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ABSTRACT

It is shown how modern optimization techniques can be

used to design digital filters. The high flexibility of this

approach makes tractable a large class of specifications, such as

constraints on both magnitude and phase response or special sta

bility requirement (running a better transient behavior). Effi

cient use of optimization requires a highly interactive computing

environment, including application oriented graphics. As an example,

the design of a low pass filter, performed on the Berkeley DELIGHT

system, is discussed.
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1 . INTRODUCTION

The design of digital filters consists of approximation

of desired magnitude and phase response specifications by a

ratio of polynomials corresponding to a stable, causal trans

fer function.

Traditionally, designers have used classical techniques

to approximate their desired response. As the knowledge of

analog filter design is quite advanced, these techniques

normally consist of the design of an analog filter transfer

function and its conversion to a digital transfer function.

The mapping from analog to discrete frequency domain can be

accomplished by several commonly used methods such as the

impulse invariant transformation or the bilinear transforma

tion. These design techniques have been incorporated in the

classical filter design package FILSYN fl] .

Classical techniques for the design of infinite impulse

response (IIR) filters are rigid in the design specifications

allowed. The analog filters available for use by the designer

each have definite characteristics. For example, the magni

tude response of a butterworth filter is monotonic in both

passband and stopband, £!hebyshev filters exhibit an equi-

ripple passband and monotonic stopband response, and elliptic

filters are equiripple in both passband and stopband. Each

of these filters is characterized by nonlinear phase response.

Bessel filters are characterized by the property that the
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group delay is maximally flat at the origin of the s-plane.

This property is generally not preserved after digitization.

The magnitude response of the Bessel filter tends toward

Gaussian as the filter order is increased.

A much greater flexibility can be obtained if optimization

techniques are utilized. Some attempts have been made in that

direction in the past. Deczky UaJ, for instance, designs

recursive filters based on the minimum p-error criterion, using

the Fletcher-Powell algorithm; he takes into account requirements

on both amplitude and phase responses. In the approach de

scribed in this paper, we use a more general problem formulation,

tractable by more recent, semi-infinite optimization algorithms.

In addition to amplitude and phase response, any other "reasonable"

requirement may be specified, such as special stability require

ments or constraints on the size of some transfer function coef

ficients. Also, the degrees of numerator and denominator of the

transfer function can be choosen at will; in particular, finite

impulse response (FIR) filters are allowed.

More importantly, however, the aim of this paper is to show

how filter design can be viewed as one of the numerous applic

ations of a self-contained optimization and design system, such

as DELIGHT [2]. In DELIGHT, any algorithm from an integrated

library can be utilized without the need of any modification in

the problem formulation provided by the application designer

(an algorithm due to Gonzaza, Polak and Trahan [3] is chosen

as an example) ; this, total independence between problem
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and algorithm is of great help. Other precious features of

DELIGHT include the possibility to display graphical output in

a desirable form and the outstanding interaction capabilities:

one can interrupt, observe, diagnose, modify and restart a

computation as it progresses, resulting in saving in both computer

time and time needed to complete a design. All algorithms and

problem formulations are coded in the interactive structured

programming language RATTLE [4 ].

The balance of this paper is organized in the following

manner. In section 2, after briefly discussing the optimiza

tion algorithm [3], we take the example of a lowpass IIR filter

to show how a filter design problem can be formulated into a

nonlinear program. Section 3 details the computational results

obtained with the example described in section 2. Section 4

discusses the advantages of using an interactive system to per

form the optimization. Finally the conclusions are set forth

in section 5.
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2. DESIGN USING DELIGHT

2.1 THE OPTIMIZATION ALGORITHM

The optimization algorithm employed in the filter

design is of the combined phase 1-phase 2 feasible direc

tions type. It is useful for solving optimization problems

with functional inequality constraints. A brief description

is given here. For a more detailed treatment, the reader is

referred to [3] ./'The algorithm solves problems of the form:

min{f°(x)|fi(x)<0,j=l,2,...,p; max((f(x,^0, j=l,2, ...,m\ (2.1)
w«.n. •>.

where

f:Rn-»R is the cost function

f:R-*R j=l,2,...,p are inequality constraints

(J):R*R^R j=l,2,...,m are functional inequality constraints

x*Rnis the design vector

.n. is a compact interval of the real line

(i) f°,f j=l,2,...,p are continuously differentiable in x.

(ii)j& j=l,2,...,m are continuously differentiable in x

and piecewise continuous in u>.

The algorithm also uses the function l^x) defined as

1|/(x)=max{o,Tjr(x)}

with

y(x)imax{fJ(x),j=l,2,...,p; maxljtx.u)), j=l,2, ...,m\ .
T&z J^iMi **<yL*r* kA ^Uj^w^i. as [x|i|/f(x) =o}. A feasible
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point is any point in the feasible region. Hence, roughly

speaking, *\|^(x) is a measure of the distance Xu>*m.

pcx^t x bo the feasible region.

To use the algorithm one need not start from a feasible

point. The phase 1 portion of the algorithm, while trying

to possibly decrease the cost function, computes a descent

direction for the most violated constraints (including the

most critical values of w in the functional constraints,

(p(x,u))t j=l,2, ...,m), eventually forcing the iterate into

the feasible region and hence driving ytx) to zero. Once

this process is completed and a feasible point is found,

the phase <2 portion of the algorithm computes a

direction leading to a decrease in the cost function while

maintaining feasibility.

