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ABSTRACT

It is shown how modern optimization techniques can be
used to design digital filters. The high flexibility of this
approach makes tractable a large class of specifications, such as
constraints on both magnitude and phase response or special sta-
bility requirement (running a better transient behavior). Effi-
cient use of optimization requires a highly interactive compﬁting
environment, including application oriented graphics. As an example,

the design of a low pass filter, performed on the Berkeley DELIGHT

system, is discussed.



1. INTRODUCTION

The design of digital filters consists of approximation
of desired magnitude and phase response specifications by a
ratio of polynomials corresponding'to a stable, causal trans-
fer function. ' .

Traditionally, designers have used classical techniques
to approximate their desired response. As the knowledge of
analog filter design is quite advanced, these techniques
normally consist of thé design of an énalog filter transfer
function and its conversion to a digital transfer function.
The mapping from analog to discrete frequency domain can be
accomplished by several commonly used methods such as the
impulse invariant transformation or the bilinear transforma-
tion. These design techniques have been incorporéted in the
classical filter design package FILSYN [ﬂ .

Classical techniques for the design of infinite impulse
response (IIR) filters are rigid in the design specifications
allowed. The analog filters aVailabie for use by the designer
each have definite characteristics. For example, the magni-
tude response of a butterworth filter is monotonic in both
passband and stopband,&fhebyshev filters exhibit an equi-
ripple passband and monotonic stopband response, and elliptic
filters are equiripple in both passband and stopband. Each
of these filters is characterized by nonlinear phase response.

Bessel filters are characterized by the property that the



group delay is maximally flat at the origin of the s-plane.
This property is generally not preserved after digitization.
The magnitude response of the Bessel filter tends toward
Gaussian as the filter order is increased.

A much greater flexibility can be obtained if optimization
techniques are utilized. Some attempts have been made in that
direction in the past. Deczky [la], for instance, designs
recursive filters based on the minimum p-error criterion, using
the Fletcher-Powell algorithm; he takes into account requirements
on both amplitude and phase responses. In the approach de-
scribed 'in this paper, we use a more gener;l prdblem formulation,
tractable by more recent, semi~infinite optimization algorithms.
In addition to amplitude and phase response, any other "reasonable"
requirement may be specified, such as special stability require-
ments or constraints on the size of some transfer function coef-
ficients. Also, the degrees of numerator and denominator of the
transfer function can be choosen at will; in particular, finite
impulse response (FIR) filters are allowed.

More importantly, however, the aim of this paper is to show
how filter design can be viewed as one of the numerous applic-
ations of a self-contained optimization and design system, such
as DELIGHT ([2]. In DELIGHT, any algorithm from an integrated
library can be utilized without the need of any modification in
the problem formulation provided by the application designer
(an algorithm due to Gonzaza, Polak and Trahan [3] is chosen

as an example); this total independence between problem



and algorithm is of great help. Other precious fegtures of
DELIGHT include the possibility to display graphical output in

a desirable form and the outstanding interaction capabilities:

one can interrupt, observe, diagnose, modify and restart a
computation as it progresses, resulting in saving in both computer
time and time needed to complete a design. All algorithms and
problem formulations are coded in the interactive structured
programming language RATTLE [4 1.

The balance of this paper is organized in the following
manner. In section 2, after briefly‘discussing the optimiza-
tion algorithm [3], we take the example of a lowpass IIR filter
to show how a filter design problem can be formulated into a
nonlinear program. Section 3 details the computational results
obtained with the example described in section 2. Section 4
discusses the advantages of using an interactive system to per-

form the optimization. Finally the conclusions are set forth

in section 5.
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2. DESIGN USING DELIGHT

2.1 THE OPTIMIZATION ALGORITHM

The optimization algorithm employed in the filter
design is of the combined pbase.l-phase d feasible direc-
tions type; It is useful for solving optimization problems
with functionai inequality constraints.. A brief desScription
' is given here. For a. more detailed treatment, the reader is

referred to [31 AyThe algorlthm solves problems of the form:
min {£%) | )20, 3=1,2, ... ,p; max@(x,w)20,3=1,2,...,m} (2.1)
weL, :

where
£YR3R is the cos£ function
£4 R5R j=1,2,...,p are 1nequallty constraints
¢ RxR+R j=1,2,...,m are functional inequality constralnts
' xe«R”is the design vector
. is a compact interval of the real line
amd  whee W iy csswnad ok
(1) fﬂfjj=1,2,...,p are continuously differentiable in x.
(ii)¢; j=1,2,...,m are continuously differentiable in x
and piecewise continuous in w.
The algorithm also uses the function Y{x) defined as
Yix)=max {0, Y(x)}
with _
qf(x)émax{fd(x),j=1,2,...,p; r‘s}gﬁ@x,w),ﬁl,z, ...,m} .
The franikle wgiom o elefurad as {x[l{/’(x)=0}. A feasible



point is any point in the feasible region. Hence, roughly
speaking, w?x) is a measure of the distancé JLo?n
pooiv{‘ x. o the feasible region._

To use the algorithm one need not start from a feasible
point. The phasé 1 portion of the algorithm, while.trying
to possibly decrease the cost fﬁnction, computeé a descent
direction for the most viqlated constraintsA(iﬁéiuding the
most critical values of w in the functionai constraints,
¢&x,w),j=l,2,...,m), eventually forcing the iterate into
the feasible region and'hence driving w?x) to zero. Once
this process is completed and a feasible point.is found,
the phase @1 portion of the algorithm computes a
direction leading to a decrease in the cost function while
maintaining feasibility.

