form of an aggregate function must not contain more than
49 domains or be more than ^1010 bytes wide. Try breaking the aggre
gate function into two or more parts.

4620 Target list for "retrieve unique" has more than 49 domains or is wider
than 1010 bytes.

-1-

DBU(ERROR) 3/30/79 DBU(ERROR)

NAME

Data Base Utility error message summary
SYNOPSIS

Error numbers 5000 - 5999

DESCRIPTION

The Data Base UtUity functions perform almost all tasks which are not directly
associated with processing queries. The error messages which they can gen
erate result from some syntax checking and a considerable amount of semantic
checking.

ERRORS

5001 PRINT: bad relation name %0

You are trying to print a relation which doesn't exist.

5002 PRINT: %0 is a view and can't be printed

The only way to print a view is by retrieving it.
5003 PRINT: Relation %0 is protected.

You are not authorized to access this relation.

5102 CREATE: dupUcate relation name %Q

You are trying to create a relation which already exists.
5103 CREATE: %0 is a system relation

You cannot create a relation with the same name as a system relation.
The system depends on the fact that the system relations are unique.

5104 CREATE %0: invalid attribute name %1

This wUl happen if you try to create a relation with an attribute longer
than 12 characters.

5105 CREATE %0: dupUcate attribute name %1

Attribute names in a relation must be unique. You are trying to create
one with a duplicated name.

5106 CREATE %0: invalid attribute format "%2" on attribute %1

The aUowed formats for a domain are cl-c255, il, i2, i4, f4 and f8. Any
other format wiU generate this error.

5107 CREATE %0: excessive domain count on attribute %1

A relation cannot have more than 49 domains. The origin of this magic
number is obscure. This is very difficult to change.

5108 CREATE %0: excessive relation width on attribute %1

The maximum number of bytes allowed in a tuple is 1010. This results
from the decision that a tuple must fit on one UNDC "page". Assorted
pointers require the 14 bytes which separates 1010 from 1024. This
"magic number" is very hard to change.

5201 DESTROY: %0 is a system relation

The system would immediately stop working if you were allowed to do
this.

5202 DESTROY: %0 does not exist or is not owned by you

- 1

DBU(ERROR) 3/30/79 DBU(ERROR)

To destroy a relation, it must exist, and you must own it.

5203 DESTROY: %0 is an invaUd integrity constraint identifier

Integers given do not identify integrity constraints on the specified rela
tion. For example: If you were to type "destroy permit parts 1, 2. 3". and
1. 2, or 3 were not the numbers "help permit parts" prints out for per
missions on parts, you would get this error.

5204 DESTROY: %0 is an invaUd protection constraint identifier

Integers given do not identify protection constraints on the specifled re
lation. Example as for error 5203.

5300 INDEX: cannot find primary relation

The relation does not exist - check your spelling.

5301 INDEX: more than maximum number of domains

A secondary index can be created on at most six domains.

5302 INDEX: invaUd domain %0

You have tried to create an index on a domain which does not exist.

5303 INDEX: relation %0 not owned by you

You must own relations to put indieies on them.

5304 INDEX: relation %0 is already an index

INGRES does not permit tertiary indicies.

5305 INDEX: relation %0 is a system relation

Secondary indices cannot be created on system relations.

5306 INDEX: %0 is a view and an index can't be buUt on it

Since views are not physicaUy stored in the database, you cannot build
indicies on them.

5401 HELP: relation %0 does not exist

5402 HELP: cannot find manual section "%0"

Either the desired manual section does not exist, or your system does
not have any on-line documentation.

5403 HELP: relation %0 is not a view

Did a "help view" (which prints view definition) on a nonview. For exam-
pie: "help view overpaidv" prints out overpaidv's view deflnition.

5404 HELP: relation %0 has no permissions on it granted
5405 HELP: relation %0 has no integrity constraints on it

You have tried to print the permissions or integrity constraints on a rela
tion which has none specifled.

5410 HELP: tree buffer overflowed
5411 HELP: tree stack overflowed

Still more buffer overflows.

5500 MODIFY: relation %0 does not exist

5501 MODIFY: you do not own relation %0

You cannot modify the storage structure of a relation you do not own.

-2-

DBU(ERROR) 3/30/79 DBU(ERROR)

5502 MODIFY %0: you may not provide keys on a heap

By definition, heaps do not have keys.

5503 MODIFY %0: too many keys provided

You can only have 49 keys on any relation.

5504 MODIFY %0: cannot modify system relation

System relations can only be modified by using the sysmod command to
the sheU; for example

sysmod dbname

5507 MODIFY %0: dupUcate key "%1"

You may only specify a domain as a key once.

5508 MODIFY %0: key width (%1) too large for isam

When modifying a relation to isam. the sum of the width of the key fields
cannot exceed 245 bytes.