The algorithm, as implemented, runs as a series of

iterations. During each iteration a se^xJC direction is

computed. Then a step is taken in this direction

such that, in phase l;1j/tx) is decreased and, in phase 2 ,

the cost function f°(x) is decreased while maintaining

feasibility (ytx)=0) . V&~ i*^v^xk^ Mi oJUa^^^ ***

DELIGHT, the user has the option of specifying the number

of steps (iterations) to be taken before the computation

is automatically interrupted or to allow the computation

to proceed continuously and explicitly interrupt it when
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interaction seems desirable (key information about the

algorithm is displayed at each iteration). After graphical-

ly displaying the Aand perhaps modifying constraints,

tU aaA^ /y*^x^\ slua<+*»£ ck>*~f>uJtvJzc*> u^JJt JU is satisfied

with the filter design performance.

2.2 FORMULATION OF THE FILTER DESIGN PROBLEM

AS A MATHEMATICAL PROGRAM

In this section, we show how digital filter specifica

tions can be expressed in the form of equation (2.1).

Consider the design of a digital lowpass IIR filter

having a passband cutoff frequency of t^ radians, a stop-

band cutoff frequency of u^radians and linear (within a

sector) phase. Our mathematical programming formulation of

the specifications includes the following functional

constraints:

(i) amplitude constraints

1-^amplitude(u))*l+^d VU« £0 ,^'J (2.2)

0<amplitude(u;)^l+54 ^W*(u;,v^ (2.3)

04amplitude(u;)<4d i^^^id (2.4)

4. p., the magnitude is constrained to lie inside the .

region Mjw^, ^n,. i<«tf, i,
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CxOPhase constraints

(m-^d)co-S fphase(cJ)^(m+^d)U+ S Yite[o,u£] (2.5)

'̂.^.v >che phase must lie inside the Jur<c£un+ a&o-utk cov\ ft*- J.

Equations (2.2)-(2.5) can easily be expressed as func

tional inequality constraints in the form required in (2.1),

withil=[0,Tr] . For example, equation (2.5) can be written as

(}>5(x,uj)^o Vu;^Jl

04(x,w)iO V^il

where

0i(x,uj)=-phase.(w)+(m-£4d)w- j for U6 [0,^p] (2 6)
--co otherwise

^(x,u)^phase(uJ)-(m+^d)w-6 forWs[o,u£l ?
^-od otherwise

Similarly, equations (2.2)-(2.4) can be expressed in the

form 4>J(x,w)£0 j=l,2. Cf» ^and ^ are constants selected by

the user, m, the slope of the desired phase response is
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unspecified. d, a measure of the allowable deviation in

both magnitude and phase from ideal responses, is chosen as

the cost function to be minimized, tx^cdiiu <J > 0 ensures

that the optimization algorithm performs properly, <a*. tLxfitoAsntA

The transfer function is expressed as a ratio of

quadratics. This formulation, besides leading to a filter

with low quantization noise [l(j| , facilitates the use of

the bilinear transformation and simplifies the expressions

for conditions of stability. These conditions can be written,

for each denominator quadratic, as (see [5] )

1+ca+4>0 (2.8)

l-a+fc>0 (2.9)

l-i;>0 (2.10)

where a and !• are coefficients of the quadratic z*+az+^.

Stronger stability properties can be obtained if the poles

of the digital filter transfer function are constrained to

lie within a circle of radius oe(0,l). This is achieved by

replacing (2.8)-(2.10) with
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l+a/p +&/f>0 (2.11)
1-a/p+V/^O (2.12)
-i/p'>0 (2.13)1. f?

Equations (2.8)-(2.13) correspond to ordinary inequality

constraints fJin formulation (2.1). For example, (2.11)

can be written as

f\x)=-l-ci^, -i/f,40 (2.14)

The design parameter vector x has as components

(i) the constant factor multiplying the transfer function

(ii) the coefficients of the numerator and denominator

quadratics

(iii) m, the unspecified slope of the desired phase

response

(iv) d, the measure of allowable deviation of magnitude

• and phase from the ideal response, which is

desired to be as small as possible.

Thus, the cost function to be minimized is f°(x) =d. Our

problem, which originally was a "min-max" problem (minimize

the maximum deviation from the ideal response), has thus

been transformed into a semi-infinite minimization problem

through the introduction of the extra variable d.
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2.3 THE RATTLE FORMULATION OF THE

DESIGN SPECIFICATIONS

The RATTLE formulation of a filter design specification

consists of a set of six files which include default para

meter values and initial data (which can be modified inter

actively), functions and gradient (with respect to x)

evaluation procedures as well as application oriented

graphical output and miscellaneous procedures. A listing

of these files is given in Appendix A. It should be stressed

that, if gradient evaluation procedures had not been pro

vided, DELIGHT would, by default, estimate them by finite

differences (this feature is useful when a complex formula

is used).

The first file, filters (setup), defines filter para

meters. The design vector x includes the transfer function'

multiplicative factor, coefficients of the numerator and

denominator quadratics, the slope and the allowable devia

tion. For readability, the index of x corresponding to

each entry has been given a name which is referred to when

accessing an element of a related array. For example,

if 'grad* is an array containing the gradient of some

function with respect to the design vector, grad(Imult)

will be the derivative with respect to the multiplicative

factor and grad(Ia(2)), the derivative with respect to the
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coefficient of the linear term of the second numerator

quadratic.

Also, for easy interaction or input of data, mnemonic

names have been equivalenced to each entry of x using the

DELIGHT define mechanism [2\. For example,

Mult=x(l)

A(i)=x(2i)

Thus, the user may type "A(3)=2.5M rather than "X(6) =2.5".

File filterC (cost) contains two procedures. The

first, cost, returns the value of the cost function.

The other, gradcost, returns the gradient of the cost

function. Since the cost is the last entry of x and no

other entry depends on the cost, we have

vcost(x)=(0,...,0,1)' (2.15)

File filterl (inequality constraints) plays a similar

role for the inequality constraints (eqns (2.8)-2il0) or

(2.11)-(2.13)).