The algorithm, as implemented, runs as a series of
iterations. During eacﬁ iteration a Search direction is
computed. Then a | step is taken in this direction
such that, in phase l,ﬂﬁx) is decreased and,in phase 2,
the cost function f?x)‘is decreésed while maintaining

feasibility (Y{x)=0). W/m Raamonarn Ak @prw Arn

DELIGHT, the user has the option of specifying the number
of steps (iterations) to be taken before the computation
is automatically interrupted or to allow the computation

to proceed continuously and explicitly interrupt it when



interaction seems desirable (key information about the

algorithm is displayed at each iteration). After graphical-
. . wM.A/vvt d.tAt.‘:J " i . ) .

ly displaying the A rand perhaps modifying constraints,

bhe wner oy ausumt Compubokion undd Ja is satisfied

with the filter de.sign performance.

2.2 FORMULATION OF THE FILTER DESIGN PROBLEM

AS A MATHEMATICAL PROGRAM

In this section, we show how digital filter specifica-
tions can be expressed in the form of equation (2.1).

Consider the design of a digital lowpass IIR filter
having a passband cutoff frequency of “o radians, a stop-
band cutoff frequency of w, radians and linear (within a
sector) phase. Our mathematical programming formulation of
the specifications includes the following functional

constraints:

(<) amplitude constraints

l-gdsamplitude(wW)<l+ed vw=[0,9]  (2.2)

O<amplitude(w)<1l+ed v’ué(«;;,w.) (2.3)
Oéahplitude(w)s £d V'wé[wa,v] (2 .4) .

<.?.s the magnitude is constrained to lie inside the .

region sdswm om é’uj [
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(«{)phase constraints

(m—Qd)w—cS 4 5pi’1ase'(w)£(m+'£¢d)U+rS Vwe[o,«a;) (2.5)

4'.9./ dhe phase must lie inside the M-S,u.r\« 2hotrn wm jLZ- J.

Equations (2.2)-(2.5) can easily be expressed as func-
tional inequality constraints in the form required in (2.1),

withn= [O,Tﬂ . For example, equation (2.5) can be written as

P’ (x,w)0 vwen
Plx,w)%0 Vvwen

where
¢'(x,w)2-phase (w)+(m-ed)w- § for We [0""9—} (2.6)
& _o . otherwise
d)"(x,w)éphase'(w)-(m+£¢d)w- $ for We [Oo%] (2.7)
& o otherwise

Similarly, equations (2.2)-(2.4) can be expressed in the
form ¢'(x,w)40 j=1,2, € E. and & are constants selected by

the user. m, the slope of the desired phase response is



unspecified. d, a measure of the allowable deviation in
both magnitude and phase from ideal responses, is chosen as
the cost function to be minimized. Ewlly, > o ensures

that the optimization algorlthm performs properly aA e{h&umed
s deklonm 4,

The transfer function is expressed as a ratio of
qguadratics, Thls formulation, be51des leading to a filter
with low quantization noise {1@ » facilitates the use of
the bilinear transformation and simplifies the expressions
for conditions of stability. These conditions can be written,

for each denominator quadratic, as (see [5])

1+a+ 650 (2.8)
1-a+b>0 (2.9)
1-£50 " (2.10)

where a and )} are coefficients of the quadratic zZ%az+4,
Stronger stability properties can be obtained if the poles
of the digital filter transfer function are constrained to
lie within a circle of radius 95(0,1). This is achieved by

replacing (2.8)-(2.10) with



1+a/p+b/p20 (2.11)
1-a/p+b/p20 (2.12)
1-b/g20 (2.13)

Equations (2.8)-(2.13) correspond to ordinary inequality
constraints f! in formulation (2.1). For example, (2.11)

can be written as

£(x)2-1-a4 -J);/f,sso (2.14)

The design paramete; vector x has as components
(i) the constant factor multiplying the transfer function
(ii) the coefficients of the numerator and denominator
quadratics
(iii) m, the unspecified slope of the desired phase
response
(iv) 4, the measure of allowable deviation of magnitude
- and phase from the ideal response, which is
desired to be as small as possible,
Thus, the cost function to be minimized is f{x)=d. oOur
problem, which originally was a "min-max" problem (minimize
the maximum deviation from the ideai response), has thus
been transformed into a semi-infinite minimization problem

through the introduction of the extra variable d.
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2.3 THE RATTLE FORMULATION OF THE

DESIGN SPECIFICATIONS

The RATTLE formulation of a filter design specification
consists of a set of six files which include default para-
meter values and initial data (which can be modified inter-
actively), functions and gradient (with respect.té x)
evaluation procedures as well as application oriented
graphical output and miscellaneous procedures. A listing
of these files is given in Appendix A. It should be stressed
that, if gradient evaluation procedures had not been prb-
vided, DELIGHT would, by default, estimate them by finite
differences (this feature is useful when a complex formula
is used). .

The first file, filterS (setup), defines filter para-
meters., The design vector x includes the transfer function
multiplicative factor, coefficients of the numerator and
denominator quadratics, the slope and the allowabie devia-
tion. For readability, the index of x corresponding to
- each entry has been given a name which is referred to when
accessing an element of a related array. For example,
if ‘'grad' is an array containing the gradient of some
function with respect to the design vector, grad(Imult)
will be the derivative with respect to the multiplicative

factor and grad(Ia(2)), the derivative with respect to the
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coefficient of the linear term of the second numerator
quadratic.

Also, for easy interaction or input of data, mnemonic
names have been equivalenced to each entry of x using the

DELIGHT define mechanism [2]. For example,

Mult=x(1l)

A(i)=x(21)

Thhs, the user may type "A(3)=2.5" rather than "X(6)=2.5".
File filterC (cost) contains two procedures. The

first, cost, returns the value of the cost function.

The other, gradcost, returns the gradient of the cost

function. Since the cost is the last entry of x and no

other entry depends on the cost, we have

vcost(x)=(0,...,0,1)" (2.15)

File filterl (inequality constraints) plays a similar
role for the inequality constraints (eqns (2.8)-2:10) or
(2.11)-(2.13)).