5510 MODIFY %0: bad storage structure "%1"

The valid storage structure names are heap, cheap, isam, cisam, hash,
and chash.

5511 MODIFY %0: bad attribute name "%1"

You have specified an attribute that does not exist in the relation.

5512 MODIFY %0: "%1" not allowed or specified more than once

You have specified a parameter which conflicts with another parameter,
is inconsistant with the storage mode, or which has already been
specifled.

5513 MODIFY %0: fillfactor value %1 out of bounds

Fulfactor must be between 1 and 100 percent.

5514 MODIFY %0: minpages value %1 out of bounds

Minpages must be greater than zero.

5515 MODIFY %0: "551" should be "fillfactor", "maxpages", or "minpages"

You have specified an unknown parameter to modify.

5516 MODIFY %0: maxpages value %1 out of bounds

5517 MODIFY %0: minpages value exceeds maxpages value

5518 MODIFY %0: invalid sequence specifier "%1" for domain %2.

Sequence specifier may be "ascending" (or "a") or "descending" (or
"d") in a modify. For example:

modify parts to heapsort on
pnum:ascending,
pname:descending

5519 MODIFY: %0 is a view and can't be modified

Only physical relations can be modified.

5520 MODIFY: %0: sequence specifier "%1" on domain %2 is not aUowed with the
specified storage structure.

Sortorder may be suppUed only when modifying to heapsort or cheap-
sort.

-3-

DBU(ERROR) 3/30/79 DBU(ERROR)

5600 SAVE: cannot save system relation "%0"
System relations have no save date and are guaranteed to stay for the
lifetime of the data base.

5601 SAVE: bad month "550"
5602 SAVE: bad day "%0"
5603 SAVE: bad year "%0"

This was a bad month, bad day. or maybe even a bad year for INGRES.
5604 SAVE: relation 550 does not exist or is not owned by you
5800 COPY: relation %0 doesn't exist
5801 COPY: attribute %0 inrelation 551 doesn't exist or it has been listed twice
5803 COPY: too many attributes

Each dummy domain and real domain Usted in the copy statement count
as one attribute. The limit is 150 attributes.

5804 COPY: bad length for attribute 550. Length="%l"
5805 COPY: can't open flle %0

On a copy "from", the flle is not readable by the user.
5806 COPY: can't create file 550

On a copy "into", the file is not creatable by the user. This is usually
caused by the user not having write permission in the specified directo
ry.

5807 COPY: unrecognizable dummy domain "%0"
On a copy "into", a dummy domain name is used to insert certain char
acters into the unix file. The domain name given is not valid.

5808 COPY: domain 550 size too small for conversion.
There were 552 tuples successfuUy copied from 553 into 554
When doing any copy except character to character, copy checks that
the field is large enough to hold the value being copied.

5809 COPY: bad input string for domain 550. Input was "551". There were 552 tu
ples successfuUy copied from 553 into 554
This occurs when converting character strings to integers or floating
point numbers. The character string contains something other than
numeric characters (0-9,+,-,blank,etc).

5810 COPY: unexpected end of flle whUe filling domain %0.
There were 551 tuples successfuUy copied from 552 into 553

5811 COPY: bad type for attribute 550. Type="551"
The only accepted types are i. f, c, and d.

5812 COPY: The relation "550" has a secondary index. The index(es) must be
destroyed before doing a copy "from"
Copy cannot update secondary indices. Therefore, a copy "from" cannot
be done on an indexed relation.

5813 COPY: You are not aUowed to update the relation 550
You cannot copy into a system relation or secondary index.

5814 COPY: You do not own the relation 550.

DBU(ERROR) 3/30/79 DBU(ERROR)

You cannot use copy to update a relation which you do not own. A copy
. "into" is aUowed but a copy "from" is not.

5815 COPY: An unterminated "cO" fleld occurred while fiUing domain %0.
There were 551 tuples successfuUy copied from 552 into 553

A string read on a copy "from" using the "cO" option cannot be longer
than 1024 characters.

5816 COPY: The fuU pathname must be specified for the file 550

The file name for copy must start with a "/".
5817 COPY: The maximum width of the output file cannot exceed 1024 bytes

per tuple

The amount of data to be output to the flle for each tuple exceeds 1024.
This usually happens only if a format was mistyped or a lot of large dum
my domains were specifled.

5818 COPY: 550 is a view and can't be copied

Only physical relations can be copied.

5819 COPY: Warning: 550 dupUcate tuples were ignored.

On a copy "from", duplicate tuples were present in the relation.
5820 COPY: Warning: 550 domains had control characters which were converted

to blanks.

5821 " COPY: Warning: %0 cO character domains were truncated.

Character domains in cO format are of the same length as the domain
length. You had a domain value greater than this length, and it was trun
cated.

5822 COPY: Relation 550 is protected.

You are not authorized to access this relation.

-5-

	Copyright notice 1981
	ERL-81-61