File filterF (functional inequalities) contains

procedures computing the amplitude and phase responses

of the digital filter, the functional inequalities and

their gradients. The amplitude is computed in the follow

ing manner. For each w
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•»C*»«*g+fr)

where A is the multiplicative factor and a-, bt, c-, d^ are

coefficients of the numerator and denominator quadratics.

Similarly,

phase(w)=/^ •J^——-7T (2.17)

Procedures fineq and gradfineq call amplitude(w) and

phase(w) to compute various functional inequality constraints

and their gradients (see eqns (2.2.)-(2.7)) .

File filterM (miscellaneous) contains procedures

necessary to display the output in graphical form on the

terminal screen, a procedure which performs the bilinear

transformation on an analog transfer function given as a

ratio of quadratics and a procedure to test the ability

of FILSYN to design filters using some modified stability

criteria, which is discussed in section 3 of this report.

An example of the graphical output is given in figure 1.

The magnitude response is plotted over the interval w€[0,7rj .

The phase response is plotted for w£ [0,wp] . Also, the

positions of the poles of the discrete transfer function

are displayed. The dashed lines in the magnitude and

phase plots show the functional inequality constraint

boundaries. These boundaries can be modified to reflect

(2.16)

Z-eJ"
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a desired response or to increase the speed of computation

by varying combinations of £P, £«,, ip the cost function

and the slope. As an example, in the figure, the lower

constraint on the phase is violated. If left infeasible,

optimization will eventually force the phase inside the

constraint boundary. On the other hand, by increasing

6a one could make the phase feasible without disturbing

the constraint boundaries on the magnitude response.

File filterD (data) provides the initial values of

the design vector, x.
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3. COMPUTATIONAL EXPERIMENTS

As previously noted, the optimization algorithm is

sensitive to the initial choice of filter design parameters.

Starting from randomly selected points would either increase

the computing time necessary to converge to the solution or

the algorithm would not converge at all to a global minimum,

instead converging to a.local, suboptimal solution. To

avoid these pitfalls, the classical filter design program,

FILSYN, was used to generate an analog design which was

subsequently transformed, using the bilinear transformation,

to a digital filter and used as the starting point for the

optimization program, in all examples, the bilinear trans

formation was chosen to avoid the aliasing problems encoun

tered with the use of impulse invariance. By prewarping the

frequency scale, the desired initial frequency response

could be preserved [6] .

In the first example (fig.4 ) a fourth order Chebyshev

filtor having a bandedge loss of ldb and a stopband loss of

17db was designed using FILSYN and used to initialize the

optimization program. Optimization resulted in another

fourth order chebyshev filter having a bandedge loss of .43db

and a stopband loss of 16.7db. FILSYN required a fifth

order filter to satisfy these criteria.

In example 2 (fig. 5") a fourth Lutterworth filter having

a 4db bandedge loss and a 13db stopband loss was designed
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using FILSYN. At the price of slightly less linear phase

and the appearance of ripple.in the passband, a fourth order

filter having a significantly narrower transition band

resulted from optimization^Elliptic filters are optimum in

the sense that for a given order, no other filter has a

narrower transition band. They are also characterized by a

magnitude response which is equiripple in both the passband

and the stopband [6], which best matches our specifications.

£ya^p<* 2> (frfi* *>) • illustrates an attempt to optimize

the magnitude of a FILSYN designed elliptic filter having

a ,3db bandedge loss and a 23db stopband loss. The improve

ment observed was insignificant. A comparison demonstrated

that FILSYN would design a fourth order filter meeting

equivalent specifications. To demonstrate the versatility

of the optimization system, an attempt to linearize the

phase of the FILSYN designed elliptic filter was made. As

displayed in figures 7 and 8, good success was made at

linearizing the phase, but at the cost of a "hump" near

the passband edge frequency in the magnitude response.

These *eA«-^>t$ demonstrate the ability of the optimization

program to construct linear phase filters from an arbitrary

initial design.

Pole placement within the unit circle is tied to the

damping of transient response and hence improved stability.

The smaller the circle containing the filter transfer
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function poles, the faster frequency response transients

settle out [7]. Hence it would be useful to be able to

design filters using pole placement (i,e. magnitude from the

origin) as a constraint. One might postulate that this

could be done using FILSYN and applying the simple transfor

mation -z-> £ , K^Ctl p^c^i) ,to the oU:cu~*j /Zu^aJci
function. This hypothesis was tested, using a FILSYN

designed elliptic filter, with the result displayed in

figure 9 for J»=.8. The shape of the transformed filter

frequency response is affected and may, as in figure 9,

result in a poor design. Hence this method is not useful.

The optimization system allows the user to specify the

radius of a circle within which the poles must lie after

optimization. Figure \c illustrates an example in which the

modified stability criterion is used. Beginning from a

FILSYN designed elliptic filter, the poles were constrained

to lie within a circle of radius.8.' The ability of the

optimization system to modify both magnitude and phase as

well as push the poles within the specified radius results

in a greatly superior filter to that designed by FILSYN

using the previously described technique.
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4. ADVANTAGES OF INTERACTION

The advantages in.using an interactive system are

many. Without interactive capability, the amount of time

necessary to solve the problem using batch mode would

render the problem unmanageable.

The graphics capability is indispensable. It allows

one to visually monitor the progress of the optimization,

set constraints initially and vary them during the optimi

zation process saving considerable computing time, and

make visual comparisons between designs.

In the DELIGHT system, when modifying or adding to

the program, the interactive system allows one to test

single statements or subprograms without having to re

compile the entire program resulting in a significant

time savings. This is due to the one-pass nature of

RATTLE compilation; there is no load/linkage phase.