File filterF (functional inequalities) contains
procedures computing the amplitude and phase responses
of the digital filter, the functional inequalities and
their gradients. The amplitude is computed in the follow-

ing manner. For each w
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e (Zrea:2rd;)

amplitude(w)=A
F(ezrd; )

(2.16)

where A is the multiplicative factor and ap‘bp c, d; are
coefficients of the numerator and denominator quadratics.
Similarly,

-rr(a‘+a..e+b)
phase(w)= / &— = el | (2.17)

2:e
Procedures fineq and gradfineq call amplitude(w) and

phase(w) to compute various functional inequality constraints
and their gradients (see. egns (2.2)-(2.7)).

File filterM (miscellaneous) contains procedures
necessary to display the output in graphical form on the
terminal screen, a procedure which performs the bilinear
transformation on an analog transfer function given as a
ratio of quadratics and a procedure to test the ability
of FILSYN to design filters using some modified stability
criteria, which is discussed in section 3 of thisireport.

An example of the graphical output is given in figure 1.
The magnitude response is plotted over the interval we[OJﬂ .
The phase response is plotted for we[o,wﬂ . Also, the
positions of the poles 6f the discrete transfer function
are disblayed. The dashed lines in the magnitude and
phase plots show the functional inequality constraint

boundaries. These boundaries can be modified to reflect
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a desired response or to increase the speed of computation
by varying combinations of £p £ &4 the cost function
and the slopé. As an example, in the figure, the lower
constraint on the phase is violated. If left infeasible,
optimization will eventually force the phase inside the
constfaint boundary. dn the other hand, by increasing
€y one could make the phase feasible without disturbing
the constraint boundaries on the magnitude response.

File filterD (data) provides the initial values of

the design vector, x.
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3. COMPUTATIONAL EXPERIMENTS

As previously noted, fhe optimization algorithm is
sensitive to the initial choice of filter design parameters.
Starting from réndomly selected points would either increase
the computing time necessary to converge to the solution or
the algorithm would not converge at all to a global minimum,
instead converglng to a. local, suboptlmal solution. To
avoid these pitfalls, the classical filter design program,
FILSYN, was used to generate an'analog design which was
subsequently transformed, using the biiinear transformation,
to a digital filter and used as the starting point for the
optimization progrém. In all examples, the Bilinear trans-
formation was chosen to avoid the aliasing problems encoun-
tered with the use of impﬁlse invariance. By prewarping the
frequency scale, the desired initial_frequency response
could be preserved [6] . |

In the first example (fig.#4 ) a fourth order Chebyshev
filtor having a bandedge loss of 1db and a stopband loss of
17db was designed using FILSYN and used to initialize the
optimization program. Optimization resulted in another
fourth order chebyshev filter having a bandedge loss of .43db
and a stopband loss of 16.7db. FILSYN required a fifth
order filter to satisfy these ;riteria.

In example 2 (fig.'S) a fourth Rutterworth filter having

a 4db bandedge loss and a 13db stopband loss was designed
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using FILSYN. At the pfice.of s;ightly less linear phase
and the appearanée of ripple.in the péssband, a -fourth order
filter having a significantly narrower transition band
resulted from optimizationz%yEllipﬁic filters are optimum in
the sense that for}a given order, no other filter has a
narrovwer transition band._ They are also characteri;ed by a
magnitude response which is equiripple in both the passband
and the stopband [B], which best matches our specifications.
£ya5p& 3 (jlﬂ. &) - illustrates an'attempt to optimize
the magnitude of a FILSYN designea elliptic.filter having
a .3db bandedge léss and a 23db stopband loss. The improve-
ment observed was insignificant. A comparison demonstrated
that FILSYN would design a fourth order filter meeting
equivalent specifications. To demonstrate the versatility
of the optimization system, an attempt to linearize the
phase of the FILSYN designed elliptic filter was made. As
displayed in figures 7 and %, good success was made at
linearizing the phase, but at the cost of a "hump" near
the passband edge frequency in the magnitude response.
These =eaef{s  demonstrate the ability of the optimization
program to construct linear phase filters from an arbit:ary
initial design. |

Pole placement within the unit circle is tied to the
damping of transient response and hence improved stability.
The smaller‘the circle containing the filter transfer

‘.
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function poles, the faster frequency response transients
settle out [7]. Hence it would be useful to be éble to
design filters using pole placement (ie. magnitude from the
origin) as a constraint. 'One might postulate that this
could be done using FILSYN and applying the simple Eransfor—
mation z — 5?- ,  wct Pe(a,.!) , to the ofuied »Ca/ujem
function. This hypothesis was tested, using a FILSYN
designed elliptic filter, with the result displayed in
figure 9 for f=.8. The shape of the transformed filter
frequency response is affected and may, as in figure 9,
result iﬁ a poor design. Hence this method is not useful.
The optimization system allows the user to speéify the
radius of a circle within which the poles must lie after
optimization. Figure Ic illustrates an example in which the
modified stability criterion is.used. Beginning from a
FILSYN designed elliptic filter, the poleé were constrained
to lie within a circle of radius .8. The ability of the
optimization system to modify both magnitude and phase as
well as push the poleslwithin the specified radius results
in a greatly.superior filter to that designed by FILSYN

using the previously described technique.
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4. ADVANTAGES OF INTERACTION

The advantages in using an interactive system are
many. Without interactive capability, the amount of time
necessary to solve the problem.uéing batch mode would
render the problém unmanageable. .

The graphics capability is indispensable. It allows
one to visually monitor the'pfbgfess of the optimization,
set constraints initially ahd vary them during the optimi-
zation process saving considerable computing time, and
make visual comparisons between designs.