Program debugging is also simplified through the use of

interaction. Program execution can be interrupted,

procedures can be entered, values of locally and globally

defined variables can be printed, diagnostic checks can

be added and execution can be restarted once more in an

effort to pinpoint errors. This is a vast improvement

over non-interactive methods in which one must first wait

for a run to be completed, add diagnostics, recompile,



-18-

relink and rerun the entire program, repeating this se

quence perhaps several times to debug it. A specific

instance in which interaction proved to be quite valua

ble in program debugging occurred when the functional

inequality constraints were first tested. The phase

constraints were originally specified as

(m-^)(J5phase(LJ)^(m+^d)vJ V^ [0,wf] (4.1)

This resulted in a constraint region <^«^ &* fit*. M .

The algorithm was unable to solve the quadratic program

used in finding a search direction. that the

quadratic programming routine was being passed invalid

gradient arguments, the interactive capabilities of

DELIGHT were used and the procedure computing gradients

of the functional inequality constraints was entered.

The matrix of the gradients was checked and those entries

Hence, the suspicion was confirmed. Subsequently, equation
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(4.1) was corrected to its present form (eqn. (2.5)).

Another feature of DELIGHTAis that the entire pro

gress, iteration and formulation, of the design can be

saved so that the design may be resumed at a later time

from exactly the same point.
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5. CONCLUSIONS

We have shown how interactive optimization can be applied

to the problem of digital filter design. A method has been

described.to formulate a digital filter design problem as a

semi-infinite nonlinear program. We have stressed the impor

tance of a highly interactive computing environment for

efficiently solving such a nonlinear program. Examples have

been presented demonstrating the substantially increased

flexibility of the optimization system over classical design

methods.

The price paid for high, flexibility is a fairly large

computing time (the examples presented typically require 30

minutes of CPU time on a VAX 11/780 running VM UNIX).

However, the computing time necessary to complete the

design could be significantly decreased if portions of the

were written in FORTRAN rather than RATTLE. Also, the

algorithm is somewhat slow to converge. More recent algo

rithms (ie.^8]) should converge much more rapidly. Perhaps

most importantly, the computation time is often not an

overriding factor. A situation in which the same design

is used to produce.a large number of filters provides an

example.

Although we have described in detail only the specific
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case of an IIR lowpass filter, extension to other types of

frequency response (highpass, bandpass, bandstop) is straight

forward. Also, degrees of numerator and denominator can be

changed at will; FIR filters are obtained as a particular case.
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APPENDIX A- LISTING OF THE FILTER DESIGN PROGRAM

# filters - setup

# both Ndegree and Ddegree must be even as H(z) is
# a ratio of quadratics

Ndegree = 4
Ddegree =4
Nparam = Ndegree+Ddegree+3
Nineq = (3/2>*Ddegree
Nfineq = 4
WO = 0 -

Wc = PI

Imult=l

array la(Ndegree/2)» lb(Ndegree/2>
for i=l to Ndegree/2 -C

Ia(i)=2*i

Ib(i)=2*i+1

>

array Ic(Ddegree/2>, Id(Ddegree/2)
for i=l to Ddegree/2 <

Ic(i> = Ndegree + 2>i
Id(i> = Ndegree •*• 2*i + 1
>

Islope = Ndegree + Ddegree + 2
Ibest_bound = Ndegree + Ddegree + 3

# numerator quadratic: z*"*2 + A<i)*z.+ B<i>
# denominator quadratic: z**2 + C(i)*z + D(i)

define (Mult* X(l))

define (A ( i ),X(i*2>)

define (B < i ),X(2*i+1))

define (C ( i ),X(Ndegree+2*i))
define (D < i >, X(Ndegree+2#i + l))
define (Phase__slope*XCNdegree+Ddegree+2))
define (Eest_bound# X(Ndegree+Ddegree+3))

# edge of passband = Wp/(2#PI> Hz
# edge of stopband = Wa/(2*PI) Hz
# width of passband constraint region = 2#Eps__pass#Best_bound
# width of stopband constraint region = Eps_stop*Best_bound
# angle of phase constraint sector = Eps_slope*Best_bound
# distance of phase constraint boundaries from origin = Delphase
# stability constraint: Ipoles! <= Rho

Wp = .45*PI
Wa = .55*PI

Eps_pass = .05
Eps_stop = .1
Eps_slope = .2
Delphase = .1
Rho = l



# filterC - cost function

function cost (x) <

array x()
import Ibest_bound
return x(Ibest_J>ound )
>

procedure gradcost (x#g)
array g(>
import Ibest_bound
matop g = arraii<) of 0
g(Ibest_bound) = 1
>

-24-
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# filterl - inequality constraints

procedure ineq(j,x) -C
array x()

k = (j - modrep(j, 3))/3 + 1
import Ic, Idi Rho
rhosq = Rho#-*2

easel (modrep(j,3)==l) return -1-x(Ic(k))/Rho-x(Id(k))/rhosq
case2 (modrep(j,3)==2) return -1+x(Ic(k))/Rho-x(Id(k))/rhosq
case3 (modrep(j,3>==3) return -1+x(Id(k))/rhosq
> . H .

procedure gradineq(j, x,g )
array x(), g()
import Ic. Id. Rho
k = (j - modrep(j, 3))/3
rhosq = Rho*-*2
matop g = array() of 0
easel (modrep(j,3>==1)

g(Ic(k) ) = -1/Rho
g(Id(k) ) = -1/rhosq
>

case2 (modrep(j/3)==2)
g(Ic(k) ) = 1/Rho
g(Id(k) > = -1/rhosq
>

case3 (modrep(j,3)==3)
g(Id(k)) = 1/rhosq

>

+ 1
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# filterF - functional inequality constraints

function amp (x, uj) <

array x( )
import Ndegreei Ddegree
import la, lb, Ic, Id, Imult
array y(3), xx(3)

amptemp = x(Imult)
xx(3) = 1

y(3) =1
for i = 1 to Ndegree/2 <

xx(2> » x(Ia(i) )

xx(l> = x(Ib(i) )

y(2) = x(Ic(i) )
y(l> = x(Id(i) )
amptemp = amp temp*tranfa( xx, 2, y, 2, uj)
>

if (Ndegree < Ddegree) then -C
for i = Ndegree/2+1 to Ddegree/2 <

y(2> = x(Ic(i) >
y(l) = x(Id(i>>
amptemp = amptemp*tranfa(1,O, y, 2, w)
>

>

return amptemp
>

function phase (x,w) < # WARNING: the phase must be calculated
# in a loop starting with u=0 .

array x()
import Ndegree, Ddegree
import la, lb, Ic, Id
avra\i y(3), xx(3)

if ( ui == 0. 0 > then -C

ph = 0. 0
deltaph = 0. 0

>

else <

phtemp = 0
xx(3) = 1

y(3) « 1
for i • 1 to Ndegree/2 -C

xx(2) = x(Ia(i>)

xx(l> = x(Ib(i> )

y(2) = x(Ic(i))
y(1) = x(Id(i))
phtemp = phtemp+ tranfp(xx, 2, y, 2, w)
>

for i = Ndegree/2+1 to Ddegree/2 <
y(2) « x(Ic(i) )
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y(l) = x(Id(i))
phtemp = phtemp+tranf p(1, 0, y, 2, u.)
>

ph = phtemp •*• deltaph

if ( abs(ph+PI - phstore) < abs(ph - phstore) ) then <
ph = ph + PI
deltaph = deltaph + PI
>

else -C

if ( abs(ph-PI - phstore) < abs(ph - phstore) ) then -C
ph = ph - PI
deltaph = deltaph - PI
>

>

>

phstore = ph
return ph
>

function fineq (j, x , ui) <
array x()

import Ndegree, Ddegree, Wp, Wa, Eps_pass, Eps_stop, Eps_slope, Delphase
import Islope, Ibest_bound, lb, Ic

amplitude = amp (x,w)

easel (j==l > -C
if (wCWa) return (amplitude - (1+Eps__pass*x (Ibest_bound) ) )
if (u/>=Wa> return (amplitude - Eps_stop*x(Ibest_bound))
>

case2 (j==2) •€

if (wOWp) return ((1-Eps_pass*x(Ibest_bound)> - amplitude)
if (td>Wp) return -sqrt (MAXREAL)
>

case3 (j==3> <
if (w<=Wp)

return (phase(x,w)-(x(Islope)+Eps_slope*x(Ibest_bound)>*w-Delphase)
else return -sqrt(MAXREAL)
>

case4 (j=«4) <
if(w<=Wp)

return (-phase(x,w)+(x(Islope)-Eps_slope*x(Ibest_bound)>*w-Delphase)
else return -sqrt(MAXREAL)
>

>

procedure gradfineq (j,x,w, g) <
array x(>, g()

import Ndegree, Ddegree, Wp, Wa, Eps_pass, Eps_stop, Eps__slope
import la, lb, Ic, Id, Islope, Ibest__bound, Imult
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arva\j re_num(Ndegree/2), im__num(Ndegree/2)
arva^ redden (Ddegree/2), im_den(Ddegree/2)

for i = 1 to Ndegree/2 <
re_num(i) = cos(2*w)+x(la(i))*cos(w)+x(lb(i))
im_num(i> = sin(2*tu) + x(la (i ))*sin(w)
>

for i = 1 to Ddegree/2 •€
re_den(i) = cos(2*w> + x(Ic(i)) * cos(ui) + x(Id(i)>
im_den(i) = sin(2*w) +x(Ic(i))#sin(w)
>

if (j==l J j==2) < *

amplitude = amp(.x»w)

for i = l to Ndegree/2 -C
numsq = re_num( i )**2+im__num( i )**2
g(Ia(i)) = (amp 1itude**2)*2#(re_num( i)*cos (ui) + im_num( i >*sin(u) )/numsq
g(Ib(i)) = (amplitude**2)*2*re_num(i)/numsq
>

for i = 1 to Ddegree/2 •€
densq = re_den(i)**2 + im_den(i>**2
g(Ic(i )) = -2*(amplitude#*2)*(re_den(i>*cos(w) + im_den(i)*sin(w))/densq
g(Id(i)) « -2*(amplitude**2)*re den(i> / densq
>

g(Islope)=0
matop g = (l/(2#amp 1itu.de )) •* g
g(Imult) = amp 1itude/x(Imult)

if (j==2) then
if (u<=Wp) matop g = (-l)*g
else matop g = array() of 0

g (Ibest_bound ) = -Eps__pass
if (jossl fc w>Wp ) g(Ibest_bound) = -Eps_stop
if (j==2 & w>Wp ) matop g = array () of 0

if (j==3 \ j==4> •€
for i = 1 to Ndegree/2 <
numsq = re_num(i)**2 + im_num(i)#*2
g(Ia(i)) = (re_num( i)*sin(ui)-im__num( i)*cos(w) ) / numsq
g(Ib(i)) = -im_num(i) / numsq
>

for i = 1 to Ddegree/2 <
densq = re_den(i)**2 + im_den(i)**2
g(Ic(i)) = (im_den(i)*cos(w) - re_den( i)*sin(tu) )/densq
g(Id(i)) = im__den(i) / densq
>

g (Islope) = -w
g(Imult) = 0
g(Ibest_bound) = -w#Eps_slope
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if (ui>Wp) matop g = arvat^O of 0

if (j==4) -C
matop g = (-l)#g
g(Ibest_bound ) = -g(Ib.est bound)
>
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# filterM - miscellaneous for graphical output

def ine_vieu/p'ort wamp 0 .55 1 1
def ine__worId wamp 0 0 PI 1. 5
define_viewport wphase 0 0 (Wp+Wa)/(2*PI) .5
define_world wphase 0 -5 (Wp+Wa)/2 0
define_vieuiport wpoles .60.9.5
define_world wpoles -1.25 -1.25 1.25 1.25

define (poles ; ''color* 'red ' ,poles__( X* color ))