In the DELIGHT system, when modifying or adding to
the program, the interactive system allows one to test
single statements or subprograms without having to re-
compile ;he entire program.resulting in a significant
time savings. This is due to the one-pass nature of
RATTLE compilation; there is no load/lirikage phase.
Program debugging is also simplified through the use of
interaction. Program execution can be interrupted,
procedures can be entered, values of locally and globally
defined variables can be printed, diagnostic checks can
be added and execution can be restarted once more in an
effort to pinpbint errors. This is a vast improvement
over non—interacﬁive methods in which one must first wait

for a run to be completed, add diagnostics, recompile,
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relink and rerun the enti:e program, repeating this se-
quence perhaps several times to debug it. A specific
instance in which interaction proved to be_quite’valua—
ble in program debugging occurred when the functional
inequality constraints were ﬁirst tested. The phase

constraints were originally specified as

(m-g4 )W<phase (W) (m+Ed)w Vwe[O,”rll' (4.1)

This resulted in a constraint region sfotm au‘}g.iﬁ,

The algorithm was unable to solve the quadratic program
used in finding a search direction.O“'aL Akum“blhat the
quadratic programming routine was being passed invalid
gradient arguments, the interactive capabilities of
DELIGHT were used»and the procedure computing grédients
of the functional inequality constraints was entered.

The matrix of the gradients was checked and those entries
St £ T 8 SO MR 0 Y i

zero., Inspection showed that ¢'(x,0)=¢{x,0)=0 for all x..

Hence, the suspicion was confirmed. Subsequently, equation
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(4.1) was corrected to its present form (eqn. (2.5)).
' wAjud Jor et hote - :
_Another feature of DELIGHT,is that the entire pro-
gress, iteration and formulation, of the design can be
saved so that the design may be resumed at a later time

-

from exactly the same point.



-20-

5. CONCLUSIONS

We have shown how interactive optimizatioﬁ can be applied
to the problem of digital filter'design. A method has been
described. to formulate a digital filter design problem as a
semi—infinite nonlinear program. We have stressed the impor-
tance of a highly interactive computing environment for
efficiently solving such a nonlinear program. ‘Examples have
been presented demonstrating the substantially increased
flexibility of the optimization'sysﬁem over Cclassical design
methods. . .

The price paid for high flexibility is a fairly large
computihg time (the examples pfesented typically require 30
minutes of CPU time on a VAX 11/780 running VM UNIX).
However, the computiﬁg time necessary to complete thev
design could be significantly decreased if portions of the
code whte indtnoition o awt etdeadiol | pacd o4 ww/,“fué(uk
of Mﬁ&«&oﬁ. and  plom vy pounant Oacd c/f l&&?wf}’/‘«\')dd:& wbs,
were written in FORTRAN rather than RATTLE. Also, the
algorithm is somewhat slow to converge. More recent algo-
rithms (ie.[8]) should converge much more‘rapidly. Perhaps
most importantly, the computation time is often not an
overriding factor. A situation in which the same design
is used to produce.a large number of filters provides an
example.

Although we have described in detail only the specific



-21-

case of an IIR lowpass filter, extension to other types of
frequency response (highpass, bandpass, bandstop) is straight-
forward. Also, degrees of numerator and denominatqr can be

changed at will; FIR filters are obtained as a particular case.
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APPENDIX A- LISTING OF THE FILTER DESIGN PROGRAM
fzmmmmom=as
# filterS - setup
$=====m===

¢ both Ndegree and Ddegree must be even as H(z) is
# a ratio of quadratics |

Ndegree 4

Ddegree 4

Nparam = Ndegree+Ddegree+3

Nineq = (3/2)#Ddegree

Nfineq = 4

Wo = 0 :
We =PI

Imult=1 R
array la(Ndegree/2), Ib(Ndegree/2)}
for i=1 to Ndegrees2 <

Ia(i)=2#i

Ib(i)=2%i+1

>
array Ic(Ddegree/2), Id(Ddegree/2)
for i=1 to Ddegrees/2 <

Ic(i) = Ndegree + 2#i

Id(i} = Ndegree + 2#i + 1

b
Islope = Ndegree + Ddegree + 2
Ibest_bound = Ndegree + Ddegree + 2

# numerator quadratic: z##2 + A(id#z .+ B(i)
# denominator gquadratic: z##2 + C(iY#z + D(i)

define (Mult, X(1))

define (A ( i ), X(i#2))

define (B ( i ), X(2xi+1))

define (C ( i ), X(Ndegree+2%i))

define (D ( i ), X(Mdegree+2%i+1))

define (Phase_slope:; X(Nda2gree+Ddegree+2))
define (Best_bound, X(Ndegree+Ddegree+3))

edge of passband = Wp/(2#PI) Hz -
edge of stopband = Wa/(2#PI) H:

width of passband constraint region = 2#Eps_pass#Best_bound
width of stopband constraint region = Eps_stop#*Best_bound
angle of phase constraint sector = Eps_slope#Best_bound
distance of phase constraint boundaries from origin = Delphase
stability constraint: !poles! <= Rho

£ O ]

Wp . 4S5#P1

Wa . 35+#P1
Eps_pass = . 0S5
Eps_stop = . 1
Eps_slaope = .2
Delphase = .1
Rha=1
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oo ‘
# filterC - cost function

function cost (x) <
array x()
import Ibest_bound

return x(Ibest_bound)
}

procedure gradcost (x.g} <
array g()
import Ibest_bound
matop g = array() of O
g(Ibest_bound) = 1
>



-25-

# filterl - inequality constraints

praocedure ineq(yj, x) <£

array x ()

k = (J - modrep(y4,3))/3 + 1

import Ic., Id, Rho

rhosq = Rho#42

casel (modrep(y,3)==1) return =1-x(Ic(k))/Rho-x(Id(k))/rhosq

case2 (modrep(y,3)==2) return =1+x(Lc(k))/Rho-x(Id(k))}/rhosq
cased (modrep(j,3)==3} return =1+x(Id(k})/rhosqg
} .