S i z e x = . 02

procedure poles_( x, col) -C
arvaij x( >
import Ddegree, Sizex, Ndegree
avva^ repole(Ddegree>, impole(Ddegree)
for i = 1 to Ddegree/2 <

c = C(i>

d = D(i)

square = c**2 - 4*d
if ( square >= 0 ) -C

repole(2*i-l) = (-c + sqrt(square ))/2
impole(2*i-l) =0
repole(2#i) = (-c - sqrt(square))/2
impole(2*i) = 0
>

else <

repole(2*i-l) = -c/2
impole(2*i-l) = sqrt(-square)/2
repole(2*i) = -c/2
impole(2*i) = -sqrt(-square)/2
>

>

window upoles
for i = 1 to Ddegree -C

vector repole( i)-Si zex impole( i)-Si zex repole(i>+Sizex impole( i)+Sizex
vector repole(i)-Sizex impole(i)+Sizex repole(i)+Sizex impole(i)-Sizex
>

>

define (frame, frame_())

procedure frame_ <

window warnp
color white

box

window up hase
color wh it©

box
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window wpoles
theta = 2*PI / 40

for k = 0 to 40

vector cos(theta*k) sin(theta#k) cos(theta*(k + 1 ) ) sin(theta*(k+1))

vector 0 -1.25 0 1.25

vector -1. 25 0 1. 25 0

>

define (pfr » ''color- 'red ' ,pfr_(color))

if_NOTTHERE algo procedure algo q-0

procedure pfr__ (col) <

import Ndegree, Ddegree, Wp* Wa, Wc, Eps__pass, Eps__stop, Eps_slope,- Delphase
access q from algo
if q==0 q=20

window wamp

toi__pass = Best__b°und * Eps_pass
tol_stop = Best__bound * Eps__stop
color yellow
vector 0 l+tol_pass Wa l+ tol_pass
vector 0 l-tol_pass Wp l-tol_pass
vector Wa tol__stop PI tol_stop
array resp(q+1)
for i= l to q-J-1

resp(i)=amp(X,(i-l)*PI/q)
curvev resp col

window wphase
tol_slope = Eest_bqund •* Eps__slope
color yellow
clip_yector 0 Delphase Wp (Phase_slope+tol_slope)*Wp+Delphase
clip_veetor 0 -Delphase Wp (Phase_s lope-tol_s lope )*Wp-Delphase
arva\4 resp ( q*Wp/Wc+l)
for i=l to arydim(resp)

resp(i)=phase(X,(i-l)*PI/q)
viewport 0 0 Wp/((Wp+Wa)/2) 1 relative to wphase
curvev resp col

poles col
>

ft the following variables must be input from the keyboard
ft before calling "convert"

ft mult = multiplicative factor of H(s) in db
ft ncompzer = number of complex zero pairs
ft ncomppol = number of complex pole pairs
ft nozeros = 1 if H(s) has no finite zeros

ft nozeros - 0 otherwise

ft array renum contains the real parts of the complex zeros
ft arrays imnum, red en, ..ind imden are similarly defined
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# arrays si and s2 contain real zeros to be transformed in
# pairs (ie. (s-sl(i))*(s-s2(i)) ) .
# arrays s3 and s4 are similarly defined for poles

create mult

create ncompzer
create ncomppol
create nozeros

array renum(ARB), imnum(ARB), reden(ARB), imden(ARB)
arra^ sl(ARB), s2(ARB), s3(ARB), s4(ARB)

# procedure convert performs the bilinear transformation to
# a transfer function H(s) expressed as the ratio of quadratics

procedure convert <
import mult, Ndegree, Ddegree
import ncompzer, ncomppol, nozeros
import renum, imnum, reden, imden
import si, s2, s3, s4
Mult = 10**(mult/20>

ftperform bilinear transform on complex
ftzero pairs

if (nozeros = 0) -C

for i = 1 to ncompzer -C
magsq = renum(i)**2 + imnum(i)#*2
temp = l-2#renum(i)+magsq
A(i) = -2*(1-magsq)/temp
B(i) = (l+2*renum(i)+magsq)/temp
Mult = Mult*temp
>

>

ftperform bilinear transform on complex
ftpole pairs

for i = 1 to ncomppol <
magsq = reden(i>**2 + imden(i)*#2
temp = l-2#reden(i)+magsq
C(i) = -2*(l-magsq)/temp
D(i) = (l+2*reden(i)+magsq)/temp
Mult = Mult/temp
>

ftperform bilinear transform on real
Enumerator roots (in pairs)

if (nozeros = 0) <

for i = ncompzer+1 to Ndegree/2 <
k = i-ncompzer
temp = (l-sl(k))*(l-s2(k>)
A(i) = -2*<l-sl(k)*s2(k>)/temp
B(i) = (l+sl(k))*<l+s2(k))/temp
Mult = Mult*temp
>
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ftperform bilinear transform on real
ftdenominator roots (in pairs)

for i = ncomppol+ 1 to Ddegree/2 -C
k = i-ncomppol
temp = (l-s3(k>) * (l-s4(k))
C(i) = -2*(l-s3(k)*s4(k))/temp
D(i) = (l+s3(k>) * (l+s4(k) )/temp
Mult = Mult/temp
>

if (nozeros = 1) <

for i = 1 to Ddegree/2 <
A(i) = 2

B(i) = 1

>

>

ft procedure map performs the transformation Rho*zl = z
ft to H(z) where Sz!C=l for stability

procedure map <
import Rho, Ndegree, Ddegree

for i = 1 to Ndegree/2 -C
A(i) = A(i)/Rho

B(i) = B(i)/Rho**2

>

for i = 1 to Ddegree/2 -C
C(i) = C(i)/Rho

D(i) = D(i)/Rho**2

>

CI = Ndegree-Ddegree
Mult = Mult * (Rho**Cl)

>
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ft filterD - data file

ft Elliptic filter designed using FILSYN
ft for this example:
ft Wp = .45*PI
ft Wa = . 55*PI

ft passband loss = .3db
ft stopband loss = 23db
ft filter order = 4

X(l> = . 1386

X(2> = . 4189

X(3) = I. OOO

X(4) = 1. 494

X(5> = 1. 000

X(6)=--. 4599

X(7)= .2205

X(8>=-. 1883

X(9)= .7830

X(10)=-2. 000

X(ll)= 1. 900
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APPENDIX B- LISTING OF THE OPTIMIZATION ALGORITHM

ft Dgopotra - Direction finding subprocedure using the Gonzaga-Polak-Trahan
#======•===== phase'l/phase2 method of feasible directions.

DESCRIPTION : Gonzaga-Polak-Trahan MFD (for semi-infinite problems)

parameter Gamma =2.

procedure optfunc (x, eps, q, theta, h) <

array x( ), h( )
. import Gamma
n = arydim(x >
array jacobian(.Nineq+Nfineq*(q+l) + l»n)
array grad(h >

evaluate grad = Gradcost(x)
fill jacobiand,) = grad'
matop r = array(Nineq+Nfineq*(q+l)+l) of 0

psiplus = maxviolq(x,q)
r(l) = Gamma * psiplus

k = 1

forj=ltoNineq
if (Ineq(jix) >= psiplus-eps) then -C

k = k -• 1

evaluate grad = Gradineq(j, x)
fill jacobian(k, > = grad'
r(k> = psiplus - Ineq(j,x> ft (1)
>

ft computing eps-active left local maximizers

for j=l to Nfineq <
oldval = -MAXREAL

for 1=0 to q <
if ( Df ineq( j, x* 1, q) .> oldval ) -C

up = TRUE
if ( Dfineq(j, x, 1,q) >= psiplus-eps ) <

lmax - 1

locmax = Df ineq( j, x, 1, q)
active = TRUE

>

else

active = FALSE

>

if ( ( (Dfineq(j,x,l.q> C= oldval) ! l==q ) & up ) -C
up = FALSE
if active then <

k = k + 1

evaluate grad = dgradfineq <j» x, lmax, q)
fill jacobian(ki) = grad'.
r(k ) = psiplus -- Dfineq%j»x,lmax.q)



Dgopotra Page 2 -36-

oldval as Df ineq( j, x, 1, q)
>

clip e_jacobian = jacobian(1:k, >
matop qq = e_jacobian * e_jacobian' ; matop qq = (l/2)*qq
clip e__r = r (1: k )
matop a = array(l,k> of 1
matop b = array(1) of 1

quadprog e_mu = argmin < x'*qq*x •»• e_r'*x ! a*x>=b, x>=0>

matop h = e_jacobian' * e_mu ; matop h = (-l)#h

theta = -!!h!!**2 /2 - <<e_r, e_mu>>

>

ft (1) if instead we leave r(k)=0, then, when X is feasible, we have r()=0
ft and, when all constraints are e_active, the quadratic program is
ft constant on an entire subspace and fails to be solved correctly.
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ft Safl2pm

DESCRIPTION : Armijo '+-' for phase 1-2 MFD with functional constraints.

ft Both positive and negative values of the exponent k are tried.
ft The first try is with the stepsize (k) used at previous iteration.

parameter Alpha = .5
parameter Beta = . 5

create Delta

parameter Kmin = -5

function stepsize (x, h, eps, q) -C

array x(>, h ( )

import Alpha, Beta, Delta, Kmin

psiplus = maxvioiq (x, q)

kstart = k ft will be 0 the first time the routine is called

repeat <
update xnew = x + Beta*-*k •* h

psiplusnew= maxvioiq (xnewi q)
breakpt

if (psiplus==0) then -C
delta_cost = Cost(xnew) - Cost(x)
if ((ps ip lusnew=s=0)% &

(delta_cost O -Alpha * Beta*#k * Delta'* eps>) break
>

else <

if (psip lusnew==Q) return Beta**k
delta__psi = psiplusnew - psiplus
if (delta_psi <> -Alpha * Eeta-a-a-k * Delta * eps) break
>

k = k- + 1

>

forever

if (k>kstart) return Beta*#k

k = kstart - 1

repeat <
update xnew = x + Beta**k * h

psiplusnew = maxvioiq (xnew, q)
breakpt

if (ps ip lu<;==0> then <
deita_co3t = Cost(xnew) - Cost(x)
ir ((paiplusnew'-0> !
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(delta_cost > -Alpha * Beta**k * Delta * eps)) break
>

else -C

if (psiplusnew==0) return Beta**k
delta_psi = psiplusnew - psiplus
if (delta_psi > -Alpha # Beta*#k * Delta * eps) break
>

k = k - 1

>

until (k < Kmin)

k = k + 1

return Beta**k

>
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ft Cffdir

DESCRIPTION : feasible directions main loop with functional constraints

parameter EpsO = . 1
parameter Epsmin = .001

parameter Delta =1.
parameter QO = 10
parameter Mul =1
parameter Mu2 =1

procedure algo -C

import Epsmin, EpsO, Delta, QO, Mul, Mu2
array h(Nparam)

q = QO

repeat -C

eps = EpsO

repeat -C

psiplus = maxvioiq (XCIter3, q)
interaction

repeat <
evaluate theta, h = optfunc (XCIterl, eps, q)
if (theta C= -Delta*eps) break
eps = eps/2

if ( (eps<EpsO*Mul/q) & (psiplus<Mu2/q) ) <
q = 2 * q
if (q<=qmax) next 3 else break 3
>