-

procedure gradineq( ., x,g) <
array x¢(), g
import Ic, Id:, Rho
k = (j - modrep(y,3))/3 + 1
Thasq = Rho#%2
matop g = array(}) of O
casel (modrep(yj,3)==1) <

g(Ic(k)) = —-1/Rho
g(Id(k}) = —-1/rhosq
}

case2 (madrep(y,3)==2) <
g(Ic(k¥} = 1/Rho
g(Id(k}} = -1/rhosq
¥

case3 (modrep(y,3)==3)
g(Id(k})) = 1/rhosq

> .
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# filterF - functional inequality constraints

function amp (x, w) <

array x()

import Ndegree, Ddegree
import Ia, Ib, Ic., Id., 'Imult
array y(3), xx(3)

amptemp = x(Imult)
xx(3) =1 . _
y3) =1 ' .
for i = 1 to Ndegrees/2 <{
xx(2) = x(Ia(i))
xx(1} = x(Ib(i))
y(2) = x(Ic(i))
y(i) = x(Id¢i))
amptemp = amptemp#tranfal(xx, 2,4y, 2, w)
} .
if (Ndegree <« Ddegree) then <{
for i = Ndegree/2+1 to Ddegree/2 <
y(2) = x(Ic(i))
y(1} = x(Id(i))
amptemp = amptemp#tranfa(l,O,y,2,w)
> -
) I
return amptemp
} .

function phase (x,w) € # WARNING: the phase must be calculated
# in a loop starting with w=0 .

array x()

import Ndegree, Ddegree
import Ia, Ib, Ic, Id
array y(3), xx(3)

if ( w==10.0) then {
ph = 0.0 .
deltaph = 0.0
> .
else
phtemp = O
xx(3) = 1
Y3y =1
for i = 1 to Ndegree/2 <«
xx(2) = x(Ia(i))
xx(1) = x(Ib(i))
y2) = x(lc(i))
y(1) = x(Iddiy)
phtemp = phtemp+tranfp(xx,2,y,2, w)
} ' :
for i = Ndegree/2+1 to Ddegree/2 <
y2) = x(Ic(il)
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y(i) = x(Id(i))
phtemp = phtemp+tranfp (i, 0, y,2, w)
> . '

ph = phtemp + deltaph

if ( abs(ph+PI - phstore) < abs(ph - phstore) ) then <{
ph = ph + PI '
deltaph = deltaph + PI
>
else < A
if ( abs(ph-PI - phstore) € abs(ph - phstore) } then <
ph = ph - PI
deltaph = deltaph - PI
} . -
D
}
phstore = ph
return ph
by

function fineq (y, x , w) <
- array x() ‘ :
import Ndegree, Ddegree:. Wp, Wa, Eps_pass, Eps_stop, Eps_slope, Delphase

import Islope, Ibest_bound, Ib, Ic
amplitude = amp (x,w) |

casel (y==1) {

if (wiWa) return (amplitude - (1+Eps_pass#x(Ibest_bound)) ) -
if (wih=Wa) return (amplitude ~ Eps_stop#x(Ibest_bound))
> : '

case2 (y==2) <
if (wl=Wp) return ((1-Eps_pass#x(Ibest_bound)) - amplitude)
if (w>rWp) return —-sqrt(MAXREAL)
b3 ,

caseld (J==3) {
if C=Wp )
return (phase(x,w)-(x(Islope)+Eps_slopes*x(Ibest bound))*w-Delphase)
else return -sqrt(MAXREAL)
>

cased (j==4) <
if (w=Wp}
return (-phase(x,w)+(x(Islope)-Eps_slape#x(Ibest_bound))#w~Delphase)
else return -sqrt(MAXREAL)
>

procedure gradfineq (§, x,w g) <
array x(}, g()
import Ndegree, Ddegree, Wp, Wa, Eps_pass. Eps_stap, Eps_slope
import Ia, Ib, Ic. Id, Islope, Ibest_bound. Imult
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array re_num(Ndegree/2), im_num(Ndegree/2)
array re_den(Ddegree/2): im_den(Ddegree/2)

for i = 1 to Ndegrees2 <

if

3

re_num(i) = cos(2%wl)+x(Ia(il))#cos(uw)+x(Ib(i))
im_num(i) = sin(2%w)+x(Ia(i))#sin(w)
for i = 1 to Ddegrees2 <{
re_den(i) = cos(2#w) + x(Ic(i}} # cos(uw) + x(Id(x))
im_den(i) = sin(2#w) + x(Ic(i)) * sin(w)
> : -
(J==1 | y==2) < ‘ -

it

amplitude = amp(i.w)

for i = 1 to Ndegrees/2 <
numsq = re_num(i)##2+im_num(i)ex2
g(Ia(i)) = (amplitude##2)#2%#(re_num(il#cos(wl+im_num(il#*sin(w))/numsq
g(Ib(i}) (amplitude##2)#2%re_num(il)/numsq
>
for i = 1 to Ddegree/2 <
densq = re_den(i)##2 + im den(z)**z

g(lIc(id)) = -2*(amp11tude**2)*(re den(i)#cos(w)+im den(x)*sxn(w))/densq
g(Id(i)) = -2#(amplitudenxn2)s#re_den(i) / densq
>

g(Islope} = 0O
matop g = (1/(2#amplitude)) * g
g(Imult) = amplitude/x(Imult)

if (y==2) then
if (w<=Wp) matop g = (—~1)xg

else matap g = array() of 0
g (Ibest_bound) = —Eps_pass '
if (y==1 % w>Wp) g(lbest_bound) = —-Eps_stop
if (y==2 % w>Wp) matop g = array() of O
>
(y==3 J==4) <
for i 1 to Ndegree/2 <

b

numsq = rte_num(i)##2 + im_num(i)#s2
}) = (re_num(id#sin(uwl—im_num(id#cos(w}) / numsq
) -im_num(i) / numsgq

for i = 1 to Ddegree/2 {
densq = re_den(i)##2 + im_den(i)##2

g(Ic(i)) = (im_den(il)#cos(w) - re_den(il)#sin(w))/densq
g(Id(i)) = im_den(i) / densq .
3

g(Islape) = ~w

g{Imult) = 0O
g(Ibest_bound}) = —wi#Eps_slape
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if (wdWp) matop g = array() of .0