>

forever

lambda = stepsize (XCIterl, h, eps, q)
update.XCIter+13 = XCIter] + lambda # h
Iter = Iter + 1

>

forever

>

forever

return

>
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APPENDIX C- A SAMPLE FILSYN RUN

A listing of a sample FILSYN run is included here.

For a detailed explanation, of the meanings of zs, q,

input and output terminations, and the options available

when analysis is requested, the reader is referred to [9J.

For our purposes, it will suffice to note that the res

ponses shown are those necessary for the design of an

analog filter suitable for transformation to a digital

filter.

In the example shown, an analog elliptic filter was

designed. This was then transformed, using the bilinear

transformation procedure contained in the optimization

system, to a digital filter. Elliptic filters are char

acterized by equiripple magnitude response in both the

passband and stopband. It was required that in the

discrete domain the passband cutoff frequency w=.45tt rads

and the stopband cutoff frequency w=.55tt rads. FILSYN

requests the analog frequency in hertz. Hence, it was

necessary to prewarp the frequency scale. The following

mapping was used.

.n.=tan(wT/2)

where

fL=analog frequency in rads

w=discrete frequency in rads
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T=sampling period (chosen=l)

Then the analog radian frequency was converted to hertz.

f(Hz)=iV27T

Using trial and error to find the fourth order elliptic

filter having the greatest stopband loss and smallest

passband ripple, 23db and .3db were the respective values

computed.

The optimization based filter design system contains

a routine for performing the bilinear transformation.

An analog transfer function of the form

H(s)=A^
.ir (a*-Pi) (i*-fi)

is transformed to

H(z)=K^ X~[t „
iv. n>m.

FILSYN returns the real and imaginary parts of the

numerator roots in rads/sec, the real and imaginary parts

of the denominator roots in rads/sec and A, the multipli

cative factor expressed in db. These values can be

input directly to the bilinear transformation procedure

and H(z) computed.
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A SAMPLE FILSYN OUTPUT

placer(p), filsyn(f), norton(n)', digital(d), end(e),
save-last-input(s) or mod ify-a-file(m)

f

enter title

elliptic filter wish prewarping
wish to read file (y or n)

filter type - lowpass: 1, highpass: 2, 1in.-phase lowpass: 3, bandpass: 4
1

upper edge of the passband in hz
0.13593000000000

passband kind - max. -flat: .0, equal-ripple: 1, functional input: 2
1

what is the band edge loss indb
0.3G00O0O00G0J00

enter is (-1,0 or 1). i-? don^t carei enter 0
-1

monotonic(0), equal-minima(1) or arbitrary(2) stopband

wish to specify minimum required stopband loss (y or. n)
y

enter loss in db

23.000000000000

enter edge frequency of upper stopband in hz
0.18635000000000

enter input termination in ohms
1.0000000000000

enter output termination i0. indicates open or short)
0.

enter value of average q. if no predistortion, enter 0.
0.

is analysis required (y or n)
n

Igeneral filter synthesis program

elliptic filter with prewarping

low-pass filter

equal ripple pass band

bandedge loss = 0.3000 db.

upper passband edge frequency = 1. 3593000d-01 hz.

equal minima stop band with edge frequency = 1. 8635000d-01 hz.

required stop band loss = 23.00 db.

multiplicity of zero at infinity = 0

number of Finite transmission zero p^irs = 2

overall filter degree = 4
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real part

0. d+GO

0. d+OG
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imaginary part

1.9685158d-01

4.1826708d-01

input termination

output termination

requested termination ratio
wish to see transfer function (y or n)

y

1 intermediate results

elliptic filter with prewarping

•a-•*-.* .!•*•* •* transfer function polynomials *->*****

numerator roots in rad/sec

real part imaginary part

0. d+00 1. 236854940295479d+00

0. d+00 2.628049593145812d+00

denominator roots in rad/sec

real part imaginary part

1. 0000000d+00 ohms

0. d+00 ohms

= 0. d+00

-4.638351349491554d~01 4. 873321905574137d-01

-1. 100813830243769d-01 8. 926415049455225d-01

gain factor needed for unity in-band gain = -2.9504933d+01 db
realization - active: a# passive: p, digital: d, no synthesis: e

placer(p), filsyn(f), norton(n), digital(d), end(e),
save-last-input(s) or modify-a-file(m)



FIGURE CAPTIONS

Fig. 1. Amplitude constraints

Fig. 2. Phase constraints

Fig. 3. FILSYN designed elliptic filter

Fig. 4. Chebyshev filter

Fig. 5. Butterworth filter

Fig. 6. Elliptic filter

Fig. 7. Phase linearization on elliptic filter

Fig. 8. Phase linearization on elliptic filter with narrow
transition band

Fig. 9. FILSYN design of an elliptic filter with modified
stability requirement through scaling in the z-plane

Fig.10. Improved stability using optimization applied to a
FILSYN designed elliptic filter

Fig.11. Inappropriate phase constraints
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