it (yg==4) <
matop g = (-1)i#g :
g(Ibest_bound) = —g(Ibest_bound)-
3



-30-

fo======== .
# filterM — miscellaneous for graphical output
fm=m=mmmmas

define_viewport wamp O .59 1 1

define_world wamp O O PI 1.5

define_viewport wphase O O (Wp+Wa)/(2#PI) .S
define_world wphase O -5 (Wp+Wal)/2 O
define_viewport wpoles .6 0 .2 .S
define_world wpoles -1.25 -1.25 1.25 1.25

define (poles i ‘‘color=‘red’ ,poles_(X.color}) : ' e
Sizex = .02

procedure poles_(x,col) <
array x()
import Ddegree, Sizex:. Ndegrsee
array repole(Ddegree), impole(Ddegree)
for i = 1 to Ddegree/2 <
c = C(i}
d = D(i) )
square = c##2 — 4xd
it ( square 2= 0 ) <
repole(2#i-1) -
impole(2#i-1)
repole(2#i}
impole(2#i).
>
- else <
repole(2%i-1) = —-c/2
impole(2#i-1} = sqrt(-square}/2

[}

c + sqril(squarel) /2

¢
(o)
-¢ - sqrt(square)}/2

inn
o~

repole(2#i} = -c/2
impole(2#i) = —gqrt(-square}/2
>
b s
window wpales
for i = 1 to Ddegree <{

vector repole(i)-Sizey impole(i)—-Sizex repole(i)+Sizex impole(i)+Sizex
vector repole(i)-Sizex impole(i)+Sizex repole(i)+Sizex impole(i)—-Eizex
}

define (frame, frame_{())

procedure frame_ <

window wamp
color white
box

window wphase
color white
box
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window wpoles
theta = 24PI / 40
for k = Q0 to 40
vector cos(theta#k) sin(theta#k) cos(thetax*(k+1}) sin(theta#(k+1))
vector 0 -1. 25 O 1.25
vactor -1.25 G 1.25 C
}

define (pfr i ‘“color=‘red’ ,pfr_(:color))
if_NOTTHERE algo procedure algo g=0
procedure pfr_ (col} {

import Ndegree., Ddegree, Wp, Wa, Wc, Eps_paés. Eps_stop, Eps_slope, Delphase
access q from algo
it q==0 q=20

window wamp
tol_pass = Best_bound # Eps_pass
tol_stop = Best_bound # Eps_stap
tolor yellow
vector O 1+tol_pass Wa 1+tol_pass
vector O 1-tol_pass Wp 1-tol_pass
vector Wa tol_stop PI tol_stop
array resp(q+1)
for i=1 4o g1 ,

respl{il=amp (X, (i-1)%#PI/q)}

curvev resp col

window wphase
tol_slope = Best_bound # Eps_slope
color yellow :
clip_vector O Delphase Wp (Phase_slope+tol_slopelsWp+Delphase
clip_wvector G -Delphase Wp (Phase_slope—tol_slopel#Wp—-Delphase
array resp(q#*Wp/Wc+1)’
for i=1 to arydim(resp)
resp(id=phasa(X, (i-1)#PI/q)
viewport O G Wp/((Wp+Wa)/2) 1 relative to wphase
curvev resp col ‘

poles col
>

the following variables must be input from the keyboard
before calling "convert®

#* 3

mult = multiplicative ¥factor of H(s) in db

ncompzer = number of complex z2ero pairs

ncompgol = number of complex pole pairs

nozeraos =1 if H(s) has no finite zevros

nozeros = G otherwise :

array renum contains the real parts of the complex zeros
arrays imnum., redoan, and imden are similarly defined

TR ERFRE
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# arrays si1 and s2 contain real zeros to be transformed in
# pairs (ie. (g=si(i))#(s~-s2(i}) }
" # arrays s3 and s4 are similarly defined for poles

create mult

create ncompzer

create ncomppol

create nozeros , '

array renum(ARB}), imnum(ARB), reden(ARB)}: imden(ARB)
array sl(ARB}), s2(ARB), s3(ARB): s4(ARB)

# procedure convert performs the bilinear transformation to
# a transfer function H(s) expressed as the ratio of quadratics
procedure canvert < ,

import mult, Ndegree, Ddegree

import ncompzer, ncomppol:, nozeros

import renum, imnum, reden, imden

import si1, s2, s3, s4

Mult = 10##(mult/20)

#perform bilinear transform on complex
t##zero pairs :

if (nozeros = 0} <
for i = 1 to ncompzer < '
magsq = renum(i)##2 + imnum(i)#s2

temp = 1-2#renum(i)+magsq

A(i} = -2#(1-magsq)/temp

B(i}) = (1+2#renum(i)+magsq’)/temp
Mult = Mults#temp

}

>

#perform bilinear transform on complex
#paole pairs

for i = 1 to ncomppol <
magsq = reden{(i)#*#2 + imden(i)#x#2

temp = 1-2#reden(i)+magsq

C(i) = ~2#(1-magsq’/temp

D(i) = (1+2#reden(i)+magsq)/temp
Mult = Mult/temp

)

#perform bilinear transform on real
" #numerator roots (in pairs)

if (nozeros = Q) < ‘
-for i = ncompzer+l to Ndegree/2 <
k = i-ncompzer

temp = (1-si(k))#(1~s2(k))

A(i) = =2#(1-s1(k)#s2(k))/temp
B(i) = (1+si(k))I)#(1+s52(k))/temp
Mult = Mult#temp

>
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>

#perform bilinear transform on real
##denominator roots (in pairs)

for i = ncomppol+l to Ddegrees/2 <
k = i-ncomppol .
temp = (1-53(k)) # (1~s4(k)}
C(i) = -2#(1~-s3(k)#s4(k))/temp
D(i) = (1+s3(k}} # (1+s4(k})/temp
Mult = Mult/temp
>

if (nozeros = 1) ¢

for i = 1 to Ddegrees2 . {
Ali)y = 2
B(i) =1
;]
s
}
# procedure map performs the transformation Rho%#zl = 1z

# to H(z) where {zi<=1 for stability

procedure map £ .
import Rho: Ndegree, Ddegree

for i = 1 to Ndegree/2 <{
A(i) = A(i}/Rho
B(i) = B(i)/Rho#%2
)

for i = 1 to Ddegree/2 <{
C(i) = C(i)/Rho
D(i) = D(i)/Rho%%2
b

Cl = Ndegree-Ddegree
Mult = Mult # (Rho##C1)
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Elliptic filter designed using FILSYN
for this example:

Wa =

X(1)= . 1386
X(2)= . 4189
X(3)= 1.000
X(4)= 1.494
X(S)= 1.000
X(&)=—, 4599
X(7)= . 2205
X(8)=-. 1883
X(9)= . 7830
X(10)=-2. 000
X(11)= 1.900

. 954P1
passband loss
stopband loss

# filter order

&
#
# Wp = .45#PI
"
#
%

4

. 3db
23db
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APPENDIX B- LISTING OF THE OPTIMIZATION ALGORITHM

fom==ms=m=r===
# Dgopotra — Direction finding :ubprocedure using the Gonzaga-Polak-Trahan
$=========== phasel/phase2 method of feasible directions.

DESCRIPTION : Gonzaga-Polak-Trahan MFD (Fov'semi—ih€inite problems)

parameter Gamma = 2.
procedure optfunc (x, eps, q. thefa, hy <

array x(), hQ) .

.import Gamma : ‘ . -
n = arydim(x) :

array Jacobxan(aneq+NF1neq*fq+11+1,n)

array grad(n) ’

evaluate grad # Gradcbst(x)
fill jacobian(l,} = grad’
matop r = array(Mineg+Nfinegq#(q+i)+1) of O

psiplus = maxviolqix,q) ~
T(1l}) = Gamma #* psiplus

k=1

for j=1 to Nineg
if (Ineq(y, x} »= psiplus—eps}) then
k= &k + 1 :
avaluate grad = Gradineq(y:, x)
£ill jacobian(k,) = grad’

ri{k}) = psiplus - Ineq(y,x)} # (1)
}

# computing eps—active left local maximizers

for Jj=1 to Nfineq L
‘oldval = -MAXREAL
for 1=0 to q <
it ( Dfineq(y,x,1,q). .2 aldval ) <

up = TRUE .
i# ( Dfineq(y,x,1,q) »= psiplus—eps } <
lmax =1
locmax = Dfineq(y.x.1,q)
active = TRUE
" .
else
active = FALSE
. >
it ( ( (Dfineqly.x,1,q) <= oldval) | I==q ) & up > <
up = FALSE
if active then <
¥ =k + 1
evaluate yrad = dgradfineq (), x. lmax, q?
£ill jacobian(k, ) = grad’.

v(k) = psiplus -~ Dfineq:y, x, lmax. q)



#
#
#

o M i = e .~ > = a- o — - ———

Dgopotra Page 2 -36-

>
}
oldval = Dfineq(y,x.1,q)
>
}

clip e_jacobian = jacobian(1i:k.,)
matop qq = e_gacobian # e_jacobian’ i matop qq = (1/2)#qq
clip e_r = v(1:¥k)
matop a array(l, k) of 1

matop b = array(l) of 1

quadprog e_mu = arg@in { x‘#qq#x + e_r‘#x | . a#x>=b, x3=0} °

matop h = e_jacobian’ # e_mu ; matop h = (~1)#h
theta = =i lhii##2 /2 -~ (<e_r, e_mud>
>

(1) if instead we leave r(k)=0, then, when X is feasible, we have v ()=0
and, when all constraints are e_active, the quadratic program is
constant on an entire subspace and fails to be solved correctly.
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CESCRIPTION : Armijo ‘+-‘ for phase 1-2 MFD with Functiongl constraints.

# DBoth positive and negative values of the expoﬁent k are tried
# The first try is with the stepsize (k) used at previous iteration.

parameter Alpha = .5
parameter Beta = .S
create Delta
parameter Kmin = -9

?unctionAstepsize (x. h. eps, q} <£

array x{(}, h()
import Alpha, Beta, Delta, Kmin

psiplus = maxviolq (x, g}

kstart = & # will be O the first time the routine is called

repeat
update xnew = x + Bata##k #* h
psiplusnew = maxviolq (xnew: q!
breakpt

if (psiplus==0) then <
delta_cost = Cast(xnew) -~ Cost(x)
if ((psiplusnew==Q)* %
(delta_cost = ~Alpha # Beta##k # Delta’'# eps)) break

b

else £
if (psiplusnew==0) return Beta##k
delta_psi = psiplusnew - psiplus
if (delta_psi «= -Alpha * Beta##k # Delta # eps) break
>

k = .+ 1

>

forever

if (k>kstart? return Betawxk
k = kstart - 1

repeat <
update xnew = x + Betaw##k # h
psiplusnew = maxviolq (xnew, q)
breakpt

if (psiplus==0) then <
delta_rcost = Cost(xnew) - Coast(x)
1t ((psiplusnew!=C; |
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(delta_cost > -Alpha # Beta##k # Delta # eps)) break
b
else <
if (psiplusnew==0) return Betaxxk
delta_psi = psiplusnew - psiplus .
if (delta_psi » —Alpha # Beta##k # Delta # eps) break
) ,
k =k - 1

>
until (k < Kmin)

k =k + 1 . : . .
return Betawxk
} '
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DESCRIPTION : feasible directions main loop with functional constraints

parameter EpsO = .1

parameter Epsmin = . GOl
parameter Delta =
parameter QC = 10
parameter Mul = 1
parameter Mu2 = 1

e

procedure algo

import Epsmin, EpsO, Delta, G0, Mul, HMu2
array h(hparam)

q = Q0
repeat <
eps = EpsO

repeat {

psiplus = maxviolq (XCIterl, q)

interaction ’

repeat { - :
evaluate theta, h = optfunc (XLIterl, eps, q}
if (theta <= -Deltasteps) break
eps = eps/2
if ( (eps<CEpsO#Mul/q) % (psiplustMu2/q) )} <

q =2 % q
if (qi=gmax) next 3 else break 3
} .
}
forever

lambda = stepsize (XLIterl, h, eps, Q)
update XEIter+1] = XLIterl + lambda % h
Iter = Iter + 1
}

forever

>
forever

return
)



R el e e SO e e L+ o - v b T A VI TP Se oy ; E—

-40-

APPENDIX C- A SAMPLE FILSYN RUN

A listing of a sample FILSYN run is included here.
For a detailed explanation,of the meanings of zs, q,
input and output éerminations, and the options avaiiable
when analysis is requested, the reader is referred to [9].
For our purposes, it will suffice to note that the res-
ponses shown are those necessary for the design Gf an
analog filter suitable for transformation to a digital
filter.

In the example shown, an analog elliptic filter ﬁas
designed. This was then transformed, using the bilinear
tranéformation procedure'contained in the optimization
system, to a éigital fi1£er. Elliptic‘filters are char-
acterized by equiripple magnitude response in both the
passband and stopband. It was required that in the
discrete domain the passband cutoff frequency w=.45w rads
and the stopband cutoff frequency w=.55w rads. FILSYN
requests the analog frequency in hertz. Hence, it was
necessary to prewarp the frequency scale. The following

mapping was used.

n.=tan(wT/2)

where
fN=analog frequency in rads

w=discrete frequency in rads
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T=sampling period (chosen=1)

Then the analog radian frequency was converted to hertz.

f(Hz)=02/2

Using trial and error to find the fourth order elliptic
filter having the greatest stopband loss and smallest
“j:passband ripple, 23db and .3db were the respective values
computed.

The optimiiation base& filter design system contains
a routine for pegforming the bilinear transformation.

An analog transfer function of the form

T (343051 5)
H(s)=Aa = —
‘.'.n"(arf.;)(.‘w )

‘is transformed to

2
(2" a;3+b;)

% n>m.
H(z)=K " {2
,'ﬁ‘(%"*(-;ércf;) = mEn
t= .

FILSYN returns the real and imaginary parts of the
numerator roots in rads/sec, the real and imaginary parts
of the denominator roots in rads/sec and A, .the multipli-
cative factor expressed in db. These values can be
input directly to the bilineér transformation procedure

and H(z) computed.
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A SAMPLE FILSYN OUTPUT

- ———— . e e e a Y

placer(p}, +ilsyn(f), norton(n), digital(d), end(e},
save-last—inputis! or modify-a-file(m}
4F .

antar title
elliptic +filtar with prewarping

wish to read fila (y ar n}
n A
filter typs - lowpass: 1, highpass: 2, lin.—phase.lowpass:‘a, bandpass: 4
1
upper edge2 ot the passband in hz

Q. 13873000CCO00G

passband kind - max. -flat: O, adual—ripple: i, functional- -input: 2
1 .
what i3 tha band adge loss in db

0. J000G00CQCHEOG
enter 13 (~1,0 or 1). if don‘t care, enter C

-1
manctonic(C}, equal-minima(il) or arbitrary(2) stopband

1
wish to spacify minimum required stopband loss {(y ar. n!

Yy
enter loss in db

23. 00000GOCC000
2ntar edge frequency of upper stopband in hz

G. 1B4£350000GG000G
enter 1nput tarmination in ohms

1. GCOGO0COoC00N0 ,
enter autput Lermination (O. indicates open or short)

G.

eanter walue of average q. if no predistortion, enter O.
Q. ‘

is analysis raquired (y or n)

n : .
lgeneral filter synthesis program

elliptic filter with prewarping
low-pass filter
equal ripple pass band
bandadge loss | . : = 0. 3000 db. 

upper passband =adge frequency = 1.35%93000d-01 hz.

gqual minima stop band with edge frequency 1. 8635000d-0C1 hz.

required stop band loss = 23. 00 db.
multiplicity of zero at infinity = 0
number of Finile transwmission ero pairs = 2

averall filter Jdegree = 4
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transmission zeros

real part imaginary part
0. 4+G0 1. 9485158d-01
. 4+00 4. 1824708d-01

input termination = 1. 0000000d+00 ohms

output teramination = 0. -__éfégiohms--_
requested termination ratio = 0. d+00C
wish to s2e transfer function (y or n) ‘
intermediate rasults
elliptic filter with prewarping
At ttad fransfer function pslgnomials ittt
numerator roots in rad/sec
real part imaéinarg part
G. . d+C0 1. 234854940295479d+00
G. : 4+GO 2. £2B0495923145812d+00
denominator roots iﬁ rad/sec
real part imaginary part
=4, &£323513474915544--01 4. B73321705574137d-01
—-1. 100B1383024374£%2d-0C1 5. 9264150424552254-01
gain factor neaded for unity in-band gain. = =2, 9504933d+01 db.

realization - active: a, passive: p, digital: d, no synthesis: e

scerip), filsyni{+i, norton(n), digital(d), end(e’.
ve-—1

e-last-input(s}) or modify—a-file(m!



Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Figf 6.
Fig. 7.

Fig. 8.
Fig. 9.
Fig.10.

Fig.1ll.

FIGURE CAPTIONS

Amplitude constraints

Phase constraints

FILSYN designed elliptic f;lter
Chebyshev filter

Butterworth filter

Elliptic filter

Phase linearization on elliptic filter

Phase linearization on elliptic filter with narrow
transition band

FILSYN design of an elliptic filter with modified
stability requirement through scaling in the z-plane

Improved stability using optimiiation applied to a
FILSYN designed elliptic filter

Inappropriate phase constraints
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